
 

 

 

Chemokines as Therapeutic Targets in Cardiovascular
Disease The Road Behind, The Road Ahead
Citation for published version (APA):

Noels, H., Weber, C., & Koenen, R. R. (2019). Chemokines as Therapeutic Targets in Cardiovascular
Disease The Road Behind, The Road Ahead. Arteriosclerosis Thrombosis and Vascular Biology, 39(4),
583-592. https://doi.org/10.1161/ATVBAHA.118.312037

Document status and date:
Published: 01/04/2019

DOI:
10.1161/ATVBAHA.118.312037

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 23 Apr. 2024

https://doi.org/10.1161/ATVBAHA.118.312037
https://doi.org/10.1161/ATVBAHA.118.312037
https://cris.maastrichtuniversity.nl/en/publications/2ebf84f2-68c3-4925-ab6f-3718b199f2bc


583

Cardiovascular disease (CVD) is the major cause of death 
worldwide, causing 17.7 millions of deaths and 45% of 

all noncommunicable diseases in 2015 according to the World 
Health Organization.1 Inflammation crucially contributes to 
the development and progression of atherosclerosis2 and also 
shapes remodeling processes in the heart following myocar-
dial infarction (MI).3 Over the last decades, studies in pre-
clinical models have uncovered a multitude of inflammatory 
mediators impacting on the pathology of CVD,2–4 offering in-
teresting leads for novel therapeutic targets. However, clinical 
translation into effective strategies for patient treatment is lag-
ging behind. Nonetheless, the CANTOS trial (Canakinumab 
Antiinflammatory Thrombosis Outcome Study) recently dem-
onstrated that blocking the proinflammatory IL (interleukin)-1β 
in patients with previous MI reduced systemic inflammation, 
recurrent cardiovascular events and cardiovascular death,5 and 
thereby was the first to show that anti-inflammatory treatment 
strategies can be beneficial in patients with atherosclerotic CVD.

Please see https://www.ahajournals.org/atvb/atvb-
focus for all articles published in this series.
This review focuses on the role of chemokines as potential 

therapeutic targets in CVD as they are the key regulators of 
recruitment and adhesion of leukocytes to inflamed arteries 

in the setting of atherosclerosis and into the myocardium 
of the ischemic heart.3 After we highlight a selection of key 
chemokines and the chemokine-like cytokine MIF (macro-
phage migration inhibitory factor) in CVD, with main focus 
on atherosclerosis and ischemic heart disease, we will discuss 
clinical studies targeting chemokines in CVD, present novel 
translational approaches based on these molecules for diag-
nosis and therapy in CVD, as well as discuss current hurdles 
in the road to clinical translation.

Chemokines in CVD
Chemokines are small (8–12 kDa) chemotactic cytokines, 
which have an important role in directing the migration of 
blood cells to target tissues. Chemokines are classified into 4 
groups, with the CC- and CXC-types being the most common. 
Besides their importance in governing leukocytes to sites of in-
flammation, chemokines and their receptors also have homeo-
static functions (eg, homing of lymphocytes to lymphoid organs, 
regulating egress of stem cells, and leukocytes from the bone 
marrow). Chemokines might work together in a sense that some 
trigger integrin activation to induce firm arrest of leukocytes on 
activated endothelium, whereas others guide the leukocytes to 
subendothelial locations by chemotaxis. In this way and by regu-
lating circulating leukocyte counts, chemokines may contribute 
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Abstract—With the incidence and impact of atherosclerotic cardiovascular disease and its clinical manifestations still 
rising, therapeutic options that target the causal mechanisms of this disorder are highly desired. Since the CANTOS 
trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) has demonstrated that lowering inflammation can 
be beneficial, focusing on mechanisms underlying inflammation, for example, leukocyte recruitment, is feasible. Being 
key orchestrators of leukocyte trafficking, chemokines have not lost their attractiveness as therapeutic targets, despite 
the difficult road to drug approval thus far. Still, innovative therapeutic approaches are being developed, paving the 
road towards the first chemokine-based therapeutic against inflammation. In this overview, recent developments for 
chemokines and for the chemokine-like factor MIF (macrophage migration inhibitory factor) will be discussed.

Visual Overview—An online visual overview is available for this article.    (Arterioscler Thromb Vasc Biol. 2019;39:583-
592. DOI: 10.1161/ATVBAHA.118.312037.)
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to the development of atherosclerosis. Further, chemokines can 
affect leukocyte activation, monocyte survival, foam cell forma-
tion, smooth muscle cell (SMC) proliferation, cell egress from 
lesions, (lymph-)angiogenesis as well as thrombus formation,4 
all with important impact on CVD (Figure). Among the var-
ious chemokines identified to alter MI3 and atherosclerosis,4 we 
will focus here on novel findings as well as promising thera-
peutic characteristics of the chemokines CCL5 (CC-chemokine 

ligand 5), CX
3
CL1 (CXXXC-chemokine ligand 1), CCL2, 

CXCR2 (CXC-chemokine receptor 2), and CXCR3 as well as 
the CXCL12/CXCR4 axis, as these have been shown to have 
distinct roles in atherosclerosis.

CCL5, its Receptor CCR5, and its 
Heterophilic Interactions
The chemokine CCL5 and its primary receptor CCR5 
(CC-chemokine receptor 5) have widely established roles in 
the development of atherosclerosis and MI. Unlike CCR1, 
manipulation or knockdown of CCR5 and its ligands (notably 
CCL5) was shown to have beneficial effects on the disease out-
come in respective animal models.4,6 A possible use of CCL5 
levels as a biomarker for CVD has been indicated in several 
studies.7–10 However, a case-cohort study from samples of the 
MONICA/KORA (Monitoring Trends and Determinants in 
Cardiovascular Disease/Kooperative Gesundheitsforschung in 
der Region Augsburg) Augsburg studies questioned the utility 
of CCL5 levels as biomarker for cardiovascular risk.11

As opposed to binding to its (membrane-bound) recep-
tors CCR1 and CCR5, CCL5 also binds to other soluble in-
flammatory factors such as chemokines (eg, CXCL4, CCL17, 
and CXCL12) and defensins (eg, HNP1 [human neutrophil 

Nonstandard Abbreviations and Acronyms

ACKR	 atypical chemokine receptor

CVD	 Cardiovascular disease

C(X)CL	 C(X)C chemokine ligand

C(X)CR	 C(X)C chemokine receptor

HNP1	 human neutrophil peptide 1

IL-1β	 interleukin 1β

MI	 myocardial infarction

MIF	 macrophage migration inhibitory factor

miRNA	 micro RNA

siRNA	 short interfering RNA

SMC	 smooth muscle cell

Figure. Involvement of the chemokine system in cardiovascular disease. The chemokine system can influence the progression of atherosclerosis and cardiac 
disease by regulating the recruitment of leukocytes (eg, classical monocytes and lymphocytes) to developing plaques (A), by transmitting survival signals 
between smooth muscle cells (SMC) and macrophages (A), by regulating egress of monocytes, neutrophils or hematopoietic stem cells (HSC) from the bone 
marrow (B) and their homing to plaques (A) or to infarcted myocardium (C). Platelets can prime monocyte recruitment by the deposition of chemokines (A). 
ACKR3 indicates atypical chemokine receptor 3; EC, endothelial cell; MIF, macrophage migration inhibitory factor; and SMC, smooth muscle cell.
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peptide 1]). In this way, CCL5 and its binding partners can 
mutually influence their activities. For example, binding of 
CCL5 to CXCL4, both deposited by platelets on endothelium, 
increases the recruitment of monocytes to activated endothe-
lium shown in both in vitro experiments and in mouse mod-
els.4 Similar applies for an interaction of CCL5 with CCL17, 
which facilitates heterodimer formation of CCR5 and CCR4 
on the surface of dendritic cells.12 Heterodimer formation be-
tween chemokine receptors is well established to modulate 
their activity.13 Also here, the interaction between CCR5 and 
CCR4 prolonged receptor surface retention and chemotaxis 
of dendritic cells.12 Not only chemokines interact with CCL5, 
but also the defensin HNP1 (human neutrophil peptide 1) was 
recently found to bind to CCL5, with synergistic effects on the 
adhesion of classical monocytes.14

The CCL2/CCR2 Axis
The CCL2/CCR2 axis regulates the inflammatory recruit-
ment of classical monocytes in atherosclerosis as well as in 
the infarcted heart, and also the egress of monocytes from the 
bone marrow.3,4 Lipid nanoparticles carrying a short inter-
fering RNA against CCR2 reduced inflammatory monocyte 
recruitment and infarction size after cardiac ischemia-reper-
fusion injury, as well as atherosclerosis.15,16 In acute coronary 
syndrome CCL2 plasma levels associated with an increased 
risk for death or MI,17 and a recent study applying a prote-
omics approach in patients with heart failure with preserved 
ejection fraction revealed CCL2 as an inflammatory bio-
marker associated with heart failure severity and outcome.18 
Further, recent insights revealed a circadian rhythmicity in 
CCL2/CCR2-mediated chemotaxis, with chronopharmaco-
logical targeting of CCR2 reducing atherosclerosis without 
disturbing microvascular leukocyte recruitment.19 Although 
the effect on advanced stages of atherosclerosis was not yet 
investigated in this study, these findings reveal interesting new 
perspectives taking into account timed therapeutic treatment.

CXCR2, 3 and Their Ligands
The CXC-chemokine group can be classified by ELR+ 
(glutamic acid-leucine-arginine) and ELR– chemokines, 
depending on the presence of an N-terminal 3-amino acid 
stretch. The ELR+ chemokines (eg, CXCL1, 2, 5, and 8) 
can bind to and activate CXCR1 and 2, which are important 
receptors for neutrophil recruitment. Those without an ELR-
motive generally activate CXCR3 (eg, CXCL9, 10, and 11) 
and CXCR4 (CXCL12), attracting lymphocytes (CXCR3), 
or keeping neutrophils and hematopoietic stem cells in the 
bone marrow (CXCR4). Animal studies have revealed roles 
for CXCR2 and CXCR3 and their ligands in atherosclerosis 
and MI. For example, CXCL1 is involved in the recruitment 
of monocytes and of macrophage accumulation during athero-
sclerosis.20,21 The role of CXCR2 in MI is not as clearly defined, 
since it exerts both detrimental and protective effects,22 for ex-
ample, a detrimental circadian rhythm-dependent recruitment 
of CXCR2-positive neutrophils.23 The role of CXCR3 in ath-
erosclerosis and MI is well established and involves the re-
cruitment and phenotype of T cells.24 This is exemplified by 
deletion of CXCL10 in mice, which resulted in a decrease of 

CD4+ T-cell counts in plaques, whereas FoxP3-positive reg-
ulatory T cells were increased. This might explain the overall 
reduction in atherosclerosis observed in these mice.25

The Special Ones
CX

3
CL1 and CXCL16

Among the various chemokines, some are somewhat peculiar, 
such as CX

3
CL1 and CXCL16. Both are membrane-bound, 

have a glycosylated mucin-like stalk, and are sensitive for (lim-
ited) proteolysis by ADAM (a disintegrin and metalloprotease) 
metalloproteases.26 The membrane-bound forms of CX

3
CL1 

and CXCL16 bind to CX
3
CR1 and CXCR6, respectively, and 

can support adhesive interactions of leukocytes under shear 
flow. The proteolytically released forms containing the che-
mokine domains can chemoattract immune cells to sites of 
inflammation. Interestingly, CXCL16 also has a function as 
scavenger receptor for oxidized lipoproteins, besides its activity 
as chemoattractant. This might also explain its protective role 
in models of atherosclerosis.27 In contrast, its receptor CXCR6 
appears to promote atherosclerosis.28 Currently, CXCL16 is 
mainly in focus as a mediator of cancer progression.

Typically expressed in the brain and by activated endo-
thelial cells and vascular SMC, CX

3
CL1 mediates cross-talk 

of SMC with CX
3
CR1-expressing macrophages in the plaque 

interior, leading to increased expression of inflammatory mol-
ecules.29 In addition, arterial-resident macrophages originate 
from CX

3
CR1+ embryonic precursors and their survival and 

maintenance is upheld by CX
3
CR1–CX

3
CL1 interactions.30,31 

Also on platelets, the CX
3
CL1–CX

3
CR1 axis is involved in 

the activation and adhesion of platelets to vascular cells.32–34 
Interestingly in mice, CX

3
CR1 on platelets is upregulated by 

hyperlipidemia and might mediate the adhesion of platelets to 
the denuded vessel wall.34 In humans, plasma levels of soluble 
CX

3
CL1 may serve as an indicator for vascular dysfunction 

and of all-cause mortality in patients with heart failure.35,36

The CXCL12/CXCR4 Axis
The CXCL12/CXCR4 chemokine ligand/receptor axis plays 
a complex and double-edged role in CVD.37 CXCL12 is clas-
sified as a homeostatic chemokine, regulating the homing of 
CXCR4-positive progenitor cells and leukocytes in the bone 
marrow as well as their release to the periphery on injury or 
stress. This function in directing progenitor cell mobilization 
has been linked to a protective role of the CXCL12/CXCR4 
axis in myocardial ischemia.38 Further, a cardioprotective 
role of the CXCL12/CXCR4 axis in myocardial ischemia has 
been ascribed to increased neoangiogenesis,39–41 cardiomyo-
cyte protection and cardioprotective signaling,39 and a phase 
II trial (STOP-HF [St Vincent’s Screening To Prevent Heart 
Failure]) examining single endocardial CXCL12 overexpres-
sion by gene therapy revealed the potential to improve cardiac 
function in patients with ischemic heart failure after MI.42 In 
injury-induced restenosis the CXCL12/CXCR4 axis improves 
reendothelialization of denudated arteries through the mobi-
lization of endothelial progenitor cells37,43,44 and an enhanced 
endothelial proliferation.45 Also, in diet-induced atheroscle-
rosis, vascular protection by endothelial apoptotic bodies was 
mechanistically linked to the induction of protective CXCL12/
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CXCR4 signaling in the endothelium as well as to progenitor 
cell recruitment.46 Further, both endothelial as well as SMC 
CXCR4 were recently revealed to be atheroprotective by pre-
serving endothelial barrier function and sustaining contractile 
SMC phenotype, respectively.47 Notably, recent Mendelian ran-
domization studies and conditional analysis revealed CXCL12 
as a causal mediator of CAD, identifying a SNP (single nu-
cleotide polymorphism) near CXCL12 to be independently as-
sociated with CXCL12 plasma levels and increased risk for 
CAD.48,49 Such Mendelian randomization studies represent a 
novel epidemiological study approach by incorporating ge-
netic variant analyses to investigate a potential causal relation-
ship between a risk factor and clinical outcome. Experimental 
data further indicate that effects of CXCL12 driving athero-
sclerosis rely on CXCL12 production in arterial endothelial 
cells.49 Indeed, findings that somatic deficiency in CXCR4 did 
not reveal equivalent protective effects as deletion in vascular 
cell types,47 imply proatherogenic functions of CXCR4 in a 
different, for example, bone marrow–derived compartment.

On the contrary, CXCR4 was also demonstrated to nega-
tively impact on MI potentially associated with the recruitment 
of proinflammatory cells to the ischemic heart,50,51 whereas in 
injury-induced restenosis, the mobilization of smooth muscle 
progenitor cells by the CXCL12/CXCR4 axis was linked to 
increased neointima formation.37,52 In cardiac fibroblasts, 
CXCL12/CXCR4 signaling induced increased fibroblast pro-
liferation and collagen production.53 Altogether, these findings 
support the concept of a double-edged role of the CXCL12/
CXCR4 axis in CVD, likely reflecting disease subtype- as 
well as cell type-specific effects. Therefore, cell type-specific 
and regional targeting have to be considered in future clinical 
translation strategies targeting the CXCL12/CXCR4 axis.

MIF and ACKR3 Further Complicate 
the CXCL12/CXCR4 Axis
The understanding of (patho-)physiological effects of the 
CXCL12/CXCR4 axis is further complicated by macrophage 
MIF as alternative ligand of CXCR4, and by ACKR3 (atyp-
ical chemokine receptor 3; previously CXCR7) as alternative 
receptor for CXCL12 and MIF.54 In vitro analyses, animal 
studies as well as clinical epidemiological studies support a 
proatherogenic role of MIF.55 The role of MIF in MI seems 
more complex, with studies revealing both MIF-induced car-
dioprotective signaling in the context of cardiac ischemia56 
versus MIF-dependent inflammatory processes aggravat-
ing ischemia-induced myocardial damage,57 as summarized 
in detail recently by Tilstam et al58 Subsequently, cell type-
specific effects were identified, with leukocyte-derived MIF 
being proinflammatory versus cardiac cell-derived MIF being 
cardioprotective.59,60 Although this complicates the concept of 
therapeutically targeting MIF in CVD, it was recently sug-
gested that common MIF promoter variants might guide the 
therapeutic optimization of MIF levels: one may strive to de-
crease MIF levels in high MIF expressors at high cardiovas-
cular risk to reduce atherosclerotic burden, whereas increase 
MIF levels in low MIF expressors when aiming for increased 
cardiac protection after ischemia.58 Although no clinical stud-
ies are currently registered to investigate MIF increase, anti-
MIF strategies investigated in clinical trials for cancer and 

autoimmunity58 may support clinical translation in the CVD 
field also.

A role for ACKR3 in cholesterol uptake in adipose tissue and 
thereby in regulating blood cholesterol levels was previously 
linked to a regulatory effect of ACKR3 on atherosclerosis.61 
Further, a role in endothelial proliferation and angiogenesis 
may underlie a protective role of ACKR3 in injury-induced 
neointima formation as well as in cardiac remodeling after 
MI,62 which may offer interesting future therapeutic strate-
gies in CVD. In general, ACKRs present a further aspect in 
leukocyte trafficking and in modulating immune responses.63 
For example, ACKR2 controls lymphangiogenesis by captur-
ing CCL2, thereby regulating the proximity of prolymphan-
giogenic macrophages to the developing vessels.64 Since the 
presence of lymphatic vessels also influences the progression 
of atherosclerosis,65 a role for ACKR2 could be envisioned.

Towards Drugs Targeting Chemokines:  
How Far Are We?

Despite the multitude of preclinical studies revealing the im-
portance of chemokines in CVD, clinical translation has not 
yet been successful. In fact, only few clinical applications 
are currently on the market. The CCR5 antagonist Maraviroc 
(Celsentri/Selzentry; Pfizer) is approved for US and European 
markets for the treatment of HIV. The CXCR4 antagonist 
AMD3465 (Plerixafor; Genzyme Corporation) is in use to 
mobilize hematopoietic stem and progenitor cells for autolo-
gous transplantation in patients with non-Hodgkin lymphoma. 
Recently, also a CCR4-directed humanized monoclonal an-
tibody was approved by the Food and Drug Administration 
for the treatment of T-cell lymphoma and T-cell leukemia. 
However, chemokine-based drug applications to treat CVD are 
not yet available in the clinic. The reasons are manifold and 
may include poor target and dosage selection, timing of admin-
istration, insufficiently defined (patho)physiological role of a 
therapeutic target and the vastness of the chemokine system.66

Preclinical results are summarized in Table 1 and recent 
and ongoing clinical studies that examine targeting the pre-
viously discussed chemokines/chemokine receptors in CVD, 
are summarized in Table 2.

Since the mid-1990s, CCL5 and CCR5 have been in sharp 
focus as a drug target for the treatment of HIV, as CCR5 serves 
as a cofactor for cellular entry of the so-called R5 type of 
HIV-1 strains. Extension of the N-terminus of CCL5 resulted 
in CCR1 and 5 inhibitors, for example, Met-RANTES and 
AOP-RANTES.81 Although these modified CCL5 variants 
also showed potential as HIV-1 blockers, it was a small mo-
lecular CCR5-antagonist that eventually entered the market 
(Maraviroc). The trafficking of T cells, monocytes and neutro-
phils being a major function of CCR5, antagonists for CCR5 
were also shown to be effective in preventing atherosclerosis 
and myocardial ischemia-reperfusion injury in mice.67,82 Since 
atherosclerosis is a common complication in patients with 
HIV, particularly during treatment with antiviral protease 
inhibitors, the use of CCR5-antagonists is actually considered 
for its prevention. In fact, Maraviroc counteracted the increase 
in inflammation caused by protease inhibitors and reduced 
atherosclerotic plaque development in mice.68 Results for 
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humans are pending, as a clinical trial directed at the effects 
of Maraviroc on atherosclerosis in HIV patients was recently 
completed (URL: http://www.clinicaltrials.gov. Unique iden-
tifier: NCT03402815).

Also for CX
3
CL1 and CX

3
CR1, preclinical testing of 

antagonists is ongoing. The use of an N-terminally modified 

antagonistic CX
3
CL1 variant (termed F1) reduced platelet 

adhesion to TNF-α (tumor necrosis factor-α) activated 
SMC.34 When administered to mice, F1 reduced atheroscle-
rosis through the inhibition of monocyte adhesion.69 A viral 
CX

3
CL1-binding protein M3 reduced atherosclerosis through 

a similar mechanism.70 Further, monocyte adhesion was 
counteracted in a study implementing a novel small-molec-
ular CX

3
CR1 antagonist AZ12201182 in drug-eluting stents, 

resulting in a 60% reduction of stenosis in a porcine model of 
coronary artery stenting.71 A viral broad-spectrum chemokine 
inhibitor M3 from murine gamma herpesvirus 68 was found 
to inhibit atherosclerosis by the inhibition of CCL2, CCL5, 
and CX

3
CL1.70 Likewise, a tick-derived group of small che-

mokine binding proteins, termed the Evasins, have shown 
therapeutic potential in mouse models of myocardial ischemia 
or infarction.74,75

Bindarit, which inhibits the expression of the chemo-
kines CCL2, CCL7, CCL8, and IL12, reduced in-stent late 
loss (of lumen) after percutaneous coronary intervention 
in patients with ischemic heart disease, however, without 
effect on major adverse cardiovascular events.78 Further, the 
humanized monoclonal anti-CCR2 antibody MLN1202 was 
shown to reduce high-sensitivity C-reactive protein levels 
as biomarker of inflammation in patients at high risk for 
atherosclerotic CVD,79 but a phase II clinical trial evalu-
ating the effect of this antibody on arterial inflammation 
in patients with stable atherosclerosis (URL: http://www.
clinicaltrials.gov. Unique identifier: NCT02388971) was 
withdrawn.

A single endocardial CXCL12 dosing using a CXCL12-
coding plasmid (JVS-100) in the phase II STOP-HF trial re-
vealed the potential to improve cardiac function 12 months 
after treatment in patients with left ventricular ejection frac-
tion below 26% following MI.42 A second study examining 
single endocardial overexpression of CXCL12 in patients 
with ischemic heart disease using a nonviral DNA plasmid 
(ACRX-100) has recently been evaluated for safety and pre-
liminary efficacy on cardiac improvement (Phase I), but 
results are not yet available. Further, a clinical trial examin-
ing the effect of CXCR4 antagonism on cell mobilization, 
heart function, and infarct size in patients with acute MI 
(CATCH-AMI [CXCR4 Antagonism for Cell Mobilisation 
and Healing in Acute Myocardial Infarction], Phase II) 
has been completed, but with results not yet available. 
Another clinical application being investigated is the use of 
CXCR4-directed imaging as diagnostic tool for atheroscle-
rotic burden,83 with CXCR4-directed endoradiotherapy re-
vealed to have an anti-inflammatory effect on atherosclerotic 
plaques.84 For MIF and ACKR3, no clinical studies examin-
ing a potential therapeutic application in CVD are currently 
registered.

With also CXCR2 mediating (CXCL8- and MIF-
mediated) inflammatory monocyte and neutrophil recruitment 
in atherosclerosis,85,86 the CICADA trial (CXCR2 Inhibition 
– A Novel Approach to Treating Coronary Heart Disease) is 
currently examining the effect of CXCR2 inhibition on cardi-
ovascular surrogate parameters as coronary flow reserve and 
coronary plaque structure in patients with CAD undergoing 
percutaneous coronary intervention.80

Table 1.  Preclinical Studies of Chemokines or Chemokine Receptors

Target Compound Model (Mouse) Reference

CCR5/CXCR3 TAK779* Atherosclerosis van Wanrooij 
et al67

CCR5 Maraviroc* Atherosclerosis Cipriani et al68

CCR5 Met-RANTES† Myocardial 
infarction

Projahn et al40

CX3CR1 F1† Atherosclerosis Poupel et al69

CX3CR1 M3‡ Atherosclerosis Ravindran et al70

CX3CR1 AZ12201182* Stent restenosis Ali et al71

CCL2/5/8 siRNA/liposomes Atherosclerosis Ma et al72

CCR2 siRNA/liposomes Atherosclerosis Leuschner et al15

CCR2 RS102982* Atherosclerosis/
myocardial 
infarction

Winter et al19

CCR2 siRNA/liposomes Myocardial 
infarction

Majmudar et al16

CCL5/CXCL4 MKEY peptide§ Atherosclerosis von 
Hundelshausen et 
al12 and Koenen 

et al73

CCL5/CCL17 CAN peptide§ Atherosclerosis von 
Hundelshausen 

et al12

CCL5/HNP1 SKY peptide§ Myocardial 
infarction

Winter et al19

MIF Antibody and 
COR100140*

Myocardial 
infarction

White et al57

ACKR3 CCX771* Atherosclerosis Li et al61

ACKR3 TC14012* Myocardial 
infarction

Hao et al62

CXCL1, 2 Evasin-3‡ Myocardial 
ischemia/

reperfusion

Montecucco et al74

CCL5, 11 Evasin-4‡ Myocardial 
infarction

Braunersreuther 
et al75

CXCR3 NBI-74330* Atherosclerosis van Wanrooij 
et al76

CXCR3 AMG487* Cardiac 
remodeling

Koren et al77

Compounds that have shown beneficial effects in myocardial infarction/remodeling 
or atherosclerosis studies in the mouse. ACKR3 indicates atypical chemokine 
receptor 3; CCL5, CC-chemokine ligand 5; CCR5, CC-chemokine receptor 5; CXCL, 
CXXXC-chemokine ligand; and MIF, macrophage migration inhibitory factor.

*Small molecule chemokine receptor antagonist.
†Modified chemokine.
‡Chemokine-neutralizing protein.
§Chemokine heteromer formation-antagonists.
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Novel Translational Approaches for Diagnosis 
and Therapy in CVD

Despite the low clinical translation in regard to mainly sys-
temic targeting chemokines but also adhesion molecules and 
integrins to reduce CVD burden, insights into the function 
of these molecules in inflammation and CVD have trig-
gered the development of early stage imaging approaches as 
well as local targeting methods, primarily based on recent 
advances in nanotechnology. Indeed, nanomedicine seems 
highly promising for imaging and local drug delivery in CVD 
in general and atherosclerosis particularly.87 Different types 
of nanocarriers targeting adhesion molecules (ICAM1 [in-
tercellular adhesion molecule-1] and VCAM1 [vascular cell 
adhesion molecule-1]), selectins (E-selectin), and integrins 
(αvβ3 integrin) using antibodies or protein-binding peptides 
have been examined for imaging of inflamed endothelium 
and atherosclerotic lesions as well as for targeted delivery, 
as reviewed in detail recently.87,88 For example, systemic ap-
plication of nanoparticles carrying CCR2-silencing short 
interfering RNA reduced CCR2 expression in monocytes, 

monocyte accumulation in plaques as well as infarct size and 
inflammation after MI.15,16 Also, VCAM-1-targeted liposomes 
carrying CCR2 antagonists were shown to bind activated 
endothelium and reduce monocyte adhesion and transmi-
gration,89 and VCAM1-targeted nanoparticles containing 
anti-miR-712 were more efficient in inhibiting plaque forma-
tion in mice compared with naked anti-miR-172.90 Packaging 
of miR-146a/181b, which reduces TRAF6/NF-κB (tumor ne-
crosis factor receptor-associated factor 6/nuclear factor kappa 
B) signaling, into an E-selectin-targeting vector reduced ex-
pression of chemokines CCL2, CCL5, CCL8, and CXCL9, 
endothelial monocyte adhesion as well as atherosclerosis in 
mice,72 suggesting that also a direct, local targeting of che-
mokines by microRNAs may be promising in reducing ather-
osclerosis.91 A comparable approach is used by nature itself, 
with endothelial apoptotic bodies being atheroprotective by 
transporting miRNA-126 to neighboring endothelial cells to 
increase CXCL12/CXCR4-mediated vascular protection.46

In addition to the above approaches, the interactions of 
CCL5 with CXCL4, CCL17 and HNP1 present interesting 

Table 2.  Clinical Trials Evaluating Chemokine s or Chemokine Receptors Registered at http://www.clinicaltrials.gov or EudraCTR

Target
Compound  

(Trial Name) Condition Aim of Study Phase Study Outcome and Status Identifier

CCR5 Maraviroc HIV patients with 
atherosclerosis

Efficacy of Maraviroc in 
Modulating Atherosclerosis 

in HIV Patients

Phase IV Completed, results pending NCT03402815

CXCL12 JVS-100 (CXCL12-
coding plasmid) for 

single, endomyocardial 
injection

Ischemic heart failure Safety and efficacy (primary 
end point: improved heart 
failure composite score at 

4 months)

Phase II Primary end point not 
met, but improved cardiac 

function 12 mo after 
treatment in patients with 
LVEF <26% following MI42

NCT01643590

CXCL12 ACRX-100 (nonviral 
DNA plasmid for 

transient expression 
of CXCL12) for single, 

endomyocardial injection

Ischemic heart failure Safety, tolerability and 
preliminary efficacy 

(cardiac function, cardiac 
perfusion, improvement in 

NYHA classification)

Phase I Completed, results not yet 
available

NCT01082094

CXCR4 POL6326 (CXCR4 
antagonist) [CXCR4 
Antagonism for Cell 

Mobilization and Healing 
in Acute Myocardial 

Infarction (CATCH-AMI)]

Large reperfused st-
elevation myocardial 

infarction

As a stem cell mobilizer, 
effect on heart function 

and infarct size, safety and 
tolerability

Phase II Completed, results not yet 
available

NCT01905475; 
EudraCT 2012-

003229-91

CCL2 Bindarit (inhibits the 
expression of CCL2, 

CCL7, CCL8, and IL-12)

Coronary restenosis Efficacy and safety after 
coronary stenting

Phase II No significant reduction in in-
segment late loss or MACE, 
but significant reduction in 

in-stent late loss78

NCT01269242

CCR2 MLN1202 (Anti-CCR2 
humanized monoclonal 

antibody)

Atherosclerosis Effect on C-reactive protein Phase II Significant reduction 
in circulating levels of 
C-reactive protein.79

NCT00715169

CXCR2 AZD5069 (CXCR2 
inhibitor)

PCI in coronary artery 
disease

Effect on heart function 
(coronary flow reserve; 

diastolic function) 
and coronary plaque 

inflammation

Phase II Ongoing, no results available 
yet80

EudraCT 2016-
000775-24

A specific search for interventional studies related to CVD and heart disease (excluding peripheral artery disease) was performed for CCR5, CXCL12/CXCR4, CCL2/
CCR2, and CXCL2. Comparable searches for CX3CL/R1, CXCR3, MIF, and ACKR3 did not return any result. ACKR3 indicates atypical chemokine receptor 3; CATCH-AMI, 
CXCR4 Antagonism for Cell Mobilisation and Healing in Acute Myocardial Infarction; CCR5, CC-chemokine receptor 5; CVD, cardiovascular disease; CXCL, CXXXC-
chemokine ligand; CXCR2, CXC-chemokine receptor 2; and MIF, macrophage migration inhibitory factor.
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therapeutic targets. Rationally designed synthetic peptides, 
termed MKEY, CAN, and SKY were implemented to block 
the interactions of CCL5 with CXCL4, CCL17, and HNP1, 
respectively. This resulted in a reduction of atherosclerotic 
plaque size and in a reduced ischemia-reperfusion injury in 
mice treated with the respective peptides.6,12,14,92 Although 
none of the above peptides has entered clinical trials, these 
examples illustrate that interactions of CCL5 with other pro-
teins might be an interesting approach for the treatment of 
CVD, with less risk for immunologic side-effects as a total 
functional blockade of CCL5.

Conclusions and Future Perspectives
Despite promising findings in preclinical studies, clinical 
translation targeting chemokines into therapeutic strategies 
for CVD currently lags behind. Failure to translate many 
promising chemokine-based animal studies to the treatment 
of patients with MI has raised skepticism to our ability to 
develop clinical applications based on promising preclinical 
findings.3 An important hurdle is the high heterogeneity of 
patients, with factors as age, sex, ethnicity, genetic variation, 
and differential CVD pathology highly increasing complexity 
of pathological processes and thereby clinical translation 
potential. Also, comorbidities may highly affect disease pa-
thology and thereby the efficacy of therapeutic strategies. For 
example, patients with diabetes mellitus or chronic kidney 
disease have a highly increased risk of CVD at least partly 
caused by increased and altered inflammatory processes 
in these patients,93 and unraveling comorbidity-associated 
alterations is essential for successful clinical translation in de-
fined patient groups, supporting more personalized treatment 
approaches. Another hurdle is the double-edged role that in-
flammatory mechanisms and specific molecules may play in 
atherosclerosis37 as well as in cardiac repair after MI,3 indicat-
ing that both spatial as well as temporal aspects of therapeutic 
application need to be considered. Temporal optimization of 
therapy to address circadian rhythmicity, as shown for early 
atherosclerotic processes, may also improve drug efficacy and 
reduce side effects.19 Another approach might be to take the 
above hurdles into account when developing preclinical (an-
imal) models, to have a more robust outcome before entering 
clinical evaluation.

Despite these hurdles that still need to be overcome, recent 
developments in nanomedicine have triggered nanoparticle-
based local targeting as preferential approach over systemic 
interference, for example, by specifically targeting acti-
vated endothelium over adhesion molecules and selectins to 
target proinflammatory chemokines locally in atherosclerotic 
lesions. And although studies investigating the usefulness of 
nanoparticle targeting were mainly performed in a preclinical 
setting and nanoparticle-based approaches still require addi-
tional evaluation of side effects,87 these approaches may hold 
great promise for the implementation of novel diagnostic and 
therapeutic applications.
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•	 Atherosclerosis is an inflammatory disease that precedes myocardial infarction or stroke. No true causative treatment for atherosclerosis or 
its complications is available yet.

•	 Chemokines constitute a large family and are important regulators of leukocyte migration and other cellular responses. Several chemokines 
have key roles in inflammation and thus present interesting drug targets.

•	 This review highlights recent developments for chemokines and for the chemokine-like factor MIF (macrophage migration inhibitory factor).
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