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a b s t r a c t

In many practical applications, such as fraud detection, credit risk modeling or medical decision
making, classification models for assigning instances to a predefined set of classes are required to
be both precise and interpretable. Linear modeling methods such as logistic regression are often
adopted since they offer an acceptable balance between precision and interpretability. Linear methods,
however, are not well equipped to handle categorical predictors with high cardinality or to exploit
nonlinear relations in the data. As a solution, data preprocessing methods such as weight of evidence
are typically used for transforming the predictors. The binning procedure that underlies the weight-of-
evidence approach, however, has been little researched and typically relies on ad hoc or expert-driven
procedures. The objective in this paper, therefore, is to propose a formalized, data-driven and powerful
method. To this end, we explore the discretization of continuous variables through the binning of
spline functions, which allows for capturing nonlinear effects in predictor variables and yields highly
interpretable predictors that take only a small number of discrete values. Moreover, we extend the
weight-of-evidence approach and propose to estimate the proportions using shrinkage estimators.
Together, this method offers an improved ability to exploit both nonlinear and categorical predictors
to achieve increased classification precision while maintaining the interpretability of the resulting
model and decreasing the risk of overfitting. We present the results of a series of experiments in
fraud detection and credit risk settings, which illustrate the effectiveness of the presented approach.

© 2021 Elsevier B.V. All rights reserved.
Code metadata

Permanent link to reproducible Capsule: https://doi.org/10.
4433/CO.9447810.v1.

. Introduction

Classification is a well-studied machine learning task that
oncerns the assignment of instances to a set of outcomes. Classi-
ication models support the optimization of managerial decision
aking across a variety of operational business processes. For

nstance, fraud detection models classify instances, such as trans-
ctions or claims, as fraudulent or nonfraudulent [1]. This allows

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.
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E-mail address: tim.verdonck@uantwerpen.be (T. Verdonck).
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for the efficient and effective allocation of limited inspection ca-
pacity by selecting the most suspicious cases for investigation by
a human fraud analyst [2]. Credit risk models, on the other hand,
assess the risk connected with providing credit to customers, and
this risk can be used to construct optimal portfolios of loans or
other lines of credit [3,4].

A wide variety of classification models have been proposed in
the literature. These proposals range from very complex models
including neural networks, support vector machines and ensem-
ble methods to more elementary models such as logistic regres-
sion and decision trees [5]. Some of the more complex models
have been shown to outperform the simpler classification tech-
niques in various real-life classification tasks [6–10]. In industry,
however, simple logistic regression currently remains among the
most frequently used approaches for developing classification
models across various fields of application [8,9,11–13]. Its pop-
ularity may be explained by the presence of industry regulations,
e.g., the Basel regulatory framework for the banking industry,
which requires the resulting model to be both interpretable [14]
and accurate. Logistic regression is widely perceived as offering

https://doi.org/10.1016/j.asoc.2021.108160
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.108160&domain=pdf
https://doi.org/10.24433/CO.9447810.v1
https://doi.org/10.24433/CO.9447810.v1
https://doi.org/10.24433/CO.9447810.v1
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:tim.verdonck@uantwerpen.be
https://doi.org/10.1016/j.asoc.2021.108160


J. Raymaekers, W. Verbeke and T. Verdonck Applied Soft Computing 115 (2022) 108160

t
n
r
a
i
t
h
t
b

n
f
t
n
d
(
a
i
l
p
p
c
a
b
c
c
l
b
c

f
p
p
t
m
p
g
a

T
t

b
a
s
s
b

p
m

he best balance between both objectives. Other possible expla-
ations are the broad expertise and experience in using logistic
egression that exists in industry, but follow-the-herd behavior
nd some degree of inertia and resistance to change may explain
ts enduring popularity. Moreover, the superior performance of
he more complex models can strongly depend on the task at
and. On tabular datasets, which are commonly encountered in
he context of credit scoring and healthcare analytics, they have
een shown to provide only marginal performance gains [8,15].
Aside from the development of classification models and tech-

iques for learning them, a different approach to improving the
inal model is to focus on pre- and post-processing. In con-
rast to studies on learning models and post-processing tech-
iques [16,17], relatively few studies focus on preprocessing
ata. The goal of preprocessing is to optimally prepare the data
e.g., through transformation) to maximize the predictive power
nd out-of-sample performance, or, importantly, to improve the
nterpretability of the resulting model. Specifically, we identify a
ack of approaches that allow us to optimally transform nonlinear
atterns and categorical variables with high cardinality for incor-
oration in linear models to achieve an interpretable yet powerful
lassifier [18]. Currently, the weight-of-evidence (WOE) approach
ppears to be frequently used to this end, as it offers a good
alance between interpretability and predictive power, and it is
omplementary with and similar to logistic regression [19,20]. For
ategorical variables with many categories, however, WOE may
ead to overfitting. Moreover, WOE does not have an integrated
inning approach for optimally merging categories or discretizing
ontinuous predictors.
In this article, we present an integrated WOE-based approach

or optimally transforming predictor variables, which mainly im-
roves upon the existing WOE approach in cases with nonlinear
redictor variables (continuous or ordinal) and categorical predic-
or variables with high cardinality. The goal of this preprocessing
ethod is to maximize both the predictive power and inter-
retability of logistic regression models (and more generally,
eneralized linear models). The proposal is based on generalized
dditive models in combination with exact univariate k-means

clustering and shrinkage estimation. The presented approach is
experimentally evaluated; an illustration of the use of the pro-
posed approach and an indication of its merits are provided. An
open source implementation of the method is provided in the dig-
ital annex to this paper to enable peer researchers to reproduce
and verify the presented results and allow practitioners to adopt
the method for practical use. This paper is structured as follows.
In the following section, we present the standard methodology
that uses logistic regression and weight-of-evidence, and we ex-
pand upon this approach in Section 3. In Section 4, we present
experimental results obtained from a fraud detection case and
a credit risk case, and in Section 5, we conclude the paper and
present directions for future research.

2. Background methodology

Consider a model with a binary response Y and p continuous
predictors X = (X1, . . . , Xp). The goal is to model the conditional
mean px = E(Y |X = x) = P(Y = 1|X = x). The classical logistic
regression model, which is part of the family of generalized linear
models (GLMs) [21], assumes a linear relationship between the
predictor variables and the log-odds of the event Y = 1. More
specifically, we have

log
(

px
1 − p

)
= β0 +

p∑
βixi = β0 + βx
x i=1

2

where β0 denotes an intercept and β = (β1, . . . , βp) denotes a
vector of model parameters. This model can be reformulated in
terms of probabilities as

P(Y = 1|X = x) =
1

1 + e−(β0+βx) .

The classical logistic regression model serves as a very popular
benchmark for many binary classification tasks due to its ease of
computation, high interpretability and solid performance. How-
ever, it also has several shortcomings, two of which we want to
focus our attention on:

1. categorical variables with many categories
2. continuous variables with nonlinear effects on the log-odds

Categorical variables are often one-hot encoded (also known
as ‘‘dummy encoding’’), after which they can be included in
the model as numerical variables. This has the drawback that a
categorical variable with N categories leads to N − 1 variables.
If N is large, this leads to considerable variability in the esti-
mation process and usually many insignificant predictors. One
way to avoid this problem is by converting the categorical vari-
able into a continuous variable by using a weight-of-evidence
transformation. The weight-of-evidence (WOE) transformation of
a categorical predictor is commonly defined as follows. Suppose
that we have a category j with Nj elements. Denote by Pj the
number of true cases in our category and by Fj the number of false
cases in our category. Additionally, let P be the total number of
true cases in the data and F be the total number of false cases in
the data. The WOE value of category j is then given by:

log
(
Pj/P
Fj/F

)
. (1)

The WOE transformation usually provides an elegant solution, but
since it is based on the estimation of a proportion, its variance can
be high when there are categories with few observations, which
is common for categorical variables with high cardinality.

Continuous variables are modeled by logistic regression as
having linear effects on the log-odds of the response. While this
is often reasonable, there can be variables that do not satisfy this
assumption. This happens unexpectedly but sometimes by design,
as illustrated in the following example. Suppose that we want
to predict whether a transaction is fraudulent based on a single
predictor Xt that characterizes the time at which the transac-
tion was made (i.e., taking values within [0, 24)). Now suppose
that we make the reasonable assumption that the influence of
the time on the probability of a transaction being fraudulent is
roughly continuous, and we interpret Xt being close to 24 as Xt
being close to 0. Then, we would have P(Y = 1|Xt = 0) =

lim
→24−

P(Y = 1|Xt = T ). In terms of log-odds, this would imply

hat β0 = lim
T→24−

β0 + β1T = β0 + 24β1, which clearly can only

e satisfied when β1 = 0. In other words, under the assumptions
bove, the only relationship that can be fit is a constant relation-
hip, which is not of much interest. This example illustrates that
ome variables display nonlinear relationships with the response
y design.
One way to incorporate the nonlinear effects of continuous

redictors on the log-odds is to use the generalized additive
odel (GAM, [22,23]) for logistic regression:

log
(

px
1 − px

)
= β0 +

p∑
i=1

fi(xi) (2)

where f1, . . . , fp are arbitrary smooth functions of the predictor
variables x1, . . . , xj. The model in Eq. (2) is very flexible, but this
flexibility comes at a price. As the functions f can be arbitrary
i
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mooth functions of the predictors, they can display rather un-
sual patterns. These factors make the model harder to interpret
nd hence less used in practical situations such as fraud detection,
here the predictions resulting from the model may have to
e explained. To improve the interpretability of the model, [24]
roposed a data-driven way of binning the fitted functions fi into
limited number of categories. Afterwards, a classical logistic

egression model can be fit to the binned variable. This strategy
llows for capturing nonlinear effects while greatly improving the
nterpretability of the model.

Throughout the remainder of the article, we make the as-
umption that the conditional expectation of Y can indeed be
dequately modeled through a GAM in the predictor variables.
his assumption entails that the nonlinear effects are sufficiently
mooth functions of the predictors. Furthermore, we assume that
he number of variables p is considerably smaller than the num-
ber of observations n which guarantees stability in fitting the
model. In case this last assumption would not be met, one could
resort to regularized GAMs and apply the proposed methodology
in that setting.

3. Methodology

In the following, we describe our proposal to address the
issues described in the previous section. The underlying goal
is to develop a powerful predictive model while maintaining
interpretability by allowing the incorporation of nonlinear effects
within a GLM and by improving upon the traditional WOE-based
binning process.

3.1. (Local) shrinkage of WOE

Our starting point for the treatment of categorical variables
is the WOE transformation that transforms a categorical variable
into continuous values. To introduce our shrinkage estimator for
the WOE values, we first rewrite the definition of Eq. (1) in
a different but equivalent form. More specifically, for a given
categorical variable, we assign the empirical log-odds to each bin,
i.e., each element in a given category j is assigned the value

ŴOEj = log
(

p̂j
1 − p̂j

)
(3)

where p̂j denotes the proportion of successes (e.g., fraudulent
transactions) in category j. The equivalence with the earlier defi-
nition in Eq. (1) can be seen as follows. With the notation intro-
duced before, we have that WOEj = log

(
pj

1−pj

)
= log

(
Pj/Nj
Fj/Nj

)
=

og
(

Pj
Fj

)
= log

(
Pj/P
Fj/F

)
+ log

( P
F

)
. Therefore, both values differ by

only a constant, which typically does not play a role in most
statistical or machine learning models. As an example, the con-
stant disappears in the intercept of a GLM. It is worth noting
that sometimes categories with p̂ = 0 or p̂ = 1 can occur,
nd these lead to undefined WOE values. In those cases, we can
lightly adjust the WOE by introducing a small offset c with
< c < 1 and replace p̂ = 0 with p̂ =

c
nj

and p̂ = 1 with
ˆ = 1 −

c
nj
. Note that this offset disappears as the number of

bservations in the category becomes large (i.e., when nj → ∞).
e use c = 0.01 by default. In practice, categories are often
erged to avoid this boundary case, but this merging introduces
certain level of arbitrariness. In particular, it raises the question
s to whether all possible combinations of categories should
e considered as possible merging candidates. Additionally, this
echnique does not use the performance or quality of the final
odel for evaluating which merges are most interesting. We thus
refer working with a small offset, after which we can deal with
he WOE values in a rigorous way.
3

For a category with a small number of observations nj, the es-
imation of pj (and the corresponding WOEj) has a high variance,
ften yielding unreliable estimates. This is more likely to occur in
ategorical variables with many levels. To address this issue, we
onsider the shrinkage estimation of the proportion of successes
n each category j. The shrinkage estimator of a proportion is
iven by [25]:

˜ j = (1 − bj)p̂j + bjp̂

where p̂ denotes the proportion of successes calculated over all
possible values of j (i.e., over all categories). We thus effectively
hrink the proportion of successes towards the sample mean.
he shrinkage coefficient bj determines the amount of shrinkage:

bj = 0 corresponds to no shrinkage, whereas bj = 1 corresponds
o taking the population proportion. The value of bj is chosen
o minimize the expected mean squared error over all estimated
roportions, which is given by EMSE = Es[Ej[(p̃j − pj)2|pj]]. The
inimum is given by (provided nj/n < 0.5):

∗

j =
vj(1 − nj/n)

vj(1 − 2nj/n) + v + σ 2

here v = var(p̂) is the sampling variance of p̂, vj denotes the
ampling variance of p̂j and σ 2 equals the between-area variance
i.e., varj(pj)) [25]. By plugging the shrinkage estimator into the
OE calculation, we obtain the shrinkage estimator of the WOE
alues:

ŴOEj = log
(

p̃j
1 − p̃j

)
for each category j. In the rest of the paper, we denote the
WOE transformation based on the shrinkage estimation of the
proportions by SWOE(·).

In addition to the global shrinkage method described above,
which shrinks proportions towards the overall proportion in the
data, we consider shrinking the proportions locally. More specif-
ically, we cluster the WOE values using the weighted k-means
approach [26,27], where the weights are taken as inversely pro-
portional to the sampling variability of the WOE values. Note
that by the central limit theorem and delta method, it holds that
√
n(g(p̂) − g(p))

D
−→ N

(
0, 1

p(1−p)

)
, where g(t) = log

( t
1−t

)
. The

symptotic variance of the WOE estimates is thus 1/(np(1 − p)).
enoting the WOE values with z1, . . . , zn, we therefore solve the

optimization problem given by

B̂1, . . . , B̂K = argmin
B1,...,BK

K∑
k=1

∑
i∈Bk

wi(zi − z̄k)2

where wi ∼ nji p̂ji (1 − p̂ji ) and ji is the category of the original
observation xi. Note that these weights are small for categories
with very few observations, which makes it more likely that
these categories are put in the same cluster as other categories.
Clustering the WOE values induces local shrinkage, since WOE
values that are close together tend to end up in the same cluster
and receive a WOE value that is a weighted average of the WOE
values in the cluster. In addition to achieving less variability in the
estimation of the WOE values, we also obtain a natural ‘‘fusing’’
of similar categories resulting in a categorical variable with fewer
categories. This allows for easier interpretation and visualization
of the effect of the categorical variable. In the rest of the paper, we
denote the WOE transformation based on clustered estimation of
the proportions by CWOE(·).

To allow for nonlinear effects of the predictor variables on
the log-odds, we revisit the approach of [24] and start from the
generalized additive model (GAM) of Eq. (2). After fitting the
GAM, the goal is to discretize the fitted spline functions into a
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imited number of bins. These can then be used as inputs for
classical logistic regression model. As such, we can capture
onlinear effects while greatly improving the interpretability of
he model.

Our approach differs from others in three main ways. First,
e unite different binning types in one framework consisting
f ‘‘constrained’’ and ‘‘unconstrained’’ binning. Both types have
he same elegant objective function (with an additional con-
traint in the former case), which can be optimized exactly and
fficiently. Second, we avoid the use of evolutionary trees for
onstrained binning, as they are typically slow to compute and do
ot guarantee a global optimum of the objective function. Finally,
ur framework allows for a natural inclusion of weights in both
ypes of binning, and these are typically chosen to be inversely
roportional to the variance of the estimated spline function at
he observed value. This strategy avoids creating too many bins
n those regions of the spline function which are supported by
nly a few observations.
Depending on the nature of the predictor variable, different

ypes of binning may be desirable. We distinguish two cases:

1. Unconstrained binning: the value of the original feature
does not play a role in the binning process.

2. Constrained binning: the value of the original feature im-
poses a monotonicity constraint on the binning process.

Let us consider an example. Suppose that xj is a variable
haracterizing the age of a person making a transaction. After
itting the model in Eq. (2), we obtain a smooth function fj(xj) that
inearly influences the log-odds. Suppose that we want to create
ins for this transformed variable. If we apply unconstrained
inning, the binning of fj(Xj) would be independent of the value of
j. This means that the resulting bins may combine different age
roups. We could have a bin of ages {0−20, 80+} and another bin
f ages {21−79}. While this may be fine in some situations, there
ay also be situations where the binning process is required to
e contiguous in xj to enable a user to interpret or explain the
odel. This means that the categories cannot ‘‘jump’’ over ages.
n example of such a binning result is {0–50} and {50+}. We
ould like to emphasize that the choice of binning is primarily
question of user preferences.
Unconstrained binning is arguably the easiest problem. Given

predictor x = x1, . . . , xn where i = 1, . . . , n ranges over the
bservations, consider the transformed values zi = f (xi). We want
o find K disjoint bins B̂1, . . . , B̂K for the original observations
1, . . . , xn such that within each bin, the corresponding values
f zi are roughly homogeneous. This is a univariate clustering
roblem for which many approaches have been proposed. We
ropose to optimize the weighted k-means objective function:

ˆ1, . . . , B̂K = argmin
B1,...,BK

K∑
k=1

∑
i∈Bk

wi(zi − z̄k)2

here wi ≥ 0 are weights such that
∑n

i=1 wi = n and z̄k
enotes the mean of all zi values with i ∈ Bk (i.e., the cluster
enter). We choose the weights to be inversely proportional to the
ariance of the fitted spline function at point xi. Once we obtain

the bins B̂1, . . . , B̂K , we can transform the original predictor x =

x1, . . . , xn to z̄k1 , . . . , z̄kn , where ki denotes the cluster to which
observation i = 1, . . . , n is assigned. Alternatively, we can include
the predictor as a categorical variable with the categories equal
to the cluster memberships. We choose not to do this to avoid
the creation of many dummy variables.

The weighted k-means clustering problems can be solved ex-
ctly in O(n log(n)) time using dynamic programming. Finally,
ote that the k-means approach with all weights equal to 1 is
quivalent to Fisher’s natural breaks algorithm [28] used in [24].
4

The issue of choosing the number of clusters K is a challenge in
cluster analysis, and a multitude of heuristic approaches exist.
Among the more popular methods are the gap statistic [29] and
the silhouette coefficient [30]. While these can be used in our
setting, they do not take our primary goal of building a solid
predictive model into account. Therefore, we adopt a hyper-
parameter tuning approach and determine the value of K by
valuating the quality of the resulting logistic regression model,
ligning the clustering process with our overall objective. We
ddress this issue in more detail in Section 3.2.
We now turn to the problem of constrained binning. Consider

gain the transformed variable zi = f (xi). In contrast to the
nconstrained binning scenario, the value of xi now influences

the clustering of the zi values. Suppose without loss of generality
that the values of xi are ordered in the relevant order (e.g., the
observed ages are listed in ascending order). We are now inter-
ested in K bins B1, . . . , BK , which each contain disjoint subsets of
1, . . . , xn such that if xi, xj ∈ Bk for certain i < j ∈ {1, . . . , n},
then xl ∈ Bk for all i ≤ l ≤ j. Of course, we still want
the bins to contain homogeneous values for the corresponding
transformed values zi. This problem is equivalent to fitting a step
function to the set of bivariate points (xi, zi), i.e., we look for
a piecewise-constant approximation of zi within the clusters of
xi. This problem has been considered in many areas, including
function approximation, time series analysis and cluster analysis.
In the same spirit as the weighted K -means approach, we propose
to optimize the weighted K -segments objective function:

B̂1, . . . , B̂K = argmin
B1,...,BK

K∑
k=1

∑
i∈Bk

wi(zi − z̄k)2

which is the exact same objective as that of the weighted k-
means problem, with the added constraint that the bins need
to be contiguous. The weights wi ≥ 0 are again chosen to be
inversely proportional to the variance of the fitted function at
point xi.

The k-segments clustering can be found exactly in O(n2) time
using dynamic programming, but an approximate O(n log(n)) al-
gorithm exists [31]. Alternatively, one could use (evolutionary)
regression trees to bin the zi values. However, they are typically
slower to compute and do not guarantee a global optimum of the
objective function.

3.2. Model building

We now discuss how to incorporate the new techniques when
building a GLM. For each continuous effect that is discretized into
a step function, there is one tuning parameter in the form of the
number of bins used. For categorical data, the global shrinkage
estimation of the WOE values does not have additional tuning
parameters, but when using clustering to achieve local shrinkage,
the number of clusters is a tuning parameter. Ideally, one would
optimize a performance criterion of choice over all possible com-
binations of the tuning parameters, but this evidently becomes
computationally cumbersome when there are multiple nonlinear
continuous variables and clustered categorical variables.

We propose to simplify the problem as follows. A simple AIC
for univariate k-means clustering is [32] AIC = WCSSk+2k, where
k equals the number of clusters and WCSSk denotes the within-
cluster sums of squares (i.e., the value of the k-means objective)
when clustering into k clusters. One could use this formula to
select the number of clusters for each clustering problem, but this
would not take the performance of the final model into account.
Therefore, we adapt this criterion by introducing a parameter that
balances the strength of the fit with the number of clusters:

WCSS + λk. (4)
k
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Table 1
Tuning strategy for the binning of the splines.
Tuning of λc and λuc

Step 1 Bin the unconstrained nonlinear continuous effects using the number of bins
k that yields the minimal value of the objective in Eq. (4) with λ = λuc .

Step 2 Bin the constrained nonlinear continuous effects using the number of bins k
that yields the minimal value of the objective in Eq. (4) with λ = λc .

Step 3 Fit a GLM using the binned effects, possibly including other variables.
Step 4 Evaluate the GLM using the AIC.
Table 2
Tuning strategy for the clustering of the WOE values of categorical variables.
Tuning of λcat

Step 1 For each categorical variable, find the number of clusters associated with the
value of λ = λcat .

Step 2 Cluster the WOE values of all categorical variables using the appropriate
number of clusters found in the previous step.

Step 3 Train the GAM using the splines for the continuous variables and the
clustered WOE values for the categorical variables.

Step 4 Evaluate the GAM using the AIC.
n
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As λ increases, we encourage the algorithm to use fewer bins or
lusters. When there are only continuous variables that need to
e preprocessed, we propose to use two tuning parameters, λc

and λuc , for the constrained and unconstrained effects, respec-
tively. Note that it is necessary to distinguish between these two
effects since the constrained problem will have a naturally higher
WCSS. To tune the model, we thus use the procedure outlined in
Table 1.

Finally, we choose the combination of tuning parameters yield-
ing the lowest AIC value. This procedure can be used in combina-
tion with the shrinkage estimation of the WOE values since the
latter procedure does not have a tuning parameter. If the WOE
values need to be clustered as well, there is one additional tuning
parameter λcat . In that case, this parameter is optimized first, as
the nature of an effect (linear vs. nonlinear) may change after
clustering the WOE values. For each value of λcat , we thus execute
the procedure outlined in Table 2, after which the value of λcat
ielding the lowest AIC of the resulting GAM is retained.
Once λcat has been determined, we proceed by tuning λc and

uc using the previous procedure in Table 1. Note that instead
f using the AIC, the tuning parameters can also be tuned using
ther performance criteria, such as a measure of prediction accu-
acy, on a validation set (if available) or through cross validation.
his requires more data to be available and more computation
ime but is likely to better guard against the overfitting of the
raining data. The parameters λco and λca yielding the lowest out-
f-sample prediction errors are then retained, and the final model
s fit using these values.

We now analyze the computational complexity of the whole
ipeline including the tuning procedure. Suppose the data con-
ists of n observations in p dimensions in addition to a univariate
esponse. Furthermore, assume that the continuous variables can
e split up in puc unconstrained nonlinear effects, pc constrained
onlinear effects, and pl linear effects. Also denote the number of
ategorical variables with pcat so that p = puc + pc + pl + pcat .
inally, We assume that the lengths of the grids for the tuning
arameters are given by Gcat , Guc and Gc .
The time complexity can now be analyzed by splitting up the

rocedure in 2 steps, the first being the tuning of λcat for the
ategorical variables, and the second the tuning of the parameters
uc and λc for the continuous nonlinear effects.
Step 1 requires, for each value of λcat , the preprocessing of

cat variables and the fitting of one GAM on X . The preprocessing
equires O(n log(n)) time for each categorical variable due to the
xact univariate k-means optimization. In total, we thus obtain
(Gcat (CGAM + pcatn log(n))), where CGAM denotes the computa-

ional cost of fitting a GAM to the data. Note that step 1 is only

5

eeded when the WOE values need to be binned. In case shrink-
ge estimation is used, there is no need for the tuning parameter
cat and the complexity becomes O(CGAM ). The complexity of
itting a GAM depends on the fitting algorithm and the number
f smoothing parameters, but O(np2) is a reasonable assumption
iven a fixed number of iterations until convergence (see [33,34]
or a discussion).

Step 2 requires the separate preprocessing of the constrained
nd unconstrained effects through spline-binning. This requires
((Gcpc + Gucpuc) n log(n)) time. Additionally, for each combina-
ion of λuc and λc , the fitting of one GLM is required, which leads
o an additional O(GcGucnp2) cost.

Combining the computational cost of both steps together,
e obtain a total of O(Gcat

(
np2 + pcatn log(n)

)
) + O((Gcpc +

ucpuc)n log(n))+O(GcGucnp2). If we assume the sizes of the grid
o be constant for increasing n and p, and we further assume
that at least one of puc, pc, pl, pcat is O(p) (which is a worst-case
scenario), we obtain an overall complexity of O(n log(n)p + np2).
While this is a manageable complexity, the constant factor may
be quite high if the grids for parameter tuning are fine. That said,
the optimization over a grid can be easily parallelized to allow for
efficient yet precise parameter tuning.

4. Empirical results

4.1. Data

We evaluate our proposal on two datasets. The first is a dataset
on fraud detection in credit card transactions completed on the
east coast of the USA. The dataset consists of training and test sets
with 3334 and 3335 points, respectively. For each transaction, 5
variables are recorded: amount, age, risk category (previously
assigned by the bank), country and time. The response is a
binary variable indicating fraudulent transactions, of which there
are 73 in this dataset (i.e., roughly 1%). Table 3 presents an
overview of the variables in the dataset, and Fig. 1 shows the
histograms of the continuous variables.

As a second illustration of our proposal, we use the dataset
from the 2009 Pacific–Asia Knowledge Discovery and Data Mining
conference (PAKDD) competition. This dataset is about credit
risk assessment for private label credit card applications. After
removing the constant predictors, we are left with 40000 obser-
vations of 20 predictor variables. The response is again binary
and indicates whether a credit card application is good or bad,
with approximately 20% of the applications in the data being bad.
The data are publicly available, in, among others, the CostCla
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Fig. 1. Histograms of the continuous variables in the credit card fraud dataset. The age variable (left) is roughly symmetrically distributed, the amount variable is
eavily right skewed, and the time variable shows few transactions between 1 and 7 a.m..
Fig. 2. Histograms of the continuous variables in the credit risk dataset. The personal net income variable is transformed using a power transformation from the
Yeo–Johson family.
Table 3
Description of the variables in the fraud detection dataset.
Variable name Description

amount Transaction amount (USD)
age Age of the person executing the transaction
category Risk category of the transaction (low-medium-high)
country Transaction destination (43 countries)
time Time of transaction (0–24 h)

Library [35]. Of the 20 variables, there are 7 numerical and
13 categorical variables. The names of the categorical variables
are listed in Table 4 together with the number of categories of
each variable. As is clear from this table, there are a number of
binary variables but also some variables with multiple categories,
including the variable PROFESSION_CODE with 289 levels.

Fig. 2 presents the histograms of the continuous variables
n the credit risk dataset, with the exception of the variable
ATE_INCOME, which has over 95% zeros and does not allow
or an elegant histogram representation. The personal net in-
ome variable is transformed towards normality using the Yeo–
ohnson power transformation [36] fitted by weighted maximum
ikelihood [37].
6

4.2. Experimental design

To illustrate the advantages of the proposed method in sev-
eral ways, we set up three experiments. The first two are con-
ducted on the credit card fraud data and are meant to illus-
trate the model building process step-by-step while emphasizing
the enhanced interpretability and superior results of the result-
ing model. The third experiment is a complete comparison of
the proposed method on the credit risk data using cross val-
idation. For our experiments, we make use of the R packages
mgcv [38], Ckmeans.1d.dp [31], cellWise [39], hmeasure [40],
xgboost [41], caret [42] and ROCR [43].

4.2.1. Experiment 1: the effect of spline binning on the fraud dataset
In the first experiment, we use only the continuous variables

to predict fraudulent transactions. To quickly scan for the vari-
ables that may have potential nonlinear effects on the response,
we fit a GAM on the continuous predictors. Fig. 3 shows the
results, indicating that the amount and time variables are likely
to influence the log-odds of fraud in a nonlinear way. Note that
the time variable is a typical example of an inherent nonlinear

effect, as discussed in Section 3.
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Table 4
Categorical variables in the credit risk dataset.
Variable name Number of categories

ID_SHOP 31
SEX 2
MARITAL_STATUS 5
FLAG_RESIDENCIAL_PHONE 2
AREA_CODE_RESIDENCIAL_PHONE 59
SHOP_RANK 3
RESIDENCE_TYPE 4
FLAG_MOTHERS_NAME 2
FLAG_FATHERS_NAME 2
FLAG_RESIDENCE_TOWN_eq_WORKING_TOWN 2
FLAG_RESIDENCE_STATE_eq_WORKING_STATE 2
PROFESSION_CODE 289
FLAG_RESIDENCIAL_ADDRESS_eq_POSTAL_ADDRESS 2
Fig. 3. Results of a classical GAM fit to the continuous predictors. The fitted splines suggest a quasi-linear effect for the age variable (left) and nonlinear effects for
he amount (middle) and time (right) variables on the log-odds.
4
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Denoting by p the probability of fraud, we train the following
AM on the training data:

log
(

p
1 − p

)
= β0 + β1age + f1(amount) + f2(time) (5)

where f1 is a thin-plate regression spline [44] and f2 is a cyclic
ubic regression spline [23], which captures the periodic nature
f the time effect.
In the second step, the continuous effects f1(amount) and

2(time) are discretized (i.e., approximated by step functions) us-
ng the strategy described in Section 3.2 to obtain f(amount) and
(time). The amount variable is discretized using constrained
inning, whereas we use unconstrained binning for the time
ariable.
Finally, a classical logistic regression model is fit to the trans-

ormed variables:

log
(

p
1 − p

)
= β0 + β1age + β2f1(amount) + β3f2(time)

The results are evaluated based on different criteria. In addi-
ion to the AIC on the training set, we also evaluate the AUC,
he weighted Brier score and the H-measure obtained on the
est set. The AUC is the well-known area under the receiver
perating curve (also equivalent to a linearly transformed Gini
oefficient). The classical Brier score is the mean squared er-
or between the predicted probabilities and observed responses,
.e., 1

n

∑n
i=1 (p̂i − yi)2. This measure is clearly inadequate for im-

alanced classification tasks, as it gives equal importance to
ach individual prediction. We therefore use weights that are
nversely proportional to the prior probabilities: wbrier =

1
n

∑n
i=1

i(p̂i − yi)2, where wi =
1
π0

Iyi=0+
1
π1

Iyi=1. Note that these weights
ake the predictions of all fraudulent cases together as important
s those of all regular transactions. The H-measure is a more
ecently developed alternative to the AUC that avoids dependence
n the classifier and is therefore more reliable. It requires the
everity ratio as an input, for which we take the recommended
atio of the class priors (π /π ); see [45,46] for details.
1 0

7

.2.2. Experiment 2: complete approach on the fraud dataset
In the second experiment, we consider the complete fraud

ataset (including the categorical variables) with the goal of
valuating the different treatment combinations of the categor-
cal and continuous variables. For the combination of discretized
plines with the shrinkage estimation of the WOE values, we first
onvert the categorical variables into continuous variables using
hrinkage estimators. Then, we proceed as in Experiment 1, with
he difference being that the GAM now includes the transformed
ategorical variables:

og
(

p
1 − p

)
= β0 + β1age + β2 SWOE(category)

+ β3 SWOE(country) + f1(amount)
+ f2(time)

where f1 is a thin-plate regression spline and f2 is a cyclic cubic
regression spline, which captures the periodic nature of the time
effect.

For the combination of the clustered WOE values with the
discretized splines, we follow the strategy outlined in Section 3.2.
We thus first optimize the number of clusters for each of the
categorical variables using the approach in Table 2. Afterwards,
we proceed as in Experiment 1 but now with the GAM:

log
(

p
1 − p

)
= β0 + β1age + β2 CWOE(category)

+ β3 CWOE(country) + f1(amount)
+ f2(time)

For the evaluation, we use the same performance measures as in
the previous experiment: the AIC, AUC, weighted Brier score and
H-measure.

4.2.3. Experiment 3: complete approach on the credit risk dataset
In this experiment, we use the same approach as in Experi-

ment 2 in that we compare the combinations of spline binning
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Fig. 4. The estimated spline functions of the initial GAM fit for the amount (left) and time (right) variables.
T
C
t
o
a

ith the different treatments of categorical variables. We again
se the strategy outlined in Section 3.2, including the clustering
f the categorical variables as in Table 2 when cWOE is used.
ll of the continuous variables are fit as a binned spline in the
odel, with the exception of QUANT_ADDITIONAL_CARDS, as

t is supported on a very discrete domain. The PAYMENT_DAY
ariable, which indicates the day of the month on which the
ventual payments will be made, is fitted with a cyclic spline,
s it is natural to expect cyclic behavior from this variable. As
here is no predefined split for the training and test data, we
valuate our proposal using 10-fold cross validation and evaluate
he performance of the method on each fold using the AIC, AUC,
eighted Brier score and H-measure.

.3. Results

.3.1. Experiment 1
The initial fit of the GAM of Eq. (5) yields the estimates β̂0 =

19.518 and β̂1 = 0.268, in addition to the spline functions
1 and f2 shown in Fig. 4. The fitted amount effect suggests
hat extreme amounts (both large and small) are more likely
o be fraudulent. The time effect suggests that transactions in
he morning and late afternoon are more likely to be fraudulent,
hereas transactions in the early afternoon and early evening are

ess likely to be fraudulent. The fitted GAM has an AIC of 284.495.
or the out-of-sample measures, we obtain an AUC of 0.919, a
eighted Brier score of 0.407 and an H-measure of 0.604. This

s a reasonable performance, and we will compare it to the final
odel and classical GLM later.
We now discretize the fitted spline functions. We choose a

aximum of k = 10 bins and use the selection strategy detailed
n Section 3.2. This yields 7 bins for the constrained amount
inning and 6 bins for the unconstrained binning of the time
ariable. Fig. 5 shows the original and binned effects of both
ariables. In the left panel, we see the amount variable discretized
ia a step function with 7 steps. Note that the first and last steps
pan a rather large interval of transaction amounts. The reason
s that there are fewer observations in these regions, and the
ariance of the estimated spline is much larger. Therefore, due
o the weighting strategy with weights inversely proportional to
he variances, we obtain larger bins at the extremes of the spline.
he right panel shows the time variable, which we wrap around
circle in a clock plot for the purpose of presentation. This plot
isually illustrates the time windows in which transactions are
ore likely to be fraudulent. Note that an effect such as this could
ever be estimated using classical logistic regression.
8

able 5
omparison of the different models trained on the continuous predictors of
he fraud detection dataset.The GLM with spline binning (SB) outperforms the
ther methods in the out-of-sample evaluation, whereas the classical GAM has
slightly lower AIC.
Method AIC AUC wbrier H-measure

classical GLM 293.656 0.896 0.438 0.549
classical GAM 284.495 0.919 0.407 0.604
SB GLM 286.429 0.925 0.396 0.624
XGBoost NA 0.891 0.363 0.567

We now evaluate the performance of the obtained model
using the various performance measures discussed above. The
final GLM fit on the discretized splines and the original age
variable has an AIC of 286.429. This is slightly above the AIC of
the full GAM, but it is clear that the difference is rather small.
Furthermore, the tables turn when considering out-of-sample
performance. The proposed method yields an AUC of 0.925, a
weighted Brier score of 0.396 and an H-measure of 0.624. All
of these are in fact better than the corresponding performance
measures of the classical GAM fit. This can be explained by the
fact that the classical GAM may slightly overfit the training data.
By discretizing the resulting spline functions, we gain robust-
ness against this overfitting. Table 5 shows a comparison of the
performances. We additionally add the results of the classical
GLM. We see that the GLM with spline binning (SB) outperforms
the classical GLM on all levels. The most significant difference is
found in the H-measure, with an increase of almost 15%. As a
reference, we add the performance of XGBoost (XGB) [47] to the
table, which does not provide a significant improvement over the
GLM-based approaches on these data.

4.3.2. Experiment 2
In the second experiment, we compare the different combi-

nations of our proposed preprocessing techniques. The results
of this comparison are presented in Table 6. Several interesting
conclusions can be made from these results. First, we see that
the classical GLM is vastly outperformed by any of the other
methods. This is mainly due to the inclusion of 42 dummy vari-
ables for the categorical variable country. Second, we can see
that the shrinkage estimation of the WOE values outperforms the
classical WOE, regardless of whether the continuous effects are
estimated using discretized splines. The clustered WOE values do
not significantly outperform the classical WOE values, and their
main benefit thus lies in the fact that the final model is more
interpretable, since it enforces a natural reduction in the number
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Fig. 5. The discretized spline functions of the initial GAM fit for the amount (left) and time (right) variables.
able 6
valuation of the combined strategies on the credit card fraud dataset. The
hrinkage estimation of the WOE values in combination with spline binning
utperforms the other models. The clustered WOE values in combination with
pline binning is the second best-performing model.
WOE sWOE cWOE SB AIC AUC wbrier H

□ □ □ □ 285 0.831 0.366 0.520
□✓ □ □ □ 227 0.925 0.352 0.596
□ □✓ □ □ 226 0.928 0.354 0.615
□ □ □✓ □ 225 0.924 0.357 0.589
□✓ □ □ □✓ 217 0.941 0.335 0.638
□ □✓ □ □✓ 216 0.943 0.336 0.652
□ □ □✓ □✓ 219 0.936 0.336 0.627
□ □ □ XGB NA 0.905 0.347 0.637

of categories within the categorical variables. Finally, we see
that the discretized spline approach always improves upon the
model obtained using the original continuous variables. The XGB
classifier now outperforms the classical GLM but has an inferior
performance to that of the GLM approach after preprocessing
with WOE.

For illustrative purposes, we further analyze the model ob-
ained using clustered WOE values and spline binning. The clus-
ering of the categorical variables yields an optimal tuning pa-
ameter of λcat = e−7. This parameter enforces a clustering of
the country variable into 12 bins (down from 42 categories),
whereas the category variable is left untouched with its original
categories. Fig. 6 shows the binned country variable with 12
ifferent levels. It turns out that transactions going to Europe
re generally connected to lower probabilities of fraud, with
he exception being receivers in Greece (and the UK to a lesser
xtent). The highest risk is associated with national transactions
nd those to Canada and Mexico. International transactions to
ustralia, China, South Africa and Chile have neutral risk levels.

The GAM fit with the optimal value of λcat no longer displays
a nonlinear effect for the amount variable, as was the case in
Experiment 1. This means that the inclusion of the categorical
variables resolves the nonlinearity issue for this variable, and we
can treat it as a linear effect. The time variable, however, still
displays a nonlinear relationship with the response, as shown in
Fig. 7.

Discretizing the continuous effect of the time variable yields
3 bins. The result of this binning step is shown in Fig. 8. It is
clear that the transactions made in the morning or early evening
are more likely to be fraudulent than the transactions around
noon or late in the evening. The coefficients of the final model
9

Table 7
Coefficients of the final model.

Estimate P-value

(Intercept) −12.55 0.00
amount 0.19 0.19
age 0.27 0.00
CWOE(category) 0.64 0.01
CWOE(country) 0.90 0.00
f(time) 1.88 0.00

Table 8
Evaluation of the combined strategies on the credit risk dataset. The shrinkage
estimation of the WOE values in combination with spline binning outperforms
the other models.
WOE sWOE cWOE SB AIC AUC wbrier H

□✓ □ □ □ 33304.29 0.6693 0.3105 0.1043
□ □✓ □ □ 33413.02 0.6701 0.3104 0.1056
□ □ □✓ □ 33305.30 0.6692 0.3105 0.1045
□✓ □ □ □✓ 33184.43 0.6732 0.3087 0.1093
□ □✓ □ □✓ 33291.17 0.6746 0.3083 0.1112
□ □ □✓ □✓ 33185.57 0.6733 0.3086 0.1096
□ □ □ XGB NA 0.6546 0.3168 0.0886

are presented in Table 7, which suggests that all predictors have
significant contributions to the final model, with the exception of
the amount variable.

4.3.3. Experiment 3
The results for the final experiment are summarized in Table 8.

It is clear that the absolute differences are not as pronounced as
those in the previous example. This is not very surprising, as a sig-
nificant number of predictor variables that carry a lot of signal are
either binary or enter the model linearly, and in both cases, the
effect of the proposed approach is limited. Nevertheless, all the
differences are statistically significant, as verified by the Wilcoxon
rank test [48], which yields p-values between 0.002 and 0.036 for
testing the performance of sWOE + SB against the alternatives in
terms of the AUC, wbrier and H-measure. These differences can
produce significant cost savings in practical business settings. As
in the previous example, the XGBoost classifier does not seem to
improve upon a GLM-based approach for these data.

4.4. Discussion

The results of the experiments above lead us to several conclu-
sions. First, in regard to the estimation of WOE values, estimating

the proportions using the shrinkage estimator seems to improve
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Fig. 6. The country variable reduced to 12 categories instead of the original 42.
Fig. 7. The estimated spline functions of the initial GAM fit when all variables are included in the model. The amount variable (left) no longer displays a nonlinear
effect on the response variable, as was the case for the model with only continuous variables.
the out-of-sample performance of the resulting model. Second,
clustering the WOE values does not generally yield a substantial
improvement over the regular WOE values but has the advantage
of fusing the categorical variables into a variable with fewer
categories, thereby improving the interpretability of the model.
Finally, the use of binned splines on the continuous variables sig-
nificantly improves the out-of-sample performance of the model.
Additionally, one could argue that this also leads to improved
interpretability, as the continuous variables are reduced to a
select number of discrete values. Note that the advantage of using
binned splines may not be significant if there are no important
nonlinear effects in the set of predictor variables.

5. Conclusion

We propose and study two advanced techniques for prepro-
cessing data before applying regression. The first method consid-
ers the treatment of WOE values, which we propose to estimate
using shrinkage estimators for the proportions. Alternatively, the
original WOE values can be clustered for improved interpretabil-
ity. Second, we study the discretization of continuous variables
through the binning of spline functions. This allows for capturing
nonlinear effects in predictor variables and yields highly inter-
pretable predictors that take only a small number of discrete
values.

Through three different experiments on a fraud detection
dataset, we illustrate the advantages of using these advanced
10
Fig. 8. The effect of the binning time on the final model.

preprocessing techniques. In particular, the out-of-sample perfor-
mance of the model is improved using the binned spline treat-
ment on the continuous variables. Additionally, the WOE values
obtained based on shrinkage estimation of the proportions also
increase the out-of-sample performance of the resulting model.
The clustering of WOE values shows improved interpretability but
no clear improvement in predictive performance.

When it comes to the limitations of the proposed method,
three points need mentioning. The first is that it should be pos-
sible to adequately model the conditional expectation of the
response given the predictors should be appropriately modeled
through a generalized additive model. Since this is the starting
point of the modeling pipeline, it is a rather obvious yet important
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imitation. The second is that the computational cost gets quite
igh when there are many nonlinear continuous effects. As the
umber of such effects gets higher, GAMs become less and less
uitable for modeling. The final limitation is that of risk of over-
itting. Whenever GAMs are used, there is the risk of overfitting
o the training data, and smoothing parameter selection should
e carefully executed. However, there exist reliable automatic
outines for this. Further research could address the combina-
ion of the two strategies for categorical variables by using the
lassical WOE values as inputs for a GAM. This combined method
ould be able to capture the nonlinear effects of the WOE values
n the response. However, due to the nature of WOE in logistic
egression (which implies a linear WOE effect on the response), it
s not clear that this would yield an improvement over the current
ethod. Another line of research could investigate a more precise
pproximation of the spline functions in the GAM. For example,
ne could use a piecewise linear approximation instead of a step
unction, which would still be easy to interpret but more flexible
o work with. Finally, the shrinkage estimation of the proportions
ould be combined with clustering, i.e., one could first compute
OE values based on shrinkage estimation and then cluster the

esulting values in a number of bins.
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