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1 RADIOMICS APPLICATIONS IN MEDICINE 

Imaging is a fundamental technology in medicine and is used in clinical practice to aid decision-

making for screening, diagnostic [1] therapeutic [2] and follow-up purposes. Radiomics was born in 

2012 as an innovative approach to image analysis, that focuses on augmentation of traditional 

quantitative image analysis [3], [4] using automated high-throughput extraction of large amounts 

(200+) of quantitative features from medical images, such as CT, MRI and PET scans. To extract 

relevant features from the images, it is very important that the region of interest (ROI) is appropriately 

selected and delineated. Below we report a typical step-by-step radiomics workflow (Figure 1.1) 

 

Figure 1.1 Scheme of the radiomics workflow for hand-crafted features (top) and deep learning (bottom) 

The hypothesis is that quantitative analysis of medical image data can provide complementary 

information to aid physicians in the decision-making process, aided by automatic or semi-automatic 

software, in a fast and reproducible way [5]. Radiomics is the result of several decades of computer-

aided diagnosis, prognosis, and therapeutics research [6], [7]. A robust radiomics approach consists of 

the identification of a wide variety of quantitative features from medical images, the storage of such 

data in several independent databases functioning as a single entity (federated databases) [8] and the 

subsequent data mining to obtain clinically relevant outcomes [9]. Medical images such as CT, MR, 

and/or PET scans can be analyzed and processed to extract relevant radiomics features which can be 

used for screening, diagnostic [10], follow-up, and prognostic [11] purposes as well as for 

pharmacokinetic and pharmacodynamic studies [12]–[14]. Databases that collect and cross-reference 

vast amounts of radiomics data along with other relevant patient information from millions of cases 

are already a reality, but still present considerable management problems [15]–[18]. Since radiomics’ 

inception in 2012, the number of radiomics publications has grown exponentially (See Figure 1.2) as 

well as its detractors and disbelievers. The proven efficacy of radiomics approaches and the 

enthusiasm around this new method has to be tempered by its informed application and the careful 

evaluation of its real potential. 
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Figure 1.2 Number of “radiomics” publications per year (2012 -2020). Data obtained from Scopus (09/09/2020) 

Two main approaches are used for radiomics analysis, hand-crafted features and deep learning 

(DL). Radiomic hand-crafted features (such as intensity, shape, texture, or wavelet) offer information 

on the specific area of the imaging scan one wishes to investigate, which might be a tumor region or 

a whole organ. These features are distinct yet interconnected to other data sources (such as clinical, 

treatment, or genomic data) [19]. The main challenge lies in the collection and integration of 

multimodal data sources quantitatively, delivering unambiguous clinical information and in turn 

allowing accurate and robust outcome prediction [20]. DL methods instead use a data-driven 

approach for model creation, mimicking simplified brain neuron interactions. DL has the advantage of 

not needing prior segmentation of the imaging scan. However, the “black box” approach of DL and 

the lack of interpretability of the models are seen as the main limitation of clinical applicability. 

Moreover, DL approaches need a large amount of data to truly express their potential, and sometimes 

the patient cohorts available, for example in case of rare diseases, are not enough to leverage a DL 

architecture effectively. For as much as this scenario seems straightforward and most alluring for 

clinicians, there are still too many published prediction models which lack standardized evaluation of 

their performance, reproducibility, and/or clinical utility [21], [22].  

2 ARTIFICIAL INTELLIGENCE IN HEALTHCARE 

Recent years have seen significant advances in the capacity of Artificial Intelligence (AI), which is 

growing in sophistication, complexity, and autonomy. AI attempts to emulate the neural processes of 

humans, and it introduces a paradigm change to healthcare, driven by growing healthcare data access 

and rapid development in analytical techniques. The rapid explosion of AI has given rise to the 

possibilities of using aggregated health data to generate powerful models that can automate diagnosis 

and also allow an increasingly precise approach to medicine by tailoring therapies and targeting 

services with optimal efficacy in a timely and dynamic manner. Despite the remarkable advances in 

DL-based approaches, the notion that AI technologies will swiftly usher in a new utopian era of digital 

healthcare is visionary at best and delusionary at worst, real and substantial challenges still exist. 

Explainable AI can play a critical role in identifying radiomic features that are clinically meaningful. 

Moreover, many high-performance DL models produce findings that are next to impossible for non-

AI-expert humans to comprehend. While these models can produce better-than-human efficiency, it 

is not easy to express intuitive interpretations that can justify model findings, define model 

https://www.sciencedirect.com/topics/computer-science/deep-learning-model
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uncertainties, or derive additional clinical insights from these computational ’black-boxes.’ The ideal 

solution should have both high explainability and high performance. However, existing linear models, 

rule-based models, and decision trees are more transparent, but with lower performance in general. 

In contrast, complex models, e.g., DL and ensembles, manifest higher performance while less 

explainability can be obtained. 

2.1 POST-HOC EXPLAINABILITY 
Post-hoc explainability targets models that are not readily interpretable by design, by resorting to 

diverse means to enhance their interpretability, such as visual explanations, local explanations, and 

feature relevance explanations techniques. Each of these techniques covers one of the most common 

ways humans explain systems and processes by themselves. Figure 1.3 shows a conceptual diagram 

of the most common post-hoc explainability approaches available for AI models applied in healthcare.  

 

 

Figure 1.3: Conceptual diagram showing the different post-hoc explainability approaches available for 

AI models applied in healthcare 

3 GOOD PRACTICES IN RADIOMICS STUDIES  

Radiomics can be defined as a collection of methods (algorithms) that produces useful insight based 

upon a large number of extracted features from radiographic medical images [23]. Radiomics emerged 

originally in the field of oncology [24], [25]; however, it can be applied to any medical study where a 

disease or a condition can be imaged [26]–[29]. A radiomics study can be divided into four main 

phases: data selection and curation, features extraction, exploratory analysis, and modeling. Below 

we report a typical step-by-step radiomics workflow (Figure. 1.4) and the application of an evaluation 

protocol called Radiomics Quality Score (RQS). In 2017 the Radiomics Quality Score (RQS) was 
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proposed and defined to help the scientific community assess the quality and scientific/clinical value 

of a radiomics study at a glance [30]. A similar example is the Transparent Reporting of a multivariable 

prediction model for Individual Prognosis Or Diagnosis (TRIPOD) initiative [31]. The RQS is determined 

by 16 key criteria which are assigned to a point value for a maximum of 36 points (100%). These criteria 

cover image acquisition protocols, statistical data treatment, cohort provenance, and open science 

policies, encompassing all the relevant aspects that a reliable radiomics publication should present. 

The latest version of the RQS questionnaire (RQS 2.0) which is under development is aimed to cover 

criteria like interpretability and explainability which are more specific and relevant to DL-based 

radiomics  

 

 

Figure.1.4. Scheme of the radiomics workflow for hand-crafted features (top) and DL (bottom) 

3.1 DATA SELECTION AND CURATION 
The starting point of the Radiomic analysis is the selection of an unmet clinical need, the 

appropriate imaging technique (CT, MRI, PET, etc.), the identification of the volume of interest (VOI), 

and the choice of a specific prediction target — the relevant clinical question that the radiomics 

analysis aims to answer. For example, in a typical oncological study, the entire primary tumor is 

analyzed and linked to available data on treatment outcomes, such as survival rate. Radiomic analyses 

can be performed on subregions of the tumor (habitats), metastatic lesions, as well as in normal 

tissues. Radiomics analysis, however, is not restricted to oncology and can be applied to any image 

generated in the clinical setting [32]–[34]. The use of standardized imaging protocols to eliminate 

unnecessary confounding variability is of paramount importance [23], [35] and has been recognized 

through the years as one of the main factors leading to low-quality radiomics analysis [36]. Still 

nowadays, however, non-standardized imaging protocols are commonplace. Reproducibility and 

comparability of radiomic studies can be achieved only by extensive disclosure of imaging protocols 

along with clear guidelines on how such protocols should be applied and reported. To overcome at 

least partially these issues, it is important to introduce standardization techniques for data storage 
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and usage, such as 1) the digital imaging and communications in medicine (DICOM) standard [37], 2) 

the clinical data interchange standards consortium (CDISC) [38], 3) the health level seven (HL7) 

standards [39] to guide data transfer and sharing, and FAIR (findable, accessible, interoperable, 

reusable) data principles, as a routine practice, despite the type of the analysis that will be applied for 

the data. This standardization is key to effective manipulation of the data and saves time and expenses 

in the long term. 

3.2 MEDICAL IMAGING  

3.2.1 Segmentation  

Segmentation is the first fundamental step in radiomics analysis and can be performed 

manually by expert radiologists/clinicians or (semi-) automatically [40]. Both approaches have their 

pros and cons and the most suited one varies on a case-by-case basis [41], [42]. In general, automatic 

segmentation is more reproducible and faster than hand-made segmentation. The segmentation step 

determines which voxels within an image are analyzed: it is easy to see that the variability in 

segmentation (both human- and machine-driven) can introduce bias in the evaluation of the derived 

radiomic features [43]. For example, a semi-automatic segmentation method can result in different 

radiomic feature values than a manual delineation, as well as segmentation performed by two 

different physicians. Multiple segmentation is a method to limit the extent of this bias [44] including 

evaluation by multiple clinicians, perturbation of the segmentations with noise [45], and combination 

of diverse algorithms [46], [47]. Also, the segmentation models’ performances are usually evaluated 

by comparing them against radiologists’ segmentation. However, several studies have mentioned 

inter and intra-reader variability in segmentation tasks [48] [49]. Another study explores several 

factors that influence readers’ concordance [50]. Hence, an algorithm’s performance should be 

considered acceptable if it is within the range of intra and/or inter-reader variability.  

3.2.2 Phantom studies and feature stability 

Another source of variability in the preliminary radiomics phase is the inter-machine and inter-

vendor differences between the scanners employed [51]. In most real-life situations, the radiomics 

study must rely on data acquired on different scanners from different producers thus, not taking into 

account this systematic source of uncertainty might jeopardize the radiomics model prediction 

capabilities. To overcome at least part of this intrinsic limitation, the use of phantoms (i.e. an object 

built in shape and materials as close as possible to human tissue and organs) is a suitable means to 

assess and account for the possible similarities and differences [52]. Radiomics features need also to 

be robust concerning other possible sources of variability such as target volume motion (expansion or 

shrinkage). To probe the feature resilience, test-retest approaches [53], [54] can be exploited to 

measure feature stability: for example, two datasets of images acquired within a small period from 

the same patient cohort or the use of cohorts from multiple sources [55], [56]. Volatile or robust 

features can be identified and excluded from model development. For example, a feature that is 

robust for the prediction of overall survival for lung cancer for a given dataset could be volatile for the 

prediction of pneumonitis in lung cancer (imaged and segmented in an alternative way).  

To ameliorate the reproducibility of radiomics features, several methods of harmonization 

have been proposed in the literature. The ComBat method initially developed for genomics aims to 

remove non-biological differences related to scanner type to combine radiomics features extracted 

from data coming from different centers [36], [57], [58]. Other methods include training Neural 
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Network to standardize radiomics feature [59], intensity and diffusion maps harmonization [56], [60] 

and data augmentation with generative adversarial networks (GAN) [61]. For a complete overview see 

[62]. 

3.3 FEATURE EXTRACTION  
The essence of radiomics is the extraction of quantitative image features to characterize ROIs.  

Hand-crafted radiomic features can be divided into five groups;  

- size and shape based–features,  

- descriptors of the image intensity histogram,  

- descriptors of the (spatial) relationships between image voxels,  

- features extracted from filtered images, and fractal features [63], [64].  

Feature values are dependent on pre-processing methods applied to the images such as filtering, or 

intensity discretization and reconstruction. Furthermore, variation exists in feature nomenclature, 

mathematical definition, extraction methodology, and software implementation of the applied 

extraction algorithms [65]–[67]. To harmonize radiomic features and model reports, all these 

differences have to be taken into account and clear specifications are to be included with each model 

[68]. 

3.4 EXPLORATORY ANALYSIS  
The true potential of radiomics approaches lies in the possibility to combine radiomic and non-

radiomic features with the prediction target to create a single dataset. This approach allows the 

evaluation of possible correlations between features. However, some radiomics features that are 

highly correlated with other routine clinical features (such as tumor stage) might not provide 

additional meaningful information. Approaches such as (unsupervised) clustering, PCA (Principal 

component analysis) [69] or MRMR (maximum relevance minimum redundancy) [70] permit 

identification and eliminate redundancy, for instance, by reducing highly correlated features to a 

single representative archetypical feature. This is a fundamental step to avoid overfitting [71], [72]. 

On the other hand, additional data collected, for example, from multiple segmentations or phantom 

studies can be used to test the feature robustness [73], [74]. This process of reduction and/or 

exclusion should be described clearly, to avoid misinterpretation and help in the unambiguous 

identification of relevant features. Also, univariate correlations of single radiomics features with 

clinical outcome is part of the exploratory analysis and could inform the subsequent modeling step, 

underlining relations between single radiomics features with clinical covariates of interest. 

3.5 MODELING  
After feature extraction and possible reduction, the creation of the radiomic model 

encompasses three major steps: feature selection, modeling methodology, and validation. Regarding 

the choice of modeling methodology, the identification of the optimal machine-learning method is a 

crucial step; thus, in an ideal scenario, multiple methods should be utilized and compared [75] and 

their implementation should be comprehensively documented. Another fundamental point in the 

modeling phase is the validation, which has to be performed to verify the applicability of the model in 

a real-world situation. Ideally, the model should be internally and externally prospectively validated, 
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using real world evidence or controlled trial datasets and the performance compared and reported 

[76]–[78].   

3.5.1  Feature selection  

The number of radiomic features that can be extracted from images is technically unlimited. 

Several different filters, feature categories, and other parameters can be used to mine the information 

hidden inside an imaging scan. Including all the possible features, even if practically possible, would 

result in overfitting which in turn renders the model useless for patients not previously evaluated (the 

so-called curse of dimensionality) [79], [80]. The most used approach is the reduction to archetypal 

features representing a group or class of features, identified by dimensionality reduction techniques. 

Several different kinds of clustering algorithms and PCA are available and also this choice has to be 

justified and reported in detail, to promote transparency and replicability. Again, the same feature 

might be relevant for a given dataset, segmented in a certain way for a specific end-point prediction 

but not important whit a different segmentation routine or a different cohort of patients.  

3.5.2 Modeling methodology 

The choice of modeling technique has been proven to affect prediction performance in 

radiomics [75]. Ideally, multiple modeling methodologies should be tested to select the best approach 

for the given data set and the other parameters involved in the creation of the model. Comparisons 

between Machine Learning (ML) and DL approaches are common [81], [82] and the final choice must 

be consider the performance of the model, also the applicability of the proposed strategy in a real-

world situation, considering for example computational burden or explicability of the resulting 

predictions [83], [84]. Another key point in the selection of modeling methodology is replicability by 

other researchers, in the light of responsible and transparent research and innovation. This can be 

achieved, for example, by making the software code available in public repositories such as GitHub 

[85], Gitlab [86] and OpenML [87]. Also, many scientific journals put in place, in the last years, tools to 

help data and algorithms sharing, making these available to the scientific community.   

3.5.3 Validation  

Validation techniques are needed to assess whether the model is predictive for the target 

patient population or just for a particular subset of samples analyzed. Model performances are 

typically measured in terms of discrimination and calibration. Discrimination is represented by 

concordance statistics. For example, the discrimination metric for a binary outcome is the receiver 

operating characteristic (ROC) curve, or area under the ROC curve (AUC) [88]. The AUC relates to the 

sensitivity and specificity of the model and represents the probability that a random patient matching 

an outcome is assigned in the class-specific for that outcome with a larger probability than another 

random patient who does not match the outcome. The calibration, instead, is a measure of the 

agreement between observed outcomes and model predictions [89]. Calibration can be reported 

using a calibration plot and calibration-in-the-large/slope, with the Brier score, the mean squared 

prediction error, as a measure of overall performance.  

The statistical methods used on both training and validation data sets need to be reported in 

detail. A valid model must exhibit statistical consistency between the training and validation sets. In 

terms of validation set selection, an externally validated model has more credibility than an internally 

validated one because validation with independent data sets is considered more robust [77], [89]–

[91]. For “good radiomics practice”, the reproducibility and replicability of the model should also be 

included in the validation step. Reproducibility relates to the verification of the result by independent 
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researchers using the same methodology and data set, to verify the absence of errors, while 

replicability means the possibility of replicating the radiomics analysis with the same methodology but 

different appropriate datasets, to generalize the original findings [92]–[96]. Reproducibility and 

replicability in radiomics are, however, not possible if researchers do not disclose all the details of the 

analysis performed. Each radiomics model must be accompanied by the disclosure of imaging 

protocols, analyzed scans, segmentations of VOIs, detailed accounts of how features were extracted 

(including the formulae), and of the modeling methodology used (ideally, the code) [97].  

4 ARTIFICIAL INTELLIGENCE FOR AUTOMATIC DELINEATIONS 

A critical aspect of the Radiomics workflow is the need for segmentation of the region of interest from 

which relevant quantitative features are to be extracted.  Manual delineations of anatomical 

structures and abnormal areas in different organs could be time-consuming and result in variability 

across annotators. AI-based auto-segmentation models can complement radiomic feature extraction, 

delivering a fully automated framework for further analysis of the radiomic features. In the past years, 

several researchers have proved the efficiency of AI in medical imaging for the segmentation task. A 

recent article [98] provides a comprehensive overview of various architectural types of deep learning 

models being researched for the segmentation of various anatomical structures. Of all the different 

architectures, U-net [99], a type of convolutional neural network designed specifically for biomedical 

image segmentation tasks has been researched and used successfully in different flavors for various 

medical image segmentation tasks. Another research article [100] presents a literature review of 

medical image segmentation based on U-net, focusing on the successful segmentation experience of 

U-net for different lesion regions in six medical imaging systems.  

AI-based segmentation models can also be used to improve classification models to select appropriate 

slices from 3D images to make the model focus on the region of interest and to prevent overfitting by 

learning the irrelevant patterns existing outside the ROI. Deep learning models have been proven the 

most successful approach to auto-segmentation of medical images and the output can be easily 

integrated into a full radiomics pipeline. Also, the radiomics model itself, the so-called radiomics 

signature, can be based on hand-crafted features which can be used in traditional Machine Learning 

models and “deep” features for an end-to-end deep learning approach to the classification or 

prediction task at hand.  

In the present thesis, I explored the potential of applying Artificial intelligence approaches in 
combination with Radiomics for several disease detection and classification pertaining to unmet 
clinical needs. 
In the development of the research trajectory, I have taken into account three main topics: 

Robustness and generalizability: Generalizability and robustness are essential for real clinical 
applications. Generalization refers to a model’s ability to adapt properly to new, previously unseen 
data. Each model was externally validated on data coming from different sources compared to the 
training dataset to verify generalizability, thereby ensuring the reliability of a model’s performance on 
a dataset presenting from sources employing varying imaging parameters, from a population 
presenting ‘unseen’ abnormalities in the region of interest.  
 
Explainability of the model decision: Several explainability methods, both post-hoc and ante-hoc, have 

been used to assure the transparency of the model decision, linking the output or the input to a 
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tangible clinical and radiological characteristic of the medical images analyzed. The Explainability of AI 

models promotes trust among non-specialists and the acceptance of these methods in the clinic. 

Clinical relevance: Unmet clinical need for a particular tool was researched based on the literature and 

interactions with clinicians at Maastricht university medical center and the developed models were 

evaluated on external validation datasets which represent populations in real-world clinical settings.  

5 RESEARCH HYPOTHESIS 

The research work presented in this thesis focuses on the overall hypothesis that (semi) automated 

Radiomics and AI based methodologies can produce generalizable performance equivalent/non-

inferior/superior to that of an expert human charged with the same tasks and is exemplified in 

detection, diagnosis, and treatment response prediction use cases. The (semi) automated radiomics 

and AI based methodologies throughout my research were explored specifically on the following 

clinical problem statements, 

- Covid-19 diagnosis and differential diagnosis using CT imaging 

- Pulmonary embolism detection and diagnosis using CTPA imaging 

- Treatment response prediction in patients with non-metastatic non-small cell lung cancer 

using CT imaging 

- Menière’s disease diagnosis using MRI imaging 

The thesis is organized around the following chapters:   

Chapter 2 focuses on the combination of an automatic deep learning segmentation model for lungs 

to expedite and automatize the application of radiomics signature to detect COVID-19 infected 

patients from chest CT scans.  

Chapter 3, upon building on the expertise acquired in the previous approach, reports the development 

of an end-to-end deep learning framework for the differential diagnosis of pneumonia patients 

infected with COVID-19, compared to Influenza/CAP patients and no infection patients. The automatic 

lung segmentation model was combined with a lung abnormalities segmentation model which, 

filtering the lung slices with no abnormal radiological features, assures that the classification model 

focuses its decision only on the relevant slices from each chest CT scan volume. The explainability is 

assured by an automatic clinical summary report, which allows the clinician to review all the slices 

with the segmented abnormalities and the associated classification probabilities for each class 

produced by the model.  

In Chapter 4, the detection of pulmonary embolism from chest CT angiography was tackled with a fully 

automated deep learning framework, training the model on a slice level and aggregating the results 

to obtain patient-level prediction, after having chosen the optimal classification threshold on the 

internal validation set. The Grad-CAM method was used to assess model explainability, which was 

quantified by comparing the activations maps with the radiologist's manual delineation of emboli. 

Chapter 5 focuses on the application of a radiomic signature to predict survival as the primary outcome 

in patients with non-metastatic non-small cell lung cancer (NSCLC) for chemotherapy. We have 

compared the performances of the models trained on the features extracted from the Gross Tumour 

Volume (GTV) segmented manually and by using an AI-based GTV segmentation model.  

Chapter 6 presents the development and validation of a deep learning framework for the identification 

of metastatic bone foci on bone scintigraphy scans. The model can distinguish between metastatic 
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and non-metastatic disease and the model performances were compared with radiation oncologists 

in an in-silico clinical study, also in terms of speed of classification.  Also, in this case, Grad-Cam 

explanation maps were used to assess model explainability. 

In Chapter 7, I have investigated the application of radiomic signature for the diagnosis of Menière’s 

disease from the features extracted from the inner ear region on conventional T2- weighted MRI scans  

In Chapter 8, as an attempt to fully automate the radiomics-based diagnostic tool for Menière’s 

disease, an AI-based auto-segmentation model was explored for segmentation of the inner ear on MRI 

scans. The trained model was validated for generalizability on multi-vendor, multi-centric data with 

diverse abnormalities presenting in the inner ear.  

To conclude, chapter 9 provides a general discussion and future perspectives for AI-based diagnostic, 

prognostic, and treatment outcome applications.  
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Development and validation of an 
automated radiomic CT signature for 

detecting COVID-19 
 

Based on Guiot, J.; Vaidyanathan, A.; Deprez, L.; Zerka, F.; Danthine, D.; Frix, A.-N.; Thys, M.; Henket, M.; 

Canivet, G.; Mathieu, S.; Eftaxia, E.; Lambin, P.; Tsoutzidis, N.; Miraglio, B.; Walsh, S.; Moutschen, M.; Louis, R.; 

Meunier, P.; Vos, W.; Leijenaar, R.T.H.; Lovinfosse, P., Development and Validation of an Automated Radiomic 

CT Signature for Detecting COVID-19. Diagnostics 2021, 11, 41. https://doi.org/10.3390/diagnostics11010041 

 

Our research presented in this chapter exploits the use of an AI-based auto-segmentation model in 

combination with radiomics and AI-based classification models to analyze features from lungs, for 

diagnosis of Covid-19. The coronavirus disease 2019 (COVID-19) outbreak reached a pandemic status 

in early 2020. Drastic measures of social distancing were enforced in society and healthcare systems 

were being pushed to and beyond their limits. To help in the fight against this threat to human health, 

a fully automated AI framework was developed to extract and analyze radiomics features from 

volumetric chest computed tomography (CT) exams. In this study, we hypothesize that a fully 

automated solution comprising an AI-based segmentation model to segment whole lungs from the CT 

and the radiomic analysis of features extracted from the segmented lung region can identify a 

diagnostic signature for COVID-19 infection, based on standard-of-care chest CT imaging. The 

detection model was developed on a dataset of 1381 patients (181 COVID-19 patients plus 1200 non-

COVID control patients). A second, independent dataset of 197 RT-PCR confirmed COVID-19 patients 

and 500 control patients was used to assess the performance of the model. Diagnostic performance 

was assessed by the area under the receiver operating characteristic curve (AUC). The model had an 

AUC of 0.882 (95% CI: 0.851–0.913) in the independent test dataset (641 patients). The optimal 

decision threshold, considering the cost of false negatives twice as high as the cost of false positives, 

resulted in an accuracy of 85.18%, a sensitivity of 69.52%, a specificity of 91.63%, a negative predictive 

value (NPV) of 94.46% and a positive predictive value (PPV) of 59.44%. Benchmarked against RT-PCR 

confirmed cases of COVID-19, our AI framework was able to accurately differentiate COVID-19 from 

routine clinical conditions in a fully automated fashion. Thus, providing a rapid accurate diagnosis in 

patients suspected of COVID-19 infection, facilitating the timely implementation of isolation 

procedures and early intervention. 

https://doi.org/10.3390/diagnostics11010041
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1 BACKGROUND 

The rapid outbreak of coronavirus disease 2019 (COVID-19), originating from severe acute 

respiratory syndrome coronavirus 2 (SARS-COV-2) infection, had been a public health emergency of 

international concern [1]. The outbreak of COVID-19 had a terrible impact on the economy and society 

all around the world. Globally there had been 71,554,018 confirmed cases and 1,613,671 deaths as of 

December 20, 2020 [2]. The presence of the disease was confirmed by reverse-transcription 

polymerase chain reaction (RT-PCR) [3]. There was, however, evidence that the sensitivity of RT-PCR 

may not be optimal for the objective of very early detection and early intervention of COVID-19 

patients [4]. Due to the limited supply of RT-PCR kits, the lengthy turnaround times, and the 

emergence of false-negative cases, some experts propose to diagnose suspected cases using the 

widely available, time-saving, and non-invasive imaging approach of chest computed tomography (CT) 

rather than RT-PCR [5,6]. CT can capture imaging features from the lung, associated with COVID-19 

[7], in the early stages of the disease [8]; CT could thus serve as an efficient and effective way to flag, 

diagnose, and possibly triage COVID-19 patients, in a more timely manner compared to traditional 

confirmation tests. Despite these advantages, there are several open questions on the use of CT for 

these purposes [9,10], due to increased radiation exposure of the population and the risk of cross-

infection if disinfection is not properly implemented.  Notwithstanding these concerns, the use of 

chest CT for COVID-19 diagnosis needs a proper toolset, to allow clinicians to exploit fully this 

technology. In the medical imaging domain, Artificial intelligence (AI) coupled with machine learning 

technology has accomplished impressive results due to the intrinsic properties of machine vision [11–

14] and can be leveraged in this scenario. More so, the radiomics approach which was already proved 

to be extremely successful for cancer diagnosis and prognosis [15] might be also applied in this 

context. Radiomics is the high-throughput mining of quantitative image features from standard-

of‑care medical imaging that enables data to be extracted and applied within clinical decision support 

systems to improve diagnostic, prognostic, and/or predictive accuracy [16]. Conceptually, radiomics is 

a bridge between imaging and precision medicine [17].  

 

In this study, we hypothesize that a fully automated solution comprising an AI-based segmentation 

model to segment whole lungs from the CT and the radiomic analysis of features extracted from the 

segmented lung region can identify a diagnostic signature for COVID-19 infection, based on standard-

of-care chest CT imaging. As a result, we present a fully automated AI framework to detect COVID-19 

using chest CT, referred to as COVIA (‘coronavirus intelligence artificielle’), and validate its 

performance in an independent test cohort. This model has been built in a clinical real-life 

environment, the first Belgian wave of COVID-19 infection. This was mainly used for symptomatic 

patients with the European standard of care. Contrary to what is seen in other countries, we used CT 

scans from all patients reducing the bias found in some studies where clinicians reserved CT only for 

severe cases. 

2 MATERIALS AND METHODS  

2.1 ETHICS  
The study has been approved by the local ethics committee of the CHU-Liège (EC number 

116/2020). The institutional review board waived the requirement to obtain written informed consent 
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for this retrospective case series since all analyses were performed on de-identified (i.e., pseudo-

anonymized) data and there was no potential risk to patients. 

2.2 SUBJECTS 
Three cohorts of patients were included retrospectively in this study. Cohorts came from two 

sites (CHU Sart-Tilman and CHU Notre Dame des Bruyères) in Liège, Belgium. The first cohort (label: 

COVID) consists of all patients with COVID-19 infection confirmed by RT-PCR that underwent chest CT 

imaging before March 28th, 2020. The second cohort (label: Control) consisted of consecutive patients 

that underwent chest CT imaging between October 1st, 2019, and October 24th, 2019, which ensures 

that none of these patients were infected by COVID-19. The third cohort (label: Test) consisted of 697 

consecutive patients that underwent chest CT imaging between August 12th, 2019, and April 6th, 2020. 

The Test cohort presents no overlap with COVID and Control cohorts and was acquired at a different 

time point. Within this cohort, 197 patients had RT-PCR confirmed COVID-19, whereas the remaining 

500 patients tested negative for COVID-19. The first (COVID) and second (Control) cohorts were used 

for model development, and the third cohort (Test) was used as an independent test set. No other 

inclusion or exclusion criteria were considered while collecting the data. This resulted in sets of CT 

images from either COVID-19 infected patients or non-infected patients (normal and with a variety of 

diseases) representing real-life conditions. 

2.3 RADIOMICS 
The hypothesis is that quantitative analysis of medical image data via automatic or semi-

automatic software can provide more and better information than that of a physician [18,19]. The 

schematic representation in Figure. 2.1 depicts the radiomics workflow applied in this study. The 

following sections will detail each step in the workflow. 

 
 

Figure 2.1 Schematic representation of the radiomics analysis steps: Imaging: Chest CT scans of healthy and 

COVID-19 infected patients were collected and divided between training and testing cohorts. Segment: The scan 

were automatically segmented to delineate the region of interest in the lung. Feature extraction: Hand-crafted 

radiomics features were extracted from the region of interest. The radiomics features were used to train the AI 

model and the performances were validated in the test set. Actionable insight: The model discrimination 

performances were assessed in terms of accuracy, sensitivity, specificity, NPV, and PPV. 
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2.4 IMAGING 
All CT images used in the study were acquired on one of five multidetector CT scanners (Siemens 

Edge Plus (2), GE Revolution CT (1), and GE Brightspeed (2)) available at the sites. Since CT images 

were collected retrospectively, no standardized scan protocol was available over the complete 

dataset. To prevent excess variability in the imaging used for model generation, the following criteria 

for radiomic analysis were used: 

• Lungs completely visible in the scan 

• Slice increment less than 1.5 mm 

• No missing slices 

• For GE scans: STANDARD reconstruction kernel 

• For Siemens scans: B30-range reconstruction intervals 

2.5 LUNG SEGMENTATION 

The lungs were segmented as a single structure using an AI model based on a 2D Feature Pyramid 

Network [20] adapted with ResNext blocks [21] in the encoder. The model was trained and validated 

on the following datasets, 

1) Publicly available dataset with 888 CT scans and the corresponding reference annotations for 

lungs available from the LUNA16 challenge [22] 

2) Publicly available data from the cancer imaging archive [23] containing CT scans of 422 

confirmed non-small cell lung cancer cases, along with manual segmentations of the left and 

right lungs. The segmentations were performed by an experienced radiologist and these 

segmentations were used as a reference standard. 

The network was trained with the 2D axial slices clipped at a window width of 1500 HU and a window 

level of –600 HU and with their corresponding reference labels. The network’s weights were updated 

by using the Adam optimizer at an initial learning rate of 1e-5 [24]. The model was trained using 

customized Jaccard loss [25] as an objective function where the loss is calculated in a mini-batch of 8 

images per iteration. The network was trained for 5 epochs and at the end of each epoch, the Jaccard 

loss was calculated on the model’s predictions to ensure validation loss convergence. 

The deep learning-based lung segmentation achieved a mean Dice similarity coefficient score of 0.92 

across the publicly available datasets which indicate adequate precision (i.e. no significant over or 

under segmentation). The predicted segmentations by the AI model were used for the extraction of 

radiomics features. Figure 2.2 shows example segmentations for four patients from both the COVID 

and Control groups.  
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Figure 2.2 Axial and coronal slices with accompanying segmentation masks. A) Typical aspect of COVID-19 

pneumonia characterized by bilateral multilobe ground-glass opacities of peripheral/subpleural distribution, 

with intralesional reticulations, presenting a “crazy paving” aspect. Also found are subpleural atelectasis and 

retraction bronchiectasis, typical of organizing pneumonia; B) Atypical aspect of COVID-19 pneumonia, with 

posterior right lower lobe condensation and retraction of the ipsilateral diaphragm. Central and peripherical 

ground-glass opacities in the right lower lobe, right upper lobe, and left upper lobe; C) Typical chronic obstructive 

pulmonary disease COPD chest CT characterized by severe centrilobular and para-septal emphysema, associated 

with cylindrical bronchiectasis and bronchial walls thickening. Right peripherical upper lobe tree in bud pattern 

seen in bronchiolitis. Middle lobe crescent-shaped atelectasis condensation; D) Normal chest CT. 

2.6 FEATURE EXTRACTION  
For each patient, 166 image features were extracted from the lung segmentation 

using RadiomiX (OncoRadiomics SA, Liège, Belgium) based upon quantitative image analysis 

technology. The extracted features comprised first order and intensity histogram statistics, texture 

(gray-level-co-occurrence, gray-level-run-length, gray-level-size-zone, gray-level-distance-

zone, neighborhood gray-tone difference, and neighboring gray-level dependence matrix-based 

features), and shape. A bin width of 25 Hounsfield units was used for image intensity 

discretization.  No further image pre-processing was performed. The mathematical descriptions of 

all features are reported in [17]. 

2.7 MODELING  
For model development, multivariable logistic regression with Elastic Net regularization was 

performed in the training data set. Highly correlated features, features with near zero variance, and 

linear combinations between features were first eliminated from further analysis. For each highly 
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correlated feature pair (Pearson correlation coefficient ρ > 0.9), the variable with the largest mean 

absolute correlation with all remaining features was removed. Model training was performed using 

100 times repeated 10-fold cross-validation to select the optimal model hyperparameters, optimizing 

for AUC. All features were standardized before modeling. To further reduce the chance of overfitting 

on the training data, we selected the simplest candidate model (i.e., the model with the fewest non-

zero coefficients) within one standard error of the best-performing model. Model performance was 

validated in the test data set. Here, the AUC was used to assess model performance in discriminating 

between COVID-19 positive and COVID-19 negative patients. Additionally, a hard classification was 

performed (i.e., classifying patients as either COVID-19 positive or negative) by applying different 

decision thresholds on the continuous scores (probabilities) predicted by the model on the test data 

set. Classification performance was then assessed by determining accuracy, sensitivity, specificity, 

NPV, and PPV for each decision threshold, assuming a disease prevalence of 15%. All statistical analysis 

was performed in R (version 3.6.2). 

3 RESULTS 

3.1 STUDY POPULATION  
Table 2.1 lists the study population characteristics for the model development data (the COVID 

and Control cohorts), and the independent test dataset (the Test cohort), as well as the main CT 

findings as scored by radiologists. For the model development data, the COVID-19 positive and control 

patients have a similar mean age and male/female distribution. Of the COVID-19-infected patients, 

69% needed O2 at admission, resulting in 37% of patients ending up in the ICU. 17% of COVID-19 

patients needed mechanical ventilation and 4% died. The comorbidity summary for the COVID-19 

patients is presented in Table 2.2 For the independent test data set, the COVID-19 positive and control 

patients have a similar mean age and male/female distribution and 41% of the COVID-19 patients 

were admitted to the ICU.  

Table 2.1 Summary of patient characteristics (age, gender, and CT findings scored by radiologist) per cohort. 

 Training set (n=1381) Independent validation set (n=697) 

 CONTROL (n=1200) COVID (n=181) CONTROL (n=500) COVID (n=197) 

Age (years) 63.8±14.4 64.4±15.8 64.2±14.0 69.1±13.3 

Gender (% Male) 52 56 51 56 

Normal (%) 33 4.41 25.2 25 

Neoplasia (%) 8.73 0 0 0 

CAP (%) 12.50 8.10 6.6 8.6 

COPD (%) 26 19.33 33.4 11.7 

Isolated pleurisy (%) 6.2 1.10 4.2 4 

Pulmonary embolism 

(%) 
0.77 1.10 0 0 

Nodule (%) 19 6.62 17.2 6.6 

Chronic 

inflammation (%) 
8.48 5.52 13.6 3 

Pneumothorax (%) 0.68 0 0.6 0 

Isolated atelectasis 

(%) 
3.68 3.31 5.4 1.0 
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Table 2.2 Baseline characteristics of the COVID-19 patients used for model training 

Comorbidity  COVID training set (n=181) 

Neoplasia (%) 23.7 

Acute Respiratory Failure (%) 26.7 

Cardiac disorder (%) 15.9 

Hypertension (%) 6.8 

Diabetes (%) 4.7 

Chronic renal failure (%) 1.8 

Obesity (%) 0 

 

3.2 DATA CURATION 
After an automated quality check on the inclusion criteria, CT images and lung segmentations for 

a total number of 1224 patients for model development and 641 patients for independent model 

testing were included for further processing. A flow chart describing the overall workflow from data 

collection to model training and testing is shown in Figure 2.3. 

 

 
Figure 2.3 Flow diagram: Training and validation data was collected, and the COVID and Control cohorts were 

combined. Lungs were segmented from both the training and validations datasets respectively, and radiomics 

features were extracted.  The independent validation data was used to test the performance of COVIA with 

unseen patient CTs. 
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3.3 COVID-19 INFECTION STATUS PREDICTION 
The final prediction model included 45 radiomics features with a non-zero regression coefficient. 

Included features and their importance, in terms of the absolute regression coefficient, are shown in 

Figure 2.4A while the ROC curve for the independent test data set is shown in the Figure. 2.4B. The 

corresponding AUC value for discriminating between COVID-19 positive and negative cases is 0.882 

(95% CI: 0.851-0.913). Assuming a disease prevalence of 15%, the classification performance in the 

test dataset, in terms of accuracy, sensitivity, specificity, NPV, and PPV for different decision 

thresholds is shown in Figure 2.5. For example, a threshold of 0.11 corresponds to the optimal decision 

threshold in terms of the Youden Index, when considering the cost of false negatives twice as high as 

the cost of false positives. This particular decision threshold results in an accuracy of 85.18%, a 

sensitivity of 69.52, a specificity of 91.63%, an NPV of 94.46%, and a PPV of 59.44% for COVID-19 

classification. Figure 2.6 depicts a chest CT of a typical COVID-19 positive patient (Figure. 2.6 A), and a 

normal chest CT (Figure. 2.6 B) alongside their corresponding heat-maps extracted from an end-to-

end conventional black-box AI-based model trained to screen COVID. The heatmaps were obtained 

from a conventional CNN model based on VGG16 architecture trained to classify COVID from other CT 

images. A technique called Gradient-based localization [26] was used to obtain the heatmaps which 

explain the model’s decision to classify the image in Figure 2.6 A as a COVID case. 
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Figure 2.4 A) Features with a non-zero regression coefficient in the model and their importance, based on their 

absolute regression coefficient, and scaled between 0 and 100; B) ROC plot illustrating the performance (black 

curve) of the AI framework to discriminate between COVID-19 positive and negative cases in the independent 

test data set with an AUC of 0.882 (95% CI: 0.851-0.913). 
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Figure 2.5 Classification performance plot. The classification performance in the test dataset, assuming a disease 

prevalence of 15%, in terms of accuracy (red line), sensitivity (blue line), specificity (green line), NPV (orange 

line), and PPV (purple line) for different decision thresholds. 

 

Table 2.3 lists the values of the top 5 radiomics features and model scores (SCORE) of cases depicted 

in Figures 2.6 A and B. The top 5 features are a measure of texture complexity, quantifying non-

uniformity and sudden changes in intensity values within the region of interest (NGTDM_Complexity; 

Neighborhood gray-tone difference matrix, Complexity); a texture measure of the correlation of the 

grey-level co-occurrence matrix (GLCM_MaxCorr; grey level co-occurrence matrix, maximal 

correlation coefficient); a texture measure emphasizing larger distances to the edge of the region of 

interest of connected voxels of similar intensity value (GLDZM_LDE; grey level distance zone matrix, 

Large distance emphasis); the median image intensity in the lungs (Stats_Median; First order statistics, 

Median);  a measure of texture strength, quantifying how definable or visible the texture is within the 

image (NGTDM_Strength; Neighborhood gray-tone difference matrix, Strength). Figure 2.6 C-G report 

the box plots for the distribution of features among the COVID and non-COVID group.  

Table 2.3 Top 5 radiomics features and model scores of cases depicted in Figure 2.6. 

 Normal chest CT COVID-19 positive 

NGTDM_Complexity 7794.055 1147.344 

GLCM_MaxCorr 0.8684842 0.9147317 

GLDZM_LDE 143.07153 57.53219 

Stats_Median -839 -755 

NGTDM_Strength 0.033166649 0.008062981 

SCORE 0.01119137 0.765581 
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Figure 2.6 Chest CTs of a typical COVID-19 positive patient (A: original scan – left; heat-map - right) with evident 

reticulation, ground glass opacities, and condensations compared to a healthy patient CT scan (B: original scan 

– left;  heat-map - right). Heat maps underline the more relevant areas for model prediction. Box plots comparing 

the distribution of the top 5 features among COVID and non-COVID cases (C – NGTDM_Complexity; D – 

GLCM_MaxCorr; E – NGTDM_Strenght; F – GLDZM_LDE; G – Stats_Median). 



 

34 
 

4 DISCUSSION 

RT-PCR was considered the gold standard for COVID-19 identification However, there were 

reports of false negatives occurring which were eventually confirmed as true-positive by repeated 

swab tests [27]. False negatives could be a significant problem in high-throughput settings operating 

under severe pressure [28]. The correct operation of the test was crucial and there was ambiguity 

concerning the kinetics of SARS-CoV-2 viral shedding, thus the timing of the test could very well dictate 

the result. Furthermore, it was also unclear what kind of clinical sample was most appropriate as 

nasopharyngeal swabs might offer greater consistency than sputum samples [29]. When considering 

the limited supply of RT-PCR kits, the growing backlog, and the likely increasing pressure and 

turnaround times in laboratories along with the issues of false negatives, prompted the experts to 

suggest that diagnosing suspected cases using the widely available, time-saving, and non-invasive 

imaging approach of chest CT was justified. This approach proved useful sensitively and specifically in 

identifying COVID-19 patients [30]. We have shown that our model was able to achieve a high NPV 

(94.46 %), which provided further justification for using CT imaging-based diagnosis as a primary tool 

for COVID-19 patient management. 

Whereas similar studies in COVID-19 focus mainly on the detection of various diseased regions 

(including ground-glass opacification, consolidation, bilateral involvement, and peripheral and diffuse 

distribution amongst others) in the lung [31,32] [33], our approach performs an easy segmentation of 

the lungs as one single structure, which is by far an easier task to automate with AI. Features for 

quantitative image analysis are extracted from this whole lung structure and subsequently used for 

prediction model application and COVID-19 infection status classification. In the end, this constituted 

a fully automated clinical decision support tool for the diagnosis of COVID-19, which was able to 

provide an objective, robust (i.e., no user variability), and easy-to-interpret classification (yes-no) of 

COVID-19 infection status. The complete workflow took between 40-60s, providing a rapid and 

accurate diagnosis in patients with suspicion of COVID-19 infection, and facilitating the timely 

implementation of isolation procedures and early intervention.  

We developed a machine learning model that was able to discriminate between COVID-19 

positive and negative patients, and which was trained and validated using a regularized logistic 

regression model. Elastic net logistic regression has been used, for its relatively straightforward 

interpretation of linear models and its demonstrated discriminative performance [32]. The continuous 

prediction scores of the model can be utilized for binary classification of patients (COVID-19 infected 

or not). Given this continuous output of the underlying model, it is possible to optimize the decision 

threshold used for hard classification based on more appropriate prevalence and costs of 

misclassification, which may vary, for instance, per geographic area. Although this study focuses solely 

on using image data for COVID-19 diagnosis, it is possible to imagine that, combining the model’s 

continuous score with other clinical data, an even more accurate determination of the overall 

probability of diagnosis could be achieved.  

We plan to test the capability of the AI algorithm in the diagnosing of COVID-19 against that 

of radiologists in a virtual clinical trial setting.  This aspect is vital in the context of incidental findings, 

which is of increasing relevance [33]. An automated AI solution could help assist the accurate 

identification of potentially COVID-19-positive patients, alerting the radiologist who must prioritize 

the reading of this examination and the radiology department that a ‘clean machine’ now requires 

decontamination.      
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A general objection to AI methods is the lack of transparency and interpretability. This is not the 

case with our approach, as 'handcrafted' radiomics features are explicitly defined and linked to 

specified regions of interest within the images, driving the decision of the algorithm. Thus, clearly and 

intelligibly quantifying the imaging phenotype, has also been shown to provide a means of connecting 

to the underlying biology [34]. The interpretability of an AI-based classifier’s decision is limited to 

highlighting image regions contributing to the decision, which allows only for qualitative 

interpretation (i.e., human/expert interpretation of these image regions). Our model proves to be 

more interpretable and explainable as the (top) features are associated with clearly pre-defined 

regions of interest and their values can be directly compared between different patients, as well as 

further interpreted based on their unambiguous mathematical definitions. For instance, the features 

listed in Table 2.3 clearly show the difference in values between normal and COVID patients' CTs. 

Hence, those features quantify a radiomics phenotype linked to the bilateral multilobe ground-glass 

opacities of peripheral/subpleural distribution, with intralesional reticulations seen on this typical 

COVID-19-positive chest CT. 

Given the rapid development of serum-based tests for COVID-19, a critical contextualization is 

important. Serum analysis is dependent on logistics and takes a relatively long time to deliver results 

when compared with AI (near instantaneous). In the best case scenario serum takes hours and in the 

worst case several days [28]. Furthermore, serum analysis is practically limited to large centers with 

advanced biotechnology capabilities in developed countries (small centers have increased logistical 

challenges). In the case of an emergency procedure (e.g., surgery), the probable COVID-19 status of 

the patient must be immediately addressed to safeguard the hospital concerning transmission. 

Considering beyond the current pandemic phase that we are in, serum analysis offers little value in 

the way of incidental findings as clinicians will be less proactive in ordering a test to determine COVID-

19 infection. Concerning RT-PCR detection [35], the positive rate of the 2019-nCoV nucleic acid test 

on the nasopharyngeal swab is 38% (180/472 times), and the positive rate of the 2019-nCoV nucleic 

acid test on sputum is 49% (148/304 times), the positive rate of blood 2019-nCoV nucleic acid test is 

3% (4/132 times), and the positive rate of 2019-nCoV nucleic acid test of feces is 10% (24/244 times). 

The positive rate of 2019-nCoV nucleic acid detection in anal swabs is 10% (12/120 times). A meta-

analysis [36] showed, the pooled sensitivity was 94% (95% CI: 91%, 96%) for chest CT and 89% (95% 

CI: 81%, 94%) for RT-PCR. The pooled specificity was 37% (95% CI: 26%, 50%) for chest CT. The 

prevalence of COVID-19 outside China ranged from 1% to 23%. The PPV ranged from 2% to 31%, and 

the NPV ranged from 95% to 100%. COVIA was tested against an assumed prevalence 

of 15% and the classification results indicate competitive performance.   

In the last months, the literature about AI-assisted diagnosis and classification of COVID-19 

infection has boomed like never seen before [37,38]. Many relevant papers have been published, 

reporting multicentric validation studies with remarkable performances [39–41], along with a new 

insight into the clinical aspect of CT scan COVID-19 characteristics [42]. In this fast-evolving field, 

where much innovation goes along sometimes with overly enthusiastic reports [43], our method has 

several advantages over other reported AI-based diagnostic tools: first of all the automatic 

segmentation of the whole lung does not require human input, speeding up the process and 

unburdening medical staff. More important, however, is the use of robust and validated radiomics 

features, compared to other parameters used in other approaches like consolidation and ground-glass 

opacity alone [44–46] which are not specific for the disease [9].  

Compared to other radiomics signatures published in the last months [47,48], our signature was 

trained and tested on a wider dataset, acquired at different time points, to account for the small 
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variability that might be present in scan acquisition at different dates. This is considered a more 

reliable strategy [49] as it closely mimics what happens in a real-world clinical scenario. The robust 

testing strategy of the model, coupled with the interpretability of the radiomics features, assures the 

reliability of the proposed model. 

 It is worth pointing out, however, that the study has still some limitations. Firstly, COVID-19 is 

caused by SARS-CoV-2 and may have similar imaging characteristics as pneumonia caused by other 

types of viruses. However, due to the lack of laboratory confirmation of the etiology for each of these 

cases, we were not able to select other viral pneumonias for comparison in this study. Although our 

Control group of non-COVID-19 patients contains several patients (see CAP in Table 2.1, 12.5%) with 

pneumonia (either viral, bacterial, or pneumonia from any other cause), it would be desirable to test 

the performance of our algorithm in distinguishing COVID-19 from other viral pneumonias that have 

RT-PCR confirmation methods for the viral agent.  

Also, the population of patients with COVID-19 was selected after clinical evaluation of patients 

with respiratory symptoms such as dyspnea and desaturation. The degree of severity justified the fact 

that imaging analysis was left to clinical judgment and depending on local resources [50]. Therefore, 

COVIA was partially developed in a population of patients with disease at the moderate to severe end 

of the spectrum. Further analysis into the benefit, if any, of COVIA for patients with mild or no 

symptoms is required. 

Future work is planned to collect additional chest CTs to externally validate the performance of 

our algorithm in an international multi-center prospective external validation to produce evidence 

level 1 [36] for the clinical utility of COVIA. The study protocol is in development and will be registered 

on clinicaltrials.gov. 

Ultimately, this study was focused on diagnosis whereas prognosis on the future disease 

trajectory is an even more urgent unmet clinical need that would enable improved resource 

management (including management decisions regarding the allocation of resources). This is the next 

step for our collaborative research. 

5 CONCLUSIONS 

Benchmarked against RT-PCR confirmed cases of COVID-19, our AI framework constituting a 

combination of the Lung segmentation model and Radiomic feature analysis model can accurately 

detect COVID-19. Thus, it provides rapid accurate diagnosis in patients suspected of COVID-19 

infection, facilitating the timely implementation of isolation procedures and early intervention. The 

proposed model, trained on a diverse and robust dataset, showed good performance (AUC of 0.882) 

with the added value of being explainable, linking the radiomics results with real clinical evidence, like 

lung abnormalities (ground glass opacities, consolidations, and others). This approach will be extended 

and improved, including the distinction between different types of pneumonia, streamlining the 

staging and therapy planning of patients. A further improvement could comprise the creation of a 

prognostic model along with the diagnostic one, to assess the severity of newly admitted patients and 

the probability of developing serious symptoms or admission to the ICU. 
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to classify COVID-19 and other pneumonias on chest CT, ERJ open research vol. 8,2 00579-2021. 3 May. 2022, 

doi:10.1183/23120541.00579-2021 

In this chapter, we propose an Artificial Intelligence framework based on a 3D Convolutional Neural 

Network (CNN) to classify CT scans of patients with COVID-19, Influenza/CAP, and no-infection, after 

automatic segmentation of the lungs and lung abnormalities. The AI classification model is based on 

inflated 3D Inception architecture and was trained and validated on retrospective data of CT images 

of 667 adult patients (No infection: 188, COVID-19: 230, Influenza/CAP: 249) and 210 adult patients 

(No infection: 70, COVID-19: 70, Influenza/CAP: 70), respectively. The model’s performance was 

independently evaluated on an internal test set of 273 adult patients (No infection: 55, COVID-19: 94, 

Influenza/CAP: 124) and an external validation set coming from a different center (305 adult patients, 

COVID-19: 169, No infection: 76, Influenza/CAP: 60). The model showed excellent performance in the 

external validation set with an AUC of 0.90, 0.92 and 0.92 for COVID-19, Influenza/CAP and No 

infection respectively. The selection of the input slices based on automatic segmentation of the 

abnormalities in the lung reduces the analysis time (56 seconds per scan) and computational burden 

of the model. The TRIPOD score of the proposed model is 47% (15 out of 32 TRIPOD items). This AI 

solution provides rapid and accurate diagnosis in patients suspected of COVID-19 infection and 

influenza, facilitating the timely implementation of isolation procedures and early intervention. 
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1 BACKGROUND 

Imaging with computed tomography (CT) plays a central role in the diagnosis of respiratory 

diseases [1,2]. After the outbreak of COVID-19 in 2020, more emphasis has been given to the different 

types of pneumonias and the distinctive features of COVID-19 from all others [3,4]. Viral pneumonias, 

either COVID-19 or others, can all present with reticulation, Ground Glass Opacities (GGO), and 

consolidations at chest CT scan, creating a challenge for radiologists in their routine differential 

diagnosis. Previous studies on the performance of radiologists in discriminating between COVID-19 

and other pneumonias on chest CT scans have shown high variability in both sensitivity (73%-94%) 

and specificity (24%-100%), with on average high sensitivity and moderate specificity [5]. This 

variability of interpretation of CT findings of pneumonia still creates a routine challenge for clinicians 

in their differential diagnosis, which is key to properly treating the patients and preventing infection 

spread during pandemics and in the next future.  

In this context, the development of innovative artificial intelligence (AI) imaging solutions to 

support radiologists in swift and precise differential diagnosis would be of invaluable help. 

Convolutional Neural Networks (CNN) have shown great potential in detection, segmentation, and 

classification tasks in radiological images [6]. A recent study demonstrated the application of CNN for 

the differentiation among Influenza, COVID-19, and no-infection, on chest CT scans with an overall 

accuracy of 86.7%. The proposed method incorporated training on image patches extracted from CT 

volumes where each image patch required manual labeling as “pneumonia” or “irrelevant 

information” [7]. Another study compared the performance of different AI models in classifying 

COVID-19 from other atypical and viral pneumonias, showing 99.5% accuracy in classifying COVID-19 

[8]. However, these approaches involve all manual detection (i.e. drawing boxes around the lesions), 

labeling of the lesions in all the slices, and training the models on the patches of detected lesions and 

manual labels. The time required to perform these manual operations is usually not considered when 

addressing the real-world application of these models and represents probably one of the major 

hurdles to widespread clinical adoption.  

A fully automatic tool running on chest CT images for the differential diagnosis of pneumonias 

can represent an important step forward for decreasing the variability of interpretation among 

clinicians and for a faster diagnostic process. This will unburden medical staff and in turn provide a 

better and faster diagnosis for patients, reducing the use of hospital resources. Better allocation of 

both material and human resources can be essential in a time of crisis as the COVID-19 pandemic 

demonstrated with dramatic clarity [9]. To attain this goal, we developed and externally validated a 

fully automated deep learning framework with a 3D CNN, able to classify chest CT scans of patients 

with COVID-19, Influenza/CAP, or no infection without manual intervention. Individual AI-based whole 

lung and lung abnormalities segmentation models were used to pre-process the CT images to train 

the 3D CNN model and are an integral part of the workflow to assure that only the patients presenting 

abnormalities in the lung volume are processed by the model, saving time and computational power.  

2 MATERIAL AND METHODS 

The study was approved by the local ethics committee of the CHU-Liège (EC number 116/2020). 

The institutional review board waived the requirement to obtain written informed consent for this 
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retrospective case series since all analyses were performed on de-identified (i.e., anonymized) data 

and there was no potential risk to patients. 

2.1 SUBJECTS 
Three cohorts of patients were included retrospectively in this study for model training, 

validation, and testing. Cohorts came from two University Hospitals (CHU Sart-Tilman and CHU Notre 

Dame des Bruyères) in Liège, Belgium. The first cohort (label: COVID-19) consisted of all patients with 

COVID-19 infection confirmed by RT-PCR that underwent chest CT imaging before March 28th, 2020. 

The second cohort (label: Influenza/CAP) consisted of patients with influenza, parainfluenza, or 

community-acquired pneumonia (CAP) infection confirmed by RT-PCR or positive antigen testing that 

underwent chest CT imaging between March 2014 and March 2020. The third cohort (label: “No 

infection”) consisted of consecutive patients that underwent chest CT imaging during October 2019, 

with confirmed no infection in the lungs disregarding any other lung disease. The three cohorts were 

pooled together and randomly split between training, validation, and testing set (see Figure. 3.1). 

Additionally, the open source dataset COVID-CT-MD was used as an external validation set [10]. The 

final population consisted of 169 RT-PCR confirmed positive COVID-19 cases (from February 2020 to 

April 2020), 60 Community-Acquired Pneumonia (CAP) cases (from April 2018 to November 2019), 

and 76 No Infection cases (from January 2019 to May 2020): all the patients were treated at Babak 

Imaging Center in Tehran, Iran, and labeled by three experienced radiologists.  

 

Figure 3.1 Flow chart of patient cohorts division 

2.2 IMAGING SCANS 
In this retrospective study, CT scans of the three cohorts of patients included were acquired 

from different scanners (Siemens and GE) with diverse reconstruction kernels (soft and sharp). In case 

of the presence of more than one series per case, all the available series were used in training the 

model (as the reconstruction kernel corresponding to the series was considered as a form of image 

augmentation). The slice thickness of the scans ranged between 0.5 mm and 2 mm while pixel spacing 

was between 1 and 2.5 mm. A complete summary of the imaging parameters of both the training and 

external validation set is reported in Table 3.1. 
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Table 3.1 Summary of imaging parameters for the training and external validation datasets 

  Training set External validation set 

Manufacturer     

SIEMENES   60 % 100 % 

GE MEDICAL SYSTEM  40 % - 

PHILIPS < 1 % - 

Kernel     

B30f  - 7 % 

B41s - 45 % 

D40s - 48 % 

B30s 2 % - 

Br32f 17 % - 

Br59f 12 % - 

Tr20f 13 % - 

LUNG 11 % - 

STANDARD 31 % - 

Others 14 % - 

Pixel spacing (mm)     

< 0.5  1 % - 

0.5 to 0.6  7 % 11 % 

0.6 to 0.7 21 % 48 % 

0.7 to 0.8 16 % 38 % 

> 0.8 55 % 3 % 

Slice thickness (mm)     

2 100 % 100 % 

 

2.3 LUNG ABNORMALITIES SEGMENTATION  
The segmentation model is based on 2D U-Net combined with Res Next as encoder and deep 

supervision and was trained on axial unenhanced chest CT scans of 199 COVID-19 patients coming 

from three different centers in three different countries [11]. The model’s performance was evaluated 

on an external test set of 50 COVID-19 patients coming from several different centers in Moscow, 

Russia [12]. All datasets are open source, and freely available online. An automatic in-house lung 

segmentation model (see above 1 Lung segmentation) was used to crop the lung region from the CT 

volumes. Axial slices with no segmented lung regions were removed from the volumes. Different sets 

of 48 consecutive axial slices with an overlap of 10 slices between one set and the other (extracted 

from the whole volume) were used to train the model.  Each set contains at least one slice with lung 

abnormalities. Each data point containing the consecutive axial slices was pre-processed in the 

following ways to obtain a three-channel input to the model:   

- The first channel contains slices with intensities clipped at lung window level settings (W:1500 

HU, L:-600 HU) with lungs and the abnormalities cropped. 

- The second channel contains the slices with original intensities with lungs and abnormalities 

cropped.  

- The third channel contains slices with intensities clipped at Mediastinal window level settings 

(W:350 HU, L:50 HU) with the region containing the lungs cropped. A rectangular crop was 

obtained with x_min = minimum x value for which lungs or lung abnormalities pixels are 
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present, x_max = maximum x value for which lungs or lung abnormalities pixels are present, 

and y_min = minimum x value for which lungs or lung abnormalities pixels are present, y_max 

= maximum y value for which lungs or lung abnormalities pixels are present.  

The automatic deep learning segmentation algorithm achieved good performances (mean DSC 0.6 ± 

0.1) on the external test set. 

2.4 IMAGE PRE-PROCESSING 
The prevalence of COVID-19 cases in the three datasets was adjusted to avoid class imbalance 

and bias in classification [13]. COVID-19 cases represented between 35 and 45% of the whole cohort 

for each dataset. A fully automated lung segmentation model (see Chapter 1) was used to filter out 

the slices not containing lungs from the CT scan series. The presence of abnormalities in each filtered 

slice was confirmed using the lung abnormalities segmentation model. If no abnormalities were 

present in the filtered slices, the scan was discarded from model processing. Different sets of 48 

consecutive axial slices with an overlap of 10 slices between one set and the other (extracted from the 

whole volume with axial slices containing lungs) were obtained, while each set including at least one 

slice containing abnormalities in the lung was used to train the model. The workflow for the pre-

processing protocol is depicted in Figure. 3.2. The entirety of datasets provided by clinicians were used 

in the model training and validations, without any prior scan quality selection 

 

Figure 3.2 Scheme of the pre-processing workflow applied 

Each data point containing the 48 consecutive axial slices was processed in three different ways to 

obtain a three-channel input for the model:  

- The first channel (Channel 1) contained slices with intensities clipped at Lung window level 

settings (W:1500 HU, L:-600 HU) with lungs and the abnormalities cropped. 

- The second channel (Channel 2) contained the slices with the original intensities of lungs along 

with the abnormalities cropped. 

- The third channel (Channel 3) contained slices with intensities clipped at Mediastinal window 

level settings (W:350 HU, L:50 HU) within the region containing the cropped lungs, for which 
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the bounding rectangular crop within which lungs or lung abnormalities pixels are present was 

obtained. This operation was performed to better assess pleural effusion [14].  

Finally, the slices were center cropped to a slice size of 448 by 448 pixels. An example of the resulting 

lung and abnormalities segmentation is reported for Influenza/CAP (Figure. 3.3)  COVID-19 (Figure. 

3.4) and No infection (Figure. 3.5) patients. 

 

Figure 3.3 Lungs plus abnormalities segmentation on a slice from an Influenza/CAP patient. A) Original axial slice 

from a case with Influenza/CAP label; B) Lung segmentation obtained on the same slice; C) Ground Glass 

Opacities segmented by the lung abnormalities model. Three channel input obtained from the same slice, D) 

Channel 1; E) Channel 2; F) Channel 3. 
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Figure 3.4 Lungs plus abnormalities segmentation on a slice from a COVID-19 patient. A) Original axial slice from 

a case with COVID-19 label; B) Lung segmentation obtained on the same slice; C) Ground Glass Opacities 

segmented by the lung abnormalities model. Three channel input obtained from the same slice, D) Channel 1; 

E) Channel 2; F) Channel 3. 

 

Figure 3.5 Lungs and abnormalities segmentation on a slice from a No Infection patient. A) Original axial slice 

from a case with No Infection label; B) Lung segmentation obtained on the same slice; C) Aspecific abnormalities 
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segmented by the lung abnormalities model; Three channel input obtained from the same slice, D) Channel 1; 

E) Channel 2; F) Channel 3 

2.5 3D CNN ARCHITECTURE  
An inflated 3D Inception model [15], pre-trained on the Kinetics dataset [16], was trained on 48 

consecutive axial slices as 3D input. Inflated 3D inception, also known as ‘Two-Stream Inflated 3D 

ConvNets’, is based on the Inception v1 architecture [17] and consists of inflated filters and pooling 

kernels into 3D, leading to very deep, naturally spatiotemporal classifiers. The model is trained for five 

epochs and early stopping was performed after the 5th epoch as the validation loss started to increase 

while the training loss decreased, using the categorical cross-entropy loss as an objective function at 

a batch size of 2. A batch size of 2 was preferred to fit GPU memory of 11 GB. The model was trained 

on 10,500 data points (which are different sets of 48 consecutive axial slices obtained from the image 

volume with an overlap of 10 slices between one set and the other) and validated on 6000 data points. 

The network weights were updated by using an Adam optimizer at a constant learning rate of 1e-4 

[18]. The model’s architecture is depicted in Figure. 3.6. 

 

Figure 3.6 3D CNN model network. Inception module architecture is based on the implementation described in 

[15]. Convolution blocks (red); Maxpooling blocks (green); Inception modules (orange); Average pooling layer 

(blue); Flatten layer (purple); Fully connected layers (yellow). 

2.6 MODEL’S PREDICTION 
The model’s predictions on the probability of each class were obtained on all 48 consecutive 

axial slices of the test datasets. The overall class and the overall class probability were computed: if 

more than 20 % of the predictions correspond to the class COVID-19, then the patient is assigned to 

that class. If the probabilities for the class Influenza/CAP are higher than 20% then the patient is 

assigned to the class Influenza/CAP. Otherwise, the scan is classified in the “No infection” class.  

2.7 PERFORMANCE METRICS 
Classification performances of the deep learning model in the internal testing set and external 

validation set are expressed in terms of Area under the Curve (AUC), Specificity, and Sensitivity. AUC, 

Sensitivity, and Specificity are calculated for each class by considering the respective class as positive 

and the rest of the classes as negative. For instance, the AUC of the class ‘influenza’ is calculated by 

considering the class influenza as positive and the class ‘no infection’ and ‘COVID-19’ as negatives.  All 

data elaborations were performed in Python (version: 3.6.5) with Keras API. The computation time 

was calculated on average per scan on the external test set for an RTX 2080 ti 11GB GPU. The model 
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was evaluated according to the Transparent Reporting of a multivariable prediction model for 

Individual Prognosis or Diagnosis (TRIPOD) [19] (see Appendix 3.1). 

2.8 CLINICAL SUMMARY REPORT 
The clinician is presented with an automatically generated report containing the results of the 

classification algorithm. The report presents basic patient data (Patients ID, Scan number, and Scan 

date) along with the diagnosis (No infection, Influenza/CAP, COVID-19) and the probability calculated 

by the model for each class. The reports also show the 48 consecutive slices with the corresponding 

lung and lung abnormalities segmentation masks used by the model to make the classification.  

3 RESULTS 

3.1 STUDY POPULATION 
Table 3.2 lists the study population characteristics for the COVID-19, Influenza/CAP, and no-

infection cohorts for the training, validation, internal testing, and external validation set. In the 

training set, for the COVID-19 patients, 69% needed O2 therapy at admission with 37% of patients 

being admitted to the ICU. 17% of COVID-19 patients needed mechanical ventilation and 4% died.   

Table 3.2 Study population characteristics 

 Training and 

validation set  

Internal test 

set  

External 

validation set  

Age (years) 

Gender (Female %) 

63.8 ± 14.44 

48 

64.4 ± 15.8 

44 

50.67 ± 5.87 

40 

Pixel Spacing (mm) 

Slice Thickness (mm) 

0.71 ± 0.10 

1.19 ± 0.61 

0.70 ± 0.07 

1.19 ± 0.59  

0.67 ± 0.07  

2 ± 0  

 

3.2 PERFORMANCE ON THE INTERNAL TEST SET 
Model performance is reported in Figure. 3.7. The ROC curves for each class (COVID-19, 

Influenza/CAP, and no Infection) are depicted in Figure. 3.7A. The performance for COVID-19 

classification in the internal test set has an AUC of 0.91 (Sensitivity: 87.90 %, Specificity: 88.01 %). 

Influenza/CAP and No infection classes present an AUC of 0.89 (Sensitivity: 82.97 %, Specificity: 88.79 

%) and 0.98 (Sensitivity: 78.18 %, Specificity: 97.72 %) respectively. The confusion matrix (Figure. 3.7B) 

reports the classification performances (i.e., predicted vs real values) for each class.  
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Figure 3.7 Confusion matrix (A) and ROC curve (B) for internal test set 

Table 3.3. Performance metrics results 

  AUC Sensitivity (%) Specificity (%) 

Int. Ext. Int. Ext. Int. Ext. 

No infection 0.98 0.92 78.18 84.21 97.72 92.59 

Influenza/CAP 0.89 0.92 82.97 78.57 88.79 89.44 

COVID-19 0.91 0.90 87.90 83.43 88.01 91.07 

 

3.3 PERFORMANCE ON THE EXTERNAL VALIDATION SET 
The lung abnormalities segmentation model identified 19 cases with no abnormalities in the 

external validation set. These scans were not processed by the DL architecture: performance metrics 

report in Figure. 3.8A and B are based on the 57 cases from the no infection class which presented 

abnormalities in the lung. Classification for COVID-19 class had an AUC of 0.90 (Sensitivity: 83.43%, 

Specificity: 91.07%) while Influenza/CAP presents an AUC of 0.92 (Sensitivity: 78.57 %, Specificity: 

89.44 %) and No infection with an AUC of 0.92 (Sensitivity: 84.21 %, Specificity: 92.59 %) (Figure. 3.8A). 

The confusion matrix on the external validation set is reported in Figure. 3.8B. 
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Figure 3.8 Confusion matrix (A) and ROC curve (B) for external test set 

The performance in the external validation set is in good agreement with the internal testing set. A 

summary of the performance metrics for both the internal test set and external validation set is 

presented in Table 3.3. The TRIPOD score of the proposed model is 47% (15 out of 32 TRIPOD items). 

The output of the classification workflow is also reported in the Clinical summary report. A sample 

report for Influenza/CAP and COVID-19 patients is presented in Figure. 3.9 and 3.10. 

 

 

Figure 3.9 Example of clinical summary report for Influenza/CAP patient. 
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Figure 3.10 Example of the clinical summary report for a COVID-19 patient. 

3.4 DISCUSSION 
We developed and validated a deep learning AI model for the classification of no-infection, 

COVID-19, or Influenza/CAP cases based upon CT imaging. The model showed a performance of AUC 

of 0.90, 0.92, and 0.92 for COVID-19, Influenza/CAP, and No Infection respectively in the external 

validation. The proposed workflow automatically segments and detects both lung and lung 

abnormalities, reducing the time and computational burden of the classification task. Moreover, the 

network produces an automatic clinical summary report, that can be used by the clinician to verify the 

model decision.  

The datasets used for this study come from different countries and different centers. The 

training cohort is from the University Hospital in Liege while the external validation set is from Babak 

Imaging Center in Tehran. The training dataset presents a certain homogeneity in imaging acquisition 

parameters, barring the use of different scanners at different centers. However, the validation data 

presents different characteristics as coming from a different country with a different standard of care 

and thus image acquisition protocols. This is an indication of the difference existing among the dataset 

and indirect proof of the generalizability of the performances of our model which attained good 

performances also in the external validation dataset. 

Several deep learning COVID-19 classification networks have been published thus far, both 2D 

[20] and 3D [21], also based on automatic segmentation of the lungs [22,23]. Both Machine learning 

[24] Deep learning [25,26] or a combination of both [27] have been explored for this classification 

task. The models' performances are high to very high for all the published approaches (AUC between 

0.8 and 0.95) and several authors compared the AI workflow with clinicians' performances [28,29], 

reporting comparable if not better performances from the AI models, and faster and more 
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reproducible diagnosis. Our model has a performance of around AUC 0.9 for all the classes in line with 

those reported in the literature [23,30]. 

The possibility to integrate a fully automatic tool for the evaluation of pneumonias source in 

the clinical workflow can be instrumental to improve patient management and hospital resource 

allocation. Automatic identification of COVID-19, Influenza/CAP, and no infection patients can reduce 

the diagnostic errors, related to the human reader experience. The possibility of fast throughput of CT 

scan analysis will unburden medical staff and free resources to be allocated to more urgent needs. 

The dubious cases will have to be confirmed by the clinicians upon examination, but the time and 

effort required to do so will be drastically reduced. A careful evaluation of the real cost-benefit of 

these tools is sorely needed to promote their application in clinical practice.  

However, these automatic tools still have important limitations of applicability in the clinical 

setting. Overfitting, lack of generalizability, and explainability are the most relevant ones for deep 

learning models  [31,32]. In this study, several techniques were used to prevent overfitting. The model 

was trained on a multi-vendor (GE, Siemens) dataset with diverse acquisition protocols and differently 

reconstructed series of the same case. In this way, the model learnt how to generalize in varying image 

acquisition parameters, which is well reflected by the high sensitivity when evaluated on a held-out 

internal test set with diverse acquisition protocols and on the external validation set, coming from a 

different medical center. The ability of the model architecture to generalize to images with diverse 

imaging parameters is a desired property for real-world clinical applications. Another important aspect 

of deep learning applied to medical image analysis is explainability, with the “black box” perception 

hampering the widespread adoption of these methods by clinicians. The production of parsimonious 

models (i.e. clinicians comprehend and agree with how the model reached the result to support a 

clinical decision) is instrumental to build confidence and acceptance [33,34]. In the field of AI, there 

are two main explainability approaches: post-hoc systems which provide an explanation for a single 

specific decision and make it possible to obtain it on demand, and ante-hoc systems (also known as 

“glass box”) in which the model is built to be intrinsically explainable, so it is possible to follow each 

step that the model takes to reach its classification decision [34–36]. Usually (gradient) class activation 

maps are used to visualize the region of the scan on which the model-based its classification decision 

[37]: thus, this explainability approach falls under the post-hoc systems category. In the present study, 

the use of pre-selected and segmented slices containing lung abnormalities can be seen as an ante-

hoc explainability system, as the model is specifically looking at the abnormal areas of the lung, 

segmented by the lung abnormalities segmentation model. In this way, the end user can verify on 

which slices and on which areas of the slice (i.e., the abnormalities) the model based its classification 

decision. This can be easily confirmed by the clinicians by looking at the 48 consecutive slices along 

with lung and lung abnormalities segmentation masks, used by the model for the classification, and 

reported in the automatic clinical summary report. 

Indeed, our model selected only those slices containing abnormalities in the lungs, while most 

deep learning models published in the literature [7,38] are still based on manual segmentation of the 

CT scans and use as input all the slices containing lungs or the whole 3D lung volume when automatic 

segmentation is implemented. Moreover, in previous studies the identification of the regions of the 

slice used by the model to make its classification decision are the output of the model, helping with 

interpretability. In our model the identification of the abnormalities in the lungs, linked to the different 

kinds of pneumonia, is done a-priori, removing irrelevant informatio’n (e.g., other pathological 
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presentations in the lung). An additional advantage of our approach is the possibility to select up-front 

the scans for the model to process. If the selected slices do not present any abnormalities, the model 

will not process the image, saving time and computational power. This was verified in the external 

validation set. The “No-infection” patients cohort (n = 76) of the COVID-CT-MD dataset is composed 

also of healthy patients: our segmentation model correctly identified all the slices without 

abnormalities and the corresponding scans were not processed by the model (19 out of 76 cases). 

Furthermore, the pre-selection of slices to be evaluated by the model allows a reduction of the 

computational burden, also researched in this study by using Inception architecture. Indeed, the use 

of Inception architecture compared to other approaches based on ResNet or ResNext reduces the 

computational burden of the model, while maintaining equivalent performances [39]. This approach 

can allow shallow networks to achieve results comparable to their deeper and more complex 

counterparts with shorter training times, enabling good classification performances, even when using 

limited hardware [40]. The computation time (57 s per scan), which can be seen as an indication of 

the computational burden of the model, was faster than the alternatives reported in the literature. 

Moreover, compared to other studies that used Inception architecture for similar classification tasks 

(see Table 3.4), our network showed comparable performances [41,42] and was validated on an 

external testing set. This validation step is very important to verify the generalizability of the model to 

patients other than those used for model development (i.e., training and testing).  

Table 3.4 Performances of other classification models to distinguish COVID-19 and other source of pneumonia, 

based on Inception modules 

  

AUC Sensitivity (%) Specificity (%) Sample size 

Computation 

time (s) 

Int.  Ext. Int.  Ext. Int.  Ext. Int.  Ext. 

This work 0.91 0.90 87 83 88 91 273 305 57 

Wang et al. 

[38] 
0.93 0.81 88 83 87 67 455 290 n.r. 

El Asnaoui et 

al. [42] 
n.r. - 92 - 96 - n.r. - 262 

Gifani et al. 

[41] 
0.85 - 77 - n.r. - 186 - n.r. 

The computation time is calculated as average time per scan on the external validation set. 

Int = internal test set, Ext = external validation set, n.r. = not reported 

3.5 LIMITATIONS 
Considering the limitations of this study, a relevant point related to the external validation test 

set is the presence of only CAP cases for the Influenza/CAP class. This could lead to a misestimation of 

the model performance for this classification task. However, influenza cases were present in 

the internal validation and testing cohorts, and the performances of the model were tested there. An 



 

55 
 

additional external validation dataset with a direct clinician assessment of the source of pneumonia 

would strengthen the generalizability and add credibility to our approach.  

The further distinction between bacterial and viral (non-COVID) pneumonia would represent an 

additional step forward, allowing the clear identification of the best treatment for each patient. This 

can also result in better therapeutic management, regarding for example the administration of 

antibiotics. The misuse and abuse of antibiotics are a cause of great concern in the research and clinical 

communities. The insurgence of antimicrobial resistance (AMR) is regarded as one of the top 10 global 

public health threats for the near future [43]. The timely identification of patients with pneumonias 

that do not require antibiotics can inform better therapy decisions and procedures, contributing to 

easing the burden of healthcare-associated infections (HAS) from resistant strains of bacteria [44]. 

Looking at the dataset used for this study, the provenance of all scans from scanners from only 

two different vendors might limit somehow the generalizability of our approach, even though the 

image were acquired with two of the most diffuse scanner manufacturers on the market. Adding more 

data of different vendors, and different acquisition and reconstruction settings might improve the 

model performances. Ideally, these kinds of clinical decision-making support tools need to be 

continuously updated with new and heterogeneous data to attain accuracy, specificity, and sensitivity 

comparable to the latest implementation of diagnostic and therapeutic state-of-the-art, for example 

via Distributed learning [45,46].  

To verify the real clinical utility of the proposed tool, a prospective clinical validation study 

should be carried out comparing performance and time to diagnosis of the AI tool to the current 

standard of care. Moreover, the clinical use of this tool might need to be updated and modified 

according to the development of the COVID-19 pandemic. We can expect that pneumonia from 

COVID-19 infection will become endemic and recurring in the future. Our approach could be adapted 

to spot the undiagnosed cases or to provide a second independent verification of the occurrence of 

the disease, also past the emergency status of this pandemic.  

4 CONCLUSION  

COVID-19-associated lung diseases can mimic other viral lung diseases such as (para-influenza 

or CAP which may result in misdiagnosis, and delayed and improper treatment. In this context, the 

development of new diagnostic tools based on AI could become critical for deployment in daily 

practice shortly. The proposed Inception architecture assured remarkable performances, equal to or 

higher than AUC 0.9 on the external validation set. Benchmarked against RT-PCR confirmed cases of 

COVID-19, our AI framework can accurately classify CT scans with COVID-19, Influenza/CAP, or no-

infection. This approach could be exploited also for other types of pulmonary diseases, fine-tuning the 

abnormalities segmentation model to only recognize and select the slices which contain the 

abnormalities relevant to the investigated disease. To reach this goal a close collaboration between 

clinicians and data scientist is essential and will also promote the future application of these decision 

support tools in the clinic.  
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Our research presented in this chapter exploits the use of an AI-based classifier for the diagnosis and 

detection of pulmonary embolism in CTPA scans. A 2D classifier based on the ResNext50 architecture 

was trained and validated using the RSNA-STR Pulmonary Embolism CT (RSPECT) multicentric dataset 

composed of 7169 patients. From these retrospective data, 85,000 slices positive for PE and 123,428 

negatives for PE were extracted for training. For internal validation, 9,922 slices were used for each 

class. The model was externally validated at the patient level using a dataset of 156 adult patients 

from 3 different public sources, having all emboli segmented by at least one experienced radiologist. 

To gain insight into the model predictions, activation maps were extracted using the Grad-CAM 

method. Comparing these maps with the ground truth (GT) segmentations, it was determined if the 

activated regions corresponded to regions of PE by computing the percentage of GT PE that is activated 

and the percentage of activated regions corresponding to GT PE. The PE classification model reached 

an area under the curve (AUC) of 0.86 [0.800-0.919], a sensitivity of 82.68 % [75.16 - 88.27] and a 

specificity of 79.31 % [61.61 - 90.15] on the external validation set. The activation maps of the slices 

rightly predicted positive by the PE classifier showed good visual correspondence with areas of PE. This 

was also quantitatively confirmed as 79.2% of PE regions in the GT were highlighted in the activation 

maps and the percentage of activated regions corresponding to GT PE is 80.3%. Our deep learning-

based classifier can identify patients with pulmonary embolism with high accuracy and can localize the 

emboli by extracting the activation maps from the network. The activation maps help explain the 

features used by the deep learning model to make the diagnosis, increasing the likelihood of 

acceptance by clinicians for clinical routine.  
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1 BACKGROUND 

Pulmonary embolism is one of the most fatal cardiovascular diseases, causing more than 60,000 

deaths in the United States [1] and around 40,000 deaths in Europe [2] each year. A prompt and 

accurate diagnosis is key to avoiding fatal consequences for missed diagnosis on one hand and risks 

associated with anticoagulation effects for overdiagnoses on the other hand. Diagnosis relies on the 

assessment of pre-test clinical probabilities and then on imaging examinations, with computed 

tomography pulmonary angiography (CTPA) being the most widely available worldwide. Symptoms at 

presentation are aspecific and rapid diagnosis is critical to care decisions. Computed tomography 

pulmonary angiography (CTPA) has become the gold standard for the diagnosis of PE in recent years. 

However, the interpretation of CTPA is a time-consuming process and it presents a high inter and 

intra-reader variability [3], [4]. Timely interpretation is of essence in patients with concurrent 

oncological conditions or other respiratory pathologies. To expedite diagnosis and unburden medical 

staff, the use of computer-aided diagnosis (CAD) tools has gathered considerable momentum in recent 

years, especially in the pulmonary medicine field [5], [6]. Among the different approaches for 

automated detection of pulmonary embolism, Deep Learning (DL) networks have been employed 

since the very beginning, exploiting clinical covariates and/or ventilation-perfusion scans, with good 

results but rather poor robustness and generalizability [7]–[9]. With the development of Artificial 

Intelligence and in particular DL, the analysis of clinical images, mostly CTPA alone [10], [11] or in 

combination with clinical covariates [12], has attracted the interest of the scientific community. One 

of the main hurdles to the integration of these methods in the current clinical practice is the lack of 

interpretability and explainability of the inner workings of the DL models [13], [14]. Trust and 

acceptance of these innovative tools might benefit from a clearer view of the process with which the 

model reaches the diagnostic decision, linking the algorithm output to real clinical or imaging 

evidence. The goal of our study was the development and validation of a deep learning-based classifier 

for the detection of pulmonary embolisms (PE) in chest CTPA images. Particular care has been devoted 

to the explainability of the decision-making process of the model, using Grad-CAM activation maps to 

identify the regions in the scan contributing the most to the model output. This would allow improving 

the clinical adherence to diagnostic protocol and standard of care, with the ultimate goal of having an 

integrated Computer Aided Diagnostic (CAD) workflow with dynamic and adaptive prioritization of 

severe cases, improving patients' management. 

2 MATERIALS AND METHODS  

2.1 DATASET CHARACTERISTICS 
The dataset for model training and validation consisted of retrospective data of 7,169 patients from 

the RSNA-STR Pulmonary Embolism CT (RSPECT) dataset [15]. The training set was composed of 6,316 

patients while the validation set contained 853 patients. The external validation set is composed of 

156 patients (127 PE positive, 19 PE negative) coming from Ferdowsi University of Mashhad’s dataset 

(FUMPE) (35 patients) [16], CAD-PE dataset (91 patients) [17], and Linköping dataset (30 patients) [18]. 

All the CTPA scans in the external validation dataset have been segmented and annotated by at least 

one experienced radiologist (5+ years of experience). A summary of the external patients' cohort 

division is reported in Figure 4.1. Patients' demographics are presented in Table 4.1. 
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Figure 4.1 Flow chart of the patient cohorts division between training, validation, and external validation sets. 

Table 4.1. Patients’ characteristics  

Dataset Patients number Sex  Age (mean +SD) 

RSPECT 7169 N. R. N. R. 

FUMPE 35 M = 48 %, F = 52 % 52 ± 19   

CAD-PE 91 M = 81 %, F = 19 % 65 ± 18 

Linköping 30 N. R. 45-93 

N.R.: not reported 

2.2 IMAGING 
The imaging characteristics of the datasets used in this study are as follows, 

RSPECT: The CTPA scans were collected from different scanners with varying reconstruction kernels 

(STANDARD, B, FC08-H, etc.) with slice thickness between 0.5 and 0.8 mm and slice spacing between 

1 and 2 mm in the axial plane. The annotation of this dataset was a collaborative effort between the 

RSNA and the Society of Thoracic Radiology (STR). A panel of 190 thoracic imaging experts was 

recruited for the data annotations, with 50 to 150 cases to annotate for each participant [15]. 

FUMPE: All CTPA images were acquired in one breath hold with slice-thickness between 1 mm and 2 

mm and slice-interval ≤1.5 mm in the caudocranial direction. The images were acquired with NeuViz 

16 multi-slice helical CT scanners (Philipps and Neusoft Medical Imaging). For each image, two expert 

radiologists provided the ground truth (GT) with the assistance of a semi-automated image processing 

software tool [16]. 

CAD-PE: All CTPA images were acquired in one breath in the caudocranial direction. Image pixel size 

ranges from 0.58 to 0.85 mm and reconstruction slice thickness between 0.75 and 1.5 mm. All studies 

were performed with SIEMENS Somaton Sensation 40 scanner. The ground truth (i.e. PE positive or 

negative) was provided by three experienced radiologists on slice level [19]. 

Linköping: The scans have been acquired on Philips Brilliance 64 CT or GE Lightspeed VCT with a slice 

thickness between 0.625 and 1 mm. The scans are contrast-enhanced and acquired in the pulmonary 

arterial phase; emboli were delineated by an experienced radiologist [18].  

2.3 IMAGE PRE-PROCESSING  
To create the training and validation set to train the DL model, 2D slices were extracted from the 7,169 

patient scans in the RSPECT dataset. All slices in the dataset that were annotated as being positive for 

PE, were included. To achieve a balanced dataset, negative slices with lung area larger than or equal 

to 75% of the mean lung area were selected. This avoids overfitting of the model towards the presence 

of a part of the abdomen in the image. The lung areas were computed using an automatic in-house 

lung segmentation model (Section 2.5 of Chapter 2). The above approach resulted in a total of 208,428 
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slices coming from 6,316 patients for training (85,000 PE positive and 123,428 PE negative slices) and 

19,844 slices coming from 853 patients (9,922 PE positive and 9,922 PE negative slices) for internal 

validation. It was ensured that there was no overlap between patients in the training and validation 

set. A summary of the composition of the training and validation set is reported in Figure. 4.2. Before 

being exposed to the model, the intensities of every image were clipped at mediastinal window level 

settings (W:350 HU, L:50 HU), which is the most optimal to detect PE. All slices were cropped to size 

(448,448). 

 

 

Figure 4.2 Flow chart of the composition of training and validation set. 

2.4 MODEL ARCHITECTURE 
A 2D classifier based on the ResNext50 architecture was used for slice classification (Figure. 4.3) [20], 

[21]. The model’s input is divided into three channels which are filled with three consecutive slices 

during training. In this way, the model training takes into account also the following two slices for each 

slice. The classifier was trained with ImageNet pre-trained weights, minimizing categorical cross-

entropy loss for a total of 4 epochs. During the first two epochs, the slices in the 3-channel input were 

cropped using a rectangular crop around the lung region. The lung regions were extracted using an 

automatic in-house lung segmentation model (Section 2.5 of chapter 2). The rectangular crop was 

obtained with x_min = minimum x value for which lungs pixels are present, x_max = maximum x value 

for which lungs pixels are present and y_min = minimum y value for which lungs pixels are present, 

y_max = maximum y value for which lungs are present. During the last two epochs, the model was 

trained without cropping. The last layer in the ResNext50 model was followed by a Global Average 

pooling layer which reduces the image spatial resolution, followed by a fully connected layer with 

1024 units and ReLu activation, which is followed by a classification layer containing 2 units with 

Softmax activation. The network weights are updated by using the Adam optimizer at an initial 

learning rate of 1e-5.  At each epoch during training, 85,000 PE negative slices were randomly selected 

from the 123,428 images to maintain a balance between PE positive and PE negative slices. 
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Figure 4.3. CNN architecture. [ ]  x X denotes that the block is repeated X times. The grouped convolution block 

is equivalent to the implementation described by Xie et al [22]. Notations in blue text highlight the spatial 

resolution and the feature map count. 

2.5 PERFORMANCE METRICS 
The performance of the 2D DL classifier was first evaluated in a slice-based way on the internal 

validation set. Second, the performance was explored after aggregating the 2D classifier predictions 

to a patient-level result on both the internal validation and external validation set. To translate the 

classifier predictions on 2D slices to a patient-level probability of a positive PE diagnosis, the following 

workflow has been employed for each patient: 

1. Select all slices containing lungs using an in-house lung segmentation model  

2. Compute the average probability of the classifier predictions on all lung-containing slices 

Performances are reported in terms of Area Under the Curve (AUC) of the Receiver Operating 

Characteristic (ROC) curve, the confusion matrix, sensitivity, and specificity. More details are reported 

in Appendix 4.1. The model was evaluated according to the Transparent Reporting of a multivariable 

prediction model for Individual Prognosis or Diagnosis (TRIPOD) [23]  and Checklist for Artificial 

Intelligence in Medical Imaging (CLAIM) [24] (see Appendix 4.2 and 4.3).  

2.6 EXPLAINABILITY OF THE MODEL PREDICTION 
To increase the transparency of the decision-making process of the DL classifier, the Gradient-

weighted Class Activation Mapping (Grad-CAM) method [25] was employed to identify regions of 

interest in the model (activated regions). Using this approach, activation maps were extracted and 

visualized in the image as heat maps for true positive, false positive, and false negative results on the 

external validation set. Besides a qualitative evaluation, the clinical relevance of the activation maps 

was also quantitatively measured by comparing them to the GT manual segmentations present in 
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these datasets. To quantify the correspondence of the activated regions to regions of PE, two 

additional metrics were computed: the percentage of GT PE that is activated and the percentage of 

activated regions corresponding to GT PE. 

3 RESULTS 

3.1 SLICE-LEVEL RESULTS 

The performance of the 2D PE classifier on the slices in the internal validation set is presented using 

the ROC curve and confusion matrix in Figure. 4.4A and B. The model achieved an AUC of 0.95 [0.952-

0.958] and after applying a 50% probability threshold, a sensitivity of 87.89% [87.23-88.51] and 

specificity of 89.13% [88.50-89.72]. The calibration plot (Figure. 4.4C) shows that the model is well 

calibrated with an intercept close to 0 (0.023) and a slope approaching 1 (0.95). 

 

 

Figure. 4.4 ROC curve (AUC = 0.95) with bootstrap confidence intervals for the slice-level PE classifier (A);  

confusion matrix (B) on the internal validation set; (C) Calibration curve for the slice-level PE classifier on the 

internal validation set (intercept = 0.023, slope = 0.95). 
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3.2 PATIENT-LEVEL RESULTS 
After applying the workflow for aggregating the 2D model predictions to a final probability per patient, 

the performances on the patient-level were assessed. The ROC curves for this approach were 

computed on the internal validation set (Figure. 4.5A) and external validation set (Figure. 4.5B). AUC 

values of respectively 0.87 [0.842 - 0.893] and 0.86 [0.800-0.919] were achieved. To define the 

decision threshold at which the classifier would operate to diagnose PE-positive patients, a threshold 

curve analysis was performed on the internal validation set (Figure. 4.6). The analysis involves the 

computation of the sensitivity and specificity at different decision thresholds to identify the optimal 

decision threshold as the intersection of both curves, maximizing both the sensitivity and specificity. 

The analysis revealed an optimal threshold of 22.58%. Using this probability threshold of 22.58%, the 

confusion matrices were computed for the internal validation (Figure. 4.5C) and external validation 

set (Figure 4.5D). On the internal validation set, a sensitivity of 78.74% [74.68 - 81.74] and specificity 

of 78.42% [74.68 - 81.74] were reached. On the external validation set, the achieved sensitivity was 

82.68% [75.16 - 88.27] and specificity 79.31% [61.61 - 90.15]. The performance results are summarized 

in Table 4.2. As an example, the analysis time for a standard chest CTPA scan with an axial resolution 

of 1.25mm was around 1 min, of which half was dedicated to lung segmentation and a half to the 

classification itself, using an RTX 2080 ti 11GB GPU. 

 

 

Figure. 4.5 Performances of the PE classifier on patient-level analysis: ROC curve (AUC = 0.87) with bootstrap 

confidence intervals on the internal validation set (A); ROC curve (AUC = 0.86) with bootstrap confidence 

intervals on the external validation set (B); confusion matrix computed with probability threshold of 22.58% on 

the internal validation set (C) and external validation set (D). 
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Figure. 4.6 Threshold curve analysis on the internal validation set; Sensitivity (black line), Specificity (blue line), 

Optimal threshold (red dot) 22.58 % 

Table 4.2. Performance metrics for the patient-level PE classification model with 95% confidence intervals at a 

decision threshold of 22.58%. 

 AUC Sensitivity (%) Specificity (%) 

Internal validation 
set (n=853) 0.87 [0.842 - 0.893] 78.74 [74.68 - 81.74] 78.42 [74.68 - 81.74] 

External validation 
set (n=156) 

0.86 [0.800-0.919] 82.68 [75.16 - 88.27] 79.31 [61.61 - 90.15] 

 

Calibration plots of the patient-level classification model have been produced for both the internal 

validation set and external validation set (Figures. 4.7A and B). The plots show apparent poor 

calibration of the method, with intercept slope pairs of respectively (–0.11, 1.94) and (0.42, 1.12). This 

is justified by the nature of our method which takes the average prediction over all slices. As PE is only 

present in a limited number of slices in the volume, the averaging induces a reduction of the final 

probability for positive cases. 

 

Figure 4.7. Calibration plots for the patient-based PE classifier on the internal validation (A) and external test 

(B) sets. The intercept and slope pairs are respectively (–0.11, 1.94) and (0.42, 1.12). 

 

The TRIPOD score of the proposed model is 58 % (18 out of 31 TRIPOD items) while the CLAIM score 

is 60 % (25 out of 42 items).  
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In Figure 4.8, three examples of extracted Grad-CAM activation maps are reported for true positive, 

false negative, and false positive slices. The original slice is compared with the activation map and the 

radiologist's manual segmentation in parallel. The activation maps are visualized as heat maps 

superimposed on the image where the color code indicates the areas of the slice used by the model 

for the classification, graded in terms of importance (from red to blue). In the external validation set, 

the percentage of GT PE that is activated is 79.2%. Using the same data, the percentage of activated 

regions corresponding to GT PE is 80.3%. 

 

 

Figure 4.8 Examples of explainability by Grad-CAM activation maps for the PE classifier.  Axial slice at the 

mediastinal window (left), Grad-CAM activation map (center), ground truth from radiologist manual 

segmentation (right). True positive case (top row), P = 0.98: the presence of filling defects within the 

segmental pulmonary arteries on axial CT image (on the left) corresponding to the red zones in the Grad-CAM 

activation maps (center) and the colored areas segmented by radiologists (on the right).  False Negative case 

(middle row), P = 0.020, False positive case (bottom row), P = 0.90: although no emboli can be identified on 

the axial CT scan at the mediastinal window and none was segmented by radiologists (on the right), the 

classifier spotted an area in the right lower lobe.  



 

70 
 

4 DISCUSSION 

We have developed and externally validated an AI model for the classification of pulmonary embolism 

in CTPA images. The model architecture was based on a 2D CNN and was trained on slice-level input, 

internally and externally validated at a patient-level input. Patient-level predictions were obtained by 

aggregating and thresholding the probabilities across all the slices per image per patient. Furthermore, 

the performance of the model was investigated for explainability using the Grad-CAM method. The 

activated regions are compared with manual segmentations of the embolisms for quantitative 

assessment of the explainability of the model's predictions. 

Several studies have previously shown that the prompt diagnosis and subsequent treatment of PE 

patients can reduce morbidity and mortality [26], [27]. In the last decades, the use of CTPA as a first-

line diagnostic tool for PE management has increased exponentially. However, patients might still 

incur more than 6 days of delay in diagnosis and 26% of patients are misdiagnosed during their first 

visit [28], [29]. In this scenario, methods to expedite and automatize the interpretation of CTPA scans 

might result in better triage of urgent cases of PE, improve time to diagnosis and treatment, and, at 

the same time, ease the pressure on medical staff and hospital resources.  

Other research groups have tackled this unmet clinical need in the recent past. For example, Huang et 

al. reported a study that used 3D CNN for automated diagnosis of pulmonary embolism using CT 

images and utilized 24 consecutive axial slices for training and validation at the patient level. The 

method achieved a comparable AUC of 0.84 on detecting PE on internal validation and 0.85 on an 

external validation dataset. The method also explored the explainability of the model’s decisions 

based on Grad-CAMs showing visual representations of activations maps overlapped on images [30]. 

Another study that uses ResNeSt-50 CNN for PE classification at slice level performed at an AUC of 

0.95 and used sequence modeling for PE classification at patient level with an AUC of 0.90 on an 

internal validation dataset [31]. However, performances on an external validation dataset and the 

explainability of the models were unexplored. A comparison between our approach and other recently 

published models for PE detection is reported in Table 4.3. Recently, Schmuelling and coworkers 

reported the technical implementation in the emergency department of a DL-based PE detector from 

a CTPA scan [32]. The performances of their method are remarkable, especially in terms of specificity 

(95%). However, this clinical implementation study did not show the expected results: there was no 

significant impact on the measured clinical performances (reading times, radiology report 

communication time, time to anticoagulation, and patient turnaround times). In other words, the 

introduction of the DL model in the clinical workflow did not impact significantly the clinical routine 

triaging of PE patients. This praiseworthy research is a cautionary tale for all future clinical 

implementation of said PE detectors in the clinics. From the author's own words, the issues evidenced 

by this study regarded “the implementation of the DL-algorithm not accompanied by a transition 

between the implementation time periods, a training for doctors, a change in standard operating 

procedures (SOPS) or other measures that support a structured introduction of DL- algorithms and their 

handling”. 
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Table 4.3. Comparison of different DL approaches for identification of PE on CTPA scans 
 

APPROACH 
PERFORMANCES 

(INTERNAL/EXTERNAL) 
REMARKS 

This work 

2D CNN (Resnext50), 
predictions  are 

translated to a patient 
output 

AUC = 0.87/ 0.86 
Explainability using Grad-

CAMs 

Liu et al. [33] 
U-net for segmentation 

of PE 
AUC =0.92 / - 

No external validation, 
only acute PE, only high-

quality images considered 

Huang et al. [34] 

3D CNN with 24 
consecutive slices as 

input, predictions  are 
translated to a patient 

output 

AUC =0.84/0.85 
Explainability using Grad-

CAMs 

Huang et al. [12] 

PENet with the 
integration of clinical 

data from the electronic 
medical record 

AUC =0.95 / - 
No external validation set 
from another institution 

Weikert et al. [35] 3D CNN (ResNet-based) F1 = 0.86 / - No external validation  

Pan [31] 
2D CNN (ResNeSt-50) + 
sequence modeling for 

patient output 
AUC = 0.90 / - 

No external validation,  no 
explainability, 

computationally too 
intensive for real 
implementation 

Tajbakhsh et al. 

[36] 
Vessel-oriented image 
representation (VOIR) 

AUC = 0.90 / - No external validation 

 

Compared to other methods present in the literature, our approach presents several advantages. The 

upfront selection of the slices containing lungs for both positive and negative cases assures that the 

model is trained only on the organ of interest, eliminating possible confounding structures also 

present in the scan (e.g. the abdominal region). Moreover, the provenance of the patient cohort 

(multinational and multicentric) assures the robustness of the model, which is trained on relatively 

heterogeneous scans coming from different centers and acquired with different imaging parameters. 

In addition, the datasets contributing to the external validation set are all publicly available implying 

the easy benchmarking of future or current methods. Regarding the explainability of the model, we 

performed an additional validation step on the use of the Grad-CAM methodology, comparing the 

activation maps with the real manual delineation of the emboli by a human reader, achieving a high 

level of correspondence (79.2%). This is another indirect proof of the proficiency of the model in 

mimicking the approach used by radiologists in identifying the PE areas in the CTPA scans. Also, the 

threshold curve analysis on the patients in the internal validation set assures that the choice of the 

threshold to distinguish between PE positive and negative patients optimizes both sensitivity and 

specificity of the model and limits over or underdiagnosis. We also proved that this threshold is robust 

on new, unseen datasets as we reached comparable performance on the external validation set.  

To get a final probability for each patient, the model probabilities on all lung slices are averaged. As 

PE events are rather rare and the emboli can be small, presenting only on a limited number of slices 
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in the total volume, the final probability will be reduced and a threshold lower than 50% should be 

considered to diagnose a patient as PE positive. More specifically, the threshold curve analysis 

suggested a predicted risk of 22.58% to classify a patient as PE positive. For positive cases, the 

predicted risk is thus not aligned with the observed risk as the observed risk is higher. The final method 

at the patient-level is thus not well calibrated, caused by the nature of the approach, the final 

probability should not be interpreted as a scaled uncertainty indication. Referring to the slice-level 

results, it’s shown that the actual DL classifier, predicting the probability per slice, is well calibrated. 

This approach presents several limitations that need to be properly addressed. Considering that the 

published overall rate of a positive diagnosis of PE on pulmonary CTPA usually ranges between 12% 

and 22% [37], [38] the patient cohort used for external validation might not represent accurately the 

reality as it presents a higher percentage of positive cases (127 out of 155). Also, the model 

performance in patients with concurrent pulmonary diseases or non-thrombotic emboli was not 

explored as well as the differentiation between chronic and acute PE cases. Finally, the ability to 

localize the emboli using the activation map extraction method is limited by the size of the activated 

areas. The limited precision of the activation maps cannot rule out that the model is spotting 

suspicious artifacts in the neighborhood of the embolus. 

While patient-level results are obtained by averaging the slice-level predictions, a more refined 

approach could have been explored by directly training a 3D CNN model on the slice-level activation 

maps extracted from the 2D CNN to predict patient-level probabilities for the presence of PE. 

However, this approach will need an additional set of training data to train the 3D model, to prevent 

the bias from using the same dataset used to train the 2D model.  

Further improvement of the presented methodology could include other PE severity assessment 

methods such as the Geneva score [39] which, combined with the DL model results, might yield more 

trustworthy predictions, with higher sensitivity, promoting at the same time the confidence of the 

clinicians towards the results.  

5 CONCLUSIONS 

Our deep learning-based classifier can identify patients with pulmonary embolism with high accuracy 

and can localize the emboli by extracting the activation maps from the network. The activation maps 

help explain the features used by the deep learning model to make the diagnosis, increasing the 

likelihood of acceptance by clinicians for clinical routine. Further prospective validation is required 

before the algorithm can be used in the clinic.  
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In this chapter, we provide clinical evidence of level 1b by prospectively validating the original 

prognostic radiomics signature for chemoradiotherapy in patients with non-metastatic non-small cell 

lung cancer (NSCLC) and evaluate the potential of this radiomics signature to complement current 

prognostic factors. A total of 228 patients with inoperable stage I-III NSCLC treated with 

chemoradiotherapy were randomly sampled from the observational SDC-lung clinical trial 

(NCT01855191). The gross tumor volumes were used as input to the radiomics signature. 

Segmentations were performed both manually and automatically using a deep learning model. The 

primary outcome was overall survival. The signature was used to classify patients as survivors or non-

survivors (high/low prognostic score based on the coefficients proposed by Aerts et al., 2014). 

Predefined statistical tests were performed to prospectively validate the performance of the published 

signature without any recalibration. The prognostic value of the signature was compared with TNM 

staging and the gross tumor volume. Discrimination in the model was assessed by Harrell’s 

concordance index (c-index = 0·66 (95% CI: 0·60-0·71). Kaplan-Meier survival curves between patients 

classified by the radiomics signature as survivors/non-survivors were significantly different (log-rank 

test p-value = 3·670e-6). The calibration slope (β) on the linear predictor of the signature in a Cox 

proportional hazards model was 1·404 (H0: β = 1, p = 0·146), indicating a valid relative risk model. The 

prognostic performance of both Signature-0 and volume features are sensibly superior to the overall 

stage (6th ed TNM) (p < 0.01). To the best of our knowledge, this study demonstrates clinical evidence 

level 1b for a prognostic radiomics signature for NSCLC patients. This has implications for the wider 

field as it demonstrates that other signatures could also be prospectively validated. This signature 

could be practically used as a clinical decision support tool to evaluate the likelihood of survival after 

chemoradiotherapy. Potential applications of this signature include use as a stratification tool in future 

trials or for better therapy planning. 
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1 BACKGROUND 

Lung cancer is the most common cancer worldwide (excluding non-melanoma skin cancer), with over 

2 million newly diagnosed cases annually and almost 1.9 million deaths.[1,2] Approximately 80-85% 

of patients with lung cancer are identified as non-small cell lung cancer (NSCLC).[3] Therapeutic 

approaches (surgery, radiotherapy, chemotherapy, targeted agents, immunotherapy, or a 

combination of these modalities) depend upon staging and risk assessment.[4] Clinical decisions 

regarding treatment regimens are supported by guidelines [5–7] based on the best available evidence. 

However, it is clear that artificial intelligence (AI) will play an important role here in the future.[8–10] 

In oncology, computational imaging utilizing AI has produced remarkable results in recent times.[11–

13] This rapidly maturing field is known as ‘radiomics’ which stands for quantitative image analysis 

with two subfamilies: handcrafted radiomics and deep learning based radiomics sometimes called 

deep radiomics. Radiomics enables actionable insights to be obtained and applied within clinical-

decision support systems to improve diagnostic, prognostic, and predictive accuracy, to further push 

forward personalized medicine [14]. Radiomic signatures (i.e., quantitative image biomarkers linked 

to a biological or clinical endpoint) have shown their importance for numerous tumor types.[15–17] 

Signature-0 is the original radiomic signature,[18] published in 2014.  Signature-0 identifies a general 

prognostic phenotype of patients with NSCLC captured from routine computed tomography (CT) scans 

(i.e., favorable or unfavorable to reach 2-year overall survival). Signature-0 has been already externally 

validated [19,20] and its success can be attributed to a spatially and temporally robust methodology 

used in model development (e.g., multiple segmentations, test/re-test scans, and appropriate 

machine learning techniques) [21–23].  

However, Timmeren et al. used the signature to test the interchangeability of CT and cone-beam CT 

for the extraction of radiomics features[24] while de Jong et al. tested the Signature-0 in stage IV 

NSCLC patients. Thus far no evidence level 1b [25] of the original prognostic Signature-0 has been 

reported.  

For these reasons, here we present a prospective validation of Signature-0 in the observational clinical 

study SDC-lung (NCT01855191) [26]. We hypothesized that the prognostic value of Signature-0 would 

validate in a prospective cohort using a manual and an automated segmentation method. 

Furthermore, as TNM staging [27] is a well-established prognostic factor, we compared this with 

Signature-0 and with tumor volume alone, which has been demonstrated to be a promising prognostic 

factor for survival prediction [28–30]. The use of Signature-0 can be further extended by stratifying 

the patients in several different prognostic groups, to better assess the likelihood of survival after 

chemoradiotherapy and inform clinical decision-making on the best therapy planning options. 

2 MATERIAL AND METHODS 

2.1 CLINICAL TRIAL REGISTRATION  
An observational standardized data collection of lung cancer patients was registered on 

clinicaltrials.gov (SDC-lung: NCT01855191) to improve the performance of prediction models. The 

study was approved by the institutional review board and informed consent was obtained from all 

patients before treatment. A subgroup of 228 patients with stage I-III NSCLC was extracted from the 

whole SDC-lung cohort, to validate the performance of Signature-0 for chemoradiotherapy survival 

prediction [31].   
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2.2 PATIENT POPULATION 
From June 2013 until June 2018, patients eligible for stereotactic radiotherapy (Stage I), sequential or 

concurrent chemoradiotherapy (Stage II-III) were entered in this prospective study conducted at 

MAASTRO clinic (Maastricht, The Netherlands), where the radiotherapy was delivered, [32] 

chemotherapy was administered in the referring hospitals. Included were patients with Stage I-III (6th 

TNM edition [33]), histological or cytological confirmed NSCLC, no prior thoracic radiation, and a work-

up according to national guidelines, including a staging whole-body FDG-PET-CT scan and an MRI or 

contrast-enhanced CT scan of the brain. A WHO Performance Status (WHO PS) of 0 to 2 was required. 

All patients had to have moderate to good lung function (FEV1 ≥30% and DLCO ≥30% of predicted 

value). The presence of supraclavicular lymph nodes, pleural fluid that was negative for malignancy 

on cytological examination, and cardiac comorbidities including arrhythmia or a decreased ejection 

fraction were no exclusion criteria. Patients with other invasive cancers within the last five years were 

also allowed provided they were in clinical complete remission at the time of enrolment.  

2.3 TREATMENT 
Chemotherapy was given in the referring hospital. It consisted of 1 cycle of cisplatin or carboplatin–

gemcitabine (cisplatin 75 mg/m2, carboplatin AUC 5, gemcitabine 1250 mg/m2), followed by 

concurrent cisplatin–vinorelbine (cisplatin 40–50 mg/m2, vinorelbine 15–20 mg/m2) or concurrent 

cisplatin–etoposide every 3 weeks for 3 cycles (cisplatin 75–80 mg/m2 day 1 or carboplatin AUC 5 

depending on the cardiovascular history or limited renal function, etoposide 100 mg/m2 day 1-3) with 

radiotherapy. The regimen depended on the referring hospital. Dose-reduction was applied according 

to guidelines and in case of decreasing renal function, cisplatin was substituted by carboplatin. 

Radiation treatment planning was performed during the first cycle of chemotherapy and radiotherapy 

was intended to start on the first day of the second cycle of chemotherapy, according to Dutch 

guidelines.  

2.4 PROSPECTIVE VALIDATION 
To validate the performance of Signature-0 for survival after chemoradiotherapy, we conducted two 

different analyses, using a randomly selected patient cohort from SDC-lung dataset. The first case was 

the validation of the original Signature-0 with CT scans manually segmented, of the tumour and the 

lymph nodes if involved, by the treating radiation oncologist and verified by a second one, as per 

clinical protocol. The second case was the validation of the original Signature-0 on the same datasets, 

but automatically segmented by a deep learning algorithm. A flow chart describing the overall 

workflow from data collection to model validation is shown in Figure 5.1. 
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Figure 5.1: Scheme of the workflow used in this study 

A validation cohort composed of 228 cases was collected by randomly sampling patients from the 

SDC-lung clinical trial cohort (n = 864). The only selection criteria used were the presence of a chest 

CT scan, acquired following the image acquisition protocol, and completeness of the TNM staging. 

Before radiomics feature extraction, the images were pre-processed to optimize feature extraction 

[34]. The pre-processed images with the segmentation masks were used for hand-crafted radiomics 

feature extraction. Finally, radiomics features were used in a multivariate Cox proportional hazards 

regression model to compute the prognostic score linked to the probability of 2-year survival. To 

compare the prospective validation with the original external validation performed on Signature-0 

[18] the prognostic performances of the signature for 2-year survival were compared with the one 

obtained with TNM staging. Additionally, a comparison of the volume feature alone was performed, 

to verify the conclusion reached in the original paper, which reported good performances for volume 

alone on all the investigated datasets. The prognostic power of TNM, tumor volume, and Signature-0 

were explored by Kaplan– Meier survival analysis, on both the manual and automatic segmentations. 

Additional Kaplan– Meier survival analyses were performed, identifying four different prognostic 

groups based on different thresholds to expand the clinical usability of Signature-0. The radiomics 

signature validation was evaluated following the Transparent reporting of a multivariable prediction 

model for individual prognosis or diagnosis (TRIPOD) [35] and the Radiomics Quality Score (RQS) [36].  

2.5 IMAGE ACQUISITION  
All CT images used in the study were acquired on multidetector CT scanners available at the sites. 

Since CT images were collected prospectively, a standardized scan protocol was available over the 

complete dataset. To prevent excessive variability in the imaging used for model validation the 
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following criteria for radiomic analysis were used: tumor completely visible in the scan, slice increment 

less than 1·5 mm, and no missing slices. The full overview of the different parameters used for image 

acquisition and reconstruction in the validation dataset is reported in Table 5.1.   

Table 5.1 overview of the imaging parameters 

 Distribution (%) 

Manufacturer  

SIEMENS  92.5 

Varian Medical System 7.5 

Kernel  

B30f 47 

B19f 15 

B19s 4.8 

B41f 2.6 

Others 30.6 

Pixel spacing (mm)  

0.976 98.7 

1.3 1.3 

Slice thickness (mm)  

3 90 

2 10 

 

2.6 MANUAL SEGMENTATION 
The manual segmentations of the gross tumor volume (GTV), performed for therapy planning 

purposes at the different medical centers as per standard of care, were used for the extraction of 

radiomics features and the application of Signature-0. 

2.7 AUTOMATIC DEEP LEARNING SEGMENTATION 
The GTV was segmented using RadiomiX (Radiomics SA, Liège, Belgium) based on convolutional 

neural networks by combining 3D and 2D architectures. Publicly available data from the Cancer 

Imaging Archive [37] was used to train and validate the model. The specific dataset (Lung1) [38] 

contains CT scans of 422 confirmed non-small cell lung cancer cases, along with manual segmentations 

of the primary lesion and involved lymph nodes. The segmentations were performed by an 

experienced radiologist and these segmentations were used as a reference standard. The data was 

randomly partitioned into a training set (n = 337) and a validation set (n = 85). The model was then 

externally tested in the SDC-Lung dataset (n = 220). Details on the 2D and 3D architectures are 

reported below: 

2.7.1 2D Architecture 

The model is based on Feature Pyramid Network [39] with ResNext blocks [40] in the encoder part of 

the network and was trained on 2D axial slices as input. Both positive slices (containing tumor) and 

negative slices (not containing tumor) were used to train the model. 

2.7.2 3D Architecture 

A 3D U-Net with residual connections in the encoder and decoder part of the network was trained on 

3D volumes containing 16 consecutive axial slices with at least one slice containing a portion of the 

primary tumor.  
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The predicted segmentations of each architecture (i.e., the segmentation output from both the 3D 

and the 2D segmentation models) were ensembled and the intersection constitutes the final total GTV 

segmentation which is used for the extraction of radiomics features. The deep learning-based GTV 

segmentation achieved a mean Dice similarity coefficient score of 0.82 on the external testing set 

which indicates adequate precision (i.e. no significant over or under segmentation).  

2.8 STATISTICAL ANALYSIS 
To assess the performance of Signature-0, pre-specified statistical tests were performed.  A log-rank 

test indicates a significant split. Discrimination by the signature was assessed by calculating Harrell’s 

concordance metric. Cox regression was performed on the signature to determine the calibration 

slope and a likelihood ratio test indicates the relative risk. Additionally, the coefficients of the 

individual variables of the signature were jointly tested to indicate that the performance in the 

prospective validation cohort could be improved by adjusting the original coefficients of the features. 

The linear predictors of the prospective validation dataset were determined. Linear predictors are 

defined as Σ𝑖x𝑖𝛽𝑖, which is the sum of the model's variables x multiplied by the regression coefficients 

𝛽. To determine the calibration slope, Cox regression was performed, and the unit value of the slope 

was tested through a log-rank test. Afterward, a joint log-rank test on all the predictors plus the offset 

was performed and tested for non-significance, which would indicate a good fit for our model [41]. To 

evaluate the clinical utility of Signature-0 predictions, compared to volume and TNM staging, decision 

curve analysis [42,43] was performed by quantifying the net benefits for a range of threshold 

probabilities in the whole validation dataset. All statistical analyses were performed in R (3.2). 

3 RESULTS 

3.1 DEEP LEARNING AUTOMATIC SEGMENTATION MODEL 
The deep learning segmentation achieved a mean DICE similarity coefficient score of 0·82 for lung 

tumor volume across the SDC-lung dataset, which indicates adequate precision and accordance with 

expert delineation (i.e., no significant over or under-segmentation). Figure 5.2 shows an example of 

segmentations for two patients, comparing manual and automatic segmentation.  
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Figure 5.2: Lung Gross tumor volume (GTV) segmentation. Example on CT scan slice from two different patients: 

top row) original CT scan; center row) manual segmentation of the GTV (in green); bottom row) automatic 

segmentation of the GTV (in red). DICE score for the automatic segmentation of 0.78 (left) and 0.79 (right). 

3.2 PROGNOSTIC PERFORMANCES 

3.2.1 Signature-0 prospective validation 

The KM curves analysis for the pure prospective validation of Signature-0 visualized a clear split 

between groups classified as survivors/non-survivors (high/low prognostic score based on a median 

prediction threshold of the original signature [18]) (Figure 5.3). A log-rank test indicates a significant 

split with a p-value of 3.670e-6 for the manual segmentation compared to 9.005e-5 for the automatic 

segmentation. Discrimination by the signature was assessed by calculating Harrell’s concordance 

metric. The performance of the two segmentation methods was comparable with a c-index of 0.66 

(95% CI: 0.60-0.71) for the manual segmentation and of 0.63 (95% CI: 0.54-0.69) for the automatic 

one. Cox regression was performed on the signature to determine the calibration slope and a 

likelihood ratio test indicates a valid relative risk model as the slope is close to 1 and not significantly 

different from 1 (Table 5.1).  
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Figure 5.3 Kaplan-Meier survival curves stratified into low- and high-risk groups for Signature-0 with manual 

segmentation (blue and brown lines) and automatic segmentation (green and red lines) on the SDC-lung 

validation dataset (n = 228) 

Following the rationale of the original research, the prognostic performances of the signature on the 

SDC-lung validation dataset were compared to the overall tumor stage results, obtained with TNM 

staging (6th edition). The c-index of the overall stage is comparable with Signature-0 (0.65, 95% CI: 

0.56-0.74): however, Kaplan-Meier curves stratification is sensibly different (Figure. 5.4).  
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Figure 5.4 Kaplan-Meier survival curves stratified into low- and high-risk groups for Signature-0 vs Overall TNM 

stage (manual segmentation) (top) and Signature-0 vs overall TNM stage (automatic segmentation) (bottom) 

on the SDC-lung dataset (n = 228) 

Previous reports showed the prognostic power of tumor volume as an independent variable [44,45]: 

for this reason, we compared the patients' stratification on Kaplan-Meier curves for the volume 

feature alone vs Signature-0. The comparison was done for both manual and automatic segmentation. 

The c-index for stratification of volume feature on manual segmentation is 0.67 (95% CI: 0.62-0.73) 

and 0.65 (95% CI: 0.59-0.71) for automatic segmentation (Figure. 5.5). The results obtained with 

volume feature and Signature-0, for both manual and automatic segmentation, are not statistically 

different (confidence interval of C-index falls in the same range – see Table 5.2). 

Table 5.2 Prognostic performances on the SDC-lung dataset 
 

 Signature-0 
ManualSeg  

Signature-0 
AutomaticSeg  

Volume   
ManualSeg 

Volume 
AutomaticSeg 

Overall stage 

C-index 
0.66  

(0.61 – 0.71) 

0.63  

(0.57 – 0.69) 

0.67 

(0.62 – 0.73) 

0.65 

(0.59 – 0.71) 

0.65 

(0·56 – 0·74) 

P-value 

(long-rank) 
3.7e-6 9.005e-5 1.23 e-6 1.67 e-4 3.65 e-3 

Calibration 
Slope 

p-

value 
Slope 

p-
value 

Slope 
p-

value 
Slope 

p-
value 

Slope 
p-

value 

1.40 0.15 1.04 0.87 1.07 0.65 0.91 0.61 3.65 0.04 

Joined test 

of model 

coefficients 

0.003 0.003 0.649 0.612 0.055 
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Figure 5.5 Kaplan-Meier survival curves stratified into low- and high-risk groups for Signature-0 vs 

volume feature (manual segmentation) (top) and Signature-0 vs volume feature (automatic 

segmentation) (bottom) on SDC-lung dataset (n = 228) 

 

The prognostic performance of both Signature-0 and volume features are sensibly superior to the 

overall stage (6th ed TNM) (p < 0.01). To compare the possible clinical utility of the proposed signature 

with volume feature and TNM staging, we performed a decision curve analysis (Appendix 5.1 Figure 

1), comparing once again manual and automatic segmentation, with no sensible differences found. 

Also, the time-dependent AUC and calibration curves analysis (Appendix 5.1 Figure 2 and 3) confirmed 

the superior performance of the radiomics approach over the prognostic power of TNM staging alone.  
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The radiomics quality score (RQS) and the Transparent Reporting of a Multivariable Prediction Model 

for Individual Prognosis or Diagnosis (TRIPOD) score are both 58%. 

To improve and expand the applicability of the proposed signature for patient staging, four prognostic 

categories have been defined to provide a more accurate prognosis. 

 

Figure 5.6. KM curves with four prognostic groups 

Three different threshold values for the predictions are applied to stratify patients into four groups 

with different overall survival. The thresholds are defined as the 10th percentile (T10), the 50th 

percentile (T50), and the 90th percentile (T90) of prognostic signature scores in the original model 

development cohort [18]. A predicted signature score ≤ T10 indicates a favorable prognosis. A 

predicted score > T10 and ≤T50 indicates a likely favorable prognosis. A predicted score > T50 and ≤ 

T90 indicates a likely unfavorable prognosis. A predicted score > T90 indicates an unfavorable 
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prognosis. Kaplan-Meier survival analysis has been performed for all patients (as reference) and for 

the four prognostic categories defined by the signature and Kaplan-Meier survival curves are shown 

in Figure 5.6. Considering, for example, the validation cohort was manually segmented, the overall 

survival difference across all four prognostic groups was statistically significantly different (p < 0.0001). 

Considering all patients, the probability of surviving 2 years after the start of treatment is 62.2% (i.e., 

when there is no stratification of patients based on the radiomics signature). Patients predicted by the 

signature to have a favorable outcome have a probability of 90.0% of surviving 2 years after treatment. 

For patients predicted by the signature to have a likely favorable, likely unfavorable, or unfavorable 

outcome, the probability of surviving 2 years after the start of treatment is 68.8%, 50.0%, and 23.5%, 

respectively.  

4 DISCUSSION 

The results of this study showed that the original radiomics signature, Signature-0, developed in 2012, 

outperforms the contemporaneous standard of care (TNM 6th edition) producing superior 

stratification between survivors and non-survivors. This holds true across time displayed in the 

Appendix 5.1 Figure 1. Furthermore, the added value of Signature-0 above TNM and, to a lesser extent, 

volume is addressed by decision curve analysis displayed in the Appendix 5.1 Figure 1 (i.e., what is the 

proportion of patients that are classified better concerning OS with the use of Signature-0 affecting 

treatment choice?). In brief, the clinical net benefit of Signature-0 in comparison to TNM and volume 

is calculated across a range of threshold probabilities, defined as the minimum probability of survival 

at which reconsideration of treatment choice would be warranted. This study demonstrates a real but 

limited clinical net benefit (<10%).  

From the results reported is evident that volume is a dominant component in the signature even 

though it is not directly included. However, this does not diminish the validity and significance of our 

results. The prospective validation of Signature-0 is a step forward on the path to reproducible and 

translational science [46].  

In the meantime, the AI field as well as the clinical understanding of NSCLC prognosis and the clinical 

tools available have advanced considerably. The original Signature-0 has now improved opportunities, 

thanks to the novel avenues of research in AI and radiomics. An improved signature should then be 

benchmarked against the current standard of care, as in the latest edition of the TNM staging (8th), 

which still presents all the limitations and drawbacks of a subjective and experienced dependent 

assessment tool, which were true in 2012 for the 6th edition as well.  

The prospective validation of a prognostic radiomics signature for survival prediction of NSCLC is the 

culmination of 8 years of scientific/clinical investigation. Thus, we also present this analysis in light of 

the proposed regulatory framework of AI-based software as a medical device (dynamic AI) [47]. The 

FDA is considering a total product lifecycle-based regulatory framework for these technologies that 

would allow for modifications to be made from real-world learning and adaptation, while still ensuring 

that the safety and effectiveness of the software as a medical device are maintained. Prognostic 

factors are very useful to get information about disease evolution and to construct homogeneous 

groups of patients. They can be used to guide the therapy and identify subgroups of patients where 

more aggressive therapy is needed.[48] The most reliable and used prognostic factor for NSCLC is 

cancer staging according to TNM classification [27]. The automatization of prognostic factors 

evaluation and quantification has been explored in the recent past, applying several computer-based 

methods for the automatic or semi-automatic staging of patients based on TNM criteria[49] or 

integrating histopathological, molecular, and clinical data via AI approaches.[50,51] These previous 

studies however only leveraged in different ways the same prognostic factors while here is presented 
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a novel and additional tool, which can successfully supplement the current clinical practice, regarding 

therapy decision making. This approach has been recently explored also for oropharyngeal cancer 

patients, with a prospectively validated radiomics signature for survival prediction in locally advanced 

Squamous Cell Carcinoma of the Head & Neck [52]. Specifically, in the lung cancer space, several 

methods to improve the prognostic stratification has been proposed, among these the Lung Cancer 

Prognostic score (LCPI) was built using stage, histology, mutation status, performance status, weight 

loss, smoking history, respiratory comorbidity, sex, and age [53]. The discrimination power of this 

approach is good (c-index equal to or higher than 0.7) and was externally validated with multicentric 

data. However, the collection of the complete set of clinical covariates needed could be cumbersome 

and the lack of one or more of this information might hamper the final prognostic results. Relying on 

a single source of information (i.e., the chest CT scan) could represent a viable alternative when the 

clinical and laboratory data are not readily available or not complete.  

4.1 LIMITATIONS 
This study utilizes 228 patients randomly sampled from the 864 patients recruited to the SDC-lung 

trial, this is due to funding constraints concerning the time and expertise required of clinical and 

technical professionals to acquire, segment, curate, quality control, transfer, store, process, analyze, 

and report on the patient data. While not ideal, it is extremely unlikely that this sample does not 

accurately represent the characteristics of the complete SDC-lung dataset.     

This study reports the performance of Signature-0 contextualized by the standard-of-care and 

compared with the TNM staging system, both have changed substantially since the discovery of 

Signature-0 in 2014. [54,55] Immunotherapy is now ubiquitous and the TNM staging has progressed 

from the 6th to the 8th edition. Nevertheless, the ability to accurately and precisely identify patients 

that are prognostically favorable to survive beyond 2 years of concurrent chemoradiotherapy is of 

benefit.[32] The current standard of care is adjuvant immunotherapy after this treatment, which can 

be burdensome for patients, is expensive, and can cause toxicity. Identifying patients that most benefit 

from immunotherapy with a cost-effective radiomics methodology would be ideal to facilitate the 

personalization of consolidation therapy [56] (the alternative of circulating tumor DNA is promising 

but is intrinsically more expensive). 

This study uses 2-year overall survival as a reasonable surrogate for long-term outcomes in patients 

with non-metastatic NSCLC treated with non-surgical therapy (i.e., chemoradiotherapy), with 

uncensored data for 2 years and censored data for up to 3 years. Due to the marked improvement of 

systemic treatments (e.g., immunotherapy) many patients are surviving longer with disease and the 

utility of 2-year overall survival as a reasonable surrogate for long-term outcomes is unclear.  

This study uses the radiotherapy planning CT acquired after the first cycle of chemotherapy, which 

likely impacts the features of the tumor relative to the baseline CT (acquired before the first cycle of 

chemotherapy) and introduces the following issues/biases concerning staging/treatment: Stage I 

patients did not receive chemotherapy and so the radiotherapy planning CT is equivalent to the 

baseline CT (i.e., unaltered GTV); Stage II-III did receive chemotherapy, if sequential only responders 

were irradiated (i.e., greatly altered GTV), if concurrent CT at planning is taken after one cycle of 

chemotherapy (i.e., modestly altered GTV). 

This study demonstrates the possibility of using AI to segment the GTV, which includes all areas of 

gross disease, including clinically involved lymph nodes (more and a higher status are associated with 

worse survival). However, the AI does not distinguish between these components and thus it is not 

possible to report here the contribution of each segmented component concerning the performance 

of the signature.  
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5 CONCLUSIONS  

To the best of our knowledge, this study demonstrates the first clinical evidence level 1b for a 

prognostic radiomics signature in lung cancer (individual inception cohort study with > 80% follow-up; 

clinical decision rule to split on the radiomics Signature-0 score as low/high likelihood for survival; 

validated in a single population testing the quality of a specific radiomics signature based on prior 

evidence). This has implications for the wider field as it demonstrates that other signatures could also 

be prospectively validated. This potentially fully automatic signature could be used as a clinical 

decision support tool at the multi-disciplinary-tumor board to evaluate the likelihood of survival of a 

patient with non-metastatic NSCLC patients treated by chemoradiotherapy. Potential applications of 

this signature include use as a stratification tool in future trials or for better therapy planning. The 

signature requires updating and evaluation in the context of immuno-oncology.   
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bone scintigraphies containing 
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Based on Abdalla Ibrahim, Akshayaa Vaidyanathan, Sergey Primakov, Flore Belmans, Fabio Bottari, 
Turkey Refaee, Pierre Lovinfosse, Alexandre Jadoul, Celine Derwael, Fabian Hertel, Henry C. 

Woodruff, Helle D. Zacho, Sean Walsh, Wim Vos, Mariaelena Occhipinti, François-Xavier Hanin, 
Philippe Lambin, Felix M. Mottaghy, Roland Hustin., Deep learning based identification of bone 

scintigraphies containing metastatic bone disease foci 

 

In this chapter, we have investigated a DL algorithm that can classify areas of increased uptake on 

bone scintigraphy scans, with automated reporting of the body region containing the lesion(s). We 

collected 2365 BS from three European medical centers. The model was trained and validated on 1203 

and 164 BS scans respectively. Furthermore, we evaluated its performance on an external testing set 

composed of 998 BS scans. We further aimed to enhance the explainability of our developed algorithm, 

using activation maps. We compared the performance of our algorithm to that of 6 nuclear medicine 

physicians.  The developed DL-based algorithm can detect MBD on BSs, with high specificity and 

sensitivity (0.80 and 0.82 respectively on the external test set), in a shorter time compared to the 

nuclear medicine physicians (2.5 minutes for AI and 30 minutes for nuclear medicine physicians to 

classify 134 BSs), that could be applied to any BS regardless of the patient’s gender and history of 

cancer. Further prospective validation is required before the algorithm can be used in the clinic. 
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1 BACKGROUND 

Metastatic bone disease (MBD) is the most common form of metastatic lesions [1,2]. The incidence of 
bone metastasis varies depending on the cancer type [3], yet around 80% of MBD arise from breast 
and prostate cancers [4]. MBD, as the name implies, is due to the propensity of these tumors to 
metastasize to bones, and it results in eventually difficulty treating painful lesions. Henceforth, early 
diagnosis is necessary for individualized management that could significantly improve a patient's 
quality of life [5]. 
MBD is usually detected using radionuclide bone scintigraphy (or bone scans, BS). BS are nuclear 
medicine images, which are used frequently to evaluate the distribution of active bone formation, 
related to benign or malignant processes, in addition to physiological processes. BS scans are indicated 
in a spectrum of clinical scenarios including exploring unexplained symptoms, diagnosing a specific 
bone disease or trauma, and the metabolic assessment of patients before and during the 
treatment[6,7]. BS combining whole-body planar images and tomographic acquisition (SPECT – single 
photon emission computed tomography) on selected body parts are highly sensitive, as they detect 
metabolic changes earlier than conventional radiologic images, with lower sensitivity to lytic lesions. 
However, depending on the pattern it may lack the specificity to identify the underlying causes. 
Therefore, a SPECT/CT that correlates the findings of bone scintigraphy anatomically is often useful 
and leads to a more specific diagnosis of the changes noted [8], although MRI scans may also be 
additionally requested to clarify the diagnosis. Hence, a tool to improve the specificity of decisions 
based on BS, and reduce the need for further imaging is a relevant unmet clinical need. 
Deep learning (DL) is a branch of machine learning (ML) and refers to data-driven modeling 
techniques, which apply the principles of simplified neuron interactions [9]. The application of imaging 
analysis techniques using artificial neurons in medical imaging started to draw attention decades ago 
[10], but it only became major research focus recently due to the advancement in computational 
capacities and imaging techniques [11,12]. The artificial neuron model is used as a foundation unit to 
create complex chains of interactions - DL layers. These layers are used to generate even more 
complex structures - DL architectures. The neural network (NN) training procedure is typically a cost-
function minimization process. The cost function measures the error of predictions based on the 
ground truth labels [13], and the DL network learns how to solve a problem directly from existing data, 
and apply it to data it has never seen. These complex models contain the parameters (weights) for 
millions of neurons, which can be trained for the recognition of problem-related patterns in the data 
being analyzed.  
Several studies investigated the potential of DL-based algorithms for analyzing bone scintigraphy scans 
[14–16]. The majority of these studies applied DL algorithms on BS scans of diagnosed (specific) cancer 
patients, which could limit the learning ability of the DL algorithm to differentiate MBD from other 
bone diseases. To the best of our knowledge, no study combined both male and female patients, with 
no-cancer patients included. 
In this study, we hypothesize that DL-based algorithms can learn the pattern of metastatic bone 
disease on bone scintigraphy scans, and differentiate it from other non-metastatic bone diseases. We 
investigate the potential of a DL-based algorithm to detect MBD on BS not limited to those of cancer 
patients using weakly-supervised detection based on activation maps obtained using the gradient 
weighted class activation mapping (Grad-CAM) method [17,18]. By doing so, we aim to develop a 
generalizable tool that can classify scans containing metastases and detect MBD on BS, regardless of 
the gender and malignancy status of the patient. Moreover, by extracting activation maps with the 
Grad-CAM method [19] and superimposing these maps to the original BD scans, we explored the 
explainability of the deep learning model’s predictions. This is very important to promote the 
application of these methods in the clinic and avoid the common misconception that sees DL models 
as “black boxes” without any real connection to clinical and imaging characteristics. As a 
complementary step, we explored the development of an automated label generator for the location 
of the detected metastatic foci. 

https://paperpile.com/c/XBqlYc/nwZx
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2 MATERIALS AND METHODS  

2.1 IMAGING DATA 
The imaging data were retrospectively collected from different European centers: Aachen RWTH 
University Clinic (Aachen, Germany), Aalborg University Hospital (Aalborg, Denmark), and Namur 
University Hospital (Namur, Belgium). The electronic medical records of these hospitals were searched 
for patients who underwent BS between 2010 and 2018. Patients for whom a definitive classification 
of the foci was available, mostly through further investigations, were further included. All images were 
acquired with anteroposterior (AP) and posteroanterior (PA) whole-body views. The imaging analysis 
was approved by the Aachen RWTH institutional review board (No. EK 260/19), and informed consent 
was obtained from all included patients. According to Danish National Legislation, the Danish Patient 
Safety Authority can waive informed consent for retrospective studies (approval 31-1521-110). All 
methods were carried out following the relevant guidelines and regulations [20]. The study protocol 
was published on clinicaltrials.gov (NCT: NCT05110430) 

2.2 STUDY POPULATION  
The imaging data were retrospectively collected from different European centers: Aachen RWTH 

University Clinic (Aachen, Germany), Aalborg University Hospital (Aalborg, Denmark), and Namur 

University Hospital (Namur, Belgium). The electronic medical records of these hospitals were searched 

for patients who underwent BS between 2010 and 2018. Patients for whom a definitive classification 

of the foci was available, mostly through further investigations, were further included. All images were 

acquired with anteroposterior (AP) and posteroanterior (PA) whole-body views. The imaging analysis 

was approved by the Aachen RWTH institutional review board (No. EK 260/19), and informed consent 

was obtained from all included patients. According to Danish National Legislation, the Danish Patient 

Safety Authority can waive informed consent for retrospective studies (approval 31-1521-110). All 

methods were carried out following the relevant guidelines and regulations [20]. The study protocol 

was published on clinicaltrials.gov (NCT: NCT05110430) 

2.3 IMAGE PRE-PROCESSING 
Every data point containing acquisition at two views (AP and PA) was resized to size (length = 256, 

height = 512) and the intensities were normalized to the range [0-1] using the minimum and maximum 

intensity of each image. For all the data points, image acquisitions at both views are appended beside 

each other as shown in Figure 6.1.  

 

Figure 6.1. Example of pre-processed BS scans used as input for model training 
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2.4 MODEL ARCHITECTURE, TRAINING, AND TESTING 
The training and validation datasets are composed of 1203 and 164 images respectively, coming from 

Centre A (Aachen) and B (Aalborg). The external test cohort is composed of 998 images collected at 

center C (Namur). A full overview of the patients’ cohort division between the different datasets is 

reported in Table 6.1. 

Table 6.1. Division of the patient's cohort between training, validation, and external test 

 

Training (n = 1203) Validation (n = 164) External test (n = 998) 

Centre A (Achen) 235 with metastasis 

668 normal 

58 with metastasis 

58 normal 

- 

Centre B (Albourg) 94 with metastasis 

206 normal 

24 with metastasis 

24 normal 

- 

Centre C (Namur) - - 411 with metastasis 

587 normal 

    

The model was trained on 329 images containing metastasis from Centre B (94) and A (235). At each 

epoch, the 874 images without any metastasis were shuffled and 329 images were randomly selected 

to train the model with balanced labels. VGG16 architecture with ImageNet pre-trained weights [21] 

was trained with categorical cross-entropy loss for 6 epochs with 200 steps per epoch. The model was 

trained with 3-channel input. The pre-processed input was duplicated in all the channels. During the 

training, the images were augmented [22] by flipping along the vertical axis so that the views at AP 

and PA were randomly represented on the left or right in the images.   

The last Max Pooling layer in the VGG16 model was followed by a Global Average pooling layer, 

followed by a fully connected layer with 512 units and ReLu activation, which is followed by a 

classification layer containing 2 units with Softmax activation [23] as shown in Figure 6.2. The network 

weights are updated by using the Adam optimizer at an initial learning rate of 1e-4 [24].  

The trained model’s performance was evaluated on an external test dataset (n = 998). 
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Figure 6.2. The architecture used in the study. Pre-processed BS scans resized to 512 * 512 dimensions were 
provided as input to the network. The network outputs a probability score for the presence and absence of 
metastasis on BS images.  X = block repetitions, Conv = Convolution kernel, ReLU = rectified linear unit, 3x3 =the 
size of the 2D CNN kernels. 

2.5 AUTOMATIC LABELER FOR THE LOCATION OF METASTASIS IN BONE SCINTIGRAPHY SCANS 
A dataset of BS was provided by the University of Aachen and contained the scans of 20 patients, each 

containing both AP and PA views. All scans had annotations for six anatomical regions (head, thorax, 

pelvis, shoulders, upper limbs, and lower limbs), as shown in Figure 6.3. The total of 40 scans was split 

into a training (32) and validation (8) set. 

 

Figure 6.3. Examples of annotations for two anatomical regions: head and thorax. 

 

A ResNext50 architecture [25] with ImageNet pre-trained weights [26] was trained with categorical 

cross-entropy loss. A 3-channel input was used where the first channel contained the scan while the 
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two others contained a segmented region. The segmented region was artificially created from the 

region annotations that came with the dataset. An example of a scan with a segmented region is 

shown in Figure 6.4. The last convolutional layer in the ResNext50 model was followed by a Global 

Average pooling layer which reduces the image spatial resolution, followed by a fully connected layer 

with 512 units and ReLu activation, which is followed by a classification layer containing 6 units with 

Softmax activation. The network weights are updated by using the Adam optimizer at an initial 

learning rate of 1e-5. Due to the limited number of scans, the fact that metastasis can occur in a lot of 

different locations, and the fact that metastatic regions are much smaller than the region annotations, 

extensive augmentation was applied during training. Three different augmentations were applied 

during training: 

1.   Variation in the highlighted region of the scan (head, thorax, pelvis, shoulders, upper limbs, and 

lower limbs) 

2.      Variation in the number of pixels highlighted 

3.      Variation in the shape of the highlighted region 

4.    Left/right flip of the scan 

 

Figure 6.4. Example of a scan with a segmented region in the pelvic area. 

2.6 QUANTITATIVE METRICS 
The quantitative model performance in this study was assessed using ROC AUC, sensitivity and 

specificity of the classifier, and confusion matrix (true positive rate (TPR), true negative rate (TNR), 

false negative rate (FNR), and false positive rate (FPR)). The model was evaluated according to the 

Checklist for AI in Medical Imaging (CLAIM) [27]and Standards for Reporting Diagnostic accuracy 

studies (STARD) [28]. 

2.7 IN SILICO CLINICAL TRIAL 
To better gauge the proposed DL model performance, we developed an application allowing the 

creation of a reference performance point by collecting nuclear medicine physicians’ feedback based 

on the visual assessment of BS scans.  We have enrolled 6 nuclear medicine physicians to measure 

their performance on the evaluation dataset of 134 BS images. This dataset was sampled from the 

Centre C images with an equal number of negative and positive cases. To collect participants' 

feedback, the application was displaying BS image, comment window and window filtering settings 
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(Figure. 6.5).  At the end of the feedback assessment excel file was generated. For better visual 

comparison we have evaluated DL-based AUC on the same dataset that has been used for visual 

assessment (134 BS images). We used bootstrapping with 100 iterations to generate DL-based AUC 

distribution. 

 
Figure 6.5. Screenshot of the application feedback window. 
 

3 RESULTS 

3.1 MODEL PERFORMANCE 
The classification performances of the DL model were evaluated on the external test set coming from 
Centre C, in terms of Area under the Curve (AUC). The AUC gives the diagnostic ability of a binary 
classifier to discriminate between true and false values, in this case, metastatic and non-metastatic 
bone disease. Figure. 6.6 (left) represents the ROC curve of the DL classification model, while Figure. 
6.6 (right) is the confusion matrix, which reports the percentages of correct and incorrect classification 
for each class (metastatic and non-metastatic). 
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Figure 6.6.  ROC curve for the classification DL model (left) and Confusion matrix (right) 

 

The model achieved an AUC of 0.897, TPR of 82.2%, TNR of 80.45 %, FPR of 19.55%, and FNR of 17.79 

% on the external test set.  The model achieved a CLAIM score of 64 % (27 out of 42 items) and a 

STARD of 50 % (15 out of 30 items). 

3.2 EXPLAINABILITY OF TRAINED MODEL BASED ON ACTIVATION MAPS 
During the testing phase of the trained model, for the scans that were predicted positive (i.e. 

metastatic disease), activation maps were extracted using the Grad-CAM method. The method uses 

the gradients extracted corresponding to the class with the highest predicted probability, flowing 

through the last convolutional layer, to produce the activation map.  The map was then resized to the 

size of the input image and superimposed on the original BS scan, allowing visual inspection of 

activated zones on the image as shown in Figures 6.7 and 6.8. The activated regions are compared 

with radiologists’ segmentation of metastatic spots for qualitative assessment of the explainability of 

the model's predictions.  
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Figure 6.7. BS images which are correctly classified along with their corresponding activation maps extracted 
using the GRAD-CAM method. Left) original BD scan, Right) Grad-CAM activation maps were obtained from the 
DL model. Scan correctly classified with a probability of 0.78 (top) and 0.99 (bottom) 

 

 
Figure. 6.8. BS images that are wrongly classified along with their corresponding activation maps extracted using 
the GRAD-CAM method, Left) original BD scan, Right) Grad-CAM activation maps were obtained from the DL 
model. Scan incorrectly classified with a probability of 0.79 (top) and 0.63 (bottom) 
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3.3 AUTOMATIC LABELER FOR THE LOCATION OF METASTASIS IN BONE SCINTIGRAPHY SCANS 
 

We developed an automatic labeler for the location of metastasis in BS after the metastatic regions 

have been extracted. This objective is of great interest as it would allow automated completion of the 

clinical report with the location of metastasis. The approach proposed here automatically predicts the 

anatomic locations of metastasis in BS, given the scan and metastatic region as input. For this purpose, 

a model was built to distinguish between 6 different anatomic regions: head, thorax, pelvis, shoulders, 

upper limbs, and lower limbs. At the end of the training, a categorical accuracy of 0.92 was reached 

on the validation set. However, segmented spots for the scans in the validation set were also artificially 

created. The trained model was therefore tested on an external dataset (n = 462) of BS scans with 

indications of metastatic regions extracted from the activation maps of the MBD classifier. The 

resulting labels were qualitatively evaluated. A few examples are shown in Figures 6.9 and 6.10.  

 
Figure 6.9. Example of a test scan with corresponding metastasis segmentation.  
The labels predicted by the location labeler model are ‘upper limbs’, ‘pelvis’, and ‘thorax’. 

 

 
Figure 6.10. Example of a test scan with corresponding metastasis segmentation.  
The labels predicted by the location labeler model are ‘lower limbs’, ‘pelvis’, ‘skull’, and ‘thorax’. 
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3.4 IN SILICO CLINICAL TRIAL 
The performance of nuclear medicine physicians based on the BS images was evaluated using AUC, 

where the median performance of the nuclear medicine physician was 0.895 (IQR = 0.087) and the 

median performance of DL based method was 0.95 (IQR = 0.024) (Figure. 6.11). 

 

Figure. 6.11. Violin plots showing the distributions of AUC scores for DL-based and manual (across physicians) 

metastases detection on BS (left); boxplots of the log of the time needed by DL algorithm and nuclear medicine 

physicians (right). 

On average, nuclear medicine physicians spent 30 mins to classifying all the 134 scans. Given that the 

physicians had no access to clinical information about the patients, it takes on average 15 seconds to 

review one scan. In comparison, our developed algorithm takes 2 and a half minutes to classify all the 

134 scans, which is around 2 seconds per patient scan. 

 

4 DISCUSSION 

In this study, we investigated the potential of DL-based algorithms to detect MBD on BSs collected 

from different centers without limiting the study population to cancer patients. Our results show that 

DL-based algorithms have a great potential to be applied as clinical decision aid tools, which could 

minimize the time needed by a nuclear physician to assess BSs and increase the diagnostic specificity 

of BSs. The application of the state-of-the-art classification techniques has yielded a performance 

similar to nuclear physicians with no background about the patient's history, which was further 

endorsed by the results of the in silico clinical trial.  

Besides classification and the extraction of activation maps, the first exploratory steps were taken 

towards the development of a model to automatically label the location of metastasis which can be 

extended further to automatic report generation in a clinical setting. This latter objective is of great 

interest as it would allow us to automatically complete the clinical report file with the location of 

metastasis. For this purpose, a classification model, based on ResNet50 architecture, was built to 

distinguish between 6 different anatomic regions: head, thorax, pelvis, shoulders, upper limbs, and 
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lower limbs. The ground truths to train the classifier consisted of images with indicated regions at the 

aforementioned locations. To create a robust model from the available labels, augmentation 

techniques were applied during training. These include variation in the highlighted region of one scan, 

variation in the number of pixels highlighted, and variation in the shape of the highlighted region [29]. 

This preliminary work resulted in a DL model able to classify activated metastatic regions into 6 

anatomical categories with a performance of AUC 0.92. These preliminary results showed the 

potential of a DL-based classifier to automatically label the location of metastasis in bone scintigraphy 

scans which can be used to finalize clinical reports. However, further validation of this model is needed 

in the future. 

Some studies previously investigated the potential of DL algorithms to classify lesions on BSs. A study 

investigated the potential of a DL algorithm trained on 139 patients to detect MBD on BSs of prostate 

cancer patients [16]. The authors reported that the nuclear medicine physicians participating in the 

study achieved higher sensitivity and specificity compared to the DL algorithm, though the differences 

were not statistically significant, and highlighted the possibility of involving DL in this clinical aspect. 

Another study also investigated the ability of DL algorithms to detect MBD in BS of prostate cancer 

patients [15]. The authors trained the algorithm on 778 BS that could accurately (accuracy of 91.61% 

± 2.46%) detect MBD for prostate cancer patients on BS. However, the authors did not report on the 

comparison with the performance of nuclear medicine physicians. Another study investigated the 

performance of two DL architectures for classifying BS in prostate cancer patients [30]. The study 

included a large number of scans, and the authors reported that the best model achieved an overall 

accuracy of 0.9. Anand et al. reported on the performance of EXINI bone software, a classification tool 

for classifying BS of prostate cancer patients based on bone scan index, on simulated and patient scans 

[31]. The authors reported that the software was more consistent in classifying BS compared to visual 

assessment. Uniquely, we trained our model on patients with and without a history of cancer. The use 

of our developed algorithm resulted in better classification results on the external test set compared 

to the median nuclear medicine physician performance, in a significantly shorter time. These results 

highlight the potential of such algorithms to become reliable clinical decision support tools that 

minimize the time a clinician needs to review bone scintigraphy scans. Furthermore, our automatic 

labeling function and the Grad-CAM maps allow the nuclear physicians to rapidly check the spots 

based on which the classification was made. 

While our study included a relatively large number of scans for training and externally testing the 

algorithm, several limitations of this study should be noted. Although the explainability of the model’s 

predictions was explored with qualitative assessment, this study lacks quantitative assessment of the 

activations due to the limited number of manual segmentations of metastasis (c.a. 25) on the external 

test dataset. Also, as shown in figure 6.7, the activated zones correspond to the injected spot in the 

hand, which shows the model’s overfitting [32] on features that are not relevant to the metastatic 

spot to classify the presence or absence of metastasis in images. Secondly, prospective validation is 

required to properly assess the impact of using the algorithm on the current standard of care. Lastly, 

the physicians ‘performances in the in-silico trial are only indicative, as they dealt with planar images 

only, without SPECT and CT, and without any clinical input. This merely approximates the actual 

routine clinical setting, but it provides a fair indication of the potential added value of DL in this setting. 
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5 CONCLUSIONS 

We developed a DL-based algorithm that can detect MBD on BSs, with high specificity and sensitivity, 

that could be applied to any BS regardless of the patient’s gender and history of cancer. Further 

prospective validation is required before the algorithm can be used in the clinic.  
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A non-invasive, automated diagnosis of 
Menière’s disease using radiomics and 

machine learning on conventional 
magnetic resonance imaging: A 

multicentric, case-controlled feasibility 
study 

Based on van der Lubbe, M.F.J.A., Vaidyanathan, A., de Wit, M. et al. A non-invasive, automated diagnosis of 

Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A 

multicentric, case-controlled feasibility study. Radiol med 127, 72–82 (2022). https://doi.org/10.1007/s11547-

021-01425-w 

In this chapter, we investigated the feasibility of Radiomics, as a computer-aided diagnostic tool for 

Menière’s disease. This study included 119 patients with unilateral or bilateral Menière’s disease and 

141 controls from four centers in the Netherlands and Belgium. Multiple radiomic features were 

extracted from conventional MRI scans and used to train a machine learning-based, multi-layer 

perceptron classification model to distinguish Menière’s disease from the control group. The primary 

outcomes were accuracy, sensitivity and specificity, positive predictive value, and negative predictive 

value of the classification model. The classification accuracy of the machine learning model on the 

validation set was 82%, with a sensitivity of 83% and a specificity of 82%. The positive and negative 

predictive values were 71% and 90%, respectively. The multi-layer perceptron classification model 

yielded a high-diagnostic performance in identifying patients with Menière’s disease based on 

radiomic features extracted from conventional T2-weighted MRI scans. This solution could serve as a 

fast and noninvasive decision support system, next to clinical evaluation in the diagnosis of Menière’s 

disease. 
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1 BACKGROUND 

Menière’s disease (MD) is a multifactorial condition of the inner ear characterized by recurrent 

episodes of vertigo and fluctuating aural symptoms like hearing loss, aural fullness, and tinnitus. The 

exact etiology of the disease is unknown. However, MD is strongly associated with the classical 

histological finding known as endolymphatic hydrops (EH) which is a distention of the endolymphatic 

compartment of the labyrinth [1]. The consistent finding of EH in temporal bones of patients with MD 

[2,3] led to defining EH as the pathological basis of MD. However, it also marked the beginning of a 

diagnostic challenge, as EH could only be identified post-mortem. As a consequence, MD remained a 

clinical diagnosis, and different symptom-based classification methods emerged over time. The most 

widely accepted diagnostic criteria are those proposed in 1995 by the American Academy of 

Otolaryngology-Head and Neck Surgery (AAO-HNS) and the revised criteria by the classification 

committee of the Bárány Society in 2015 [4].  

The clinical diagnosis of MD is complicated due to the diverse clinical presentation of the 

disease. MD appears to be a continuum from a single initial symptom, to the full-blown symptom 

spectrum. The time delay between the first presenting symptoms can reach up to five years [5], which 

hampers the clinical diagnosis. Moreover, patients’ complaints are subjective and difficult to objectify 

in testing. For example, due to the prominent and incapacitating aspect of vertigo spells, hearing loss 

is not always noticed and can also recover before audiometric measurements are performed [6], 

which may lead to an underestimation of MD cases.  

 A variety of additional audio-vestibular tests are available to support the clinical diagnosis, 

including electrocochleography and vestibular evoked myogenic potentials. Still, it remains 

challenging to differentiate between MD and other causes of vertigo due to substantial symptom 

overlap and the lack of specific biomarkers [7]. Therefore, new imaging techniques are under 

investigation as an MD diagnostic, which includes cone beam computed tomography (CBCT) [8] and 

magnetic resonance imaging (MRI) enhanced by contrast agents [9].  Until recently, MRI was only to 

exclude other diseases with a similar symptom presentation, such as vestibular schwannoma. 

However, the developments in gadolinium-based contrast-enhanced MRI enabled the in vivo 

visualization of EH as a biomarker in humans. Nowadays, this technique is broadly investigated, and 

its clinical utility as a new diagnostic test is debated in the literature [10].  

Still, there is no consensus concerning the best method of how to grade EH. In addition, the 

administration of gadolinium is an invasive and time-consuming procedure. Imaging is performed four 

hours after intravenous and 24 hours after intratympanic administration [9]. Furthermore, 

intravenous administration of gadolinium is contraindicated in patients with contrast allergies or renal 

failure [11]. Although no ototoxicity has been reported [12], other adverse effects such as gadolinium 

depositions in the brain have been observed [11,13], hence, a non-invasive imaging technique to 

diagnose MD would be preferable.  

 Increasing evidence indicates that with new image analyzing techniques, diagnostic, 

prognostic, and predictive information can be extracted from conventional image modalities [14–16] 

The process of converting standard medical images into mineable high-dimensional data by extracting 

quantitative image features and linking them to clinical outcomes is referred to as Radiomics [15,17]. 

To analyze such large amounts of quantitative image features, machine learning (ML) methods are 

often used to find patterns in the data. ML is a subdiscipline in the field of artificial intelligence that 

focuses on the ability of algorithms to “learn” from data (e.g., by adapting their structure) rather than 
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through explicit programming [18]. Particularly in oncology, [16,19] Radiomics is an emerging field, 

but it is also applicable to other medical disciplines. 

 Recently, a proof-of-concept study demonstrated the possible value of Radiomics within the 

diagnosis of MD by detecting differences in image features between patients with MD and controls in 

conventional MRI scans [20]. To further explore the application of Radiomics, the objective of this 

study was to develop a computer-aided diagnostic tool for MD by using a Radiomics approach 

combined with ML. Its performance and feasibility as a new diagnostic tool for MD were evaluated.  

2 MATERIAL AND METHODS 

2.1 ETHICAL CONSIDERATIONS 
This study was performed following the guidelines outlined by Dutch and Belgium legislation. 

Subjects were enrolled and fully anonymized by the local investigators (Maastricht University Medical 

Center +, University Hospital Antwerp, VieCuri Hospital Venlo, and Apeldoorn Dizziness Center) and 

were therefore not asked for their consent. According to the Medical Research Involving Human 

Subjects Act (WMO), ethical approval was not required due to the retrospective nature and 

anonymization of the data.  

2.2 STUDY DESIGN AND INCLUSION  
A retrospective, diagnostic case-control study was performed on patients with unilateral and 

bilateral MD. Medical records in the following centers in the Netherlands and Belgium were searched 

for eligible subjects:  

1. Maastricht University Medical Center + (MUMC+), The Netherlands 

2. Antwerp University Hospital, Belgium 

3. Apeldoorn Dizziness Center, The Netherlands 

4. VieCuri Hospital Venlo, The Netherlands 

Subjects were enrolled as “Patients” when MD was clinically diagnosed by an ENT-specialist as 

“Definite” MD according to the criteria of the American Academy of Otolaryngology-Head and Neck 

Surgery (AAO-HNS) [21] and/or Barany society (2015) [4], and in case a conventional MRI scan of the 

cerebellopontine angle was already available from the clinical setting. Both unilateral and bilateral 

cases of definitive MD were included. Subjects were enrolled as “Controls” when diagnosed by an ENT 

specialist with idiopathic asymmetric sensorineural hearing loss and when a conventional MRI scan of 

the cerebellopontine angle was available. The labyrinth least affected by hearing loss was considered 

to be the best representative of a ‘normal’ labyrinth and was included in the study.  

These patients were chosen as controls since this was a retrospective study and no MRI scans from 

‘healthy’ people without any hearing loss were available. Controls were excluded in case of a 

documented history of vertigo and/or balance disorders. Subjects (Patients and Controls) were 

excluded in case of motion artifacts and/or an unsharp delineation of the inner ear on the MRI scan. 
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2.3 STATISTICAL ANALYSIS 
A chi-square test of independence was performed for between-group comparisons of gender 

distribution and independent samples t-test for age distributions. Statistical analyses were carried out 

using Statistical Package for the Social Sciences (SPSS) software version 25.0 (IBM Corp, Armonk, NY). 

2.4 RADIOMICS WORKFLOW 
The radiomic workflow applied in this study consisted of four steps, as illustrated in figure 7.1.  

 

 
Figure 7.1. The workflow of Radiomics in this study is graphically presented in four steps. (1) T2-weighted 

MR images were collected from four different centers in the Netherlands and Belgium and manually 

segmented. The MR volumes and their corresponding segmentation masks were preprocessed into isotropic 

voxels. (2) Four types of features (a. Shape features, b. First-order statistic features, c. Texture features, and 

d. Features extracted after applying different filters) were extracted from the segmented masks. (3) Feature 

reduction was done by principal component analysis. (4) A multi-layer perceptron classifier was used for 

radiomic analysis 

2.4.1 MR imaging and segmentation  
Image acquisition and data anonymization were performed by the local investigators of the 

four centers. T2-weighted MR images were acquired with center-specific protocols on 1,5T and 3T 

scanners.  3D Slicer 4.8.1, an open-source software package for visualization and image analysis was 

used to segment the labyrinth from all MRI scans. Two authors (EB, MW) manually segmented all 

labyrinths using an inbuild region-growing algorithm (Grow from seeds) from 3D Slicer [22]. The first 

author (ML) cleaned the initial dataset and re-segmented the labyrinths in case of missing labels.  

The following preprocessing steps were performed [23]. First, to normalize the voxel sizes 

across the volumes, the MR volumes and their corresponding segmentation masks were resampled to 

isotropic voxels of length 0.5 mm using cubic spline interpolation. Secondly, voxel intensities were 

transformed using Z-score normalization to minimize the influence of contrast or brightness variation 

among the images. Thirdly, the transformed voxel intensities were discretized using a fixed bin width 

of 0.5. 
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2.4.2 Feature extraction 
In total, 812 radiomic features were extracted from the segmented masks using RadiomX, an 

In-House developed software toolbox in MATLAB 2014a (Mathworks, Natick, USA). First-order 

features were obtained from the intensity histograms using first-order statistics, including intensity 

mean, median, maximum, minimum, range, energy, entropy, kurtosis, and skewness. Shape features 

were obtained from the 3D shape of delineated volumes. Texture features were obtained from the 

spatial distribution of fractal dimensions and voxel intensities using 6 texture matrices, including grey-

level co-occurrence (GLCM), gray-level distance-zone (GLDZM), grey-level run-length (GLRM), grey-

level size-zone (GLSZM), neighboring grey-level dependence (NGLDM) and neighborhood grey-tone 

difference matrix (NGTDM). Furthermore, 3D wavelet, Laplacian, and Gaussian filters were applied to 

the original images to extract additional first-order, shape, and texture features. Mathematical 

descriptions of all features were previously published and presented as supplemental material with 

the permission of the corresponding authors [14,16,24]. 

2.4.3 Feature reduction 
To reduce the dimensionality of the extracted features, a Principal Component Analysis (PCA) was 

performed. PCA is an unsupervised, linear dimensionality reduction technique in which small numbers 

of uncorrelated variables are extracted as “Principal Components” to explain most of the variation in 

the data in lower dimensions [25,26]. As a result, essential information holding most of the variation 

in the data was preserved and non-essential parts with fewer variations were removed. Ten Principal 

Components were extracted from the analysis and used to train the model. The inverse PCA was 

applied to identify the mean contribution of each feature's overall principal components to predict 

the most important features. A mean contribution of > 0.7 was chosen to identify 15 features that had 

the largest contribution to the PCA. 

2.4.4 Machine learning classifier 
The dataset (“Patients” and “Controls”) was divided into a training and validation set of 74% and 

26%, respectively. The training set contained images from the centers located in Maastricht, Antwerp, 

and, Apeldoorn. The validation set contained images from Venlo, complemented with randomly 

selected scans from the other centers which were excluded from training. Next to this, a 10-fold cross-

validation was performed.  

 A Multi-Layer Perceptron classifier with 500 units in the hidden layer was trained with Adam 

optimizer at a learning rate of 0.001. Input to the model was the extracted Principal Components. The 

output layer consisted of a single neuron for each prediction class (Patients = 1 and Control = 0), which 

used the Softmax function to output a value between 0 and 1. The output represented the probability 

of the predicted classes. The regularization method “early stopping” was adopted during training to 

avoid overfitting the model [27]. 

2.5 OUTCOME MEASUREMENTS  
The primary outcomes of this study were accuracy, sensitivity and specificity, positive 

predictive value, and negative predictive value, of the classification model to distinguish MD from the 

control group. The precision (i.e., confidence interval) of each parameter was determined. 
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3 RESULTS 

3.1 STUDY POPULATION  
This retrospective study included 119 patients with MD (59 men, 60 women, aged 16-84; 

mean age 58 ± 14.0) and 141 controls with asymmetric sensorineural hearing loss (69 men, 31 women, 

aged 6-88; mean age 59 ± 14.3, in 41 controls gender was unknown) over four centers. There were 73 

labyrinths included from MUMC+ (65.8% MD, 34.2%  Control), 56 from Antwerp University Hospital 

(57.1% MD, 42.9% Control), 107 from Apeldoorn Dizziness Center (30.8% MD, 69.2% Control), and 24 

from VieCuri Hospital Venlo (25% MD, 75% control) There was no significant difference in age 

distribution between the patient and the control group and between the training and test cohort. The 

proportion of known males versus females did not differ between the test and training cohorts. 

However, significantly more males were included in the control group (chi-square test, p = 0,004). A 

significant difference in scan data between the training and test cohort was found (Independent 

sample t-test: p = 0.019) with MRI scans of the training cohort being performed on earlier dates. No 

significant differences in scan date between all patients with MD and controls were found. Details of 

the training and test cohort are presented in Table 7.1. 

 

Table 7.1. Details of the study cohort 

Group n Center Menière’s 

(n) 

Controls 

(n) 

Age 

(years) 

Gender 

(M/F) 

Date MRI 

 

Training cohort 

(74%) 

 

192 

A 

B 

C  

25 

31 

40 

20 

56 

20 

 

60 ± 8 

 

93/67* 

 

 

2004-2017* 

  Total 

 

96 96    

 

Test cohort 

(26%) 

 

68 

A 

B 

C 

D 

Total 

7 

2 

8 

6 

23 

4 

18 

5 

18 

45 

 

61 ± 9 

 

34/25 

 

 

2004-2017* 

Demographic details of the study cohorts. N = number of ears, Age is median age with median absolute 

deviation, * Significant difference between cohorts. 

3.2 PRINCIPAL COMPONENT ANALYSIS 
By applying the inverse PCA, the mean contribution of each feature overall principal 

components is illustrated in figure 7.2. As a result, the features with the most substantial influence on 

the principal components could be identified.  
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Figure 7.2. The mean contribution overall principal components aggregated for each feature. The red line 

indicates the cut-off value (< 0.7) for the most important features that contributed to the PCA 

3.3 MACHINE LEARNING CLASSIFIER 
The ML model´s performance in classifying patients with MD and controls is demonstrated in 

Table 7.2. The classification accuracy of the validation set was 82% with a sensitivity of 83%, specificity 

of 82%, and AUC of 0.83. The positive and negative predictive values were 71% and 90%, respectively. 

The ROC curve and the confusion matrix are shown in Figures 7.3 and 7.4. The results of the 10-folds 

cross-validation are also presented in Table 7.2. The mean classification accuracy across the 10-folds 

was 80%, with a mean sensitivity and specificity of  78% and 77%, respectively. The mean AUC was 

84% and the mean positive predictive value was 77% and the negative predictive value was 78%. 

 

 
Figure 7.3. The Receiver Operator Characteristic curve of the test cohort of the multi-layer perceptron 

classifier 
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Figure 7.4. The confusion matrix of the test cohort of the multi-layer perceptron classifier. The true labels 

are the diagnostic labels after subject inclusion. The predicted labels are the labels predicted by the 

classifier 

 

Table 7.2. Classification performance  

 Training cohort Test cohort 10-fold cross-validation 

Patients vs. Controls  96 vs. 96 24 vs. 44  

Accuracy (%) 72.9 82.3  80.0  
AUC (95% CI)  80.6 (80.5-81.2) 86.9 (86.6-88.8) 83.6 (77.9-89.3) 
Sensitivity (95% CI) 80.2 (80.0-81.1) 83.4 (82.6 -86.9) 78.3 (71.4-85.3) 
Specificity (95% CI) 65.6 (65.3-66.3) 81.8 (81.4-83.7) 77.5 (70.5-84.5) 
Positive predictive value (95% 
CI) 

70.0 (69.7-70.6) 71.4 (70.4-74.1) 77.6 (69.9-85.4) 

Negative predictive value 
(95% CI) 

76.8 (67.5-77.8) 90.0 (89.7 -92.3) 78.4 (70.6-86.3) 

Performance of the multi-layer perceptron classification metric to distinguish MD from healthy controls 

showing the area under the curve of the Receiver Operating Curve, sensitivity, specificity, positive predictive 

value, and negative predictive value. Abbreviations: CI = confidence interval, AUC = area under the curve 

4 DISCUSSION 

The purpose of this study was to explore the feasibility of Radiomics as a new diagnostic tool 

in MD to assist the diagnostic trajectory and to provide a better understanding of the underlying 

process of the disease. This study demonstrated that radiomic features extracted from conventional 

MRIs can be used to discriminate MD patients from ‘normal’ controls. In this small, multicentric 

dataset, a machine learning-based multi-layer perceptron network yielded a precise, high-diagnostic 

performance in identifying patients with MD with an accuracy of 82%. This implies that a computer-

aided diagnosis of Menière’s disease might be possible. In the future, Radiomics could be 

implemented as valuable decision support next to clinical evaluation.  
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Within neuro-otology, Radiomics is a very new concept. This study pioneered the 

development of a computer-aided diagnostic tool for MD by using a radiomic approach. The results of 

this study are in line with the earlier published proof-of-concept [20], where it was demonstrated that 

significant differences in radiomic image features existed between MD patients and a control group.  

One of the main benefits of Radiomics is that no contrast agents or expert radiologists are 

required. Other studies have also investigated the feasibility of the radiological diagnosis of MD 

without the use of contrast agents, by evaluating the morphoanatomy of the membranous labyrinth 

[8], or by manually measuring the length and width of the saccule and/or the utricle. One publication 

showed changes in the membranous labyrinth between patients with MD and healthy subjects on 3D 

CBCT and suggested the usefulness of 3D CBCT imaging for the objective diagnosis of MD [8]. However, 

the diagnostic value has not been clinically evaluated yet. Three other publications have documented 

and evaluated measurements of the vestibule on T2-weighted MRI of patients with definite MD and 

healthy controls [28–30]. One of these papers reported the maximum saccular height in healthy 

volunteers to be 1.6 mm [28]. Another reported a high specificity (95%) but a low sensitivity (63%) for 

a cut-off value of 1.51 mm for saccular height [29]. Measurements of the absolute utricle area and the 

utricle-to-vestibule area ratio were also identified as predictors of MD and yielded a sensitivity of 44% 

and 75% and a specificity of 81% and 53%, respectively.  These results suggest that enlargement of 

the endolymphatic space, and thus EH, can be detected using non-contrast T2-weighted MRI by 

human readers. However, the main disadvantage of these techniques is that only vestibular hydrops 

is evaluated while the Radiomics method in this study, assessed the entire labyrinth. Moreover, 

human performances on non-contrast MR imaging seem to exhibit lower diagnostic performance 

compared to Radiomics. To prove this assumption, prospective studies that will perform Radiomics 

and vestibular measurements on the same dataset with non-contrast T2-weighted MRIs, are needed.  

Another benefit of Radiomics is that it is less prone to interference from human-induced 

factors compared to contrast-enhanced MR imaging, which requires specific expertise. Therefore, 

Radiomics is not just reserved for specialized tertiary centers. It can be used as a standardized decision 

support system that might reduce interobserver variability within and between centers and allows 

more widely accessible diagnostic care for patients with MD.  

4.1 LIMITATIONS 
This study has several limitations. First, it is important to recognize that no gold standard test 

is available to compare the Radiomics method with. This retrospective study included patients 

clinically diagnosed with definite MD according to the AAO-HNS criteria [4]. These patients, however, 

do not represent the full clinical spectrum. After all, patients who do not fulfill these criteria due to 

the fluctuating aspect of hearing loss (not captured by audiometry) or atypical symptom presentation 

might be an interesting group to explore with Radiomics. Especially since they might be very difficult 

to diagnose with the current clinical diagnostic tools available.  

Secondly, the duration of the disease was not considered in this study cohort. Disease duration 

might alter the morphology of the labyrinth. For example, the severity of endolymphatic hydrops in 

patients with MD seems to increase with the duration of the disease [34,35]. Perhaps, the disease 

duration could also alter the composition of the endolymphatic fluid as well. The patient cohort in this 

study probably contained patients with different disease stages. Early disease stages might be 

challenging to recognize since important image features were not yet significantly present. Adding 

clinical information about disease duration would probably have improved the model’s performance 
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regarding classification. Although changes in the vestibular aqueduct have been proven to be valuable 

in the diagnosis of MD [36], the vestibular aqueduct was not considered in this study due to difficulties 

in manually segmenting this structure. Extracting Radiomic features from the vestibular aqueduct 

might have improved the model’s performance as well.  

Thirdly, the study dealt with a relatively small dataset consisting of MRI scans from four 

independent centers. In the absence of sufficient data points, it was inevitable to divide the data into 

just a training and validation set, where ideally a third ‘test’ data set is required. Therefore, in this 

study, an independent dataset (Venlo) was included for validation to better detect overfitting. 

Overfitting happens when the model learns details and noise to fit the training data with high accuracy 

but fails to a new set of data [27,37]. The addition of an external validation set helps to apply early 

stopping when the model starts to overfit on the training dataset (i.e., when the training loss 

decreases, and validation loss starts to increase). Due to the small size of the training dataset, 

overfitting could not be avoided. In this study, the risk of overfitting was contained by diversifying the 

training data. This was done by acquiring data from four different centers where each center had 

different scan parameters and by manually segmenting the labyrinth by three different observers. 

Therefore, the model should be more generalizable for differences in scan parameters and inter-

reader segmentations. The common regularization method, “early stopping” was also adopted during 

training to avoid overfitting the model [27].  

 Lastly, the heterogeneities in voxel spacing and slice thickness between the images were 

handled by isotropic resampling. This could have induced noise due to interpolations. Further study 

with a larger training dataset and/or using convolutional neural networks for the direct extraction of 

deep features from the raw MRI [38] might improve the diagnostic accuracy and the generalizability 

of the model.  

4.2 CLINICAL IMPLICATIONS AND FUTURE PERSPECTIVES  
Radiomics is a new imaging analysis technique that enables a noninvasive, fast, and accurate 

diagnosis of MD. After validating the current results in a prospective study, it could easily be 

implemented in clinical routine since almost every patient who is suspected of MD receives a 

conventional MRI. The output of the multi-layer perceptron classifier provides a value between 0 and 

1, which represents the probability of the predicted classes. This will allow clinicians to interpret the 

probability of having an MD based on the features extracted from MRIs together with the clinical 

profile of the patients. The potential role of Radiomics, for now, is mainly to aid the clinical diagnosis 

of MD as a clinical decision support system. However, there lie more perspectives in the future for 

Radiomics.  

In the current study, only patients with MD were included. However, Radiomics might apply 

to other labyrinthine disorders as well. One study indicated that cochlea CT image features can be 

useful biomarkers for predicting sensorineural hearing loss in patients treated with 

chemoradiotherapy for head and neck cancer [39]. It would be valuable to study the relationship 

between radiomic features and hearing loss in different causes of sensorineural hearing loss. 

Performing Radiomics in more patients with different disorders will eventually allow a comparison 

between the general vestibular population and a healthy population. Performing a cluster analysis 

might reveal a reclassification of vestibular disorders based on similarities in Radiomic signatures. 

Compared to symptoms, Radiomic signatures might better classify vestibular disorders. Finally, to 

provide a fully automated computer-aided diagnosis for MD, automated segmentation of the 
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labyrinth on MRI would be the next goal. Several studies already demonstrated the potential of auto-

segmentation in medical images [40]. These methods will probably also apply to the labyrinth.  

5 CONCLUSION  

The automated extraction of Radiomic features from conventional MRI scans proved to be 

valuable to discriminate between patients with Menière’s disease and ‘normal’ controls. In the current 

study, the machine learning-based multi-layer perceptron network yielded a precise, high-diagnostic 

performance in identifying patients with Menière’s disease with an accuracy of 82%. In the future, 

Radiomics could be implemented as a fast, noninvasive, and accurate decision support system, next 

to clinical evaluation, in the diagnostic trajectory of Menière’s disease.  
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Deep learning for the fully automated 
segmentation of the inner ear on MRI 

 

Based on Vaidyanathan, A., van der Lubbe, M.F.J.A., Leijenaar, R.T.H. et al. Deep learning for the fully automated 

segmentation of the inner ear on MRI. Sci Rep 11, 2885 (2021). https://doi.org/10.1038/s41598-021-82289-y 

 

In this chapter, we propose a deep-learning approach for the fully automated segmentation of the 

inner ear in MRI. A 3D U-net was trained on 944 MRI scans with manually segmented inner ears as a 

reference standard. The model was validated on an independent, multicentric dataset consisting of 

177 MRI scans from three different centers. The model was also evaluated on a clinical validation set 

containing eight MRI scans with severe changes in the morphology of the labyrinth. The 3D U-net 

model showed precise Dice Similarity Coefficient scores (mean DSC- 0.8790) with a high True Positive 

Rate (91.5%) and low False Discovery Rate and False Negative Rates (14.8% and 8.49% respectively) 

across images from three different centers. The model proved to perform well with a DSC of 0.8768 on 

the clinical validation dataset. The proposed auto-segmentation model is equivalent to human readers 

and is a reliable, consistent, and efficient method for inner ear segmentation, which can be used in a 

variety of clinical applications such as surgical planning and quantitative image analysis. 
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1 BACKGROUND 

The inner ear, also known as the labyrinth, is a complex structure located in the temporal bone. It 

roughly consists of the cochlea, the vestibule, and the semi-circular canals. Understanding changes 

and variations within these structures can help diagnose and predict several conditions [1], such as 

inflammatory and neoplastic processes. Technological developments in imaging techniques have 

allowed (neuro)radiologists to evaluate the human labyrinth, with recent advances increasing the level 

of detail [1]. Moreover, applications of artificial intelligence and the quantitative assessment of 

medical images for the non-invasive exploration of anatomical structures and the classification of 

diseases have remarkably increased in recent years [2]. 

The process of the automated extraction and analysis of large amounts of quantitative information 

from medical images is known as radiomics [3], [4]. A recent study investigated the value of radiomics 

for the diagnosis of Meniere’s disease (MD), an inner ear disorder characterized by episodic vertigo 

spells, hearing loss, and tinnitus [5]. Other labyrinthine disorders such as sensorineural hearing loss 

might benefit from quantitative image analysis as well [6].  

Image segmentation is a critical step to work toward fully automated diagnostic tools for inner ear 

disorders. Manual segmentation requires experienced readers, is time-consuming, and is prone to 

intra-and inter-observer variability [7]–[9]. Over the past years, several automatic and semi-automatic 

inner ear segmentation methods were proposed for both MRI and CT imaging [10]–[14], including 

region-growing, thresholding and edge detection [15], model-based [10], [14], atlas-based [12], [13] 

and machine-learning techniques [11]. The inner ear’s small and complex structure makes 

segmentation challenging, especially in MR imaging due to non-homogenous image intensities [10], 

[11]. 

 Recent work proposed a statistic shape model (SSM) for inner ear segmentation in MR images 10,14. 

However, the proposed methodology presents a high computational burden, both in terms of time 

and cost. Another recently published segmentation model showed very good agreement between an 

atlas-based segmentation and the manual gold standard [12], yet requires manual intervention. 

Additionally, the segmentation performance of atlas-based methods decreases for complex structures 

with variable shapes and sizes [16]. 

Recent studies have demonstrated the successful application of deep learning techniques for 

detection, segmentation, and classification tasks in the medical field [17]. Among deep learning 

techniques, the U-Net architecture is a specific type of convolutional neural network (CNN) consisting 

of multilayer neural networks. These networks have been implemented successfully, especially for 

auto-segmentation in medical images[18], [19]. Although U-Net-based deep learning approaches do 

exist for the segmentation of the inner ear [18], [20], they lack the incorporation of anatomical 

variations, pathological situations, or missing anatomical structures, which are part of daily clinical 

practice. Hence, there is currently no fully automated, generic segmentation method for the inner ear 

to meet the growing demand for developments in 3D visualization and quantitative image 

assessments.  

Therefore, this study’s objective was to develop a deep-learning approach for the automatic 

segmentation of the inner ear in clinical MR images, focusing on the robustness of the method in 

varying clinical situations, and to evaluate its performance and generalizability with manual 

segmentation as reference.  
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2 MATERIAL AND METHODS 

2.1 ETHICAL CONSIDERATIONS 
This study was performed following the guidelines outlined by Dutch and Belgian legislation. MRI scans 

were collected and fully anonymized by the local investigators of four centers. The ethics committee 

of University Hospital Antwerp approved the study (Approval number - 17/09/093) and written 

informed consent was obtained from the participants. The other centers waived the ethics approval 

due to the retrospective nature and full anonymization of the data according to the Medical Research 

Involving Human Subjects Act (WMO). 

2.2 AUTOMATIC SEGMENTATION WORKFLOW 
 The workflow applied in this study consisted of four steps and is illustrated in Figure 8.1. Each 

step of the workflow is detailed in the following paragraphs. 

 

 

Figure 8.1. The workflow of auto segmentation of the inner ear in this study is graphically presented in four 

steps. A. The image acquisition from four different centers is divided into training, validation, and an 

independent test set. B. Manual segmentation of the labyrinth and pre-processing steps consisting of isotropic 

voxel resampling, intensity rescaling, and center cropping. C. Extending the data set (data augmentation) by 

flipping and rotating the input images and training the model. D. Validation and testing the model on an 

independent test cohort. 

2.3 TRAINING DATASET 
A total of 1203 images of patients who underwent an MRI scan of the cerebellopontine angle for 

diverse neuro-otological indications in the period of December 2015 to April 2019 in Maastricht 

Medical University center  (center A) were collected and fully anonymized. All high-resolution T2-

weighted images were acquired in 1.5 and 3 Tesla (T) MRI scanners, from different vendors with a 

variety of high-resolution T2-weighted sequences (3D cochlea, DRIVE, SPC_TRA_ISO), with local 

optimized protocols. MRI scans of the cerebellopontine angle were included if they allowed labyrinth 
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visualization with at least a portion of the labyrinth recognizable and suitable for manual 

segmentation. MRI scans, which did not allow a clear manual segmentation, were excluded from this 

study. In total, 259 MRI images were excluded due to unsuitable sequences (DWI, T1, SURVEY MST), 

poor quality, or skewed MR images. The final training dataset included MRI scans of 944 cases (Table 

8.1).  

2.4 VALIDATION AND TEST DATASET 
The validation dataset included MRI scans of 99 cases collected from Maastricht University Medical 

Center + (center A) in the period from 2005 to 2015 (Table 8.1). MRI scans collected from 3 different 

centers, University Hospital Antwerp (center B), Viecure Hospital Venlo (center C), and Apeldoorn 

dizziness center (center D) from 2005 to 2017 (Table 8.1) were used as an independent Test dataset. 

Both validation and test datasets consisted of T2-weighted MR images of the cerebellopontine angle 

of patients with uni- or bilateral definitive Meniere’s disease and idiopathic asymmetric sensorineural 

hearing loss.  

 

 

2.5 MANUAL SEGMENTATION 
A team of six readers was trained by the second author (MvdL), an experienced clinician and 

researcher in inner ear imaging, to manually segment the labyrinth on both sides in 3D Slicer 4.8.1[19]. 

Manual segmentation was facilitated by intensity-based thresholding and region-growing algorithms. 

The original MRI scans and the manually segmented masks were visualized by 3D maximum intensity 

projections as shown in Figure 8.2. This provided an overview of the manually segmented results 

which allowed for a thorough quality assessment. All segmentations were curated by the experienced 

reader (MvdL), where any missing or incorrectly segmented masks were re-segmented by the 

experienced reader (MvdL). The final segmentation results served as the ground truth for training 

CNN. The independent validation and test datasets were segmented and curated by the experienced 

reader (MvdL). The resulting manual segmentations on the test dataset were used as the ground truth 

(reference standard). 
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Figure 8.2. Maximum intensity projection of a sample MR in the axial, sagittal, and coronal plane showing a 

manual segmentation of the labyrinth in yellow. Left: axial plane, right top: Coronal plane, right bottom: sagittal 

plane  

2.6 PRE-PROCESSING  
To generate homogeneous MRI volumes as input for the model, the following pre-processing steps 

were performed. Firstly, all volumes were resampled by B-spline interpolation to an isotropic voxel 

size of 0.45 mm. Secondly, the intensities of the MRI volumes were normalized to the range [0-1] using 

the minimum and maximum intensity of each volume. Lastly, since the model’s architecture required 

inputs of the same dimensions, a center crop of 256 x 256 x 64 pixels was obtained from the pre-

processed volumes. This crop size was large enough to contain contextual information about the inner 

ear. Images smaller than 256 x 256 pixels in the transversal plane and 64 pixels in the slice direction 

were padded with zeros. 

2.7 MODEL ARCHITECTURE 
The model’s architecture is based on a classical 3D U-net [21], as illustrated in Figures 8.3a and 8.3b. 

It comprises an encoder, a decoder block, and skip connections. The encoder network is a contracting 

path with convolution layers, which extracts high-level features, decreasing the spatial resolution at 

each layer. The decoder network is an expanding path, which increases the spatial resolution by up-

sampling and uses the feature information to segment the pixels corresponding to the Region of 

interest. Skip connections, between encoder and decoder, allow retrieval of fine details, which might 

be lost during spatial down-sampling.  

The model’s architecture was adapted with attention gates, as the relevant features of the inner ear 

showed large shape variability and were very small compared to the surrounding structures [22].  

The attention gates highlight the regions that correspond to the inner ear and suppress the regions 

that correspond to the background. The highlighted features are propagated by the skip connections 

from the deep stages of contracting paths to the expanding paths. More specifically, attention Gates 

are used to propagate the important spatial information corresponding to the inner ear from the 

encoding to the decoding part of the model. As shown in Figure 8.3b, the input feature maps from the 

encoder part of the network are scaled by the attention coefficients generated by the Attention Gates, 

thereby outputting the features relevant to the inner ear. The scaled features are then concatenated 

with the up-sampled output feature maps at each level in the decoder part of the network. 
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Since different components of the inner ear are more easily accessible at different scales, we 

additionally input the same volume at 3 different scales along the encoder path, which has been 

previously described as an input image pyramid by Oktay et al. [22]. 

 

Other network parameter changes included an increase in the number of convolutional filters from 

16 to 128 in the encoder network. Each Maxpooling layer reduced the image spatial resolution by a 

factor of two. Along the decoder path, transposed convolutions were used for up-sampling which 

increased the image size by a factor of two at each layer. All the convolutional blocks included 3D 

convolutions [23], ReLu activation [24] and Instance Normalization [25]. 

 

 

Figure 8.3a. The proposed 3D U-Net-based architecture used in the study. MRI volumes, at multiple scales, were 

provided as input to the encoder network. The decoder network outputs a score to classify each voxel as an 

inner ear or not. Notations in blue text (a x a x a x b) highlight the spatial resolution (a x a x a) and the feature 

map count (b). X = block repetitions, IN = Instance Normalization, Conv = Convolution kernel, ReLU = rectified 

linear unit, 3x3x3 =the size of the 3D CNN kernels. 

 

 

Figure 8.3b. Components of Attention Gating Block. The block receives as inputs, the up-sampled output feature 

map at each scale in the decoder and the feature map from each scale in the encoder. Attention coefficients 

generated, scale the input feature maps from the encoder. 
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2.8 TRAINING, VALIDATION, AND TESTING 
The model was trained with the pre-processed volumes and their corresponding ground truth labels 

of the training dataset. Randomly selected input volumes were augmented by vertical flipping or 

rotation during training. The network weights were initialized by using the He-normal initialization 

method [26] and updated by using the Adam optimizer [27] at an initial learning rate of 1e-4.  

Since the number of positive voxels (i.e. part of the inner ear) and the negative voxels were highly 

imbalanced, Tversky loss [28] was used as an objective loss function while training the model, which 

penalized false negatives more than false positives at a false positive penalty score (β) of 0.3 and a 

false negative penalty score (α) of 0.7. This approach emphasizes learning features corresponding to 

the positive voxels. The loss was calculated in a mini-batch of two images per iteration and at the end 

of each epoch, Tversky loss was calculated on the model’s predictions on the validation dataset to 

ensure validation loss convergence (i.e., decrease in validation loss). The final model’s performance 

was evaluated on the multicentric, independent test dataset.   

2.9 OUTCOME MEASUREMENTS 
The main outcomes of this study were the Dice similarity coefficient (DSC), true positive rate (TPR), 

false positive rate (FPR), false negative rate (FNR), and false discovery rate (FDR) 

As a secondary outcome, a subjective evaluation of clinical validation was performed by the second 

author (MvdL) in consensus with an experienced neuroradiologist (A.A.Postma). Towards clinical 

implementation, it is critical that a deep learning model can segment the inner ear under all 

conditions, including those that might alter the shape of the inner ear (e.g., by pathology). Therefore, 

eight MR images, with their corresponding masks, were selected by the second author (MvdL) in which 

the signal intensities of the inner ear were altered either by pathology or post-therapeutic changes. 

These scans were left out of the training dataset and were used for clinical validation of the 

performance of the model.  

2.10 QUALITATIVE ASSESSMENT – IN SILICO CLINICAL STUDY 
An in silico clinical study was performed to make a qualitative comparison between manual and 

model-generated segmentations for 50 MRI volumes randomly selected from the test cohort. In-

house developed software was used to display pairs of segmentations (automated vs manual), at 

randomized screen positions (left or right) blinded to the participants, overlaid on MRI images, as 

shown in Figure 8.4. The software allowed for scrolling through all image slices and adjustment of 

window level settings. We enrolled 7 participants (3 computer scientists working in the field of medical 

imaging and 4 radiologists with an average experience of 2.5 years). For each image, the participants 

were asked to select their preferred segmentation. For each participant, the qualitative preference 

score was defined as the percentage of cases with preferred automated segmentation. 
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Figure 8.4. Example automated and manual segmentation overlaid on MRI volume as displayed by the software.  

3 RESULTS 

The final training dataset included MRI scans of 944 cases (489 men, 455 women, aged 41-74; mean 

age 57 ± 15). The final validation dataset included MRI scans of 99 cases from center A (69 men, 30 

women, aged 43-69; mean age 56 ± 13) and 177 cases from centers B, C, and D (79 men, 59 women, 

aged 45-74; mean age 59 ± 14). 

3.1 SEGMENTATION PERFORMANCE  
 The segmentation accuracy was evaluated against the ground truth by assessing the DSC. DSC 

measures the overlap between the reference and the model’s output. The overall average metrics of 

segmentation accuracy, DSC, TPR, FNR, FDR, and FPR are summarized in Table 8.2. Figure 8.5 shows a 

comparison between ground truth volume and predicted true positive volume on the validation and 

test dataset. Figure 8.6 shows the distribution of DSCs on the validation and test dataset. The 

correlation between the true positive volume and ground truth volume was also investigated. In 

Figures 8.7a and 5.7b, agreements for ground truth volume and predicted volume are graphically 

displayed by Bland–Altman plots. Figures 8.8a and 8.8b show an example of a well-predicted and 

poorly predicted segmentation.  
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Figure 8.5. The quantitative analysis shows linear correlations between the Ground Truth Volume and the 

Predicted True Positive Volume for the validation (plot in blue) and the test sets (plots in orange). The plot of 

center D shows 2 clear outliers which do not fit the trendline. This suggests under-segmentation of the inner ear 

in 2 cases belonging to the test cohort from Center D. 

 

Figure 8.6. Distribution of DSC on the validation (blue curve) and the test dataset (orange curve). The 

distribution corresponding to Center C and D show outliers (DSC < 0.7) which means less overlap between 

Ground Truth and predicted segmentation. The distribution also shows that the majority of the predictions 

have DSC between 0.8 to 1.0. 
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Figure 8.7a. Bland–Altman plot for inner ear volume of the entire test cohort showing percentage difference 

between Predicted Volume (PV) and Ground Truth Volume (GTV) as a function of the average of Ground Truth 

and Predicted Volume. The solid line shows the mean difference and the dotted line shows the limits of 

agreement. PV = Predicted Volume of the inner ear, GTV = Ground truth Volume of the inner ear. The plot shows 

five clear outliers (Red dots) with three cases that were under-segmented by 20%, 40%, and 60% and two cases 

that were over-segmented by 40% and 60% respectively. The plot also shows the relationship between the DSC 

metrics and the level of under/over-segmentation percentage. The outliers correspond to the DSC<=0.80.  

 

Figure 8.7b. Bland–Altman plot for inner ear volume of the entire test cohort showing percentage difference 

between Predicted Volume (PV) and Ground Truth Volume (GTV) as a function of the average of Ground Truth 

and Predicted Volume after excluding the outliers shown in Figure 8.5 (DSC <= 0.80). The solid line shows the 

mean difference and the dotted line shows the limits of agreement. PV = Predicted Volume of the inner ear, GTV 

= Ground truth Volume of the inner ear. The plot shows that the model, on average tends to over-segment by 

9%. 
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Figure 8.8a. Example of a well-predicted segmentation. The first row denotes the ground truth segmentation. 
The second row contains the model’s segmentation. 1a. Ground truth, axial plane. 1b Ground truth, sagittal 
plane. 2c. Ground truth, coronal plane. 2a. Predicted mask, axial plane. 2b Predicted mask, sagittal plane. 2c. 
Predicted mask, coronal plane. DSC: 0.92, Ground Truth Volume: 465.37 mm3, True Positive Volume: 
445.32mm3, True Positive Rate: 95.69%, False Negative Rate: 4.3%. False Discovery Rate: 11.7% 

 

 

Figure 8.8b. Example of poor segmentation. The first row denotes the ground truth segmentation. The second 

row contains the model’s segmentation. 1a. Ground truth, axial plane. 1b Ground truth, sagittal plane. 2c. 

Ground truth, coronal plane. 2a. Predicted mask, axial plane. 2b Predicted mask, sagittal plane. 2c. Predicted 

mask, coronal plane. DSC: 0.48, Ground Truth Volume: 406.05 mm3, True Positive Volume: 137.96mm3, True 

Positive Rate: 33.97%, False Negative Rate: 66.02%. False Discovery Rate: 1.5% 
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Table 8.2. Performance of the proposed 3D U-Net for the automatic segmentation of the inner ear 

 Validation cohort Test cohort 

Manual vs. Fully automated  99 vs. 99 177 vs. 177 

DSC 0.86 (CI = 0.85-087) 0.87 (CI = 0.87-0.88) 

True Positive Volume (mm3) 441 (CI = 424-459) 412 (CI = 403-421) 

False Positive Volume (mm3) 123 (CI = 113-134) 72 (CI = 67-76) 

False Negative Volume (mm3) 12 (CI = 8-16) 39 (CI = 34-44) 

True Positive  Rate (%) 97.7 (CI = 97.2-98.3) 91.50 (CI = 90-92.5) 

False Discovery Rate (%) 21.8 (CI = 21.3-22.2) 14.8 (CI = 14.2-15.4) 

False Negative Rate (%) 2.2 (CI = 1.6-2.7) 8.5 (CI = 7.4-9.6) 

True Positive Volume: the volume correctly segmented as the inner ear, False Negative Volume: the volume 

incorrectly not segmented as the inner ear (under segmentation). False Positive Volume: the volume incorrectly 

segmented outside the inner ear (over-segmentation) True Positive Rate: the percentage of voxels correctly 

segmented as the inner ear, False Discovery Rate: the percentage of voxels incorrectly segmented outside the 

inner ear (over-segmentation), False Negative Rate: the percentage of voxels incorrectly not segmented as the 

inner ear (under segmentation), CI: 95% Confidence Interval. 

3.2 PERFORMANCE ON THE CLINICAL VALIDATION DATASET 
On the held-out clinical validation dataset, the model achieved an average DSC of 0.876, TPR of 

87.86%, FDR of 15.2%, and FNR of 12.13%. The automated segmentations on this dataset are included 

in Appendix 8.1. It includes labyrinths in which parts of the semi-circular canals, the vestibule, or the 

cochlea were missing or not properly displayed. As an example, an MRI scan with vestibular 

schwannoma (a tumorous process growing from the vestibular nerve) was included in Figures 8.9a 

and 8.9b.  

 

 

Figure 8.9a. Example of one of the clinical validation MRI scans in the axial and coronal plane. This case shows 
the presence of a vestibular schwannoma after a translabyrinthine resection on the right side. Therefore, the 
right semi-circular canals and vestibule are not segmented. DSC: 0.8973, Ground Truth Volume: 316.11 mm3, 
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True Positive Volume: 294.69mm3, True Positive Rate: 93.22%, False Negative Rate: 6.77%. False Discovery Rate: 
7.3%  
 

 

 

Figure 8.9b. The 3D volume rendering of the ground truth and the predicted mask. The semi-circular canals and 
the vestibule of the right inner ear were not displayed on MRI. The model has correctly not segmented the semi-
circular canals and the vestibule. AD= auriculum dextra, AS=auriculum sinistra 

3.3 QUALITATIVE ASSESSMENT - IN SILICO CLINICAL STUDY 
On average, the participants preferred automated segmentation in 67% of the cases. A paired one-

sided t-test for the hypothesis that this average score is greater than 50% was significant (p= 9.82474e-

17), indicating that expert users preferred the segmentations generated by the proposed model over 

the manual segmentations. 

4 DISCUSSION 

In this work, the first proof-of-concept of an artificial intelligence-based model for the fully automatic 

segmentation of the inner ear on MRI was demonstrated and validated.   

The proposed model showed high performance, with a mean DSC of 0.87 between the manual and 

the automated segmentation validated across images from three different centers. The mean TPR of 

91.5% implies accurate segmentation of the inner ear without significant over or under-segmentation 

as indicated by the low FDR and FNR metrics (14.8% and 8.49% respectively).   

The in silico based qualitative analysis showed that on average, the expert users (radiologists and 

computer scientists) are more likely to prefer model-generated segmentations over manual 

segmentations. The Bland-Altman plot (Figure 8.6) shows 5 outliers. The fact that the slice thicknesses 

of those scans were high (mean slice thickness – 1.1 mm) compared to the mean slice thickness of the 

training cohort (0.32 mm) could explain the miss-segmentations for these cases. Also, the three scans 

from Center D contained either moving artifacts or had tight margins around the labyrinth, which 

might explain the lower limits of agreements. All the MRI scans of Center C had noticeably more 

hyperintense areas at the apex of the pas petrosa compared to the other centers. Although this might 

have ‘challenged’ the model, it does not explain why only two out of 21 scans had lower DSCs. 

A prior study, that used deep learning to facilitate the auto-segmentation of the inner ear, compared 

the performance of a 3D Fully Connected Network (FCN) to a 2D-FCN [20]. The study reported an 
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overall DSC of 0.66 and 0.58 when using 3D-FCN and 2D-FCN, respectively. Another recent study 

reported a high DSC of 0.95 using an SSMs-based level set [10]. However, their model was evaluated 

on a small dataset (10 cases out of 23 cases were held out for testing) and no independent validation 

was performed. Directly comparing the present approach with the already published methods in 

terms of DSC is not possible due to differences in datasets. Nevertheless, it is worth noting that our 

presented method achieves a state-of-the-art performance, which can be ascribed to the robust deep 

learning approach combined with a wide and varied dataset, both for training and validation, an aspect 

often neglected in similar studies. 

There are several important strengths of this study. First of all, the model was trained on a diverse set 

of MR images of the cerebellopontine region. Although all MR images of the training dataset were 

collected in one center, they were acquired over a wide time span (2015-2019) and include different 

acquisition and reconstruction protocols [29]. Next to this, the training dataset was manually 

segmented by five independent readers. Therefore, the model learned to eliminate noise in the 

manually segmented labels caused by inter-reader variability. These methodological aspects resulted 

in a well-generalizable model, which is reflected in the high-validation performance. Past studies have 

shown high inter-reader and intra-reader variability in medical image segmentation tasks [30], [31]. 

Our method’s consistency (i.e., no segmentation variability) alleviates this issue. Additionally, the 

interaction time was approximately 10 minutes per case for manual segmentation by an experienced 

reader compared to only 6.5 seconds for automatic segmentation. 

One of the most important strengths of this study is the evaluation of the MR images containing 

deviant morphological shapes and decreased signal intensities of the labyrinth caused by 

cerebellopontine pathology. On this held-out clinical validation dataset, the model proved to 

generalize well with an average DSC and TPR of 0.8768 and 87.86% respectively. So far, previous auto-

segmentation studies have trained their models on normal ears or small datasets 10–14. To the best 

of our knowledge, our study is the first to assess generalizability concerning pathologies.  

4.1 LIMITATIONS 
Several limitations of this study should be noted. First of all, the most important limitation is the lack 

of a gold standard for manual segmentations from highly experienced neuroradiologists. Due to the 

extent of the segmentation process, manual segmentation of approximately 1500 labyrinths by one 

or more senior radiologists was not feasible. Therefore, in this study, the authors chose to work with 

independent readers who were trained and supervised by an experienced clinical researcher in inner 

ear imaging (MvdL) to generate the first proof of concept. This could have induced noise in the manual 

segmentations. Also, the intra- and inter-observer variability of the segmentation team was not 

evaluated. Although manual segmentation was performed under the strict supervision of the second 

author and a curating process was performed to detect incorrectly segmented masks, the quality of 

the manual segmentation could not be fully guaranteed. Since the manually segmented masks were 

considered the reference standard for the evaluation of the model, lower DSC scores might have 

indicated better automated segmentation compared to manual segmentation.  

Nevertheless, efforts have been made to contain this limitation by training a deep learning 

architecture with a large number of parameters and applying Early Stopping to prevent overfitting on 

the noise in the manual segmentation. Previous studies have proved that overparameterized 

networks are more robust against noisy labels when Early Stopping is applied [32].  
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Given the very small area occupied by the inner ear in the whole MRI volume, the performance of our 

model might be further improved by applying bounding box detection [33] or shape identification [34] 

before automated segmentation, especially for abnormal cases. 

Secondly, poor generalizability is the most common problem of deep learning models [29]. In this 

study, attempts were made to prevent overfitting by training the model on a large dataset from one 

center and testing its generalizability by holding out 3 independent validation cohorts. Although the 

overall DSC scores were markedly high, the model performed poorly and failed to generalize in five 

cases out of 177 (3 cases from center C and 2 cases from center D had DSC < 0.70). This situation could 

have been mitigated by training the model on all of the centers. This would have made the training 

dataset more diverse (e.g., in terms of image acquisition and reconstruction) and the model’s 

performance could have been evaluated by cross-validation techniques (i.e., holding out 20-30% of 

the data from each center for a single validation test data). However, this would degrade the credibility 

of the generalizability of the model due to concerns regarding overfitting. 

Lastly, the model was trained and evaluated on datasets that included only the Dutch and Belgian 

populations. The generalizability of the model on MRI images from an international cohort is currently 

unexplored.  

4.2 CLINICAL IMPLICATIONS AND FUTURE PERSPECTIVES  
The future clinical advantages of automated 3D image segmentation of the inner ear are versatile. 

Image segmentation can be used for 3D visualization, allowing a better understanding of the spatial 

relations and morphological changes within the inner ear, assisting radiologists in the diagnostic 

process, and providing tools for surgical planning [35] or learning purposes [36]. Previous studies have 

proven the usability of auto-segmentation for pre-operative planning of cochlear implant surgery 

using CT imaging [37] and for the diagnosis of adolescent idiopathic scoliosis using MRI imaging [11]. 

Our model proved to be efficient in MRI imaging. However, the proposed methodology can be easily 

leveraged for similar auto-segmentation applications on different imaging modalities. 

 Nowadays, quantitative analysis of the inner ear is gaining more importance. Techniques like 

radiomics [6], volumetric assessment of fluid compartments in the labyrinth [12], [38], and the analysis 

of the morphoanatomy for the vestibular system [11] are used to aid the diagnosis of vestibular 

diseases. Radiomics refers to the process of the automated extraction and analysis of large amounts 

of quantitative features from medical images. These features are sometimes not perceptual for the 

human eye and might contain information that reflects underlying tissue heterogeneity and 

pathophysiology [4], [39]. Quantitative image features involve descriptors of shape, size, volume, 

intensity distributions, and texture heterogeneity patterns [39].  

A histological feature strongly associated with Meniere’s disease is endolymphatic hydrops (EH), 

distension of the endolymphatic compartment in the inner ear [40]. In conventional MRI, the 

endolymphatic compartment cannot be distinguished from the perilymphatic compartment, and thus, 

EH is not depicted [41]. The differences found in radiomic features between MD and controls could 

hypothetically be explained by the different compositions of the fluids in the labyrinth, causing a 

different distribution of signal intensities [5]. Possibly, EH is captured in the quantitative image 

features due to damage to or morphological changes to the endolymphatic space. Since Meniere’s 

disease is still a clinical diagnosis challenge [42], discovering distinctive image features might benefit 

the diagnostic trajectory of MD. Another study showed that cochlea CT image features can be useful 

biomarkers for predicting sensorineural hearing loss in a patient with head and neck cancers who 

received chemoradiation therapy [6]. Different machine learning methods were used for feature 
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selection, classification, and prediction. The advantage of using machine learning in combination with 

radiomics is that the analysis of the labyrinth could be done autonomously in the future [5]. However, 

for both studies, setting a Region Of Interest (ROI)  by manual segmentation was necessary. The fully 

automated segmentation of the inner ear contributes to efficient research on quantitative image 

analysis of the inner ear. 

Next to analyses of conventional MRI and CT imaging, the volumetric assessment of fluid 

compartments in the labyrinth is also promising for vestibular research [38]. Contrast-enhanced MR 

imaging allows the in vivo confirmation and quantification of endolymphatic hydrops [12], [43].  

Several studies investigated the value of the 3D volumetric assessment of the endolymphatic space 

(ELS) to better monitor EH in vivo, for example in therapeutic trials in Meniere’s disease, and to better 

compare the ELS in patients with different otological diseases [38], [44], [45]. However, the 3D 

reconstruction was rendered semi-automatic. Due to this time-consuming process, the applications 

for volumetric assessment are yet more scientifically than clinically relevant. A recent study proposed 

atlas-based segmentation for the volume-based quantification of the fluid spaces of the inner ear [12]. 

Which created fast, standardized (auto)segmentation. Further research is necessary to explore the 

option of the proposed U-net model can be leveraged for contrast-enhanced imaging as well, as to 

facilitate the volumetric assessment of the ELS in clinics.  

Auto-segmentation in its current form is a step towards fully automated diagnostic tools for inner ear 

disorders. 

5 CONCLUSION  

In this study, a working first proof-of-concept is demonstrated regarding the fully automatic 

segmentation of the inner ear using deep learning. Overall, the proposed auto-segmentation model is 

equivalent to manual segmentation and is a reliable, consistent, and efficient method for inner ear 

segmentation which can be used in a variety of clinical applications, such as 3D visualization, surgical 

planning, and quantitative image analysis. Auto-segmentation of the inner ear in its current form 

might open doors toward automated diagnostic tools for inner ear disorders. 
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1 GENERAL DISCUSSION 

The research work presented in this thesis validates the overall hypothesis that (semi) automated 

Radiomics and AI-based methodologies can produce generalizable performance, overall equivalent 

to that of an expert human charged with the same tasks and is exemplified in detection, diagnosis, 

and treatment response prediction use cases. In chapters 2 and 3, we validated the hypothesis, 

benchmarked against RT-PCR confirmed cases of COVID-19, and proved superior performance 

compared to radiologists while considering the false negative RT-PCR rates [1], [2] and high variability 

among the radiologists in the differential diagnosis of COVID-19 from other pneumonias[3]. In chapter 

4, we validated the hypothesis and proved equivalent performance compared to radiologists’ 

performance on detection of embolism on CTPA [4], [5] [6]. In chapter 6, we validated the hypothesis 

and proved the superior performance of the model for metastasis detection on bone-scintigraphy data 

against human readers by performing an in-silico trial on the task. In chapter 5, we validated the 

hypothesis and proved superiority in the prognostic performance of the radiomics signature compared 

with the TNM staging (6th edition).  Chapter 8 was a feasibility study proving the hypothesis for 

Meniere’s disease diagnosis compared to the other clinically prevalent diagnostic methods [7].  

Although the current scenario on AI models proved to be equivalent to expert human readers, the 

new hypothesis is that in the longer term, a combination of AI and an expert reader will surpass the 

individual performances of an AI and an expert reader. The same hypothesis has already been tested 

on several use cases in recent articles on breast cancer screening [8] [9] [10].  

1.1 METHODOLOGY 
Methodologically, chapters 2 and 5 present a specific type of radiomics pipeline which involves 

combining an AI-based automatic segmentation model and a statistical model to analyze features 

extracted from the segmented region. Furthermore, chapters 3, 4, and 6 present a type of radiomics 

pipeline involving an AI-based automatic segmentation model in combination with a Deep learning 

(DL)-based classifier for predicting clinical outcomes. Such pipelines allow for more flexibility over 

reusing the AI-based segmentation models for analyses involving different objectives (clinical 

outcomes). Lastly, chapter 7 describes the radiomics pipeline involving manual intervention for 

segmentation of the inner ear on MRI before analysis of features extracted from the segmented 

region. A substantial manual effort was needed in such an analysis and that was the motivation for 

the research work in chapter 8, particularly focussing on a methodology for AI-based automatic 

segmentation of the inner ear on MRI imaging. Radiomic pipelines involving manual intervention in 

segmenting region of interest also suffers from inconsistencies in the quality of segmentations. 

Research in chapter 8 proves that hypothesis through a qualitative in-silico study where the expert 

radiologists preferred segmentations generated by a trained AI compared to manual segmentations.  

1.1.1 Auto-segmentation models 

The research works presented in this thesis also highlight the utility of several auto-segmentation 

models. For instance, chapter 2 uses a lung segmentation model to extract features from the lungs. 

Chapter 3 uses a combination of the whole lungs and lung abnormalities model to select the axial 

slices containing lung abnormalities and in chapter 4, the lung segmentation model was used to crop 

the region around the lungs, to facilitate the model, learning features from relevant regions on lungs. 

In chapter 5, the lung tumor segmentation model was used to automatically segment the region for 

extracting radiomic features. Overall, this thesis also proves the importance of AI-based automatic 

segmentation models for fully automatizing the radiomic pipeline.  
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1.1.2 Generalizability 

Attempts were made to validate the methods presented in this thesis specifically to prove 

generalizability. Generalizability is an essential aspect of the usability of a model in a real-world clinical 

setting where data variability and variety are inevitable. For instance, in chapter 8, the trained model 

was validated on a held-out test set containing images from 4 different centers where the distribution 

of acquisition protocols (pixel spacing and slice thickness) differed from that of the training dataset. 

Added to that, the model was also validated on a clinical validation cohort containing images with 

diverse comorbidities. In chapter 6, the classifier model was evaluated on a held-out dataset coming 

from a different center than that of the training dataset.  Similarly, in chapter 4, the trained model 

was evaluated on datasets from 3 different centers with diverse and varying imaging parameters from 

that of the training dataset.  

1.1.3 Explainability 

Throughout my research, attempts were made to explain decisions made by the trained AI-based 

models. For instance, in chapter 6, a model trained to classify bone scintigraphy images with 

metastasis was explored for the detection of metastatic spots using activation maps extracted from 

the CNN-based model. However, we lacked ground truth to validate the detections derived from the 

activation maps. In chapter 4, the model which was trained to classify CT axial slices containing 

pulmonary embolism was explored for the detection of regions of pulmonary embolism using the 

activation maps extracted from the CNN-based model and we have also validated the performance on 

a limited test set. Similar approaches couldn’t be employed for other studies presented due to the 

technical complexity of the model architecture. For instance, in chapter 3, a 3D CNN, based on 

inception model architecture [11] was used for a differential diagnosis application. There were two 

challenges when applying 3D class activation mapping (3D-CAM) and 3D gradient-weighted class 

activation mapping (3D-Grad-CAM) as weighted visualizations of the activation maps in the 

convolutional layers. Firstly, they were limited by the low resolution of the convolutional layers. 

Secondly, the upsampled heatmaps didn’t provide enough detail to accurately identify important 

regions. Future studies on applying state-of-the-art methods on explainability of 3DD CNNs [12], [13] 

could be beneficial to circumvent the aforementioned challenges.  

Other key challenges that were faced, the solutions that were explored as an attempt to solve the 

challenges, and which are still in store for the future are presented in the sections below.  

2 CHALLENGES 

2.1 IMAGING PARAMETERS AND ACQUISITION PROTOCOLS 

2.1.1 Acquisition 

Across different institutes and even within an institution, imaging systems are often from different 

manufacturers. Especially MRI imaging data suffers from significant inter- and intra-site variability, 

which hinders multi-site data analysis. A recent study on rectal MRI data investigated the sources of 

variation in multicenter MRI data and their effect on radiomics feature reproducibility [14]. The study 

showed that features derived from T2W-MRI and in particular ADC differ significantly between centers 

when performing multicenter data analysis. Another study showed that only less than half of the 

radiomic features extracted were reproducible when extracted from 5 different scanners[15]. This 

also influenced the analysis performed in chapter 7 because the MRI scans were acquired from 4 

different centers with varying pixel spaces and slice thicknesses and other scanning parameters. The 
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influence of the reconstruction kernel could have also affected the generalizability of the model 

presented in chapter 3, where the external validation dataset contained images with a distribution of 

the reconstruction kernels (B30f, B41s, and D40s) different from that of the training dataset. Ideally, 

images are all obtained using controlled acquisition settings, but the availability of this type of data is 

often limited. A prospective study could overcome this issue, whereas a phantom study could help to 

investigate the influence of image acquisition parameters on radiomic feature values and possibly 

allow for post-harmonization. When applying an end-to-end DL-based pipeline for radiomic analysis, 

image augmentation while training can also help in improving the generalizability of the model to test 

images with varying characteristics as that of the training data which is discussed later in this chapter.   

2.1.2 Radiation dose and Reconstruction kernel 

Some studies have investigated the influence of reconstruction settings and radiation dose on feature 

stability [16] [17], [18] and have shown that, of all technical parameters, reconstruction kernel and 

radiation dose had the largest impact on the reproducibility of radiomic features. The radiomic 

features in the shape category (including the maximum axial diameter and volume) were insensitive 

to changes in radiation dose and reconstruction CT settings, compared with radiomic features in the 

texture and, to a lesser extent, the intensity categories (including mean attenuation). This could have 

impacted the analysis of chapter 2 which includes data from two different manufacturers GE and 

SEIMENS with STANDARD and B30-range reconstruction kernels. There are many ways to circumvent 

this problem of feature variability, one option could be by performing prospective studies where the 

imaging parameters are standardized. In retrospective studies like the one in chapter 7, post-

reconstruction feature harmonization techniques can be applied to eliminate the batch effect. For 

instance, in a recent study [19], the effect of the use of Reconstruction Kernel Normalization (RKN) 

and ComBat harmonization [20] on the reproducibility of radiomics features across scans acquired 

with different reconstruction kernels and have shown that the use of RKN resulted in a significant 

increment in the number of reproducible features.  

2.1.3 Phases of contrast enhancement 

Optimal contrast enhancement is important for a successful diagnostic CT scan. The purpose of 

contrast-enhanced CT (CECT) is to find pathology by enhancing the contrast between a lesion and the 

normal surrounding structures. Sometimes a lesion will be hypovascular compared to the normal 

tissue and in some cases, a lesion will be hypervascular to the surrounding tissue in a certain phase of 

enhancement. When deploying a model like the one described in chapter 4 in a real-world clinical 

setting, manual intervention is usually required to ensure that the input scan is at a particular contrast 

phase that is expected by the trained model, which takes up substantial manual effort and could be 

erroneous. Automated AI-based methods to identify the contrast phase on the scans would help in 

circumventing the challenge. For instance, in a recent study [21], DL–based Detection of Intravenous 

Contrast Enhancement on CT scans was investigated on Head and neck, and chest CT scans and have 

proved their model to be highly accurate on an external validation dataset. Such methods can be 

adopted in combination with the radiomic analysis pipeline when deployed in real-world clinical 

settings.  

2.2 INPUT DATA QUALITY 
Quality check of the input data plays a major role in the effective utilization of trained AI models for a 

particular use case. For instance, the models presented in chapters 3 & 4 were trained in chest CT 

scans and were not trained on CT acquisitions of other regions as negative data points, which might 

cause erroneous predictions from the model, given an abdomen CT scan for instance as input. The 

dataset available in real-world clinical settings is not usually sorted and might also contain erroneous 
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metadata. For the models developed to be efficiently used in a real clinical setting, it would be 

beneficial to combine these models with an automated AI-based Quality check pipeline that can filter 

the images which are not compliant for a particular analysis.  For instance, a recent study investigates 

the use of AI-based solutions for region identification on CT and MRI [22].  

2.3 LARGE-SCALE AI MODELS - KNOWLEDGE DISTILLATION  
The AI models presented throughout my thesis were trained on NVIDIA GeForce RTX 2080 Ti, 11GB 

GPU, and, the DL models consists of more than a million parameters. For instance, the lung 

segmentation model used in the development of the COVID model presented in chapter 2 consists of 

around 23 million trainable parameters. However, whilst training large models helps improve state-

of-the-art performance, deploying such large trained models in a real clinical setting might get 

expensive when there is a consistent need for computational resources. Knowledge distillation [23] 

helps overcome these challenges by capturing and “distilling” the knowledge in a complex machine 

learning model or an ensemble of models into a smaller single model that is much easier to deploy 

without significant loss in performance [24].  In a recent study, a lightweight CNN model was 

developed by applying the knowledge distillation technique for cervical cell classification [25]. Such 

lightweight models which have relevant information distilled from a large-scale model trained on a 

huge dataset can be used for deployment to be efficiently used in real-world clinical settings with 

limited computational resources.    

3 FUTURE PERSPECTIVES 

3.1 DISTRIBUTED LEARNING 
Medical data is greatly sensitive and highly protected by law and ethics; making access to such data 

harder and time-consuming. Therefore, more research on distributed learning methods in the future 

can circumvent these limitations while satisfying the concerns regarding sharing of clinical data by 

hospitals. The concept of distributed (federated, privacy-preserving) machine learning is not new in 

healthcare applications [26], [27] but has recently shown its potential for radiomics [28], [29]. For 

example, Shi et al. performed a decentralized multi-center study to develop a radiomic signature for 

lung cancer in one institution and validated the performance in an independent institution, without 

the need for data exchange [30]. In another recent case study, Bogowicz et al. developed and validated 

a radiomic signature for head and neck cancer, training the model remotely from 6 independent 

cohorts, showing that the performances of the distributed model were as good as the one obtained 

with the traditional radiomic approach [31]. Several state-of-the-art methods employing blockchain 

technology have proven the efficiency of distributed learning in the bio-medical field [32]–[34]. 

However, most of the existing research works lack validation of their framework in a real clinical 

setting with diversity in data distribution. As an attempt to prove the potential of training and 

validating AI-based segmentation models in a distributed fashion, during my research, a basic Unit 

based model [35] was trained in distributed settings [36] which proved no difference in performance 

between a model trained in centralized and distributed strategy. More research is still needed to 

assess the robustness of such a methodology when in presence of multiple centers with variability in 

data distribution where a quality check of the data would be substantially needed.  

https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764
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3.2 SYNTHETIC DATA GENERATION 
Some of the studies (for instance chapter 7) presented in this thesis suffered from limited data for 

external validation of the proposed model. Another area of Artificial intelligence that has the potential 

to solve the challenge of limited data is AI Synthetic data generation. Generative Adversarial Networks 

(GANs) are gaining increasing attention as a means of synthesizing data. For example, Research work 

presented in [37] trained and validated a GAN to synthesize new T1-weighted brain MRI with 

comparable quality to real images, and [38] succeeded in generating high-resolution skin lesion images 

which experts could not reliably tell apart from real images. In [39] authors have shown that GAN-

generated images of lung cancer nodules are nearly indistinguishable from real images, even by 

trained radiologists. However, more research needs to be done on validating the effect of artifacts 

created by GAN-generated synthetic images. Furthermore, GANs have been used for inter-site data 

harmonization as a preprocessing step to normalize the features extracted from the medical images 

[40]. However, more research to prove the stability and reproducibility of such features extracted 

from GAN-harmonized images on a larger cohort is to be done in the future.  

3.3 VISION TRANSFORMERS AS A REPLACEMENT FOR CNNS 
Recently, vision transformers (ViT) [41] have appeared as a competitive alternative to CNNs, yielding 

similar levels of performance while possessing several interesting properties that could prove 

beneficial for medical imaging tasks. A recent study [42] has investigated the performance of CNNs 

and ViTs on three different medical image tasks and has proved that the ViTs reached the same level 

of performance as CNNs in small medical datasets, provided the transfer learning is applied and on 

larger datasets, ViTs significantly outperformed CNNs. Hence Transformers could be a better and an 

efficient alternative to the CNN-based models built for medical imaging use-cases.  

3.4 SEMI-SUPERVISED LEARNING 
One major challenge in medical imaging analysis is the lack of label and annotation which usually 

requires medical knowledge and training. To ease the manual labeling burden, significant efforts have 

been devoted to annotation-efficient DL methods for medical image segmentation tasks by enlarging 

the training data through label generation [43], data augmentation [44], leveraging external related 

labeled datasets [45], and leveraging unlabelled data with semi-supervised learning. Among these 

approaches, semi-supervised segmentation is a more practical method by encouraging segmentation 

models to utilize unlabelled data which is much easier to acquire in conjunction with a limited amount 

of labeled data for training, which has a high impact on real-world clinical applications. However, 

without expert-examined annotations, it is still an open and challenging question on how to efficiently 

exploit useful information from these unlabelled data. Existing semi-supervised medical image 

segmentation approaches have achieved comparable results with fully supervised methods [46] [47]. 

However, these methods still need a small amount of well-annotated labeled data to guide the 

learning of unlabelled data. Acquiring such fully annotated training data can still be costly, especially 

for the tasks of medical image segmentation. To further alleviate the annotation cost, some more 

future research on integrating semi-supervised learning with other annotation efficient approaches 

like leveraging image-level, box-level, and pixel-level annotations [48] or scribble supervisions [49] 

could be beneficial.   

3.5 CLINICAL XAI 
Methodologically, the studies presented to prove explainability is limited to Gradient weighted class 

activation mapping (Grad-CAM)-based techniques. While Grad-CAM-based methods can be leveraged 
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to visualize the relevant region of interest on medical images which contributed to the model’s 

decision, further quantification of known semantic features from the region of interest can provide 

clinically relevant and explainable features which can further contribute to surrogate function 

explaining the model’s decision. A schematic of this idea is shown in Figure 9.1, assuming the scenario: 

DL model used for diagnosis of respiratory abnormalities.  

 

Figure 9.1. Schematic on the prototype showing explanation of activation maps using a surrogate function of 

parameters corresponding to quantification of semantic features  

3.6 VIRTUAL BIOPSY 
The research presented in this thesis is limited to Radiomic data. The effect of combining radiomics 

with other available omics data in predicting clinical outcomes is unexplored. Specifically, in 

oncological studies, different parts of the tumor have distinct molecular characteristics, but also 

different lesions (metastases) from a tumor disease, which may have a role in terms of therapeutic 

efficacy, and such differences might change over time. As it is not possible to take samples of every 

part of each tumor at multiple time points, the optimal characterization of tumors is not achieved 

using biopsy[50]. However, radiomics might be used to “sample” different parts of the tumor at 

different time points (i.e. different scans) and, along with genomic data, used as a virtual biopsy tool 

[51], [52]. The combination of radiomics and genomics is called radiogenomics and more research in 

this field can be a way of augmenting the power of both approaches, for personalized medicine and 

treatment follow-up [53]–[55]. 

3.7 DELTA RADIOMICS  
The vast majority of radiomics methods published including the works presented in this thesis focus 

on imaging data acquired at a single time point, mostly imaging tumors before the start of treatment. 

Delta-radiomics introduces a time component with the extraction of quantitative features from image 

sets acquired throughout treatment [56]–[58], which provides information on the evolution of feature 

values. Future research on Delta-radiomics while leveraging the methods introduced related to 

radiomics on a single imaging timepoint, can provide more relevant and significant biomarkers for 

disease diagnosis, prognosis, prediction, monitoring, image-based intervention, or assessment of 

therapeutic response [59], [60].  
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3.8 OPEN SCIENCE AND DATA SHARING  
There is a pressing need to embrace knowledge and data-sharing technology [61], which transcends 

institutional and national boundaries [62]. This is especially true for radiomics whose potency is 

directly linked to the amount and quality of data available. A large dataset with deep clinical and 

molecular information and homogeneous imaging sources will result in more robust and reliable 

radiomics models. To unlock the full potential of radiomics for clinical decision-making, the research 

and clinical communities must strive for truly open science – sharing datasets, algorithms, and best 

practices and finding new ways to improve collaborations. One initiative to accomplish these goals is 

CancerLinQ [63], the ASCO data centralization approach. Other initiatives are worldCAT and its 

European counterpart euroCAT [64] which consist of a novel data-federated approach that 

successfully links radiotherapy institutes in the Netherlands, Germany, Belgium, Italy, Denmark, 

Australia, China, India, South Africa, Ireland, UK, USA and Canada [27], [65]. Other important links 

include The Cancer Imaging Archive (TCIA) [66], The Quantitative Imaging Network (QIN) [67], the 

Quantitative Imaging Biomarkers Alliance (QIBA) [68], the MEDomics consortium [69], and 

Quantitative Imaging in Cancer: Connecting Cellular Processes with Therapy (QuIC-ConCePT) [70]. The 

next step in this open science initiative for radiomics should be the creation of a database to store and 

cross-reference radiomics features and relevant clinical data (radiomics ontology [71], [72]). Extracted 

radiomic features must be stored in searchable databases to realize the unprecedented potential for 

RLHC that routine standard-of-care imaging represents. Hence, RLHC networks can dynamically 

capture multimodal data and share knowledge across departmental and institutional boundaries [73], 

to accumulate sufficient datasets of significant statistical power for model development and 

validation. Also, the accessibility of radiomics, in general, must be improved and some initiatives in 

this regard are already in place, especially from a software perspective. Several open source or 

freeware software is already available [74]–[77] and code sharing is becoming more and more 

accepted in the scientific community. 

4 CONCLUSION 

Continuous efforts are ongoing in improving the AI-based methodology for creating more 

transparency on the model’s decisions with clinically relevant explainability and reproducibility. 

Nevertheless, additional efforts are required to answer all the questions related to the robustness and 

usefulness of such research tools given a dynamic environment where standardization of data is still 

not possible in all the circumstances while also deriving clinically meaningful outcomes. There is also 

much work to do, especially to link fundamental research to current clinical practice. Physicians and 

healthcare personnel should be involved from the start of the process, along with relevant authorities. 

On the other hand, more effort should be devoted to the technological transfer, taking the published 

research and performing the necessary steps to bring it from a (validated) proof-of-concept to the 

clinic. This also emphasizes the need for comprehensive and universal indicators (such as the RQS) of 

the quality of a model. The normative framework is currently evolving along with innovations in the 

field of AI-driven healthcare. For example, FDA is gathering feedback and propositions to draft a novel 

regulatory framework for AI-based medical devices [78]. Paradigms need to be re-invented to allow 

these breakthroughs to reach the clinic very shortly, always putting patients’ welfare first. 

Personalized, patient-centric medicine is almost a reality and radiomics is playing a major role in it and 

will represent one of the key factors for the future of healthcare. 
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SUMMARY 

PART 1 – AI based diagnostic models for respiratory diseases 

In chapter 2, we developed and externally validated a machine learning model that is able to 

discriminate between COVID-19 positive and negative patients, and which has been trained and 

validated using a regularized logistic regression model. The model showed an AUC of 0.882 (95% CI: 

0.851–0.913) in the independent test dataset (641 patients). The optimal decision threshold, 

considering the cost of false negatives twice as high as the cost of false positives, resulted in an 

accuracy of 85.18%, a sensitivity of 69.52%, a specificity of 91.63%, a negative predictive value (NPV) 

of 94.46% and a positive predictive value (PPV) of 59.44%. 

In chapter 3, We developed and externally validated a deep learning AI model for the classification of 

no-infection, COVID-19, or Influenza/CAP cases based upon CT imaging. The model showed a 

performance in the external validation set with an AUC of 0.90, 0.92 and 0.92 for COVID-19, 

Influenza/CAP and No infection respectively. The selection of the input slices based on automatic 

segmentation of the abnormalities in the lung reduces analysis time (56 second per scan) and 

computational burden of the model. 

In chapter 4, We have developed and externally validated an AI model for classification of pulmonary 

embolism in CTPA images. The model showed an area under the curve (AUC) of 0.86 [0.800-0.919], a 

sensitivity of 82.68 % [75.16 - 88.27] and a specificity of 79.31 % [61.61 - 90.15] on the external 

validation set. The activation maps of the slices rightly predicted positive by the PE classifier showed 

good visual correspondence with areas of PE. This was also quantitatively confirmed as 79.2% of PE 

regions in the GT were highlighted in the activation maps and the percentage of activated regions 

corresponding to GT PE is 80.3%. 

PART 2 – AI based models for treatment outcome prediction and detection of disease in 

oncological use cases 

In chapter 5, we have externally validated the prognostic value of Signature-0 in a prospective 

cohort using a manual and an automated segmentation method for survival prediction. The results 

of this study showed that the original radiomics signature, Signature-0, developed in 2012, 

outperforms the contemporaneous standard of care (TNM 6th edition) producing superior 

stratification between survivors and non-survivors. 

In chapter 6, we have developed and externally validated a DL based algorithm that is able to 

detect metastatic bone disease on Bone Scintigraphy images. The developed DL based algorithm 

is able to detect MBD on BSs, with high specificity and sensitivity (0.80 and 0.82 respectively on the 

external test set), in a shorter time compared to the nuclear medicine physicians (2.5 minutes for AI 

and 30 minutes for nuclear medicine physicians to classify 134 BSs), that could be applied to any BS 

regardless of the patient’s gender and history of cancer. 

PART 3 – AI based model for diagnosis of a disorder in inner ear  

In chapter 7, we have validated a machine learning model trained on radiomics features 

extracted from inner ear region on MRI for diagnosis of Menière’s disease. The classification 

accuracy of the model on the validation set was 82%, with a sensitivity of 83% and a specificity 

of 82%. The positive and negative predictive values were 71% and 90%, respectively. 
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In chapter 8, we have trained and externally validated an AI based model for auto-segmentation 

of inner ear on MRI images. The model showed precise Dice Similarity Coefficient scores 

(mean DSC- 0.8790) with a high True Positive Rate (91.5%) and low False Discovery Rate  and 

False Negative Rates (14.8% and 8.49% respectively) across images from three different 

centers. The model proved to perform well with a DSC of 0.8768 on the clinical validation 

dataset. 
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SAMENVATTING 

DEEL 1 – Op AI gebaseerde diagnostische modellen voor luchtwegaandoeningen 

In hoofdstuk 2 hebben we een machine learning-model ontwikkeld en extern gevalideerd dat 

onderscheid kan maken tussen COVID-19-positieve en negatieve patiënten, en dat is getraind en 

gevalideerd met behulp van een geregulariseerd logistisch regressiemodel. Het model vertoonde een 

AUC van 0,882 (95% BI: 0,851-0,913) in de onafhankelijke testdataset (641 patiënten). De optimale 

beslissingsdrempel, gezien de kosten van valse negatieven die twee keer zo hoog zijn als de kosten 

van valse positieven, resulteerde in een nauwkeurigheid van 85,18%, een gevoeligheid van 69,52%, 

een specificiteit van 91,63%, een negatief voorspellende waarde (NPV) van 94,46 % en een positief 

voorspellende waarde (PPV) van 59,44%. 

In hoofdstuk 3 hebben we een deep learning AI-model ontwikkeld en extern gevalideerd voor de 

classificatie van gevallen zonder infectie, COVID-19 of Influenza/CAP op basis van CT-beeldvorming. 

Het model liet een prestatie zien in de externe validatieset met een AUC van 0,90, 0,92 en 0,92 voor 

respectievelijk COVID-19, Influenza/CAP en Geen infectie. De selectie van de invoerschijfjes op basis 

van automatische segmentatie van de afwijkingen in de long vermindert de analysetijd (56 seconden 

per scan) en de rekenbelasting van het model. 

In hoofdstuk 4 hebben we een AI-model ontwikkeld en extern gevalideerd voor classificatie van 

longembolie in CTPA-beelden. Het model toonde een oppervlakte onder de curve (AUC) van 0,86 

[0,800-0,919], een sensitiviteit van 82,68 % [75,16 - 88,27] en een specificiteit van 79,31% [61,61 - 

90,15] op de externe validatieset. De activeringskaarten van de plakjes die terecht positief waren 

voorspeld door de PE-classificator, vertoonden een goede visuele overeenkomst met gebieden van 

PE. Dit werd ook kwantitatief bevestigd, aangezien 79,2% van de PE-regio's in de GT werden 

gemarkeerd in de activeringskaarten en het percentage geactiveerde regio's dat overeenkomt met GT 

PE is 80,3%. 

DEEL 2 – Op AI gebaseerde modellen voor voorspelling van behandelresultaten en detectie van 

ziekte in oncologische gebruiksgevallen 

In hoofdstuk 5 hebben we de prognostische waarde van Signature-0 extern gevalideerd in een 

prospectief cohort met behulp van een handmatige en een geautomatiseerde segmentatiemethode 

voor overlevingsvoorspelling. De resultaten van deze studie toonden aan dat de originele radiomic-

signatuur, Signature-0, ontwikkeld in 2012, beter presteert dan de huidige standaard van zorg (TNM 

6e editie) en een superieure stratificatie produceert tussen overlevenden en niet-overlevenden. 

In hoofdstuk 6 hebben we een op DL gebaseerd algoritme ontwikkeld en extern gevalideerd dat 

metastatische botziekte kan detecteren op botscintigrafiebeelden. Het ontwikkelde op DL gebaseerde 

algoritme kan MBD detecteren op BS'en, met een hoge specificiteit en gevoeligheid (respectievelijk 

0,80 en 0,82 op de externe testset), in een kortere tijd vergeleken met de nucleair geneeskundigen 

(2,5 minuten voor AI en 30 minuten voor nucleaire geneeskundigen om 134 BS'en te classificeren), die 

op elke BS kan worden toegepast, ongeacht het geslacht van de patiënt en de voorgeschiedenis van 

kanker. 

DEEL 3 – AI-gebaseerd model voor diagnose van een stoornis in het binnenoor 

In hoofdstuk 7 hebben we een machinaal leermodel gevalideerd dat is getraind op radiomic-

kenmerken die zijn geëxtraheerd uit het binnenoorgebied op MRI voor de diagnose van de ziekte van 

Menière. De classificatienauwkeurigheid van het model op de validatieset was 82%, met een 



 

162 
 

sensitiviteit van 83% en een specificiteit van 82%. De positief en negatief voorspellende waarden 

waren respectievelijk 71% en 90%. 

In hoofdstuk 8 hebben we een op AI gebaseerd model voor autosegmentatie van het 

binnenoor op MRI-beelden getraind en extern gevalideerd. Het model toonde nauwkeurige 

Dice-overeenkomstcoëfficiëntscores (gemiddelde DSC-0,8790) met een hoge True Positive 

Rate (91,5%) en een lage False Discovery Rate en False Negative Rates (14,8% en 8,49% 

respectievelijk) over afbeeldingen van drie verschillende centra. Het model bleek goed te 

presteren met een DSC van 0.8768 op de dataset voor klinische validatie. 
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APPENDIX 

3.1. TRIPOD CHECKLIST 
 

  

 Y=yes; N=no; R=referenced; NA=not applicable 

 

Development 

[D] 

External 

validation 

[V] 

Combined 

Development 

& External 

validation 

[D+V] 

Title and abstract       

1 Identify the study as developing and/or validating a 

multivariable prediction model, the target 

population, and the outcome to be predicted. 

    0 

i The words developing/development, 

validation/validating, incremental/added value (or 

synonyms) are reported in the title 

Y Y Y 

ii The words prediction, risk prediction, prediction 

model, risk models, prognostic models, prognostic 

indices, risk scores (or synonyms) are reported in the 

title 

N N N 

iii The target population is reported in the title N N N 

iv The outcome to be predicted is reported in the title Y Y Y 

2 Provide a summary of objectives, study design, 

setting, participants, sample size, predictors, 

outcome, statistical analysis, results, and conclusions. 

    0 

i The objectives are reported in the abstract Y Y Y 

ii Sources of data are reported in the abstract 

E.g. Prospective cohort, registry data, RCT data. 
Y Y Y 

iii The setting is reported in the abstract 

E.g. Primary care, secondary care, general population, 

adult  care, or paediatric care. The setting should be 

reported for  both the development and validation 

datasets, if applicable. 

Y Y Y 

iv A general definition of the study participants is 

reported in the abstract 

E.g. patients with suspicion of certain disease, patients 

with a specific disease, or general eligibility criteria.  

Y Y 
Y 
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v The overall sample size is reported in the abstract Y Y Y 

vi The number of events (or % outcome together with 

overall sample size) is reported in the abstract 

If a continuous outcome was studied, score Not 

applicable (NA). 

Y Y Y 

vii Predictors included in the final model are reported in 

the abstract. For validation studies of well-known 

models, at least the name/acronym of the validated 

model is reported 

Broad descriptions are sufficient, e.g. ‘all information 

from patient history and physical examination’. 

Check in the main text whether all predictors of the 

final model are indeed reported in the abstract. 

N N N 

viii The outcome is reported in the abstract Y Y Y 

ix Statistical methods are described in the abstract 

For model development, at least the type of statistical 

model should be reported. For validation studies a 

quote like “model’s discrimination and calibration was 

assessed” is considered adequate. If done, methods of 

updating should be reported. 

N N N 

x Results for model discrimination are reported in the 

abstract 

This should be reported separately for development 

and validation if a study includes both development 

and validation. 

Y Y Y 

xi Results for model calibration are reported in the 

abstract 

This should be reported separately for development 

and validation if a study includes both development 

and validation. 

N N N 

xii Conclusions are reported in the abstract 

In publications addressing both model development 

and validation, there is no need for separate 

conclusions for both; one conclusion is sufficient. 

Y Y Y 

3a Explain the medical context (including whether 

diagnostic or prognostic) and rationale for developing 

or validating the multivariable prediction model, 

including references to existing models. 

    1 

i The background and rationale are presented Y Y Y 

ii Reference to existing models is included (or stated that 

there are no existing models) 
Y Y Y 
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3b Specify the objectives, including whether the study 

describes the development or validation of the model 

or both. 

    1 

i It is stated whether the study describes development 

and/or validation and/or incremental (added) value 
Y Y Y 

Methods       

4a Describe the study design or source of data (e.g., 

randomized trial, cohort, or registry data), separately 

for the development and validation data sets, if 

applicable. 

    1 

i The study design/source of data is described 

E.g. Prospectively designed, existing cohort, existing 

RCT, registry/medical records, case control, case 

series. 

This needs to be explicitly reported; reference to this 

information in another article alone is insufficient. 

Y Y Y 

4b Specify the key study dates, including start of accrual; 

end of accrual; and, if applicable, end of follow-up.   
    1 

i The starting date of accrual is reported Y Y Y 

ii The end date of accrual is reported Y Y Y 

iii The length of follow-up and prediction horizon/time 

frame are reported, if applicable 

E.g. “Patients were followed from baseline for 10 

years“ and “10-year prediction of…”; notably for 

prognostic studies with long term follow-up. 

If this is not applicable for an article (i.e. diagnostic 

study or no follow-up), then score Not applicable (NA). 

NA NA NA 

5a Specify key elements of the study setting (e.g., 

primary care, secondary care, general population) 

including number and location of centres. 

    1 

i The study setting is reported (e.g. primary care, 

secondary care, general population) 

E.g.: ‘surgery for endometrial cancer patients’ is 

considered to be enough information about the study 

setting. 

R R R 

ii The number of centres involved is reported 

If the number is not reported explicitly, but can be 

concluded from the name of the centre/centres, or if 

clearly a single centre study, score Yes. 

Y Y Y 
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iii The geographical location (at least country) of centres 

involved is reported 

If no geographical location is specified, but the location 

can be concluded from the name of the centre(s), 

score Yes. 

Y Y Y 

5b Describe eligibility criteria for participants.      0 

i In-/exclusion criteria are stated 

These should explicitly be stated. Reasons for 

exclusion only described in a patient flow is not 

sufficient.  

N N N 

5c Give details of treatments received, if relevant.  

(i.e. notably for prognostic studies with long term 

follow-up) 

    Not applicable 

i Details of any treatments received are described  

This item is notably for prognostic modelling studies 

and is about treatment at baseline or during follow-up. 

The ‘if relevant’ judgment of treatment requires 

clinical knowledge and interpretation.  

If you are certain that treatment was not relevant, e.g. 

in some diagnostic model studies, score Not 

applicable. 

NA NA NA 

6a Clearly define the outcome that is predicted by the 

prediction model, including how and when assessed.  
    1 

i The outcome definition is clearly presented 

This should be reported separately for development 

and validation if a publication includes both.  

Y Y Y 

ii It is described how outcome was assessed (including 

all elements of any composite, for example CVD [e.g. 

MI, HF, stroke]). 

R R R 

iii It is described when the outcome was assessed (time 

point(s) since T0) 
R R R 

6b Report any actions to blind assessment of the 

outcome to be predicted.     
    0 

i Actions to blind assessment of outcome to be 

predicted are reported 

If it is clearly a non-issue (e.g. all-cause mortality or an 

outcome not requiring interpretation), score Yes. In all 

other instances, an explicit mention is expected. 

N N N 
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7a Clearly define all predictors used in developing or 

validating the multivariable prediction model, 

including how and when they were measured. 

    0 

i All predictors are reported 

For development, “all predictors” refers to all 

predictors that potentially could have been included in 

the ‘final’ model (including those considered in any 

univariable analyses). 

For validation, “all predictors” means the predictors in 

the model being evaluated. 

N N N 

ii Predictor definitions are clearly presented Y Y Y 

iii It is clearly described how the predictors were 

measured 
Y Y Y 

iv It is clearly described when the predictors were 

measured 
N N N 

7b Report any actions to blind assessment of predictors 

for the outcome and other predictors.  
    0 

i It is clearly described whether predictor assessments 

were blinded for outcome 

For predictors for which it is clearly a non-issue (e.g. 

automatic blood pressure measurement, age, sex) and 

for instances where the predictors were clearly 

assessed before outcome assessment, score Yes. For 

all other predictors an explicit mention is expected. 

N N N 

ii It is clearly described whether predictor assessments 

were blinded for the other predictors 
N N N 

8 Explain how the study size was arrived at.     1 

i It is explained how the study size was arrived at 

Is there any mention of sample size, e.g. whether this 

was done on statistical grounds or practical/logistical 

grounds (e.g. an existing study cohort or data set of a 

RCT was used)?  

Y Y Y 

9 Describe how missing data were handled (e.g., 

complete-case analysis, single imputation, multiple 

imputation) with details of any imputation method.  

    0 
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i The method for handling missing data (predictors and 

outcome) is mentioned 

E.g. Complete case (explicit mention that individuals 

with missing values have been excluded), single 

imputation, multiple imputation, mean/median 

imputation. 

If there is no missing data, there should be an explicit 

mention that there is no missing data for all predictors 

and outcome. If so, score Yes. 

If it is unclear whether there is missing data (from e.g. 

the reported methods or results), score No. 

If it is clear there is missing data, but the method for 

handling missing data is unclear, score No. 

N N N 

ii If missing data were imputed, details of the software 

used are given 

When under 9i explicit mentioning of no missing data, 

complete case analysis or no imputation applied, score 

Not applicable. 

NA NA NA 

iii If missing data were imputed, a description of which 

variables were included in the imputation procedure is 

given 

When under 9i explicit mentioning of no missing data, 

complete case analysis or no imputation applied, score 

Not applicable. 

NA NA NA 

iv If multiple imputation was used, the number of 

imputations is reported 

When under 9i explicit mentioning of no missing data, 

complete case analysis or no imputation applied, score 

Not applicable. 

NA NA NA 

10a Describe how predictors were handled in the 

analyses.  
    1 

i For continuous predictors it is described whether they 

were modelled as linear, nonlinear (type of 

transformation specified) or categorized 

A general statement is sufficient, no need to describe 

this for each predictor separately.  

If no continuous predictors were reported, score Not 

applicable. 

NA 
Not 

applicable 
NA 

ii For categorical or categorized predictors, the cut-

points were reported 

If no categorical or categorized predictors were 

reported, score Not applicable. 

Y 
Not 

applicable 
Y 
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iii For categorized predictors the method to choose the 

cut-points was clearly described 

If no categorized predictors, score Not applicable. 

NA 
Not 

applicable 
NA 

10b Specify type of model, all model-building procedures 

(including any predictor selection), and method for 

internal validation.  

    0 

i The type of statistical model is reported 

E.g. Logistic, Cox, other regression model (e.g. Weibull, 

ordinal), other statistical modelling (e.g. neural 

network) 

Y 
Not 

applicable 
Y 

ii The approach used for predictor selection before 

modelling is described 

‘Before modelling’ means before any univariable or 

multivariable analysis of predictor-outcome 

associations. 

If no predictor selection before modelling is done, 

score Not applicable. 

If it is unclear whether predictor selection before 

modelling is done, score No. 

If it is clear there was predictor selection before 

modelling but the method was not described, score 

No. 

NA 
Not 

applicable 
NA 

iii The approach used for predictor selection during 

modelling is described 

E.g. Univariable analysis, stepwise selection, bootstrap, 

Lasso. 

‘During modelling’ includes both univariable or 

multivariable analysis of predictor-outcome 

associations.  

If no predictor selection during modelling is done (so-

called full model approach), score Not applicable. 

If it is unclear whether predictor selection during 

modelling is done, score No.  

If it is clear there was predictor selection during 

modelling but the method was not described, score 

No. 

N 
Not 

applicable 
N 

iv Testing of interaction terms is described 

If it is explicitly mentioned that interaction terms were 

not addressed in the prediction model, score Yes.  

If interaction terms were included in the prediction 

model, but the testing is not described, score No. 

N 
Not 

applicable 
N 

v Testing of the proportionality of hazards in survival 

models is described 
N 

Not 

applicable 
N 
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If no proportional hazard model is used, score Not 

applicable. 

vi Internal validation is reported  

E.g. Bootstrapping, cross validation, split sample. 

If the use of internal validation is clearly a non-issue 

(e.g. in case of very large data sets), score Yes. For all 

other situations an explicit mention is expected. 

N 
Not 

applicable 
N 

10c For validation, describe how the predictions were 

calculated.  
    0 

i. It is described how predictions for individuals (in the 

validation set) were obtained from the model being 

validated  

E.g. Using the original reported model coefficients with 

or without the intercept, and/or using updated or 

refitted model coefficients, or using a nomogram, 

spreadsheet or web calculator.  

Not 

applicable 
N N 

10d Specify all measures used to assess model 

performance and, if relevant, to compare multiple 

models.  

These should be described in methods section of the 

paper (item 16 addresses the reporting of the results 

for model performance).  

    0 

i Measures for model discrimination are described 

E.g. C-index / area under the ROC curve. 
Y Y Y 

ii Measures for model calibration are described 

E.g. calibration plot, calibration slope or intercept, 

calibration table, Hosmer Lemeshow test, O/E ratio. 

N N N 

iii Other performance measures are described  

E.g. R2, Brier score, predictive values, sensitivity, 

specificity, AUC difference, decision curve analysis, net 

reclassification improvement, integrated 

discrimination improvement, AIC. 

Y Y Y 

10e Describe any model updating (e.g., recalibration) 

arising from the validation, if done. 
    Not applicable 

i A description of model-updating is given 

E.g. Intercept recalibration, regression coefficient 

recalibration, refitting the whole model, adding a new 

predictor  

If updating was done, it should be clear which 

updating method was applied to score Yes.  

If it is not explicitly mentioned that updating was 

Not 

applicable 
NA NA 
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applied in the study, score this item as ‘Not 

applicable’. 

11 Provide details on how risk groups were created, if 

done.  

If risk groups were not created, score this item as Yes. 

    0 

i If risk groups were created, risk group boundaries (risk 

thresholds) are specified  

Score this item separately for development and 

validation if a study includes both development and 

validation. 

If risk groups were not created, score this item as not 

applicable. 

N N N 

12 For validation, identify any differences from the 

development data in setting, eligibility criteria, 

outcome and predictors.  

    0 

i Differences or similarities in definitions with the 

development study are described 

Mentioning of any differences in all four (setting, 

eligibility criteria, predictors and outcome) is required 

to score Yes.  

If it is explicitly mentioned that there were no 

differences in setting, eligibility criteria, predictors and 

outcomes, score Yes. 

Not 

applicable 
N N 

Results       

13a Describe the flow of participants through the study, 

including the number of participants with and 

without the outcome and, if applicable, a summary of 

the follow-up time. A diagram may be helpful. 

    0 

i The flow of participants is reported  Y Y Y 

ii The number of participants with and without the 

outcome are reported 

If outcomes are continuous, score Not applicable. 

N N N 

iii A summary of follow-up time is presented 

This notably applies to prognosis studies and 

diagnostic studies with follow-up as diagnostic 

outcome. 

If this is not applicable for an article (i.e. diagnostic 

study or no follow-up), then score Not applicable. 

NA NA NA 
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13b Describe the characteristics of the participants (basic 

demographics, clinical features, available predictors), 

including the number of participants with missing 

data for predictors and outcome.  

    0 

i Basic demographics are reported Y Y Y 

ii Summary information is provided for all predictors 

included in the final developed/validated model 
Y Y Y 

iii The number of participants with missing data for 

predictors is reported 
N N N 

iv The number of participants with missing data for the 

outcome is reported 
N N N 

13c For validation, show a comparison with the 

development data of the distribution of important 

variables (demographics, predictors and outcome). 

    0 

i Demographic characteristics (at least age and gender) 

of the validation study participants are reported along 

with those of the original development study 

Not 

applicable 
Y Y 

ii Distributions of predictors in the model of the 

validation study participants are reported along with 

those of the original development study 

Not 

applicable 
Y Y 

iii Outcomes of the validation study participants are 

reported along with those of the original development 

study 

Not 

applicable 
N N 

14a Specify the number of participants and outcome 

events in each analysis.  
    1 

i The number of participants in each analysis (e.g. in the 

analysis of each model if more than one model is 

developed) is specified 

Y 
Not 

applicable 
Y 

ii The number of outcome events in each analysis is 

specified (e.g. in the analysis of each model if more 

than one model is developed) 

If outcomes are continuous, score Not applicable. 

NA 
Not 

applicable 
NA 

14b If done, report the unadjusted association between 

each candidate  predictor and outcome. 
    Not applicable 

i The unadjusted associations between each predictor 

and outcome are reported 

If any univariable analysis is mentioned in the methods 

but not in the results, score No.  
NA 

Not 

applicable 
NA 
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If nothing on univariable analysis (in methods or 

results) is reported, score this item as Not applicable. 

15a Present the full prediction model to allow predictions 

for individuals (i.e., all regression coefficients, and 

model intercept or baseline survival at a given time 

point). 

    0 

i The regression coefficient (or a derivative such as 

hazard ratio, odds ratio, risk ratio) for each predictor in 

the model is reported  

N 
Not 

applicable 
N 

ii The intercept or the cumulative baseline hazard (or 

baseline survival) for at least one time point is 

reported 

N 
Not 

applicable 
N 

15b Explain how to use the prediction model.     1 

i An explanation (e.g. a simplified scoring rule, chart, 

nomogram of the model, reference to online 

calculator, or worked example) is provided to explain 

how to use the model for individualised predictions. 

Y 
Not 

applicable 
Y 

16 Report performance measures (with confidence 

intervals) for the prediction model.  

These should be described in results section of the 

paper (item 10 addresses the reporting of the methods 

for model performance). 

    0 

i A discrimination measure is presented 

E.g. C-index / area under the ROC curve. 
Y Y Y 

ii The confidence interval (or standard error) of the 

discrimination measure  is presented 
N Y N 

iii Measures for model calibration are described 

E.g. calibration plot, calibration slope or intercept, 

calibration table, Hosmer Lemeshow test, O/E ratio. 

N N N 

iv Other model performance measures are presented 

E.g. R2, Brier score, predictive values, sensitivity, 

specificity, AUC difference, decision curve analysis, net 

reclassification improvement, integrated 

discrimination improvement, AIC. 

Y Y Y 

17 If done, report the results from any model updating 

(i.e., model specification, model performance, 

recalibration). 

    Not applicable 
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If updating was not done, score this TRIPOD item as 

‘Not applicable’.  

0 Model updating was done 

If "No", then answer 17i-17v with "Not applicable" 

Not 

applicable 
N N 

i The updated regression coefficients for each predictor 

in the model are reported  

If model updating was described as ‘not needed’, score 

Yes. 

Not 

applicable 
NA NA 

ii The updated intercept or cumulative baseline hazard 

or baseline survival (for at least one time point) is 

reported  

If model updating was described as ‘not needed’, score 

Yes.  

Not 

applicable 
NA NA 

iii The discrimination of the updated model is reported Not 

applicable 
NA NA 

iv The confidence interval (or standard error) of the 

discrimination measure of the updated model is 

reported 

Not 

applicable 
NA NA 

v The calibration of the updated model is reported Not 

applicable 
NA NA 

Discussion       

18 Discuss any limitations of the study (such as 

nonrepresentative sample, few events per predictor, 

missing data).  

    1 

i Limitations of the study are discussed 

Stating any limitation is sufficient. 
Y Y Y 

19a For validation, discuss the results with reference to 

performance in the development data, and any other 

validation data.  

    1 

i Comparison of results to reported performance in 

development studies and/or other validation studies is 

given 

Not 

applicable 
Y Y 

19b Give an overall interpretation of the results 

considering objectives, limitations, results from similar 

studies and other relevant evidence.   

    1 

i An overall interpretation of the results is given Y Y Y 

20 Discuss the potential clinical use of the model and 

implications for future research.  
    1 
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i The potential clinical use is discussed  

E.g. an explicit description of the context in which the 

prediction model is to be used (e.g. to identify high risk 

groups to help direct treatment, or to triage patients 

for referral to subsequent care). 

Y Y Y 

ii Implications for future research are discussed 

E.g. a description of what the next stage of 

investigation of the prediction model should be, such 

as ”We suggest further external validation”. 

Y Y Y 

Other information       

21 Provide information about the availability of 

supplementary resources, such as study protocol, web 

calculator, and data sets.  

      

i Information about supplementary resources is 

provided 
Y Y Y 

22 Give the source of funding and the role of the funders 

for the present study.  
    1 

i The source of funding is reported or there is explicit 

mention that there was no external funding involved 
Y Y Y 

ii The role of funders is reported or there is explicit 

mention that there was no external funding  
Y Y Y 

 
     
     
Number of applicable TRIPOD items     32 

 
Number of TRIPOD items adhered     15 

 
OVERALL adherence to TRIPOD     47% 

 

4.1. STATISTICAL ANALYSIS 
The probability threshold for defining a patient positive for PE was determined on the internal 

validation set and was optimized for both sensitivity and specificity. To quantify the variability 

in the results, 95% DeLong confidence intervals [14] (CIs) were computed for the AUC metric 

and 95% Wilson score CIs for sensitivity and specificity [15]. Calibration plots were used to 

measure the model's ability to generate probabilities that are, on average, close to the 

average observed risk on both internal validation and external test set [16]. Briefly, the model 

predictions were sorted in ascending order according to their probabilities and the [0,1] 

interval is discretized into 10 bins in a way that each bin contains an equal number of samples. 

For each bin the predicted and observed risk is computed and a linear model is used to fit the 

points. The slope and the intercept of the resulting linear fit are used as metrics for the model 

calibration on a specific dataset. 
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4.2. TRIPOD - TRANSPARENT REPORTING OF A MULTIVARIABLE PREDICTION MODEL FOR 

INDIVIDUAL PROGNOSIS OR DIAGNOSIS 
 

  Y=yes; N=no; R=referenced; NA=not applicable Developmen
t 
[D] 

External 
validation 
[V] 

Combined 
Developmen
t & External 
validation 
[D+V] 

Title and abstract       

1 Identify the study as developing and/or 
validating a multivariable prediction model, the 
target population, and the outcome to be 
predicted. 

    0 

i The words developing/development, 
validation/validating, incremental/added value 
(or synonyms) are reported in the title 

Y Y Y 

ii The words prediction, risk prediction, 
prediction model, risk models, prognostic 
models, prognostic indices, risk scores (or 
synonyms) are reported in the title 

N N N 

iii The target population is reported in the title N N N 

iv The outcome to be predicted is reported in the 
title 

Y Y Y 

2 Provide a summary of objectives, study design, 
setting, participants, sample size, predictors, 
outcome, statistical analysis, results, and 
conclusions. 

    0 

i The objectives are reported in the abstract Y Y Y 

ii Sources of data are reported in the abstract 
E.g. Prospective cohort, registry data, RCT data. 

Y Y Y 

iii The setting is reported in the abstract 
E.g. Primary care, secondary care, general 
population, adult  care, or paediatric care. The 
setting should be reported for  both the 
development and validation datasets, if 
applicable. 

Y Y Y 

iv A general definition of the study participants is 
reported in the abstract 
E.g. patients with suspicion of certain disease, 
patients with a specific disease, or general 
eligibility criteria.  

Y Y Y 

v The overall sample size is reported in the 
abstract 

Y Y Y 

vi The number of events (or % outcome together 
with overall sample size) is reported in the 
abstract 
If a continuous outcome was studied, score Not 
applicable (NA). 

N N N 
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vii Predictors included in the final model are 
reported in the abstract. For validation studies 
of well-known models, at least the 
name/acronym of the validated model is 
reported 
Broad descriptions are sufficient, e.g. ‘all 
information from patient history and physical 
examination’. 
Check in the main text whether all predictors of 
the final model are indeed reported in the 
abstract. 

Y Y Y 

viii The outcome is reported in the abstract Y Y Y 

ix Statistical methods are described in the 
abstract 
For model development, at least the type of 
statistical model should be reported. For 
validation studies a quote like “model’s 
discrimination and calibration was assessed” is 
considered adequate. If done, methods of 
updating should be reported. 

Y Y Y 

x Results for model discrimination are reported 
in the abstract 
This should be reported separately for 
development and validation if a study includes 
both development and validation. 

Y Y Y 

xi Results for model calibration are reported in 
the abstract 
This should be reported separately for 
development and validation if a study includes 
both development and validation. 

N N N 

xii Conclusions are reported in the abstract 
In publications addressing both model 
development and validation, there is no need 
for separate conclusions for both; one 
conclusion is sufficient. 

Y Y Y 

3a Explain the medical context (including whether 
diagnostic or prognostic) and rationale for 
developing or validating the multivariable 
prediction model, including references to 
existing models. 

    1 

i The background and rationale are presented Y Y Y 

ii Reference to existing models is included (or 
stated that there are no existing models) 

Y Y Y 

3b Specify the objectives, including whether the 
study describes the development or validation 
of the model or both. 

    1 

i It is stated whether the study describes 
development and/or validation and/or 
incremental (added) value 

Y Y Y 

Methods       
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4a Describe the study design or source of data 
(e.g., randomized trial, cohort, or registry data), 
separately for the development and validation 
data sets, if applicable. 

    1 

i The study design/source of data is described 
E.g. Prospectively designed, existing cohort, 
existing RCT, registry/medical records, case 
control, case series. 
This needs to be explicitly reported; reference 
to this information in another article alone is 
insufficient. 

Y Y Y 

4b Specify the key study dates, including start of 
accrual; end of accrual; and, if applicable, end 
of follow-up.   

    1 

i The starting date of accrual is reported R R R 

ii The end date of accrual is reported R R R 

iii The length of follow-up and prediction 
horizon/time frame are reported, if applicable 
E.g. “Patients were followed from baseline for 
10 years“ and “10-year prediction of…”; 
notably for prognostic studies with long term 
follow-up. 
If this is not applicable for an article (i.e. 
diagnostic study or no follow-up), then score 
Not applicable (NA). 

NA NA NA 

5a Specify key elements of the study setting (e.g., 
primary care, secondary care, general 
population) including number and location of 
centres. 

    0 

i The study setting is reported (e.g. primary care, 
secondary care, general population) 
E.g.: ‘surgery for endometrial cancer patients’ is 
considered to be enough information about the 
study setting. 

N Y N 

ii The number of centres involved is reported 
If the number is not reported explicitly, but can 
be concluded from the name of the 
centre/centres, or if clearly a single centre 
study, score Yes. 

N Y N 

iii The geographical location (at least country) of 
centres involved is reported 
If no geographical location is specified, but the 
location can be concluded from the name of 
the centre(s), score Yes. 

N Y N 

5b Describe eligibility criteria for participants.      0 

i In-/exclusion criteria are stated 
These should explicitly be stated. Reasons for 
exclusion only described in a patient flow is not 
sufficient.  

N N N 
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5c Give details of treatments received, if relevant.  
(i.e. notably for prognostic studies with long 
term follow-up) 

    Not 
applicable 

i Details of any treatments received are 
described  
This item is notably for prognostic modelling 
studies and is about treatment at baseline or 
during follow-up. The ‘if relevant’ judgment of 
treatment requires clinical knowledge and 
interpretation.  
If you are certain that treatment was not 
relevant, e.g. in some diagnostic model studies, 
score Not applicable. 

NA NA NA 

6a Clearly define the outcome that is predicted by 
the prediction model, including how and when 
assessed.  

    0 

i The outcome definition is clearly presented 
This should be reported separately for 
development and validation if a publication 
includes both.  

Y Y Y 

ii It is described how outcome was assessed 
(including all elements of any composite, for 
example CVD [e.g. MI, HF, stroke]). 

N N N 

iii It is described when the outcome was assessed 
(time point(s) since T0) 

N N N 

6b Report any actions to blind assessment of the 
outcome to be predicted.     

    1 

i Actions to blind assessment of outcome to be 
predicted are reported 
If it is clearly a non-issue (e.g. all-cause 
mortality or an outcome not requiring 
interpretation), score Yes. In all other 
instances, an explicit mention is expected. 

Y Y Y 

7a Clearly define all predictors used in developing 
or validating the multivariable prediction 
model, including how and when they were 
measured. 

    0 

i All predictors are reported 
For development, “all predictors” refers to all 
predictors that potentially could have been 
included in the ‘final’ model (including those 
considered in any univariable analyses). 
For validation, “all predictors” means the 
predictors in the model being evaluated. 

N N N 

ii Predictor definitions are clearly presented Y Y Y 

iii It is clearly described how the predictors were 
measured 

Y Y Y 

iv It is clearly described when the predictors were 
measured 

R R R 
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7b Report any actions to blind assessment of 
predictors for the outcome and other 
predictors.  

    0 

i It is clearly described whether predictor 
assessments were blinded for outcome 
For predictors for which it is clearly a non-issue 
(e.g. automatic blood pressure measurement, 
age, sex) and for instances where the 
predictors were clearly assessed before 
outcome assessment, score Yes. For all other 
predictors an explicit mention is expected. 

N N N 

ii It is clearly described whether predictor 
assessments were blinded for the other 
predictors 

N N N 

8 Explain how the study size was arrived at.     0 

i It is explained how the study size was arrived at 
Is there any mention of sample size, e.g. 
whether this was done on statistical grounds or 
practical/logistical grounds (e.g. an existing 
study cohort or data set of a RCT was used)?  

N N N 

9 Describe how missing data were handled (e.g., 
complete-case analysis, single imputation, 
multiple imputation) with details of any 
imputation method.  

    0 

i The method for handling missing data 
(predictors and outcome) is mentioned 
E.g. Complete case (explicit mention that 
individuals with missing values have been 
excluded), single imputation, multiple 
imputation, mean/median imputation. 
If there is no missing data, there should be an 
explicit mention that there is no missing data 
for all predictors and outcome. If so, score Yes. 
If it is unclear whether there is missing data 
(from e.g. the reported methods or results), 
score No. 
If it is clear there is missing data, but the 
method for handling missing data is unclear, 
score No. 

N N N 

ii If missing data were imputed, details of the 
software used are given 
When under 9i explicit mentioning of no 
missing data, complete case analysis or no 
imputation applied, score Not applicable. 

NA NA NA 

iii If missing data were imputed, a description of 
which variables were included in the 
imputation procedure is given 
When under 9i explicit mentioning of no 
missing data, complete case analysis or no 
imputation applied, score Not applicable. 

NA NA NA 
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iv If multiple imputation was used, the number of 
imputations is reported 
When under 9i explicit mentioning of no 
missing data, complete case analysis or no 
imputation applied, score Not applicable. 

NA NA NA 

10a Describe how predictors were handled in the 
analyses.  

    1 

i For continuous predictors it is described 
whether they were modelled as linear, 
nonlinear (type of transformation specified) or 
categorized 
A general statement is sufficient, no need to 
describe this for each predictor separately.  
If no continuous predictors were reported, 
score Not applicable. 

Y Not 
applicabl
e 

Y 

ii For categorical or categorized predictors, the 
cut-points were reported 
If no categorical or categorized predictors were 
reported, score Not applicable. 

NA Not 
applicabl
e 

NA 

iii For categorized predictors the method to 
choose the cut-points was clearly described 
If no categorized predictors, score Not 
applicable. 

NA Not 
applicabl
e 

NA 

10b Specify type of model, all model-building 
procedures (including any predictor selection), 
and method for internal validation.  

    1 

i The type of statistical model is reported 
E.g. Logistic, Cox, other regression model (e.g. 
Weibull, ordinal), other statistical modelling 
(e.g. neural network) 

Y Not 
applicabl
e 

Y 

ii The approach used for predictor selection 
before modelling is described 
‘Before modelling’ means before any 
univariable or multivariable analysis of 
predictor-outcome associations. 
If no predictor selection before modelling is 
done, score Not applicable. 
If it is unclear whether predictor selection 
before modelling is done, score No. 
If it is clear there was predictor selection before 
modelling but the method was not described, 
score No. 

NA Not 
applicabl
e 

NA 

iii The approach used for predictor selection 
during modelling is described 
E.g. Univariable analysis, stepwise selection, 
bootstrap, Lasso. 
‘During modelling’ includes both univariable or 
multivariable analysis of predictor-outcome 
associations.  
If no predictor selection during modelling is 
done (so-called full model approach), score Not 

NA Not 
applicabl
e 

NA 
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applicable. 
If it is unclear whether predictor selection 
during modelling is done, score No.  
If it is clear there was predictor selection during 
modelling but the method was not described, 
score No. 

iv Testing of interaction terms is described 
If it is explicitly mentioned that interaction 
terms were not addressed in the prediction 
model, score Yes.  
If interaction terms were included in the 
prediction model, but the testing is not 
described, score No. 

Y Not 
applicabl
e 

Y 

v Testing of the proportionality of hazards in 
survival models is described 
If no proportional hazard model is used, score 
Not applicable. 

NA Not 
applicabl
e 

NA 

vi Internal validation is reported  
E.g. Bootstrapping, cross validation, split 
sample. 
If the use of internal validation is clearly a non-
issue (e.g. in case of very large data sets), score 
Yes. For all other situations an explicit mention 
is expected. 

Y Not 
applicabl
e 

Y 

10c For validation, describe how the predictions 
were calculated.  

    1 

i. It is described how predictions for individuals 
(in the validation set) were obtained from the 
model being validated  
E.g. Using the original reported model 
coefficients with or without the intercept, 
and/or using updated or refitted model 
coefficients, or using a nomogram, spreadsheet 
or web calculator.  

Not 
applicable 

Y Y 

10d Specify all measures used to assess model 
performance and, if relevant, to compare 
multiple models.  
These should be described in methods section 
of the paper (item 16 addresses the reporting 
of the results for model performance).  

    1 

i Measures for model discrimination are 
described 
E.g. C-index / area under the ROC curve. 

Y Y Y 

ii Measures for model calibration are described 
E.g. calibration plot, calibration slope or 
intercept, calibration table, Hosmer Lemeshow 
test, O/E ratio. 

Y Y Y 
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iii Other performance measures are described  
E.g. R2, Brier score, predictive values, 
sensitivity, specificity, AUC difference, decision 
curve analysis, net reclassification 
improvement, integrated discrimination 
improvement, AIC. 

Y Y Y 

10e Describe any model updating (e.g., 
recalibration) arising from the validation, if 
done. 

    Not 
applicable 

i A description of model-updating is given 
E.g. Intercept recalibration, regression 
coefficient recalibration, refitting the whole 
model, adding a new predictor  
If updating was done, it should be clear which 
updating method was applied to score Yes.  
If it is not explicitly mentioned that updating 
was applied in the study, score this item as ‘Not 
applicable’. 

Not 
applicable 

NA NA 

11 Provide details on how risk groups were 
created, if done.  
If risk groups were not created, score this item 
as Yes. 

    Not 
applicable 

i If risk groups were created, risk group 
boundaries (risk thresholds) are specified  
Score this item separately for development and 
validation if a study includes both development 
and validation. 
If risk groups were not created, score this item 
as not applicable. 

NA NA NA 

12 For validation, identify any differences from the 
development data in setting, eligibility criteria, 
outcome and predictors.  

    1 

i Differences or similarities in definitions with 
the development study are described 
Mentioning of any differences in all four 
(setting, eligibility criteria, predictors and 
outcome) is required to score Yes.  
If it is explicitly mentioned that there were no 
differences in setting, eligibility criteria, 
predictors and outcomes, score Yes. 

Not 
applicable 

Y Y 

Results       

13a Describe the flow of participants through the 
study, including the number of participants 
with and without the outcome and, if 
applicable, a summary of the follow-up time. A 
diagram may be helpful. 

    1 

i The flow of participants is reported  Y Y Y 

ii The number of participants with and without 
the outcome are reported 
If outcomes are continuous, score Not 
applicable. 

NA NA NA 
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iii A summary of follow-up time is presented 
This notably applies to prognosis studies and 
diagnostic studies with follow-up as diagnostic 
outcome. 
If this is not applicable for an article (i.e. 
diagnostic study or no follow-up), then score 
Not applicable. 

NA NA NA 

13b Describe the characteristics of the participants 
(basic demographics, clinical features, available 
predictors), including the number of 
participants with missing data for predictors 
and outcome.  

    0 

i Basic demographics are reported Y Y Y 

ii Summary information is provided for all 
predictors included in the final 
developed/validated model 

Y Y Y 

iii The number of participants with missing data 
for predictors is reported 

N N N 

iv The number of participants with missing data 
for the outcome is reported 

N N N 

13c For validation, show a comparison with the 
development data of the distribution of 
important variables (demographics, predictors 
and outcome). 

    1 

i Demographic characteristics (at least age and 
gender) of the validation study participants are 
reported along with those of the original 
development study 

Not 
applicable 

Y Y 

ii Distributions of predictors in the model of the 
validation study participants are reported along 
with those of the original development study 

Not 
applicable 

Y Y 

iii Outcomes of the validation study participants 
are reported along with those of the original 
development study 

Not 
applicable 

Y Y 

14a Specify the number of participants and 
outcome events in each analysis.  

    0 

i The number of participants in each analysis 
(e.g. in the analysis of each model if more than 
one model is developed) is specified 

N Not 
applicabl
e 

N 

ii The number of outcome events in each analysis 
is specified (e.g. in the analysis of each model if 
more than one model is developed) 
If outcomes are continuous, score Not 
applicable. 

NA Not 
applicabl
e 

NA 

14b If done, report the unadjusted association 
between each candidate  predictor and 
outcome. 

    Not 
applicable 
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i The unadjusted associations between each 
predictor and outcome are reported 
If any univariable analysis is mentioned in the 
methods but not in the results, score No.  
If nothing on univariable analysis (in methods 
or results) is reported, score this item as Not 
applicable. 

NA Not 
applicabl
e 

NA 

15a Present the full prediction model to allow 
predictions for individuals (i.e., all regression 
coefficients, and model intercept or baseline 
survival at a given time point). 

    0 

i The regression coefficient (or a derivative such 
as hazard ratio, odds ratio, risk ratio) for each 
predictor in the model is reported  

N Not 
applicabl
e 

N 

ii The intercept or the cumulative baseline 
hazard (or baseline survival) for at least one 
time point is reported 

N Not 
applicabl
e 

N 

15b Explain how to use the prediction model.     0 

i An explanation (e.g. a simplified scoring rule, 
chart, nomogram of the model, reference to 
online calculator, or worked example) is 
provided to explain how to use the model for 
individualised predictions. 

N Not 
applicabl
e 

N 

16 Report performance measures (with 
confidence intervals) for the prediction model.  
These should be described in results section of 
the paper (item 10 addresses the reporting of 
the methods for model performance). 

    1 

i A discrimination measure is presented 
E.g. C-index / area under the ROC curve. 

Y Y Y 

ii The confidence interval (or standard error) of 
the discrimination measure  is presented 

Y Y Y 

iii Measures for model calibration are described 
E.g. calibration plot, calibration slope or 
intercept, calibration table, Hosmer Lemeshow 
test, O/E ratio. 

Y Y Y 

iv Other model performance measures are 
presented 
E.g. R2, Brier score, predictive values, 
sensitivity, specificity, AUC difference, decision 
curve analysis, net reclassification 
improvement, integrated discrimination 
improvement, AIC. 

Y Y Y 

17 If done, report the results from any model 
updating (i.e., model specification, model 
performance, recalibration). 
If updating was not done, score this TRIPOD 
item as ‘Not applicable’.  

    Not 
applicable 

0 Model updating was done 
If "No", then answer 17i-17v with "Not 
applicable" 

Not 
applicable 

N N 
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i The updated regression coefficients for each 
predictor in the model are reported  
If model updating was described as ‘not 
needed’, score Yes. 

Not 
applicable 

NA NA 

ii The updated intercept or cumulative baseline 
hazard or baseline survival (for at least one 
time point) is reported  
If model updating was described as ‘not 
needed’, score Yes.  

Not 
applicable 

NA NA 

iii The discrimination of the updated model is 
reported 

Not 
applicable 

NA NA 

iv The confidence interval (or standard error) of 
the discrimination measure of the updated 
model is reported 

Not 
applicable 

NA NA 

v The calibration of the updated model is 
reported 

Not 
applicable 

NA NA 

Discussion       

18 Discuss any limitations of the study (such as 
nonrepresentative sample, few events per 
predictor, missing data).  

    1 

i Limitations of the study are discussed 
Stating any limitation is sufficient. 

Y Y Y 

19a For validation, discuss the results with 
reference to performance in the development 
data, and any other validation data.  

    1 

i Comparison of results to reported performance 
in development studies and/or other validation 
studies is given 

Not 
applicable 

Y Y 

19b Give an overall interpretation of the results 
considering objectives, limitations, results from 
similar studies and other relevant evidence.   

    1 

i An overall interpretation of the results is given Y Y Y 

20 Discuss the potential clinical use of the model 
and implications for future research.  

    1 

i The potential clinical use is discussed  
E.g. an explicit description of the context in 
which the prediction model is to be used (e.g. 
to identify high risk groups to help direct 
treatment, or to triage patients for referral to 
subsequent care). 

Y Y Y 

ii Implications for future research are discussed 
E.g. a description of what the next stage of 
investigation of the prediction model should 
be, such as ”We suggest further external 
validation”. 

Y Y Y 

Other information       

21 Provide information about the availability of 
supplementary resources, such as study 
protocol, web calculator, and data sets.  
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i Information about supplementary resources is 
provided 

Y Y Y 

22 Give the source of funding and the role of the 
funders for the present study.  

    1 

i The source of funding is reported or there is 
explicit mention that there was no external 
funding involved 

Y Y Y 

ii The role of funders is reported or there is 
explicit mention that there was no external 
funding  

Y Y Y 

     
     

 
Number of applicable TRIPOD items     31  
Number of TRIPOD items adhered     18  
OVERALL adherence to TRIPOD     58% 

 

4.3. CLAIM:  CHECKLIST FOR ARTIFICIAL INTELLIGENCE IN MEDICAL IMAGING 
Section / Topic No. Item  

TITLE / ABSTRACT    

 1 
Identification as a study of AI methodology, specifying the category of 

technology used (e.g., deep learning) 
x 

 2 Structured summary of study design, methods, results, and conclusions  x 

INTRODUCTION    

 3 
Scientific and clinical background, including the intended use and clinical 

role of the AI approach 
x 

 4 Study objectives and hypotheses x 

METHODS    

Study Design 5 Prospective or retrospective study x 

 6 
Study goal, such as model creation, exploratory study, feasibility study, 

non-inferiority trial 
x 

Data 7 Data sources x 

 8 

Eligibility criteria: how, where, and when potentially eligible participants or 

studies were identified (e.g.,  symptoms, results from previous tests, 

inclusion in registry, patient-care setting, location, dates) 

 

 9 Data pre-processing steps  x 

 10 Selection of data subsets, if applicable  

 11 Definitions of data elements, with references to Common Data Elements  
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 12 De-identification methods  

 13 How missing data were handled  

Ground Truth 14 
Definition of ground truth reference standard, in sufficient detail to allow 

replication 
x 

 15 Rationale for choosing the reference standard (if alternatives exist)  

 16 
Source of ground-truth annotations; qualifications and preparation of 

annotators 
x 

 17 Annotation tools x 

 18 
Measurement of inter- and intrarater variability; methods to mitigate 

variability and/or resolve discrepancies 
 

Data Partitions 19 Intended sample size and how it was determined  

 20 How data were assigned to partitions; specify proportions x 

 21 Level at which partitions are disjoint (e.g., image, study, patient, institution) x 

Model 22 
Detailed description of model, including inputs, outputs, all intermediate 

layers and connections 
x 

 23 Software libraries, frameworks, and packages x 

 24 Initialization of model parameters (e.g., randomization, transfer learning)  

Training 25 
Details of training approach, including data augmentation, 

hyperparameters, number of models trained 
 

 26 Method of selecting the final model  

 27 Ensembling techniques, if applicable  

Evaluation 28 Metrics of model performance x 

 29 
Statistical measures of significance and uncertainty (e.g., confidence 

intervals) 
x 

 30 Robustness or sensitivity analysis  

 31 
Methods for explainability or interpretability (e.g., saliency maps), and how 

they were validated 
x 

 32 Validation or testing on external data x 

RESULTS    

Data 33 
Flow of participants or cases, using a diagram to indicate inclusion and 

exclusion 
x 

 34 Demographic and clinical characteristics of cases in each partition  
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Model performance 35 Performance metrics for optimal model(s) on all data partitions x 

 36 
Estimates of diagnostic accuracy and their precision (such as 95% 

confidence intervals) 
x 

 37 Failure analysis of incorrectly classified cases  

DISCUSSION    

 38 
Study limitations, including potential bias, statistical uncertainty, and 

generalizability 
x 

 39 Implications for practice, including the intended use and/or clinical role  x 

OTHER 

INFORMATION 
   

 40 Registration number and name of registry  

 41 Where the full study protocol can be accessed  

 42 Sources of funding and other support; role of funders x 

5.1 ADDITIONAL RESULTS 
 

 
Fig. 1 Time-dependent AUC for Signature-0 (black) vs volume feature (red) vs Overall Stage (blue) on manual 

segmentation (left) and Signature-0 vs volume feature on automatic segmentation (right). 
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Fig. 2 Decision curves for Signature-0 (black) vs volume feature (red) vs Overall Stage (grey) on manual 

segmentation (left) and automatic segmentation (right) at 2 year survival for SDC Lung dataset  

 

 

 
Fig. 3 Calibration curves of Signature-0 (black) vs volume feature (red) vs Overall Stage (grey) on manual 

segmentation (left) and automatic segmentation (right) for 2 year survival on SDC Lung dataset 

 

 

 

 

 

 

 

 

 



 

191 
 

8.1 ADDITIONAL RESULTS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1b. The 3D volume rendering of the ground truth 

and predicted mask in anterior view. The right labyrinth ear 

is missing the vestibule and the semicircular canals  AD= 

auriculum dextra, AS=auriculum sinistra 

Figure 1a. Example of one of the clinical validation MRI scans in the axial and coronal plane. This case shows the 
presence of a vestibular schwannoma after a translabyrinthine resection on the right side. Therefore, the right 
semi-circular canals and vestibule are not segmented. DSC: 0.8973, Ground Truth Volume: 316.11 mm3, True 
Positive Volume: 294.69mm3, True Positive Rate: 93.22%, False Negative Rate: 6.77%. False Positive Rate: 
0.0005% 
 

 

 

 

Figure 1b. The 3D volume rendering of the ground truth and the predicted mask. The semi-circular canals and 
the vestibule of the right inner ear were not fully displayed on MRI. The model has correctly not segmented the 
semi-circular canals and the vestibule of the right inner ear. AD= auriculum dextra, AS=auriculum sinistra 
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Figure 2a. Example of one of the clinical validation MRI scans in the axial and coronal plane. This case shows 
obliteration of the apical and middle turn of the left cochlea, indicating the presence of either labyrinthitis 
ossificans or a vestibular schwannoma. The left cochlea is, therefore, not fully segmented. DSC: 0.8691, Ground 
Truth Volume: 680.79 mm3, True Positive Volume: 573.26 mm3, True Positive Rate: 84.20%, False Negative Rate: 
15.79%. False Positive Rate: 0.0007% 
 

 

 

Figure 2b. The 3D volume rendering of the ground truth and the predicted mask. The cochlea of the left inner 
ear was not fully displayed on MRI. The model has correctly not segmented parts of the cochlea. AD= 
auriculum dextra, AS=auriculum sinistra 
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Figure 3a. Example of one of the clinical validation MRI scans in the axial and coronal plane. This case shows the 
presence of a vestibular schwannoma after a translabyrinthine resection on the right side. The left semi-circular 
canals and the vestibule are, therefore, not segmented. DSC: 0.8704, Ground Truth Volume: 359.94 mm3, True 
Positive Volume: 314.92 mm3, True Positive Rate: 87.49%, False Negative Rate: 12.50%, False Positive Rate: 
0.0005% 

 

 

Figure 3b The 3D volume rendering of the ground truth and the predicted mask. The semi-circular canals and 
the vestibule of the right inner ear were not displayed on MRI. The model has correctly not segmented the 
semi-circular canals and the vestibule. AD= auriculum dextra, AS=auriculum sinistra 
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Figure 4a. Example of one of the clinical validation MRI scans in the axial and coronal plane. This case shows 
post-therapeutic fibrosis in the left inner ear. The right superior and inferior semi-circular canals are not 
segmented. DSC: 0.8916, Ground Truth Volume: 510.3 mm3, True Positive Volume: 442.5 mm3, True Positive 
Rate: 86.71%, False Negative Rate: 13.28%. False Positive Rate: 0.0004% 

 

 

Figure 4b. The 3D volume rendering of the ground truth and the predicted mask. The superior and inferior 
semi-circular canals of the right inner ear were not displayed on MRI. The model has correctly not segmented 
these semi-circular canals AD= auriculum dextra, AS=auriculum sinistra 
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Figure 5a. Example of one of the clinical validation MRI scans in the axial and coronal plane. This case shows the 
presence of a vestibular schwannoma on the right side, with changes in the signal intensities the inner ear, 
indicating fibrosis. The right, superior, lateral and inferior semi-circular canals are not fully segmented. DSC: 
0.8770, Ground Truth Volume: 486.78 mm3, True Positive Volume: 434.21 mm3 , True Positive Rate: 89.19%, 
False Negative Rate: 10.8% . False Positive Rate: 0.013%.  

 

 

Figure 5b. The 3D volume rendering of the ground truth and the predicted mask. The superior, lateral and 
inferior semi-circular canals of the right inner ear were not properly displayed on MRI. The model has correctly 
not segmented these semi-circular canals AD= auriculum dextra, AS=auriculum sinistra.  
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Figure 6a. Example of one of the clinical validation MRI scans in the axial and coronal plane. This case shows the 
presence of a vestibular schwannoma after a translabyrinthine resection on the left side. The left semi-circular 
canals and vestibule are not segmented. DSC: 0.8631, Ground Truth Volume: 395.39mm3, True Positive Volume: 
348.55 mm3 , True Positive Rate: 88.15% , False Negative Rate: 11.84%, False Positive Rate: 0.0004% 

 

 

Figure 6b. The 3D volume rendering of the ground truth and the predicted mask. The semi-circular canals and 
the vestibule of the right inner ear were not displayed on MRI. The model has correctly not segmented the 
semi-circular canals and vestibule. AD= auriculum dextra, AS=auriculum sinistra.  
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Figure 7a. Example of one of the clinical validation MRI scans in the axial and coronal plane This case shows a 
transmodiolar and macular schwannoma on the right side. The right vestibule and cochlea are not fully 
segmented. DSC: 0.8648, Ground Truth Volume: 472.39 mm3, True Positive Volume:405.14 mm3, True Positive 
Rate:85.76%, False Negative Rate:14.23% . False Positive Rate: 0.0006%.  
 

 

 

Figure 7b. The 3D volume rendering of the ground truth and the predicted mask. The vestibule and the cochlea 
of the right inner ear were not displayed on MRI. The model has correctly not segmented the vestibule and the 
cochlea. AD= auriculum dextra, AS=auriculum sinistra.  
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Figure 8a. Example of one of the clinical validation MRI scans in the axial and coronal plane. This case shows 

obliteration of the apical, middle and basal turn of the right cochlea, indicating the presence of either 

labyrinthitis ossificans or a vestibular schwannoma. The right superior and inferior semi-circular canals, the 

vestibule and the cochlea are not fully segmented. DSC: 0.8810, Ground Truth Volume: 369.603 mm3, True 

Positive Volume: 325.95 mm3 , True Positive Rate: 88.19%, False Negative Rate: 11.80%. False Positive Rate: 

0.0005%. 

 

 

Figure 8b. The 3D volume rendering of the ground truth and the predicted mask. The superior and inferior 
semi-circular canals, the vestibule and the cochlea of the right inner ear were not displayed on MRI. The model 
has correctly not segmented these structures. AD= auriculum dextra, AS=auriculum sinistra.  
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IMPACT ADDENDUM 

The primary goal of the work presented in this thesis is to provide Radiomics methodologies for 

disease detection, localization, quantification, diagnosis, prognosis, and treatment outcome 

prediction. The proposed methods have been tested on external validation cohorts, with different 

imaging parameters and morphological information, to assess their generalizability and robustness, 

and to pave the way for a possible application in a real clinical setting. 

SCIENTIFIC IMPACTS 
The combination of AI-based auto-segmentation model and radiomics features extracted from the 

segmented lung GTV region on CT images described in chapter 5 can be leveraged for gaining more 

insights on clinical endpoints like genetic mutation status in a tumor, progressive response to 

treatment, determining automated RECIST scoring, etc. Similar work has been done to predict HPV 

status from standard CT images of anal and vulvar cancer patients. [1], automatic RECIST score 

evaluation using diffusion MRI [2]. Furthermore, radiomic features extracted using such 

methodologies, in combination with genomic, and proteomic data can lead to Biomarker discovery in 

the future.  

The AI model and the automatic labeler methodology described in chapter 6 can be adapted to any 

application that requires the recording of localized information on images in a text format, linked for 

example to Electronic Health Records (EHR). This would greatly benefit an optimal connection 

between the AI-based system and patient records documentation.  

The deep learning methodology for segmentation described in chapter 8 can be reproduced for any 

application that requires delineation of regions on images and such a model can be used as a support 

tool for detection, localization, and quantification purposes in radiology. An adaptation of the model 

mentioned in the chapter was trained and validated on liver lesions [3].  

Furthermore, all our studies are published in medical and technical peer-reviewed international 

journals such as, Diagnostics, Journal of Neurology, IEEE Access, Medical Research Reviews, Journal of 

Personalized Medicine, La radiologia medica, European Respiratory Journal, and Journal of Clinical 

Oncology and the publications are available as open access.  

SOCIETAL IMPACTS 
All the tools that were developed in the context of my research can be efficiently deployed and usable 

in a clinical setting. In actual fact, The AI-based tools developed in chapter 2 called COVIA have been 

implemented at CHU-Liege and were used as an additional diagnostic research tool when the 

pandemic was at its peak in 2020. The methodology in chapters 2 & 3 could be adapted to support 

incidental findings or to provide a second independent verification of the occurrence of the disease, 

inclusive and beyond the emergency status of this pandemic. Especially, the method for localization 

of abnormalities in lungs can be leveraged to analyze new unseen abnormalities if in-case another 

pandemic occurs.  

Models and methodologies presented in the thesis have already been used in a research context by 

both Biotech and major pharmaceutical companies to explore possible improvements in drug 

development. One of the models has been filed as a novel invention and is currently being evaluated. 

To be accepted as an international patent application [4].  
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Finally, leveraging, and improvement of our methods can greatly benefit society by providing 

increased accuracy and efficiency concerning diagnosis, prognosis, and appropriate treatment 

selection and ultimately superior understanding of disease or biology of any type of abnormality 

presenting in our body.  
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