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Chapter 1

The human heart consists of two atria and two ventricles. The atria are the upper receiving 
chambers, collecting venous blood. The ventricles comprise most of the heart’s tissue 
volume and lie below the atria [1]. The ventricles pump blood to the other organs and itself 

so by generating force through contraction, providing pressure to pump blood through the 
arteries [2, 3]. 
stretching of cardiomyocytes (CMs)[5] and other cardiac cell types (preload)[6, 7]. During 
systole, ventricular pressure has to overcome diastolic pulmonary and aortic artery pressure 
(afterload) to open the pulmonary and aortic valves, respectively [4, 8].

Alterations in both preload and afterload lead to changes in cardiac structure, at the 
macroscopic, microscopic and molecular levels. Such changes are often referred to as 

and electrical processes that manifest clinically as changes in size, shape and function of the 
heart driven by a change in cardiac load or injury, ultimately leading to heart failure [9, 10].

system [11-13]. It has been and still is the leading cause of death worldwide [14, 15]. It is 
estimated that by the year 2030, 23.6 million people will die of Cardiovascular Diseases 
each year [12, 13].

Heart failure is the third most prevalent Cardiovascular Disease in the United States [16, 
17]. In the Netherlands, there are 250,000 patients with heart failure, accounting for around 
19% of all cardiac deaths [18]. Heart failure is also costly, due to frequent hospitalizations. In 
2020 on average 80 patients per day were admitted to the hospital due to heart failure [18]. 
Heart failure develops secondary to diseases like myocardial infarction, valvular disease or 
chronic high blood pressure [9, 19, 20]. Important factors in the development of heart failure 
are the changes in the composition of the myocardium like changes in the myocytes and in 
the interstitial tissue [21, 22]. Better insight in these “remodeling” processes will contribute 
to better treatment of heart failure.

vascular smooth muscle cells [23, 24]. CMs are rhythmically contracting cells that are 
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heart, CFs produce the components of the cardiac extracellular matrix (ECM) [27-31] and 
are therefore important for maintaining the integrity of the heart [32, 33]. The cardiac ECM 
consists of structural matrix proteins like collagens (mainly of collagen type 1) [32, 34], 

contains matricellular proteins: a group of ECM-regulatory proteins that includes proteins 
like connective tissue growth factor (CTGF/CCN2), thrombospondins and tenascins [33, 
36]. Moreover, recently our research group discovered cartilage intermediate layer protein 
1 (Cilp1) as matricellular protein in the cardiac ECM [37]. In addition to producing ECM 
proteins and matricellular proteins, CFs also produce matrix metalloproteinases (MMPs) 
and tissue inhibitors of MMPs (TIMPs), the balance of which can modulate the degradation 
of the ECM [32, 38], resulting in control over the cardiac ECM turnover [33, 38]. Moreover, 

as key players in the wound healing response [30, 41-43].

Cardiac remodeling processes can serve as physiological adaptation of the heart to maintain 
its function in abnormal loading conditions like pressure and volume overload [9, 19], 
exercise or pregnancy [44, 45]. However, such adaptations can also become maladaptive. 

the occurrence and time course can vary [9]. Maladaptive changes are often associated 

contractile function [10, 46, 47]. Such maladaptive remodeling then worsens the mechanical 
performance of the heart, thus creating a vicious circle, aggravating heart failure [9, 10].

There is considerable evidence that cardiac remodeling is determined by a combination of 
mechanical, neurohumoral, and local autocrine/paracrine factors [9]. The neurohumoral 
factors, stem from the physiological regulation of blood pressure and volume: the 
sympathetic nervous system (SNS) and renin-angiotensin-aldosterone system (RAAS) 
[48]. Activation of the SNS increases in heart rate, contractility and vascular tone [48, 49]. 
Activation of RAAS also results in vasoconstriction and an increase in blood volume [48, 50]. 
The vasoconstriction and increased blood volume will also further enhance venous return to 

Chronic activation of the SNS and RAAS leads to structural and functional changes within 
the myocardium, resulting in cardiac remodeling [50-53].

In response to wall stretch cardiac tissues produce natriuretic peptides [54-58]. Atrial 
natriuretic peptide (ANP, encoded by the NPPA gene) and brain natriuretic peptide (BNP, 
encoded by the NPPB gene) [59, 60] are mainly found in the atria and ventricles respectively, 
but have been found in other tissues as well [61-64]. The third natriuretic peptide is C-type 
natriuretic peptide (CNP, encoded by the

 NPPC gene) and is mainly produced in endothelial tissue [61, 65]. In vitro studies have shown 
increased expression of ANP and BNP in CMs after mechanical stimulation in the form of 

1
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cardiac remodeling [68].

matrix composition and structure, the induction of growth factors and cytokines, increased 

of healing the myocardium and replacement of dead cells [79], thereby preventing further 

[83-85], while the replacement of CMs by CFs reduces contractility [85], ultimately leading 
towards impaired cardiac function [34, 86, 87]. However, an impaired healing process, by 

ventricular rupture or left ventricular dilatation [88-90] . Therefore, balance is key when it 

In conclusion, CFs are quiescent cells under physiological conditions, but become activated 

focus on the activation of CFs by mechanical stimulation.
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surrounded by CMs (beige) within the ECM. After myocardial injury CMs die (grey) and CFs become 

Besides the above described functions in cardiac ECM organization, CFs have an important 

the production of autocrine and paracrine mediators such as cytokines, growth factors, 
prostaglandins, and nitric oxide [41, 94-96]. Communication between CFs and other cardiac 
cells happens through direct cell-cell contacts, soluble paracrine factors and ECM-mediated 
interactions [27, 97, 98].

for cardiac function [27, 99]. CFs are able to sense increased mechanical loads in order to 
respond to changes in load. Every heart beat generates load changes, resulting in changes 

due to changes in physical activity (in order to minutes – hours) and due to diseases, such 
as hypertension and valvular disease, that last for many days to years. The exact mechanical 

ECM are important for CF function [100, 101]. Mechanical forces are interpreted by cells 
via mechanotransduction: the conversion of mechanical stimuli into biochemical activity 

1
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ECM activation converting the mechanical signal into a biochemical signal, already in the 
ECM which acts downstream via cell surface proteins. Secondly, signaling happens via direct 
mechanical activation of cell surface transmembrane proteins, which convert the mechanical 
signal into intracellular biochemical signals at the level of the plasma membrane. Thirdly, 

synthesis and/or secretion of a growth factor that indirectly regulates CF gene expression 
via an auto- or paracrine feedback loop [103].

Cell–matrix adhesion contacts form the physical link between the ECM and the cell via the 
cytoskeleton [103, 104].The main receptors that connect the cytoskeleton to the ECM are 
integrins [105], which transmit the tractional forces developed in the cytoskeleton to the ECM 
and vice versa [102, 106]. Besides this communicating role, integrins can also regulate signaling 
pathways, converting the mechanical stimulus into a biochemical signal [102, 107]. Integrins 

can be rapidly activated and released [6]. Toll-like receptors (TLRs) are another group of 
receptors activated by mechanical stress [110]. Danger-associated molecular patterns (DAMPs) 
are endogenous molecules, such as heat shock proteins [111] or ECM-derived molecules like 
tenascin C [112], capable of activating TLRs. Results obtained in the pressure overloaded heart 
suggest the release of DAMPs in the mechanically stressed heart [113, 114].

Besides these membrane receptors, also ion-channels can be mechanosensitive. Mechanical 
cues can lead to opening of so-called stretch-activated ion channels, such as Piezo1 [115]. 
Piezo1 is a calcium (Ca2+)-permeable, transmembrane nonselective cation channel, which 
can be activated by mechanical forces, such as stretch [115, 116]. Structurally three Piezo1 
proteins together from a trimer, which together appears like a propeller blade with an ionic 
pore in the middle. The trimer perforates the cell membrane into the cytosol [117], which is 
thought to be critical in force sensing [118, 119]. Increased membrane tension, induced by 
stretch, opens Piezo1 channel to allow permeation of cations, including calcium [120-122]. 

been shown that both human and mouse CFs express functional Piezo1 channels, which are 
indeed mechanosensitive and that activation of Piezo1 induces expression and secretion of 

signals in the myocardium, leading to pathological cardiac remodeling in mice [127].

From the surface molecules, like integrins, mechanotransduction is propagated via the 
cytoskeleton. The cytoskeleton is the dynamic structural network providing shape and 
stability, enables cell function and is the physical connection within the cell [128]. The 
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Rho GTPases, like RhoA, are an example of mechanotransduction pathways communicating 
from the surface via the cytoskeleton. By the interaction of RhoA with Rho kinase (ROCK), 
the latter becomes activated resulting in phosphorylation of several downstream targets, 

Signals reach the nucleus via specialized proteins that are part of the linker nucleoskeleton 
and cytoskeleton (LINC) complex spanning the nuclear envelope [131] and eventually leading 

ability of CFs. No response on nuclear shape was detected whereas intact LINC complex 

including motility and migration speed [132].

expression. Figure from Herum et al. [6]

The information mentioned above shows how much is already known about 
mechanotransduction on a cellular level, however, the recent discovery of Piezo1 shows 
that there is still much unknown. Most information was gained from in vitro studies, since 

in vitro model is most suitable. Here, 
we chose for a combination of in vitro 2D monolayer experiments and development of a 3D 
model of cells within a collagen 1 matrix to answer our research questions. Ultimately using 
an in vivo

1
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The general aim of this thesis is to investigate mechanisms of mechanosensing on activation 

research questions:
- What is the role of the mechanosensitive ion channel piezo1 on stretch-induced 

expression of BNP and CILP1 in CFs?

activation?

- What are the mechanisms leading to progressive changes in left atrial structure, 

mechanical activation of CFs. The spheres implicate the number of the chapter in which the research 
question is answered.
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of cyclic stretch on the expression of Nppb (chapter 2) and Cilp1 (chapter 3) and the role of 
mechanotransducer Piezo1 in sensing and signaling. Thereto CFs were exposed to mechanical 
stimulation in the form of 10% cyclic stretch at a frequency of 1 Hz, or the piezo1-agonist 
Yoda1.

stretch variation on the speed 

Chapter 5 describes the development of a potentially more physiologically relevant in vitro 
, and stretch

mechanical stimulus for CFs.

lasting stretch, induced by mitral regurgitation in canine hearts, to investigate mechanisms 

broader perspective and suggestions for future investigations are made.

1
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Background: In response to stretch, cardiac tissue produces natriuretic peptides, which have 

explored the mechanism of stretch-induced brain natriuretic peptide (Nppb) expression in 

stretch (10% 1 Hz) showed a 6.6-fold or 3.2-fold (p < 0.05) increased mRNA expression of 

main source of Nppb in the healthy heart. Yoda1, an agonist of the Piezo1 mechanosensitive 
ion channel, increased Nppb expression 2.1-fold (p 
extracellular matrix (ECM) remodeling genes. Silencing of Piezo1 reduced the stretch-induced 
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mechanical signals include the forces of cyclic contraction and relaxation of the myocardial 
walls and the hemodynamic load leading to stretch of the cardiac chambers during the 

known to regulate myocardial function, gene expression and structural appearance [6, 7].

cells which reside within the myocardial extracellular matrix (ECM) [8]. The ECM provides 

play an important role in the regulation of the ECM, by synthesizing structural ECM proteins 
(i.e collagens), ECM degrading matrix metalloproteinases (MMPs and TIMPs)[10], growth 

tenascin C (TNC) [11] and connective tissue growth factor (CTGF) [12]. Matricellular proteins 

of cellular phenotype and function [19].

Cardiovascular tissues can produce natriuretic peptides in response to wall stretch [20-24]. 
There are three types of natriuretic peptides: atrial natriuretic peptide (ANP, encoded by 
NPPA gene), brain natriuretic peptide (BNP, encoded by NPPB gene), and C-type natriuretic 
peptide (CNP, encoded by NPPC gene) [25, 26]. ANP and BNP are found in multiple tissues, 
but they are produced primarily in the cardiac atria or ventricles, respectively [27-30]. CNP 
is mainly produced in the endothelium [27, 31]. Cyclic stretch induced increased Nppa and 
Nppb expression in adult rabbit cardiomyocytes [32] and human embryonic stem cell–
derived cardiomyocytes (hESC-CMs)[33].

the heart has led to pharmacotherapy aimed at increasing BNP signaling in heart failure 
patients [36, 37].

2
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While it is generally accepted that cardiomyocytes produce BNP [32, 38-42], some studies 

2+-permeable 

by the mechanosensitive ion channel Piezo1.

surplus rats (n = 31) from any age, weight, sex or breed. Most of the rats used were either 
from the Lewis or Wistar strain and aged between 5 and 52 weeks. Rat cardiac ventricular 

supplemented with 10% (v/v) fetal bovine serum (FBS, Gibco), gentamicin (50 μg/ml, Gibco), 

growth factor (1 ng/ml, Gibco) (“CF culture medium”). The vast majority of these cells 

Cardiomyocytes were isolated from the left ventricle of adult male Sprague Dawley rats 
(n = 6 age 10–20 weeks) essentially as described previously [32, 47]. Experiments were 
performed with approval of the Animal Ethical Committee of Maastricht University (DEC-
2007-116, July 31, 2007) and conform to the national legislation for the protection of animals 

2

precoated with collagen-I, Flexcell Dunn Labortechnik, Asbach, Germany) in CF culture 
medium. The next day, CF culture medium was replaced by DMEM supplemented with 

(1 Hz) equibiaxial stretch, (Flexcell FX-4000 strain unit, Dunn Labortechnik) for 4 h, 6 h or 
24 h. Control, non-stretched cells were subjected to identical conditions however, without 
stretch being applied.

2) were serum-
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Total RNA was isolated from cells using an RNA isolation kit (Omega Biotek, Norcross, USA) 
and reversed transcribed into cDNA using the iScript cDNA synthesis kit (Biorad, Hercules, 
USA) according to the manufacturer’s instructions. Real-time PCR was performed on an 

SYBR-Green Supermix (Biorad) [9]. Gene expression levels of Alpha-smooth muscle actin 

Tenascin C (Tnc), Piezo1, Atrial Natriuretic peptide (Nppa), C-Type natriuretic peptide (Nppc) 
and Brain Natriuretic Peptide (Nppb) were normalized using the housekeeping gene 
Cyclophilin-A (Cyclo), and their relative expression was calculated using the comparative 
threshold cycle (Ct) method by calculating 2 (e.g. 2(Cyclophilin Ct – BNP Ct)). The gene expression 
values were multiplied by 1000 (formula 1000 * 2 ), to enhance readability. The sequences 

Alpha-smooth muscle actin 
(Acta2)

AAGGCCAACCGGGAGAAAAT AGTCCAGCACAATACCAGTTGT

Connective tissue growth factor 
(Ctgf)

CACAGAGTGGAGCGCCTGTTC GATGCACTTTTTGCCCTTCTTAATG

Transforming growth factor, beta GCACCATCCATGACATGAAC GCTGAAGCAGTAGTTGGTATC

Tenascin C (Tnc) TCTGTCCTGGACTGCTGATG TGGCCTCTCTGAGACCTGTT
Piezo1 TTGCGTACGTTCACGAAGGA TTCGCTCACGTAAAGCTGGT
Atrial Natriuretic peptide (Nppa) ATCACCAAGGGCTTCTTCCT TGTTGGACACCGCACTGTAT
C-Type natriuretic peptide (Nppc) ACAAAGGCGGCAACAAGAAG GCAGTTCCCAATCCGCCG
Brain Natriuretic Peptide (Nppb) AGACAGCTCTCAAAGGACCA CTATCTTCTGCCCAAAGCAG
Cyclophilin-A (Cyclo) CAAATGCTGGACCAAACACAA TTCACCTTCCCAAAGACCACAT

C 
for subsequent analysis. The conditioned media were concentrated (approximately 10-fold) 
using Amicon Ultra 3k devices (Merck-Millipore, Burlington, MA, USA) and the concentration 
of BNP was determined by ELISA (ab108815, Abcam, Cambridge, UK) according to the 
manufacturer’s instructions.

2

precoated with collagen-I, Flexcell Dunn Labortechnik) in CF culture medium and transfected 

Life Technologies, Carlsbad, USA) or Silencer Select Negative Control No. 1 siRNA (4390843, 
Life Technologies) using Lipofectamine RNAiMAX reagent (Life Technologies) in Opti-MEM 

2
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(Gibco) according to the manufacturer’s instructions. After 72h cells were exposed to the 
stretch protocol described above.

Data are presented as mean or individual data points and were analyzed with Wilcoxon 
matched pairs test or Friedman test, with Dunn selected columns posthoc test where 

controls. BNP-protein secretion was upregulated by 5.3-fold in stretched cells compared 
to non-stretched cells, measured from conditioned media after 24 h stretch (Figure 1C). 
mRNA expression of Nppa and Nppc were below the detection limit. Cyclic stretch did not 

1A) or 24 h (Figure 1B).

3B) and 500-fold higher expression of Col1a1 compared to cardiomyocytes (Figure 3C). The 

under basal conditions (Figure 3A).

BNW_Meike_na proef.indd   28 01-12-2022   19:50



29

Piezo1 mediated Nppb expression

NS S
0

50

100

150

200

250

BNP

B
N

P 
co

nc
en

tra
tio

n 
(p

g/
m

L)

NS S
0

5

10

15

20

25

N
pp

b/
C

yc
lo

*1
00

0

Nppb

NS S
0

1000

2000

3000

C
tg

f/C
yc

lo
*1

00
0

Ctgf

NS S
0

20

40

60

Tg
f

1/
C

yc
lo

*1
00

0

Tgf 1

NS S
0

200

400

600

800

A
ct

a2
/C

yc
lo

*1
00

0

Acta2

NS S
0

20

40

60

80

100

Tn
c/

C
yc

lo
*1

00
0

Tnc

NS S
0

10

20

30

Pi
ez

o1
/C

yc
lo

*1
00

0

Piezo1

NS S
0

5

10

15

20

25

N
pp

b/
C

yc
lo

*1
00

0

Nppb

NS S
0

1000

2000

3000

C
tg

f/C
yc

lo
*1

00
0

Ctgf

NS S
0

20

40

60

Tg
f

1/
C

yc
lo

*1
00

0

Tgf 1

NS S
0

200

400

600

800

A
ct

a2
/C

yc
lo

*1
00

0

Acta2

NS S
0

20

40

60

80

100

Tn
c/

C
yc

lo
*1

00
0

Tnc

NS S
0

10

20

30

Pi
ez

o1
/C

yc
lo

*1
00

0

Piezo1

2

BNW_Meike_na proef.indd   29 01-12-2022   19:50



30

Chapter 2

0

500

1000

1500

Acta2

A
ct

a2
/C

yc
lo

*1
00

0

BNP - +
TGF 1 -

- +

++ -

0

1000

2000

3000

4000

5000

C
tg

f/C
yc

lo
*1

00
0

Ctgf

BNP - +
TGF 1 -

- +

++ -

0

500

1000

1500

Acta2

A
ct

a2
/C

yc
lo

*1
00

0

BNP - +
TGF 1 -

- +

++ -

0

1000

2000

3000

4000

5000
C

tg
f/C

yc
lo

*1
00

0

Ctgf

BNP - +
TGF 1 -

- +

++ -

CM CF
1

10

100

1000

N
pp

b/
C

yc
lo

*1
00

0

Nppb

CM CF
1

10

100

1000

10000

M
yh

7/
C

yc
lo

*1
00

0

Myh7

CM CF
1

10

100

1000

10000

Col1a1

C
ol

1a
1/

C
yc

lo
*1

00
0

 Relative mRNA expression levels of Nppb (a), Myh7 (b) and Col1a1 (c) in cardiomyocytes (CM)

BNW_Meike_na proef.indd   30 01-12-2022   19:50



31

Piezo1 mediated Nppb expression

silencing increased the expression of Ctgf under non-stretched conditions, and the Tnc and 

Nppb expression, supporting the hypothesis that stretched induced Nppb expression is 
Piezo1 mediated.

process of cardiac remodeling [35]. However, others have shown Nppb expression by 

mRNA as well as protein level in response to cyclic stretch. Although expression levels of 

it is important to note that the cells were derived from healthy animals. Furthermore, the 

after 4 h, which was maintained for all but Tnc after 24 h. Together, these genes are all related 

2
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The induction of Piezo1 expression by its agonist Yoda1 implies a positive feedback loop, 

Yoda1, might be that Yoda1 is a stronger stimulus than stretch. On the other hand, stretch 

n = 6) used in 

increased both Ctgf (p = 0.06) and Acta2 (p 
from the stretch experiments.

Silencing Piezo1 increased the mRNA expression levels Ctgf in non-stretched cells and of 
Tnc and Acta2 in stretched cells. It is possible that the Piezo1 channel is active under control 
conditions, and inhibits the expression of these genes. However, this would contradict our 
observation that Yoda1 (which activates Piezo1) stimulated Tnc expression. Possibly, silencing 

and Acta2 are not clear and further studies are warranted to investigate this mechanism. 
Previously, our colleagues from the Leeds group showed that IL-6 expression and secretion 

gene expression. However, the Leeds group has reported on how Il-6 expression is linked 
to Piezo1 [44]. They suggest an important role for the p38 MAPK pathway in Piezo1- induced 
Il-6 gene expression, in which p38 activation was depending on extracellular Ca2+. A similar 

2
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Together, these results indicate that Piezo1 is an important mechanosensitive ion channel 
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Background: cartilage intermediate layer protein 1 (CILP1) is a matricellular protein expressed 

cardiac disease. Here, we investigate the regulation of Cilp1 gene expression in CFs by cyclic 
stretch and the involvement of mechanosensitive ion channel Piezo1 as mechanotransducer 
in this process.

Methods: Primary adult rat CFs were exposed to 10% cyclic stretch (1 Hz) for 4 h or 24 h, 
using the Flexcell system. Moreover, Cilp1 gene expression in CF was investigated after 

of Piezo1 using siRNA on Cilp1 regulation by stretch was determined.

Results: 4 h 10% cyclic stretch did not alter Cilp1 mRNA expression. However, 24 h 10% 

increased expression of Cilp1 after 4 h, but not after 24 h. Stimulation with Yoda1 resulted 

mRNA expression.

Conclusion: Cilp1 mRNA expression is downregulated by 24 h of cyclic stretch in rat CFs and 
Piezo1 is most likely involved as mechanotransducer in this process.

BNW_Meike_na proef.indd   40 01-12-2022   19:50



41

Involvement of Piezo1 in Cilp1 mechanoregulation

(ECM), by synthesizing structural ECM proteins (i.e collagens), ECM degrading matrix 
metalloproteinases (MMPs), their inhibitors (TIMPs)[1], growth factors such as transforming 

layer protein 1 (CILP1) as a novel mediator of cardiac ECM remodeling [3]. We and others 

CILP1. Although we showed that the main source of cardiac CILP1 expression are cardiac 

CILP1 knockdown aggravated, whereas CILP1 overexpression attenuated ventricular 
remodeling and dysfunction after transverse aortic constriction [5]. By contrast, Zhang and 

knock out mice post myocardial infarction compared to wild type hearts, suggesting Cilp1 
has an adverse role in pathological cardiac remodeling [6]. Although the association with 
myocardial remodeling is very strong and convincing, the exact role of CILP1 is still under 
debate. Increased levels of circulating CILP1 [7] and CILP1 expression [8] have been found 
in heart failure patients. Moreover, CILP1 was shown to be a novel independent prognostic 
predictor in chronic heart failure [9] and as a biomarker of right- and left ventricular pathological 
remodeling in patients with pulmonary hypertension [7] and ischemic cardiomyopathy [10].

It has been previously shown that CILP1 expression is decreased in human nucleus pulposus 
cells after being exposed to mechanical stimulation in the form of cyclic tensile strain, the 
opposite was found when human nucleus pulposus were exposed to compressive loading 
[11]. This data indicates mechanosensitivity of CILP1 in human nucleus pulposus cells.

We and others have previously shown the involvement of Piezo1 as Ca2+-permeable 

Pharmacological or genetic modulation of Piezo1 activity could be used to gain insight in 
the functional role of Piezo1 [14]. Yoda1 was developed as functional agonist of Piezo1 [15].

Cilp1 expression in primary rat ventricular CFs and the role of Piezo1 in stretch induced 
Cilp1 expression.

3
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Experiments performed in this chapter are identical to the ones performed in chapter 2.

CFs were isolated from cardiac ventricles of adult surplus rats from any age, weight, sex or 
breed (n=31). Most of the rats used were either from the Lewis or Wistar strain and aged 

Gibco, Invitrogen, Breda, the Netherlands) supplemented with 10% (vol/vol) fetal bovine 
serum (FBS, Gibco), gentamicin (50 μg/ml, Gibco), 1% (vol/vol) Insulin-Transferrin-Selenium-

CFs (10,000 cells/cm2

collagen-I, Flexcell Dunn Labortechnik, Asbach, Germany) in CF culture medium. The next 
day, CF culture medium was replaced by DMEM supplemented with gentamicin (50 μg/ml, 

(Flexcell FX-4000 strain unit, Dunn Labortechnik) for 4 h, 6 h or 24 h. Control, non-stretched 
cells were subjected to identical conditions however, without stretch being applied.

2) were serum-starved for 24 hours 

μM, Tocris, Bristol, UK) for 4 h.

CFs (10,000 cells/cm2

collagen-I, Flexcell Dunn Labortechnik) in CF culture medium. The next day the medium was 

Pre-Designed siRNA (4390771, siRNA s107968, Life Technologies, Carlsbad, USA) or Silencer 
Select Negative Control No. 1 siRNA (4390843, Life Technologies) using Lipofectamine 
RNAiMAX reagent (Life Technologies) in Opti-MEM (Gibco) according to the manufacturer’s 
instructions. The next day medium was changed again to DMEM. After 48 h CFs were 
exposed to the stretch protocol described above.

Total RNA was isolated from cells using an RNA isolation kit (micro elute RNA kit, Omega Biotek, 
Norcross, USA) and reversed transcribed into cDNA using the iScript cDNA synthesis kit (Biorad, 
Hercules, USA) according to the manufacturer’s instructions. Real-time PCR was performed on 
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a CFX96 Touch Real-Time PCR Detection System (Biorad) using SYBR-Green Supermix (Biorad) 
[3]. Gene expression levels of Piezo1 and cartilage intermediate layer protein 1 (Cilp1) were 
normalized using the housekeeping gene Cyclophilin-A (Cyclo) and their relative expression was 
calculated using the comparative threshold cycle (Ct) method by calculating 2 (e.g. 2(Cyclophilin 

Ct – Cilp1 Ct)). The gene expression values were multiplied by 1000 (formula 1000 * 2 ), to enhance 

Piezo1 TTGCGTACGTTCACGAAGGA TTCGCTCACGTAAAGCTGGT
Cilp1 GAGTACTTCTGTAAGGCGCAG GGCATTCTGGAAGCAATCATG
Cyclophilin-A (Cyclo) CAAATGCTGGACCAAACACAA TTCACCTTCCCAAAGACCACAT

Data are presented as mean or individual data points and were analyzed with Wilcoxon 
matched pairs test or Friedman test, with Dunn selected columns posthoc test where 

3
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Piezo1 silencing, which was shown earlier [13](Chapter 2) to lower Piezo1 mRNA levels by 
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 Relative mRNA expression of Cilp1 in CFs exposed to 10% cyclic (1 Hz) stretch for 6h (S) or 
non-stretched (NS) conditions after transfection with either control siRNA (Scrambled SI) or Piezo1-

mechanosensitive Piezo1 by Yoda reduced Cilp1 mRNA expression levels while and silencing 
Piezo1 increased expression in both stretch and unstretched conditions.

in human nucleus pulposus cells, exposed to cyclic tensile strain [11] as well as in bovine 

loading Cilp1 expression either increased or decreased [11]. This two-way response of 

an increased or downregulation of Cilp1, respectively. Suggesting that depending on the 
type of stimulation, Cilp1 might react contradictory. Piezo1 activity can lead to increased 
calcium levels in the cell, which previously has been shown to induce IL-6 expression via 
p38 MAPK [12] or can lead to activation of integrin– focal adhesion kinase signaling without 
the need of calcium [20]. The p38 MAPK has been implicated as important regulator in 
cardiac remodeling [21] and important for Acta2 expression in rat CFs [22, 23]. The Cilp1 

induction of Cilp1 is regulated via integrin– focal adhesion kinase signaling. Further research 
is necessary to delineate Piezo1 downstream signaling in CF and to investigate the precise 
role of Cilp1 in cardiac disease, where mechanical stimuli and increased TGFb1 activity might 
be simultaneous.

3
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Piezo1 is the mechanotransducer in this process, however there might be other receptors or channels 

be released from ECM activation, as it is stored within the ECM in inactive form. Previous work from 

than the cyclic stretch [13]. The similar response of Cilp1 expression in CF to stretch or 
Yoda1 stimulation suggests that Piezo1 is involved as mechanotransducer in the stretch-
induced downregulation of Cilp1. This is supported by the increased Cilp1 mRNA following 
Piezo1 silencing. In the scrambled (control) condition, Piezo1 is present and might have a 

decreasing Piezo1 leads to increased Cilp1 gene expression in CF indicates that activation of 
this mechanosensitive channel inhibits Cilp1 gene expression. We have previously reported 
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when Piezo1 levels decrease after siRNA treatment, this suppression disappears causing 
an increase in Cilp1 mRNA expression. The regulation of Cilp1 by mechanical stimuli and 

which was absent in the regular plastic culture plates. Pilot studies, in which coated regular 

non-coated plastic plates.

Cyclic stretch for 6h in control (scrambled siRNA) or Piezo1-silenced (Piezo1 siRNA) showed 

Cilp1 was seen only after 24 h of cyclic stretch. Ideal set up to investigate the role of Piezo1 
in stretch-induced downregulation of Cilp1 mRNA expression would be to apply 24 h cyclic 
stretch in both scrambled and siRNA of Piezo1 conditions. Further research is necessary 
to investigate whether Piezo1 is involved as the mechanotransducer for stretch-induced 
downregulation of Cilp1.

reduction in Cilp1 mRNA expression after 24 h. The discrepancy between these contradicting 
results might be caused by lower baseline expression of Cilp1 in CFs in the present study. 

mRNA expression after 24 h of 10% cyclic stretch. Piezo1-agonist Yoda1 reduced, while 
Piezo-silencing increased Cilp1 mRNA expression. Taken together, we conclude that cyclic 
stretch downregulates Cilp1 mRNA expression and that Piezo1 is most likely involved as 
mechanotransducer in this process.
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various pathological conditions. Increased cardiac mechanical loading caused by volume 
or pressure overload commonly exists over a long period of time (years). However, daily 
activities such as exercise create shorter lasting changes in mechanical loading (hours). The 

Hz. Expression of Nppb, Tnc, Hsp70 and Tgfb1 mRNA were measured as markers of early 
CF activation, whereas mRNA levels of matricellular proteins Ctgf and Cilp1 were measured 

changes in expression levels of Acta2, Ctgf or Cilp1 were observed. Shorter intermittent 
periods of cyclic stretch within a 1 h time frame showed similar results. In a protocol 
consisting of 24 h 10% cyclic stretch, an increase of stretch amplitude to 20% or reduction 

Conclusion: periods of cyclic stretch lasting up to 1 hour temporarily activate CF expression 
of early response genes, but do not lead to sustained CF activation or initiation of CF 
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During normal function, myocardial tissue is exposed to continuous oscillations of stress 
and strain during the cardiac cycle. On top of that, mechanical loading varies during slow 

state [1]. Blood pressure, heart rate, and cardiac output decrease while sleeping [2, 3] 
and increase rapidly after waking up [4-6] or physical activity [7, 8]. Chronically increased 
mechanical load of the myocardial wall is caused by conditions like hypertension and valvular 

Besides mechanical load, neurohormonal activation also plays an important role in cardiac 
remodeling (3). Together, these stressors modulate the properties of the cells in cardiac 

of extracellular matrix (ECM) function [12-14]. CFs produce the various components of the 
ECM [15, 16] and are therefore important for maintaining the integrity of the ECM [17, 18]. 
In addition to producing ECM proteins, CFs also produce ECM-regulatory proteins, which 
can modulate or degrade the ECM [17, 19] resulting in control of the cardiac ECM turnover 
[18, 19].

Under various pathological conditions such as hypertension and myocardial infarction, 

contractile activity for wound contraction and increased production of ECM proteins 

In this in vitro setting, CFs exposed to 4 hours of cyclic stretch already increased mRNA 

expression of primary adult rat CFs in vitro, after a variety of periods of cyclic stretch. To 
gain insight in CF activation state, we measured a set of “early response” genes including 

brain natriuretic peptide (Nppb). We also investigate genes known to have slower response 
following mechanical stimulation of CF, including connective tissue growth factor (Ctgf), 

4
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CFs were isolated from cardiac ventricles (combined left and right) of adult surplus rats 
(n = 20) from any age, weight, sex or breed. Most of the rats used were from the Lewis 

no. 22320, Gibco, Invitrogen, Breda, the Netherlands) supplemented with 10% (v/v) fetal 

 CFs (10,000 cells/cm2) were plated on 

Asbach, Germany) in CF culture medium. The next day, CF culture medium was replaced by 

strain unit, Dunn Labortechnik) up to 29 h. Control, non-stretched cells were subjected to 
identical conditions however, without stretch being applied.

All stretch protocols were performed with the Flexcell system (Flexcell Dunn Labortechnik, 
Asbach, Germany) and consisted of cyclic equibiaxial stretch with a frequency of 1 Hz. 

was investigated by applying 2x 20-minute 10% stretch (with 1x20 minute interruption of 

4x 8 minutes 10% stretch (with 3x8 minutes interruption of stretch) was investigated. In 
both short-term experimental set-ups, a 4 h waiting period was implemented to allow 

of increasing the amplitude of the cyclic stretch to 20% or interrupting stretch (to 0%). 
Since physiologically, CFs experience continuous cyclic stretch during the cardiac cycle, a 
protocol was designed of 24 h 10% stretch, then 1 h of 20% stretch (increasing) or no stretch 
(interrupting), followed by another 4 h of 10% stretch. The idea is setting a baseline of 10% 
stretch, which is then interrupted or increased for 1 h and then coming back to baseline 

intermittent protocols were compared with data on continuous 10% cyclic stretch (1 Hz, 24 

in the results section.

Total RNA was isolated from cells using an RNA isolation kit (Omega Biotek, Norcross, GA, USA) 
and reversed transcribed into cDNA using the iScript cDNA synthesis kit (Biorad, Hercules, 
CA, USA) according to the manufacturer’s instructions. Real-time PCR was performed on 
an CFX96 Touch Real-Time PCR Detection System (Biorad) using SYBR-Green Supermix 
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(Biorad)[26]. Gene expression levels of Alpha-smooth muscle actin (Acta2), Connective tissue 
growth factor (Ctgf), Transforming growth factor beta 1 (Tgfb1), Tenascin C (Tnc), Brain 
Natriuretic Peptide (Nppb), Cartilage intermediate layer protein 1 (Cilp1) and Heat shock 
protein 70 (Hsp70) were normalized using the housekeeping gene Cyclophilin-A (Cyclo), and 
their relative expression was calculated using the comparative threshold cycle (Ct) method 
by calculating 2  (e.g., 2(Cyclophilin Ct – Acta2 Ct)). The gene expression values were multiplied by 
1000 (formula 1000 * 2
used are provided below (Table 1).

Alpha-smooth muscle actin 
(Acta2)

AAGGCCAACCGGGAGAAAAT AGTCCAGCACAATACCAGTTGT

Connective tissue growth factor 
(Ctgf)

CACAGAGTGGAGCGCCTGTTC GATGCACTTTTTGCCCTTCTTAATG

Transforming growth factor, beta 
1 (Tgfb1)

GCACCATCCATGACATGAAC GCTGAAGCAGTAGTTGGTATC

Tenascin C (Tnc) TCTGTCCTGGACTGCTGATG TGGCCTCTCTGAGACCTGTT
Brain Natriuretic Peptide (Nppb) AGACAGCTCTCAAAGGACCA CTATCTTCTGCCCAAAGCAG
Cartilage intermediate layer 
protein 1 (Cilp1)

GAGTACTTCTGTAAGGCGCAG GGCATTCTGGAAGCAATCATG

Heat shock protein 70 (Hsp70) CGCTCGAGTCCTATGCCTTC TCTTTCTCAGCCAGCGTGTT
Cyclophilin-A (Cyclo) CAAATGCTGGACCAAACACAA TTCACCTTCCCAAAGACCACAT

Data are presented as mean or individual data points and were analyzed with Wilcoxon 
matched pairs test, Friedman test or Kruskall-Wallis test, with Dunn posthoc test where 

4
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stretch protocol applying 1 h 10% cyclic stretch after 24 h serum starvation period and harvesting 4 h 
afterwards. Relative mRNA expression levels of Nppb, Tnc and Tgfb1in rat CFs exposed to 1 h of 10% 
cyclic stretch (1 h S) or non-stretched (NS) conditions after 4 h (n=6) (a). Schematic of the protocol 
applying 1 h 10% cyclic stretch after 24 h serum starvation period and harvesting 24 h afterwards. 
Relative mRNA expression levels of Nppb, Tnc, Tgfb1, Acta2, Ctgf, and Cilp1 in CFs exposed to 1 h of 
10% 1 Hz cyclic stretch (1 h S) or non-stretched (NS) conditions after 2 4h (n=6-9) (b). * p < 0.05. Bar 
indicates mean.

To further determine the minimal stretch period needed to activate CF gene expression the 

during an hour activate CFs similarly as 1 h continuous 10% cyclic stretch.
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 Schematic overview of the intermittent stretch protocols. The 1 h cyclic stretch has been 
divided into 4 groups: 60 minutes (1 h) 10% cyclic stretch (1x60); 2 times 20 minutes 10% cyclic stretch 
(2x20); 3 times 12 minutes 10% cyclic stretch (3x12); 4 times 8 minutes 10% cyclic stretch (4x8). Stretch 
was applied after 24 h serum starvation period and measurements were taken 4h afterwards (a). 
Relative mRNA expression levels of Nppb, Tgfb, Tnc and HSP70 in rat CFs exposed to shorter periods 
of 10% cyclic stretch (2x 20min/3x 12 min/4x 8 min) or 1 h of 10% cyclic stretch (1x 60 min) and non-
stretched (NS) conditions after 4 h (n=6)(b). * p < 0.05; ** p < 0.01; *** p < 0.001. Bar indicates mean. 
Paired analysis.

In the previous parts we used non-stretch as control condition. Because the beating heart 

modulating the amplitude of cyclic stretch, using continuous 10% cyclic stretch as baseline 

4
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cyclic stretch, 1 h interruption (0%) or 1 h 20% cyclic stretch (20%) followed by 4 h 10% cyclic stretch 
(a). Relative mRNA expression levels of Nppb, Tnc, Tgfb, Acta2, Ctgf and Cilp1 in CFs exposed to 24 h 
10% stretch, then temporarily 1 h of interrupting (0%) stretch or increasing (20%) stretch conditions 
followed by 4 h 10% cyclic stretch, compared to 24 h continuous 10% cyclic stretch (S) conditions (n=3-
12)(b). Bar indicates mean. No paired analysis.

even when this period is divided into 2-4 shorter periods of stretch. However, such stretching 
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Our results on increased mRNA expression of Tnc after 1 h of 10% cyclic stretch is supported 

cyclic stretch (10%, 0.3 Hz)[29]. Of note, Maier et al. do not specify if there was time between 
ending the 1 h experiment and measuring mRNA expression via Northern blot, where we 
left 4 h in between end of the experiment and harvesting the CFs. Contrary to our result 

genes peak at 4-6 hours following a stimulus [31, 32], while phosphorylation of targets 
can be observed much sooner (minutes). Nishimura et al. show changes in AKT and BAD 
phosphorylation when alternating between 5 minutes of 10% stretch and 2 minutes of no 
stretch, compared to continuous 10% stretch within the course from 0 to 70 minutes [33]. 

of ions after ion channel activation measurable in (milli)seconds [36, 37], phosphorylation 

levels are measured after hours [22, 29]. Ultimately, changes in protein levels will take further 
time to develop. The gene chosen to study is important, since early response genes like HSP, 
Tgfb1, Nppb and Tnc are more likely to give an early response, than late responding genes 
like Acta2 or collagen 1 which will take a longer time. Together, these results suggest that 

h lays somewhere between 15 minutes and 1 h.

In our hands intermittent cyclic stretch or 1 h cyclic stretch does not lead to sustained 
CF activation compared to static controls after 24 h, which is supported by a study using 

intermittent stretch (5% cyclic stretch 0,5 Hz for 15 minutes following 6h rest, repeat up to 

compared to static controls [38]. However, Xu et al. showed that 48 h intermittent cyclic 
stretch (5%, 1 Hz), for 15 min/h decreased procollagen 1 mRNA expression in fetal lung 

4

BNW_Meike_na proef.indd   59 01-12-2022   19:50



60

Chapter 4

These investigators found no changes in collagen 1 expression when increasing cyclic stretch 
amplitude from 5% to 10% (0.5 Hz for 24 h) in compared to static controls [40].

Gilbert et al. studied several cyclic stretch amplitudes (5%, 10% or 15%) and frequencies (0.1, 
0.3 or 0.5 Hz) for 20 minutes, three times daily at 8-hour intervals for 3 days and showed 

a decellularized ECM construct compared to static controls [41]. These short activation 
periods of cyclic stretch mimic the “lower” frequency changes in the heart, as presumably 
caused by exercise and emotions, these changes create some activation, however mild and 

gene expression changes following a 1 h change in stretch amplitude.

Similar to previous studies by other groups, we used static, non-stretched controls [24, 

heartbeat. Using continuous cyclic stretch is a more physiological control, which has been 
published before [34]. We have set up a model resembling the in vivo situation in which 
CFs are always subjected to stretch and then small changes appear by exercise, which we 
have modeled by changing the amplitude of stretch for 1 h within a period of 24 h cyclic 
stretch. Our results indicate that 1 h change of amplitude within a period of 24 h cyclic 
stretch does not lead to sustained CF activation. These 24 h of cyclic stretch might not be 

for in vivo diseases like hypertension [43], hypertrophy [44, 45], wound healing [46] or 
traumatic brain injury [47] using mechanical stimulation in the form of stretch. Mechanical 
stimulation is also used for modeling a more physiological relevant environment in vitro 
for endothelial cells [48]. Here we have tried developing an in vitro model for CFs in a more 
physiological relevant environment being under constant mechanical stimuli in the form 

caused by exercise or emotional state. Improving this model might lead to a better in vitro 
model in which results better represent the in vivo situation. The 24 h time period might 

collagen content after 2 weeks of incremental stretch, compared to continuous stretch [34].

In conclusion, our results show that short (< or = 1 hour) duration of cyclic stretch creates 
a temporary early gene response in CFs, but does not lead to sustained CF activation or 
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of the culture plates.  

Methods and results: In the present study, a 3D model of Engineered Heart Matrix (EHM) 

rat CFs and a natural hydrogel collagen type 1 matrix. CFs were equally distributed, viable 

markers alfa-smooth muscle actin (Acta2), and connective tissue growth factor (Ctgf) was 

our novel EHM structure provides a good physiological model to study CF function and 
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The cardiac extracellular matrix (ECM) is a network of structural proteins, mostly collagen 

(CFs) are the cells producing the structural and regulating components of the ECM [4, 5] 
and are therefore important for maintaining the integrity of the ECM [6, 7]. In response to 

special morphological and functional characteristics, like the expression of alpha smooth 

in cardiac structural remodeling [11-14], producing excessive collagen, resulting in cardiac 

CFs can be isolated from the heart and cultured to study their function in vitro. For many 

restricted to one plane, while in vivo these attachments are present all around the cells 
[17-19]. 2D culture conditions also limit cell-cell interactions, as cells grow in monolayers 
[20]. In addition, culturing CFs on hard plastic cell culture plates promotes CF activation and 

several groups started generating 3D culture systems to allow in vitro investigation of the 
cell-matrix interactions in a more physiologically relevant environment [17-19].

The aim of the present study is the development of a 3D cell culture model of engineered 

was determined. To gain insight in CF activation state, we measured gene expression of 

(Acta2)[28], connective tissue growth factor (Ctgf)[29] transforming growth factor beta 1 

of these genes in EHM cultures were compared with CF cultured in 2D monolayers both on 

CFs were isolated from cardiac ventricles (combined left and right) of adult surplus rats from 
any age, weight, sex or breed (n=48). Most of the rats used were either from the Lewis or 

5
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10% (v/v) fetal bovine serum (FBS, Gibco), gentamicin (50 μg/ml, Gibco), 1% (v/v) Insulin-

mL, Gibco) and vitamin C (500 uM, Sigma Aldrich, Saint Louis, MO, USA) (CF growth medium, 

used between passage 1–3. Experiments were performed with approval of the Animal 
Ethical Committee of Maastricht University (DEC-2007-116, July 31st, 2007) and conform to 

Sylgard-184 silicone elastomer base and curing agent (Dow Chemical, Midland, MI, USA) were 
mixed together and poured into a well of a 12-well culture plate. Custom made 3D-printed 
casts (Mosa Meat, Maastricht, The Netherlands) were used to provide the shape with an 
outer diameter of 22 mm. An area with a 12 mm diameter was created to load 250 uL of gel. 

temperature for 3 days after which the 3D-printed casts were removed. The custom-made 
molds were cleaned and sterilized by autoclavation.

 Silicone mold design. Custom made 3D-printed casts to provide the shape for the silicone 
mold (A). The mold has a diameter of 22mm (B) and a centrally placed post 2mm (C). Initial gel volume 
is 250 μL, after gelation 500 μL medium was added on top.

using trypsin-EDTA (Gibco) and taken up in CFGM Cells were centrifuged at 1500 rpm for 
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5 minutes and then resuspended in CFGM to reach a concentration of 10 million cells/mL. 
The cells were diluted to 1 million cells/mL into the hydrogel mixture. The hydrogel-cell 
mixture (250 μL) was reverse pipetted into the molds and put into a 5% CO2 incubator at 
37°C. After approximately 1-hour, to polymerize the gel, 500 μL of CF maintenance medium 
(CFMM, consisting of CFGM with 1% FBS) was added on top of the gels.

Tissue Train system. This was achieved by pipetting 200 μL of the hydrogel-cell mixture between 
the two collagen-1 coated anchors of the Tissue Train culture plates (6-well plates, Flexcell Dunn 

1-hour of polymerization of the gel, 4 mL of CFGM was added on top of the gels. The next day 
the CFGM was replaced by CFMM. Subsequently, gels were subjected to cyclic stretch (10%, 1 
Hz), (Flexcell FX-5000 strain unit, Dunn Labortechnik) for 4 h or 24 h. Control, non-stretched 
gels were subjected to identical conditions however, without stretch being applied.

pipetting in the 6 well Flexcell Tissue Train culture plate, still in the Trough Loader (white bottom) providing 

gel. The black and white grid underneath represents 3 cm by 3 cm. The diameter of the well is 3.5 cm.

an Electroforce-3200 Series III multiaxial tensile tester (TA Instruments, Asse, Belgium) 
combined with a 1000gf (10N) load cell (1 kg/cm2), as previously described [36, 37]. Test 
setups and data acquisition were directed through the WinTest 7 operational software 
(TA Instruments). The displacement mode of loading materials was controlled through 

5
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vertical, axial movement with a motorized extension arm (DispE, -40/40mm). The EHM-ring 
was locked into place using a custom-made Radial Tensile Strength tool (MERLN, Institute 
for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The 
Netherlands), based on previous research [38, 39].

Uniaxial displacement was applied at a rate of 1% strain per second (0.04 mm/sec.) until 
EHM-ring failure. Load (N) and displacement (mm) were recorded over time at a rate of 20 
points/second. The obtained raw datasets were processed in Microsoft excel and converted 

strain curve was reduced using a moving average analysis, where the interval average was 
set at 20 points to equalize all measured data points per second. Young’s moduli were 
calculated from the slope of 15% strain residing within the elastic region of the stress/
strain curve.

(Klinipath) for 20 minutes, stained in eosin ( J.T.Baker) for 1h and stored overnight in 70% 

Sections of 5 μm were cut using a rotary microtome.

distribution and the extracellular matrix (ECM) structure. After rehydration, the slides were 
placed in Hematoxylin (5 min), washed with running tap water (10 min), placed in eosin (1 min) 
and washed with demi water. Dehydration steps were performed and the slides were closed 

Vimentin and CNA35 IHC was performed to visualize vimentin-positive cells, implicated 
on being CFs and/or collagen matrix. Slides were stained with vimentin antibody (1/150 
dilution, ab92547, Abcam, Cambridge, UK) followed by appropriate secondary antibody 
(1/500 dilution) or adding CNA35 (1/100 dilution)[40, 41]. Sections were further incubated 

Total RNA was isolated from cells using an RNA isolation kit (Omega Biotek, Norcross, GA, 
USA) and reversed transcribed into cDNA using the iScript cDNA synthesis kit (Biorad, 
Hercules, CA, USA) according to the manufacturer’s instructions and previously described 
[32]. Real-time PCR was performed on an CFX96 Touch Real-Time PCR Detection System 

actin (Acta2), Connective tissue growth factor (Ctgf), Transforming growth factor, beta 1 
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Cyclophilin-A (Cyclo), and their relative expression was calculated using the comparative 
threshold cycle (Ct) method by calculating 2  (e.g., 2(Cyclophilin Ct –Nppb Ct)). The gene expression 
values were multiplied by 1000 (formula 1000 * 2 ), to enhance readability. The sequences 

Alpha-Smooth muscle actin (Acta2) AAGGCCAACCGGGAGAAAAT AGTCCAGCACAATACCAGTTGT
Connective tissue growth factor (Ctgf) CACAGAGTGGAGCGCCTGTTC GATGCACTTTTTGCCCTTCTTAATG

GCACCATCCATGACATGAAC GCTGAAGCAGTAGTTGGTATC
Brain Natriuretic Peptide (Nppb) AGACAGCTCTCAAAGGACCA CTATCTTCTGCCCAAAGCAG
Cyclophilin-A (Cyclo) CAAATGCTGGACCAAACACAA TTCACCTTCCCAAAGACCACAT

Data are presented as average, average ± standard deviation or individual data points 
(indicating separate CF isolations) and were analyzed with Wilcoxon matched pairs test 
or Kruskal-Wallis test, with Dunn posthoc test where appropriate (Graphpad PRISM V9). 

of 1 mg/mL in CFMM. EHM-ring formation (compaction) was clearly less in the 2 lower cell 

leading to an EHM-ring with a wall thickness of approximately 1.3 mm when using 2000 cells/
μL, while using 400 cells/μL leads to a wall thickness of approximately 2.1 mm. HE staining 

200; 400 and 2000 CF cells/μL using a 1 mg/mL collagen concentration. The images show the top view 
of the EHM-rings within the clear silicone mold on a black background with white grid (1 cm by 1 cm). 
Surrounding the central pole is a light pink circle, most left vaguely showing, becoming clearer with 

concentration) after 7 days of culturing, next to the central pole. The EHM-ring has been taking of the 
central pole manually to enhance visibility. Bars represent 2 mm.

5
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reduced resulting in an increased wall thickness compared to EHM-ring of 1 mg/mL collagen 

mL collagen EHM-ring (65 ± 5 vs 205 ± 25 CFs/mm2, n=2). RNA isolation from the 3 mg/mL 
collagen EHM-ring resulted in a lower RNA yield when compared to the 1 mg/mL collagen 

on these results, an optimal collagen concentration of 1.5 mg/ml was chosen for further 
experiments. Using these conditions, we have cultured EHM-rings up to 13 days, average 
RNA yield 9.6 pg/cell, measured at day 1, 6, 10 and 13, indicating consistency in viable and 
quiescent cells over the culturing period. Both histological and immunohistological analysis 

mg/ml (B) initial collagen concentrations (2000 cells/μL) in 250 uL gel after 24 h. Images are taken on the 
black and white grid of 1 x 1 cm. Shown is the silicone mold, the central pole containing the ring in light 
pink tones, surrounded by CFMM. Bars represent 2 mm. HE staining of the EHM-ring after 24 h using 1 
mg/ml (C) and 3 mg/ml (D) initial collagen concentrations (2000 cells/μL in 250 uL gel) showing the cell 
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 Histological and immunohistological analysis of EHM-rings. HE staining of an EHM-ring 
showing evenly distribution of the cells throughout the EHM-ring structure. EHM-ring was formed 

(green) and DAPI (blue) staining (C) and Z-stack image of CNA35 (red) and Vimentin (green) staining 
nuclei are blue (DAPI) (D)(bar represents 29.4μm).

ring structures. The EHM-ring was locked into place using a custom-made Radial Tensile 

showing the elastic region, from which the Young’s modulus is calculated, followed by the 
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increase of Nppb remained (3.0-fold). In addition, there was an increased mRNA expression 
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was observed in EHM (Figure 10). These results indicate that although the baseline gene 

5
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EHM-rings was 15 kPa. Comparison of CF gene expression between 2D monolayers and 
3D EHM revealed reduced gene expression of Acta2 and Ctgf in EHM, indicating a more 

activation, comparable to 2D cultures of CF. These data indicate that the EHMs provide a 
more physiological model to study CF function.

compared to 2D monolayers are in line with results from other studies showing that culturing 

while the experiments in 2D monolayers were performed in serum-free conditions. FBS is 

that culturing in the presence of serum increases the expression [24, 35], while we showed 

indicating that this lower Acta2 mRNA expression is unlikely to be caused by serum. Galie et 

conditions. Important to note here that our FBS-percentage of 1% is much lower than those 
used by Galie and colleagues [24].

5
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of Acta2 in EHM after exposure to cyclic stretch is supported by previous research in NIH 

exposed to 24 h cyclic stretch, support our results in showing an increased expression 

vs cyclic stretch. We have previously shown Nppb as being a sensitive marker for stretch in 
2D monolayers [32], this statement is reinforced when showing a similar strong increase of 

conditions compared to the 2D monolayers, in both 4 and 24 h conditions. The opposite 
is true for the expression of Acta2 and Ctgf, suggesting a quiescent state, which has been 

are higher, CFs in EHM are still able to respond to the stimulus of cyclic stretch by even 

further investigation.

supported by Bracco Gartner et al. [48] in 3D cultures. By contrast, our EHM cultures did 

in EHM. This discrepancy warrants further investigation. Another possible explanation could 
be the high baseline expression of Nppb in EHM cultures. We have previously shown that 

high baseline expression of Nppb translates to high levels of BNP within the culture media, 
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Future research is necessary to investigate the role of Nppb within EHM culture. Taken 
together, CFs remain quiescent in EHM, but exhibit a clear response after stimulation with 

In the present study, we describe the development of 3D engineered heart matrix (EHM) 

indicating that these EHM structures are a good model to study the process of CF activation 

5
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Aims: Progressive changes to left atrial (LA) structure and function following mitral 
regurgitation (MR) remain incompletely understood. This study aimed to demonstrate 
potential underlying mechanisms using experimental canine models and computer 
simulations.

Methods and results: A canine model of MR was created by cauterization of mitral chordae 
followed by radiofrequency ablation-induced left bundle-branch block (LBBB) after 4 weeks 
(MR-LBBB group). Animals with LBBB alone served as control. Echocardiography was 
performed at baseline, acutely after MR induction, and at 4 and 20 weeks, and correlated 
with histology and computer simulations.

Results: Acute MR augmented LA reservoir and contractile strain (40±4 to 53±6% and -11±5 

56±4%, p<0.05) while LA end-systolic area remained unchanged (7.2±1.1 versus 7.9±1.1 cm2 
respectively, p=0.08). LA strain ‘pseudonormalized’ after 4 weeks, and decompensated at 
20 weeks with both strains decreasing to 25±6% and -3±2% respectively (p<0.05) together 
with a progressive increase in LA end-systolic area (7.2±1.1 to 14.0±6.3 cm2, p<0.05). In the 
LBBB-group, LA remodeling was less pronounced. Histology and gene expression analysis 

simulations demonstrated that the progressive changes in LA structure and function are 

dilation. Over time, LA strain gradually decreases (pseudornormal and decompensated) 
along with LA dilation, presumably due to a combination of LA eccentric remodeling and 
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Graphical abstract: Left atrial remodeling after acute primary mitral regurgitation. Introduction of acute MR 

Mitral regurgitation (MR) causes volume overload of both the left ventricle (LV) and left 
atrium (LA). Although guidelines focus on the impact on LV function to indicate intervention, 

as a marker of LA remodeling, is associated with increased cardiovascular morbidity and 
mortality irrespective of LV function [2, 3].

Traditionally, standard echocardiographic (LA volume) and Doppler parameters (transmitral 

of MR on LA structure and function [4]. However, speckle tracking imaging allows more 

functional LA changes due to MR [5]. Little is known about the chronological evolution of LA 
strain from the onset of an acute MR to the chronic phase and what underlying mechanisms 
contributes to this evolution.

6
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The aim of this study was to provide new insight into the mechanisms of LA structural and 
functional remodeling after acute MR. The study made use of the same canine models as 

of LBBB. Two models were used: 1) radiofrequency ablation-induced left bundle-branch 
block (LBBB group); and 2) severe MR creation followed by LBB ablation after 4 weeks (MR-
LBBB group). Changes in LA structure and function were assessed by echocardiography. 
Furthermore, histology and gene expression analysis were performed, as well as computer 
simulations to identify potential underlying myocardial disease mechanisms.

All animal procedures complied with the Dutch Law on Animal Experimentation and the 
European Directive for the Protection of Vertebrate Animals used for Experimental and 

University approved the study. Dogs were purchased from a commercial party approved 
by the Dutch Veterinary Inspection.

All experiments were performed under general anesthesia with continuous infusion 

(300 mg). Acute severe MR was induced in 12 adult mongrel dogs using a customized 
electrophysiology catheter with a hook at the distal tip, which was inserted into the carotid 
artery and advanced into the LV. After grasping one or more chordae, the hook was 

echocardiographic guidance indicated severe MR using the integrative approach according 
to the European Association for Cardiovascular Imaging (EACVI) recommendations [7]. As 

(LBBB), the dogs underwent radiofrequency ablation of the left bundle branch 4 weeks later 

MR and LBBB, a second group of 7 dogs with only LBBB (LBBB group) was used as control 

of LBBB, and atrial tissue was harvested for histology and gene expression analysis.

Echocardiography was performed in the MR-LBBB group at baseline, directly after induction 
of MR, and after 4 and 20 weeks. LBBB dogs only underwent echocardiography at baseline 
and 16 weeks. A Vivid 7 system (GE Vingmed, Horten, Norway) with a 2.5 MHz probe was 
used with commercially available software to analyze conventional echocardiography 
parameters (EchoPAC 3.0, GE Vingmed Ultrasound, Horten, Norway). LV end-systolic, 
end-diastolic volume, and ejection fraction (LVESV, LVEDV, LVEF) were measured on an 
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LA end-diastolic area expressed in cm2 were calculated by tracing the LA endocardium in 
the apical 4-chamber. LA fractional area change (LAFAC) was calculated with the formula: 
LAFAC (%) = 100% * [(LA end-systolic area – LA end-diastolic area)/LA end-systolic area] [8]. 
Commercially available software (TOMTEC ARENA, 2D CPA 1.3, TOMTEC Imaging Systems 
GmbH, Unterschleißheim, Germany) was used to measure LA strain. As recommended by 
the Taskforce [9], LA strain was measured on a non-foreshortened apical four-chamber 
view. The LA border was semi-automatically drawn after a 3-point clicking method followed 

strain value at mitral valve opening minus LV end-diastole. LA contractile strain (LAS(ct)) 

Figure 2 shows an example of the echocardiographic assessment of LA strain.

 Timeline schematic of the canine experiments. MR-LBBB model: creation of mitral 
regurgitation at baseline followed by LBBB induction after 4 weeks. LBBB model: LBBB induction after 
baseline. Circles indicate the time points of echocardiographic and hemodynamic measurements at 
baseline (blue), acute MR (yellow), 4 weeks (yellow), 16 weeks (white) and 20 weeks (red). The asterisks 
in the MR-LBBB group indicate death due to heart failure, all within 6 weeks. MR = mitral regurgitation; 
LBBB = left bundle branch block.

 Example of LA strain assessment by 2D speckle-tracking echocardiography at baseline. 
Four-chamber longitudinal left atrium strain (LAS). Arrows represent reservoir (r) and contractile (ct) 
phase (42% and -12%, respectively).

6
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determined in tissue sections stained with 0.1% Sirius Red. The percentage of collagen was 

atrial section.

Area of atrial cardiomyocytes was determined at the level of the nucleus using ImageJ (200x 

each atrium, an average of 56 individual cardiomyocytes were analyzed.

Total RNA was isolated from atrial tissue using an RNA isolation kit (Omega Biotek, Norcross, 
GA, USA) and reversed transcribed into cDNA using the iScript cDNA synthesis kit (Biorad, 
Hercules, CA, USA) according to the manufacturer’s instructions. Real-time PCR was 

(Biorad). Gene expression level of Alpha-smooth muscle actin (Acta2), Connective tissue 
growth factor (Ctgf), Collagen type 1 (Col1a1), Atrial Natriuretic Peptide (Nppa), and Brain 
Natriuretic Peptide (Nppb) were normalized using the housekeeping gene cyclophilin-A 
(Cyclo), and their relative expression was calculated using the comparative threshold cycle 
(Ct) method by calculating 2  (e.g., 2(Cyclophilin Ct – Col1a1 Ct)). The mRNA expression of Acta2, Ctgf 

activation in cardiac tissue and pathological cardiac hypertrophy. The sequences of the 

Alpha-smooth muscle actin (Acta2) CTGGTGTGTGACAACGGCTC CCCACCATCACTCCCTGATGT
Collagen type 1 (Col1a1) AGAGCATGACCGACGGATTC ACGCTGTTCTTGCAGTGGTA
Connective tissue growth factor (Ctgf) CACAGAGTGGAGCGCCTGTTC GATGCACTTTTTGCCCTTCTTAATG
Atrial Natriuretic peptide (Nppa) GCTGGATTTCAAGAACTTGCT CTTGGGGAGACTCGGCTTC
Brain Natriuretic Peptide (Nppb) TGCACAAGTCAGGGTGCTTT CAGGGGGCTGCTGAAGAATC
Cyclophilin-A (Cyclo) CCCACCGTGTTCTTCGACAT CCAGTGCTCAGAGCACGAAA

Computer simulations of LA and LV myocardial deformation were performed to identify 
potential underlying pathophysiological substrates underlying the echocardiographic 

pathologies in isolation.
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The open source CircAdapt model of the human heart and circulation was used (www.
circadapt.org) [10], as previous studies have demonstrated the potential of this model to 
simulate cardiovascular mechanics and hemodynamics during valve regurgitation [11, 12], 
dyssynchrony [13] and the combination of both [14]. A reference simulation representing 
a healthy cardiovascular system under baseline conditions was used as a starting point 
(see Supplemental Material for a detailed description of model initialization). Acute MR 

cm2

mean arterial pressure (MAP) were reduced from 5.1 to 3.6 L/min and 92 to 75 mmHg, 
respectively, as previously published [11]. These changes led to a severe MR as characterized 

compared to the reference simulation.

echocardiographic parameters, two LA myocardial tissue substrates of various severities 
were simulated (see Supplemental Material for a detailed description of the simulation 
methodology):

1. LA eccentric hypertrophy: gradual simultaneous increase of LA wall mass and area 
from 100 (normal LA geometry) to 300% in 10% increments;

2. 
compliance) to 600% in 10% increments.

In each simulation, the change in LAA was compared to the reference simulation, and the 

valve closure.

To demonstrate the contribution of LBBB in the canine MR-LBBB group, we repeated 
all the above-mentioned simulations with LBBB. As previously published [13], LBBB 
was simulated by delaying the mean LV free wall activation time from 0 (synchronous 
activation) to 30 milliseconds (mild electromechanical substrate), and 60 milliseconds 
(severe electromechanical substrate), relative to the mean septal- and right ventricular 
free wall activation times. In a previous study, LBBB has been reported to induce LV 
eccentric hypertrophy [16]. Hence, analogous to simulating LA eccentric hypertrophy, LV 
wall mass and area were simultaneously increased to 110% and 120% in the mild and severe 
electromechanical substrate, respectively. All simulations were performed using MATLAB 
(R2019a, Mathworks, Natick, MA).

Continuous variables are expressed as median (interquartile range) or mean (standard 
deviations) when appropriate. Normality of distribution was assessed with the Kolmogorov-
Smirnov test. The paired sample Wilcoxon rank-sum test was used to compare hemodynamic 

6
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between MR-LBBB and LBBB groups were compared with the Student’s t test or Mann-
Whitney U test as appropriate. Statistical analyses were performed using SPSS version 25 

at p<0.05.

All procedures were successfully performed in the MR-LBBB (n=12) and LBBB (n=7) group, 
however 4 MR-LBBB animals died because of severe heart failure (Figure 1), all within 2 
weeks after LBBB induction on top of the MR. The LBBB group had no premature deaths 
nor development of MR. Baseline data were comparable for both groups (Table 2).

Table 2 summarizes the time course of echocardiographic and hemodynamic LA and LV 

area) was present directly after MR induction with respect to baseline (7.4 [6.3-7.8] cm2 
versus 8.0 [7.1-8.9] cm2, respectively). However, progressive LA dilation was observed in 
weeks 4 to 20 post-MR (13 [8.6-15.8] cm2 and 11.6 [10.1-20.7] cm2, respectively). Moreover, 

after MR was induced, and decreased progressively to 41 [39–44]% at week 4 and 33 [25-
42]% at week 20. The combination of progressive LA dilation with decreasing LAFAC suggests 
LA functional deterioration. This is corroborated by the observation and shown in Figure 3 
(left panels), in which both LAS(r) and LAS(ct) augmented to supranormal values acutely after 
MR was induced (40 [37-42] to 51 [48-56]% and -10 [-8;-12] to -21 [-21;-25]%, respectively), 

35] to 29 [18-29] % and -7 [-2; -10] to -2 [-1; -5]%, respectively).

did decrease over time (Figure 3, right panels). However, the MR-LBBB group showed a 

in the MR-LBBB group compared to baseline (42 [34-45] to 53 [42-57] ml and 54 [50-
60] to 61 [61-69]%, respectively). At 4 weeks, progressive LV dilation (65 [39-75] ml) was 

(82 [50-106] ml), and accompanied by a LVEF pseudo-normalization at 20 weeks (55 [47-

16 weeks compared to baseline (50 [48-52] to 34 [24-49]% and 44 [39-45] to 47 [30-51] ml).
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 Chronological changes of left atrial strain. Time course of LA reservoir (LAS(r)) (A) and 
contractile (LAS(ct)) (B) strain for each group (presented as boxplots and lines for individual animals). 

LAS(ct) = left atrial contractile strain; LBBB = left bundle branch block, MR = mitral regurgitation; 
w = weeks.

Compared with the LBBB group, LA tissue from the MR-LBBB group showed a trend towards 

was found in mRNA expression of Ctgf, Acta2 and Nppb between the LBBB and MR-LBBB 

compared to the LBBB group (data not shown).
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 Histological and gene expression analysis of LA tissue. Representative examples of 
0.1% Sirius Red stained LA tissue sections of the (A) MR-LBBB group and (B) LBBB group at 200x 

expression to Cyclophilin-A for each group (presented as boxplots and scatters for individual animals). 

group at 20 weeks, as compared to LBBB group at 16 weeks.

 Representative images of HE stained sections the LA of MR-LBBB (A) and LBBB (B) group 

group at 20 weeks, as compared to LBBB group at 16 weeks.

6
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area compared to baseline simulation, while LAFAC, LAS(r) and LAS(ct) increased similarly as 
observed in the MR-LBBB dogs (Table 3). Simulation of structural LA myocardial remodeling 

changes in strain pattern and LA end-systolic area (Figure 6):
1. An increase in LA eccentric hypertrophy resulted in increased LA end-systolic area 

together with decreased LAS(r) and LAS(ct);
2. 

decreased LAS(r) and LAS(ct).

changes in LA dilation and function as observed in the MR-LBBB-group. Hence, all simulation 
combinations were considered and two ‘best-match’ simulations were obtained with LAS(r), 
LAS(ct), and LA end-systolic area being closest to the average values measured at the 4 
and 20 weeks phase. None of the abovementioned changes to the LA myocardium led to a 
change in LV dilation and function (Table 3).

 Simulations of LA strain and end-systolic area (LAESA) after acute MR. Simulated changes 
in (A) LA strain and (B) LA area (i.e. change in LA end-systolic area relative to baseline simulation) of 

starting from the simulation of the acute severe MR phase (yellow). Vertical gray areas in the strain 
panels indicate the period of LV ejection.
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However, adding LBBB to the simulations with severe LA mechanical dysfunction (in 
accordance with the 20 weeks in-vivo observations) did impair LV function, characterized 
by LV dilation (i.e. LVEDV), decreased LVEF (Table 3), and heterogeneous longitudinal LV 
strain (Figure 7).

shorter LV diastolic duration. As a result, LBBB acutely increased LAS(r) and decreased 
LAS(ct).

electromechanical activation delay in addition to acute MR. Electromechanical activation delay is 

areas in the strain panels indicate the period of LV ejection. LVfw = left ventricular free wall; Sw = septal 

The present study provides insight on how LA volume and function change after induction 
of acute MR in a canine model. We demonstrated that acute MR initially increases both 
LA reservoir and contractile strain function while there is progressive LA dilation with 
a decrease in LA reservoir and contractile function at later stages. Both histology and 
computer simulations support the hypothesis that these changes of LA mechanical function 

that LA dysfunction precedes LV failure.
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In a clinical situation of chronic MR, the volume-overloaded LA has to accommodate the 
excess in regurgitant volume by dilation in order to protect the pulmonary vasculature 

increase and can result in pulmonary edema. In the acute phase of our experiment, there 
is an instant increase in LA stroke volume together with augmentation of both reservoir 
and contractile function. Given the absence of LA dilation, the increased strain can only be 

stretch-induced increase of LA myocardial contractility (i.e. Frank-Starling length-tension 
relationship) [19]. This in turn augments the LA booster pump and increases the LAS(ct). 

related to myocardial tissue behavior were kept constant. Hence, the improved contractility 
leads to an acute rise in LA stroke volume so that the healthy atrial myocardium is able to 
compensate for the excess regurgitant volume.

In later stages, the reduction in LAS(r) and LAS(ct) together with progressive LA dilation 
indicate that the LA myocardium cannot cope with the chronic volume overload caused 
by MR. Simulations have shown that this progressive LA failure, cannot be explained by LA 

in-vivo LA volume and strain observations (Figure 6).

It is known that the LA responds to the excess volume load with a range of adaptive and 

by the computer simulations and by the histological examination. The lack of change in 
diameter in combination with increased atrial size indicates eccentric myocyte hypertrophy. 

those in patients with chronic MR and AF, which show increased cardiomyocyte area in the 
remodeled LA [22, 23]. A possible explanation is the timeline, because the pathologies are 
likely to exist for a longer time (years) than in the animal studies (weeks-months).

by increased Col1a1 mRNA expression in the LA of the MR-LBBB group. On the other hand, 

similar in MR-LBBB and LBBB animals and Nppa mRNA expression was even decreased in 
MR-LBBB animals. Possible explanation of this paradoxical observation is that those genes 
are more related to the acute activation of CFs, as shown in chapter 2, to be as early as 4h 

6
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of stretch. Since the present measurements were taken in a chronic setting, expression 
may have been downregulated by negative feedback systems, which might be related to 

Our observation that LA strain progresses from supranormal (acute phase) to 
decompensated values at 20 weeks has also been observed in patients. Cameli et al. [24] 
have shown that LAS(r) is increased in patients with mild MR. On the other hand, patients 
with more severe MR showed a progressive impairment of LAS(r). Debonnaire et al. [5] 

with severe MR referred for mitral surgery. They demonstrated a stepwise reduction of 

our computer simulations that LA eccentric hypertrophy alone can also lead to a reduction 
of LAS(r) (Figure 6). The reduction in LA myocardial function is therefore likely a result of 

The in vivo model used in this study was originally created to investigate the electromechanical 

of MR, LBBB and the combination thereof on LA structure and function using computer 
simulations. Both in vivo experiments as computer simulations suggest that the observed 
LA dilation and functional deterioration were related to MR rather than LBBB.

Histology and gene expression analysis show great variation. Due to the large variation 

from the pathophysiological heterogeneity expected in human patients. The LA was 
completely normal at baseline, while in clinical practice LA remodeling often has already 

and/or heart failure. Our model is more representative of clinical cases for acutely ruptured 
chordae in patients with pre-existing valve prolapse of during blunt chest trauma. However, 
the design of the study makes it possible to provide clear insight into the evolution of LA 

LA function. This study also illustrates that LA dysfunction precedes LV failure.
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In a canine model of acute MR, LA reservoir and contractile function augmented to 

decrease in both strain values (pseudonormal to decompensated) together with progressive 
LA dilation. Histology and computer simulations suggest that these functional changes are 

 this research was performed within the framework of CTMM, the Center 
for Translational Molecular Medicine (www.ctmm.nl), project COHFAR (grant 01C-203), and 
supported by the Dutch Heart Foundation. J.L. acknowledges support from the Dr. Dekker 
Program of the Dutch Heart Foundation (grant 2015T082) and the Netherlands Organisation 

that they have no other relationships relevant to the contents of this paper to disclose.
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Cardiac remodeling is an important process in the pathology of heart failure, that has been 
and still is topic of intensive research. Fibrosis is one of the main characteristics of cardiac 

aimed to investigate the mechanisms of mechanical activation of CFs.

In  and  the role of the mechanosensitive ion channel Piezo1 on stretch-induced 
expression of Nppb and Cilp1 was investigated in rat CFs. Results showed that Nppb gene 
expression and BNP secretion was strongly induced by cyclic stretch. Moreover, the stretch-
induced Nppb gene expression was mediated by the mechanosensitive ion channel Piezo1 
(
involvement as in Nppb expression ( ). Cyclic stretch as well as the Piezo1-agonist 
Yoda1 downregulated CF Cilp1 gene expression, indicating that Piezo1 is also involved in 
Cilp1 regulation by mechanical stimuli ( ).

In 
explored. It was shown that a short 1 h period of stretch can activate CF early-gene response 
after 4 h, which returned to baseline at 24 h, indicating only temporary activation of CFs by 
short-term mechanical stimuli.

In  the development of 3D Engineered Heart Matrix (EHM) aimed at a more 
physiologically relevant environment for CFs was described. Results show that baseline 
expression of Acta2 and Ctgf is lower in EHM compared to 2D monolayers, indicating 

stimulation was found to be maintained in EHM.

Finally, in 
dog-model of mitral regurgitation (MR). Results showed progressive left atrial (LA) dilation 
with decrease in LA reservoir and contractile function. Echocardiography, computational 
modeling, histology and gene expression data support the hypothesis that these changes 

synthesis, degradation and crosslinking. CFs are important in this process as they produce 
collagen, but also metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs), resulting 
in control over the ECM turnover [1, 2]. The stretch-induced Nppb gene expression, resulting 
in increased BNP-protein secretion by rat CFs, has previously been shown in human CFs [3]. 

Acta2 expression, (chapter 2) underscores previous studies showing inhibition of collagen 
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remarkable, because cardiomyocytes (CMs) were considered to be main source of cardiac 
BNP [7, 9-13] being a marker of cardiac overload. Indeed, the level of Nppb gene expression 
was clearly lower in CFs as compared to CMs (chapter 2), but yet our experiments indicate 

15], by administration of exogenous (recombinant) BNP [16] or by preventing the inactivation 

primarily as treatment option for acute decompensated heart failure [17]. In that study, 

all-cause mortality, cardiovascular death or worsening heart failure, compared to placebo 

in mice indicate that long-term administration of BNP attenuates cardiac hypertrophy after 
myocardial infarction [19] and in obese diabetic mice [20].

Our results showed that stretch-induced BNP expression is mediated by Piezo1. Piezo1 
is thought to be a primary mechanosensor, meaning that Piezo1 detects mechanical 

overexpression of Piezo1 in murine models has shown severe consequences for cardiac 
function, impaired cardiac function and severe heart failure respectively [22]. Apparently, 
balanced expression and/or activity is key for Piezo1. Mechanotransduction of Piezo1 

remodeling, as modulator but also as a potential therapeutic target.

speculate that Piezo1 is active under our cell culture conditions, inhibiting the expression 
of Cilp1. When Piezo1 is then inactivated by siRNA, this inhibition is cancelled leading to an 
increased Cilp1 expression. The mechanism causing the increased Cilp1 expression when 
Piezo1 is inactivated by siRNA, would need further investigation, not only measuring gene 

Acta2, Ctgf, Tnc and Cilp1 as stretch, further supporting the involvement of Piezo1 in the 

Another important factor involved in the observed gene expression changes upon silencing 

primary mechanosensitive ion channel, studying the role of Piezo1 on CF cultured on hard 

7
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idea may be further investigated by determining Piezo1 activity in EHM with physiological 

of Tnc gene expression by Yoda1 in our studies seems to be in line with increased Tnc mRNA 
and protein levels, in a recent Piezo1 gain of function mutation study in CFs [26].

stimuli by CFs. Figure 1 [27] summarizes the proposed mechanisms by which mechanical 

loop. The factor Speed in the title of this thesis will be discussed in the next paragraph.

 Schematic of proposed mechanism on Piezo1 mechanosignaling in CF and modulation of CF 

the one side, but decreases stretch on the other side. Stretch and Yoda1 stimulation upregulates all 
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of a group of genes. This selection was based on the speed of which the genes are activated, 

and late activated genes (Acta2 and Ctgf), some of which are also known to be involved in 

Continuous cyclic stretch (10% 1Hz) for 4 h induces the mRNA expression of Acta2, Ctgf, Tnc, 

of cyclic stretch indicates that after 4 hours their induction is still in the rising phase. On the 

suggesting that the peak of expression of these genes is somewhere between 4 h and 24 h. For 

summarizes the interpretation of these timeframes. Contrary to continuous cyclic stretch, 1 h 

24 h (chapter 4). 1-hour stretch did not change gene expression of Ctgf and Acta2 after 24 h at 

continuous cyclic stretch (A) or 1 h cyclic stretch (B) after 4 h and 24 h for gene expression of Ctgf, 

7
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heart and that of patients with long-lasting pressure overload, like aortic valve stenosis or 
hypertension. In vivo
by daily activities, such as exercise [31]. Exercise training, which commonly comprises 
not more than 1-2 hours exercise per day, leads to dilatation and hypertrophy of the LV 

athlete’s heart are commonly considered physiological [38, 39]. In contrast, adaptation to 
chronic pressure overload, is considered pathophysiological [40, 41] because it consists of 
concentric hypertrophy (increased wall thickness) and excessive ECM deposition [42]. The 

may, in part explain the physiological nature of remodeling in the athlete’s heart.

This discrepancy between atria and ventricles might be caused of atria being more prone 

[45, 46].

Our results on CF activation in response to continuous cyclic stretch and TGFb1 stimulation 

advantages of in vitro
investigated apart from other cell types within the tissue and humoral factors in the blood. At 
the same time this is also the main limitation of this model, because cells are removed from 
their physiological environment. This is where 3D cultures may be a good compromise. The 
EHM matrix provides structure for CFs to attach to, leading to compaction of the collagen 
gel. Gel compaction also leads to elimination of water within the gel, increasing the collagen 

[47]. Results from EHM culturing indicated a more quiescent CF state in 3D. The EHM 
model can be applied using CFs from multiple sources; primary adult CFs, freshly isolated 
or commercially available [8, 12]. Human CFs can be isolated from cardiac tissue derived 
from cardiac surgery but recently a limitless source comes from human stem cells [48] or 
induced pluripotent stem cells (iPSCs)[49].
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Next steps for using our EHM model would be to implement human derived cells. A pilot 
study using the EHM-ring was performed combining commercially available human cardiac 

showed compaction, similarly as the EHM-ring containing only human CFs or rat CFs (chapter 
5). After 6 days of culturing the EHM-rings were harvested and Hoechst staining was added. 
All EHM-rings showed live cells and cells were evenly distributed throughout the gel. Similar 
results were obtained when we used CF derived from human induced pluripotent stem 
cells (hiPSC-CF). Further improvements need to be implemented, as well as optimization 
of the matrix and the medium to accommodate both CFs and CMs. As human embryonal 
derived cells are still subject of discussion, iPSC-CF would be a good alternative also enabling 

protocol. These optimizations would lead to a more stable iPSC-CFs culture, hopefully 
resulting in a more constant baseline mRNA expression. Ultimately using EHM for a co-
culture of iPSC-CFs together with iPSC-CMs for investigating the interplay of these cells. The 

use of iPSCs also creates opportunities to investigate patient derived cells [51] or certain 
mutations, in either cell type and how these co-cultures respond to stimuli such as stretch. 
In conclusion, using human derived cells are the future of 3D in vitro culturing and most 
likely will replace 2D monolayers.

structures. The use of patches, mostly a combination of a biomaterial seeded with cells, 
has been shown to improve bone [52] or skin healing [53]. However, these patches were 
not successful in cardiac healing [54]. These patches were invented for direct application, 
not for investigating or testing purposes; as our EHM is. A 3D model that does have the 
potential to serve as investigating or drug testing system is the organ on a chip [55]. Organ 

microenvironment that contains continuously perfused chambers being inhabited by living 
human cells arranged in a 3D organization used for modeling physiological functions of 
tissues and organs [55, 56]. These systems have also been used to model mechanical 
activation, as a model of hypertrophy [57]. Further developments are needed to design 
physiological culture systems to study the CF in a natural ECM environment in coculture with 
other cardiac cell types with appropriate mechanical and electrical stimulation.

7
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in vitro to in vivo

The use of animals for experiments raises ethical concerns in the society at large [58], 
despite extensive legislation and control and supervision by ethical committees [58, 59]. 
Our in vivo
This series of experiments were part of a larger series, primarily aimed at investigating the 

model was chosen to this purpose, because the conduction system of the dog heart is 
similar to that of man [63, 64]. Also, the size and heart rate of the dog heart is comparable 
to that of humans [63, 65]. The comparison between the measurements in the hearts with 
MR and the simulations in the CircAdapt model shows the potential of using computational 

animal experiments.

Worth mentioning is that these in vivo experiments were performed in 2010-2011 and 
that our analysis were possible due to the organized biobank of echocardiographic and 
hemodynamic data as well as tissue samples, thus still generating publications many years 
later (chapter 6). In conclusion, although 3D in vitro models using human derived cells have 
the potential to ultimately replace in vivo studies, as results in this thesis have shown, in vivo 
models may still add valuable information.
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(CMs). These cells reside within a complex structure called the extracellular matrix (ECM). 
CFs control the ECM turnover, by producing proteins that break down and build up the 
ECM. Pathological conditions, like cardiac overload and myocardial infarction, induce cardiac 

functional purpose of healing necrotic myocardium, replacing dead cells and clearing ECM 

cardiac pump function. This thesis investigates the role of mechanical load on the function 
of CFs. CFs can sense mechanical forces, referred to as mechanosensing. Mechanical forces 
are then converted into changes in cell function via mechanotransduction.

In response to stretch, cardiac tissue produces brain natriuretic peptide (BNP), which has 

layer protein 1 (CILP1) is a matricellular protein expressed by CFs which recently gained 
interest as a marker and pathogenic factor in cardiac disease. In this thesis, we explored 
the mechanism of stretch-induced changes in the genes regulating these proteins (Nppb 
and Cilp1, respectively).

Cilp1 gene expression as did stimulation with Yoda1. Silencing of Piezo1 caused an increased 
Cilp1 gene expression in both stretch and non-stretch conditions. In conclusion, our study 

Piezo1 is involved in the stretch-induced downregulation of Cilp1 in CFs (chapter 3).

Increased cardiac mechanical loading caused by volume or pressure overload commonly 
exist over a long period of time (years). However, daily activities such as exercise create 

short-term loading changes on CF is incompletely understood. In chapter 4 we investigated 
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implicate that 1h cyclic stretch is a stimulus causing CF activation as indicated by temporary 

4). Also, a 1 hour change in stretch amplitude to 20%, during a 24 hour 10% stretch protocol 
did not change gene expression.

have developed engineered heart matrix (EHM) by culturing CFs within a natural collagen-1 

CFs were evenly distributed throughout the gels and maintain a quiescent phenotype 

maintained in EHM.

situation, by studying the change in left atrial (LA) structure and function in a dog model of 
chronic mitral regurgitation (MR). This chapter was aimed at identifying potential underlying 
myocardial disease mechanisms using echocardiography, histology and gene expression 
analysis of the LA as well as computational modeling. Histology and gene expression analysis 

with results from computational modeling implicate that the changes in LA reservoir and 

Overall, results from this thesis have contributed to understanding the role of Piezo1 in 

of EHM showed that culturing CFs in a physiological environment keeps them quiescent, 

quiescent state of CFs in our EHM makes it a better model for studying the role of CFs for 
future research. In the bigger picture of chronic atrial volume overload, the in vivo studies 
showed the complexity of structural remodeling, involving a combination of eccentric 

&

BNW_Meike_na proef.indd   123 01-12-2022   19:50



BNW_Meike_na proef.indd   124 01-12-2022   19:50



BNW_Meike_na proef.indd   125 01-12-2022   19:50



126

Appendix

The main goal of this thesis was to investigate mechanisms of mechanosensing of cardiac 

of cyclic stretch on CFs, using in vitro
in an in vivo setting of mitral regurgitation in dogs.

CFs are important during healing after myocardial infarction and in the adaptation of 

conduction disorders, contributing to development of cardiac dysfunction and arrhythmia. 

loading.

In this thesis we have unveiled a mechanism of mechanosensing and regulation of CFs 
involving the mechanosensitive ion channel Piezo1 in both stretch-induced upregulation 
of the brain natriuretic peptide (BNP) (generally known for expression by cardiomyocytes 
and as plasma marker of heart failure) and the stretch-induced downregulation of Cilp1 

of a novel 3D culture system of Engineered Heart Matrix (EHM), composed of CFs cultured 
within a collagen-1 matrix gel. We showed that it is possible to culture CFs within the 3D 

on commonly used hard plastic culture plates.

Heart failure forms a large social and economic burden, because it, accounts for 19% of all 
cardiac deaths and it required frequent hospitalizations, creating costs of half a billion euros 

in the development of heart failure.

Like in many other research groups, most of the CFs used in cell cultures were derived from 
rats, therefore involving animal experiments. During the last part of the PhD period we 
used Induced Pluripotent Stem Cells (iPSC’s). These are human derived cells and therefore 
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creates opportunity to replace animal experiments. Moreover, the human nature of these 
cells likely increases the clinical relevance of the studies. Moreover, when the cells are taken 

aforementioned Engineered Heart Matrix seems ideal to perform such studies with human 
iPSC’s.

&
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Hartweefsel bestaat uit verschillende typen cellen, waaronder bindweefselcellen 

dynamisch netwerk van bindweefsel dat de extracellulaire matrix (ECM) wordt genoemd. 
Fibroblasten kunnen eiwitten maken die de ECM afbreken en opbouwen, daarmee 

omstandigheden, zoals tijdens overbelasting van het hart of na een hartinfarct, start het 

genezen van het afgestorven weefsel, het vervangen van dode cellen en het opruimen 
van brokstukken van de ECM. Dit alles zorgt ervoor dat ergere schade aan het hart kan 

de elektrische geleiding en verhoogde stijfheid van het weefsel wat de pompfunctie van het 
hart belemmert. In dit proefschrift is de rol van mechanische belasting op de functie van 

“voelen” wat met een engels woord “mechanosensing” wordt genoemd. Die mechanosensing 
leidt tot moleculaire veranderingen, uiteindelijk resulterend in veranderingen in cel functie.

meer of mindere mate onderworpen werden aan rek (doorgaans 1x per seconde 10% rek).

intermediate layer protein 1” (Cilp1), waarvan bekend is dat ze betrokken zijn bij hartziektes. 
Daarnaast zagen we verhoogde expressie van genen die gerelateerd worden aan de 

Ook vonden we bewijs voor een rol voor Piezo1, een recent ontdekt eiwit dat gevoelig is voor 

Yoda1 aan ongerekte cellen te geven.

Hierop voortbordurend hebben we in hoofdstuk 3 gezien dat rek zorgt voor een verminderde 
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Een volgende vraag was hoe snel een toegenomen mechanische belasting leidt tot de 

of klepgebreken is vaak jaren aanwezig, terwijl dagelijkse activiteiten, zoals sporten, zorgen 
voor een korter durende (uren) belasting van het hart. In hoofdstuk 4 hebben we onderzocht 

geeft, gebaseerd op meting van verhoogde expressie van vroeg geactiveerde genen (o.a. 

24 uur. 
. Ook het veranderen van de sterkte van de rek voor 1 uur, 20% in plaats van 

tijdens de kweek en experimenten. In hoofdstuk 5 laten we de ontwikkeling zien van onze 

verdeeld zijn in de gel en daarnaast in kweek in leven blijven tot 13 dagen. Basale expressie 

siliconen in 2D.

onderzocht. Hierbij hebben we gekeken naar de veranderingen in linkerboezem-functie en 
-structuur na chronische mitralisklep-lekkage in honden. We konden gebruik maken van 
de gegevens van een reeds eerder uitgevoerd onderzoek, zoals echobeelden, histologie en 
genexpressie in weefselmonsters van de linkerboezem. Daarnaast is gebruik gemaakt van 
een computermodel. De resultaten van de histologie en genexpressie gaven verhoogde 

&
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BNP. Wanneer de resultaten van de histologie, echodata en het computermodel worden 
samengevoegd kwamen we tot de conclusie dat 

Alle resultaten overziend heeft dit proefschrift bijgedragen aan een beter begrip van de rol 

op reguliere plastic kweekplaten geeft aan dat stijfheid een belangrijke stimulus is voor 

EHM-model een beter model voor toekomstig onderzoek. In het grotere perspectief van 
chronische mitralisklep-lekkage heeft onze honden studie aangetoond dat de complexiteit 
van de structurele veranderingen in de linker boezem een combinatie zijn van zowel 
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Het is inmiddels 5 jaar geleden dat ik mijn eerste dag had als nieuwe PhD student op de 
afdeling fysiologie. Cliché maar waar: de tijd vliegt. Met ups en downs is dit proefschrift er 
gekomen, mede dankzij iedereen die ik hier speciaal nog in het zonnetje wil zetten. Want 

even: bedankt allemaal!
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Prof. Dr. F.W. Prinzen, beste . Vanaf het allereerste moment was het “zeg maar gewoon 
Frits” en dat zette de toon. Je deur stond letterlijk altijd open, voor korte vragen of gewoon 
even een babbeltje. En als ik dat niet deed, dan kwam je zelf even langs bij m’n kantoor. Je 
persoonlijke begeleiding, bereikbaarheid en beschikbaarheid zijn eigenschappen die voor 
jou misschien normaal zijn, maar waarvan ik weet dat het ook anders kan. Ik wil je daarvoor 
heel erg bedanken.

Dr. F.A. van Nieuwehoven, beste . Op m’n allereerste dag heb je mij de afdeling laten 

kantoor laten zien. Ook bij jou stond letterlijk de deur altijd open, ook als je er zelf niet was. 
Je was nooit te beroerd om zelf op het lab nog je handen uit de mouwen te steken of om 

Bedankt voor je betrokkenheid.

Frits, Frans, als dit proefschrift over jullie zou gaan zou de titel luiden: Begeleiding, 
 

Dank jullie wel.

Dear members of the reading committee: , 
, ,  and 

, thank you so much for your interest in my thesis and participating in the 
assessment committee. I hope you have read my thesis with great pleasure.

I would also like to thank all of the co-authors who have contributed to the chapters 
published in this thesis.

Zonder experimenten, geen resultaten en zonder resultaten komt er geen proefschrift. 
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