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“The cause is hidden. The effect is visible to all.” 
Ovid – Roman poet (43 BCE – 17 CE) 
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This chapter’s epigraph forms part of Ovid’s musings about cause and effect. Often, it is not 

immediately apparent whether groups of units of observation (e.g. persons) exhibiting similar 

paths of temporal development exist, which could explain heterogeneity in the observed data. 

In the absence of a variable to distinguish between groups, only the combined effects are 

directly observable. This thesis deals with statistical models which can assist practitioners in 

uncovering such latent (hidden) profiles, and consequently gain a better understanding of 

dynamics within their data. 

This thesis investigates, compares, and assesses the theoretical, empirical, and 

statistical properties of finite mixture models (FMMs) for longitudinal data i.e., for multiple 

sequential measures over time per subject. Longitudinal FMMs are model-based clustering 

methods which assume that the population studied comprises distinct, but unobserved 

subpopulations. These subpopulations are probabilistically defined such that clusters of 

subjects following similar temporal developmental profiles are identified in the absence of a 

known grouping variable. Such clusters are called latent (hidden) classes. 

FMMs have been increasingly used in the analysis of longitudinal data. In health and 

medical studies, these models are useful in identifying differences in treatment response, 

and/or disorder or disease aetiology/development over time. Recent applications include: 

identifying trajectories of psychological distress during the COVID-19 pandemic and linking 

these to socio-demographic and health factors [1], distinguishing distinct trajectories of 

psychological functioning after First-Episode Psychosis and exploring their relation to several 

cognitive composite constructs [2], finding shared trajectories across several health outcomes 

in older adults [3], and uncovering trajectories of distinct eating behaviours (e.g. healthy 

consumption habits) throughout adolescence [4]. 

Notwithstanding the popularity of longitudinal FMMs in practice, their users can 

often be unaware of the models’ underlying assumptions and the potential implications of their 

violations. This study seeks to elucidate some of the issues faced by practitioners, increase the 

accessibility of these models, and elicit a greater appreciation of these models’ applicability and 

limitations. Various longitudinal FMMs will be compared in terms of their underlying 

assumptions, robustness to violations of their assumptions, applications to real-world data, and 

their availability in software. Further, visual and investigational statistics will be developed to 

address complex group-based research questions. 
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1.1. Longitudinal finite mixture models (FMMs) 

Longitudinal FMMs are probabilistic models which combine at least two density functions to 

fit data and to account for heterogeneity in longitudinal processes in observed outcomes. 

Longitudinal FMMs develop from the assumption that within a population, 𝐾𝐾 latent classes 

exist with subjects within classes following similar temporal paths. Let 𝒚𝒚𝑖𝑖𝑡𝑡𝑡𝑡 = �𝑦𝑦𝑖𝑖0, … , 𝑦𝑦𝑖𝑖(𝑇𝑇−1)� 

be a vector of repeated measures for subject 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁 over time 𝑡𝑡, 𝑡𝑡 = 0, … ,𝑇𝑇 − 1, with 

superscript 𝑡𝑡𝑡𝑡 denoting vector transpose. Then, the marginal probability distribution 𝑃𝑃(𝒚𝒚𝑖𝑖) of 

a randomly chosen trajectory is modelled as, 

 𝑃𝑃(𝒚𝒚𝑖𝑖) = �𝜋𝜋𝑘𝑘𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖)
𝐾𝐾

𝑘𝑘=1

 
(1.1) 

𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) is the conditional distribution of the longitudinal sequence 𝒚𝒚𝑖𝑖 given that subject 𝑖𝑖 is in 

class 𝑘𝑘, 𝑘𝑘 = 1, … ,𝐾𝐾. 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) is uniquely defined by the trajectory specification per class. 𝜋𝜋𝑘𝑘 is 

the class membership probability (mixing weights) where 𝜋𝜋𝑘𝑘 ≥ 0,∑ 𝜋𝜋𝑘𝑘 = 1𝐾𝐾
𝑘𝑘=1 , with 𝐾𝐾 > 1. 

These models assume 𝐾𝐾 to be known, which is difficult to deduce directly from the data. 

Various statistical and practical measures can assist in the enumeration of 𝐾𝐾, which are 

discussed at length in Chapter 2. 

𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) could in principle be any statistical distribution, which makes these models 

flexible in handling continuous, binary, ordinal, nominal, and count outcomes. For continuous 

data, the sole focus of this thesis, the multivariate normal density function is typically 

employed. Poisson may be used for count data and the binary logit for binary data [5,6]. 

Moreover, 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) need not conform to the same distributional parameters nor even to the 

same density function across classes.  

FMMs are categorised as model-based soft-clustering approaches. They are model-

based since classes are defined by a formal statistical model (Eq. 1.1) with parameters 

estimated by conventional methods like maximum likelihood [7]. As a soft-clustering 

technique, each subject’s sequence of measures (𝒚𝒚𝑖𝑖) belongs to a class 𝑘𝑘 with (posterior) 

probability 𝑃𝑃(𝑘𝑘|𝒚𝒚𝑖𝑖). The individual sequence is probabilistically assigned to class 𝑘𝑘 when 

𝑃𝑃(𝑘𝑘|𝒚𝒚𝑖𝑖) > 𝑃𝑃(𝑙𝑙|𝒚𝒚𝑖𝑖), 𝑙𝑙 = 1, … ,𝐾𝐾, 𝑘𝑘 ≠ 𝑙𝑙 [8]. This is a stochastic assignment in the sense that 

uncertainty exists in the class assignment of a subject due to inter- and intra-individual 

variation around the class trajectory. This contrasts with hard-clustering, where 𝒚𝒚𝑖𝑖 belongs 
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exclusively to a single class i.e., deterministic assignment. K-means is a typical hard-clustering 

algorithm [9]. 

1.2. Motivation for the use of longitudinal FMMs 

FMMs are often deployed in one of two contexts, but the divide between them is not clear-cut, 

and, as Titterington et al. [10] argue “is related more to expository convenience than to 

philosophical niceties”: 

• Direct applications: the assumption is that there are 𝐾𝐾 underlying classes, where 𝒚𝒚𝑖𝑖 

belongs to one of these classes. 𝐾𝐾 is either not directly observed or is too expensive 

to measure. Here, 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) gives the probability distribution of 𝒚𝒚𝑖𝑖 given that it actually 

arises from class 𝑘𝑘, and 𝜋𝜋𝑘𝑘 is the probability of 𝒚𝒚𝑖𝑖 emanating from class 𝑘𝑘. This 

application is the focus of this thesis. 

• Indirect applications: The FMM is simply utilized as a mathematical device which allows 

for a tractable form of analysis [10], such as approximating any arbitrary continuous 

distribution using a mixture of normal densities [11]. This makes FMMs a powerful 

instrument for the modelling of multimodal, skewed, or asymmetrical data.  

In practice, when working with longitudinal data, one is often faced with many 

individual trajectories (Figure 1.1: Panel A). As an example, such data could comprise insulin 

levels over time in response to treatment for patients. If one is interested to ascertain whether 

such data exhibit different patterns of temporal development for subsets of individuals, then 

the application of longitudinal FMMs may yield latent classes of subjects following distinct 

temporal development (Figure 1.1: Panel B). This could be advantageous when considering 

therapy tailored for specific patient profiles in the age of precision medicine or seeking to 

understand the potential drivers underlying the heterogeneity of treatment response. 

FMMs’ flexibility allows them to be employed in a variety of fields to classify subjects 

or other observational units, to account for clustering, and to model unobserved heterogeneity. 

Moreover, FMMs' ability to identify hidden (process) heterogeneity is an essential component 

in the analysis of clinical and epidemiological data [12], where patients with different risks 

and/or responses to medical therapies can be identified. 
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Longitudinal FMMs are also valuable in examining the various aspects of disease 

progression by considering multiple outcomes simultaneously [13]. This may be particularly 

useful in establishing the dynamics of multifaceted diseases such as multiple sclerosis or 

Crohn’s disease. Further, as an example, the inclusion of multiple outcomes in clinical trials 

allows one to establish the existence of temporally heterogeneous effects (i.e. distinct patterns 

of responsiveness between classes) as well as whether treatment effect differs per outcome. 

1.3. A historical context of FMMs 

FMMs have a long history in modern statistical modelling. Among the earliest known 

implementations include Newcomb’s [14] use of normal mixtures to model outliers, and the 

work of Pearson [15] in which the method of moments was applied to fit normal mixtures to 

accommodate asymmetry in data. However, the method of moments approach presented a 

laborious challenge for Pearson (and statisticians until the advent of the computer age) who 

ultimately succeeded in solving a ninth-degree polynomial for a two-component mixture. Rao 

[16] was the first to suggest maximum likelihood estimation for normal mixtures. Wolfe [17] 

was the first to apply maximum likelihood estimation to mixtures of multivariate normal 

densities. The seminal work of Dempster et al. [18] formulated the expectation-maximization 

(EM) algorithm in general terms for the modelling of heterogeneous data by FMMs. Since 

then, the EM algorithm has become ubiquitous in mixture modelling applications and 

Figure 1.1: Panel A: Spaghetti plot of individual trajectories for the measured outcome (e.g. insulin levels over 
time), coloured by latent (unknown) class. Panel B: Size of latent classes and mean trajectory per latent class 
uncovered by applying longitudinal FMM. 
A.) B.) 
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literature. 

Amongst social scientists, Nagin and his collaborators were the first to suggest 

longitudinal FMMs for the clustering of trajectories [19–21]. Their objective was to evaluate, 

amongst others, Moffitt's [22] theory of the development of antisocial and criminal behaviour. 

Here, two distinct classes of delinquent individuals were proposed: a small group engaging in 

antisocial behaviour at every life stage, and a large group exhibiting antisocial behaviour only 

during adolescence. 

Following this, two separate but related methodologies of longitudinal FMMs for 

general use were presented [7], group-based trajectory models (GBTM) [23] and growth 

mixture models (GMM) [24]. Each methodology was supported by software which allowed for 

general dissemination, PROC TRAJ in SAS for GBTM [25] and Mplus for GMM [26]. The 

distinction between these methods is in the treatment of classes. GBTM assumes that within a 

latent class, all subjects follow similar within-class paths of temporal development with any 

deviation from the class average trend treated as intra-individual random variation. GMM 

assumes latent classes to contain a within-class heterogeneous set of individuals described by a 

probability distribution. In other words, with GBTM, differences between individual 

trajectories are captured by latent classes as between-class differences through the mean 

trajectory, and for GMM, individual differences in temporal development are split into 

between-class differences (the mean trajectory) and a within-class component (inter-individual 

variability captured through random effects components) [7]. Finally, covariance pattern 

growth mixture models (CPGMM) have been proposed as an alternative to GBTM and GMM. 

CPGMM relaxes GBTMs’ conditional independence assumption and unlike GMM, models the 

temporal structure and association between observations within classes without variance 

partitioning or the inclusion of subject-specific random effects [27]. 

1.4. Some challenges in the application of longitudinal FMMs 

Stemming from the comparatively easy accessibility of these models there are some drawbacks 

to their use. The relative novelty of these models combined with the fact that model fitting and 

validation requires an array of (often heuristic and/or ad hoc) decision calls between a series of 

lengthy iterative steps raise doubts and uncertainty on the part of the applied user. There is no 

one-size-fits-all approach to fitting FMMs. 
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Class enumeration (determining the number of latent classes (𝐾𝐾)) remains a difficult 

task. Statistical fit indices assist in the choice of 𝐾𝐾, but they all have inherent weaknesses since 

their accuracy in determining the true 𝐾𝐾 is highly dependent on the underlying data features. 

Thus, the question of which fit statistic is most valid remains unresolved [11]. 

The estimation of parameters for the covariance structure of longitudinal FMMs is 

challenging [28]. If a too general structure is chosen, then the model may suffer from multiple 

complications such as non-convergence and improper solutions. The latter includes models 

terminating at a local optimum on the likelihood surface, which may then fail to adequately 

capture the underlying class structure of the data. To aid model convergence, various 

constraints are often imposed on the model which may not be realistic or ideal. On the other 

hand, choosing a too restrictive covariance structure could also have unfavourable 

consequences, such as influencing: the shape and level of the growth trajectories in each class 

[29,30], the number of classes extracted [31–33] and the quality of class assignment [34]. 

To address some of these challenges, this thesis provides an exposition of popular 

longitudinal FMMs and offers some practical guidance in model selection strategies i.e., under 

what circumstances the available models (GBTM, latent class growth analysis (LCGA), GMM, 

or others) should be recommended. It will address questions about class enumeration and the 

behaviour of various fit-criteria used for this purpose. Further, the thesis will investigate what 

factors influence class extraction and how this is affected by violations of the model’s 

underlying assumptions. 

Finally, interpretational issues around the meaning of the identified latent classes do 

exist, particularly with how to adequately represent and interpret the data-driven taxonomic 

categories, i.e. as true entities (reification fallacy caution in exploratory studies [35]) or as 

properties of the data [36]. Moreover, statistical validation of the extracted classes, subsequent 

or possibly concurrent to the model selection, remains an issue, since this may greatly affect 

final findings and substantive conclusions. Although of paramount importance, this thesis will 

ultimately not focus on interpretational or validation issues. 

1.5. Aims and objectives of this thesis 

Given the value and application of model-based clustering of longitudinal data, this thesis aims 

to: 
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(1) Identify and produce an inventory of the main conceptual, theoretical, and statistical 

issues of the methods of model-based clustering for longitudinal data. This includes 

criteria for the comparison between different methods, the pros and cons of the 

methods, what researchers should be cognizant of when using each method, and the 

issue of the fallibility of statistical criteria in class enumeration, 

(2) Explore and investigate the statistical and empirical properties of longitudinal FMM 

models using real and simulated datasets, first with univariate data but then focusing 

on multivariate settings which are largely unexplored in the literature. This includes 

their application and estimation, underlying assumptions, robustness to violation of 

assumptions, limitations in their use, as well as possible further development and 

refinement, 

(3) Developing accessible codes and data visualisations to facilitate understanding and 

increase the accessibility of these modern and complex techniques to applied users. 

These are provided in R and Mplus formats, 

(4) Ultimately, we seek to provide an accessible guide for practitioners to these methods. 

1.6. Outline of the thesis 

Chapters 2-5 of this thesis can be read as self-contained articles. Each chapter covers a 

separate topic. 

Chapter 2 provides an inventory of the main conceptual, theoretical, and statistical 

issues pertaining to the model-based clustering of longitudinal data. It develops from an 

exposition of growth curve modelling to cover longitudinal FMMs with a specific focus on 

GBTM, LCGA, and GMM. Further, criteria specifically for the enumeration of classes are 

extensively discussed, including their strengths and weaknesses, when and when not they 

should be used, and the fallibility of statistical criteria in class enumeration. Statistical software 

for longitudinal FMMs is discussed and a model selection strategy is provided. This chapter 

serves as a self-contained introduction to longitudinal FMMs and strives to address the 

confusion practitioners often face when confronted with model terminology, class 

enumeration, model selection, and software options. 

Chapter 3 considers how statistical fit-criteria behaviour, specifically that of the 

Bayesian Information Criterion (BIC), sample-size adjusted BIC (ssBIC), Akaike Information 

Criterion (AIC) and scaled Entropy (sE), in terms of their fit-criteria plot could ultimately 
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guide the class enumeration process in identifying possible model misspecification. Models 

considered here include GBTM, LCGA, and GMM. The misspecification considered is that of 

within-class inter-individual covariances i.e., the presence or absence of random effects. This is 

an important question as practitioners often apply models without considering such variation 

(by using software defaults or constraining covariances to improve convergence) and we show 

the consequences thereof. The specific fit-criteria curve behaviour identified allows for 

recommendations to be offered for determining which models to apply and which fit statistic 

to use. Finally, some practical tools are presented to practitioners to assist in their model 

building routines. 

Chapter 4 is a comparative study of model performance between univariate GBTM 

and multivariate GBTM (GBMTM) when applied to univariately or multivariately generated 

data. We show how certain data conditions often encountered in practice (e.g. class separation) 

and violations of the assumptions of the underlying model drive differences in terms of class 

enumeration accuracy, subject classification (i.e. is subject assigned to the correct class), and 

class recovery (i.e. are the actual trajectory profiles and class sizes recovered). We consider 

whether the two-stage process of first fitting GBTM and then GBMTM is advised whilst 

highlighting potential differences in these models’ extraction. Predicated on these findings, 

guidelines for GBMTM fitting, including practical recommendations are provided to assist 

practitioners in their research. As no previous research has comparatively evaluated the 

performance of GBTM and GBMTM, this study provides useful research-based information 

to assist the field in better understanding these two different modelling approaches. 

Chapter 5 considers the implication of covariance misspecification in the presence of 

between-outcome correlation for multivariate longitudinal FMMs. Misspecification in the 

within-class within-outcome correlation and the time-dependency of the variance are 

considered. Models covered include GBMTM, multivariate LCGA (MLCGA), and multivariate 

covariance pattern growth mixture models (MCPGMM). This is a comparative study, 

examining the effect of misspecification under various data conditions on the class 

enumeration, subject classification, and class recovery performance of these models. 

Chapter 6 reflects on research developed from the preceding four chapters. The 

implications of the research are discussed along with their correspondence to the practical 

application of longitudinal FMMs. Some thoughts on possible future research avenues are also 

presented. Chapter 7 is a summary of each of the chapters in the thesis whilst Chapter 8 

provides an overview of the scientific and societal impacts of this research. 
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For the sake of parsimony, the online supplementary materials for Chapters 2-5 are 

not included in this thesis but these are available upon request. Where relevant, a table of 

contents giving further details of the supplementary material is provided at the end of each 

chapter.
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Abstract 

The use of finite mixture modelling (FMM) is becoming increasingly popular 

for the analysis of longitudinal repeated measures data. FMMs assist in 

identifying latent classes following similar paths of temporal development. 

This paper aims to address the confusion experienced by practitioners new to 

these methods by introducing the various available techniques, which includes 

an overview of their interrelatedness and applicability. Our focus will be on 

the commonly used model-based approaches which comprise latent class 

growth analysis (LCGA), group-based trajectory models (GBTM), and growth 

mixture modelling (GMM). We discuss criteria for model selection, highlight 

often encountered challenges and unresolved issues in model fitting, showcase 

model availability in software, and illustrate a model selection strategy using an 

applied example. 

Keywords: growth mixture model; latent class growth analysis; trajectory; 

hidden heterogeneity; repeated measures; classification 
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2.1. Introduction 

This paper compares statistical model-based approaches for uncovering latent (unobserved) 

evolutions in longitudinal data of the repeated measures type, i.e. multiple time points of 

measurements per subject [37]. These methods provide the means to evaluate individual 

variation in responses to interventions (e.g. in randomized controlled trials) as well as to test 

hypotheses of subgroups within the population (known as latent classes) following distinct 

developmental paths over time (trajectories) [38] without a priori knowledge of grouping 

variables. 

Such approaches have a direct application in life course research, in particular when 

addressing questions of whether groups of individuals exhibit different responses or 

development in a variety of behaviours, physical health, life satisfaction, and disorders [39] 

over their life course. Some recent applications include uncovering distinct trajectories of 

treatment response for adults with obsessive-compulsive disorder [40], disparate patterns of 

change over time in terms of criminogenic risks of juvenile offenders [41], divergent general 

psychopathology trajectories and their link to social outcomes [42], examining group 

differences in the link between alcohol consumption evolution and cardiovascular events [43], 

and relating distinctive cannabis use patterns among adolescents to life satisfaction, academic 

achievement and other psychoactive substance usage [44]. 

As latent evolution models, broadly referred to as longitudinal latent growth models 

(LGM), they are flexible in estimating temporal changes in one (univariate) outcome as well as 

measuring the degree of temporal interrelationships between several outcomes (multivariate 

models). These properties make these techniques useful statistical tools in addressing the 

complexity underlying the abundance of information contained in longitudinal studies. 

This paper will introduce the most popular longitudinal model-based approaches for 

latent evolution and will show how they are interrelated. Model fit and selection criteria for 

selecting the best model will be discussed. The paper will further cover software available for 

the estimation of these models by delineating their various capabilities. Finally, an empirical 

example will be provided to illustrate a detailed strategy for fitting these models. 

2.2. Types of longitudinal growth models and their interrelatedness 

There are several model-based techniques for analysing outcome development over time [45], 

in particular for longitudinal repeated measures data. They fall under the shorthand term of 
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longitudinal LGM. These approaches accommodate inter-individual variability (between-

subjects) and intra-individual (within-subjects) patterns of change over time [46,47], which are 

typically represented as time trends, time paths, growth curves or latent trajectories [46]. 

Within the family of longitudinal LGM models, the same model may be termed 

differently. This often creates confusion in literature and in practice, specifically concerning 

model commonalities and applications. For clarification, a partial glossary of these terms and 

their aliases are contained in Figure 2.1. As Figure 2.1 shows, longitudinal LGMs are divided 

into models comprising the estimation of one latent class (characterised as one population 

mean trajectory) such as growth curve models (GCM), or more than one latent class 

(represented as one mean trajectory per class) such as growth mixture models [24] (GMM), 

latent class growth analysis [48] (LCGA), and group-based trajectory models [6] (GBTM). 

Their trajectories are modelled as functions of time and represent the mean development of an 

outcome over time within the latent class. Each latent class may be thought of as a group of 

subjects sharing similar development patterns which are not immediately evident from the 

data. Single-class ordinary least squares models are excluded since they cannot handle repeated 

measures data. 

The models discussed in this paper are assumed to include only time as a within-

subject predictor and are considered in a univariate setting (one outcome). They may all be 

extended to include between-subject predictors (such as sex, age, treatment group), other 

within-subject predictors besides time (e.g. to model behavioural change as a function of major 

life events occurring during the follow-up time interval), and multiple outcomes. 

2.2.1. Growth Curve Models 

The single-class GCM models are not concerned with categorising subjects, but rather with 

modelling the relationship between explanatory variables and the development of a repeatedly 

measured outcome [49]. Therefore, they are well suited to studies concerning the relative 

contributions predictors make to explain the variability of an outcome. Conventional 

applications of a GCM assume that the sample under study is drawn from a single population 

described by a single set of parameters (e.g. means, variances and covariances) [50,51]. 
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The equation for the single trajectory of a GCM in scalar form is presented in Eq. 2.1 

in Table 2.1. A matrix formulation is provided in the Supplementary Material (SM). In the 

scalar formulation, 𝑦𝑦𝑖𝑖𝑖𝑖 is the measured outcome for subject 𝑖𝑖 at time 𝑡𝑡 = 1, … ,𝑇𝑇, and 𝑋𝑋𝑖𝑖𝑖𝑖 

denotes the value of a predictor 𝑋𝑋 for subject 𝑖𝑖 at time 𝑡𝑡. Consider for example that 𝑦𝑦𝑖𝑖𝑖𝑖  is 

observed alcohol consumption, and 𝑋𝑋𝑖𝑖𝑖𝑖 is the subject’s age at which alcohol consumption is 

measured. For our example, alcohol consumption is measured at the same age for each time 

point across subjects. Then, for equidistant values of 𝑋𝑋, 𝑋𝑋𝑖𝑖𝑖𝑖 may be coded by 𝑡𝑡 itself i.e. 𝑋𝑋𝑖𝑖𝑖𝑖 =

𝑡𝑡 (𝑥𝑥-axis of Figure 2.2 (a)) [43]. For simplicity, we assume that the outcome trend across time, 

as represented by the effect of 𝑋𝑋 on 𝑦𝑦, follows a second-order polynomial in time, but this can 

either be extended to higher orders or constrained to a linear trend. 𝛽𝛽0,𝛽𝛽1 and 𝛽𝛽2 are fixed 

effects, which quantify the population average growth curve i.e. alcohol consumption averaged 

over all individuals across time. This is represented by the single thick line in Figure 2.2 (a). 

𝑏𝑏0𝑖𝑖 , 𝑏𝑏1𝑖𝑖 and 𝑏𝑏2𝑖𝑖 are random effects, which allow for individual differences in alcohol 

consumption from the average time trend (inter-individual variability). 𝜖𝜖𝑖𝑖𝑖𝑖 represents the errors 

(intra-individual random variability). Total individual differences (the sum of random effects 

and error) are represented by the subject-specific lines’ (thin lines) deviation from the average 

trend in Figure 2.2 (a). 

Figure 2.1: Interrelatedness of longitudinal LGM models. 
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The random effects and errors are assumed to be normally distributed with zero 

mean and have their own covariance structure. Specifically, each of the three random effects 

has its own variance, and so, for instance, individuals may differ in intercept and linear change, 

but much less so in the quadratic deviation from linearity (i.e. 𝜎𝜎𝑏𝑏2
2  may be small compared to 

𝜎𝜎𝑏𝑏0
2  and 𝜎𝜎𝑏𝑏1

2 ). Also, each pair of random effects can have its own covariance. The error 

variance can depend on time (e.g. increase over time), and successive errors can be correlated, 

for instance by a first-order autoregressive AR(1) structure in which each error is a function of 

the preceding error. We refer the reader to Verbeek (2012) for more details on the various 

types of autocorrelation. 

Table 2.1: Model trajectory specification [30,53]. 
General: 
𝑘𝑘 = 1, … ,𝐾𝐾 is the class 
𝑡𝑡 = 1, . . ,𝑇𝑇 is the time point 
𝑖𝑖 = 1, … ,𝑛𝑛 is the subject 
𝑋𝑋𝑖𝑖𝑖𝑖 = predictor value of subject 𝑖𝑖 at time point 𝑡𝑡 
Model Trajectory Specification Assumptions 

GCM 𝑦𝑦𝑖𝑖𝑖𝑖 = (𝛽𝛽0 + 𝑏𝑏0𝑖𝑖) + (𝛽𝛽1 + 𝑏𝑏1𝑖𝑖)𝑋𝑋𝑖𝑖𝑖𝑖 + (𝛽𝛽2 + 𝑏𝑏2𝑖𝑖)𝑋𝑋𝑖𝑖𝑖𝑖2 + 𝜖𝜖𝑖𝑖𝑖𝑖   (2.1) 

𝑏𝑏𝑗𝑗𝑗𝑗~𝑁𝑁�0,𝜎𝜎𝑏𝑏𝑗𝑗
2 � , 𝑗𝑗 = 0,1,2 

𝜖𝜖𝑖𝑖𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝜖𝜖𝑡𝑡
2 � 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑏𝑏𝑗𝑗𝑗𝑗 ,𝑏𝑏ℎ𝑖𝑖� ≠ 0, 𝑗𝑗 ≠ ℎ,ℎ = 0,1,2 
 

LCGA 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 = 𝛽𝛽0𝑘𝑘 + 𝛽𝛽1𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖2 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘     (2.2) 𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘~𝑁𝑁(0,𝜎𝜎𝜖𝜖𝑘𝑘𝑘𝑘
2 ) 

GMM 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 = (𝛽𝛽0𝑘𝑘 + 𝑏𝑏0𝑖𝑖𝑘𝑘 ) + (𝛽𝛽1𝑘𝑘+𝑏𝑏1𝑖𝑖𝑘𝑘 )𝑋𝑋𝑖𝑖𝑖𝑖 + (𝛽𝛽2𝑘𝑘 + 𝑏𝑏2𝑖𝑖𝑘𝑘 )𝑋𝑋𝑖𝑖𝑖𝑖2 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘   (2.3) 
𝑏𝑏𝑗𝑗𝑗𝑗𝑘𝑘~𝑁𝑁�0,𝜎𝜎𝑏𝑏𝑗𝑗𝑘𝑘

2 � , 𝑗𝑗 = 0,1,2 

𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘~𝑁𝑁�0,𝜎𝜎𝜖𝜖𝑘𝑘𝑘𝑘
2 � 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑏𝑏𝑗𝑗𝑗𝑗𝑘𝑘 ,𝑏𝑏ℎ𝑖𝑖𝑘𝑘 � ≠ 0, 𝑗𝑗 ≠ ℎ, ℎ = 0,1,2 

 

A GCM may be extended to examine differences in outcome development between 

known subgroups, for instance between males and females. As an example, a GCM may 

differentiate linear trends between sexes by adding sex and a sex by time interaction term to 

the model, 

There are then separate growth trajectories for each level of sex. For example, if 

𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 0 for males and 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 1 for females, then 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑖𝑖  is the average growth curve for 

males, and (𝛽𝛽0 + 𝛽𝛽2) + (𝛽𝛽1 + 𝛽𝛽3)𝑋𝑋𝑖𝑖𝑖𝑖 is the average growth curve for females. Individual 

deviations from the sex-specific average trend are again captured through the random effects 

(𝑏𝑏0𝑖𝑖  and 𝑏𝑏1𝑖𝑖). Applications of these extended GCMs require a priori knowledge of the number 

of subgroups and of the subgroup membership of each study participant [50]. Since GCM is 

 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 + 𝛽𝛽3𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑏𝑏0𝑖𝑖 + 𝑏𝑏1𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (2.4) 
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not designed to uncover latent classes, it will not be considered further in the remainder of this 

study. 

2.2.2. Longitudinal FMMs 

The identification of multiple latent classes of outcome development is possible using multi-

class longitudinal models which are collectively known as longitudinal finite mixture models 

(FMMs) [11]. These models assume that the population under study is composed of distinct, 

latent subgroups or classes [54]. These classes represent a heterogeneous population in the 

sense that predictors (e.g. time) may act differently on the outcome per class, where classes 

need not be defined a priori in terms of some observed variable such as sex. However, a FMM 

assumes that the number of classes is known but this is often difficult to deduce from the data 

and various methods exist to estimate the appropriate number of classes (See Section 2.3). 

Longitudinal FMMs have the distinct feature of being able to capture the concealed 

variation in development patterns between groups (hidden heterogeneity) without the explicit 

need of additional predictors besides time. This is done through the inclusion of 𝐾𝐾 latent 

classes (represented as latent categorical variables), each with its own mathematical model for 

the trajectory. The assignment of individuals to classes is then based on the degree of similarity 

of developmental courses between individuals [55]. For this reason, FMMs have been 

Figure 2.2: An illustration of GCM and GMM/LCGA approaches. Thin lines correspond to subject trajectories, 
thick lines correspond to the average trend (GCM) or the average trend in each class (GMM/LCGA). 
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frequently used in exploratory contexts, in which researchers are unaware of the underlying 

drivers of distinct developmental trajectories or in cases where a defining characteristic 

separating groups could not be measured (e.g. undiscovered genotype, or drug use). In contrast 

to GCM and the methods introduced in Mund & Nestler (2019), FMMs provide for the post hoc 

identification and description of class differences in change [50]. Furthermore, FMMs extend 

these methods by combining the use of latent classes with random effects to account for both 

individual and class differences in development across a heterogeneous population [46,47]. 

Typical longitudinal FMM models include; growth mixture modelling [24] (GMM), 

latent class growth analysis [6] (LCGA), mixture latent transition analysis (LTA) [57] (also 

known as mixture hidden Markov models), and survival mixture analysis (SMA) [58] amongst 

others [47,48]. They all differ according to their underlying assumptions. 

Only GMM and LCGA will be discussed in more depth in the next Section due to 

space limitations and since these appear to be more popular longitudinal mixture approaches 

according to a recent review [59]. Mixture LTA is also excluded as it introduces an additional 

layer of complexity in the form of discrete time-invariant latent states. The primary objective of 

mixture LTA is to study the probability of transitioning from one state to another at different 

time points and to uncover heterogeneous latent classes characterised by different transition 

probabilities for these latent states [51,60,61]. An example might include studying the 

probability of transitioning from a healthy to an unhealthy state (of some health outcome e.g. 

stroke) for different latent classes distinguished by individuals showing different alcohol 

consumption patterns over time. Mixture LTA may be estimated in software including Mplus 

and Latent GOLD. SMA is excluded since it models the waiting time until an event (e.g. death) 

occurs, whereas this review focuses on models for repeated outcome measures at fixed time 

points. 

2.2.2.1. Latent class growth analysis (LCGA) 

Equation 2.2 shows the class-specific equation for the trajectory in an LCGA. The superscript 

𝑘𝑘 shows that the various parameters are class-specific. They are the same for all subjects within 

a class, who are assumed to follow the estimated mean trajectory per class, but are different 

between classes. For instance, one class may have a linear (or increasing) mean growth curve, 

whereas another class has a quadratic (or decreasing) growth curve. 
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The LCGA has no random effects to capture individual differences in a continuous 

way. Instead, it allows for discrete individual differences by letting fixed effects (given by the 

trend) differ between classes [62]. This is represented by the bold lines in Figure 2.2 (b). 

Individual deviations from the class-specific trend are treated as residual error and corresponds 

to the distance from the class-specific bold lines to the individual thin lines of subjects assigned 

to that class (Figure 2.2 (b)). Furthermore, the error variance may vary between time points as 

well as between classes. The group-based trajectory model (GBTM) is a popular special case of 

the LCGA in which the error variance is assumed to be the same for all classes and all time 

points [6,19,p.337]. 

As LCGA exhibits no between-subject variability within a class, far fewer parameters 

need to be estimated. Therefore, it may be useful in cases of smaller sample sizes or in the 

presence of more complex models that fail to converge, produce out of range estimates, or it 

may be used as an initial modelling step before specifying a GMM [63]. 

2.2.2.2. Growth mixture models (GMM) 

The class-specific trajectory for a GMM is represented in Eq. 2.3, which is an amalgamation of 

Eqs. 2.1 and 2.2. This allows for multiple latent classes with each class having its own GCM. 

The average class-specific time trend is again given by the fixed effects as is represented by the 

bold lines in Figure 2.2 (b). Random effects are used to capture individual differences in 

trajectories within a class [51], since the outcome at the start (the intercept) and the rate of 

change (the slope) may vary between individuals within a class. The latter distinguishes it from 

the LCGA. The distance between the class-specific average trend in Figure 2.2 (b) and the 

thin individual lines for individuals belonging to that class, is now modelled as the sum of the 

random effect and random error instead of just random error as in the LCGA. Furthermore, 

the random effects and errors follow the same assumptions as in GCM, but now per latent 

class. 

2.2.2.3. More general formulation of LCGA and GMM 

As longitudinal FMMs, GMM and LCGA comprise a combination of two or more probability 

functions. A longitudinal FMM for latent evolutions states that for 𝐾𝐾 latent classes, the 

marginal probability distribution of a randomly chosen trajectory is modelled as [6], 
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where 𝒚𝒚𝑖𝑖 = (𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑖𝑖)𝑡𝑡𝑡𝑡 is the column vector of measured outcomes (e.g. alcohol 

consumption) for subject 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛, at time 𝑡𝑡 = 1, … ,𝑇𝑇, and 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) is the conditional 

distribution of the longitudinal sequence, 𝒚𝒚𝑖𝑖 , given that individual 𝑖𝑖 is in latent class 𝑘𝑘. In our 

paper, this is uniquely defined by the trajectory specification for each class. 𝜋𝜋𝑘𝑘 is the class 

membership probability (also referred to as mixing weight, class size or mixing proportion in 

the literature) such that 𝜋𝜋𝑘𝑘 ≥ 0, ∑ 𝜋𝜋𝑘𝑘 = 1𝐾𝐾
𝑘𝑘=1 , and 𝐾𝐾 > 1. Equation 2.5 shows that 𝑃𝑃(𝒚𝒚𝑖𝑖) is 

the sum over a finite number of discrete classes, each with its own trajectory and class size. 

The combination of the properties of the 𝐾𝐾 individual conditional distribution 

functions (i.e. the 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) on the right side of Eq. 2.5) with the class membership probabilities 

(the 𝜋𝜋𝑘𝑘 on the right side of Eq. 2.5) allows the mixture model to approximate any arbitrary 

marginal distribution (the 𝑃𝑃(𝒚𝒚𝑖𝑖) on the left side of Eq. 2.5). It is this property which makes 

FMMs a powerful and flexible tool for the modelling of complex data [11], such as highly 

asymmetrical and multimodal data. 

In the longitudinal context, with a repeatedly measured continuous outcome, 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) 

could be the multivariate normal (MVN) density function (in line with the model assumptions 

in Eqs. 2.1 and 2.3 in Table 2.1). So, for subject 𝑖𝑖 in class 𝑘𝑘, 

with 𝒚𝒚𝑖𝑖𝑘𝑘 the vector of 𝑇𝑇 succesive repeated measures (alcohol consumption at each time point) 

of subject 𝑖𝑖 in latent class 𝑘𝑘, and 𝝁𝝁𝑘𝑘  and 𝚺𝚺𝑘𝑘 the mean vector (the average alcohol consumption 

at each time point) and covariance matrix (the variances and covariance of alcohol 

consumption across time points) for class 𝑘𝑘 respectively [64]. For this model, the GCM of Eq. 

2.1 is assumed to hold per class. 

In GMM models, the 𝚺𝚺𝑘𝑘  consists of two sources of variation: inter-individual 

variation (given by random intercept and slope, the covariance matrix 𝐃𝐃𝒌𝒌) and intra-individual 

variation (given by the errors, which may be independent or autocorrelated, the 𝐑𝐑𝒌𝒌 matrix). In 

a GMM, the 𝐃𝐃𝑘𝑘 matrix may be set equal or allowed to vary freely between groups [30]. In 

GBTM and LCGA, the 𝐃𝐃𝑘𝑘 matrix is zero (so that 𝚺𝚺𝑘𝑘 = 𝐑𝐑𝑘𝑘) and the 𝐑𝐑𝑘𝑘matrix is diagonal. 

This assumption about 𝐃𝐃𝑘𝑘 implies the absence of random effects. The assumption about 𝐑𝐑𝑘𝑘 

 𝑃𝑃(𝒚𝒚𝑖𝑖) = �𝜋𝜋𝑘𝑘𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖

𝐾𝐾

𝑘𝑘=1

),  
(2.5) 

 𝒚𝒚𝑖𝑖𝑘𝑘~𝑀𝑀𝑀𝑀𝑀𝑀(𝝁𝝁𝑘𝑘,𝚺𝚺𝑘𝑘) (2.6) 



2.2. Types of longitudinal growth models and their interrelatedness 

21 

 
 

 

implies absence of autocorrelation. Imposing the further restriction on the diagonal 𝐑𝐑𝒌𝒌 that 

the residual variance is the same for all time points and all classes reduces the LCGA to a 

GBTM [6,19,p.337]. Possible specifications for the 𝚺𝚺𝑘𝑘and 𝐑𝐑𝒌𝒌 matrices are presented in the 

SM. 

2.2.2.4. Extension beyond continuous outcomes and a polynomial trend 

The MVN assumption on 𝒚𝒚𝑖𝑖 in Eq 2.6 may be relaxed to accommodate outcomes that are not 

continuous. 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) may then take on various distributional forms, such as Poisson (for count 

data) and Binary Logit (for binary data) as has been applied in GMM [5] and LCGA [6] studies. 

For count data, the conditional distribution of the realization 𝑦𝑦𝑖𝑖𝑖𝑖 (where 𝑦𝑦𝑖𝑖𝑖𝑖 =

0,1,2, … ) in class 𝑘𝑘 follows the Poisson distribution, 

In a GMM, the trajectory for a quadratic time effect is then defined by ln(𝜆𝜆𝑘𝑘𝑘𝑘) = (𝛽𝛽0𝑘𝑘 +

𝑏𝑏0𝑖𝑖𝑘𝑘 ) + (𝛽𝛽1𝑘𝑘+𝑏𝑏1𝑖𝑖𝑘𝑘 )𝑋𝑋𝑖𝑖𝑖𝑖 + (𝛽𝛽2𝑘𝑘 + 𝑏𝑏2𝑖𝑖𝑘𝑘 )𝑋𝑋𝑖𝑖𝑖𝑖2 , where 𝜆𝜆𝑘𝑘𝑘𝑘 is the mean rate of occurrence of the event 

for all individuals in class 𝑘𝑘 at time 𝑡𝑡. 

For binary data, 𝑝𝑝𝑘𝑘(𝑦𝑦𝑖𝑖𝑖𝑖 = 1) may be described by the logit model: 

An alternative for binary data is the probit model, which is almost empirically indistinguishable 

from the logit model [65]. However, the logit is often chosen due to having a closed-form 

equation [6]. 

An alternative approach to modelling the outcome trend as a polynomial function of 

time is piecewise regression (see [66]) which we briefly address here for a continuous outcome. 

An example is a linear piecewise regression model. In the case of two nodes at 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑐𝑐1 and 

𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑐𝑐2, with 𝑐𝑐1 < 𝑐𝑐2,the trajectory is modelled as: 

where 𝐷𝐷1 is a dummy that is 0 for 𝑋𝑋𝑖𝑖𝑖𝑖 < 𝑐𝑐1 and 1 for 𝑋𝑋𝑖𝑖𝑖𝑖 > 𝑐𝑐1 and 𝐷𝐷2 is a dummy that is 0 if 

𝑋𝑋𝑖𝑖𝑖𝑖 < 𝑐𝑐2 and 1 if 𝑋𝑋𝑖𝑖𝑖𝑖 > 𝑐𝑐2. Such an approach is useful to test critical points along the 

trajectory (in Eq. 2.9 where 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑐𝑐1 and 𝑐𝑐2) in which the relationship between the predictor 

(time) and the measured outcome (alcohol consumption) abruptly changes. 

 𝑝𝑝𝑘𝑘(𝑦𝑦𝑖𝑖𝑖𝑖) =
𝜆𝜆𝑘𝑘𝑘𝑘
𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒−𝜆𝜆𝑘𝑘𝑘𝑘
𝑦𝑦𝑖𝑖𝑖𝑖!

. 
(2.7) 

 𝑝𝑝𝑘𝑘(𝑦𝑦𝑖𝑖𝑖𝑖 = 1) =
exp�(𝛽𝛽0𝑘𝑘 + 𝑏𝑏0𝑖𝑖𝑘𝑘 ) + (𝛽𝛽1𝑘𝑘+𝑏𝑏1𝑖𝑖𝑘𝑘 )𝑋𝑋𝑖𝑖𝑖𝑖 + (𝛽𝛽2𝑘𝑘 + 𝑏𝑏2𝑖𝑖𝑘𝑘 )𝑋𝑋𝑖𝑖𝑖𝑖2�

1 + exp((𝛽𝛽0𝑘𝑘 + 𝑏𝑏0𝑖𝑖𝑘𝑘 ) + (𝛽𝛽1𝑘𝑘+𝑏𝑏1𝑖𝑖𝑘𝑘 )𝑋𝑋𝑖𝑖𝑖𝑖 + (𝛽𝛽2𝑘𝑘 + 𝑏𝑏2𝑖𝑖𝑘𝑘 )𝑋𝑋𝑖𝑖𝑖𝑖2)
. 

(2.8) 

 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 = (𝛽𝛽0𝑘𝑘 + 𝑏𝑏0𝑖𝑖𝑘𝑘 ) + (𝛽𝛽1𝑘𝑘+𝑏𝑏1𝑖𝑖𝑘𝑘 )𝑋𝑋𝑖𝑖𝑖𝑖+(𝛽𝛽2𝑘𝑘+𝑏𝑏2𝑖𝑖𝑘𝑘 )(𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑐𝑐1)𝐷𝐷1+(𝛽𝛽3𝑘𝑘+𝑏𝑏3𝑖𝑖𝑘𝑘 )(𝑋𝑋𝑖𝑖𝑖𝑖
− 𝑐𝑐2)𝐷𝐷2 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘 . 

(2.9) 
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2.3. Criteria for model selection 

In this Section, we will focus on the criteria for longitudinal FMMs’ model selection. Although 

no automated process exists for the often lengthy and iterative model fitting procedure, a two-

step procedure has been recommended [6]. The first step entails selecting the number of latent 

classes, 𝐾𝐾, for a fixed trajectory specification. This step is often referred to as class 

enumeration. The second step involves refining the polynomial order of the time effect (or 

other smoothing functions e.g. B-splines) that best describes the shape of the latent trajectories 

for a fixed 𝐾𝐾 as determined in step one. 

An innate problem of class enumeration for mixture models is that models 

comprising different numbers of classes are, in general, not nested. Consequently, standard 

likelihood ratio tests to test models against each other cannot be conducted. Nonetheless, a 

plethora of fit indices, including modified likelihood ratio tests, exist to assist in the choice of 

𝐾𝐾, which are discussed shortly. However, all current indices suffer from inherent weaknesses 

since their accuracy in determining the true number of latent classes largely depends on the 

underlying data features (e.g. such as level of class separation i.e. how distinct classes are from 

each other, sample size, class size). For this reason, the question of which one is the most valid 

remains largely unresolved [11,p.175,67]. Finally, these model fit statistics may be used in 

conjunction with Wald tests and likelihood ratio tests to determine the final polynomial order. 

2.3.1. Statistical fit indices for determining K 

During class enumeration, it is recommended to determine the best fitting 𝐾𝐾 for which all the 

classes are still distinct in terms of their trajectories as given by 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) in Eq. 2.5, and all their 

associated class probabilities (mixing weights), 𝜋𝜋𝑘𝑘 , are non-zero [11,p.177]. 

Finding the best 𝐾𝐾 is aided by using statistical fit indices. These indices generally fall 

into three broad categories: (a) log-likelihood-based statistics, (b) statistics based on the 

classification of individuals, and (c) statistics based on distributional properties of the data. 

Table 2.2 [68–70] presents an overview of the most frequently cited of these fit indices which 

will be discussed in detail. 
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Table 2.2: Typical statistical criteria used for class enumeration. 

Type Measure Equation Model selection(*) 

L
og

-L
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St
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AIC −2 log[ 𝐿𝐿(𝐾𝐾)] + 2[𝑚𝑚(𝐾𝐾)] Smallest value 
BIC −2 log[𝐿𝐿(𝐾𝐾)] + log(𝑛𝑛)[𝑚𝑚(𝐾𝐾)] Smallest value 

CAIC −2 log[𝐿𝐿(𝐾𝐾)] + (log(𝑛𝑛) + 1)[𝑚𝑚(𝐾𝐾)] Smallest value 

ssBIC −2 log[𝐿𝐿(𝐾𝐾)] + log �
𝑛𝑛 + 2

24
� [𝑚𝑚(𝐾𝐾)] Smallest value 

VLMR 

 

1
𝑛𝑛
� log�

𝑃𝑃��𝒚𝒚𝑖𝑖|𝑚𝑚(𝐾𝐾1)�
𝑃𝑃��𝒚𝒚𝑖𝑖|𝑚𝑚(𝐾𝐾1−1)��

2𝑛𝑛

𝑖𝑖=1

 

𝐻𝐻0:𝐾𝐾 = 𝐾𝐾1 − 1 
𝐻𝐻1:𝐾𝐾 = 𝐾𝐾1 
If likelihood ratio 𝑝𝑝 ≤ 0.05, then 
choose 𝐾𝐾1, else choose 𝐾𝐾1 − 1 

aLMR 

 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

1 + ([𝑚𝑚(𝐾𝐾1 − 1) −𝑚𝑚(𝐾𝐾1)] 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛))−1 

 

𝐻𝐻0:𝐾𝐾 = 𝐾𝐾1 − 1 
𝐻𝐻1:𝐾𝐾 = 𝐾𝐾1 
If likelihood ratio 𝑝𝑝 ≤ 0.05, then 
choose 𝐾𝐾1, else choose 𝐾𝐾1 − 1 

BLRT Bootstrapped: 
𝐿𝐿𝐿𝐿 = −2(log[𝐿𝐿(𝐾𝐾1 − 1)]− log[𝐿𝐿(𝐾𝐾1)]) 

𝐻𝐻0:𝐾𝐾 = 𝐾𝐾1 − 1 
𝐻𝐻1:𝐾𝐾 = 𝐾𝐾1 
If bootstrapped 𝑝𝑝 ≤ 0.05, then 
choose 𝐾𝐾1, else choose 𝐾𝐾1 − 1 

C
la

ss
ifi

ca
tio

n 
st

at
is

tic
s 

sE 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐾𝐾) = 1 −
𝐸𝐸(𝐾𝐾)

𝑛𝑛 log(𝐾𝐾)
 

 
Largest 

NEC 𝑁𝑁𝑁𝑁𝑁𝑁(𝐾𝐾) =
𝐸𝐸(𝐾𝐾)

𝐿𝐿𝐿𝐿(𝐾𝐾) − 𝐿𝐿𝐿𝐿(1)
 Smallest 

APPA 

Defined per class: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
1
𝑛𝑛𝑘𝑘
�𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

𝑛𝑛𝑘𝑘

𝑖𝑖=1

 

where 𝑛𝑛𝑘𝑘 = number of individuals assigned to class 
𝑘𝑘, and sum only the respective 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 of subjects 
assigned to class 𝑘𝑘. Individual 𝑖𝑖 is assigned to class 
𝑘𝑘 if 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is larger than that person’s 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 for any 
class 𝑗𝑗 other than 𝑘𝑘. 

Values closer to 1 indicate a good 
fit. Usual acceptable threshold >0.7 
for all classes 

OCC 

 

Defined per class: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑘𝑘 =

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘
�1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘�
�

𝜋𝜋�𝑘𝑘
(1 − 𝜋𝜋�𝑘𝑘)�

 
Higher values (preferably >5) for all 
classes 

CLC 𝐶𝐶𝐶𝐶𝐶𝐶 = −2 log𝐿𝐿(𝐾𝐾) + 2𝐸𝐸(𝐾𝐾) 
 Smallest 

ICL-
BIC 

ICL-BIC = −2 log 𝐿𝐿 (𝐾𝐾) + log(𝑛𝑛)𝑚𝑚(𝐾𝐾)
+ 2𝐸𝐸(𝐾𝐾) 

Smallest 

D
is
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ut
io

na
l 

st
at

is
tic

s 

MVS 
MVK  𝐻𝐻0:𝐾𝐾 class model 

𝐻𝐻1:Not 𝐾𝐾 class model 
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2.3.1.1. Log-likelihood criteria 

The log-likelihood information criteria (LLIC) statistics have the general form [71], 

where 𝐿𝐿(𝐾𝐾) is the maximum likelihood of the data for a model with 𝐾𝐾 classes, 𝑛𝑛 is the sample 

size, 𝑎𝑎(𝑛𝑛) is a function of the sample size, and 𝑚𝑚(𝐾𝐾) is the number of independent 

parameters in the model with 𝐾𝐾 classes. Smaller values of Eq. 2.10 correspond with better 

models, and 𝑎𝑎(𝑛𝑛)𝑚𝑚(𝐾𝐾) is a penalty for lack of model parsimony. A better fitting model is one 

for which the increase in model fit, as expressed by the decrease in −2log [𝐿𝐿(𝐾𝐾)], outweighs 

the penalty of increased model complexity, as expressed by the number of unknown 

parameters. 

All LLIC statistics have a common form but differ in the calculation of the penalty 

statistic. The Bayesian Information Criterion (BIC) favours more parsimonious models relative 

to the Akaike Information Criterion (AIC). The AIC is not asymptotically optimal since the 

probability of choosing the correct number of classes does not approach 1 as 𝑛𝑛 approaches 

infinity [69]. To address this drawback, the Consistent Akaike Information Criterion (CAIC) 

was proposed, which favours parsimonious models slightly more than the BIC given the 

addition of 1 to the penalty term. The sample-size adjusted BIC’s (ssBIC) penalty term is not 

as harsh as the BIC’s and may be beneficial in the case of small sample sizes or many 

parameters. It is useful to note that the ordering of the severity of the penalty term of the 

LLIC for 𝑛𝑛 < 176 is ssBIC < AIC < BIC < CAIC, and for 𝑛𝑛 ≥ 176 is AIC < ssBIC <

BIC < CAIC. Simulation results show that the AIC has a tendency to overestimate the true 

number of components in a mixture relative to the other three information criteria (BIC, 

ssBIC, CAIC) with the BIC and CAIC tending to underestimate the number of components 

[68]. 

N
ot

es
 

*: Not all software defines fit statistics in the same way, which 
may lead to a different value for model selection e.g. in Proc traj 
select largest BIC 
𝐾𝐾: number of classes 
𝐿𝐿(𝐾𝐾),𝐿𝐿(𝐾𝐾1 − 1), 𝐿𝐿(𝐾𝐾1) : Maximum likelihood of 𝐾𝐾-class, null 
and alternative model respectively 
𝑚𝑚(𝐾𝐾),𝑚𝑚(𝐾𝐾1 − 1),𝑚𝑚(𝐾𝐾1): Number of parameters of 𝐾𝐾-class, 
null and alternative model respectively 

𝐿𝐿𝐿𝐿(𝐾𝐾),𝐿𝐿𝐿𝐿(1): log-likelihood of 𝐾𝐾 
and one-class model 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖: posterior probability of 
subject 𝑖𝑖 for class 𝑘𝑘 
𝜋𝜋�𝑘𝑘: estimated proportion of 
population in class 𝑘𝑘 
𝐸𝐸(𝐾𝐾): Entropy of 𝐾𝐾-class model 
log(𝑥𝑥) :the natural logarithm of 𝑥𝑥 
𝑛𝑛: sample size 

 −2 log[ 𝐿𝐿(𝐾𝐾)] + 𝑎𝑎(𝑛𝑛)𝑚𝑚(𝐾𝐾) (2.10) 
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The Bayes Factor [72] (BF) is a criterion which may be used to compare the 

magnitude of change in the BIC between any two models. It is the ratio of the likelihood of 

the data under the two models [11,p.210,73], 

where 𝐾𝐾0 and 𝐾𝐾1 are the null and alternative model, respectively. A value greater than one 

would suggest that the data is more likely given the alternative model. It has been shown that 

the BF is asymptotically equal to 𝐵𝐵𝐵𝐵10 = exp(∆𝐵𝐵𝐵𝐵𝐵𝐵01 /2) [73,p.796,804,74–76], where 

∆𝐵𝐵𝐵𝐵𝐵𝐵01 = 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾0) − 𝐵𝐵𝐵𝐵𝐶𝐶(𝐾𝐾1). A value of 𝐵𝐵𝐵𝐵10 greater than 10 is cited as a reasonable 

standard for strong evidence in favour of the alternative model [77]. 

The Vuong-Lo-Mendell-Rubin test (VLMR) is a modified likelihood ratio test (LRT) 

[78]. It seeks to address distributional assumption violations of conventional LRTs in cases 

where the difference statistic is not chi-square distributed when comparing non-nested 𝐾𝐾1 class 

to 𝐾𝐾1 − 1 class mixture models [79]. The VLMR test seeks to circumvent these violations by 

analytically deriving the appropriate distribution of the difference between the likelihoods of 

these non-nested models. The asymptotic distribution of the VLMR test statistic is that of a 

weighted sum of 𝑚𝑚(𝐾𝐾1 − 1) + 𝑚𝑚(𝐾𝐾1) independent chi-square random variables. However, in 

simulation studies, the VLMR showed inflated Type I error rates, particularly in small samples, 

and the adjusted VLMR (aLMR, known as the Lo-Mendell-Rubin adjusted LRT test) was 

proposed to address this by correcting for sample size and the number of estimated parameters 

[78]. Moreover, the VLMR and aLMR have not escaped scrutiny as their original proof has 

been shown to contain mathematical errors [80]. Nevertheless, they appear to work well in 

detecting homoscedastic (equal variance across classes) normal mixtures [78]. 

The bootstrap likelihood ratio test (BLRT) is a parametric bootstrap alternative 

approach to estimate the distribution of the LRT statistic [81]. The BLRT addresses 

distributional issues with the LRT [11,p.186] which has no closed-form distribution under 

mixture models [80] and seeks to address the shortcomings of the VLMR and aLMR tests. A 

bootstrap 𝑝𝑝-value is obtained and is used to test the null hypothesis of a 𝐾𝐾1 − 1 class model 

against the alternative hypothesis of a 𝐾𝐾1 class model. Violation of the multivariate normality 

assumption under the BLRT was shown to lead to class over-extraction [67]. However, studies 

show that with complex growth trajectory shapes and large sample size conditions, the BLRT 

tends to outperform other likelihood-based enumeration indexes [67,82], but this needs to be 

 𝐵𝐵𝐵𝐵10 =
𝑃𝑃(𝐲𝐲|𝐾𝐾1)
𝑃𝑃(𝐲𝐲|𝐾𝐾0)

 
(2.11) 
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balanced against its computational intensity. It is recommended to first select a plausible subset 

of models using the BIC and VLMR before refining the selection using the BLRT [67]. 

Of these fit statistics considered, the BIC tends to be the most frequently used in 

practice and is widely available in commercial software packages. 

2.3.1.2. Classification-based criteria 

Classification statistics based on the classification maximum likelihood are complementary to 

the log-likelihood statistics [83]. They use Entropy, 𝐸𝐸(𝐾𝐾), which is a measure of classification 

uncertainty in class assignment, as a penalty term in ascertaining model fit. In formula, 

 𝐸𝐸(𝐾𝐾) = −��𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 log[𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖]
𝑛𝑛

𝑖𝑖=1

𝐾𝐾

𝑘𝑘=1

≥ 0 
(2.12) 

where higher values for 𝐸𝐸(𝐾𝐾) signify greater classification uncertainty, and 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is the 

posterior probability of subject 𝑖𝑖 belonging to class 𝑘𝑘 given the data. This, in turn, is obtained 

by applying Bayes’ law, 

 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝑘𝑘|𝒚𝒚𝑖𝑖) =
𝜋𝜋𝑘𝑘�𝑃𝑃𝑘𝑘�(𝒚𝒚𝑖𝑖)

∑ 𝜋𝜋ℎ�𝑃𝑃ℎ�(𝒚𝒚𝑖𝑖)𝐾𝐾
ℎ=1

   
(2.13) 

where 𝑃𝑃𝑘𝑘�(𝒚𝒚𝑖𝑖) is the estimated probability of observing the data if 𝑖𝑖 is a member of class 𝑘𝑘. 𝜋𝜋𝑘𝑘�  

is the estimated proportion of the population in class 𝑘𝑘 [6] (where class membership follows a 

multinomial distribution) with the constraint that ∑ 𝜋𝜋𝑘𝑘� = 1𝐾𝐾
𝑘𝑘=1 . 

In mixture modelling, individuals are customarily assigned to classes with the highest 

posterior probability (𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖). Posterior probabilities are also used to assess model fit. If the 

posterior probability for every individual approaches 1 for one class and 0 for all other classes 

(signifying high classification confidence) then 𝐸𝐸(𝐾𝐾) approaches 0. In the case of estimated 

classes being distinct and well-defined, then each individual will have a single large posterior 

probability. Solutions showing unambiguous classification from posterior probabilities (e.g. 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 > 0.80) are posited to represent better models [83]. 

It must be noted that 𝐸𝐸(𝐾𝐾) cannot be used directly to evaluate the number of classes 

in an FMM, since 𝐸𝐸(𝐾𝐾) ≥ 𝐸𝐸(1) = 0 for any 𝐾𝐾 > 1 and 𝐸𝐸(𝐾𝐾) is an increasing function of 𝐾𝐾 

[83]. This renders 𝐸𝐸(𝐾𝐾) uncomparable across different 𝐾𝐾, since by definition 𝐸𝐸(𝐾𝐾 + 1) >

𝐸𝐸(𝐾𝐾). To address the shortcomings of 𝐸𝐸(𝐾𝐾) for a 𝐾𝐾 > 1 component model, the scaled 

Entropy (sE) and normalized entropy criterion (NEC) were introduced. The sE rescales 𝐸𝐸(𝐾𝐾) 
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to be bounded by 0 and 1, where higher values of sE designate better classification [84]. This 

allows for direct comparisons between models. The NEC is the ratio of the classification 

uncertainty in class assignment (expressed by the numerator of the NEC in Table 2.2) relative 

to the change in the log-likelihood between models (expressed by the denominator of the 

NEC). It has the advantage of being comparable across non-nested models but has the 

drawback that when 𝐾𝐾 = 1, 𝑁𝑁𝑁𝑁𝑁𝑁(1) is not defined. Therefore, it cannot be used to compare 

one class with more than one-class solutions, in which case other fit statistics should be 

considered. Smaller 𝑁𝑁𝑁𝑁𝑁𝑁(𝐾𝐾) values are indicative of a more precise classification of 

individuals (since 𝐸𝐸(𝐾𝐾) approaches 0). 

A study [55] recommends using threshold values for Entropy as a first step in 

informing the choice of fit statistic for model selection. Under conditions of high Entropy (low 

scaled Entropy (< 0.5), high NEC) the ssBIC and BLRT were found to outperform the BIC 

and CAIC. Under low Entropy (high scaled Entropy (> 0.8), low NEC) conditions, the 

CAIC, and BIC performed better than the ssBIC and BLRT. In another study [85], the VLMR 

showed good performance under conditions of low Entropy. 

The average posterior probability of assignment (APPA) [86] and the odds of correct 

classification (OCC) [6] are additional classification statistics. The APPA is calculated as the 

average posterior probability of belonging to class 𝑘𝑘 over all the individuals assigned to class 𝑘𝑘. 

It may be thought of as the average latent class probabilities for the most likely latent class 

membership. The OCC is the ratio of the odds of classifying subjects into class 𝑘𝑘 based on the 

maximum probability classification rule (as used in the APPA) to the odds based on random 

assignment (where 𝜋𝜋𝑘𝑘�  represents the probability of a randomly selected individual belonging to 

class 𝑘𝑘) [87]. These statistics are class-specific and ideally, all classes should exceed a minimum 

threshold value. APPA close to 1 (ideally >0.7) and higher values of the OCC are indicative of 

a good fit [6,69]. OCC close to 1 is indicative of the maximum probability assignment rule 

having predictive power not beyond random chance [6]. 

2.3.1.3. Likelihood-Classification Hybrids 

The classification likelihood criterion (CLC) incorporates 𝐸𝐸(𝐾𝐾) as a classification uncertainty 

penalty term in LLIC [88] (see Section 2.3.1.1). The objective is to choose a 𝐾𝐾 which 

minimises the CLC [11]. The CLC works well when class probabilities are restricted to being 

equal but has a tendency to overestimate the number of classes when no such restrictions exist 
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[11,p.214]. 

The integrated classification likelihood (BIC approximation) (ICL-BIC) was 

developed to address shortcomings in the BIC and CLC [89]. It is more robust when the 

underlying mixture model assumptions are violated (leading to boundary of parameter space 

issues) and addresses issues where the BIC tends to over extract classes when the fit of the 

data to the mixture model is poor. The ICL-BIC is equivalent to the BIC when 𝐸𝐸(𝐾𝐾) = 0 (the 

case of perfect classification). 

2.3.1.4. Distributional statistics criteria 

These tests seek to identify the most appropriate 𝐾𝐾-class model by comparing the multivariate 

skew (MVS) and kurtosis (MVK) values derived from the proposed mixture model to the 

actual sample quantities. The skew and kurtosis (SK) tests compute the multivariate skew and 

kurtosis values across a large number of simulated (bootstrapped) samples from the mixture 

model being tested [90]. These simulations provide an empirical sampling distribution against 

which the actual sample values are compared. The SK test yields two 𝑝𝑝-values (for the 

multivariate skew and kurtosis) with a significant 𝑝𝑝-value indicating that the actual skew and 

kurtosis are not likely to be sampled from the 𝐾𝐾 class model being tested. It is claimed that this 

test has sufficient power in small samples (𝑛𝑛 ≥ 200) and works well in distinguishing a single 

class non-normal population from a mixture of multiple normal populations [68,90]. However, 

more research is required to determine the viability of this approach. 

2.3.1.5. Cross-validation 

Cross-validation has also recently been considered to assist in class enumeration, but literature 

on its use in longitudinal FMM is limited and equivocal. Cross-validation involves splitting data 

into an independent training set (for model estimation) and test set (to test the model’s 

predictive power) [91]. If the model predicts well, then it is seen as a good and appropriate 

model [92]. 

Cross-validation error (CVE) [92] is a measure of the predictive accuracy of a fitted 

model. The CVE for individual 𝑖𝑖 is measured as, 

where 𝑇𝑇 is the number of time points. 𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖) is the average squared difference between the 

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖) =
1
𝑇𝑇
��𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑖𝑖

[−𝑖𝑖]�
2

𝑇𝑇

𝑡𝑡=1

 
(2.14) 
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observed values (𝑦𝑦𝑖𝑖𝑖𝑖) and the predicted values (𝑦𝑦�𝑖𝑖𝑖𝑖
[−𝑖𝑖]), with the latter obtained by fitting the 

model on all data except those of individual 𝑖𝑖. This is known as leave-one-out cross-validation. 

Averaging over all 𝑛𝑛 individuals, the overall CVE is given as, 

The best number of classes 𝐾𝐾 is selected as that number which minimises this CVE. When 

applied to observational data, the CVE reached a minimum, whereas the BIC and AIC 

improved monotonically, seemingly without a practical limit, with an increase in 𝐾𝐾 [92]. 

𝑀𝑀-fold cross-validation is an alternative method which involves randomly dividing 

the sample into 𝑀𝑀 partitions of equal size (𝑛𝑛 𝑀𝑀⁄ ), using one of the 𝑀𝑀 partitions as a test set 

and the remaining 𝑀𝑀 − 1 partitions as the training set, and repeating that 𝑀𝑀 times, using 

another test set each time. The division of the data into partitions may be represented as 𝑃𝑃1 ∪

…∪ 𝑃𝑃𝑀𝑀 = {1, … ,𝑛𝑛}. Then for each 𝑚𝑚 = 1, … ,𝑀𝑀, a prediction function is fit on the training 

set, which is then used to predict outcomes in the 𝑚𝑚-th test set �𝑦𝑦�𝑖𝑖𝑖𝑖
[−𝑚𝑚]�. Then the error on the 

points in the 𝑚𝑚-th partition is evaluated as, 

where 𝑛𝑛𝑚𝑚 and 𝑇𝑇 are the number of subjects and time points in the 𝑚𝑚-th partition respectively. 

Finally, the obtained 𝐶𝐶𝐶𝐶𝐶𝐶(𝑚𝑚) values are averaged over all 𝑚𝑚, 

Note that the leave-one-out cross-validation is a special case of this where 𝑀𝑀 = 𝑛𝑛. Again, the 

best number of classes is that value which minimises the CVE. A recent study [93] suggests 

that 𝑀𝑀-fold cross-validation for class enumeration in GMMs only works well under high class 

separation. Again, when applied to observational data, the 𝑀𝑀-fold cross-validation enumerated 

a limited number of classes whereas the AIC and BIC continued to improve monotonically 

with an increase in 𝐾𝐾 [94]. 

 𝐶𝐶𝐶𝐶𝐶𝐶 =
1
𝑛𝑛
�𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 
(2.15) 

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑚𝑚) =
1
𝑛𝑛𝑚𝑚

1
𝑇𝑇
� ��𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑖𝑖

[−𝑚𝑚]�
2

𝑇𝑇

𝑡𝑡=1𝑖𝑖∈𝑃𝑃𝑚𝑚

 
(2.16) 

 𝐶𝐶𝐶𝐶𝐶𝐶 =
1
𝑀𝑀
� 𝐶𝐶𝐶𝐶𝐶𝐶(𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

 
(2.17) 
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2.3.2. Determining the order of the polynomials and other model 
considerations 

Once the number of classes has been established in the first step (where all classes would have 

some pre-set polynomial order informed by expert opinion, number of time points, previous 

studies or visual inspection), then the best order of the polynomial describing each class may 

be determined [6,p.66]. The choice of the order of the trajectory for each class is considered as 

less important than the choice of the number of classes [6,p.67]. Note that in the first step it is 

safe to choose a polynomial order that is too large, but in that case, model convergence may 

become a problem. 

Visually inspecting the shape and size of the various trajectories could assist in 

pruning polynomial terms. Additionally, Wald tests for individual parameter significance (e.g. 

𝐻𝐻0:𝛽𝛽1𝑘𝑘 = 0 vs. 𝐻𝐻1:𝛽𝛽1𝑘𝑘 ≠ 0 ) within classes may be used and are usually reported in software. 

The highest polynomial order non-significant terms should be dropped in one class per 

iteration. The BIC is then also typically inspected to see if this leads to an improved model fit. 

If the BIC improves by more than 4.6 (leading to a Bayes Factor greater than 10), then there is 

strong evidence in favour of the simpler model [72,73,95]. 

Similarly, the choice of the covariance structure for the model is informed by 

practical experience, statistical inspection of data and model output, and running a series of 

models with various specifications. If the model fails to converge to a solution and/or 

produces severely out of bounds parameter estimates or a degenerate solution with empty 

classes, then users should simplify the model. This is done by fixing various model parameters 

such as assuming residual variance to be the same across time points and/or classes [55]. In 

situations with few time points and where the covariance structure is to be determined, the 

BIC is suggested to ascertain whether various model constraints or relaxing of constraints leads 

to a better model fit [30]. 

Several studies [30,32,79] highlight the detrimental impact of model misspecification, 

particularly covariance misspecification, on class enumeration and model fit. They caution that 

models should be flexible to account for different covariance structures across time points and 

between classes as this could have a significant impact on estimation, classification, and class 

enumeration. Furthermore, it was found that although misclassification resulting from 

inappropriate same variance across classes assumptions was much greater than from 

inappropriate same variance across time assumptions, neither should be ignored [30]. 
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2.3.3. Past simulation studies: results and recommendation 

Determining the best model fit index for the correct number of classes under a variety of 

different scenarios remains an outstanding issue in mixture modelling. To date, there is no one 

commonly accepted statistical indicator for class enumeration in mixture models [67]. In 

general, practitioners often employ the least computationally intensive statistics (or the most 

familiar) in determining an appropriate solution [68]. 

The relative performance of a selection of these fit indices has been compared in a 

variety of simulation studies [55,67,78,79,85,90,96–98]. These studies investigated the 

performance of fit indices to find the true number of classes as assessed across a variety of 

different scenarios. These scenarios included variations of class probabilities, within-class 

distribution of outcomes, class separation (variously defined in terms of distinctness between 

parameters defining classes, Entropy, Mahalanobis distance), sample size, and covariance 

structure. These studies show that fit statistic class enumeration performance is highly 

dependent on data-specific characteristics, with low class separation, small sample sizes, and 

covariance misspecification having particularly detrimental effects. Furthermore, no one fit 

statistic consistently emerges as superior in class enumeration across all studied data 

conditions. 

Given the inconclusive findings of the simulation studies and the fact that there is no 

one commonly accepted fit statistic for class enumeration in mixture models, such decisions 

need to be made based upon a variety of evidence [85]. It is recommended to use multiple fit 

indices to add some statistical objectivity to the class enumeration and model selection process, 

as well as a substantive interpretation of the estimated model [6,94,99]. Such interpretation 

should consider whether the emergent trajectories are distinct, and whether they are 

theoretically relevant. Furthermore, users are reminded that the objective of model selection 

should not be the maximization of some specific fit statistic but rather to summarise distinctive 

features of the data in as parsimonious and as sensible a manner as possible [6,p.77]. 

2.4. Software availability 

Several software packages exist for the estimation of longitudinal FMMs. Popular packages 

range from licenced software such as SAS, Stata, Mplus, and Latent GOLD to the open-source 

R platform and its associated packages. They vary in their capacity to run the various models, 

ability to extend beyond standard and default specifications (such as varying covariance 
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structures and the inclusion of random effects), and standard model fit criteria output. 

An outline of the various features of popular software packages used in applied 

studies is summarised in Table 2.3. This list is not intended to be exhaustive, but provides a 

starting point for researchers. This Section delineates the various capabilities of the software 

packages, including types of outcomes supported, trajectory specification, inclusion of random 

effects, constraints on the covariance structure, and default fit-criteria provided. An expanded 

features list for the packages, such as model extensions accounting for non-random attrition, 

time-variant and -invariant predictors, multivariate outcomes is presented in the SM. 

2.4.1. SAS 

Proc traj [25] is a procedure in SAS to primarily estimate GBTM, but random effects are 

possible with the censored normal specification. It supports binary, continuous and count 

outcomes. Regarding trajectory specification, the procedure can accommodate up to quintic 

polynomial orders. The covariance structure (𝚺𝚺) is restricted to a common diagonal covariance 

structure across classes and time. Proc traj assumes conditional independence and thus can use 

maximum likelihood estimation following the general quasi-Newton procedure. Proc traj can 

handle multivariate outcome models [13]. 

Proc NLMIXED is another SAS procedure which allows for multiple classes, the 

inclusion of random effects and a variety of link functions [100]. From our investigation, it has 

not often been used in applied research concerning longitudinal FMMs. However, for SAS 

practitioners it may be worthwhile to consider a selection of studies as a reference [100,101]. 

2.4.2. Stata 

Traj [102] is a package developed for Stata by the creators of Proc Traj for SAS. As such, it has 

most of the salient features of Proc Traj. However, it is not able to accommodate random 

effects of any type and is only able to estimate GBTM models. Traj is able to include the beta 

distribution for continuous data poorly fit by the normal distribution [103]. 

Gllamm [104] is capable of handling more complex longitudinal FMMs, including 

random effects [105]. In contrast to Traj, it can handle ordered and unordered categorical 

outcomes as well as splines in the trajectory specification. The covariance structure (of random 

effects, 𝐃𝐃 matrix) may also be specified by the user to vary across time and class [106]. The  
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only default model fit criteria output of gllamm is the log-likelihood but the likelihood ratio test, 

AIC and BIC are easily computed by other procedures using gllamm’s exported log-likelihood. 

2.4.3. Mplus 

Mplus [26], built upon the structural equation modelling framework, is often cited in latent 

trajectory studies [63,92,99,107]. It can handle multiple outcome types and is technically 

unconstrained in trajectory specification (bearing in mind model convergence and 

performance). 

Mplus has flexibility in modelling outcomes such as allowing for differences in 

residual variances over time, correlated residuals over time, and allowing for different 

covariance matrices of the random effects per class. The default specification for the residuals 

of outcome variables (𝐑𝐑 matrix) is to allow their variance to differ between time points and not 

to allow autocorrelation. The default for variances and covariances of random effects (𝐃𝐃 

matrix) is equality across classes. These restrictions can be relaxed, but this adds to the 

computational complexity and may prevent convergence of the model. 

The software has the capacity to model combinations of outcome types for 

multivariate growth processes [26]. Moreover, Mplus may accommodate time points in 

measurement that differ between individuals, linear and non-linear parameter constraints, as 

well as providing bootstrap standard errors and confidence intervals. 

Mplus provides an extensive selection of model fit criteria [26,107,108] and is the only 

program of the five considered here which provides the MVS and MVK tests (Table 2.2). 

Classification quality measures provided include Entropy, average latent class probabilities for 

most likely latent class membership, and individual classification probabilities for most likely 

latent class membership. In addition, Wald chi-square test of parameter equalities, and tests of 

whether fixed effects differ across latent classes using posterior probability-based multiple 

imputations, amongst other features, are provided. 

2.4.4. R and associated packages 

R is an open-source software consisting of many packages, ranging in their capabilities and 

default specifications for handling longitudinal FMM. The most often cited packages include: 

LCMM, OpenMX, flexMix, mclust and mixtools, and have been applied in a variety of 

developmental trajectory studies [109–113]. 
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The LCMM package [110] can accommodate most outcomes (but excludes count 

responses) using non-linear link functions. In addition to higher-order polynomials in 

modelling the trajectory, LCMM can accommodate splines or the beta cumulative distribution 

function in modelling the trajectory. Random effects are handled in LCMM with their default 

variance-covariance matrix being non-structured, but a diagonal matrix can be set. It can be 

allowed to vary over latent classes. Correlation between errors may also be modelled. 

The parameters of the non-linear link functions and of the latent process are 

estimated simultaneously using the ML method and may be extended to non-linear fixed 

effects using splines and the beta link function. Model fit criteria provided include the log-

likelihood, posterior probability of assignment, AIC, and BIC. Additional features include the 

capacity to test for conditional independence. 

OpenMX [114,115] is a versatile and comprehensive package capable of estimating 

longitudinal FMMs. It has the same capability as Mplus in handling outcomes of various types, 

various trajectory specifications as well as support for splines. The package allows for the free 

estimation of variances, intercepts, and non-diagonal covariances. However, the user must 

define the means and variance parameters as there is no default setting [116]. OpenMX 

provides support for modelling autocorrelation. The AIC, BIC, sample-size corrected AIC, and 

ssBIC [115,p.315] are part of the default output and the LRT may be requested. 

Flexmix [117] is capable of estimating longitudinal FMMs. It has support for normal, 

binomial and Poisson link functions [111]. Users may set diagonal or unconstrained covariance 

matrix models. Model estimation is with ML-EM (Expectation-Maximization). Fit statistics 

provided include the AIC, BIC, ICL, and bootstrapped 𝑝𝑝-value. 

Mclust [109] may also be used in longitudinal FMM estimation [30], particularly of 

the Gaussian mixture modelling type. Users can specify different covariance structures. It has 

support for CVE, and outputs the BIC, BLRT, ICL and log-likelihood for model selection. 

Mixtools [118] has the capacity to estimate longitudinal FMM for both parametric 

and semiparametric settings. It operates within a mixtures-of-regressions setting and has the 

capacity to handle linear regression, logistic regression, Poisson regression, linear regression 

with change points, predictor-dependent class probabilities as well as including random effects 

regressions. Model fit statistics provided include AIC, BIC, BLRT, CAIC and ICL. 
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2.4.5. Latent GOLD 

Latent GOLD [119] has the capacity to model trajectory specifications which differ between 

classes and the use of B-splines instead of polynomials [120]. It can handle count, continuous, 

binary, and categorical outcomes. It is as flexible as Mplus and R in its available features. Model 

fit statistics which can be output include the log-likelihood, AIC, BIC, CAIC, ssBIC, estimated 

proportion of classification errors, Entropy, CLC, and ICL-BIC. 

2.4.6. Further remarks 

The software packages discussed vary considerably in their capabilities, output, and default 

model specifications. It is for the user to decide which is best suited for their purposes, bearing 

in mind their own model’s underlying assumptions, flexibility, and limitations. 

Despite the ever-increasing list of fit-criteria and their importance for class 

enumeration, their integration into software and software capability is limited. The AIC and 

BIC are often the only default statistics provided, meaning that, if a user is interested in using 

other fit-criteria as outlined in Table 2.2, they will have to be calculated separately by the 

software user. 

One of the attempts to remedy this is given by the fit-criteria assessment plot [87] (F-

CAP). F-CAP is a tool available for GBTM in SAS and Stata which exports the log-likelihood 

and other fit statistics directly from the software package. It includes several goodness-of-fit 

(AIC, BIC, log-likelihood) and model-adequacy criteria (APPA, OCC) and displays these 

visually. The user can then gain informative insight into how these criteria change through 

increasing the number of latent trajectories, which assists in class enumeration. 

2.5. An empirical example illustrating a strategy for fitting longitudinal 
mixture models (GBTM, LCGA and GMM) 

2.5.1. General strategy 

The absence of an automated model selection process makes the user’s involvement 

fundamental. Nonetheless, some best practice guidelines for latent class trajectory modelling 

exist. The GRoLTS-checklist [99] provides a list of which key components in latent trajectory 

studies should be reported, such as whether alternative specifications of within-class 

heterogeneity have been considered, alternative specifications for between-class variance-

covariance matrices, alternative shapes and functional forms of the trajectories, as well as 
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model fit statistics used in model selection. The complete checklist consists of 16 items which 

are intended to increase the uniformity of reporting in latent trajectory studies such that 

presented results are transparent. It is designed to assist researchers during the modelling and 

write-up process as well as in the interpretation, critical assessment, replicability and 

comparison of models [99]. Furthermore, a framework by Lennon et al. [121] details the 

modelling steps, considerations, and interpretation of latent growth models. These range from 

establishing an initial exploratory model, the inclusion of random effects, covariance structures, 

use of model fit statistics for model selection, graphical analysis, to sensitivity analysis for the 

generalisability of results. Since our aim is to illustrate model selection choices and not the 

writing up and reporting of results, we refer the reader to Lennon et al. [121] and van de 

Schoot et al. [99], which cover this extensively. 

Figure 2.3 illustrates the model selection path undertaken in our application. It 

should be noted that this is neither definitive nor binding, but accords, to some extent with 

frameworks suggested in previous studies [50,121]. From the figure, it is apparent that several 

decisions need to be made when selecting the best fitting model. 

It is good practice to first plot a random selection of subjects to provide a visual 

representation of whether enough heterogeneity of development is evident in the data to 

justify the use of mixture modelling (spaghetti plot). One then needs to select a maximum 𝐾𝐾 

and polynomial order given the number of time points, sample size, previous theoretical 

and/or practical insights, and the spaghetti plot, for the initial scoping of potential models. If 

deciding upon a maximum 𝐾𝐾 is a challenge, users are reminded that more than 10 classes rarely 

emerge in applied studies. Additionally, we also recommend fitting a GCM to the data to 

present the best single-class depiction of change and with which we will compare our models 

(using relevant fit statistics). 

To illustrate model selection in the application of longitudinal FMM, we begin with 

the most constrained of the considered models, the GBTM. The GBTM should converge the 

quickest to a solution given its lower number of free parameters when compared to LCGA and 

GMM. We suggest finding a range of plausible 𝐾𝐾’s for the GBTM and selecting the 𝐾𝐾-class 

GBTM model within that subset with the best BIC [121]. Ideally, this should be confirmed by 

looking at other available fit statistics which are discussed in Section 2.3. 

We then use modified likelihood ratio tests (LRTs) to assess whether that 𝐾𝐾-class 

GBTM model is dismissed in favour of a 𝐾𝐾 − 1 model. If it is dismissed, the lower 𝐾𝐾 model is 
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chosen. The LRT is then repeated on that selected model to ascertain whether a lower 

𝐾𝐾 model may be selected. The LRT is repeated until it dismisses a lower 𝐾𝐾 model [50]. 

We then extend the model for the selected 𝐾𝐾 by dropping one constraint at a time (by 

allowing for the dependence of residual variance on time and/or class), which is an LCGA. We 

then select the LCGA or GBTM model with the lowest BIC. If it is an LCGA, we then use the 

LRT to determine whether that selected model’s 𝐾𝐾 can be reduced further. This same strategy 

is used when refining the model during the subsequent steps of relaxing the model constraints 

(by allowing for class-variant or class-invariant random effect variances), that is, select the 

model with the best BIC and then check how much 𝐾𝐾 can be reduced using the LRT. 

The strategy of fitting consecutively more lenient models is motivated by the fact that 

the cause of non-convergence if it occurs, will be easier to identify. It is recommended to 

inspect the trajectory plots at each step to ensure that the emergent patterns are sensible by 

considering their empirical implications and whether the trajectories are distinct. Once a 𝐾𝐾 is 

selected, we do not consider 𝐾𝐾 + 1 models in subsequent steps in order to narrow down our 

possible choices and to preserve the principle of parsimony. 

When a model extension does not lead to a lower BIC and 𝐾𝐾 cannot be further 

reduced by an LRT, the polynomial order may be pruned subject to significance. This is 

achieved by deleting the highest order polynomial term that is non-significant iteratively per 

Figure 2.3: Model selection flowchart. 
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class using a Wald test. Lower order non-significant polynomial terms are not removed if the 

highest order polynomial term is significant. Finally, it is advised that the replicability of the 

chosen model be tested through cross-validation on a new sample (but this is beyond the 

scope of our illustration). 

2.5.2. An illustration 

2.5.2.1. The dataset 

We expanded upon the methodology of a GBTM study [43] comprising a data set (𝑛𝑛 =

1907) of log-transformed self-reported retrospective alcohol consumption (𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖∗ =

log(𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 1)) by including a GMM analysis. 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 is the total volume expressing the weekly 

consumption (in glasses) of subject 𝑖𝑖 and was measured at 4 time intervals (𝑡𝑡=1 Youth: 12-18 

years, 𝑡𝑡=2 Young adult: 19-27 years, 𝑡𝑡=3 Adult: 28-44 years, 𝑡𝑡=4 Middle age: 45-60 years). 

Skewness and kurtosis measures for outcomes showed highly non-normal data and motivated 

the log transform in the referenced study [43]. Even with the log transform, some skewness 

remains, but for the purpose of illustration we chose to follow the same methodology of the 

referenced study. 

A spaghetti plot of a random selection of subjects is presented in the SM and may 

motivate the choice of a quadratic function to model the trajectories. Therefore, we will 

assume that each of the trajectories for alcohol consumption in distinct classes, 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖∗𝑘𝑘, may be 

modelled by a quadratic function of the GMM general form: 

where 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑡𝑡 = 1,2,3,4, 𝑘𝑘 = 1, … ,𝐾𝐾, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the time period considered, and 

𝛽𝛽0𝑘𝑘, 𝑏𝑏0𝑖𝑖𝑘𝑘 ,𝛽𝛽1𝑘𝑘 ,𝛽𝛽2𝑘𝑘, 𝑏𝑏1𝑖𝑖𝑘𝑘 , 𝑏𝑏2𝑖𝑖𝑘𝑘  and 𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘  are as defined in Eq. 2.3. However, as said in Section 2.5.1, we 

start the modelling with the GCM and the GBTM (which are both special cases of the GMM) 

for reasons explained there. 

2.5.2.2. Model selection 

We used Mplus v7.3 for our analysis with some selected code provided in the SM. We first 

fitted the best one-class model (GCM) to the data with which we will compare subsequent 

models to justify multiple class solutions. Using the BIC as an aid and considering a variety of 

𝐃𝐃 and 𝐑𝐑 specifications, in addition to ensuring that estimated parameters make mathematical 

 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖∗𝑘𝑘 = (𝛽𝛽0𝑘𝑘 + 𝑏𝑏0𝑖𝑖𝑘𝑘 ) + (𝛽𝛽1𝑘𝑘+𝑏𝑏1𝑖𝑖𝑘𝑘 )𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 + (𝛽𝛽2𝑘𝑘 + 𝑏𝑏2𝑖𝑖𝑘𝑘 )𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘  (2.18) 
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sense (i.e. non-negative variances, correlations between -1 and 1), we settled on a GCM model 

of the form 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖∗ = (𝛽𝛽0 + 𝑏𝑏0𝑖𝑖) + (𝛽𝛽1 +𝑏𝑏1𝑖𝑖)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 + (𝛽𝛽2 + 𝑏𝑏2𝑖𝑖)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 + 𝜖𝜖𝑖𝑖𝑖𝑖  with constant 

residual variance over time (i.e. 𝜖𝜖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎2)). This model exhibited a BIC of 17 167.811. 

In the next step of our analysis, we fitted GBTMs from 𝐾𝐾 = 2 until a maximum 𝐾𝐾 =

8. The maximum 𝐾𝐾 is usually set as the expected number of classes (which was informed by 

the referenced study [43]) plus 1. For the GBTM, the random effects in Eq. 2.18 were set to 

zero ((i.e. 𝐃𝐃𝑘𝑘 = 𝟎𝟎) with the restriction of equal residual variances across time and classes (i.e. 

𝚺𝚺𝑘𝑘 = 𝜎𝜎2𝐈𝐈 where 𝜎𝜎2 is the residual variance). 

In the GBTM step, the BIC continued to improve as 𝐾𝐾 increased. The AIC and 

ssBIC showed similar behaviour (see Figure 2.4). The improvement in these fit statistics with 

an increase in 𝐾𝐾 is a known issue [122] and may motivate model extension i.e. freer estimation 

of 𝐃𝐃 and 𝐑𝐑 matrices. Nonetheless, the AIC, BIC, and ssBIC of the 𝐾𝐾 = 5,6,7, and 8 GBTM’s 

were less than the GCM’s (which was close to the BIC of the 4-class GBTM (Figure 2.4)). 

These results are reported in Table 2.4 for further analysis. 

We then used the VLMR and aLMR LRTs to establish whether 𝐾𝐾 could be reduced 

further since the BLRT bootstrap draws did not converge to a reliable solution. Moreover, the 

BLRT is particularly sensitive to model misspecification and is advised against using during 

initial model exploration [67]. Our goal was to ensure that the information criteria decreased 

(improved) with model extension and that the LRT supported the lowest possible 𝐾𝐾-class 

model. 

Figure 2.4: Fit-criteria performance GBTM. 
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From Table 2.4, the 8-class GBTM had the best BIC (GBTM4). However, the 

VLMR and aLMR 𝑝𝑝-values led us to not dismiss the 𝐾𝐾 = 7 class GBTM (GBTM3). In turn, 

for GBTM3, the VLMR and aLMR led us to not dismiss the 𝐾𝐾 = 6 class model (GBTM2). 

We, therefore, settled on a 𝐾𝐾 = 6 class quadratic GBTM model (GBTM2), since the VLMR 

and aLMR both led to the dismissal of a 𝐾𝐾 = 5 solution at the 5% significance level. The plot 

for the estimated trajectories for the 𝐾𝐾 = 6 GBTM model is shown in Figure 2.5. 

Given the 𝐾𝐾 = 6 quadratic GBTM model, we extended the model to allow different 

residual variance error structures i.e. same over class but different across time (LCGA1), same 

over time but different over class (LCGA2), and different across time and over class. This last 

extension was not possible as it led to singularity of the information matrix. We then compared 

these models’ (LCGA1 and LCGA2) BIC value to that of the 𝐾𝐾 = 6 GBTM2 model and 

selected the model with the best BIC. This happened to be the LCGA2 model which had a 

BIC of 15 885.010. Furthermore, its VLMR and aLMR 𝑝𝑝-values led us to not dismiss a 𝐾𝐾 = 5 

solution. We, therefore, estimated a lower 𝐾𝐾 = 5 model (LCGA3), which was not dismissed by 

the VLMR and aLMR tests. Thus, we retained the LCGA3 model. 

 

 We then expanded the LCGA3 into a GMM by adding class-invariant random effect 

variances stepwise, and class-variant random effect variances stepwise, respectively (i.e. first for 

the intercept, then for the intercept and linear slope, and finally for the intercept, linear slope 

and quadratic slope, allowing for covariance between the random effects). Of the 5-class GMM 

specifications investigated, only two converged to a solution and did not obtain negative 

variances (which is indicative of an inappropriate model). These were a 5-class GMM with 

Table 2.4: Fit statistics for considered GBTM. 
Model GBTM1 GBTM2 GBTM3 GBTM4 

Classes 5 6 7 8 

Average APPA 0.8518 0.8262 0.8247 0.8178 

Lowest APPA 0.821 0.747 0.765 0.765 

AIC 16834.988 16706.057 16564.953 16424.918 

BIC 16946.054 16839.336 16720.445 16602.623 

ssBIC 16882.514 16763.088 16631.489 16500.959 

Scaled Entropy 0.783 0.77 0.784 0.78 

VLMR p-value  <0.0001 0.0270 0.1478 0.2372 

aLMR p-value  <0.0001 0.0303 0.1567 0.2436 
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class-invariant random intercept variance (GMM1) and a 5-class GMM with class-variant 

random intercept variance (GMM2) (see Table 2.5). Both models exhibited a BIC better than 

the LCGA3 with the GMM2 having the best BIC, and we selected this for further refinement. 

Finally, the VLMR and aLMR showed that the 5-class GMM2 could not be reduced to a 4-

class GMM (Table 2.5). 

 

Next, the significance of the various polynomial fixed effects terms of the selected 

model were checked. Discarding non-significant higher-order polynomial terms led to a 

marginally better model fit (GMM3) and we settled on this as our final solution. Its estimated 

trajectories with confidence intervals (to display class separation for the final model in terms of 

the fixed effects i.e. 𝛽̂𝛽0𝑘𝑘 + 𝛽̂𝛽1𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛽̂𝛽2𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 ± 1.96�𝑉𝑉𝑉𝑉𝑉𝑉(𝛽̂𝛽0𝑘𝑘 + 𝛽̂𝛽1𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛽̂𝛽2𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 )) 

are shown in Figure 2.6. The estimated mean equations are given in the SM. 

  

Figure 2.5: Estimated trajectories of 6-class GBTM model. 
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Finally, the model should be replicated on more data (known as model validation), 

but due to space limitations and the absence of a second independent data set is beyond the 

scope of this illustration. 

It is important to note that slight deviations in the modelling strategy could result in 

different best fit models. Unfortunately, one is forced to choose a certain strategy, as it is 

almost impossible to investigate all mixture models within the chosen range for 𝐾𝐾, where the 

set of possible models is a multiplicative function of the number of possible covariance 

structures, the number of classes, and the polynomial order per class. 

We have used this empirical example to illustrate a possible pre-defined model 

selection procedure, but this is in no means definitive since not all possible model 

specifications were considered, such as higher 𝐾𝐾 and higher-order polynomials with alternate 

𝐃𝐃 and 𝐑𝐑 specifications. Practitioners should be guided by statistical criteria as outlined in 

Section 2.3 as well as practical experience with data and results from previous studies when 

estimating such models. The rote application of model selection in mixture modelling without 

careful consideration of the practical and/or theoretical implications of the emergent 

trajectories and classification of individuals must be strongly discouraged. 

Furthermore, model selection is not the final step. Additional steps are routinely 

undertaken to determine the interpretational and/or conceptual meaningfulness of emergent 

trajectories. This includes ascertaining which members’ characteristics are associated with class 

membership and/or linking the emergent developmental patterns to distal outcomes 

[86,123,124]. This may assist in understanding the processes generating the heterogeneity of 

developmental paths and their potential implications. 

Figure 2.6: Final 5-class GMM estimated trajectories and 95% confidence intervals. 
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2.6. Concluding remarks 

This paper has given an instructive overview of longitudinal FMM models, specifically GMM, 

LCGA, GBTM, and their interrelatedness. Of the models considered, the GMM is the most 

versatile. It allows inter-individual variability between subjects within latent classes through the 

inclusion of random effects, and a complex covariance structure. By contrast, LCGA and 

GBTM do not have random effects. They make the restrictive assumption of independent 

errors, with LCGA allowing time and class-variant error variances, and GBTM imposing the 

same residual variance over classes and over time. Furthermore, we provided an overview of 

various software available for the estimation of longitudinal FMM which all vary in their 

capabilities, particularly of fit statistics reported and allowable covariance structures. 

We described and illustrated the important first step of model selection, which is 

determining the number of classes 𝐾𝐾. The use of statistical fit indices for class enumeration 

introduces some statistical vigour to the process, but remains to some extent also heuristic. 

Our review, together with the empirical example reiterates the consensus that there is of yet no 

one best fit statistic for class enumeration, as their performance is largely dependent on the 

underlying data properties. Therefore, it is recommended to use as many of these fit statistics 

as practical to determine the best model whilst bearing in mind their limitations as detailed in 

Section 2.3 in addition to a vigorous inspection of the emergent trajectories. 

In our illustrative example, we offered a possible but, by no means, binding model 

selection strategy for class enumeration and polynomial order determination. We followed the 

path of going from simpler (GBTM) to more complex models (GMM), whereas the opposite 

direction was chosen for the polynomial order (from higher to lower). These choices were 

made to enable identification of the cause of model non-convergence, if it occurs, as well as to 

restrict the set of models investigated. However, it is apparent that there are many possible 

choices and pathways for researchers to follow. Researchers should be guided by parsimony, 

model fit, and their research question as well as being cognisant of possible software 

limitations. 

We refrained from expanding trajectories to multiple outcomes simultaneously 

[13,45,125,126] and from addressing questions related to important steps subsequent (or 

possibly concurrent) to model selection, referred to as model validation [123,124]. Readers 

should consult a recent overview article [123] for more details on best practice guidelines for 

model validation. Space restrictions also precluded us from addressing in detail further 
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modelling issues for longitudinal FMM, many of which to date are still unresolved. Below we 

briefly discuss some issues relating to data features, which have a marked impact on class 

enumeration accuracy, trajectory shape detectability, and classification performance. 

Data features known to negatively impact the quality of class enumeration in 

longitudinal FMMs are small sample sizes (<250) [127], a small number of time points (<4) 

[127], the lack of a natural starting point in the longitudinal measurements (e.g. birth), and a 

misspecified covariance structure. 

An insufficient sample size is known to underlie model convergence issues, improper 

solutions and the inability to identify small but meaningful subgroups [54]. However, adequate 

sample size calculations are often difficult as these depend on a variety of factors, including the 

complexity of the model, distribution of the variables, the amount of missing data, number of 

repeated measures and the strength of the relationship between variables in the model [128]. 

Sample size studies for GMM are rather limited, but a simulation study [129] found a minimum 

sample size of 200 is required in the case of complete data, high class separation and 2 classes, 

and a required sample size of 900 for the case of 20% missing data, low class separation and 6 

classes. 

The impact of the number of, and the spacing between, time points on class 

enumeration, classification and parameter estimates is understudied. An empirical GBTM 

study [130] showed that, although adding time points within a given time interval did not have 

a marked impact on the estimation of trajectory curves, it did have a marked impact on the 

correct classification of individuals. In a simulation study, Davies et al. (2017) showed that 

increasing the number of time points (from 4 to 8) by expanding the time interval had a 

modest positive effect on classification performance, particularly for GMMs with residual and 

random effect variances free to vary between classes. Furthermore, a simulation study [127] for 

a GMM with, next to time as a predictor, also a time-varying predictor investigated the impact 

of increasing the number of time points by expanding the interval from 4, to 6, to 8 

measurements. They found that of the design factors considered (number of time points, 

sample size, class probabilities, constraints on the error variances, and proportion of explained 

variance in repeated measures due to time-varying predictor), a small sample size, a small 

number of time points, and especially their combination had a considerable impact on the 

presence of bias in the estimation of random effect variances and covariances. 

Another underinvestigated issue is the case where data exhibits no natural starting 

point and as a result show high onset variability reflected by markedly different intercepts. In 



2.6. Concluding remarks 

47 

 
 

 

this case, extracted trajectories may be dominated by level effects [131]. More precisely, 

intercept variance dominance may lead to important small classes, which differ significantly in 

shape and growth over time, not being detected. A sometimes-used solution is pre-processing 

the data by subtracting each subject’s average from their repeated measures which removes the 

level effect. However, this has important implications for the covariance and dependency 

structure, especially if the number of time points is small or if individuals are not all observed 

at fixed time intervals [131]. 

Violations of the assumptions of the underlying conditional distribution of the 

longitudinal sequence [132] (see Eq. 2.5) have been shown to lead to class over-extraction 

when using penalized likelihood criteria [36,133,134] as discussed in Section 2.3. This may be 

addressed by choosing more flexible probability density functions for the classes, which in 

many cases provide a better estimate of the true number of classes than the normal (Gaussian) 

approach [133,134]. Moreover, researchers are particularly cautioned to be careful in the 

specification of the 𝐃𝐃𝑘𝑘 and 𝐑𝐑𝑘𝑘 matrix, since it has been shown that using too restrictive 

models far outweighs other design conditions such as sample size, prior class probabilities and 

class separation in terms of class enumeration accuracy [32]. 

In recent years, the issue of whether to estimate models with or without predictors 

(besides time) during class enumeration has emerged as a major consideration and remains 

controversial. Of relevance is the question to what extent the predictors (and the conditions 

under which they are added) change the trajectories’ shape and class assignment. Currently, 

there is no simple solution on how and when to include predictors of latent classes, but some 

consensus has emerged. Simulation studies [55,64,135] have investigated the influence of 

various predictor specifications (such as absence of predictor effects, predictor effects on class 

membership, and predictor by time interactions in the trajectory) on class enumeration. They 

generally recommend including predictors after class enumeration, because, even when the true 

model for data generation included predictors, they found that including correctly specified 

predictors in the enumeration phase only led to small improvements in class enumeration 

accuracy. Improvements in enumeration accuracy had limited practical significance, particularly 

since the models were found to be highly sensitive (in terms of class enumeration and 

parameter estimates) to predictor misspecification (specifying a relationship when in fact there 

is none) [55]. This is important since in practice it is often impossible to know beforehand the 

precise predictor effects. Once a stable solution in terms of class enumeration is found, class 

predictors may then be introduced into the model with a fixed number of latent classes to 
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examine their effects on parameter estimates and class enumeration. In another study [85], 

where predictors were specified to have an impact on both the trajectory and class 

membership, it was found that the inclusion of predictors during class extraction led to 

substantial class enumeration inaccuracies, especially when the sample size was less than 1000. 

To conclude, we have shown throughout this paper that there are many 

considerations to be taken and issues to be aware of when conducting analyses based on 

longitudinal FMM models. Typically, a combination of fit statistics, the research question, 

model parsimony, domain knowledge, and model interpretability should all play a role, not 

only in the motivation and use of longitudinal FMM [90] but also in the model selection 

procedure. It is imperative that researchers keep this in mind and that they clearly document 

their studies to ensure transparency, replicability, and defensibility. We have attempted to 

provide a broad introduction to these techniques to increase their accessibility to practitioners. 

Our paper is not exhaustive, as other mixture FMMs including mixture LTA and SMA exist 

which practitioners are encouraged to investigate (See [58,61]) but our hope is that this paper 

will serve as an introductory guide to the discussed methods for applied studies. 
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Abstract 

The use of longitudinal finite mixture models (FMMs) to identify latent classes 

of individuals following similar paths of temporal development is gaining 

traction in applied research. However, FMM’s users may be unaware of how 

data features as well as the inappropriate specification of the model’s 

covariance structure impacts class enumeration. To elucidate this, we 

investigated model fit-criteria curve behaviour across an array of data 

conditions and covariance structures. Fit statistic patterns were variable 

among the fit-criteria and across a range of data conditions. This variability 

was greatly attributable to the level of class separation and the 

presence/absence of random effects. Our findings support some widely held 

notions (e.g. BIC outperforms other criteria) whilst debunking others (adding 

random effects is not always the solution). Based on the obtained results, we 

present guidelines on how the behaviour of fit-criteria curves can be used as a 

diagnostic aid during class enumeration. 

Keywords: growth mixture model; latent class growth analysis; trajectory; 

repeated measures; covariance misspecification; class extraction 
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3.1. Introduction 

Longitudinal finite mixture models (FMMs) are model-based clustering approaches designed to 

uncover latent heterogeneity in longitudinal profiles of the repeated measures type. This 

heterogeneity is usually represented as developmental trajectories, which comprise both inter-

individual (between-subjects) and intra-individual (within-subjects) variability over time. These 

methods assist in identifying distinct latent classes of subjects within the population that show 

similar (within-class) temporal development. Assignment of subjects to such classes is typically 

done according to where their posterior probability (of the parameters) given the data is 

highest. Popular longitudinal FMMs include growth mixture models (GMM) [24], latent class 

growth analysis (LCGA) [48], and group-based trajectory models (GBTM) [6]. 

Longitudinal FMMs are increasingly used in applied sciences, particularly health 

sciences to understand differences in the development and aetiology of a variety of disorders 

and diseases, as well as subject responses to treatment. Recent studies include whether group 

differences in alcohol consumption are related to cardiovascular disease [43], understanding 

different treatment responses for adults with obsessive-compulsive disorder [40], and 

establishing the link between cannabis use in adolescents and a variety of health factors [44]. 

Nonetheless, it is often overlooked in practice that analysis results obtained with 

FMMs are sensitive to violations of their underlying assumptions, in particular the variance-

covariance structure of the outcome variables in each class. This paper will investigate the 

impact of between-subject covariance misspecification on fit statistic behaviour during class 

extraction and, ultimately, on the choice of the number of classes. We examine, for instance, 

whether an inconclusive behaviour (e.g. continual improvement) of the considered model fit 

statistics (AIC, BIC, ssBIC and scaled Entropy) as a function of increasing the number of 

fitted classes, a recurring phenomenon in practice [122], is evidence of such covariance 

misspecification. We ascertain if identified fit statistic behaviour under such misspecifications 

may be used as a diagnostic tool in finding an adequate covariance structure. 

We conduct a simulation study in which several data features (design conditions) are 

manipulated (e.g. number of repeated measures, degree of class separation, trajectory shape, 

true covariance structure), conforming to a specific GMM, LCGA or GBTM model. We then 

fit models misspecified in terms of the covariance to the data to investigate (1) whether a 

plateauing behaviour (or other peculiar behaviour) of the fit statistics under the fitted model is 

a relic of covariance misspecification, (2) how sensitive in terms of class enumeration are these 
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fit statistics to covariance misspecification under various data features (e.g. class separation, 

number of time points), and (3) whether identified fit statistic patterns may assist in finding the 

correct model. Moreover, an empirical example using alcohol consumption data is used to 

illustrate the fit-criteria curves as a diagnostic aid during class enumeration and model 

specification. Such a diagnostic tool may be useful since covariance misspecification has 

important consequences for both class extraction and classification performance 

[30,32,79,136–139]. 

3.2. Specification of models 

Longitudinal FMMs develop from the premise that within the population, 𝐾𝐾 latent classes 

(subgroups) exist with subjects within classes following similar paths of development over time 

(trajectories). The marginal probability distribution 𝑃𝑃(𝒚𝒚𝑖𝑖) of a randomly chosen trajectory is 

then modelled as, 

where 𝒚𝒚𝑖𝑖 = (𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑖𝑖)𝑡𝑡𝑡𝑡 is a column vector of repeated measures for subject 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛 

at time 𝑡𝑡, 𝑡𝑡 = 0, … ,𝑇𝑇 − 1, and 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) is the conditional distribution of the longitudinal 

sequence, 𝒚𝒚𝑖𝑖 , given that the subject 𝑖𝑖 is in class 𝑘𝑘, 𝑘𝑘 = 1, … ,𝐾𝐾. Further, 𝜋𝜋𝑘𝑘 is the class 

membership probability and conforms to 𝜋𝜋𝑘𝑘 ≥ 0,∑ 𝜋𝜋𝑘𝑘 = 1𝐾𝐾
𝑘𝑘=1 , with 𝐾𝐾 > 1. These models 

assume 𝐾𝐾 to be known, but this is difficult to deduce directly from the data. 

For continuous outcomes data, 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) is assumed multivariate normal (MVN) within 

classes, that is, 

with 𝒚𝒚𝒊𝒊𝒌𝒌 a 𝑇𝑇 × 1 vector of continuous outcomes for subject 𝑖𝑖, and 𝝁𝝁𝑘𝑘 and 𝚺𝚺𝑘𝑘 are the model-

implied mean vector and covariance matrix for class 𝑘𝑘 respectively. 𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖) is uniquely defined 

by the trajectory specification per class. 

A GMM is the most general of our considered longitudinal FMMs. It includes both 

fixed effects to quantify class-specific average growth curves and random effects to allow for 

individual differences (inter-individual differences) from the average growth curve within 

classes. Its class-specific trajectories may be expressed as, 

  

 𝑃𝑃(𝒚𝒚𝑖𝑖) = �𝜋𝜋𝑘𝑘𝑃𝑃𝑘𝑘(𝒚𝒚𝑖𝑖)
𝐾𝐾

𝑘𝑘=1

 
(3.1) 

  𝒚𝒚𝒊𝒊𝒌𝒌~𝑴𝑴𝑴𝑴𝑴𝑴(𝝁𝝁𝑘𝑘,𝚺𝚺𝑘𝑘)  (3.2) 
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where the superscript 𝑘𝑘 specifies the class, 𝐗𝐗 is a 𝑇𝑇 × 𝑏𝑏 design matrix for the fixed effects, 𝜷𝜷𝑘𝑘 

is a 𝑏𝑏 × 1 vector of fixed effects, 𝐙𝐙 is a 𝑇𝑇 × 𝑞𝑞 design matrix for the random effects, 𝒃𝒃𝒊𝒊𝒌𝒌 is a 

𝑞𝑞 × 1 vector of random effects, and 𝒆𝒆𝒊𝒊𝒌𝒌 is a 𝑇𝑇 × 1 residual vector. It is assumed that 

𝒃𝒃𝒊𝒊𝒌𝒌~𝑵𝑵(𝟎𝟎,𝐃𝐃𝒌𝒌) and 𝒆𝒆𝒊𝒊𝒌𝒌~𝑵𝑵(𝟎𝟎,𝐑𝐑𝒌𝒌). 𝐃𝐃𝑘𝑘 is the model-implied 𝑞𝑞 × 𝑞𝑞 random effects covariance 

matrix (inter-individual variation) and 𝐑𝐑𝑘𝑘 is the 𝑇𝑇 × 𝑇𝑇 residual covariance matrix (intra-

individual variation) of the 𝑘𝑘-th class. Ultimately, a GMM is specified where 𝝁𝝁𝑘𝑘 = 𝐗𝐗𝜷𝜷𝒌𝒌 and 

𝚺𝚺𝑘𝑘 = 𝐑𝐑𝒌𝒌 + 𝐙𝐙𝐙𝐙𝒌𝒌𝐙𝐙′ in Eq. (3.2). 

LCGA and GBTM are special cases of Eq. 3.3 in which there are no random effects 

i.e. 𝐙𝐙𝒃𝒃𝒊𝒊𝒌𝒌 = 𝟎𝟎, such that 𝚺𝚺𝑘𝑘 = 𝐑𝐑𝒌𝒌, with 𝚺𝚺𝑘𝑘 diagonal [30]. Diagonal 𝚺𝚺𝑘𝑘 implies independence 

between the repeated measures within a given individual. LCGA models allow for the residual 

variance to differ between classes and time points. The GBTM, a popular special case of the 

LCGA, makes the explicit assumption of the residual variance being equal for all classes and all 

time points i.e. 𝐑𝐑𝒌𝒌 = 𝐑𝐑 = 𝜎𝜎𝟐𝟐𝐈𝐈, where 𝐈𝐈 is the identity matrix [6,19,140]. 

3.2.1. Class enumeration 

A key outcome of FMM analysis is to identify the optimal number of classes 𝐾𝐾 which 

adequately describe the data. Several statistical fit indices can assist in selecting 𝐾𝐾 [140], a 

process known as class enumeration (synonymous with extraction). However, no fit statistic 

has yet emerged as the clear best performer [67,78,85,90,97,98]. Therefore, practitioners are 

often advised to use a variety of fit statistics as well as a substantive interpretation of their 

models during class extraction [6,94,99]. 

In this study, we restrict ourselves to the likelihood-based, information criterion (IC) 

model fit indices most often encountered in practice (and widely available by default in most 

software), that is, the Akaike Information Criterion (AIC), the Bayesian Information Criterion 

(BIC) and sample-size adjusted BIC (ssBIC). Scaled Entropy (sE), a statistic derived from 

Entropy 𝐸𝐸(𝐾𝐾), is included as a complement to the IC indices which is customarily reported as 

a measure of classification certainty. Table 3.1 presents their equations. The first term of the 

AIC, BIC and ssBIC reward models for having better log-likelihoods. The second term 

 𝒚𝒚𝒊𝒊𝒌𝒌 = 𝐗𝐗𝜷𝜷𝒌𝒌 + 𝐙𝐙𝒃𝒃𝒊𝒊𝒌𝒌 + 𝒆𝒆𝒊𝒊𝒌𝒌 
 

(3.3) 
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penalizes models for lack of model parsimony. sE is scaled to be bound between zero and one 

[83] and is higher when models show clear classification into classes. 

Table 3.1: Summary of fit statistic calculations. 

Measure 
Equation Model selection* 

AIC −2 log[𝐿𝐿(𝐾𝐾)] + 2[𝑚𝑚(𝐾𝐾)] Smallest value 
BIC −2 log[𝐿𝐿(𝐾𝐾)] + log(𝑛𝑛) [𝑚𝑚(𝐾𝐾)] Smallest value 
ssBIC 

−2 log[𝐿𝐿(𝐾𝐾)] + log �
𝑛𝑛 + 2

24
� [𝑚𝑚(𝐾𝐾)] 

Smallest value 

sE 1 − 𝐸𝐸(𝐾𝐾) 𝑛𝑛 log(𝐾𝐾)⁄ , 
where 𝐸𝐸(𝐾𝐾) = −∑ ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 log[𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖]𝑛𝑛

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1 ≥ 0 

Largest value 

*Fit statistic calculation may differ per software 
𝐿𝐿(𝐾𝐾): Maximum likelihood of 𝐾𝐾-class model 
𝑚𝑚(𝐾𝐾): Number of parameters of 𝐾𝐾-class model 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖: posterior probability of subject 𝑖𝑖 belonging to class 
𝑘𝑘 given the data 

𝐸𝐸(𝐾𝐾): Entropy of 𝐾𝐾-class model 
log(𝑥𝑥): The natural logarithm of 𝑥𝑥 
𝑛𝑛: Sample size 

 

In an ideal situation, one would expect a clear minimum of the IC and an sE close to 

1 at the true number of classes. However, in practice, these ICs often do not exhibit clear-cut 

behaviour (e.g. a minimum value) as a function of increasing 𝐾𝐾. For instance, a ‘plateauing’ 

curve is frequently observed [122] in that the IC continues to improve marginally as the fitted 

number of classes increases. It is to be established whether sE elicits similar behaviour. We 

hypothesise that such behaviour is evidence of random effect (between-subject) covariance 

misspecification, which can have serious consequences for class enumeration accuracy, 

classification performance, and model interpretability [30,32]. We ascertain whether aforesaid 

identified behaviour may assist in finding the correct covariance specification. 

3.2.2. Class separation 

Class separation in longitudinal FMMs typically refers to the degree of overlap between growth 

trajectories for latent classes [141]. This may be quantified in terms of the amount of overlap 

between the latent classes’ growth trajectory intercept and slope or the degree of overlap 

between the observed repeated measures [142]. 

Low class separation has been shown to play a substantial role in decreasing 

estimation accuracy in GMMs [85,143]. However, to date, there is no consensus on the best 

definition of class separation, and indeed which measure of class separation to utilize (See e.g. 

Nowakowska et al. [144]). As such, it is largely dependent on the researcher to decide upon 

given the investigation at hand [141]. This study employs the Cohen’s D (CD), which is often 
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used to quantify effect sizes [145], as a class separation measure. We report a time-averaged 

version, calculated as, 

where 𝑡𝑡 = 0, … ,𝑇𝑇 − 1 is the time point, 𝜇𝜇𝑎𝑎𝑎𝑎 and 𝜇𝜇𝑏𝑏𝑏𝑏 is the class mean (of the observed 

outcome variable) at time point 𝑡𝑡 for class 𝑎𝑎 and 𝑏𝑏 respectively, and 𝜎𝜎𝑡𝑡  is the square root of 

the diagonal element of the total covariance matrix (𝚺𝚺) corresponding to time point 𝑡𝑡. 

Additionally, we report the multivariate Mahalanobis distance (MD) [146], a popular 

class separation measure in longitudinal FMM studies [82,127,147,148]. The pairwise MD in 

terms of the observed repeated measures is calculated as, 

where 𝝁𝝁𝑎𝑎  and 𝝁𝝁𝑏𝑏  are the mean vectors of the observed repeated measures for class 𝑎𝑎 and 𝑏𝑏 

respectively, and 𝚺𝚺−1 corresponds to the inverse of the covariance matrix of 𝒚𝒚 which is 

assumed equal in both latent classes [11,82]. An MD of one and three usually reflects small and 

large class separation respectively found in the literature [93,97,147,149,150]. 

Lastly, we provide the overlap coefficient (OVL) [144] for class separation. We 

calculate this as the average over all time points of the overlap of two class distributions at each 

time point, 

where 𝑓𝑓𝑎𝑎𝑎𝑎(𝑥𝑥;𝜇𝜇𝑎𝑎𝑎𝑎 ,𝛴𝛴𝑎𝑎𝑎𝑎) and 𝑓𝑓𝑏𝑏𝑏𝑏(𝑥𝑥; 𝜇𝜇𝑏𝑏𝑏𝑏,𝛴𝛴𝑏𝑏𝑏𝑏) correspond to the class density function (univariate 

normal) at time point 𝑡𝑡 of class 𝑎𝑎 and 𝑏𝑏 respectively. Figure 3.1 shows low and high 

separation in terms of the OVL (Eq. 3.6) for two univariate normal densities for a single time 

point. The OVL is the common area under the lower of the two density functions. The greater 

the overlap between the densities, the broader the 𝑥𝑥-axis range is where the minimum of the 

two densities is high. For the example of low separation, a CD of 0.8 corresponds to an OVL 

of 0.69 (see the grey area in the leftmost plot). For high separation, a CD of 2 results in an 

OVL of 0.32 (see the grey area in the rightmost plot). 
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3.2.3. Covariance misspecification 

Covariance misspecification implies assuming an incorrect structure for the random effects’ 

covariance matrix 𝐃𝐃𝑘𝑘 and/or for the residual covariance matrix 𝐑𝐑𝑘𝑘 during model estimation. 

Such misspecification may be broadly classified into three categories [32]. 

Covariance underspecification can occur when the true model includes class-specific 

covariance matrices (i.e. 𝐃𝐃𝑘𝑘 and 𝐑𝐑𝑘𝑘), but the fitted model specification constrains within-class 

covariance matrices to be equal across classes (i.e. 𝐃𝐃𝑘𝑘 = 𝐃𝐃 or 𝐑𝐑𝑘𝑘 = 𝐑𝐑) or even equal to zero 

(i.e. 𝐃𝐃𝑘𝑘 = 𝟎𝟎). It can also be that the true model includes equal within-class covariance matrices 

(i.e. 𝐃𝐃𝑘𝑘 = 𝐃𝐃 and 𝐑𝐑𝑘𝑘 = 𝐑𝐑), a GMM, but is specified such that 𝐃𝐃𝑘𝑘 = 𝟎𝟎, an LCGA or GBTM. 

Covariance overspecification can occur when the true model contains equal random effect 

covariance matrices across classes (i.e. 𝐃𝐃𝑘𝑘 = 𝐃𝐃) or equal residual covariance matrices across 

classes (i.e. 𝐑𝐑𝑘𝑘 = 𝐑𝐑), whilst the model selected for analysis allows for the estimation of class-

specific matrices (i.e. 𝐃𝐃𝑘𝑘 and/or 𝐑𝐑𝑘𝑘). Additionally, overspecification also arises when the true 

model has no random effect variability within classes (i.e. 𝐃𝐃𝑘𝑘 = 𝟎𝟎) but is estimated with such 

variability. In this context, the true model is an LCGA or GBTM, but the assumed model is a 

GMM. General covariance misspecification can occur when fitting a mixture model when one is not 

needed, that is, where the true model consists of a single population (i.e. growth curve model), 

Figure 3.1: An illustration of class separation for two univariate normal densities. 
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but the analysis proceeds assuming population heterogeneity (i.e. LCGA, GBTM or GMM) 

[32]. 

In our paper, we will examine the effects of under- and overspecification on fit statistic 

behaviour, more specifically the effect of incorrectly specifying the 𝐃𝐃𝑘𝑘 matrix. 

3.3. Methods 

3.3.1. Design of the simulation study 

To imitate model specifications frequently and currently used in practice [43,151–153], we limit 

ourselves to the case of underspecification where the true model has 𝐃𝐃𝑘𝑘 = 𝐃𝐃 and 𝐑𝐑𝑘𝑘 = 𝐑𝐑 (i.e. 

a GMM), but is estimated such that 𝐃𝐃𝑘𝑘 = 𝟎𝟎 (i.e. an LCGA or GBTM). In the case of 

overspecification, we investigate the impact where the true model has 𝐃𝐃𝑘𝑘 = 𝟎𝟎 with 𝐑𝐑𝑘𝑘 = 𝐑𝐑 

(i.e. an LCGA or GBTM), but is estimated such that 𝐃𝐃𝑘𝑘 = 𝐃𝐃 (i.e. a GMM). Such equal within-

class covariance matrices is the default specification of most software [140] which is often 

inadvertently selected by practitioners. 

The (true) models for data simulation are: 

• Model 1 (GBTM): With 𝐃𝐃𝑘𝑘 = 𝟎𝟎, and 𝐑𝐑𝑘𝑘 = 𝐑𝐑 = 𝜎𝜎2𝐈𝐈 

• Model 2 (LCGA): With 𝐃𝐃𝑘𝑘 = 𝟎𝟎, and 𝐑𝐑𝑘𝑘 = 𝐑𝐑 = 𝜎𝜎𝜀𝜀𝑡𝑡
2 𝐈𝐈, that is, class-invariant but time-

variant residual variance 

• Model 3 (GMM-I): With class-invariant random intercept and random linear slope 

allowed to covary 𝐃𝐃𝑘𝑘 = 𝐃𝐃, and 𝐑𝐑𝑘𝑘 = 𝐑𝐑 = 𝜎𝜎2𝐈𝐈 

• Model 4 (GMM-II): With class-invariant random intercept and random linear slope 

allowed to covary 𝐃𝐃𝑘𝑘 = 𝐃𝐃, and 𝐑𝐑𝑘𝑘 = 𝐑𝐑 = 𝜎𝜎𝜀𝜀𝑡𝑡
2 𝐈𝐈 

We then study the effect of the chosen misspecifications by considering various fitted 

on true model combinations. These are shown in Table 3.2. The misspecification of the R 

matrix in terms of time-dependency (either time-variant or time-invariant) is beyond the scope 

of this paper, but we do note that GMM with random slopes generates heterogeneity of 

variance across time points and thus may resemble a time-variant in R LCGA. 
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The design conditions underlying the data generating process are informed by 

previous simulation studies and applied research [79,154,155], and are summarised in Table 

3.3 and described below. 

The choice of a sample size of 1000 reflects the median condition in applied studies 

[155]. Furthermore, a minimum sample size of 900 is suggested under conditions of multiple 

classes and low class separation [129]. We also briefly investigate a sample size of 260 for a 

subset of models, as small sample sizes have a demonstrably negative impact on class 

enumeration [127], with 𝑁𝑁 = 200 being the recommended minimum for complete case data 

and high class separation [129]. 

Five repeated measures are chosen to be the lower bound at which to detect non-

linear growth trajectories and to ensure model identifiability [79], especially when including full 

rank covariance matrices and larger 𝐾𝐾. This is expanded to eight to mirror the higher number 

of repeated measures seen in applied GMM research [127]. Moreover, it has been shown that 

increasing the number of time points has a positive effect on classification performance [30]. 

Equally spaced time values over a fixed time interval from zero to seven are chosen, and so for 

𝑇𝑇 = 5, 𝑡𝑡 = 0,1.75,3.5,5.25,7 and for 𝑇𝑇 = 8, 𝑡𝑡 = 0,1,2,3,4,5,6,7. The time interval is the 

same for both T-values to prevent confounding of the effect of number of time points with 

the effect of a change of total follow-up time. 

Table 3.2: True with fitted models considered (Misspecification: a: D underspecified, b: D over-specified, c: D 
correctly specified). 
True Model Fitted Model 
GBTM GBTMc GMM-Ib 
LCGA LCGAc GMM-IIb 
GMM-I GMM-Ic GBTMa 
GMM-II GMM-IIc LCGAa 

Table 3.3: Primary design conditions investigated. 
Design condition Choice Additional features 
Sample size 𝑁𝑁 = 1000  
Number of repeated measures 𝑇𝑇 = 5,8 Equally spaced 
Number of classes 𝐾𝐾 = 4  
Class sizes Equal  
Class separation Low, high 𝐶𝐶𝐶𝐶 = 0.5,2 
Fixed effects Same intercept and different slope 

(NS) 
Different intercept and different 
slopes (CC) 

Quadratic trend 

Random effects None, or intercept and linear slope 
that covary 

Class-invariant 

Errors Time-variant or time-invariant Uncorrelated across time, class-
invariant 
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Most simulation studies in the literature consider two or three true classes. We 

expand upon this by including four classes. We focus primarily on equal class sizes. However, 

we also explore unequal class sizes (𝑘𝑘 = 1 (35%)/𝑘𝑘 = 2 (15%)/𝑘𝑘 = 3 (15%)/𝑘𝑘 =

4 (35%)) for a subset of models since a substantial decrease in the class enumeration accuracy 

of the BIC compared to the AIC and ssBIC has been noted when one class is considerably 

smaller [85]. 

We will impose a 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎  of approximately 0.5 and 2 to reflect low and high class 

separation respectively. The data will be constructed in such a way that each class will be at 

least 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎  units away from each other. 𝑀𝑀𝑀𝑀 and 𝑂𝑂𝑂𝑂𝑂𝑂 are also reported. 

Fixed effects’ parameters are altered according to the degree of class separation (low 

or high) corresponding with our chosen Cohen’s D separation metric. We have chosen a 

second-order polynomial in the fixed effects as it is a flexible function which can capture many 

patterns across time, including monotonic trends, and u- and n-shaped trends as well as parts 

thereof. Two conditions of trajectory growth are studied. One in which trajectories comprise 

the same intercept but different slopes between classes (natural starting (NS) point) and the 

second includes both different intercepts and different slopes between classes. The second 

condition’s functional form mimics the “cat’s cradle” (CC) phenomenon often identified in 

applied health research with a small number of time points [27,156,157]. Sher et al. [156] 

present this pattern empirically in terms of alcohol use over time. Subjects’ alcohol 

consumption in one class starts high and remains high (chronically bad), in a second class it 

starts low and remains low (unaffected/non-drinkers), in a third class it starts high but reduces 

over time (recovery), and in the fourth class it starts low but increases over time (delayed 

onset). 

Lastly, we impose an 𝐑𝐑 that is diagonal, equal across classes, and either time-variant 

or time-invariant. For the 𝐑𝐑 matrix of the GBTM model, each diagonal element is set to equal 

the average of the sum of the diagonals of the full 𝚺𝚺 matrix of the GMM. For the LCGA 

specification, the diagonal elements of the 𝐑𝐑 matrix are set equal to the corresponding diagonal 

elements of the 𝚺𝚺 of the GMM. This strategy is effected so that the total average diagonal 

variation is similar across the design conditions. For conditions with a non-zero 𝐃𝐃 matrix (i.e. 

where the true model is a GMM), the proportion of total average diagonal variation explained 

by the random effects was set to a fixed proportion of approximately 0.5. We enforce a weak 
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positive correlation of 0.1 between random intercept and random linear slope, in line with 

previous studies [36,79,136,141,142]. 

The data generated are of the following general form, 

with 𝑘𝑘 = 1, . . ,𝐾𝐾, 𝑖𝑖 = 1, … ,𝑛𝑛, 𝛽𝛽0𝑘𝑘,𝛽𝛽1𝑘𝑘 and 𝛽𝛽2𝑘𝑘 are fixed effects quantifying the population 

average growth curve for class 𝑘𝑘, and 𝑏𝑏0𝑖𝑖𝑘𝑘  and 𝑏𝑏1𝑖𝑖𝑘𝑘  are random effects that allow for individual 

differences from the average growth curve of class 𝑘𝑘. In the case of LCGA and GBTM, 

random effects are not included. Figures 3.2 and 3.3 show the different trajectory shapes of 

selected true GMM-I models for different parameter sets. All considered models’ parameters 

are found in the Supplementary Material (SM). 

3.3.2. Simulation procedure 

Longitudinal repeated measures data conforming to our true models were generated in R 

v3.6.3. The fitted models were estimated using the R package Mplus Automation [107], which 

interfaces directly with Mplus [26]. We used Mplus v7.3 for our analysis and ggplot2 in R [158] 

for the plotting of figures. 

Subjects were first assigned to classes according to the chosen class size, e.g. for 𝑁𝑁 =

1000,𝐾𝐾 = 4 and equal classes, there were exactly 250 subjects in each class. Then, a vector of 

random effects for each subject in a class was generated according to 𝒃𝒃𝑖𝑖𝑘𝑘~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝐃𝐃𝑘𝑘). A 

vector of continuous repeated measures (𝒚𝒚𝑖𝑖) for that subject within a class was then generated 

according to Eq. 3.7. This process was repeated 200 times for each of the 32 design conditions 

in Table 3.3 to generate independent datasets, giving a total of 6400 simulated datasets. Each 

generated dataset was used as input in the subsequent Mplus Automation step where both the 

true and misspecified 𝐃𝐃𝑘𝑘 models, as given in Table 3.2, were fitted over 𝐾𝐾 = 1,2, … ,10 

producing 6400 × 2 × 10 = 128 000 estimated models. Anticipating that 200 replications 

may be too few, we ran 1000 replications for select conditions but did not observe marked 

differences in the results. We, therefore, adhered to 200 replications, which is in line with other 

published FMM research [82,159,160]. 

For model estimation, we bore in mind that longitudinal FMMs are notoriously 

sensitive to starting values for model parameters [160]. Selecting too few starting values may 

negatively impact the chance of finding the global solution, whilst too many may return 

 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 = �𝑏𝑏0𝑖𝑖𝑘𝑘 + 𝛽𝛽0𝑘𝑘� + �𝑏𝑏1𝑖𝑖𝑘𝑘 + 𝛽𝛽1𝑘𝑘�𝑡𝑡 + 𝛽𝛽2𝑘𝑘𝑡𝑡2 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘  (3.7) 
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improbable combinations, likely leading to nonconverged solutions and zero class sizes. 

Therefore, in line with research [79,160] and practical [26] recommendations, for a thorough 

investigation of the likelihood surface, we instructed Mplus to use 100 random sets of starting 

values for all model parameters of a given model on a given run. The program was then 

ordered to run through 20 iterations on each of these sets. Next, the program was directed to 

use the 10 sets yielding the highest log-likelihood from the first stage as starting values in the 

final stage optimisation until convergence criteria were met. The model with the highest log-

likelihood from this stage was used as the basis for further analysis. Any nonconverged 

solutions were discarded, with the proportion of non-convergence out of all 200 runs 

computed per design combination per true model per fitted number of classes never exceeding 

5%. For 96% of the cases, non-convergence was below 1% (See SM Section S.2). If non-

convergence exceeded 2%, this was always for true or fitted model GMM, T=8, low 

separation, and number of fitted classes exceeding 5 (See SM Table S.3). 

3.4. Results 

3.4.1.  Accuracy of class extraction in relation to design conditions and D 
misspecification 

The impact of design conditions and D misspecification on the probability of class extraction 

was investigated with two logistic regression analyses; one using as outcome correct versus 

incorrect extraction and including all cases (logistic model 1 – LM-I), and one using as 

outcome over- versus underextraction and including only cases of incorrect extraction (logistic 

model 2 - LM-II). The 𝐾𝐾 chosen from the fitted models corresponded to that 𝐾𝐾 at which the 

IC value was lowest or the sE highest. The abundance of interactions found in these analyses 

between true model and every other design factor in Table 3.3 justified separate logistic 

regression analyses on subsets of the data to facilitate interpretation. Subset (a) included true 

GMM-I and GMM-II, whilst subset (b) considered true GBTM and LCGA. These subsets 

corresponded to examining under- and overspecification of D respectively (See SM Section 

S.3.1 for full logistic regression results). 

In the subset analyses, two-way interactions were included to test whether the effect 

of D misspecification on 𝐾𝐾 extraction depended on the level of the design condition (e.g. low 

versus high class separation) and also on the fit statistic (e.g. AIC versus BIC). Further, 

interactions between the fit statistic and design conditions were also considered. Likelihood  
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Figure 3.2: True GMM-I with NS scenario for fixed effects, 𝑻𝑻 = 𝟖𝟖 and time-invariant 𝑹𝑹. 
True Model GMM-I 
Class 
separation 

Low High 

(Minimum)  𝑪𝑪𝑪𝑪 = 0.5,𝑀𝑀𝑫𝑫 = 0.91,𝑶𝑶𝑶𝑶𝑶𝑶 = 0.8 𝑪𝑪𝑪𝑪 = 2,𝑴𝑴𝑴𝑴 = 3.64,𝑶𝑶𝑶𝑶𝑶𝑶 = 0.36 
Population 
curve plot 
(with +/- 
1.96 SD) 

  
Random 
effects:  

  

(co)variances 𝐃𝐃𝑘𝑘 = 𝐃𝐃 = � 0.8 0.018
0.018 0.04 � 𝐃𝐃𝑘𝑘 = 𝐃𝐃 = � 0.8 0.018

0.018 0.04 � 

𝐑𝐑 1. 5 × 𝐈𝐈8×8 1. 5 × 𝐈𝐈8×8 
 

Figure 3.3: True GMM-I with CC scenario for fixed effects, 𝑻𝑻 = 𝟖𝟖 and time-invariant 𝑹𝑹. 
True Model GMM-I 
Class 
separation 

Low High 

(Minimum)  𝑪𝑪𝑪𝑪 = 0.5,𝑴𝑴𝑴𝑴 = 0.89,𝑶𝑶𝑶𝑶𝑶𝑶 = 0.80 𝑪𝑪𝑪𝑪 = 2,𝑴𝑴𝑴𝑴 = 3.56,𝑶𝑶𝑶𝑶𝑶𝑶 = 0.39 
Population 
curve plot 
(with +/- 
1.96 SD) 

  
Random 
effects: 

  

(co)variances 𝐃𝐃𝑘𝑘 = 𝐃𝐃 = � 0.8 0.018
0.018 0.04 � 𝐃𝐃𝑘𝑘 = 𝐃𝐃 = � 0.8 0.018

0.018 0.04 � 

𝐑𝐑 1.5 × 𝐈𝐈8×8 1. 5 × 𝐈𝐈8×8 
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ratio tests were conducted to ascertain whether the included interactions yielded a significantly 

better fit. Many of these interactions were significant. Of particular note were; the interactions 

between (1) the fit statistic and class separation across all logistic regression analyses, (2) the 

fitted D and fit statistic in all logistic models (except LM-II(b)), and (3) the fitted D and class 

separation level across all logistic models (except for LM-II (a)). These interactions are 

displayed in Figure 3.4 (to be discussed in greater detail) and Appendix Figure B.1-Figure 

B.3, which show the patterns and sizes of the effects of the design conditions on class 

enumeration performance for each criterion. 

Figure 3.4 presents the estimated probabilities of 𝐾𝐾 extraction for the fit statistics 

under natural starting point (NS) and eight time points (T=8) for all logistic models 

considered. The remaining combinations of NS/CC and T=5/T=8 are presented in the 

Appendix. These figures were chosen since they respect the prominent interactions of fitted 

D with class separation and fit statistic. 

The findings of LM-I (outcome: correct class extraction) displayed in Figure 3.4 (a) 

are multifaceted. First, it shows that, irrespective of class separation, all IC fit statistics had a 

low probability of selecting the true 𝐾𝐾 when D was underspecified (i.e. true model is GMM, 

fitted model is GBTM/LCGA). Further, under high class separation, BIC and ssBIC 

performed almost perfectly for fitted models with D overspecification (i.e. true model is 

GBTM/LCGA, fitted model is GMM) or correct specification, whereas the AIC and sE 

performed substantially worse. By contrast, all fit statistics performed poorly under low class 

separation irrespective of the D specification, although the AIC generally performed slightly 

better than the other fit statistics if D was correctly specified or over-specified. The effect of 

the number of time points, time-variant versus time-invariant R for all fitted models and fit 

statistics on correct class extraction was inconspicuous compared to the effect of class 

separation (See the Appendix). 

Figure 3.4 (b) shows the results of LM-II (over- versus underextraction). Here, 

regardless of class separation, for underspecified D, the IC fit statistics had a 100% probability 

of over-extraction (given incorrect extraction). For D over- or correct specification, all IC fit 

statistics showed a high probability to overextract under high separation and under-extract 

under low separation. sE, however, showed converse behaviour, under- and over-extracting 

under high and low separation respectively. 
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To conclude, all fit statistics performed poorly in terms of correct 𝐾𝐾 extraction under 

low separation, with BIC and ssBIC performing the worst. Under high separation, BIC 

performs best, followed by the ssBIC. Furthermore, under high separation, underspecification 

of D is associated with a high risk of incorrect class extraction for the IC fit statistics, whereas 

overspecification of D for all fit statistics shows little risk of incorrect 𝐾𝐾 extraction, particularly 

for the BIC and ssBIC. Moreover, among the cases that were incorrectly extracted, 

underspecification of D is associated with a high risk of over-extraction by the IC statistics 

Figure 3.4: Estimated probabilities of K correct (upper half) or of over-extraction given incorrect K (lower half) 
for true by fitted model under low/high class separation given conditions: Natural starting point, T=8 repeated 
measures. Left half concerns models GMM-I and GBTM, right half concerns models GMM-II and LCGA. 
a.) K correct (Y=1 if K is correct, Y=0 if K≠4): Results from LM-I(a)-(b). 

  
b.) K over (Y=1 if K>4, Y=0 if K<4): Results from LM-II(a)-(b). 
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regardless of class separation. For over- and correct specification of D, IC fit statistics tended 

to overextract under high separation and under-extract under low separation, among the subset 

of cases with incorrect extraction. 

3.4.2. Identifiable patterns of fit statistic curves across all conditions 

3.4.2.1. Screeplot behaviour 

Each of the 32 simulation design conditions considered in Table 3.3 for the true model 

yielded fit statistic curves and summary bar charts. Given space constraints, only two of these 

conditions are presented in Figures 3.5 and 3.6, but the corresponding figures for all design 

conditions are provided in SM Section S.4. Each figure condenses the output information of 

200 simulations (runs) for one design condition. For each fit criterion (rows), three distinct 

plots are shown (columns): the fit statistic curve given as the average over 200 runs at each 

number of classes (left), frequency distribution of the number of turning points of the fit 

statistics’ curve of a single run (middle), and frequency distribution of the final selected 𝐾𝐾 

(right). This information is provided in each subplot separately for each fitted model. A turning 

point for AIC, BIC and ssBIC is defined as a point 𝐾𝐾 where 𝐼𝐼𝐼𝐼(𝐾𝐾) < 𝐼𝐼𝐼𝐼(𝐾𝐾 − 1)  and 

𝐼𝐼𝐼𝐼(𝐾𝐾) < 𝐼𝐼𝐼𝐼(𝐾𝐾 + 1). For sE this is defined as a point 𝐾𝐾 where 𝑠𝑠𝑠𝑠(𝐾𝐾) > 𝑠𝑠𝑠𝑠(𝐾𝐾 − 1) and 

𝑠𝑠𝑠𝑠(𝐾𝐾) > 𝑠𝑠𝑠𝑠(𝐾𝐾 + 1). 

Figure 3.5 (true model = GMM-I) shows that when a GBTM is fitted (i.e. 

underspecified 𝐃𝐃), the IC statistics exhibit clear plateauing behaviour given their continual 

improvement as 𝐾𝐾 increases (left column). Furthermore, the general absence of turning points 

(middle column) highlights their proclivity to overextract as the maximum considered 𝐾𝐾 = 10 

is always selected (right column). This conforms with the findings in Figure 3.4, showing the 

ICs’ high probability of incorrect extraction for underspecified in D models (Figure 3.4 (a)), 

see True: GMM-I Fitted: GBTM, specifically over-extraction (Figure 3.4 (b)). This pattern is 

repeated throughout conditions where underspecified models are fitted (see SM Section S.4). 

For a correctly specified GMM, both the BIC and ssBIC are highly accurate and stable 

showing a large majority of one turning point at 𝐾𝐾 = 4. sE exhibits erratic and inaccurate 

performance compared to the BIC and ssBIC for the true model. AIC shows a tendency to 

overextract, even under the correct model. Again, these observations conform to the logistic 

regression results (Figure 3.4) which highlights the poor accuracy of the AIC and sE relative 

to the BIC and ssBIC. 
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In Figure 3.6 (true model = GBTM), the BIC and ssBIC of both correct and over-

specified models extract the correct 𝐾𝐾. In contrast, the sE for correct D and the AIC for both 

correct D and over-specified D shows lower accuracy. The BIC and ssBIC do not show 

plateauing behaviour as there is a single turning point. This pattern recurs in similar cases (see 

SM Section S.4) indicating that the risk of an incorrect 𝐾𝐾 under overspecification appears  

Figure 3.5: Fit statistic behaviour for true 4 class GMM-I with natural starting point, high class separation and 𝑻𝑻 =
𝟖𝟖. Left column: The average fit statistic value over all runs (ordinate axis) against the number of estimated classes 
(abscissa); middle column: Frequency of the number of turning points in the individual fit statistic curves (𝑛𝑛=200 
runs); right column: frequency of specific 𝐾𝐾 being selected. 

   
Note: Turning point for AIC, BIC and ssBIC is defined as a point 𝐾𝐾 where both 𝑰𝑰𝑰𝑰(𝑲𝑲) < 𝑰𝑰𝑰𝑰(𝑲𝑲− 𝟏𝟏) and 
𝑰𝑰𝑰𝑰(𝑲𝑲) < 𝑰𝑰𝑰𝑰(𝑲𝑲 + 𝟏𝟏). For sE, a turning point is defined as a point 𝐾𝐾 where both 𝒔𝒔𝒔𝒔(𝑲𝑲) > 𝒔𝒔𝒔𝒔(𝑲𝑲− 𝟏𝟏) and 
𝒔𝒔𝒔𝒔(𝑲𝑲) > 𝒔𝒔𝒔𝒔(𝑲𝑲+ 𝟏𝟏). 
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small with high separation. 

It is noticeable that the average scree plot of the various IC fit statistics (which 

approximately matched the individual scree plots, one per simulated dataset) (See SM Section 

S.4) is smooth (i.e. gradual improvement in IC) for underspecified models, that is, when the 

true model is a GMM and a GBTM or LCGA is fitted. By contrast, the curves are jagged (i.e. 

quick uneven improvement in IC to an elbow, with no or hardly any improvement in the IC 

beyond the true 𝐾𝐾) for correct or over-specified models, that is, when a GBTM or LCGA is 

Figure 3.6: Fit statistic behaviour for true 4 class GBTM with natural starting point, high class separation and 𝑻𝑻 =
𝟖𝟖. Left column: The average fit statistic value over all runs (ordinate axis) against the number of estimated classes 
(abscissa); middle column: Frequency of the number of turning points in the individual fit statistic curves (n=200 
runs); right column: frequency of specific K being selected. 

   
Note: Turning point for AIC, BIC and ssBIC is defined as a point K where both 𝑰𝑰𝑰𝑰(𝑲𝑲) < 𝑰𝑰𝑰𝑰(𝑲𝑲− 𝟏𝟏) and 
𝑰𝑰𝑰𝑰(𝑲𝑲) < 𝑰𝑰𝑰𝑰(𝑲𝑲 + 𝟏𝟏). For sE, a turning point is defined as a point K where both 𝒔𝒔𝒔𝒔(𝑲𝑲) > 𝒔𝒔𝒔𝒔(𝑲𝑲− 𝟏𝟏) and 
𝒔𝒔𝒔𝒔(𝑲𝑲) > 𝒔𝒔𝒔𝒔(𝑲𝑲+ 𝟏𝟏). 
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the true model underlying the data and a GBTM, LCGA or GMM is fitted. This noticeable 

pattern may assist practitioners in refining their model’s covariance structure as the 

smoothness indicates the necessity for random effects or a respecification of the covariance 

structure. 

3.4.2.2. Fit statistic behaviour across all simulation conditions 

Figure 3.4 summarizes the results of only four of all 32 simulation conditions whilst Figures 

3.5 and 3.6 do so for one condition each. Therefore, to visualise patterns within the data for all 

32 simulation conditions, heatmaps [161] are presented. These heatmaps summarise the 

outputs of all the crossed true model by fitted model simulations for time-invariant (Figure 

3.7) and time-variant (Appendix Figure B.4) 𝐑𝐑 conditions respectively. The results of the 200 

simulations per design condition (rows), per fitted model and per fit criterion (columns) are 

summarised by two cells in separate but complementary heatmaps within Figure 3.7 

(respectively Appendix Figure B.4): 

• each cell in panel A (for IC fit statistics) or panel C (for scaled Entropy) displays the 

proportion of correct 𝐾𝐾 extracted by the fit statistic out of all runs for each design 

condition, 

• each cell in panel B (for IC fit statistics) or panel D (for scaled Entropy) shows the 

modal 𝐾𝐾 (i.e. the most frequent 𝐾𝐾 extracted by a fit statistic) for each design 

condition. 

Combined, the two cells for a given condition inform whether the fit statistics 

performed well in terms of extracted 𝐾𝐾 accuracy (panels A and C) under each design by fitted 

model condition, whilst simultaneously hinting at their underlying fit statistic curve behaviour 

(panels B and D). 

Each panel is divided into 4 quadrants. The top left quadrant corresponds to 

underspecification of D, the bottom right quadrant represents overspecification of D, and the 

remaining two quadrants correspond to correct specification. Within panels, the 𝑥𝑥-axis 

corresponds to the fitted model and its associated fit statistic, e.g. GBTM (ssBIC) shows that a 

GBTM was fitted with its ssBIC output given. The 𝑦𝑦-axis shows the true model and its 

underlying design conditions, with the naming convention of TrueModel_Trajectory  
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Figure 3.7: Heatmaps of the proportion correct 𝐾𝐾=4 (panels A and C) and modal 𝐾𝐾 (panels B and D) extracted by 
different fit statistics for different fitted models under time-invariant R conditions (GBTM, GMM-I). Ordinate axis 
coded as H/L_NS/CC_8/5 indicating: Class separation: H(igh) or L(ow), Trajectory shape: N(atural) S(tart) or 
C(at’s) C(radle), and Time points: 8 or 5. All panels: Quadrants clockwise from upper left: 1.) Underspecified 
GBTM, 2.) Correctly specified GMM, 3.) Over-specified GMM, 4.) Correctly specified GBTM.  
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shape_Degree of class separation_Number of repeated measures. For example, the 

performance of the AIC for a GBTM fitted to a true GMM-I with a natural starting point and 

high class separation for 8 measurements (row 1 in Figure 3.5) corresponds to the coordinate 

(Panel: A and C, Row: GMM-I_NS_H(igh)_T=8, Column: GBTM(AIC)) in Figure 3.7. The 

results in the heatmaps are arranged such that the upper half of each panel corresponds to true 

GMM models, and the lower half to either true GBTM (Figure 3.7) or LCGA (Appendix 

Figure B.4) models. Within each half, the results are further divided by class separation, then 

trajectory shape, and finally the number of repeated measures. 

To facilitate interpretation, consider light cells in panel A of Figure 3.7. These cells 

have low proportions of correct 𝐾𝐾 extraction. However, these cells on their own do not 

indicate whether the fit statistics extracted more or fewer classes than the correct 𝐾𝐾, just that 

𝐾𝐾 = 4 was selected hardly ever in all the 200 runs. The additional nuance of under- or over-

extraction is found in the corresponding cell in panel B. Here, given A, if the cell in B is also 

light, e.g. for (GMM-I_NS_H_T=8, GBTM(AIC)) the modal 𝐾𝐾 = 10, this signifies class over-

extraction. This occurs mainly if the true model is GMM and the fitted model is GBTM, that 

is, if the covariance matrix D is underspecified. The fact that this over-extraction is 

accompanied by a plateauing behaviour of the fit statistic curve is confirmed by considering 

both the left and middle columns of Figure 3.5 (or associated Supplemental figures) as 

discussed previously. By contrast, if the cell is light in A, but dark in B (bottom right quadrant), 

this is an indication of underextraction by the fit statistic i.e. the fit statistic curve reached a 

minimum point before the correct 𝐾𝐾. This occurs if D is correctly specified or over-specified, 

combined with low class separation. 

Consider now the darkest cells in panel A which display the highest accuracy of 

correct 𝐾𝐾 extracted (upper half of top right quadrant and of both bottom quadrants). Their 

counterparts in panel B confirm that the fit statistics excelled in selecting a modal 𝐾𝐾 = 4. This 

optimal extraction performance again transpires in exemplar Figure 3.6 (considering 

GBTM_NS_H_T=8, GBTM(BIC,ssBIC)): these IC fit statistics curve had a clear (elbow) 

minimum turning point at the correct 𝐾𝐾 = 4, with no improvement in the curve beyond the 

true K (left) and highest frequency of one turning point (middle). 

The heatmaps thus encapsulate unfolding fit statistic patterns over increasing 𝐾𝐾, 

whilst directing attention to specific combinations of design conditions and fitted models (𝑥𝑥- 

and 𝑦𝑦-axes), in which standout curve behaviours are observed. 
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Information criteria (IC) for time-invariant R (Figure 3.7 A and B): What is 

immediately apparent is the large number of zero proportion correct 𝐾𝐾 in panel A. These are 

seen when fitted models are underspecified in D (the upper left quadrant of panel A) or for 

low class separation (rows 5-8 and 13-16 from the top) independent of whether D is over-, 

under- or correctly specified. For high separation (rows 1-4 and 9-12), we notice with correct 

specification of D (upper half of upper right quadrant and of lower left quadrant of panel A) 

and with overspecification of D (upper half of the bottom right quadrant of panel A) high 

accuracy of the ICs, which in most cases exceeds 98% correct. However, the AIC is 

considerably less accurate than the BIC and ssBIC. 

Linking the above-identified behaviour to panel B, we see that under high class 

separation and underspecified D this is associated with a modal 𝐾𝐾 = 10 in a vast majority of 

cases – in line with plateauing behaviour (see SM scree and turning point bar plots) and the 

associated risk of over-extraction. Under low class separation, underspecified D is still 

associated with over-extraction exhibiting a high modal 𝐾𝐾 where most cases exceed 𝐾𝐾 = 8. 

Therefore, when the IC of fitted GBTM selects considerably more classes than a fitted GMM, 

this may point to underspecification in terms of D. For high separation, the over-specified or 

correctly specified in D models (associated with the darker regions) show a low risk of over-

extraction where they almost always have a modal 𝐾𝐾 at the true 𝐾𝐾. Moreover, under conditions 

of low separation for correctly specified and over-specified models we notice the tendency of 

ICs to under-extract classes. 

sE for time-invariant R: sE also performs better under high class separation, but its 

performance is inconsistent. In particular, the sE does not appear to perform better in class 

extraction if the correct model is fitted than if an under- or over-specified model is fitted. 

The findings of time-variant R (shown in Appendix Figure B.4) are similar to time-

invariant R. This is in line with our logistic regression results, which confirms that the effect of 

the level of R is small relative to those of class separation and of D specification. 

To conclude, it appears that when the true model is fitted under high class separation, 

the best IC fit statistic is most often observed at or close to the true 𝐾𝐾 showing a clear elbow. 

If an underspecified model, GBTM respectively LCGA, is fitted to a true GMM-I and GMM-

II respectively, it is frequently observed that the AIC, BIC and ssBIC fit statistics continue to 

improve as 𝐾𝐾 increases (plateauing behaviour). No useful fit curve behaviour for sE can be 

found. Lastly, fit statistic class enumeration behaves poorly under low class separation, but the 
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patterns identified under high separation repeats in the low separation conditions, however 

with the modal 𝐾𝐾 being lower (see SM Section S.4). 

3.4.3. Unequal class sizes and small sample size 

Whether the patterns identified above also hold for select models with unequal class sizes (two 

classes of 35%, two of 15%) or small sample size (N=260) was briefly investigated. Only 

conditions of high separation (as low separation has already been shown to be detrimental to 

class extraction), NS and CC, T=8 and time-invariant R, were considered. 

The ICs perform similarly under unequal classes (Appendix Figure B.5). However, 

compared to equal classes, the over-extraction behaviour of underspecified models in D is 

more pronounced under unequal classes given cat’s cradle as they show a higher relative 

frequency of modal 𝐾𝐾 = 10. The BIC remains accurate with correctly specified and over-

specified models. sE again performs poorly and erratically under correctly fitted models. 

Finally, the plateauing and elbow behaviour identified previously also holds under unequal 

class sizes (see SM Section S.4.3). 

Under small sample conditions (Appendix Figure B.6), the previously identified 

behaviour of the ICs is retained. The BIC performs better than the other ICs, but does suffer a 

decrease in accuracy under correctly specified GMM-I and over-specified GMM-I under CC 

compared to the large sample condition. We also take note of the decrease in accuracy of the 

ssBIC under small samples, which is noticeable given that it is meant to perform better under 

small samples [68]. The sE appears to perform better in small samples than in large samples, 

with 8/12 of the crossed models having a modal 𝐾𝐾 = 4 frequency of above 50%, but in 

general, remains an unreliable class enumeration measure. Moreover, plateauing and elbow 

behaviour of the IC fit statistics associated with the level of D specification is still clearly 

evident under small sample sizes (SM Section S.4.4). 

3.5. Application 

In this Section, we will show how an appropriate covariance structure for a longitudinal finite 

mixture model can be selected using the fit statistic behaviour as an aid. We consider the log-

transformed self-reported alcohol consumption (𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖∗ = log (𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 1)) of 𝑛𝑛=908 individuals 

from a former longitudinal FMM study [43]. 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 is the total volume of weekly consumption 

(in glasses) of subject 𝑖𝑖 measured at four time intervals (𝑡𝑡 = 1 Youth: 12–18 years,  𝑡𝑡= 2 Young 



3.5. Application 

75 

 
 

 

adult: 19–27 years, 𝑡𝑡 = 3 Adult: 28–44 years, 𝑡𝑡 = 4 Middle age: 45–60 years). The specifications 

of the models fitted to the data conform to GBTM, LCGA, GMM-I and GMM-II considered 

in this paper. Model pairings for comparison in line with our study would be GBTM with 

GMM-I and LCGA with GMM-II. In line with a previous study [140], each class trajectory is 

modelled as a quadratic function of time, such that, 

with the specific polynomial and equation parameters conforming to Eq. 3.7. The objective of 

such an exercise is to identify classes of individuals following distinct trajectories of alcohol 

consumption over time. 

The IC fit statistic curves of the estimated models are displayed in Figure 3.8. We exclude sE 

as we have established that it exhibits no discernible pattern in identifying covariance 

misspecification. A plateauing behaviour of the IC statistics for the fitted GBTM and LCGA is 

evident, as all curves have a minimum value at 𝐾𝐾 = 10 (which is the maximum 𝐾𝐾 examined). 

For the ICs, both GMM models show clear turning points at a 𝐾𝐾 consistently lower than the 

associated GBTM or LCGA. The ICs for GMM-I suggest a 𝐾𝐾 between 5 and 8 classes, whilst 

for GMM-II they all point to 6 classes. This preliminary evidence, taken together, hints at the 

LCGA and GBTM being underspecifications of the covariance structure of the data. They are, 

therefore, inconclusive. When presented with such fit statistic behaviour, the researcher is 

advised to explore models that allow for a more complex covariance structure. Accordingly, 

good candidate models to explore further include the GMM-I and GMM-II with their more 

general covariance structure. These models can then be further refined in sequential steps as 

has been suggested by other authors [50,99,121,140]. Such refinements would include 

(amongst others) inspection of models for non-convergence, non-identifiability, checking the 

significance of fixed effects parameters, class separation, and ascertaining distinctiveness of 

trajectories [140]. As an illustration, using the available OVL R code (in the SM), we computed 

the magnitude of the class separation among the 𝐾𝐾 = 6 trajectories (shown in the SM) for the 

GMM-II model. This yielded OVLs ranging from 0.197 (between trajectories 2 and 4) to 0.73 

(between 3 and 4), indicative of high to moderately low class separation levels (See Appendix 

Table B.1). 

  

 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖∗𝑘𝑘 = �𝛽𝛽0𝑘𝑘 + 𝑏𝑏0𝑖𝑖𝑘𝑘 � + �𝑏𝑏1𝑖𝑖𝑘𝑘 + 𝛽𝛽1𝑘𝑘�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘  (3.8) 
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3.6. Discussion 

3.6.1. Research questions recalled 

Given the above results, we can answer our research questions: 

(1) Is a plateauing behaviour (or other peculiar behaviour) of the fit statistics under the 

fitted model a relic of covariance misspecification? 

We find that underspecification of the D matrix (random effects structure) across all 

considered design conditions leads to a continual improvement, and associated plateauing 

Figure 3.8: Fit statistic curves of estimated models (optimum fit statistic value at bold shape). 
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behaviour in the IC fit statistic (AIC, BIC, ssBIC) as fitted 𝐾𝐾 increases. These underspecified 

models do not adequately capture the underlying variability (contained in D), which increases 

the likelihood of over-extraction. This covariance misspecification is, thus, encapsulated as 

spurious latent classes [33]. No useful consistent pattern for sE fit curves across fitted models 

is easily identifiable. 

(2) How sensitive in terms of class enumeration are these fit statistics to covariance (D) 

misspecification under various data features (e.g. class separation, number of time 

points)? 

The ICs, especially the BIC and ssBIC, of over-specified and correctly specified models 

enumerate accurately under high separation. The sE under similar conditions performs worse 

than the BIC and ssBIC. However, under low separation, all fit statistics perform poorly with 

the ICs tending to under-extract whilst the sE overextracts. For all levels of D misspecification, 

the effect of the number of repeated measures, time-variant versus time-invariant R¸ and NS 

versus CC on correct 𝐾𝐾 extraction by IC fit statistics is considerably lower than the effect of 

class separation. 

(3) Do identified fit statistic patterns assist in finding the correct model? 

We posit that if the ICs of a fitted GBTM or LCGA continually improve as 𝐾𝐾 increases, then 

this is indicative of covariance underspecification. This position is even more compelling if a 

GMM fitted to the same data yields a better fit in terms of IC fit statistics at a considerably 

lower 𝐾𝐾. In this case, the guidance provided by the ICs (namely the number of classes) for the 

GBTM or LCGA may be misleading and prone to over-extraction. A thorough investigation of 

the proposed covariance structure and model is then warranted. 

If an over-specified GMM is fitted where an LCGA or GBTM would suffice, the 

value of the IC fit statistics for all three fitted models tends to be lowest and similar at the true 

𝐾𝐾 motivating the selection of the more parsimonious (i.e. GBTM or LCGA) model. This can 

be confirmed using likelihood ratio tests (LRTs) [140] such as the adjusted Lo-Mendell-Rubin 

LRT (aLMR) [78]. Finally, no identifiable diagnostic pattern for the sE was found. 

3.6.2. Fresh insights and recommendations 

Some further insights can be gleaned from our results, which debunk, confirm and/or 
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complement several widely held opinions about FMM class extraction: 

• Firstly, although the ICs of an over-specified GMM are less likely to extract spurious 

classes than the ICs of an underspecified GBTM or LCGA under high separation, 

they, all perform poorly under low class separation. Here, the ICs of the over-

specified GMM underextracts, whilst the ICs of the underspecified GBTM and 

LCGA continue to overextract, which complements established research [82,85,162]. 

Crucially, with low separation, the addition of random effects is not a panacea and 

could potentially collapse clinically meaningful classes with distinct patterns of change 

into a single class. 

• Secondly, under high separation, the AIC shows a greater tendency to incorrectly 

extract classes (compared to BIC and ssBIC), even under correctly specified models. 

The BIC was the most accurate class enumeration fit statistic, followed by the ssBIC, 

but as with AIC, they tend to overextract when D is underspecified. Under low 

separation, all fit statistics perform poorly. 

• Thirdly, the use of sE for model selection during class enumeration has been 

cautioned against [163]. Our findings warrant this cautionary tone. 

• Fourthly, the notion that the risk of over-extraction is high in particular for larger 

samples (𝑁𝑁>1000) [27,32,67,159] is not fully correct. We have shown that 

underspecification of D can lead to over-extraction even for smaller sample sizes 

(𝑁𝑁=260). 

Additionally, it must be emphasised that the fit statistic criteria only serve as a guide 

in determining the number of classes. The final decision of how many classes to extract is not 

an automatic process and demands considerable involvement from the researcher at every step 

of model fitting. This includes the judicious use of statistical analysis and substantive 

interpretation [99,121]. Considering our research findings, we recommend that: 

• If a plateauing behaviour of ICs for GBTM and LCGA is evident, a visual inspection 

of the estimated mean trajectories within each class is warranted (particularly if 

practitioners do not have access to GMM capable software). Higher 𝐾𝐾 solutions 

showing classes not substantively different from each other (e.g. trajectories that are 

either parallel, have especially low class separation, or exhibit very small or null class 

sizes) should be discarded and a more parsimonious model selected. Example code 
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for OVLs, i.e. the class separation index, is provided in the SM. Researchers are 

advised to compute the OVLs among the trajectories as an adjunct to assess the 

quality of class extraction. 

• If there are multiple candidates for 𝐾𝐾 based on the BIC, then likelihood ratio tests 

such as the adjusted Lo-Mendell-Rubin LRT (aLMR), substantive interpretation and 

visual inspection of trajectories could assist in further refining 𝐾𝐾 [50,99,121,140]. 

• In scenarios suggesting underextraction, in particular under low class separation, 

researchers are advised to carefully evaluate the distinctiveness of the longitudinal 

profiles of candidate models, whilst considering their theoretical relevance. One could 

check for multimodality or a wide mode of the residual distribution per time point 

(for GBTM), or of the random effect distribution of the intercept and slope (for 

GMM), with deviations from normality being indicative of possible underextraction. 

Failure to address this may lead to wrong inferences such as an incorrect standard 

error of the class trajectory slope and the slope itself may be biased. We have, 

however, not explored this possibility in this paper. 

3.6.3. Class enumeration: Reification and validation 

In empirical sciences, FMMs are widely used for clustering purposes. Lesser known is that 

FMMs can be used to approximate oddly shaped distributions using a mixture of normal 

distributions, with specific applications in handling non-normal data including missing values 

[164,165] and outlier detection [166]. In a clustering context, however, this ability to 

approximate a non-normal distribution becomes a liability. In 2003, Bauer and Curran [36] 

drew attention to this by demonstrating that FMMs uncover spurious latent classes in one-

class, non-normal data. Since then, other studies have replicated GMMs’ over-extracting 

tendency [167] within a clustering context, with a solution for that developed and implemented 

using robust non-normal skewed distributions [103,168,169]. We did not address models’ and 

fit-criteria’ performances under violations of distributional assumptions, and further 

simulations should explore whether our findings can be replicated under such circumstances. 

Moreover, the vicissitudes of class enumeration make the ‘reification fallacy’ [35] 

admonition as relevant as ever. The caution that one should refrain from interpreting latent 

classes as true entities, particularly in exploratory studies, is seldom misplaced. However, this 

issue pertains more to the external (as against internal) validation of the classes. For instance, 
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two recent developments in FMMs applications substantiate a more theoretically founded 

interpretation of identified trajectories, specifically through criterion validity (genotyping) 

[170,171] or replicability of findings (meta-analyses) [172]. In these cases, a more lenient 

posture towards classes’ reification may be justified. 

3.6.4. Limitations 

We acknowledge the limitations of this study, which includes the focus on continuous repeated 

measures as encapsulated by a multivariate normal link function (as in Eq. 3.2). It would be 

instructive to investigate such emergent fit statistic patterns for different data types (e.g. count 

and binary data). Parameter recovery of the extracted trajectories when the correct 𝐾𝐾 is 

selected was not considered as our focus was on establishing fit statistic curve behaviour under 

different D misspecification. However, preliminary visual inspection of the trajectories when 

the known simulated 𝐾𝐾 is selected (under high separation, correct and over-specified D) 

suggests that the recovery of trajectories’ temporal paths and class sizes is sound. 

3.7. Conclusion 

This paper has shown via extensive simulation that fit statistic curve behaviour can be a 

valuable diagnostic tool assisting model selection. Hence, practitioners of longitudinal FMM 

are advised to plot and inspect the fit statistics’ patterns of change as a function of increasing 

𝐾𝐾 during class enumeration. These plots engender a better understanding of data features 

which underlie problematic behaviour of model fit statistical indices, helping to identify 

possible covariance misspecification. Notably, a continual improvement of the IC for fitted 

GBTM and LCGA as the researcher increases the number of classes is a clear indication of the 

models not adequately capturing the underlying covariance structure (underspecification), 

which then manifests into spurious latent classes. As a tool, these plots represent an additional 

step in following a transparent and methodological approach when fitting longitudinal FMM 

[6,99,121,140]. 

Finally, the OVL may serve an ancillary role in model fitting by first establishing the 

level of class separation between extracted trajectories, and thus the quality of class extraction 

before further refinements in the model fitting process. For cases of low separated classes, 

researchers will need to go beyond fit-criteria to transparently substantiate their choices, such 

as using complementary criteria (e.g. theoretical justification, residual plots). 
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Appendix B.  
Figure B.1: Estimated probabilities of K correct (upper half) or of over-extraction given incorrect K (lower half) 
for true by fitted model under low/high class separation given conditions: Cat’s cradle, T=5 repeated measures. 
Left half concerns models GMM-I and GBTM, right half concerns models GMM-II and LCGA. 
a.) K correct (Y=1 if K is correct, Y=0 if K≠4): Results from LM-I(a)-(b). 

  
b.) K over (Y=1 if K>4, Y=0 if K<4): Results from LM-II(a)-(b). 

  
 
  



3. Appendix B 

83 

 
 

 

Figure B.2: Estimated probabilities of K correct (upper half) or of over-extraction given incorrect K (lower half) 
for true by fitted model under low/high class separation given conditions: Natural starting point, T=5 repeated 
measures. Left half concerns models GMM-I and GBTM, right half concerns models GMM-II and LCGA. 
a.) K correct (Y=1 if K is correct, Y=0 if K≠4): Results from LM-I(a)-(b). 

  
b.) K over (Y=1 if K>4, Y=0 if K<4): Results from LM-II(a)-(b). 
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Figure B.3: Estimated probabilities of K correct (upper half) or of over-extraction given incorrect K (lower half) 
for true by fitted model under low/high class separation given conditions: Cat’s cradle, T=8 repeated measures. 
Left half concerns models GMM-I and GBTM, right half concerns models GMM-II and LCGA. 
a.) K correct (Y=1 if K is correct, Y=0 if K≠4): Results from LM-I(a)-(b). 

  
b.) K over (Y=1 if K>4, Y=0 if K<4): Results from LM-II(a)-(b). 
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Figure B.4: Heatmaps of the proportion correct K=4 (panels A and C) and modal K (panels B and D) extracted by 
different fit statistics for different fitted models under time-variant R conditions (LCGA, GMM-II). Ordinate axis 
coded as H/L_NS/CC_8/5 indicating: Class separation: H(igh) or L(ow), Trajectory shape: N(atural) S(tart) or 
C(at’s) C(radle), and Time points: 8 or 5. All panels: Quadrants clockwise from upper left: 1.) Underspecified 
LCGA 2.) Correctly specified GMM 3.) Over-specified GMM 4.) Correctly specified LCGA. 
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Figure B.6: Heatmaps of the proportion correct K=4 (panels A and C) and modal K (panels B and D) extracted by 
different fit statistics for time-invariant R for N=260 (GBTM, GMM-I). Ordinate axis coded as GMM-
I/GBTM_NS/CC_H/L_T=8/5 indicating: True Model: GMM-I or GBTM, Trajectory shape: N(atural) S(tart) or 
C(at’s) C(radle), Class separation: H(igh) or L(ow), and Time points: 8 or 5. All panels: Quadrants clockwise from 
upper left: 1.) Underspecified GBTM, 2.) Correctly specified GMM, 3.) Over-specified GMM, 4.) Correctly 
specified GBTM. 

  
  

Figure B.5: Heatmaps of the proportion correct K=4 (panels A and C) and modal K (panels B and D) extracted by 
different fit statistics for time-invariant R with unequal class sizes (35%/15%/15%/35%) (GBTM, GMM-I). 
Ordinate axis coded as GMM-I/GBTM_NS/CC_H/L_T=8/5 indicating: True Model: GMM-I or GBTM, 
Trajectory shape: N(atural) S(tart) or C(at’s) C(radle), Class separation: H(igh) or L(ow), and Time points: 8 or 5. 
All panels: Quadrants clockwise from upper left: 1.) Underspecified GBTM, 2.) Correctly specified GMM, 3.) 
Over-specified GMM, 4.) Correctly specified GBTM. 
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Table B.1: OVL for 6-class GMM-II. Each cell corresponds to the OVL between 
corresponding classes given in row and column headings. 

Class k=2 k=3 k=4 k=5 k=6 

k=1 0.68 0.291 0.29 0.664 0.676 

k=2  0.316 0.197 0.495 0.394 

k=3   0.73 0.582 0.585 

k=4    0.519 0.532 

k=5     0.514 
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“All that is gold does not g litter, 
Not all those who wander are lost-” 

J.R.R. Tolkien, The Lord of the Rings 
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Although finite mixture models (FMMs) have been in existence for well over a century, 

longitudinal FMMs are being increasingly used in applied sciences, particularly in medical and 

social sciences. Their popularity stems from their ability to uncover classes of subjects 

exhibiting different temporal development. This could, for example, be useful in establishing 

patient response to treatment [212], elucidating differences in mental health [213], or with the 

growing availability of multivariate data, exploring associations in temporal development 

between different outcomes (e.g. smoking frequency and drug use [184]). However, 

longitudinal FMM model fitting and selection is notoriously challenging as they can be affected 

by a multitude of factors. This thesis explores some of these factors and their effects, with the 

most striking being highlighted below.  

6.1. Class enumeration and covariance misspecification 

Class enumeration and the identification of proper structures to model the covariance pattern 

(or covariances) between repeated measures remain one of the greatest challenges in fitting 

longitudinal FMMs. Although multiple fit statistics were used throughout this thesis for these 

purposes, no one fit statistic performed best under all studied data conditions. Further, all fit 

statistics performed poorly when classes were lowly separated or when models had an 

underspecified covariance structure. The former condition was generally associated with the 

underextraction of classes, whilst the latter was associated with over-extraction. Although the 

Bayesian Information Criterion (BIC) was most robust given the models and data studied 

(Chapters 2-5), this thesis was not exhaustive and the same cannot be claimed for all possible 

data conditions. However, patterns recognised in this thesis offered some guidance in class 

enumeration and covariance structure selection. 

It was demonstrated that the fit curve statistic behaviour of the Akaike Information 

Criterion (AIC), BIC, and sample-size adjusted BIC (ssBIC) could serve as a diagnostic tool for 

covariance misspecification during the process of class enumeration (Chapter 3). Specifically, a 

continual improvement and related plateauing (asymptotic) behaviour in the fit statistic curve 

as fitted 𝐾𝐾 increased was associated with covariance underspecification and the possibility of 

class over-extraction. The behaviour of the fit statistic curve is consistent with unaccounted 

variability within the data which translates into spurious classes to capture heterogeneity by the 

misspecified models. This was evident in both univariate (Chapter 3) and multivariate models 

(Chapter 5). In univariate models, such underspecification was related to fitting group-based 
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trajectory models (GBTM) and latent class growth analysis (LCGA) to data generated by 

growth mixture models (GMM). In these instances, the underspecification was in assuming no 

random effects when in fact there were. Yet, it was established that the addition of random 

effects is not necessarily a panacea, since their inclusion, particularly under low separation, had 

the potential for underextraction, leading to the collapsing of what may be clinically meaningful 

classes with distinct patterns of change into a single class. For multivariate models, the same 

asymptotic behaviour was found when underspecified multivariate GBTM (GBMTM) and 

multivariate LCGA (MLCGA) were fitted to multivariate covariance pattern growth mixture 

models (MCPGMM) (Chapter 5). Such misspecification stems from the GBMTM’s and 

MLCGA’s assumption of conditional independence which ignores within-outcome 

associations across time. For these underspecified multivariate models, increases in the within-

outcome correlation not only translated into poor class enumeration (i.e. asymptotic fit-criteria 

behaviour and potential over-extraction) but also a decline in the class (trajectory and size) 

recovery performance even when the true 𝐾𝐾 was given (Chapter 5). 

Thus, by carefully studying the fit statistic curve, a proper accounting of the 

covariance structure could be enforced. This includes remedial adjustments (i.e. relaxing 

covariance constraints or trimming classes) which could lead to better class enumeration 

accuracy and model accuracy. However, if the ability to generalise the covariance structure is 

absent in the software, extra caution on the side of the researcher when analysing results must 

be exercised. Unaccounted variability potentially results in spurious classes. Therefore, if 

classes for a selected higher 𝐾𝐾 solution are not measuredly different (both in terms of 

development profiles over time and substantively) or cannot be justified theoretically or 

validated, then they should be discarded, and a more parsimonious model chosen. Here, the 

overlap coefficient (OVL) introduced in Chapter 3 could serve an ancillary role as a 

determinant of class extraction quality. Nevertheless, as Chapter 5 demonstrated empirically, 

even when the same 𝐾𝐾 is selected for multivariate models with different covariance structures, 

different trajectories and markedly different class sizes can emerge from these models. It is 

therefore important that the validity of the chosen model is confirmed to lend credence to the 

extracted trajectories, such as through cross-validation, linking to a distal outcome, or meta-

analyses. 
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6.2. Nuances between univariate and multivariate models 

GBTM and GBMTM applied to the same data can yield considerably different results. 

Therefore, practitioners following the usual two-step process of first fitting GBTM and then 

GBMTM should handle the information obtained from the univariate models with care. The 

same univariate delineation may not be recovered by the multivariate model either in terms of 

class enumeration, or in trajectory profiles of development, or subject classification or class 

sizes, which would have interpretational consequences in practice. 

We have illustrated that class extraction for multivariate models given univariate data 

can be considerably impacted by patterns of correlation, in terms of conditional class 

assignment, among outcomes (Chapter 4). As a rule, it is recommended for univariate models 

to be fitted before multivariate models to get a semblance of: 

(1) The underlying heterogeneity in each outcome as well as class separation, 

(2) The cross-combinations of univariate classes, which is indicative of the strength of 

association between outcomes, and 

(3) How (1) and (2) combined could inform the number of classes to expect in the 

multivariate model and whether the multivariate trajectories would reflect the 

univariate trajectories. 

All meaningful cross-class combinations from the GBTM should be considered when 

determining the 𝐾𝐾 of the GBMTM. The strength of such cross-class assignments could be 

quantified using Cramér’s V (CV) [145,187]. Weak cross-class associations (low CV) would 

signal to fit a GBMTM up to 𝐾𝐾 equal to the number of potential cross-classes from the GBTM 

analysis, whilst a higher CV would be indicative of a GBMTM requiring fewer classes than the 

number of potential univariate cross-classes to adequately capture the distinct patterns of co-

development (joint evolution) between outcomes. GBMTM clustering may also be driven by 

the highest separated outcome, which could distort trajectory profiles in the low separated 

outcomes (Chapter 4). When this is suspected, it would be useful to calculate the OVL for a 

GBTM fitted to each outcome individually, with a high OVL (low class separation) signalling 

caution to the practitioner for further data exploration, including assessing the quality of class 

extraction. 

Further, as Chapter 4 shows, if outcomes are studied in isolation, then a univariate 

model, even under high separation, may fail to capture all the nuances of the data specifically 
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that of co-occurring temporal processes. The GBMTM uses the mutual information and 

potential correlations across multiple outcomes to improve model performance, even in cases 

of low class separation. Nevertheless, Chapter 4 showed that outcomes need not be (linearly) 

correlated to yield patterns of joint development. Thus, there are interpretational consequences 

for extracted multivariate trajectories. The decision remains whether they should be interpreted 

as patterns of co-occurrences (no meaningful association, quirks of the data) or as co-

development (joint evolution established as statistical association). 

Moreover, the GBMTM in terms of class enumeration accuracy, subject classification 

performance, and class recovery (regarding trajectory and class size bias) was shown to be 

generally more robust than GBTM (Chapter 4). Specifically, GBMTM fitted to univariate data 

performed better than GBTM did on multivariate data. Even with low class separation in at 

most one of the outcomes in multivariate data, the GBMTM performed well and greatly 

outperformed the GBTM. This contrasts with univariate data where both models performed 

poorly under low class separation in at least one outcome. Such observations may motivate the 

application of multivariate models where feasible. 

Although the use of specific models should be practically and theoretically motivated, 

the presence of (statistically significant) estimated within-class between-outcome correlation 

would lend some credence to the application of multivariate models. Moreover, the existence 

of statistically significant within-class within-outcome correlation supports an expanded 

covariance structure (Chapter 5). 

6.3. The effect of data conditions 

Throughout this thesis, class separation was shown to have had the largest impact on model 

performance across most scenarios. Models performed poorer as the level of class separation 

decreased. Not only did class enumeration accuracy tend to decrease (Chapters 3-5), but so 

too did classification accuracy and class recovery (Chapter 4-5). Although small sample sizes 

were generally not associated with decreases in class enumeration accuracy for the BIC 

(Chapters 3-5), they were associated with generally worse and more variable model 

performance specifically in classification accuracy and class recovery (trajectory and class size 

bias) (Chapter 4-5). Compared to class separation, the effect on model performance of 

between-outcome correlation (Chapter 4-5), number of repeated measures (Chapter 3), 

heterogeneity of the residual variance (Chapters 3 and 5), and trajectory fixed effect growth 

specification (i.e. different intercept and slopes) (Chapter 3) were inconspicuous. 
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6.4. The dilemma of class separation 

All of the considered fit statistics (AIC, BIC, ssBIC and scaled Entropy (sE)) performed poorly 

in class enumeration in instances of low class separation studied in this thesis. Moreover, low 

class separation was also associated with worse classification accuracy, trajectory bias, and class 

size recovery (Chapters 4-5). 

However, two distinct issues related to class separation must be highlighted. That is, 

the poor performance of the information criteria fit indices (and models in trajectory and class 

size recovery) because of low separation between true classes is an issue separate from low 

separation of extracted classes. For the first issue, we can only know the true separation if we 

have perfect knowledge of the data generating process including the true number of classes 

and trajectory specification. For the second issue, at least two possibilities exist; either 1.) the 

extracted classes are so close that to distinguish between them would not make substantive 

sense and in this case, one could do with fewer classes, or 2.) if the extracted classes already 

show low separation, even more classes may exist, but happen to be omitted due to still lower 

separation. For the issue regarding low separation of the extracted classes, the OVL could 

serve an ancillary role as a first check in establishing class separation and quality of the 

extracted trajectories, before further exploration of the data. Especially in instances where 

underextraction is suspected because of low separated extracted classes, researchers will have 

to go beyond fit-criteria to transparently substantiate a higher 𝐾𝐾 selection. This would include 

using complementary criteria such as evaluating the distinctiveness of the trajectories, the 

theoretical justification thereof, and residual plot inspection (e.g. multimodal within-class 

distributions). 

6.5. Ideas for future research 

This thesis focused exclusively on continuous outcomes with the multivariate normal density 

function used to model the conditional distribution of the longitudinal data. It would be 

instructive to ascertain whether the results obtained in this thesis could be generalised to binary 

and count outcomes. 

Another possibility is to study the effect of more than two outcomes on multivariate 

model performance. It would be interesting to see whether model performance deteriorates as 

the number of outcomes increases since this would necessitate the estimation of more 
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parameters. Moreover, in such cases, it would be useful to establish the maximum number of 

outcomes which can be reliably fitted by these models. 

A further pursuit would be relaxing the class-invariant covariance structure 

constraints considered in this thesis and studying the effects thereof on multivariate models. Is 

there a point where such relaxations compromise multivariate model performance and/or 

convergence to a solution? One could also study the effect of different within- and between-

outcome correlations among more than two outcomes e.g. weak association between two 

outcomes and a strong association between the others. How would such associations impact 

multivariate model enumeration accuracy and specifically could differences in such associations 

distort trajectory recovery? 

Only linear associations between repeated measures and outcomes were studied in 

this thesis. It would be instructive to explore the consequences of non-linear associations on 

model performance. In doing so, it would be useful to develop guidelines for practitioners to 

identify such situations and how to properly account for these instances. 

Missing data, and the degree and type of missingness, are avenues worthy of 

exploration. Specifically, one could study whether multivariate models outperform univariate 

models in terms of robustness to types of missingness under a variety of data conditions. 

Longitudinal FMMs are notoriously sensitive to starting values for estimated 

parameters due to the complexity of the likelihood surface. Specifying a too narrow or too 

wide a range may either lead to a local instead of a global optimum solution or inadmissible 

solutions (e.g. negative variance estimates and/or null classes). Therefore, it may be useful to 

repeat the simulation studies conducted in this thesis to establish guidelines for determining an 

appropriate number of random starts, or what initial parameter values should be given, to 

improve the chances of reaching a global optimum. 

6.6. Concluding thoughts 

6.6.1. The necessity of random effects 

GBTM and LCGA were developed to provide for the discretization of continuous random 

effects by approximating heterogeneity through the means of latent classes [214]. As advocates 

of these methods have argued, the inclusion of random effects, particularly when class average 

trajectories are of sole interest, unnecessarily complicates the model, which often leads to 

convergence and identifiability issues [27]. However, as we have shown, ignoring random 
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effects or a complex (residual) covariance structure can lead to class over-extraction. 

Now, if the focus is exclusively on class average trajectories and not individuals, an 

alternative to random effects is to relax the independent and identically distributed assumption 

of the residual covariance for the GBTM/GBMTM and LCGA/MLCGA. Then, a covariance 

structure that directly relates the residuals of the repeated measures over time can be selected, 

which is the covariance pattern mixture models (CPMM) [27] (its multivariate counterpart, the 

MCPGMM was explored in this thesis). We have shown that MCPGMM, as with the 

univariate covariance pattern growth mixture model, can properly handle extra within-class 

variability and the issue of non-independence of repeated measures over time, without 

requiring random effects. This greatly reduces the added complexity and associated 

convergence issues of within-class random effect estimation in GMMs [32]. In GMMs, the 

covariance parameters are often set to be equal across classes to reach convergence (which is 

the default setting in Mplus [116]), but such constraints may have an impact on the biasedness 

of class trajectories and class enumeration [27]. 

6.6.2. Reification of classes and model validation 

Throughout this thesis, we have followed the direct approach for the application of FMMs i.e., 

the assumption of 𝐾𝐾 underlying classes to which a subject’s longitudinal sequence belongs. 

However, there is an ongoing discussion of the interpretation of classes in FMMs, as either 

theoretical entities (direct approach) or as statistical summaries of the data (indirect approach) 

[215,216]. Furthermore, FMMs by design are capable of approximating oddly shaped 

distributions using a mixture of normal distributions and have been shown to extract spurious 

classes in one-class, non-normal data [36,167]. In these cases, classes should not be interpreted 

as theoretical entities, but as properties of the data, but distinguishing between these 

interpretations remains an outstanding challenge. 

Thus, the eccentricities of class enumeration call special attention to the ‘reification 

fallacy’ [35] admonition, i.e., positing latent classes as real entities. As shown throughout this 

thesis, the process of class enumeration can face diminutions in accuracy resulting in either 

underextraction of classes or spurious class extraction. Therefore, during the exploratory stages 

of class enumeration and model selection, it is advised to not reify the classes. Once classes 

and the model are settled, it is of paramount importance that these classes are externally 

validated. Some recent examples of this validation with theoretically founded interpretations of 
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identified trajectories include criterion validity (genotyping, i.e. genetic associations with 

observed phenotypic trajectories) [170,171] or the replicability of findings through meta-

analyses [172]. Here, where classes can be theoretically confirmed, a more lenient attitude to 

class reification may be warranted. 

6.6.3. Conclusion 

The golden thread of this thesis has interlaced two central aims. Firstly, this thesis sought to 

increase the accessibility to, appreciation for, and understanding of longitudinal FMMs by 

applied researchers and practitioners. Secondly, it studied the robustness of longitudinal FMMs 

performance to several forms of covariance misspecification under varying data conditions 

commonly found in practice. In pursuing these positions, several conceptual, theoretical, and 

statistical issues of longitudinal FMMs were explored in detail which shaped the proposed 

model fitting strategies. Moreover, this thesis has gone beyond typical univariate studies 

[27,28,30,32] which generally focus on class enumeration performance, by not only extending 

to studying multivariate FMMs but also covering the full ambit of model performance. This 

ranged from the accuracy of class enumeration and fit statistic criteria to the correct 

classification of subjects and class recovery (including trajectory and class size bias). 

The fitting of longitudinal FMMs is a balance between two approaches; the science of 

statistical objectivity (guided by statistical criteria) and the art of model building (guided by 

domain knowledge, practical insights, and theoretical rigour). Both approaches certainly have 

value, but they are intertwined. There is no automated model selection strategy where some fit 

statistic should be optimised. Although statistical criteria lend some degree of objectivity to the 

process of model building, the blind application thereof can have the unattended consequence 

of not capturing the nuances in the data (through under- or over-extraction of classes, 

decreases in model performance, distorted patterns of co-development). As always, 

practitioners should be guided by the sensible application of these methods. This art-science 

divide is encapsulated in this thesis’ cover. The De Stijl movement, founded by Dutch artists 

Theo van Doesburg (1883-1931) and Pieter Mondrian (1872-1944), prescribed the reduction of 

nature into the essentials of shape and colour. The analogue for longitudinal FMMs? Looking 

deeper into the data and simplifying it into the basic underlying elements of latent classes and 

profiles of temporal development to capture the underlying heterogeneity. To conclude, the 

epigraph of this chapter reminds us that not everything that is valuable or useful (hidden 
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profiles of development) is immediately apparent and that a healthy inquisitiveness in model 

selection does not imply a misguided path. 
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7.1. Summary in English 

This thesis pertains to longitudinal finite mixture models (FMMs), which can identify classes of 

individuals following similar profiles of development over time (trajectories). These models are 

particularly useful in identifying distinct patterns of development when a grouping variable is 

either unknown (such as disease diagnosis given clinical measurements) or is expensive to 

measure (a rare genetic marker given phenotype). Thus, FMMs have great applicability in the 

age of precision medicine as identifying distinct latent classes of temporal development could 

assist practitioners in early diagnosis and/or tailored treatments. Although these models are 

gaining popularity in applied research, practitioners are often unaware of their underlying 

assumptions and/or fit them given software defaults. This thesis explores what the 

implications for model fitting are when models are improperly specified, particularly in the 

covariance structure, as well as provides guidance for practitioners to properly employ these 

models in their research. 

Chapter 1 briefly discusses longitudinal FMMs and provides motivations for their 

use. A short historical context of FMMs is provided along with a discussion of the challenges 

in the application of longitudinal FMMs. The aims and objectives of the thesis are given, along 

with the general outline of the thesis. 

Chapter 2 introduces commonly used longitudinal FMMs which comprise latent 

class growth analysis (LCGA), group-based trajectory models (GBTM), and growth mixture 

modelling (GMM). This chapter aims to address the confusion experienced by practitioners 

new to these methods by discussing the various available techniques in-depth and providing an 

overview of their interrelatedness and applicability. Criteria for model selection, specifically for 

class enumeration, and often encountered challenges and unresolved issues in model fitting are 

highlighted. Finally, model availability in software is showcased, and a model selection strategy 

using an applied example is illustrated. 

Chapter 3 explores how data features as well as the inappropriate specification of an 

FMM’s covariance structure impact class enumeration. To elucidate this, model fit criteria 

curve behaviour across an array of data conditions and covariance structures was investigated. 

Variable fit statistic patterns among the fit-criteria and across a range of data conditions were 

observed. This variability was greatly attributable to the level of class separation and the 

presence/absence of random effects. These findings support some widely held notions (e.g. 

the Bayesian Information Criterion outperforms other criteria) whilst debunking others 



7.1. Summary in English  

167 

 
 

 

(adding random effects is not always the solution). Based on the obtained results, guidelines on 

how the behaviour of fit-criteria curves can be used as a diagnostic aid during class 

enumeration are presented. 

Chapter 4 examines multivariate group-based trajectory models (GBMTM), which 

are gaining traction in empirical sciences. These models identify subjects following similar 

paths of temporal development across multiple outcomes. Customary analysis of multivariate 

data proceeds first with fitting univariate GBTM to each outcome and then fitting a 

multivariate GBMTM to capitalize on patterns of co-dependencies between outcomes. This 

procedure may yield differing univariate and multivariate trajectories, in one or several 

outcomes, in terms of the number and size of latent classes and the level and shape of 

trajectories. This chapter primarily investigates the impact of longitudinal data features on class 

enumeration and parameter recovery of GBMTM and GBTM when the data generating model 

is either GBMTM or GBTM. Consequently, the aim was to understand and elucidate the 

dynamics driving the discrepancies and similarities of these models’ results. Based on the 

simulation findings, guidelines for the fitting of GBMTM are provided. Finally, this model 

fitting approach is illustrated, along with salient differences between the models, using an 

empirical data set. 

Chapter 5 ascertains, through simulation, the effects of within-outcome covariance 

misspecification for GBMTM, multivariate LCGA (MLCGA) and multivariate covariance 

pattern growth mixture models (MCPGMM) under data conditions typically faced in practice. 

This is motivated by the fact that practitioners often restrict covariance structures to aid model 

convergence or run models according to software defaults (which usually constrain the 

covariance). The relative performances of these models are compared in terms of enumeration, 

classification, and class recovery. This chapter shows that restricted covariances, exacerbated 

by low class separation, can potentially lead to poor class enumeration. Moreover, despite the 

correct number of classes being chosen, variations in model performance across conditions 

emerged. Salient differences between the models, in terms of enumeration and class recovery, 

on an empirical data set are also illustrated. 

Chapter 6 discusses the salient findings of this thesis. Further, the implications of the 

results are discussed, including the choice of fit statistic in class enumeration, the class 

separation dilemma, model selection and covariance specification. Ideas for future research are 

also presented. Finally, the chapter highlights the topical issues of the necessity for random 

effects, the reification of classes along with the challenge of model validation. 



Summary 

168 

Chapter 8 considers the scientific and societal impact of this thesis. 

7.2. Samenvatting in het Nederlands 

Verborgen diepten: robuustheid van modelleringsbenaderingen voor het blootleggen 

van latente klassen in longitudinale data 

Dit proefschrift behandelt longitudinale finite mixture modellen (FMMs), die klassen van 

individuen kunnen identificeren die vergelijkbare ontwikkelingsprofielen over de tijd hebben 

(trajecten). Deze modellen zijn met name nuttig bij het identificeren van verschillende 

ontwikkelingspatronen wanneer een classificatievariabele ofwel onbekend is (zoals de 

ziektediagnose bij klinische metingen) of duur is om te meten (een zeldzame genetische marker 

bij fenotypes). FMMs hebben dus een grote toepasbaarheid in het tijdperk van 

precisiegeneeskunde, aangezien het identificeren van verschillende latente klassen van 

ontwikkeling over de tijd kan helpen bij vroege diagnose en/of op maat gemaakte 

behandelingen. Hoewel deze modellen steeds populairder worden in toegepast onderzoek, zijn 

onderzoekers zich vaak niet bewust van hun onderliggende aannames en/of passen ze deze toe 

met de standaardinstellingen van software. Dit proefschrift onderzoekt wat de implicaties zijn 

voor modelschatting wanneer modellen onjuist zijn gespecificeerd, met name wat betreft de 

covariantiestructuur, en biedt toegankelijke richtlijnen voor onderzoekers om deze modellen 

op de juiste manier in hun onderzoek te gebruiken. 

Hoofdstuk 1 bespreekt kort longitudinale FMMs en geeft een motivatie voor het 

gebruik ervan. Er wordt een korte historische context van FMMs gegeven, als ook een 

bespreking van de uitdagingen bij de toepassing van longitudinale FMMs. De doelstellingen 

van het proefschrift worden gegeven, alsmede een algemene schets van het proefschrift. 

Hoofdstuk 2 introduceert veelgebruikte longitudinale FMM's: latent class growth analysis 

(LCGA), group-based trajectory models (GBTM) en growth mixture models (GMM). Dit hoofdstuk is 

bedoeld om helderheid te geven aan onderzoekers, voor wie deze methoden nieuw zijn, door 

de verschillende beschikbare technieken diepgaand te bespreken en een overzicht te geven van 

hun onderlinge samenhang en toepasbaarheid. Criteria voor modelselectie, met name voor het 

bepalen van het aantal klassen, en vaak voorkomende issues en onopgeloste problemen bij het 

schatten van modellen worden besproken. Tenslotte wordt de beschikbaarheid van modellen 

in software beschreven en wordt een strategie voor modelselectie geïllustreerd met behulp van 

een empirisch voorbeeld. 
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Hoofdstuk 3 onderzoekt hoe kenmerken van de data en een onjuiste specificatie van 

de covariantiestructuur van een FMM van invloed zijn op het vaststellen van het aantal klassen. 

Om dit op te helderen, werd het gedrag van de modelfit-criteria curve voor verschillende data 

condities en covariantiestructuren onderzocht. Verschillende patronen in fit-grootheden 

werden waargenomen voor verschillende fit-criteria en voor verschillende data condities. Deze 

variatie was in hoge mate toe te schrijven aan de mate van klassenscheiding en de aan-

/afwezigheid van random effecten. Deze bevindingen ondersteunen enkele wijdverbreide 

opvattingen (bijv. het Bayesian Information Criterion presteert beter dan andere criteria), 

terwijl andere worden ontkracht (het toevoegen van random effecten is niet altijd de 

oplossing). Op basis van de verkregen resultaten worden richtlijnen gepresenteerd over hoe het 

gedrag van fit-criteria curves kan worden gebruikt als diagnostisch hulpmiddel om het aantal 

klassen te bepalen. 

Hoofdstuk 4 onderzoekt multivariate group-based trajectory models (GBMTM), welke 

steeds meer terrein winnen in de empirische wetenschappen. Deze modellen identificeren 

klassen die vergelijkbare paden van temporele ontwikkeling volgen over meerdere uitkomsten. 

De gebruikelijke analyse van multivariate gegevens schat als eerste een univariate GBTM voor 

elke uitkomstvariabele en vervolgens een multivariate GBMTM gebruikmakend van patronen 

van afhankelijkheden tussen de uitkomsten zoals gevonden in de univariate analyse. Deze 

procedure kan verschillende univariate en multivariate trajecten opleveren, in een of meerdere 

uitkomsten, in termen van het aantal en de grootte van latente klassen en het niveau en de 

vorm van trajecten. Dit hoofdstuk onderzoekt voornamelijk de impact van de kenmerken van 

longitudinale data op de bepaling van het aantal klassen en het terugvinden van de ware 

parameters van GBMTM en GBTM terwijl het data-model GBMTM of GBTM is. Het doel is 

om de dynamiek die de discrepanties en overeenkomsten tussen de resultaten van deze 

modellen veroorzaakt, te begrijpen en op te helderen. Op basis van de simulatieresultaten 

worden richtlijnen gegeven voor de toepassing van GBMTM. Tenslotte wordt deze richtlijnen 

geïllustreerd en worden opvallende verschillen tussen de analyseresultaten van beide modellen 

besproken aan de hand van een empirische dataset. 

Hoofdstuk 5 stelt, door middel van simulatie, de effecten vast van misspecificatie 

van de covariantiestructuur voor de uitkomstvariabele voor GBMTM, multivariate LCGA 

(MLCGA) en multivariate covariance pattern growth mixture models (MCPGMM) onder data 

condities die typisch zijn voor de praktijk. Dit wordt gemotiveerd door het feit dat 

onderzoekers vaak eenvoudige covariantiestructuren specificeren om modelconvergentie te 
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bevorderen of modellen schatten volgens standaardinstellingen van de software (die gewoonlijk 

uitgaan van eenvoudige covariantiestructuren). De relatieve prestaties van deze modellen 

worden vergeleken wat betreft de bepaling van het aantal klassen, de classificatie van personen 

en het terugvinden van de klassen. Dit hoofdstuk laat zien dat eenvouidge 

covariantiestructuren, verergerd door geringe scheiding tussen klassen, kunnen leiden tot 

vaststelling van een onjuist aantal klassen. Bovendien, zelfs als het juiste aantal klassen wordt 

gekozen, komen er verschillen in modelprestaties naar voren voor de onderzochte condities. 

Opvallende verschillen tussen de modellen, in termen van de vaststelling van het aantal klassen 

en het terugvinden van de klassen, worden ook op een empirische dataset geïllustreerd. 

Hoofdstuk 6 bespreekt de belangrijkste bevindingen van dit proefschrift. Verder 

worden de implicaties van de resultaten besproken, waaronder de keuze van de fit-grootheid 

bij de bepaling van het aantal klassen, het dilemma wanneer klassen dicht bij elkaar liggen, 

modelselectie en het specificeren van de covariantiestructuur. Ook worden ideeën voor 

toekomstig onderzoek gepresenteerd. Tenslotte belicht het hoofdstuk de noodzaak van 

random effecten, de reïficatie van klassen en het belang van modelvalidatie. 

Hoofdstuk 8 gaat in op de wetenschappelijke en maatschappelijke impact van dit 

proefschrift. 
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For longitudinal data (i.e. multiple measurements recorded per subject over time), the sole 

focus of this thesis, finite mixture models (FMMs) can assist practitioners in identifying 

different classes/groups of subjects following distinct paths of temporal development 

(trajectories) in the absence of a known grouping variable. This is advantageous in situations 

where a grouping variable is either unknown (e.g. disease diagnosis given clinical 

measurements) or expensive to measure (e.g. a rare epigenetic marker given observed 

phenotypes). Some recent examples of fields in which FMMs have been applied include 

psychology [217–219], public health [220,221], and medicine [222–224]. FMMs are of practical 

importance since by identifying distinct groups, a better understanding may arise of differences 

in: development between groups (i.e. alcohol consumption over time), possible outcome 

events (e.g. by linking classes to a distal outcome such as the occurrence of myocardial 

infarction) and/or risk factors (e.g. by linking to covariates such as sodium intake). Moreover, 

by considering multivariate trajectories, the association between and the development of 

several outcomes can be simultaneously explored. This is helpful when studying the natural 

progression of complex, multi-dimensional diseases, where multivariate trajectories could 

account for various biomarkers over time, the occurrence of clinical endpoints (e.g. a distal 

outcome such as death), and heterogeneity over time between patients [225]. Finally, insights 

gleaned from a longitudinal FMM analysis could have important policy or treatment 

implications. An example would be developing targeted interventions as a result of uncovering 

trajectories of childhood diet and their link to cigarette usage in adulthood. 

Hence, because of these potential implications and to develop an accurate 

understanding of dynamics driving differences in outcomes between individuals, it is important 

that when fitting these models, the underlying classes are well-defined and correctly extracted. 

This is more likely achieved by ensuring that the chosen statistical model is correctly specified 

such that it is an accurate representation of the underlying process that generated the observed 

data. Large differences between true and extracted classes could have direct consequences. 

Minimising these differences is important for several reasons. Firstly, enumeration (that is the 

number of classes extracted) accuracy ensures that the correct number of classes are identified 

such that targeted interventions/treatments are provided for the correct number of groups. 

Secondly, accurate classification may yield improvements in personalised treatment and 

intervention quality [226]. Thirdly, correct trajectory recovery is important since it provides for 

an accurate depiction of the development over time which again could have practical 

implications including the nature of the treatment provided and/or gaining a proper 
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understanding of the underlying temporal development. Lastly, accurate class size recovery 

ensures that the proportion of individuals within each class gives an accurate composition of 

the population under study. This could have utility when establishing the occurrence of rare 

behavioural conditions or gaining insights into the developmental profile frequency of specific 

behaviours over time. 

Considering the above, the main objective of this thesis was to study the effects of 

various longitudinal FMM (mis)specifications under differing data conditions (commonly 

found in practice) on model performance. In so doing, model selection strategies were 

developed and presented to ensure good model performance and to assist practitioners and 

applied researchers in their understanding and application of longitudinal FMMs in their 

research. Model performance was gauged according to class enumeration accuracy (i.e. 

correctly identifying the underlying number of classes), and by extension classification accuracy 

(i.e. whether subjects are assigned to the correct class), trajectory (i.e. shape and level of the 

development profile over time) and class size recovery (i.e. the proportion of subjects 

comprising each latent class). Factors explored in this thesis which potentially impact model 

performance included class separation levels, sample size, different trajectory specifications (in 

the shape and level), number of repeated measures, and model specifications including random 

effects, time-variant variances, and within- and between-outcome correlation.  

This thesis studied both univariate (i.e. considering one measure such as alcohol 

consumption) and multivariate (i.e. considering multiple measures simultaneously such as 

alcohol consumption and marijuana use) outcomes, the latter of which is gaining prominence 

as increasing numbers of studies consider the developmental dynamics of several outcomes 

simultaneously. Across all studied outcomes and conditions, low class separation (i.e. high 

overlap between classes) and covariance underspecification (i.e. fitting a model which does not 

account for all of the heterogeneity and dependencies in the data) were identified as major 

factors affecting model performance. The former factor was generally associated with the 

underextraction of classes (i.e. too few), whilst the latter tended to be associated with class 

over-extraction. The fit statistic curve, which shows how the value of a certain statistical 

criterion used for class enumeration changes as the fitted number of classes increases, was 

identified as a useful diagnostic tool for potential underspecification of the covariance. If the 

curve continued to improve as the fitted number of classes increased whilst showing a so-

called plateauing (asymptotic behaviour), then this could be taken as evidence of possible 

covariance underspecification. In such cases, it is suggested to either relax constraints on the 
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covariance if the software allows, or if not, a more parsimonious model (i.e. fewer classes) 

should be chosen if the extracted trajectories are not substantively different, or cannot be 

theoretically justified or validated (such as through cross-validation). 

Further, we studied the comparative performance of multivariate and univariate 

longitudinal FMMs. Multivariate models were found to be generally more robust than 

univariate models in that they performed better on univariate data than univariate models did 

on multivariate data in class enumeration accuracy, classification accuracy, and trajectory and 

class recovery. Additionally, we showed that for multivariate trajectories, the clustering may be 

driven by the outcome with higher separated classes which might distort classes in the lowly 

separated outcome, and thus could have interpretational and practical implications. 

Moreover, we studied the relative performance of several multivariate FMMs which 

differed in the restrictions placed on their covariance structure. We showed that multivariate 

models with restricted covariance structures, exacerbated by low class separation can 

potentially lead to poor class enumeration. Moreover, even when classes were correctly 

enumerated, variations in model performance across conditions emerged. These results 

provided for a better understanding of factors driving good multivariate model performance 

which allowed us to establish some model selection guidelines for practitioners to follow in 

their research. 

The scientific impact of this thesis includes presenting the behaviour of the fit-criteria 

curve as a diagnostic tool for covariance misspecification and remediation. Further, not only 

was class enumeration accuracy studied, but the full ambit of model performance covering 

classification accuracy, and trajectory and class size recovery were studied, which goes beyond 

typical univariate studies [30,32,85,97,98] and as far as we are aware of the first of its kind for 

multivariate studies [27,28,30,32]. Novelly, the area between the curves (ABC) was presented as 

a measure of trajectory recovery. The ABC is especially useful in Monte Carlo simulation 

studies, where statisticians may be interested in the bias of trajectory recovery, with low ABC 

signalling good trajectory profile recovery. Additionally, the ABC was also employed for the 

first time to address the class label switching problem (where class labels switch between 

successive simulation runs), an issue especially prolific in longitudinal FMM simulation studies 

[190]. We intend to further develop the ABC to mitigate class label switching and present it as 

a statistical package for interested parties to use in their research. The overlap coefficient 

(OVL) was also suggested as a new measure for the quality of class extraction with a high OVL 
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(indicative of high class overlap) signalling caution on the side of the user and calling for a 

deeper exploration of the data and classes extracted. 

The societal impact is derived from the guidelines and results established in this 

thesis. In proposing model selection and remediation strategies, we hope that these will lead to 

better model specification by practitioners which could have a direct impact on the veracity of 

inferences derived from the longitudinal FMMs fitted, particularly by minimising extraneous 

class enumeration and poor model performance. Ensuring such veracity has great utility, 

specifically in the field of health and life sciences, where accurate diagnostic and prognostic 

conclusions derived from statistical models are essential: for advancing science, for when 

patient care decisions need to be made by clinical practitioners, and for improving the quality 

and reducing the costs of healthcare through informed decision making by administrators and 

policy makers[227]. 

These research results are interesting for practitioners of longitudinal FMMs who 

apply such models to better understand the heterogeneity in their datasets and where an 

accurate representation of such heterogeneity is a necessity for correct treatment and/or 

interventions. The application sections of this thesis, along with the provided R and Mplus code 

for the models considered and investigational statistics employed, may serve as a starting point 

for practitioners and applied statisticians in their research. Also, the in-depth discussion and 

exposition of the various longitudinal FMMs may serve as teaching material for advanced 

courses in applied classification statistics and/or investigational statistics. Moreover, the OVL 

and ABC presented in this thesis may be useful tools for statisticians to employ during their 

own Monte Carlo simulation studies. 

To increase the accessibility of this research, Chapter 2 has been presented at a 

statistical colloquium, presented as a poster at an (online) international conference, and was 

also presented during an online seminar at an international university. Chapter 3 has also been 

presented at a statistical colloquium. Further, Chapter 2 and 3 have both been published in 

international scientific journals, with Chapter 2 garnering citations in diverse fields including 

epidemiology [228], gerontology [3], nutrition [4], psychiatry [2], finance [229] and public 

health [230]. Chapter 4 is in the process of submission to a scientific journal. Chapter 5 will 

thereafter be submitted for publication in an international scientific journal. Moreover, the 

various statistical visualisations and investigational statistics developed in this thesis could be 

contained in a user-friendly package for R so that researchers may freely and easily use it in 



Scientific and social impact of this thesis 

176 

their research. This package could be accompanied by a tutorial or non-technical paper 

published in an international journal to make these methods accessible to applied researchers. 
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