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Abstract
In this work, we study reverse complementary genomic word pairs in the human DNA, by comparing both the distance dis-
tribution and the frequency of a word to those of its reverse complement. Several measures of dissimilarity between distance 
distributions are considered, and it is found that the peak dissimilarity works best in this setting. We report the existence of 
reverse complementary word pairs with very dissimilar distance distributions, as well as word pairs with very similar distance 
distributions even when both distributions are irregular and contain strong peaks. The association between distribution dis-
similarity and frequency discrepancy is also explored, and it is speculated that symmetric pairs combining low and high values 
of each measure may uncover features of interest. Taken together, our results suggest that some asymmetries in the human 
genome go far beyond Chargaff’s rules. This study uses both the complete human genome and its repeat-masked version.

Keywords Chargaff’s rules · Human genome · Distance distribution · Peak dissimilarity · Symmetric word pairs

1 Introduction

The analysis of DNA sequences is an extremely broad 
research domain which has seen several new approaches over 
the last years. One of these newer approaches is the study of 
distance distributions of genomic words. A genomic word, 
also called an oligonucleotide, is a sequence of nucleotides 
which are represented by the letters {A,C,G,T} . In DNA 
segments, the inter-word distance is defined as the num-
ber of nucleotides between the first symbol of consecutive 

occurrences of that word [1, 2]. For instance, in the DNA 
segment ACGTCGATCCGTGCGCG the inter-CG distances 
are (3, 5, 4, 2). For each word, all of its inter-word distances 
in the genome sequence can be counted and aggregated into 
a distance distribution, which contains the frequency of each 
distance. These distributions provide a characterization of 
genomic words which can be studied using statistical tech-
niques for probability density functions.

In this paper, we are particularly interested in the study 
of symmetric word pairs. A symmetric word pair is formed 
by a word w and its reverse complement w̄ , which is the 
word obtained by reversing the order of the letters and 
interchanging the complementary nucleotides A ↔ T  and 
C ↔ G . For instance, the reverse complement of w = AAGT  
is w̄ = ACTT  , and together they form the symmetric pair 
{w, w̄} . The interest in these pairs stems from Chargaff’s sec-
ond parity rule which implies that within a strand of DNA 
the number of complementary nucleotides is similar [3]. 
One potential explanation postulates that this phenomenon 
would be an original feature of the primordial genome, the 
most primitive nucleic acid genome, and the preservation 
of strand symmetry would rely on evolutionary mechanisms 
[4]. Symmetric word pairs can occur in a genome through 
recombination events such as duplications, inversions and 
inverted transpositions [5, 6]. These segments have been 

 * Ana Helena Tavares 
 ahtavares@ua.pt

1 Department of Mathematics and CIDMA and iBiMED, 
University of Aveiro, Aveiro, Portugal

2 Department of Mathematics, KU Leuven, Leuven, Belgium
3 Department of Medical Sciences and iBiMED and IEETA, 

University of Aveiro, Aveiro, Portugal
4 Department of Electronics Telecommunications 

and Informatics and IEETA, University of Aveiro, Aveiro, 
Portugal

5 Faculty of Economics and LIAAD-INESC TEC, University 
of Porto, Porto, Portugal

6 Department of Mathematics and CIDMA and iBiMED 
and IEETA, University of Aveiro, Aveiro, Portugal

http://orcid.org/0000-0003-4632-3561
http://crossmark.crossref.org/dialog/?doi=10.1007/s12539-017-0273-0&domain=pdf


2 Interdisciplinary Sciences: Computational Life Sciences (2018) 10:1–11

1 3

associated with specific biological functions, namely, rep-
lication and transcription, and major evolutionary events 
including recombination and translocations. Also, the poten-
tial to form secondary DNA structures can cause the genome 
instability observed in some diseases [7].

Chargaff’s second parity rule has led to the natural ques-
tion whether this also holds for symmetric word pairs. This 
question has been answered to a certain extent in the exist-
ing literature [6, 8–10], as it has been observed that even for 
long DNA words in several organisms, including the human 
genome, the frequency of a word is typically (but not always) 
similar to that of its reverse complement. However, two 
words with the same frequency in a sequence may exhibit 
very distinct distance distributions along that sequence. This 
leads to the natural follow-up question: do symmetric word 
pairs have similar distance distributions?

Tavares et al. [2] addressed this question for words of 
length k ≤ 5 in the human genome. Adopting a whole-
genome analysis approach, the discrepancy between dis-
tance distributions was evaluated using an effect size meas-
ure. The authors concluded that the dissimilarity between 
the distributions of symmetric word pairs of this length was 
negligible. The authors also reported that for each word w, 
the distance distribution nearest to the distance distribution 
of w is most often that of w̄ , the reverse complement of w.

As an example, Fig. 1 shows the distance distribution of 
the word w = GGGAGGC in the human genome. Its peaks 
correspond to three distances that occur much more often 
than others. In this example, the distance distribution of the 
reverse complement w̄ = GCCTCCC is extremely similar.

In order to study differences between distance distribu-
tions, a new dissimilarity measure was proposed by Tavares 
et al. [11]. Based on the gaps between the locations of their 
peaks and the difference between the sizes of these peaks, 
the peak dissimilarity becomes high when the distribu-
tions have very different peaks, or when one distribution 
has strong peaks and the other does not. In this article, we 
extend their work in two ways. First, we compare the peak 

dissimilarity with two earlier dissimilarity measures and 
argue for its superiority in the analysis of distance distribu-
tions between symmetric word pairs. Secondly, we combine 
the peak dissimilarity with information about the frequen-
cies of the word and its reverse complement to improve 
the identification of atypical genomic word pairs. We also 
draw a comparison between the observed distribution and 
the expected distribution under randomness. Using these 
techniques we detect several atypical word pairs, which we 
annotate by identifying the chromosomes and genes where 
their differences are most pronounced.

The paper is organized as follows. In Sect. 2, we describe 
measures of the discrepancy between frequencies and dis-
tance distributions, including the peak dissimilarity. Sec-
tion 3 compares the behavior of these dissimilarity measures 
in our particular research problem. Section 4 identifies and 
investigates the symmetric word pairs that are most and least 
dissimilar, using both their frequencies and their distance 
distributions. It also explores how well the results hold up 
in a masked sequence. Section 5 concludes.

2  Measures of Dissimilarity

2.1  Discrepancy Between Word Frequencies

To measure the discrepancy between the total absolute 
frequencies of reverse complementary words w and w̄ , we 
count all occurrences of each word along the DNA sequence. 
The number of times w occurs is denoted as nw , and that of 
w̄ is nw̄ . Under the null hypothesis that the true underlying 
probabilities of w and w̄ are equal, the expected frequency 
of w is e = (nw + nw̄)∕2. The Pearson residual [12] of w is 
then given by (nw − e)∕

√
e. The absolute Pearson residual 

(APR) of w is thus

Note that APR(w) = APR(w̄) and that 2APR2(w) equals 
the usual chi-squared statistic for testing the equality of the 
underlying probabilities.

2.2  Dissimilarity Measures for Distance 
Distributions

Assuming that the DNA sequence is read through a sliding 
window of word length k, the inter-word distance sequence 
is defined as the differences between the positions of the 
first symbol of consecutive occurrences of that word. For 
instance, the inter-CG distances sequence in the DNA seg-
ment CGT ACG CGACG  is (4, 2, 3). The distance distribution 

(1)APR(w) =
�nw − e�
√
e

=
�nw − nw̄�

√
2(nw + nw̄)

.
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Fig. 1  Distance distribution of the genomic word w = GGGAGGC 
and of its reverse complement w̄ = GCCTCCC in the human genome. 
Adapted from [2]
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of w, denoted by f w , gives the relative frequency of each 
distance, i.e., the number of times a certain distance occurs 
divided by the total number of occurrences of the word w.

The word structure influences the distance distribution, as 
some distances from 1 to k may be absent. As an example, 
note that the inter-AAA  distance can be equal to one, but can-
not be two or three. So, for words of length k we will only 
consider distances greater than k.

We now wish to compare the distance distribution of 
each word w with the distance distribution of w̄ . For this we 
describe three dissimilarity measures, two of which have 
been used for a long time and one is new.

2.2.1  Euclidean Distance

The Euclidean distance is a standard tool which is also used 
between distributions. In our situation, the discrete probabil-
ity distributions f w and f w̄ have the same domain. The word 
‘discrete’ refers to the domain, as the distances are always 
integers. The probabilities (i.e., frequencies) of a distance i 
are denoted as pi = f w(i) and qi = f w̄(i) . Then the Euclidean 
distance DE(f

w, f w̄) is obtained by summing the squares of 
the frequency differences:

2.2.2  Jeffreys Divergence

The Kullback–Leibler divergence [13] between f w and f w̄ 
is given by

where the 0 log 0 = 0 convention is adopted. The Kull-
back–Leibler divergence stems from information theory. It 
is always nonnegative and becomes zero when the distribu-
tions are equal, and it is widely used as a divergence measure 
between distributions. But it is not symmetric, as DKL(f

w, f w̄) 
need not equal DKL(f

w̄, f w) . Therefore, we will use a sym-
metrized version called the Jeffreys divergence [14]:

Note that DJ is not well defined if some pi or qi are zero. In 
practice this can be avoided by replacing the zero values 
by a small positive value. The Jeffreys divergence DJ is a 
semimetric, meaning that it is symmetric, nonnegative, and 
reduces to zero when the two distributions are identical.

2.2.3  Peak Dissimilarity

The distance distributions f w and f w̄ may present several 
peaks, i.e., distances with frequencies much higher than the 

(2)DE(f
w, f w̄) =

√∑

i

(pi − qi)
2.

DKL(f
w, f w̄) =

∑

i

pi log(pi∕qi),

(3)DJ(f
w, f w̄) = DKL(f

w, f w̄) + DKL(f
w̄, f w).

global tendency of the distribution, as we saw in Fig. 1. To 
describe the recently proposed peak dissimilarity [11] we go 
through three steps.

1. Identifying peaks To determine peaks we slide a window 
of fixed width h along the domain of the distribution. In each 
such interval of width h we average the absolute values of the 
differences between successive frequencies, and call the result 
the size of the peak on that interval. The peak’s location is 
defined as the midpoint of the interval. The strongest peak is 
then determined by the interval with the highest size. For the 
second strongest peak we only consider intervals that do not 
overlap with the first one, and so on.

The bandwidth h is a tuning parameter which controls the 
number of consecutive frequencies that are aggregated in a 
region. There is no best bandwidth, and different bandwidths 
can reveal different features of the data. To illustrate the effect 
of h on peak identification, consider the distance distribution 
of the word w = GGGAGGC in Fig. 1 which has a local maxi-
mum at distance 135. When h ≤ 3 the region around distance 
135 gives rise to two intervals with high peak size. However, 
when h ≥ 4 these high frequencies are combined into a single 
peak.

2. Dissimilarity between two peaks To measure the dissimi-
larity between two peaks, we take into account the difference 
between their sizes and between their locations. Consider the 
distance distributions f w and f w̄ which are defined on the same 
domain with length R. Let tw

i
 be a peak of f w with location li 

and size vi and let tw̄
j
 be a peak of f w̄ with location l̄j and size 

v̄j . To measure the dissimilarity between these peaks we pro-
pose to use

where v and v̄ are the highest peak sizes observed in each dis-
tribution. If the peaks have the same location the dissimilar-
ity is reduced to a relative size difference |vi − v̄j|∕min{v, v̄} , 
and if they have the same size it is reduced to a relative loca-
tion difference |li − l̄j|∕R . The denominator min{v, v̄} yields 
a high dissimilarity when one distribution has strong peaks 
and the other does not.

3. Peak dissimilarity between two distributions To measure 
the dissimilarity between two distributions, we compare their 
n strongest peaks, for fixed n. We propose

where � is a permutation of the indices i = 1,… , n , meaning 
that �(i) is the image of i. The minimum is taken over the set 
n of all permutations � of n elements. In Fig. 1, the mini-
mum in (5) is attained for the simple permutation �(1) = 1 , 

(4)d(tw
i
, tw̄
j
) =

(
|li − l̄j|

R
+ 1

)( |vi − v̄j|
min{v, v̄}

+ 1

)
− 1,

(5)DP(f
w, f w̄) = min

𝜋∈n

{
n∑

i=1

d(tw
i
, tw̄
𝜋(i)

)

}
,
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�(2) = 2 , �(3) = 3 yielding a tiny dissimilarity. In general 
the proposed measure (5) depends on n, the number of peaks 
considered, and on the bandwidth h used in the peak search. 
Like DJ also DP is a semimetric, which is why we call it a 
‘dissimilarity’ rather than a ‘distance’.

2.3  Data and Data Preprocessing

In this study, we used the complete genome assembly, build 
GRCh38.p2, downloaded from the website of the National 
Center for Biotechnology Information (http://www.ncbi.nlm.
nih.gov/genome). We also used pre-masked data available 
from the UCSG Genome Browser (http://genome.ucsc.edu), 
in which the repeats determined by Repeat Masker [15] and 
Tandem Repeats Finder [16] were replaced by Ns.

The chromosomes were processed as separate sequences 
and non-ACGT symbols were used as sequence separators. 
The counts of word distances were generated using the C 
language, taking overlap between successive words into 
account and setting the maximal distance to 1000. The R 
language was used to compute the distance distributions, the 
dissimilarity measures and to perform the statistical analysis.

3  Comparison of Dissimilarity Measures

In this section, we will compare the dissimilarity measures 
of Sect. 2 on the data under study, consisting of all words 
of lengths 5, 6, and 7 in the human genome. In particular, 
the peak dissimilarity is computed with bandwidth h = 5 
which revealed the essential peak structure of the data, by 
capturing both “isolated” and “grouped” high frequencies. 
The results are not overly sensitive to this choice, and in fact 
very similar results were obtained for h = 4, 5, 6 . Also, we 
used the n = 3 strongest peaks (for n = 4,… , 7 we obtained 
similar results in much higher computation time).

3.1  Correlation Analysis

For every symmetric word pair {w, w̄} , each of the four 
dissimilarity measures provides a value. These are the fre-
quency discrepancy APR, Euclidean distance DE , Jeffreys 
divergence DJ , and peak dissimilarity DP . To evaluate the 

agreement between these four measures we compute Spear-
man’s rank correlation coefficient rS between each pair. For 
instance, to compare APR and DE we rank the values of each 
of them, and then compute the product-moment correlation 
between these two vectors of ranks. Comparing each pair 
of measures yields the Spearman correlation matrices in 
Table 1, one for each word length k = 5, 6, 7.

Overall the correlations decrease with increasing word 
length, with DE and DJ remaining the most correlated 
( rS > 0.90 ). The rather high correlation between DE and DJ 
may perhaps be explained by the formal analogy between 
D2

E
=
∑

i(pi − qi)
2 and DJ =

∑
i(pi − qi)(log pi − log qi) . By 

comparison DP is less correlated with either of them, espe-
cially for k = 7 . The correlation between APR and the meas-
ures DE , DJ and DP lies in between. We may conclude that 
the various measures yield complementary information, with 
the possible exception of DE and DJ . Therefore, the adopted 
measure(s) should take into account the features that are 
considered important for the subject matter. In the next sub-
section, we will argue which dissimilarity measures are the 
most useful in the context of the present research problem.

3.2  Comparing Top‑Ranked Sets

For each distance distribution dissimilarity measure ( DE , DJ 
and DP ), we now rank the dissimilarity values from smallest 
to largest. The highest ranks correspond to the most dissimi-
lar word pairs for that particular dissimilarity measure. For 
instance, the top 10% ranked set for DE consists of the word 
pairs whose Euclidean distance exceeds the 90th percen-
tile of DE . As discussed earlier, the ranks of DE and DJ are 
more correlated than those of DP and DJ (see Table 1). One 
way to assess whether the most dissimilar distributions are 
the same in each top-ranked set (regardless of their position 
within that set) is to count the number of common word pairs 
in those sets. In particular, Table 2 records the fraction of 
common elements in the top 1% ranked sets for DE and DJ 
(under the heading RE,J) , etc. The top 1% ranked sets for DE 
and DJ indeed have the largest overlap, whereas those of DJ 
and DP have the least in common, especially for k = 6 and 
k = 7 . The results for the top 10% ranked sets are similar.

Looking at the top-ranked sets for k = 7 in more detail 
shows specific differences. In Fig. 2a, we see that the 1% 

Table 1  Spearman rank 
correlation matrices for 
frequency discrepancy APR 
and distance distribution 
dissimilarities DE , DJ , and DP , 
by word length

Bolded numbers refers to values referred in the text.  DE and  DJ are the most correlated  (rS >0.9)

k = 5 k = 6 k = 7

APR DE DJ DP APR DE DJ DP APR DE DJ DP

APR 1 1 1
DE 0.635 1 0.551 1 0.283 1
DJ 0.573 0.988 1 0.403 0.962 1 0.029 0.904 1
DP 0.663 0.836 0.800 1 0.622 0.784 0.678 1 0.457 0.641 0.427 1

http://www.ncbi.nlm.nih.gov/genome
http://www.ncbi.nlm.nih.gov/genome
http://genome.ucsc.edu
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top-ranked word pairs for DJ and DE consist of words with 
low word frequencies, whereas the 1% top-ranked word 
pairs for DP are composed of words with much higher fre-
quencies. In Fig. 2b, we note that the top-ranked word 
pairs for DP also have higher frequency discrepancy values 
(absolute Pearson residuals).

A visual inspection of the distance distributions in 
word pairs with high-ranked DJ reveals that there are many 
sparse distributions among them. By sparse we mean that 
there are many zero frequencies f w(i) , and we already 
saw that these words have a low total absolute frequency. 
Indeed, the dissimilarity measures DJ and DE may be over-
stating the disagreement between distance distributions 
with local differences. In fact, DJ is quite sensitive to small 
frequencies, while DE is sensitive to the presence of a few 
high frequencies. It should be noted that in the presence of 
sparse distributions both low and high relative frequency 
values are expected, which strongly affect the results of DE 
and DJ . On the other hand, DP ignores small frequencies 
and evaluates the disagreement between the sizes of the 
three strongest peaks, which are taken into account even 
when their locations do not precisely coincide. Moreover, 
the peak size differences are scaled by the highest peak 
sizes observed in each distribution.

In view of these results, in what follows we will focus on 
the dissimilarity measures DP and APR for the detection of 
discrepancies between symmetric word pairs.

4  Detection of Atypical Symmetric Word 
Pairs

In this section, we focus on symmetric word pairs consisting 
of words with length k = 5, 6, and 7, both in the complete 
human genome assembly and in a masked version.

In order to identify atypical words, we will use three 
approaches. First, we will consider the peak dissimilarity 
between the distance distributions. Second, we will combine 
this information with the frequency discrepancy. Finally, we 
will study the deviations between the observed distance dis-
tributions and the distance distributions under the assump-
tion of randomness and Chargaff’s parity rule.

4.1  Analyzing the Observed Peak Dissimilarities

As before, the peak dissimilarity is computed with band-
width h = 5 and the n = 3 strongest peaks. To capture the 
most dissimilar distance distributions we select those sym-
metric word pairs with peak dissimilarity above the 99th per-
centile of DP values. This procedure captured 6 word pairs of 

Table 2  Comparison between 
the rankings for DE , DJ and DP : 
fraction of common elements in 
the top 1% and top 10% ranked 
sets

Bolded numbers refers to values referred in the text.  DJ and  DP have the least in common, especially for 
k>=6

k Overlap in top-ranked sets

Top 1% Top 10%

RE,J RE,P RJ,P RE,J RE,P RJ,P

5 0.98 0.49 0.49 0.89 0.66 0.63
6 0.12 0.24 0.05 0.63 0.61 0.38
7 0.23 0.03 0.00 0.58 0.47 0.18

Fig. 2  Statistics of sym-
metric pairs {w, w̄} in the 
1% top-ranked set of each 
divergence measure, for k = 7 : 
a average word pair frequency 
(nw + nw̄)∕2 and b frequency 
discrepancy APR. Complete 
genome
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length k = 5 , 21 of length k = 6 and 82 of length k = 7 . Next, 
these words were sorted by decreasing peak dissimilarity 
value. The results are listed in Table 3 (for k = 6 and k = 7 
only the first 20 results are shown).

Looking at these distributions, it turns out that these high 
peak dissimilarities are often caused by one distribution 

with strong peak(s) and another displaying low variability 
or small peaks, as illustrated in Fig. 3.

The symmetric pairs with low values of Dp have very 
similar distributions. For some words, this dissimilarity is 
surprisingly low in spite of their distance distributions hav-
ing irregular patterns and/or some strong peaks. Some of 

Table 3  Symmetric word pairs 
with peak dissimilarity above 
the 99th percentile of DP values, 
by word length (only the first 20 
results are shown)

For each word w its DP(w, w̄) value is given. Complete genome

k = 5 k = 6 k = 7

w DP w DP w DP w DP w DP

CGAAG 127.9 AGT ATC 91.0 GAA ATC 58.7 AAA TTC C 178.8 AGG TTA A 106.0
ACGAA 87.2 AGT TAC 86.4 AAG GCC 46.3 ACT TTA C 145.4 AAC AAT C 105.2
TACGA 43.5 GGT TAA 84.5 CCT TCG 46.3 GCT TGA A 138.9 AAA CTT A 102.5
AACGG 37.0 AGT AAC 80.7 ATA CGA 45.8 CTG TCA A 123.8 GCA GTT A 102.3
GAAAC 25.8 GTT GGA 80.6 GTC ACA 45.1 AAC ACA A 120.4 CTT GAC A 100.1
TCCAA 22.1 ACC CGT 69.1 CTT CGA 44.6 AGT TTA A 116.1 GTA GAA C 97.1

AGG TTA 68.2 AAG TTA 43.6 GGG AAG A 110.4 AAA TCC T 96.8
AAA TCG 65.9 ACG AAG 42.3 GAT GCC A 107.7 CGG GTT C 96.3
GAA TAC 61.2 AGT CAC 41.6 CAC TAA G 107.5 AAG GTT A 95.0
AGT CGA 60.1 CGG GTA 39.4 AAC AGT A 106.8 ATT GGA G 91.7

Fig. 3  Distance distributions of some reverse complements, f w and f w̄ , with high peak dissimilarity values: a DP = 145.4, APR = 37.0; b 
DP = 107.6, APR = 4.9; c DP = 96.8, APR = 50.9; d DP = 55.75, APR = 2.0. Complete genome
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those distributions, with peak dissimilarities below the 10th 
percentile of DP , are illustrated in Fig. 4.

4.2  Combining Peak Dissimilarity and Frequency 
Discrepancy

In order to explore the (dis)similarity between reverse com-
plements, we also combine the peak dissimilarity DP with 
the frequency discrepancy APR. Figure 5 plots DP against 
APR for each word length, with lines indicating the 90th and 
99th percentile of both. Whereas there is a kind of positive 
relation between DP and APR for short words, this becomes 
less clear for longer words, where we know that the rank 
correlation between these measures decreases (see Table 1).

Several combinations of APR and DP are observed in 
Fig. 5: similar word frequency with similar distance dis-
tribution (call this case c1, which is common); dissimilar 
word frequency with similar distance distribution (c2); and 
similar word frequency with dissimilar distance distribution 
(c3). (A fourth combination, dissimilar word frequency and 
dissimilar distance distribution, becomes increasingly rare 
for longer words.)

The interesting cases are (c2) and (c3), which may 
reveal features of interest and should be further studied. 
In case (c2), words have similar distance distributions but 
their frequencies of occurrence are quite different, which 
corresponds to points at the upper left of Fig. 5. To illus-
trate, consider the symmetric pair with w = CCGTCCG 
(Fig. 4c), which has peak dissimilarity below the 10th per-
centile of DP and frequency discrepancy around the 90th 
percentile of APR. Conversely, in case (c3) strand symme-
try holds but the words have distinct distance distributions 
along the genome. This corresponds to points at the bot-
tom right of the plot. For instance, the symmetric pair with 
w = AGTTATG (Fig. 3d) has peak dissimilarity above the 
90th percentile of DP and frequency discrepancy around 
the median of APR. Observe that all word pairs listed in 
Table 3 are located on the right side of the scatter plot.

These results indicate that some asymmetries in the 
human genome go far beyond Chargaff’s parity rule.

Fig. 4  Distance distributions of some reverse complements, f w and f w̄ , with low peak dissimilarity values: a DP = 0.012, APR = 0.70; b 
DP = 0.026, APR = 0.73; c DP = 0.060, APR = 11.1; d DP = 0.116, APR = 4.04. Complete genome
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4.3  Deviations from Randomness

It is intriguing that the distance distributions of a sym-
metric pair can be very similar even when their pattern is 
unexpected. If genomic sequences were generated from 
independent symbols only subject to Chargaff’s parity rule 
( %A = %T  and %C = %G ), the inter-word distance distribu-
tions would be close to an exponential distribution. We are 
interested in investigating how dissimilar distance distribu-
tions from such symmetric pairs can be from the pattern 
under the random scenario. For that purpose, we compute 
the peak dissimilarity between the averaged distance dis-
tribution of the symmetric pair, (f w + f w̄)∕2 , and the cor-
responding averaged reference distribution. The expected 
distance distribution can be deduced using a state diagram, 
which represents the progress made towards identifying w 
as each symbol is read from the sequence. The input param-
eters are the nucleotide frequencies in the sequence. The 
algorithm used to construct those reference distributions is a 
special case of Fu’s procedure based on finite Markov chain 
embedding [17].

We select all symmetric pairs with intra-pair peak dis-
similarity below the 10th percentile of DP , and ranked them 
according to the peak dissimilarity between their aver-
age distribution and their average reference distribution 
(denoted as rs). This yields a list of symmetric pairs with 
similar but unexpected distance distributions. For each word 
length the top 20 results are listed in Table 4. To illustrate 
some distance distribution of symmetric word pairs with 
this behavior, consider the pairs associated with the words 
w = CCGTCCG (Fig.  4c) and w = ATCATCG (Fig.  4d), 
which are listed in this table under k = 7 . The symmetric 
pairs have very similar distance distributions and their strong 
peaks make them very dissimilar from the expected distribu-
tions in the random scenario.

4.4  Masked Genome Assembly

To reduce the effect of repetitive sequences in the original 
genome assembly, we also analyze a masked version of the 
genome which excludes major known classes of repeats [18], 
such as long and short interspersed nuclear elements (LINE 
and SINE), long terminal repeat elements (LTR), satellite 
repeats or simple repeats (micro-satellites). All distribu-
tions and measures in this subsection are from the masked 
sequence and for k = 7.

Masking the genome sequence markedly affects the shape 
of the distance distributions. Several strong peaks observed 
in the complete genome are eliminated by masking, as 
described in [11]. It also greatly reduces the frequency dis-
crepancy between reverse complements. To visually inspect 
those discrepancies, we plot the word frequencies against 
those observed for the reverse complement. We observe that, 
for the masked genome, the points are located much closer to 
the diagonal line than in the complete genome (Fig. 6a, b).

To select symmetric pairs with similar and dissimilar 
distance distributions, the authors in [11] retained word 
pairs with peak dissimilarity below the 10th percentile of 
DP values and those above the 90th percentile of DP val-
ues, after filtering out words with low total absolute fre-
quency. They distinguish between two groups of word pairs 
with low peak dissimilarity: those where both distributions 
have strong peaks at short distances, and on those where 
neither distribution has strong peaks. These patterns are 
illustrated in Fig. 7a, b. Interestingly, the unusual pattern of 
w = ATCATCG in the complete sequence (Fig. 4d) remains 
in the masked sequence (Fig. 7b). Symmetric pairs with 
high dissimilarity usually have one distribution with one or 
more strong peaks at short distances ( < 200 ), whereas the 
other presents low variability. Some very dissimilar pairs are 
shown in Fig. 7c, d.

Fig. 5  Frequency discrepancy (APR) versus peak dissimilarity, for word lengths 5, 6 and 7. Solid and dashed lines indicate the 90th and the 99th 
percentile of each measure, respectively. Complete genome
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4.4.1  Annotation Analysis

To investigate whether an association exists between 
dissimilar reverse complements and functional DNA 
elements, we perform an annotation analysis for the 15 
most dissimilar symmetric pairs. For each such pair we 
list the word with the strongest peaks. Then we look for 

the ‘favored’ distance(s), i.e., those where the strongest 
peak(s) are located. These peaks are often concentrated 
in one chromosome rather than being spread over the 
entire genome sequence. Table 5 lists the chromosome 
in which the favored distances are most pronounced, for 
each of the 15 pairs. The positions of the words occur-
ring at that distance from each other are recorded. Then, 

Table 4  Symmetric pairs with 
intra-pair peak dissimilarity 
below the 10th percentile 
of DP , sorted by decreasing 
dissimilarity to the random 
scenario (only the first 
20 results are shown) and 
organized by word length

For each word w its DP(w, w̄) value is given and dissimilarity to the random scenario (rs). Complete 
genome

k = 5 k = 6 k = 7

w DP rs w DP rs w DP rs

CGCCC 0.009 213.80 CGC CCG 0.029 583.44 ACG CGT A 0.141 1621.58
CCTCC 0.015 207.89 CGG GAG 0.018 443.79 CAA CGA G 0.122 1556.41
CGGCC 0.014 206.40 GCC TCC 0.005 418.84 CTC GAG A 0.160 1481.80
CCAGC 0.009 190.02 AGG CCG 0.014 360.64 ATC GCC A 0.082 1350.15
CCTCG 0.025 184.80 CAG ACG 0.012 354.04 CGT CTG A 0.130 1292.38
CGCCA 0.014 174.63 CAG GAG 0.012 339.94 ACG CAA A 0.056 1257.21
CCGCC 0.014 153.47 GGT CTA 0.034 332.90 GTT CGG A 0.120 1097.62
CAGGC 0.008 136.91 AGA TCG 0.024 326.56 ATC ATC G 0.116 1040.96
GCCGA 0.024 136.10 CGA GAC 0.025 291.41 CAT CGA A 0.111 1038.82
CCCGG 0.021 133.17 CAC GCC 0.038 289.29 TCA TCG A 0.143 1031.44
CCACC 0.023 115.13 CCC GTC 0.037 276.62 AGG AGC G 0.099 995.72
CTCCC 0.018 103.37 ACG GGG 0.041 267.93 CAG ACG A 0.120 957.98
CCCAG 0.011 95.68 CGT CTC 0.009 266.46 TCC CGG A 0.025 904.82
AGGAG 0.011 88.48 GAG GCA 0.018 265.75 GGA TCT A 0.138 893.08
GGCCA 0.014 87.62 CCT CCC 0.015 260.13 CCG GAC G 0.099 892.40
CAGGA 0.013 83.81 CTC GGC 0.021 258.12 ACG CTC C 0.096 891.33
CCGAG 0.024 78.98 CCC GGC 0.030 246.31 AGA CGC T 0.064 886.83
CCAGG 0.027 74.37 CCG GGC 0.029 242.70 CCG TCC G 0.060 866.16
CTGCC 0.021 66.48 CCC GGA 0.042 242.56 CAG ACG G 0.009 855.86
AGTAG 0.005 64.42 CGC CTC 0.034 231.77 CGG GCG C 0.030 840.74

Fig. 6  a Word frequencies ( nw ) in the entire genome against those 
observed for the reverse complements ( nw̄ ) with both axis in log 
scale, all for k = 7 ; b same for the masked genome; c frequency dis-

crepancy versus peak dissimilarity for k = 7 in the masked genome, 
where solid lines indicate the 90th percentile of each quantity



10 Interdisciplinary Sciences: Computational Life Sciences (2018) 10:1–11

1 3

we retrieve annotations within these genomic coordinates 
from UCSC GENCODE v24. Interestingly, the words we 
obtain that are located on chromosome 13 all fall within 
the gene LINC01043 (long intergenic non-protein cod-
ing RNA 1043) and all of our words on chromosome 1 
are contained in the gene TTC34 (tetratricopeptide repeat 
domain 34). These results suggest that the most dissimilar 
distributions may be related to repetitive regions associ-
ated with RNA or protein structure.

A deeper investigation into the biological meaning 
of these words is necessary to investigate whether the 
observed dissimilarities reflect the selective evolutionary 
process of the DNA sequence.

5  Conclusions

In this work, we explore the DNA symmetry phenomenon 
in the human genome, by comparing each inter-word dis-
tance distribution to the distance distribution of its reverse 
complement, for word lengths k = 5, 6 and 7.

We use the peak dissimilarity to evaluate the dissimilar-
ity between the distance distributions of reverse comple-
ments and compare it to two well-known measures. Our 
results suggest that peak dissimilarity achieves its intended 
purpose in the detection of highly dissimilar distance 
distributions.
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Fig. 7  Distance distributions of some reverse complements with low dissimilarity values: 0.144 (a), 0.125 (b); and with high dissimilarity val-
ues: 11.74 (c), 6.49 (d). Masked genome

Table 5  The 15 most dissimilar 
symmetric pairs with k = 7 , 
characterized by their word with 
the strongest peaks

The chromosome on which these peaks are prominent is indicated. Masked sequence

Chromosome 13 1 4 3 8

Word w ACC ATT C GGT AAG C AGC ATC T GTT GGT A TGG TAT G GCT TAC T
CTT CAG G TAA GCA T GAG CAT C TGG TAG A
GAC CAT T TCA GGA T TGA GCA T
TCC TTC A TTC AGG A
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In the complete human genome, we confirm the exist-
ence of symmetric word pairs with quite distinct distance 
distributions. In such cases, one of the distance distribu-
tions typically has well-defined peaks and the other has low 
variability. We also report symmetric pairs with very similar 
distance distributions even though these distributions are 
themselves unexpected with strong peaks.

The association between distance distribution dissimilar-
ity and frequency discrepancy is analyzed. In general, the 
correlation between those measures is moderate. Several 
behaviors are observed in symmetric pairs, by combining 
low and high values of both measures. In particular, there 
are symmetric pairs that preserve strand symmetry (similar 
frequency) but have dissimilar distance distributions; and 
symmetric pairs with dissimilar frequencies and similar dis-
tance distributions. Symmetric pairs with either behavior 
may uncover features of interest.

We also investigate how well our results hold up in a 
masked sequence, which excludes major known classes of 
repeats. Even though masking generally reduces the dissim-
ilarity between distance distributions of symmetric pairs, 
there remain quite a few word pairs with high dissimilar-
ity, which in our study are mainly localized on a specific 
chromosome and even a specific gene. A question worth 
investigating is to what extent the high dissimilarities may 
be linked to evolutionary processes.

Taken together, our results suggest that some asym-
metries in the human genome go far beyond Chargaff’s rules. 
Of particular note are some symmetric pairs with a perfectly 
ordinary frequency similarity and distribution similarity, that 
exhibit a strong preference for occurring at some particular 
distances.
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