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Linking Physical Activity to Breast Cancer Risk via
the Insulin/Insulin-like Growth Factor Signaling System,
Part 2: The Effect of Insulin/Insulin-like Growth Factor
Signaling on Breast Cancer Risk
Ann E. Drummond1, Christopher T.V. Swain1, Roger L. Milne1,2,3, Dallas R. English1,2, Kristy A. Brown4,
Tina L. Skinner5, Jannelle Lay1, Eline H. van Roekel6, Melissa M. Moore7,8, Tom R. Gaunt9,
Richard M. Martin9,10, Sarah J. Lewis9, and Brigid M. Lynch1,2,11

ABSTRACT
◥

Perturbation of the insulin/insulin-like growth factor (IGF)
signaling system is often cited as a mechanism driving breast
cancer risk. A systematic review identified prospective cohort
studies and Mendelian randomization studies that examined
the effects of insulin/IGF signaling (IGF, their binding proteins
(IGFBP), and markers of insulin resistance] on breast cancer
risk. Meta-analyses generated effect estimates; risk of bias was
assessed and the Grading of Recommendations Assessment,
Development and Evaluation system applied to evaluate the
overall quality of the evidence. Four Mendelian randomization
and 19 prospective cohort studies met our inclusion criteria.
Meta-analysis of cohort studies confirmed that higher IGF-1

increased risk of breast cancer; this finding was supported by
the Mendelian randomization studies. IGFBP-3 did not affect
breast cancer. Meta analyses for connecting-peptide and fasting
insulin showed small risk increases, but confidence intervals
were wide and crossed the null. The quality of evidence obtain-
ed ranged from ‘very low’ to ‘moderate’. There were insufficient
studies to examine other markers of insulin/IGF signaling. These
findings do not strongly support the biological plausibility of
the second part of the physical activity—insulin/IGF signaling
system—breast cancer pathway. Robust conclusions cannot be
drawn due to the dearth of high quality studies.

See related article by Swain et al., p. 2106

Introduction
Physical activity is associated with a reduced risk of breast cancer

(1–3). However, themechanisms on the causal pathway underlying the
physical activity–breast cancer relationship are not well understood.
Physical activity has been shown to decrease fasting insulin levels (4–6)
and insulin/IGF signaling has been implicated in the development of a
range of malignancies, including breast cancer (7–9). In healthy
individuals, blood glucose levels are regulated by insulin but when
this process is disrupted, either due to insulin resistance or inadequate

production of insulin by the pancreas, glucose levels rise allowing
adverse metabolic conditions to manifest. Elevated levels of both
glucose and insulin have been implicated in breast cancer
development (10–13). Blood glucose levels can be measured directly,
or a 3 month average glucose level determined by measurement of
glycated hemoglobin or hemoglobin A1c (HbA1c); a complex of
glucose bound to hemoglobin, (a protein in red blood cells).

The insulin/insulin-like growth factor (IGF) signaling system con-
sists of three ligands (insulin, IGF-1, IGF-2), six ligand binding proteins
(IGFBP 1–6), and 2 transmembrane tyrosine kinase receptors, insulin
receptor and type I IGF receptor (IGF-1R). Functional receptors exist
as either homo- or hetero-dimers with both forms capable of trans-
ducing a signal. Insulin/IGF ligands circulate bound to IGFBPs;
the most abundant of these being IGFBP-3 (14). In addition to
facilitating transport, IGFBPs regulate ligand bioavailability. Breast
cancer risk could be modulated by any component of the insulin/IGF
signaling system.

Insulin is derived from proinsulin, cleavage of which gives rise to
equimolar concentrationsof insulin andconnecting-peptide (C-peptide;
ref. 15). While insulin is metabolized by the liver, C-peptide remains
intact and therefore reflects the production of insulin by the pancreas
(specifically the beta cells). Due to its longer half-life and increased
stability in serum (15, 16), C-peptide is often measured as a marker of
insulin in preference to measuring insulin directly. Insulin may affect
cancer risk directly, through its mitogenic properties or by increasing
growth-promoting signaling (12). It can also enhance activation of the
IGF-1 system, which is involved in cell differentiation, proliferation, and
apoptosis (17). Both IGF-1 and IGF-2 have been shown to stimulate
proliferation of breast cancer cells prepared from excised tissue and
established cell lines (13, 18–21). High levels of insulin have also been
shown to suppress hepatic synthesis of sex hormone binding globu-
lin (22), a glycoprotein which regulates the bioavailability of estrogens
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and androgens (23), hormones implicated inbreast cancer development.
The cross-talk between the insulin-IGF and steroid hormone signaling
pathways is well established (24–32). We have recently published
systematic reviews appraising the role of physical activity on sex
hormone production (33) and the impact of these hormones on breast
cancer risk (34).

The World Cancer Research Fund (WCRF) International and
University of Bristol developed a causal evidence synthesis frame-
work for conducting systematic reviews of biological mechanisms
that may explain exposure–cancer associations (35, 36). We outlined
this framework, and how the related Text Mining for Mechanism
Prioritisation (TeMMPo) tool (35) was used to identify and prioritize
biomarkers of the insulin signaling pathways in our protocol paper
(37). The first part of our systematic review of the physical activity–
insulin/IGF signaling system–breast cancer risk pathway examined
the evidence for the effect of physical activity on insulin/IGF sig-
naling (38). Here, we synthesize and appraise the evidence to deter-
mine whether the insulin/IGF signaling system (IGFs, their binding
proteins and markers of insulin resistance) affects breast cancer
risk in women.

Material and Methods
The methods used in this systematic review have been previously

reported (37). The current review was conducted in accordance
with the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement (39) and has been registered
on PROSPERO (CRD42020146736). In brief, systematic searches of
Medline (Ovid) and Embasewere performed up toMarch 2021. Search
terminology is provided in Supplementary Table S1. Studies were
eligible for inclusion if they were written in the English language,
prospective cohort studies (including nested case–control and case–
cohort studies) and Mendelian randomization studies, that examined
associations of circulating IGF-1, IGF-2, IGFBP-1, IGFBP-3, insulin,
C-peptide, fasting glucose, HomeostaticModel Assessment for Insulin
Resistance (HOMA-IR), Homeostatic Model Assessment for Insulin
Sensitivity (HOMA-S), HbA1c, or quantitative insulin-sensitivity
check index (QUICKI) with breast cancer risk. Studies that included
participants taking medication that could influence study outcomes,
e.g., insulin, were excluded from this review. Similarly, studies includ-
ing women taking oral contraceptives or hormone replacement ther-
apy were excluded given that steroid hormone–insulin/IGF cross-talk
may well give rise to confounding.

Following duplicate removal in EndNote X9 (Clarivate), two
reviewers independently screened all titles, abstracts and full text
papers for inclusion in the review using Covidence software (40).
Where consensus on inclusion of a paper could not be met, a third
investigator was consulted and a two-third majority determined the
outcome. Data were extracted and entered into pre-piloted tables. Risk
of bias in prospective cohort studies was assessed using the Risk of Bias
in Non-randomized Studies-of Exposures (ROBINS-E) tool (41).
Confounders such as body composition, alcohol intake, physical
activity or smoking impacted the risk of bias. To rate the overall
strength of the evidence for each biomarker of the insulin/IGF
signaling system–breast cancer pathway, the Grading of Recommen-
dations Assessment, Development and Evaluation (GRADE) system
was used (42). Random effects meta-analyses were used to estimate
breast cancer risk for womenwith the highest levels comparedwith the
lowest of the reported categories of insulin/IGF signaling biomarkers.
Where possible, subgroup analyses were performed to examine wheth-
er effect estimates differed between pre- and postmenopausal women.

The ‘drmeta’ Stata package was used to perform a one-stage random-
effects dose–response meta-analysis of summarized data using
restricted cubic splines, to graphically represent the shape of associa-
tions for each biomarker of the insulin/IGF signaling system and breast
cancer risk (43–45).

Sensitivity analyses excluded studies with serious overall risk of
bias or moderate risk of bias for exposure classification (i.e.,
biomarker measurement). All effect estimates generated by the
meta-analyses were presented as relative risks (RR; highest com-
pared with the lowest level) and 95% confidence intervals (CI),
although these have been derived from studies that present a mix of
RR, ORs, and HRs. Where there were multiple publications based
on a single cohort that examined the insulin/IGF signaling system
biomarkers–breast cancer pathway, we extracted data from the
publication with the greatest number of cases. All statistical analyses
were performed using Stata version 16 (Stata Corporation, College
Station, Texas).

Results
Search results

A PRISMA flow diagram (Fig. 1) provides details of the screening
process for papers, the number excluded (and reasons for exclusion)
at each stage, for selected insulin/IGF signaling system biomarkers.
Of the 2,504 results identified by systematic searches, 23 publica-
tions met our inclusion criteria; 19 were prospective cohort
studies (46–64), 3 were Mendelian randomization studies (65–67),
and 1 paper reported data from both prospective cohort and
Mendelian randomization studies (68). Our stringent inclusion
criteria meant that a number of studies that might reasonably have
been expected to be included on the basis of study design, were in
fact excluded because participants were taking exogenous hormones
(Supplementary Table S2).

Study characteristics
Study characteristics are provided in Supplementary Tables S3A

and S3B. The smallest of the four Mendelian randomization
studies (65–68) contained 589 cases and 10,520 controls, the largest
contained 122,977 cases and 105,974 controls. Biomarkers examined
included fasting glucose (n¼ 3), 2 hour glucose (n¼ 1), fasting insulin
(n¼ 2),HOMA-IR (n¼ 1), HbA1c (n¼ 1), IGF-1 (n¼ 1), and IGFBP-
3 (n ¼ 1). Of the 20 prospective cohort publications (46–64, 68), six
included premenopausal women (range 279 to 51,712), 18 included
postmenopausal women (range 188 to 148,529) and two contained
women of a defined age rather than menopausal status (range 3,179
to 3,345). Biomarkers examined in these publications included IGF-1
(n¼ 13), IGFBP-3 (n¼ 8), insulin (n¼ 7), C-peptide (n¼ 5), glucose
(n¼ 3), free IGF-1 (n¼ 2), IGFBP-1 (n¼ 2), HbA1c (n¼ 2), HOMA-
IR (n ¼ 2), and IGF-2 (n ¼ 1). It should be noted that of the 20
prospective cohort publications, four papers used data from parti-
cipants in the European Prospective Investigation into Cancer and
nutrition (EPIC) cohort (51–54), three papers used data from
participants in the UK Biobank cohort (47, 61, 68) and four papers
used data from participants in the Women’s Health Initiative
(WHI) cohort (55–57, 62); data was extracted from the paper
reporting the greatest number of cases in instances where the same
biomarker was measured. Data reported by Jernstrom and Barret-
Connor (63) could not be included in the meta-analyses because it
was not provided in a compatible format. Details were not always
provided, but where they were, it was clear a breast cancer diagnosis
within the first year (up to 3 years in some studies) of study
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recruitment led to the participant being excluded (by the investi-
gators) from analyses.

Risk of bias
Assessments of risk of bias are presented in Supplementary

Table S4. The overall risk of bias was assessed as moderate in 14
studies and serious in six studies using ROBINS-E. All cohort studies
were judged to have at least moderate levels of bias owing to potential
confounding effects on breast cancer risk. Six studies were judged to
have serious bias due to confounding as they did not adjust for
measures of body composition, alcohol intake, physical activity, or
smoking (46, 49–52, 58). All of the studies used medical or health
insurance records to verify breast cancer incidence. A number of
specific tools have been designed for assessing the strength/quality of
Mendelian randomization studies, but none have been validated or
tested for general use in the appraisal of bias (69). The strength of
Mendelian randomization arises from the ‘fixed’ nature of germline
genotypes, but there are core assumptions, which must be met to
provide unbiased effect estimates (70). Each of the four Mendelian
randomization studies (65–68) included in this systematic review
assessed the quality of the genetic instruments employed and the
potential for pleiotropy.

Effects of the insulin/IGF signaling system on breast cancer risk
Forest plots, comparing breast cancer risk for women with

the highest quantile compared with the lowest quantile of insu-
lin/IGF biomarkers, are presented in Fig. 2. Dose–response curves
for IGF-1 are presented in Fig. 3. Funnel plots are presented in the
Supplementary Fig. S1.

Insulin
Three prospective cohorts reported circulating insulin levels in

controls and breast cancer cases (49, 55, 57, 58, 62). Evidence for an
association of insulin with breast cancer risk was weak (RR ¼ 1.12;
95% Cl, 0.30–1.94) with substantial heterogeneity existing between
the data sets (I2 ¼ 66.67%). Of these three cohorts, premenopaus-
al (49), or postmenopausal women (62) were used exclusively in two
and the third used both pre- and postmenopausal women, the
data (58) from which were analyzed separately. Data from two
Mendelian randomization studies (65, 66) indicated that breast
cancer risk increased with higher levels of insulin (OR ¼ 1.71 per
SD increase; 95% CI, 1.26–2.31 and HR¼ 1.80 per mIU/mL; 95% Cl,
0.18–18.06) although the second study lacked precision and incor-
porated the null. Participants of these two studies were not differ-
entiated on the basis of menopausal status.

Figure 1.

PRISMA flow diagram. This figure incorporates
literature search, screening, and study selection.

Drummond et al.
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C-peptide
Four prospective cohort studies (49–51, 54, 64) assessed the impact

of C-peptide on breast cancer risk; weak evidence of an association was
observed (RR¼ 1.16; 95% CI, 0.93–1.37; I2 ¼ 0.0%), in the absence of
heterogeneity. Women from the three studies were either exclusively
pre- (49) or postmenopausal (50, 64), or not differentiated on the basis
of menopausal status (54).

Igf-1
A meta-analysis of eligible prospective cohort studies (n ¼ 9;

refs. 46, 48, 50–53, 55, 58, 60, 64, 68), found that IGF-1 was associated
with an increased breast cancer risk (RR ¼ 1.21; 95% CI, 1.10–1.31;
I2 ¼ 0%; Fig. 2) which was dose-dependent (Fig. 3). The cohorts
consisted of postmenopausal women exclusively (50, 55, 60), pre- and
postmenopausal women, with the data analyzed according to sta-
tus (46, 58) and women not differentiated on the basis of menopausal
status (48, 52, 68). Heterogeneity between the data sets was low. This
result was driven by the inclusion of data from the UK Biobank study,
which accounted for 56% of the overall outcome; it was the only study
of the six that were eligible, to find IGF-1 increased breast cancer risk
(Fig. 2). Three of these studies used models adjusting for IGFBP-3;
individually, none of the three studies showed an association of IGF-1
on breast cancer risk prior to, or following the adjustment for IGFBP-3
(Supplementary Fig. S2; RR ¼ 0.97; 95% CI, 0.70–1.24; I2 ¼ 0.0%).
When the data were stratified by menopausal status, there was little
evidence of an impact of IGF-1 on breast cancer risk (RR for pre-
menopausal ¼ 1.02; 95% CI, 0.71–1.24; I2 ¼ 0%; RR for postmeno-
pausal¼ 1.10; 95%CI, 0.90–1.31; I2¼ 3%; Supplementary Fig. S3). The
stratified analyses of the data did not include data from the UK
Biobank study because the risk estimates were reported per
5-nmol/L increment rather than by highest versus lowest quintile, as
per the remaining studies. A Mendelian randomization study under-
taken by Murphy and colleagues (68), supported the association of
IGF-1 with breast cancer risk (OR per 5-nmol/L increment ¼ 1.05;
95% CI, 1.01–1.10) and linked it to estrogen receptor–positive tumors
(OR per 5-nmol/L increment ¼ 1.06; 95% CI, 1.01–1.11), but not
estrogen receptor–negative tumors (OR per 5-nmol/L increment ¼
1.02; 95% CI, 0.96–1.08; ref. 68). Sensitivity analyses found these
results to be robust.

IGFBPs
Six prospective cohort studies investigated the impact of circu-

lating IGFBP-3 levels on breast cancer risk (46, 48, 51–53, 55, 58, 60).
The cohorts consisted of postmenopausal women exclusive-
ly (55, 60), pre- and postmenopausal women, data analyzed accord-
ing to status (46, 58) and women not differentiated on the basis
of menopausal status (48, 52).There was little evidence that IGFBP-
3 had any impact on breast cancer risk overall (RR ¼ 1.03; 95% CI,
0.81–1.24; I2 ¼ 17.02%). When the data were stratified by meno-
pausal status, IGFBP-3 appeared to reduce the risk of breast cancer
for premenopausal women (RR ¼ 0.77; 95% CI, 0.51–1.04; I2 ¼
0.0%) while postmenopausal women’s risk of breast cancer
increased (RR ¼ 1.16; 95% CI, 0.90–1.41; I2 ¼ 0.0%), although
the CIs for the two subgroups were overlapping (Supplementary
Fig. S4). There was little evidence that genetically predicted IGFBP-
3 concentrations influenced breast cancer risk (OR per SD of
IGFBP-3 ¼ 1.00; 95% CI, 0.97–1.04; ref. 68). The limited numbers
of eligible studies meant it was not possible to conduct meta-
analyses for IGFBP-1, however, neither of the prospective cohort
studies reported an association of IGFBP-1 with breast cancer
risk (51, 58).

Glucose
There was little evidence of an association between fasting

glucose levels and breast cancer risk in prospective cohort studies
of postmenopausal women (WHI: HR ¼ 1.14 per mg/dL; 95% CI,
0.60–2.16; ORDET: RR¼ 1.6 per ng/mL; 95% CI, 0.59–4.46, highest
versus the lowest quartile; refs. 57, 58). However, in premenopausal
women, glucose levels were associated with breast cancer risk (RR¼

Figure 2.

Forest plots for effects of insulin/IGF signaling system biomarkers on breast
cancer risk. Forest plot for (A) IGF-1, (B) IGFBP-3, (C) C-peptid, and (D) fasting
insulin.
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2.76 per mg/dL; 95% CI, 1.18–6.46); additional analyses showing
that breast cancer in these women was more likely to arise after the
age of 48 (58). Three Mendelian randomization studies investigated
the impact of genetically predicted glucose levels on breast cancer
risk with differing outcomes. Participants were not stratified
according to menopausal status in two of the three studies. Fasting
glucose levels were reported to either have no effect in two studies
(OR ¼ 1.03 per mmol/L; 95% CI, 0.85–1.25; ref. 67); OR per mmol/
L ¼ 1.06; 95% CI, 0.95–1.17; ref. 65), or to reduce breast cancer risk
in postmenopausal women (HR ¼ 0.59; 95% CI, 0.35–0.99; ref. 66);
2-hour glucose measurements were associated with an increased
risk of breast cancer (OR per SD increase in 2 hour glucose ¼ 1.80;
95% CI, 1.30–2.49; ref. 65).

Other biomarkers
Data were available from prospective cohort studies for HbA1c

(47, 59),HOMA-IR (57, 66), free IGF (55, 58), and IGF-2 (46) however,
there was insufficient data for these outcomes to perform meta-
analyses examining breast cancer risk. HbA1c and HOMA-IR were

also the subject of Mendelian randomization studies. HbA1c was not
associated with breast cancer risk in either the prospective cohorts or
Mendelian randomization study (47, 59, 67), although a weak inverse
association was observed in a prospective cohort of postmenopausal
women which appeared to be confined to women who had never used
hormone replacement therapy (RR¼ 0.53; 95%CI, 0.30–0.93; ref. 59).
Findings from prospective cohort and Mendelian randomization
studies investigating the association between HOMA-IR and breast
cancer risk in postmenopausal women were contradictory, with a
positive association (HR ¼ 2.99; 95% CI, 1.56–5.73; Ptrend ¼ 0.0008;
ref. 57) and no association reported (HR ¼ 0.94; 95% CI, 0.81–1.08),
respectively (66).

Grade
Results of the GRADE appraisal are presented in Table 1. The

GRADE criteria initially classifies evidence from prospective cohort
studies as ‘low’ (71). However, where a large effect estimate is reported
and/or dose–response data are provided, reclassification to a higher
level (moderate or high) may be warranted. Where there is a high risk

Figure 3.

Dose–response meta-analysis for IGF-1 and IGFBP-3
(nmol/L) and breast cancer risk. Dose–response plot for
(A) IGF-1 and (B) IGFBP-3.

Drummond et al.
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Table 1. GRADE appraisal for insulin/IGF signaling system–breast cancer risk pathways.

Quality of evidence determination
Criteria for downgradingOutcome,

menopausal
status

Study type,
number,
participant
numbers (n)

Effect estimates
(RR, 95% Cl) ROB Inconsistency Imprecision

Pub
bias

Criteria for
upgrading

Quality of
evidence
final

Insulin
All women Observationalb,

3 (2,139)
1.12 [0.30–1.94] Serious No Yes ? None Very low

All women Mendelian
randomization,
2 (193,415)

1.80 [0.18–8.06]631.16
[0.96–1.41]62

– No Yes –

IGF-1
All women Observational,

9 (215,500)
1.21 [1.10–1.31] � Moderate No No Yes Dose–response Moderate

IGFBP-3 adjusted Observational,
3 (3,650)

0.97 [0.70–1.24] – – No –

All women Mendelian
randomization,
1 (228,951)

1.05 [1.01–1.10]65

IGFBP3
All women Observational,

6 (6,692)
1.03 [0.81–1.24] Moderate No No No None Moderate

All women Mendelian
randomization,
1 (228,951)

1.00 [0.97–1.04]65 – – No –

C-peptide
All women Observational,

4 (5,452)
1.16 [0.93–1.40] Serious No No ? None Very low

Glucosea

Premenopausal Observational,
1 (334)

2.8 [1.2–6.5]56
�

Serious Yes Yes – None Very low

Postmenopausal 1.63 [0.59–4.46]56 – No Yes –

Postmenopausal Observational,
1 (5,450)

1.14 [0.60–2.16]55 – – Yes –

All women Mendelian 1.03 [0.85–1.25]64

All women randomization,
2 (411,257)

1.06 [0.95–1.17]62

Post- menopausal 0.63 [0.50–0.79]63

All women: 2hr
glucose

Mendelian
randomization,
1 (11,109)

1.50 [1.21–1.86]62
�

HbA1c
Premenopausal Observational,

1 (7,442)
1.08 [0.65–1.79]57 Moderate No Yes – None Very low

Postmenopausal Observational,
1 (27,110)

0.73 [0.54–0.98]45 – – Yes –

All women Mendelian
randomization,
1 (228,951)

1.02 [0.73–1.45]64

HOMA-IR
Postmenopausal Observational,

1 (5,450)
2.99 [1.56–5.73]55� Moderate Yes Yes – None Very low

Postmenopausal Mendelian
randomization,
1 (11,109)

0.94 [0.81–1.08]63 – – No –

IGF-2
Premenopausal Observational,

1 (279)
0.86 (0.42–1.76)44 Serious No Yes – None Very low

Postmenopausal Observational, 1 (188) 0.87 (0.37–2.05)44

Note: Data from published studies are acknowledged with reference numbers in superscript.
�Increased breast cancer risk.
aAll glucose measures except those specified, relate to fasting glucose.
bObservational, prospective cohort studies are classified as ‘low’ quality at the start of quality assessment.
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of bias, evidence of imprecision or inconsistency, downgrading the
classification to ‘very low’ may be appropriate (71). Randomized
control trials (RCT) are the gold standard with quality of evidence
starting at ‘high’. A Mendelian randomization study that statisfies the
three core assumptions (1. genetic variants are robustly associated with
the exposure, 2. no confounding of the variants and 3. variants
influence the outcome only through the exposure) can be seen as
equivalent to RCTs (72). Evidence that IGF-1 increases breast cancer
risk came fromboth prospective cohort andMendelian randomization
studies with large numbers of participants. Dose–response relation-
ships for pre- and postmenopausal women were demonstrated and
there was consistency in outcomes between prospective cohorts and
Mendelian randomization studies. It is important to note however,
that effect estimates for IGF-1 were small and largely driven by data
from the UK Biobank study (68). The IGF-1 funnel plot (Supplemen-
tary Fig. S1) suggested publication bias and individual studies assessed
collectively, were found to have a moderate risk of bias, largely due to
the presence of confounders (Supplementary Table S4). Taking these
factors into account, the quality of evidence for IGF-1 was upgraded to
‘moderate’ (Table 1). The quality of evidence for IGFBP-3 was
upgraded to moderate given the precision of the effect estimates and
consistency of the outcome between study types. The quality of
evidence for C-peptide, glucose, insulin, HbA1c, HOMA-IR and
IGF-2, was downgraded to ‘very low’ due to either serious risk of
bias, imprecision of the data and/or inconsistent outcomes (Table 1;
Supplementary Table S4). The small number of studies for C-peptide
and insulin prevented a definitive assessment of publication bias
(Supplementary Fig. S1). The contribution of Mendelian randomiza-
tion studies to the quality of data sets is not clear; much depends on the
quality of the genetic instruments employed and the strength of their
association with the outcome. Where the outcome is consistent across
study types, Mendelian randomization studies clearly add to the
quality of evidence; usually large numbers of participants, genetically
randomized. However, when outcomes are not in accord, either within
and/or across study types, determining the impact Mendelian ran-
domization studies have on the quality of evidence becomes dependent
on the specificity of the instrument-outcome association and the
ability to interpret its strength.

Discussion
Given that the insulin/IGF signaling system (including IGFs, their

binding proteins and markers of insulin resistance) may be important
for breast cancer development (7, 9), we conducted a systematic
review of the literature to determine whether the insulin/IGF signaling
system affects breast cancer risk in women. We found that IGF-1
contributes to breast cancer risk, but therewas little evidence that other
biomarkers of the insulin/IGF signaling system play a part. Our
systematic review and meta-analysis does not support a role for
insulin, IGFBP-3 or C-peptide in the aetiology of breast cancer.
However, our findings are limited by the dearth of high quality studies
in this area; we were unable to conduct meta-analyses for HbA1c,
HOMA-IR, IGF-2 or IGFBP-1 on this basis. A definitive conclusion
could not be drawn for glucose given a lack of consistency between
study outcomes.

Despite a large amount of literature on the insulin/IGF signaling
system and breast cancer, the number of studies eligible for inclu-
sion in this systematic review was fewer than what might have
been anticipated. This was mainly due to the exclusion of study
cohorts that allowed women to take oral contraceptives or hormone
replacement therapy; bias may have been introduced given the

established interplay between IGF/insulin and steroid hormone
signaling pathways (24–32). As a consequence, only a small number
of studies that met our stringent selection criteria were included in
this systematic review. In designing future studies in this area,
investigators should either incorporate appropriate control groups
to ensure the effects of exogenous sex hormones can be isolated, or
carefully consider their inclusion criteria to avoid reporting con-
founded outcomes. Large-scale, collaborative efforts are more likely
to further our understanding of biological processes than numerous,
small, potentially under powered studies.

The Mendelian randomization studies included in this systematic
review investigated the impact of insulin (65, 66), IGF-1 (68),
IGFBP-3 (68), glucose (65–67), HbA1c (47, 59) and HOMA-
IR (57, 66) on breast cancer risk. Where RCTs are not feasible/
available, Mendelian randomization studies are an alternative pro-
vided they are sufficiently powered and appropriate sensitivity
analyses to test the assumptions of the randomization have been
performed. Genetically predicted outcomes are less prone to con-
founding and the potential for reverse causation is eliminated; if
core assumptions are satisfied, causal conclusions can be drawn (69).
While there are guidelines to assist in assessing Mendelian ran-
domization studies (MR-STROBE: Strengthening the Reporting of
Observational Studies in Epidemiology using Mendelian Random-
ization; ref. 73), validated tools to assess risk of bias and quality of
the evidence are not currently available. Within our systematic
review, three Mendelian randomization studies investigated the
impact of glucose on breast cancer risk, and three different out-
comes were reported: no change (fasting glucose) (65, 67); a
decrease (fasting glucose; ref. 66) and an increase (2-hour glucose;
ref. 65). One of the three studies investigated postmenopausal
women exclusively (66), the other two included women spanning
pre- and postmenopausal states (65, 67). Two of these studies used
summary genetic associations from the same genome-wide associ-
ation study (GWAS) of women enrolled in the Breast Cancer
Association Consortium (65, 67) but with different genetic instru-
ments employed in the analyses, the third used harmonized and
imputed data from GWASs of women enrolled in the WHI (66).
Glucose was measured in either the fasting state or 2 hours fol-
lowing a glucose challenge. These measures of glucose, while
correlated (74), reflect different biological processes which may
explain the findings reported by Shu and colleagues (65), of a
positive association of 2-hour glucose but not fasting glucose, with
breast cancer risk. Methodologic differences between studies make
direct comparisons difficult.

Similar results reported between prospective cohort studies
and Mendelian randomization studies strengthen causal infer-
ence (75). Results for IGF-1, IGFBP-3, and HbA1c reported here were
consistent across study types and in line with other reports in the
literature (46–48, 51–53, 58–60, 67, 68, 76–78). In contrast to the
conflicting results reported for glucose in Mendelian randomization
studies, two prospective cohort studies of postmenopausal women
reported no association between glucose andbreast cancer risk (57, 58).
This result was consistent with the outcomes of both prospective
cohort and Mendelian randomization studies which found no asso-
ciation of HbA1c with breast cancer risk (59, 67).

An effect of insulin on breast cancer risk was not observed in our
meta-analysis of prospective cohort studies. Significant heteroge-
neity was noted between data sets and the quality of the evidence as
assessed by GRADE, was categorized as ‘low’. The outcome, how-
ever, was consistent with the results for C-peptide (which were
homogeneous and more precise). C-peptide and insulin are
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produced in equimolar concentrations from the cleavage of pro-
insulin. Given that C-peptide is more stable than insulin, it may
be preferable in some circumstances to measure C-peptide as a
proxy for insulin. In contrast, two Mendelian randomization studies
reported that insulin increased breast cancer risk, although one
lacked precision and crossed the null (66).

A strength of this review is the use of the WCRF International/
University of Bristol framework (35) which incorporates a risk of
bias assessment and a quality assessment, to synthesize the evidence
for the insulin/IGF signaling system and its impact on breast cancer
risk. Only prospective cohort and Mendelian randomization studies
met the criteria for inclusion. We used the text-mining program
TeMMPo to prioritize potential biomarkers for these systematic
reviews. TeMMPo ranked potential biomarkers based on the quan-
tity of evidence available for exposure–biomarker and biomarker–
outcome relationships. While this ensured that biomarkers with the
most published evidence were reviewed, consideration of only the
top 20 biomarkers might mean that some novel or less extensively
studied biomarkers were overlooked. We restricted study popula-
tions to apparently ‘healthy’ women at baseline, excluding those
with pre-existing menstrual or metabolic disorders and those taking
medication, which might influence study outcomes, e.g., insulin.
While we excluded studies where participants were using oral
contraceptives or hormone replacement therapy at study recruit-
ment and during follow-up, we were unable to account for past
exogenous hormone use. The limited number of studies and pooling
of pre- and postmenopausal data in some, prevented conclusions
being drawn about breast cancer risk in response to insulin/IGF
signaling during the different phases of the reproductive cycle.
Similarly, the impact of breast cancer type and/or hormone receptor
status could not be evaluated.

The overarching aim of this two-part series of reviews was to
determine whether the insulin/IGF signaling system mediates the
reduction in breast cancer risk observed with higher levels of physical
activity. Part 1 of this review addressed whether physical activity
affects the insulin/IGF signaling system in women (38). Decreases in
fasting glucose, fasting insulin, and insulin resistance were reported
in response to physical activity, whereas IGF-1 levels increased in the
absence of a change in IGFBP-3 (38). In part 2, presented here,
we examined whether the insulin/IGF signaling system could reduce
a women’s risk of breast cancer. No association between insulin,
C-peptide, IGFBP-3, and breast cancer risk were identified, but
IGF-1 was found to increase breast cancer risk. IGF-1 exerts autocrine
and paracrine actions on growth and apoptosis and has been impli-
cated in the development of solid tumors (31, 79). The finding that
physical activity increased IGF-1 levels, which in turn, has the potential
to increase breast cancer risk, makes it unlikely that insulin/IGF
signaling is the mechanism by which the protective effect of physical
activity on breast cancer risk is mediated.

Our findings are consistent with new evidence about the efficacy
of metformin and breast cancer prevention and progression. Met-
formin is an insulin sensitizer that is commonly prescribed to treat
diabetes. On the basis of evidence from epidemiologic studies and
preclinical studies demonstrating an antiproliferative effect in
animal models and cell lines, a number of randomized clinical
trials have been conducted to test the effect of metformin (80).
However, the majority of observational studies have been retro-
spective, the results of which may be affected by selection and recall
biases. Immortal time bias may also have resulted in the apparent
protective effect of metformin being exaggerated (81). A number of
randomized clinical trials are currently evaluating the preventive

effect of metformin in women at high risk of breast cancer (80). A
recent meta-analysis combined the results of five small, phase II
randomized trials (a total of 396 participants) and showed that
metformin was not associated with improved survival outcomes in
nondiabetic women with breast cancer (81). Definitive results were
recently published from a large randomized clinical trial (MA.32;
that included over 2,500 nondabetic women with high-risk, oper-
able breast cancer in the primary analysis); the addition of met-
formin to standard treatment did not improve invasive disease-free
survival (82). Nevertheless, interim analysis of MA.32 indicated that
metformin was associated with decreased levels of insulin, hs-CRP
and leptin in nondiabetic patients, and decreased estradiol levels in
women with ER-negative disease (83, 84). This highlights the
difficulties associated with interpreting the impact of interventions
provided in addition to best practice. Additional prospective studies
are therefore required to determine whether metformin will show
benefit in a risk reduction setting.

There are significant challenges in infering specific downstream
signaling in both breast cancer and untransformed breast epithelial
cells in relation to circulating levels of insulin and IGF-1. Because
these cells can express both insulin and IGF-1 receptors, and that
these can act as homodimers and heterodimers eliciting different
downstream signaling, the biological effects of insulin and IGF-1
can be context-dependent (85). This is compounded in breast
cancer cells, where driver mutations can affect these pathways
directly, in PIK3CA mutant cells for example. There are also a
number of challenges associated with blood collections and IGF-1
measurements themselves. There are currently no standardized
methods to measure blood levels of IGF-1, and levels of both
IGF-1 and insulin are substantially altered with feeding. Hence,
without accounting for time since last meal, a non-negligeable
amount of variation can be introduced, thereby confounding the
results.

Although we found no convincing evidence that the insulin/IGF
signaling system mediates the effect of physical activity on breast
cancer risk, robust conclusions cannot be drawn due to the dearth of
high quality studies. Additional large scale epidemiologic studies,
appropriately controlled for confounders, and further Mendelian
randomization studies using GWAS data from more diverse popula-
tions would help to clarify the observations of our systematic reviews
and meta-analyses.
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