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Cardiometabolic diseases  
Cardiometabolic diseases (CMDs), including cardiovascular disease (CVD), diabetes, 
heart attack, stroke, and non-alcoholic fatty liver disease (NAFLD), are the leading 
causes of death and disease burden in the world [1, 2]. Especially in the last decade, 
the incidence and prevalence of CMDs have increased dramatically, not only in 
developed countries, but also in developing countries with emerging economies [3–
6]. According to new WHO predictions, more than 23 million people will die from 
CVDs by 2030 [7]. The prognosis for China may be at least equally alarming since by 
2020, as there were already approximately 330 million people suffering from CVDs, 
including 13 million strokes and 8.9 million heart failures [8]. The demographics of 
NAFLD are even more concerning, as it is prevalent in a quarter of European adults 
[9]. These facts underscore that more effective and innovative diagnostic and 
therapeutic measures of CMDs are eagerly awaited.  

The widespread prevalence of unhealthy lifestyles, such as high-fat diets, the lack 
of physical activity, smoking, and excessive alcohol consumption, are major risk 
factors for the dramatic rise in CMDs[10]. Other factors including age, gender, and 
genetics also influence their development and progression. For example, it has 
been well known that the elderly population is particularly susceptible to CVD [11, 
12]. Although the lifetime risk of CVD is similar in men and women, the onset of 
CVDs in men approximately 5-10 years earlier than that in women [13]. Therefore, 
exploring the impact of risk factors on CMDs is pivotal for elucidating multifaceted 
mechanisms associated with many cardiometabolic complications, and opening up 
new therapeutic horizons.  

This thesis examines the disease mechanisms of two of the most common CMDs, 
i.e., CVD and NAFLD, by developing and employing multiple computational 
strategies. Therefore, I will first present the basic biomedical background involved 
in atherosclerosis (the major cause of CVD) and NAFLD, followed by the 
introduction of commonly used bioinformatics approaches. 

The mechanism of atherosclerosis 
CMDs are often shown as slowly progressing diseases, accelerated by chronic tissue 
inflammation [14]. For instance, atherosclerosis, as the main cause of CVD, 
develops gradually from early fatty streak to early fibroatheroma and thin-cap 
fibroatheroma with the risk of rupture. This process is accompanied by plaque 
thickening within the arterial wall, which has an inflammatory reaction and lipid 
build-up at its core. [15] (Fig 1A). Numerous studies have identified that vascular 
cells produce and respond to inflammatory cytokines[16–18], providing strong 
evidence that immune mechanisms are involved in atherosclerosis. Additional 
findings, such as the association of autoantibodies to oxidized low-density 
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lipoprotein (oxLDL) and heat shock protein (HSP) 60 with atherosclerotic CVD [19–
22], also further supports this notion. 

 

 

  
Figure 1: Progression of atherosclerosis and NAFLD (A) Progression from healthy arteries to 
complicated atherosclerotic lesions (copied from[23]) (B) Development and progression from healthy 
livers to steatosis (NAFLD) to non-alcoholic steatohepatitis (NASH) and advanced fibrosi. The figure 
was drawn using BioRender (https://biorender.com/) 

Lipid accumulation within the plaque and immune cells, particularly macrophages 
and their circulating progenitors, i.e. monocytes, are the main driving factors of 
atherosclerosis [24, 25]. Based on the expression of the cell surface markers CD14 
(Lipopolysaccharides (LPS) co-receptor) and CD16 (FcγIII receptor), human 
monocytes can be divided into three phenotypes: classical (CD14+ CD16-), 
intermediate (CD14+ CD16+), and non-classical monocytes (CD14- CD16+) [26, 27]. 
Their differential expression of adhesion molecules, chemokine receptors and 
functions leads to their differing roles in CVD [28–30]. Previous studies [30–32] 
have revealed that CD14+ monocytes are more phagocytic, whereas CD16+ 
monocytes appear to be specialized for anti-viral rather than anti-bacterial 
immunity. CD14+ CD16- monocytes, the most abundant monocytes in humans, have 
been reported to be more susceptible to enter atherosclerotic lesions [29]. 
However, the precise roles of monocyte subpopulations in CVD, and in particular 

A 

B 
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how they are influenced by physiological characteristics and risk factors, have not 
been fully determined yet. Therefore, in the chapter 4 and 5, I analyse 
transcriptional profiles of monocytes from a CVD cohort collected by the Center for 
Translational Molecular Medicine (CTMM) [33], to investigate CVD-related sex 
differences in the monocytes (chapter 4) and the impact of CVD risk factors on the 
responsiveness of monocytes to inflammatory stimuli (chapter 5). 

Activation of endothelial cells induces monocytes to roll on, adhere to and 
eventually migrate through the vessel wall into the subendothelial space, where 
they mature into macrophages under the influence of locally produced growth 
factors [34, 35] (Fig 2). Here, these macrophages take up and accumulate 
lipoproteins, resulting in their lipid-laden phenotype that is also known as foam 
cells [35] (Fig 2). Due to impaired mobility, foam cells gradually accumulate in the 
subendothelial space, contributing to plaque growth, and eventually die, resulting 
in a plaque-destabilizing necrotic core [36]. 

 
Figure 2: Potential contributing macrophage sources in atherosclerotic plaques in metabolic 
disease. The figure was drawn using BioRender (https://biorender.com/)  

The ability of macrophages to develop focused responses to a wide variety of 
stimuli in their local microenvironment is known as plasticity [37]. A traditional 
dichotomous theory divided macrophages into M1 (classically activated) and M2 
(alternatively activated) phenotypes [38, 39]. The former phenotype is induced by 
interferon-γ (IFN-γ) and displays pro-inflammatory and antigen-presenting 
functions, while the latter is stimulated by interleukin 4 (IL-4) or interleukin 13 (IL-
13), playing an anti-inflammatory and wound healing role [40–43]. Recent insights, 
however, show that M1 and M2 are rather two extremes of macrophage 
polarization, and a spectrum of functional intermediate transition states exists 
between them in different tissues and conditions [44–46]. For instance, a 
macrophage phenotype induced by oxidized phospholipids (OxPLs), called Mox, 
[47] features a metabolism that differs from that of M1 and M2 [48]. In parallel, 
plenty of other macrophage phenotypes have been described in atherosclerotic 
plaques [49]. Therefore, there is an urgent need to develop effective methods for 
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the systematic understanding of macrophage heterogeneity and plasticity, with the 
potential of future targeted interventions [50]. This is exactly what will be studied 
in chapter 2. 

The mechanism of NAFLD 
As one of the most common chronic liver diseases, NAFLD encompasses a range of 
progressive liver lesions, including simple steatosis, steatohepatitis (NASH), and 
fibrosis [51] (Fig 1B). The current consensus about the mechanism of NAFLD is a 
‘two-hit hypothesis’: 1) accumulation of lipids in the hepatocytes, resulting in an 
increased sensitivity of immune cells; 2) lobular inflammation that characterizes 
NASH aggravating disease progression [52–54]. As lipid accumulation and 
inflammation progress, the disease progress and histological changes become 
increasingly complex and may vary considerably between individuals and within 
any given individual. Early lesions may regress spontaneously, but intermediate and 
late stage lesions appear to be progressing [55] (Fig 1). Therefore, studying the 
gradual changes in diseased tissues helps to improve our understanding of NAFLD. 

Similar to atherosclerosis [25, 56], NAFLD is also a complex disease with 
pathogenesis involving dietary, genetic, environmental, and metabolic factors that 
progress through the disease stages [57, 58]. Unhealthy dietary habits, especially 
excessive sugar and fat intake, accelerate the prevalence of NAFLD. Fructose enters 
the liver and is metabolized to triglycerides (TG) via the de novo lipogenesis [57, 
59]. NAFLD arises when fatty acid (FA) and TG uptake from circulation and de novo 
synthesis of lipids (lipogenesis) exceeds the metabolic capacity of the liver leading 
to lipid accumulation [60, 61]. Therefore, studying changes in metabolism and their 
role in the pathogenesis of NAFLD may provide new clues for interventions in 
NAFLD.  

Additionally, the analysis of metabolite trajectories should not ignore the 
heterogeneity of liver tissue since the liver includes 2 main types of cells: 
parenchymal and nonparenchymal cells. Of these, parenchymal cells are the main 
component of the liver, accounting for 90% of the total cell mass [62, 63]. 
Nonparenchymal cells, including Kupffer cells, hepatic sinusoidal endothelial cells, 
and stellate cells, not only perform different functions but also exhibit a distinctly 
different spatial distribution from parenchymal cells [64]. Studying this spatial 
heterogeneity enable precise dissection of the specific functions of different liver 
compartments. Therefore, chapter 3 analyses the metabolic trajectories of mice in 
the early stages of NAFLD in the whole liver tissue and in individual liver 
compartments. 
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Bioinformatics in Cardiometabolic diseases 
Rapid advances in high-throughput technologies nowadays allow us to measure 
molecular profiles within tissues or cells at an unprecedented resolution. For 
example, next-generation sequencing (NGS) technologies have made it possible to 
rapidly assess the expression of tens of thousands of genes [65], while steadily 
progressing technologies in mass spectrometry (MS) enable us to not only measure 
but also to localize peptides, metabolites and lipids [66, 67]. The collection of 
techniques for unbiasedly detecting expressions or abundance of genes 
(genomics), mRNA (transcriptomics), proteins (proteomics) and metabolites 
(metabolomics) in organisms is called ‘omics’[68] (Fig 3). Each omics dataset 
provides a unique view of a biological system, and they have demonstrated their 
powerful ability at uncovering CMD-causing characteristics. In the remainder of this 
chapter, I introduce the development of omics technologies, the most common 
corresponding computational methods, and their application in CMD research and 
to the studies in my thesis.  

 
Figure 3: Main omics procedures and analytical platforms used currently in medicine and in CMD 
research. The figure was drawn using BioRender (https://biorender.com/) 

Bulk omics techniques and analysis approaches 

Bulk omics refers to the characterization of genes, proteins and metabolites 
extracted from homogenized tissues and cell lysates, which has provided 
substantial breakthroughs in our understanding of biological processes [66, 69–72]. 
Microarrays and NGS (such as RNA sequencing (RNA-Seq)) continue to be the major 
techniques for producing bulk transcriptomics data, while MS is a commonly used 
tool for proteomics and metabolomics (Fig 3)[72]. Among these, transcriptomics 
has obtained a central role in the study of CMDs due to the ease of use and cost 
advantages of data acquisition [64,65,67]. 

A DNA microarray (or gene chip) is a small slide with short DNA probes on it [73]. 
Gene expression will be detected upon RNA hybridization to these probes [74–76]. 
RNA-Seq on the other hand is a high-throughput technique based on simple 
counting of reads that can be reliably aligned to a reference sequence [77, 78].  
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Although microarray technology is still used to study CVD [79], with the 
development of NGS, RNA-Seq is gradually eroding its dominance in recent years 
as it addresses some of the limitations of microarrays [70, 75, 80].  The most 
obvious advantage of RNA-Seq is that instead of prior probe selection, RNA-Seq 
allows to sequence the whole transcriptome, implying its advantage in the 
discovery of novel transcripts, allele-specific expression and splice variants. 
Additionally, compared to a standard whole-genome microarray, RNA-Seq allows 
for higher resolution and much lower detection limits for differentially expressed 
genes [75, 81]. These powerful benefits have resulted in the development of a great 
number of bioinformatics tools for RNA-Seq analysis [82]. However, microarrays 
often remain the first choice when studying larger cohorts, because of their lower 
assay cost as well as more limited data storage and easier analysis [75, 83]. Several 
studies have also already shown the high correlation of differential expression 
profiling between RNA-Seq and microarrays, indicating their similar analysis results 
based on known genome sequences [77, 81].  

The pre-processed bulk microarray or RNA-Seq data can be represented as a gene 
expression matrix, where each row represents a gene and each column represents 
a sample. Each entry in the matrix represents the expression level of a specific gene 
in a given sample (Fig 4). A traditional analysis pipeline for the gene expression 
matrix can be summarised as two steps: (1) Identification of characteristic genes 
(or gene modules) that relate to experimental, clinical or treatment conditions, 
followed by (2) downstream analysis for biological interpretation.  

Differential gene expression analysis 

The purpose of differential gene expression analysis is to calculate changes in gene 
expression under specific conditions. A simple and traditional approach is to 
calculate the (log 2) fold change for each gene in the two sets of samples. However, 
this method does not take into account the variance of the expressions [84]. 
Therefore, the selection of differential expressed genes (DEGs) always needs to be 
combined with hypothesis testing [85]. A widely used method is linear-model-
based limma [86], which tests for differential gene expression by moderated t-
statistics. In contrast to t-statistics calculated independently for each gene, 
moderated t-statistic takes into account both the gene under test and genes with 
similar magnitude of variation to shrink the standard errors towards a global value. 
Each gene’s log 2-fold change, t-statistics, and corrected p-value for multiple 
comparisons can be used for generating gene expression signatures (GES) for 
subsequent downstream analysis. 

Gene co-expression analysis  

Gene co-expression analysis is a favoured strategy to identify relevant gene sets 
[87]. The workflow includes the following steps [87]: A correlation network is first 
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constructed based on pairwise correlations between genes [88–90], where a node 
presents a gene, and an edge indicates the correlation of expression between genes. 
Next, gene modules (co-expressed gene clusters) are identified using clustering 
methods. Finally, the modules that correlate to one or several experimental or 
clinical conditions are extracted for further downstream analysis. A well-
established co-expression analysis method is Weighted Gene Correlation Network 
Analysis (WGCNA) [89], which defines a scale-free network by non-linearly 
enhancing the gap between the edges with high and low correlation as follows: 

                                                   (1) 

Where 𝑤!"  is the weight between gene 𝑖  and 𝑗 , corr(𝑋! , 𝑋")  the Pearson 
correlation between 𝑖	and 𝑗, and 𝛽 (>1) is a soft power of nonlinear enhancement. 
Gene modules are clustered using hierarchical clustering with the topological 
overlap measure (TOM) as proximity measure. The main idea behind TOM is that 
the more similar two genes are and the more neighbours they share, the more likely 
they are to belong to the same module. In brief, compared to differential 
expression analysis, co-expression analysis can infer the association between a 
gene module and multiple factors (such as disease, treatments), as well as the 
interactions among genes, which allows to dissect a gene’s functional status 
identified from a systematic perspective.  

Gene regulatory network (GRN) reconstruction 

Like co-expression network analysis, GRN reconstruction is also a network-based 
tool, but rather aimed at understanding how transcription factors (TFs) drive 
changes in gene expressions[91]. The purpose of GRN reconstruction is to infer the 
target genes of TFs, based on gene expressions of a set of samples [91]. In the past 
decades, a large amount of machine learning-based methods was proposed for 
GRN reconstruction. Some unsupervised methods such as MRNET [92] and ARACNE 
[93] are well-received in the biology community since they capture non-linear 
dependencies between genes using Mutual Information (MI) and computational 
cost is low [94]. To be specific, ARACNE first generated a co-expression network 
using MI and discarded indirect interactions using Data Processing Inequality (DPI). 
DPI states that if genes 𝑖 , 𝑗  and 𝑘  are linked as a triplet, then the interaction 
between i and j is will be eliminated if [93]: 

                               (2) 

where 𝐼(𝑋! , 𝑋") is the MI between gene 𝑖 and 𝑗 

Enrichment analysis  

Gene expression signatures or gene modules of interest that were obtained from 
differential expression analysis or co-expression analysis, can be further used for 
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assessing their role in the cell’s molecular mechanisms, such as pathway activity, 
cytokine production, transcription factor activation and even for drug repurposing 
[95–98]. Some approaches to these analyses are completed by mapping a reference 
gene list from an a priori knowledge database to the GES or gene modules of 
interest and calculating their similarity or overlap, to identify terms which are 
statistically over- or under-represented within the list of interest. In this section, I 
briefly introduce the methods used in this thesis, including overrepresentation 
analysis (ORA) [99], gene set enrichment analysis (GSEA) [96] for pathway analysis, 
DoRotheEA [98] and VIPER [100] for TF activity inference, cytosig [101] for 
inference of responses to cytokines and growth factors , and Connectivity Map for 
drug repurposing. 

ORA and GSEA, the most often used statistics-based methods for pathway 
enrichment analysis, are commonly used in combination with Gene Ontology (GO) 
[102] or pathway databases (e.g. KEGG [103], Wikipathways [104]). ORA computes 
if genes from a GO term or a pathway are overrepresented in the gene sets of 
interest (such as DEGs) using a one-sided version of Fisher’s exact test as follows 
[105]: 

                               𝑝 = 1 − ∑
#$% &#

'($
)(% &

#')&
*(+
%,-                                                     (3) 

where 𝑁 is the count of background genes (which are usually the size of GES); 𝑀 is 
the count of overlap between background genes and genes in a pathway; 𝑛 is the 
number of genes of interest and 𝑞 is the size of overlap between genes of interest 
and the genes in this pathway. However, ORA regards all differentially DEGs evenly, 
which may lose the information from the genes with weak differential expressions. 
GSEA calculates the extent to which genes in predefined GO terms or pathways as 
a whole are up- or down-regulated in the GES list, contributing to detecting small 
but consistent changes in a set of genes. 

TF activity inference algorithms aim to find those transcription factors that strongly 
regulate their target genes in response to specific stimuli (e.g. diseases, drugs)[106, 
107]. Since assessing TF activation directly (e.g. Western blot or 
immunofluorescence) can be challenging, most computational approaches predict 
TF activities based on differential expression data and a regulatory network [107]. 
This regulatory network can be constructed using models of TF binding sites (TFBSs) 
[108] or reverse engineering based on gene expression profiles [93]. The activities 
of TFs can be then inferred using a statistics-based enrichment analysis. For 
example, VIPER [100] first generated a regulatory network using ARACNE and 
calculated an enrichment score for each TF on the GES using an analytic Rank-based 
Enrichment Analysis algorithm (aREA), by rewarding the TFs whose targets have the 
same directions of regulations as GES and penalizing the TFs that have opposite 
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regulations. However, the reliability of TF-target networks inferred by a single 
computational method remains to be verified. To address this issue, Garcia-Alonso 
et al. recently integrated TF-target interactions inferred from literature curated 
resources, ChIP-seq peaks, TF binding site motifs, and reverse engineering as a 
resource called DoRotheEA [98], which illustrates the validity of combining 
literature-curated resources with computational prediction results. 

The advantages of data integration have also been applied on cytokine activity 
analysis. With the prime example of Cytosig [101], a tool including an integrated 
database of target genes regulated by cytokines and a ridge-regression-based 
model for cytokine signalling activity prediction. 

Drug repurposing is an effective strategy to discover novel indications for approved 
or experimental drugs by in silico or by experimental screening pipelines. An 
extensively used database for this analysis is Connectivity Map (Cmap) and its 
successor LINCS [97], both of which include a reference collection of gene-
expression signatures that connect genes, drugs and disease states. The candidate 
drugs were selected using weighted connectivity score (WTCS), a bi-directional 
version of GSEA[96]. Drugs with negative score indicate that their GESs are opposite 
to those from the gene set of interest, implying the potential to treat this disease. 

 
Figure 4: approaches for bulk transcriptomics analysis. The figure was drawn using BioRender 
(https://biorender.com/) 
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Uncovering mechanisms of CVD using bulk analysis methods 

The approaches above have been used for the discovery of CVD-causing genes, 
proteins, or metabolites, and for exploring their association with CVD-related 
genetic and environmental factors, to uncover the disease mechanisms and 
develop novel therapeutic strategies. For example, Jin et al. [109] identified sex-
specific plaque-phenotype-related genes that were implicated in fibrosis and 
inflammation, by comparing unstable plaque segments to stable segments from an 
all-male MaasHPS (Maastricht Human Plaque Study) transcriptomics cohort of 
carotid endarterectomy plaques, and then validated on STARNET aortic plaque 
cohort. A recent study based on arrays of plasma metabolites constructed sex-
specific metabolite–metabolite association networks using ARACNE, observing sex-
related variability in branched-chain amino acids, ketone bodies, and propanoate 
metabolism [110]. Furthermore, Nath et al. identified 5 molecular pathways related 
to cardiovascular mortality in heart failure based on differential expression genes 
from 944 patient’s whole blood transcriptomic profiling and then inferred 
candidate drug targets using mortality-related transcript patterns [111]. These 
studies demonstrated the strength of bulk omics analysis in revealing molecular 
mechanisms underlying CVD. In the chapter 4 and 5, I apply multiple approaches 
above to analyse the microarray gene expression profile from monocytes of CTMM 
cohort, including 450 CVD patients to identify genes (modules) associated with 
gender (chapter 4) or CVD risk factors (chapter 5), and to infer the TFs, pathways 
and cytokines that related to these genes. 

From bulk to single cell: towards to cell heterogeneity 

Bulk analysis provides an averaged profile of a mixed pool of a huge number of cells 
in tissues, but is not able to precisely capture the expression profiles of the cellular 
constituents of the tissue, although they can be inferred to some degree by 
deconvolution[72, 112–114]. In recent years, however, technological advances 
have made it possible to explore omics information at a single-cell resolution, 
resulting in a better understanding of the function of each individual cell [114, 115]. 
One of the most well-known transcriptomic techniques is single-cell RNA 
sequencing (scRNA-Seq), which can detect RNA molecules in individual cells with 
high resolution and on a genomic scale [116]. In the field of proteomics, flow 
cytometry [117] and CyTOF [118] are the most universal single-cell techniques, 
currently allowing to detect up to 40 biomarkers simultaneously. From the 
perspective of data structure, similar to the bulk technology, the single-cell data 
can also be processed as an expression matrix, only here the rows of the matrix 
change from a sample to a cell. 

In addition to the analyses mentioned above for bulk transcriptomics, cell clustering 
and visualization are crucial steps for distinguishing individual cell phenotypes 
within a sample [119]. Some classical machine-learning-based clustering methods 
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(such as k-means and hierarchical clustering) have been widely applied to group 
cells into several phenotypes based on the similarity of their expression [120–122]. 
To allow interpretation of the often huge-sized single cell expression data, graph-
based clustering algorithms (e.g. Louvain [123, 124] and Shared Nearest 
neighbour(SNN) [125, 126]) have become popular, due to their scalability and 
efficiency.  

Cell clusters are usually visualized by projecting high-dimensional omics data into a 
two- or three-dimensional space, using dimensionality reduction[127]. For example, 
Principal component analysis (PCA) [128], one of the most long-established linear 
dimensionality reduction methods, finds a set of mutually orthogonal vectors (i.e., 
principal components) by a linear transformation, and then ranks the principal 
components in decreasing order according to variances they can explain. By 
projecting the data onto the first few principal components of the row, visualization 
can be achieved while retaining as much global information as possible. In case of 
a complex nonlinear structure, however, PCA is not the optimal method for 
visualization because the local structure (clusters) of data may be lost. Therefore, 
nonlinear dimensionality reduction techniques, such as t-distributed Stochastic 
Neighbour Embedding (tSNE) [129] and more recent alternatives like Uniform 
Manifold Approximation and Projection (Umap) [130] have become the most 
common approaches to visualize cells discriminated into distinct phenotypes. 

With the booming variety of single-cell computational tools, in the context of 
atherosclerosis, the quest for single-cell approaches has also made great progress. 
Zernecke et al. identified multiple cell subpopulations in healthy and 
atherosclerotic aortas, by integrating nine scRNA-Seq datasets [131]. Cochain et al. 
focused on macrophages from mice aorta, finding IL-1β-rich inflammatory 
macrophages and TREM2-high macrophages are enriched in atherosclerotic aortas 
and exhibit functions related to lipid metabolism [132]. A study based on the 
expressions of scRNA-Seq and CyTOF data from leukocytes in the aorta of 
atherosclerotic mice detected and validated function-specific phenotypes of 
leukocytes [133]. These studies demonstrate the effectiveness of single-cell 
transcriptomics and proteomics in the dissection of cellular heterogeneity in an 
atherosclerotic environment. Therefore, in chapter 2 I utilize multiple clustering 
and visualization approaches described above, to identify macrophage 
heterogeneity. 

From single image to image cube: exploring the cellular 
microenvironment 

Although single-cell techniques have demonstrated success in profiling cell 
heterogeneity, these approaches require tissue dissociation, resulting in all spatial 
contexts of cells within the tissue being lost. This information however is critical for 
understanding the complex heterogeneity of cells within one tissue, such as an 
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atherosclerotic plaque [67, 114, 134]. On the other hand, some traditional tissue 
staining techniques, such as haematoxylin and eosin (H&E) stain , and 
immunohistochemistry (IHC) or immunofluorescence (IF) stain [135] can help 
biologists and pathologists observe the cells’ tissue localization and identify 
differences in cell morphology and intensities of a specific protein marker, but the 
limited number of features that can simultaneously be assessed constrains the 
applicability in the study of cell heterogeneity. To address this problem, several 
spatially resolved omics techniques have been proposed [136–138]. Multispectral 
or hyperspectral imaging (or “lambda scanning”) of a tissue that has undergone 
multiplex IHC or IF staining microscopically reveals the presence and abundance of 
multiple biomarkers in parallel [136]. Imaging Mass Cytometry (IMC) is able to 
visualize up to 40 markers simultaneously by labelling antibodies with tags that can 
be detected by mass spectrometry imaging [137]. Furthermore, the development 
of spatial transcriptomics [139] techniques has gradually reached a sub-single-cell 
resolution in the last two years. For example, high-definition spatial transcriptomics 
(HDST) enables the measurements of gene profile at a resolution of 2 μm [140], and 
Seq-Scope can even reach nanometer resolution (0.5-1 μm) [141]. These novel 
techniques will greatly advance the in-situ characterization of different cell types 
and subsets within their tissue context. All these techniques eventually generate a 
3D image cube, stacking multiple layers of 2D images (the spatial x and y 
coordinates) with the third dimension representing individual protein markers, 
mass to charge (m/z) ratios or gene expression levels.  

For those spatial omics techniques that have not yet (completely) reached a single-
cell resolution, some approaches cluster an individual pixel (or spot) to analyse the 
spatial heterogeneity [142–145]. For the spatial omics data at sub-single-cell 
resolution (e.g., multiplexed imaging), prior cell segmentation is required to 
quantify the signals over the individual cells. Next, based on the physical locations 
of cells, cell-cell interactions can be studied [146, 147] by identifying the 
interactions in local cellular niches (the first-order neighbours) or cells within a fixed 
distance from each other [146, 148].  

The application of spatial omics in CMDs is still in its early stages, despite the fact 
that spatial information is a key factor in understanding cell heterogeneity [149, 
150]. Wu et al. analysed cells and their neighbourhoods from pancreas in type 2 
diabetic patients by quantifying 34 markers of pancreatic exocrine, islet, and 
immune cells and stromal components using IMC [151]. Saldarriaga et al. combined 
5 antibodies targeting macrophages into a multiplex protocol and observed the 
number of macrophages significantly increased in the HCV-positive patients with 
advanced fibrosis[152]. It is conceivable that the tremendous advantages offered 
by spatial omics will break new ground in the exploration and treatment of CMDs. 
In chapter 2, we aim to link 3 types of imaging data (cube) from the same mouse, 
including Matrix-assisted laser desorption ionization-Mas spectral imaging (MALDI-
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MSI) data (containing the signal intensities (aka. a mass spectrum, >20,000 
dimensions) of every pixel on a mouse section), sets to multispectral images (similar 
to MALDI-MSI but with higher resolution and lower dimensionality (15 features)), 
and histology (H&E-stained images; 1 image per sample), ultimately aiming to 
identify molecular patterns associated with the presence of deleterious cell types 
or activation states. 

From single omics to multi-omics  

Although omics studies have identified genes, proteins and metabolites associated 
with some diseases or phenotypes, single omics remain limited to a one-sided view 
of the full picture [153, 154]. For example, protein levels are a sum of the upstream 
transcriptional activity and subsequent post-translational modifications, which are 
difficult to observe from transcriptomic profiles. Metabolites are the end products 
of complete biological processes with several of the intermediate steps potentially 
responsive to genetic or environmental changes [155, 156]. Therefore, an 
integrative analysis of data from multiple omics can help researchers to fully 
understand molecular interactions, bridging the gap between various omics data 
[153, 157]. 

For the studies of CMDs, integrative analysis across multi-omics layers has been 
underway for more than a decade [158]. However, most of these studies just utilize 
the multi-omics data for cross-platform mutual validation on a specific gene set, 
and do not take full advantage of the information from multiple layers. Therefore, 
Jin et. al integrated bulk transcriptomic, proteomic, and peptidomics data derived 
from plaques and compared the difference between low-versus high-risk 
atherosclerotic lesion segments, revealing suppression of a regulatory network 
driven by serum response factor controls lesion stability in vulnerable plaque [159] 
using Data Integration Analysis for Biomarker discovery using Latent cOmponents 
(DIABLO) [160].  

Due to the success of spatial transcriptomics technologies, multi-omics data 
analysis in single-cell spatial resolution will be the next wave to explore spatial 
heterogeneity of tissues and to understand the underlying pathogenesis of many 
complex diseases such as CMDs [161, 162]. The disparities in spatial resolutions 
across various omics measurement platforms, in addition to the existing issues in 
traditional multi-omics analysis, such as heterogeneous data modalities and the 
curse of dimensionality, pose a more significant challenge to spatial integration. For 
instance, the spatial resolution of the Nuance multispectral system may reach up 
to 0.2 μm [136], whereas that of MALDI-MSI is limited to about 1-5 μm (albeit at 
very low speed) [163], let alone the 50-μm-resolution of ‘Visium’ [164]. To solve 
this issue, Guilliams et al. measured single-cell CITE-seq, snRNA-Seq, spatial 
transcriptomics, and spatial proteomics separately from mice liver, and transferred 
the phenotypic information that were obtained from scRNA-Seq to spatial 
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transcriptomics and proteomics, for differentiation and localization of 
macrophages in liver sections[165]. However, this does not enable identification of 
multi-omics profiles at the same location of the tissue. Some other complex and 
expensive technologies, such as DBiT-seq [163] and Nanostring CosMx [166] make 
capturing or inferring the spatial multi-omics profile simultaneously possible, but 
they can only measure the proteome and transcriptome simultaneously. As 
metabolites play pivotal roles in the progress of CMDs, the applications of these 
approaches in CMDs are restricted. Therefore, integrating metabolomics data with 
other omics data at the single-cell resolution remains a daunting challenge.  

From single time point to time series: studying Molecular trajectories 
in a spatial context 

Steady-state omics analysis at a single time point does not allow to study how 
biological pathways and genetic interactions change over time during the disease 
course. As the cost of high-throughput technology is steadily decreasing, also 
temporal omics analysis comes within reach enabling to track temporal biological 
processes [167].  

The goal of the time-series analysis is to identify the characteristics or feature 
groups (e.g., genes, proteins, metabolites) that vary over time. A common solution 
is to identify features that are significantly different between time points (also 
called time-series differential expression analysis) [168]. For example, Nasias et al. 
applied maSigPro [169], a two-step regression approach, to select differential 
expressed genes in murine adipose tissue at 4, 8 and 12 weeks of high-fat feeding, 
to monitor changes in the transcriptome of the epididymal white adipose 
tissue during the development of metabolic syndrome. However, the majority of 
time-series tools are designed for transcriptomics [168], and some of them are only 
suited for data with a negative binomial distribution (i.e., RNA-Seq), which reduces 
their universality [170, 171]. 

In addition, clustering genes with comparable time-series expression patterns 
allows for the identification of time-related gene groups and the interactions 
between genes[172]. Compared to other omics analyses, the application of time-
series clustering in CMD-related studies is relatively lagging behind. Most 
longitudinal studies on atherosclerosis still use general-purpose heuristic 
algorithms such as k-means, hierarchical clustering and fuzzy c-means [173, 174]. 
For instance, Hou et al. identified 12 temporal gene expression patterns during the 
Goto-Kakizaki diabetes progression of rats, by clustering different expression genes 
and proteins using k-means [175]. Deshpande et al. found that the gene modules 
that are related to ER stress, inflammation and neurotransmission were 
differentially expressed at the early developmental stage, by constructing 
numerous WGCNA networks based on the time-series gene expressions from 
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Apobtm2Sgy and Ldlrtm1Her double knockout mice [176]. However, these 
traditional clustering methods do not suit time-series data because they ignore 
temporal dependencies and nonlinear time sampling. Recently, several models 
based on Dirichlet process (DP) and Gaussian Process (GP) were proposed for time-
series gene expression clustering [177–179]. Compared to the clustering methods 
based on distance, GP can model time dependence, and DP is able to address the 
problem of uncertainty in the number of clusters [179]. 

In chapter 3, I apply time-series clustering on MALDI-MSI data from the livers of 
Ldlr-/- mice fed with 0-to-3-week high-fat diet, to identify the disease-process-
related metabolic clusters. As mentioned previously, a liver has a markedly 
heterogeneous spatial structure that may be involved in different metabolic 
functions [64]. Therefore, analysis of metabolic changes within different liver 
compartments will provide a more accurate understanding of metabolic 
disfunction during NAFLD, yet this issue has been little studied. Given the 
above, how to apply time-series algorithms on MALDI-MSI data, especially to 
exploit both temporal and spatial dependencies to dissect the spatio-temporal 
heterogeneity of cells during progression of NAFLD, is the key question to be 
investigated in chapter 3. 
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Scope of the thesis  
To summarise the above, the rapid development of high-throughput technologies 
opens up unlimited possibilities for exploring the pathology of complex diseases. 
Specifically multi-omics data describe samples from different views, bridging the 
incompleteness of information between layers [153]. Single-cell strategies 
distinguish cell phenotypes and differentiation trajectories that cannot be 
recognised using bulk analysis. The addition of spatial information can depict the 
spatial relationships between cells in heterogeneous tissues, offering the possibility 
to explore cellular interactions. The study of heterogeneous samples, cells, or pixels 
allows us to find the most representative features, and the relationship between 
those features. Finally, the dynamic changes of these biosignatures during a disease 
progression can be depicted using time series omics profiles (Fig 5). It is foreseen 
that the applications of these advanced technologies in cardiometabolic research 
will lead to major breakthroughs in the analysis of underlying molecular 
mechanisms in disease progression and clinical manifestations. 

 
Figure 5: A framework of bulk, single-cell, spatial, and time-series multi-omics applications in CMD 
research. The figure was drawn using BioRender (https://biorender.com/) 

However, due to the technical limitations described above, the application of these 
methods in CMD remains limited. Therefore, in this thesis, I design and deploy 
computational pipelines to dissect the heterogeneity and microenvironment of 
macrophages in atherosclerotic plaques, as well as the changes of metabolites with 
NAFLD progression in different liver compartments. In addition, I apply a range of 
transcriptome analysis approaches to infer the transcriptional and functional 
profiles of monocytes and macrophages associated with CVD, which are central 
players in these diseases. I will briefly describe the main points of each chapter in 
the subsequent paragraphs. 

Macrophages can adapt to stimuli in their immediate environment, adopting a 
functional phenotype profile throughout the course of atherosclerosis, suggesting 



General introduction | 1 

23  

1 

significant heterogeneity of plaque macrophages. Therefore, there is an urgent 
need to develop a sophisticated method to profile cell heterogeneity and 
microenvironment. Although traditional single-cell omics techniques have been 
used to identify cell heterogeneity, they are unable to preserve the location of cells. 
Some imaging-based spatial proteomics techniques provide great resolution for the 
localization of each cell, yet are constrained by limited biomarkers to identify cell 
types or by expensive experimental instrumentation. Furthermore, considering the 
important role of metabolites played in atherosclerosis, linking metabolomic 
features from MALDI-MSI to analyse the molecular context of cells is also a 
challenge. Therefore, in chapter 2, I design an extensible and flexible pipeline to 
integrate in situ multiplex immunofluorescent imaging and MALDI-MSI at single-
cell resolution, to map tissue myeloid heterogeneity in its molecular and cellular 
context, and apply this on murine atherosclerotic plaque samples. 

Cells in distinct liver compartments serve different roles [64, 180]; however, it is 
unknown if these differences are reflected level of metabolism in the development 
of NAFLD. As a result, in chapter 3, we analyse temporal patterns of metabolites in 
the context of spatial heterogeneity in liver tissues from NAFLD mice. To that goal, 
we deploy a computational pipeline capable of distinguishing disease-stage-
independent liver compartments based on MALDI-MSI data and identifying disease 
stage-specific metabolites in various compartments during the progression of 
NAFLD. 

In chapter 4 and 5, we aim to investigate the impact of CVD risk factors on 
monocyte phenotypes by applying transcriptomic analysis approaches on a cohort 
including 460 microarrays from monocytes of CVD and healthy subjects, collected 
by CTMM, as well as biological and lifestyle factors, that can enhance CVD risk. 
Specifically, chapter 4 compares the gene expression profile of monocytes from 
male and female CVD patients to identify sex specific signalling pathways 
contributing to the disease. Chapter 5 constructs a WGCNA network and a GRN to 
dissect the influence of CVD risk factors on monocytes after trauma and infection 
response. 

Chapter 6 discusses the findings presented this thesis as well as the advantages and 
limitations of the proposed methods. Chapter 7 summarizes the main findings and 
future prospects of this thesis. Finally, chapter 8 describes the potential scientific 
and societal impacts of this thesis. 
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Abstract 
Cells often adopt different phenotypes, dictated by tissue-specific or local signals 
such as cell-cell and cell-matrix contacts or molecular micro-environment. This 
holds in extremis for macrophages with their high phenotypic plasticity. Their broad 
range of functions, some even opposing, reflects their heterogeneity, and a 
multitude of subsets has been described in different tissues and diseases. Such 
micro-environmental imprint cannot be adequately studied by single-cell 
applications as cells are detached from their context, while histology-based 
assessment lacks the phenotypic depth due to limitations in marker combination. 
Here, we present a novel, integrative approach in which 15-color multispectral 
imaging allows comprehensive cell classification based on multi-marker expression 
patterns, followed by downstream analysis pipelines to link their phenotypes to 
contextual, micro-environmental cues such as their cellular (“community”) and 
metabolic (“local lipidome”) niches in complex tissue. The power of this approach 
is illustrated for myeloid subsets and associated lipid signatures in murine 
atherosclerotic plaque. 
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Introduction 
Mammals contain over 200 cell types, but even these can vary strongly in shape, 
activation state or function, depending on tissue or disease context. Probably the 
best studied example of this heterogeneity is the macrophage [1], a myeloid cell 
type with ubiquitous presence throughout the body whose phenotype not only 
differs between but even within tissues. Recent findings have demonstrated that, 
regardless of their ontogeny [2], these highly plastic cells adopt distinct phenotypes 
dictated and fostered by micro-environmental cues and stromal niches [3]. 
Studying such cross-interactions in tissue by traditional methods is however 
hampered by technological limitations that complicate the parallel monitoring of 
multiple cell types or phenotypes and their context. 

Cytometric approaches and, increasingly, single-cell transcriptomics have greatly 
advanced our understanding of myeloid cell heterogeneity and have been 
instrumental in mapping subsets in several healthy or diseased tissues. Though 
powerful, they require prior tissue dissociation. This leads to underrepresentation 
of fragile, large or adherent cells and, even worse, to complete loss of spatial and 
contextual information. This is not trivial as tissues, particularly when diseased, 
rarely display an even cellular or molecular composition. Therefore, these 
approaches do neither allow assessment of the spatial distribution of subsets nor 
identification of cell-cell and -niche interactions or micro-environmental cues that 
dictate the macrophages’ phenotype. Immunohistochemistry (IHC) or 
immunofluorescent microscopy (IF) do not suffer from this setback but fail to 
provide the required phenotypic resolution due to the limited number of markers 
that can simultaneously be imaged. Several multiplex imaging approaches have 
been developed over the past decade, each with their specific merits and flaws [4]. 
Manual and automated sequential IF staining approaches [5-7] provide illustrative 
images but suffer from lengthy acquisition and the risk of gradual signal loss with 
each cycle, disqualifying them for extensive screening purposes. Alternatively, one-
shot multiplex imaging approaches, including but not limited to imaging mass 
cytometry [8], stimulated Raman scattering microscopy [9] or multiplexed ion beam 
imaging [10], produce impressive and figurative images but the high cost in terms 
of custom consumables and/or infrastructure limits widespread application. Other 
novel high-dimensional solutions such as SeqFISH+ [11] or Slide-Seq [12] will only 
cover limited amounts of cells. 

To meet this need, we here propose an integrated pipeline combining a novel, 
multispectral IF imaging approach for rapid, affordable, comprehensive phenotypic 
and spatial mapping of cellular heterogeneity in tissue, combined with parallel mass 
spectrometry imaging (MSI [13]) to define the cells’ molecular context. 



Integrating multiplex imaging and MSI | 2 

43  

2 

Methods 
Experimental models and subject details 

All imaging was performed on a spleen of an adult male wild-type C57Bl/6 mouse 
(Charles River Laboratories, https://www.criver.com/products-services/find-
model/c57bl6-mouse), and on aortic roots of eleven adult Ldlr-/- mice (Jackson 
Laboratory, https://www.jax.org/strain/002207) fed a Western-type diet (“diet W”, 
SDS Diets) for 10 weeks to induce atherogenesis. 

Animal experiments were approved by a local Committee for Animal Welfare (IvD 
Maastricht University) and performed under the Maastricht University animal 
facility’s standard conditions, in accordance with Dutch national laws and 
regulations. 

Method details 

Tissue preparation and staining 

A spleen of a male wild type C57Bl/6 mouse was embedded in OCT compound and 
cryosectioned with a thickness of 7µm on standard adhesive microscopy slides 
(KliniPath). Eleven female Ldlr-/- mice were fed a Western-type diet (“diet W”, SDS 
Diets) for 10 weeks to induce atherogenesis and upon sacrifice, their aortic roots 
were snap-frozen in OCT compound. Serial cryosections of 7µm thickness were cut 
from the aortic valves up to the transverse aortic arch, as described earlier [14], 
and sections were mounted on a series of 23 standard adhesive microscopy slides 
for IHC and IF stainings and one indium tin oxide (ITO) coated slide (Delta 
Technologies) for mass spectrometry imaging, leaving 168µm between every 
section on one slide. All sections were dried in a desiccator for 5 hours at room 
temperature before storing them at -80°C. 

Cryosections were thawed and air-dried, then fixed for five minutes with dry 
acetone and immersed in blocking buffer (PBS + 4% FCS) for overnight exposure to 
400nm UV light in a cold room (4°C) (Fig 1G-H), prior to the staining procedure. All 
antibodies were mixed just prior to staining in PBS + 4% FCS and applied for four 
hours in the dark at 4°C on PAP Pen (ThermoFisher) lined tissue sections, followed 
by three washing steps (PBS) and mounting with the anti-fading Prolong Gold 
(ThermoFisher).  

Multispectral imaging 

Multiplex spectral imaging was performed using a Nuance FX camera (Perkin Elmer) 
mounted on an upright fluorescence microscope (Leica DM4000) equipped with a 
white light source, four different narrow band pass excitation filter cubes and an 
HC PLAN APO 20x/0.70 PH 2 (Air) objective (all Leica). Combined with the 
accompanying Nuance software, this setup allows to record the emitted 
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fluorescence intensity for each pixel in one field of view (FOV) in sequential pictures 
spanning the full visible electromagnetic range (420-720nm) while maintaining a 
constant, narrow-band filtered excitation wavelength. Filter cube properties and 
the Nuance software settings for spectral imaging are indicated in Table S1. In 
short, excitation with filter I3 was followed by N2.1 and the composite image was 
unmixed in its individual spectra, including the different dyes used in the antibody 
panel as well as separate background and autofluorescence spectra. Next, the exact 
same field of view was recorded sequentially with the A and S Blue Aqua filter 
excitation and again unmixed into separate spectra (Fig 1A-F). The total recording 
time for one 0.36mm² FOV corresponds to the addition of exposure times over the 
full spectra covered by all four filters (indicated in Table S1) and approaches six 
minutes. 

The tissue’s background, autofluorescence and the dye-specific spectra were first 
recorded in unstained and single label-stained sections of the same tissue type 
(murine spleen and aortic root, respectively) before combining all antibodies into 
one panel. Antibody concentrations were adjusted to obtain similar maximal 
fluorescence intensities for each of the markers and dye bleeding into overlapping 
spectra was assessed using fluorescence-minus-one (FMO) stained sections. 

Five WT spleen cryosections, stained with the antibody panel in Table S2, were 
imaged, using the exact same procedure as used when defining the individual 
spectra on single-stained sections, and unmixed into their individual spectra. For 
visualization, brightness and contrast of each picture were manually rescaled using 
Fiji [15] to normalize signal intensities and remove subthreshold signal. A selection 
of the markers was combined into a representative merged picture. 

A total of 148 FOVs of atherosclerotic plaques stained with the antibody panel in 
Table S3, spread evenly over the different aortic roots and ranging from proximal 
to distal from the valves, were imaged. Following spectral imaging, the slides were 
submerged upside down in PBS at 37°C at an angle that allowed the cover slip to 
spontaneously detach without damaging the underlying tissue. After additional 
washing steps, a haematoxylin/eosin (H&E) staining was performed on these slides 
and areas corresponding to the fluorescent fields of view (FOV) were imaged by 
brightfield microscopy (DM3000 LED with DFC320 camera and HC PL FLUOTAR 
10x/0.30 (Air) objective, all Leica). 

Mass Spectrometry imaging 

For MSI, tissue cryosections were captured on ITO glass slides that were cleaned by 
subsequent 10 minutes sonication steps in ethanol and hexane. The sections were 
dried under a vacuum desiccator for 10 minutes and followed by norharmane 
matrix deposition. Briefly, 15 layers of norharmane (7 mg/mL) in 2:1 chloroform: 
methanol (v:v) matrix solution were homogeneously coated onto the slides at 30°C 
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using a TM-sprayer (HTX Technologies, Chapel Hill, NC, USA) with a fixed flow rate 
of 120 µL/min. Subsequently, samples were measured using a rapifleX MALDI 
Tissuetyper™ (Bruker Daltonik, Bremen, Germany) within a mass mass-to-charge 
ratio (m/z) of 400–2000 in negative ion mode. Pixel size was 15×15µm2 using 200 
shots per pixel. The instrument was calibrated prior to each measurement using 
red phosphorus.  

Next, the matrix was removed by dipping the slides in ethanol and a subsequent 
H&E staining was performed. Full slides were scanned using a digital slide scanner 
(Mirax Desk, Zeiss, Jena, Germany) and coregistered with the MALDI-MSI data in 
FlexImaging (Bruker Daltonics, Version 5.0) using 3 pre-marked reference points per 
slide.  

Image registration procedure 

Three registration strategies were designed for linking every single cell segment’s 
fluorescent imaging intensity and MSI intensity (Fig S1). Linear registration was 
used for aligning images from the same section, i.e. the alignment of multispectral 
images and their corresponding H&E images (hereinafter referred to as 
“fluorescent imaging layer”, Fig S1A), and the alignment of H&E images with 
different resolutions from the sections analysed by MSI (hereinafter referred to as 
“MSI layer”, Fig S1C). A combination of linear and nonlinear registration was 
applied to H&E images from adjacent sections (Fig S1B). All algorithms used for 
image registration are from Image Processing Toolbox (MathWorks[16]). 

Alignment of the H&E and multispectral fluorescent images 

The H&E image from the fluorescent imaging layer was aligned with the fluorescent 
images by enhancing and extracting the positional information of nuclei on both 
the H&E and the 7-AAD image (Fig S1A, (1) and (2)). In detail, for both the contrast 
was enhanced by transforming the values using contrast-limited adaptive 
histogram equalization (CLAHE) [17]. Wiener filter [18] and morphological 
operators were then used for removing the nuclei-unrelated noise. Next, binary cell 
nuclei images were obtained using a locally adaptive threshold [19] (Fig S1A (3) and 
(4)). The final registration transformation was obtained by aligning these two 
processed images using a Mattes Mutual Information (MMI) based registration 
algorithm[20] (Fig S1A (5)). 

Alignment of the MS image layer and the corresponding H&E section 

The low-resolution full-slide images of the H&E staining performed on the MSI 
tissues (Mirax Micro digital slide scanner), that were manually aligned with the MSI 
data in the FlexImaging software package based on landmarks (as described above), 
were now aligned with high-resolution images (VENTANA iScan HT slide scanner) 
(Fig S1C (1) and (2)). Features of both H&E images were detected and extracted 
using Oriented FAST and Rotated BRIEF (ORB) algorithm [21]. Corresponding 



Chapter 2 

46 

2 

features were matched based on the pair-wise Sum of Squared Difference (SSD) 
between feature vectors from two H&E images (Fig S1C (3)). The final registration 
image was obtained by estimating geometric transforms from coordinate pairs of 
matching features (Fig S1C (4)) [22]. 

Coregistration between adjacent MS and multispectral imaging layer 

As MSI induced some tissue damage, the subsequently obtained H&E images were 
often of lower quality. To guarantee high-quality registration with the adjacent 
slides, only 25 out of 65 sections with no/minor damage were singled out for 
alignment. Coregistration between H&E-stained images from adjacent sections 
involved a two-step process. Rough registration was achieved by automated rigid 
registration based on Mattes Mutual Information (Fig S1B (1)) [20]. Subsequent 
precise alignment was performed by B-spline based elastic deformation (Fiji plugin, 
BUnwarpj) [23]. Hereto, landmarks were selected manually on both layers to 
improve and quantify registration precision (Fig S1B (2) to (4)). The average 
distances of landmarks before and after registration on each image are between 
2.329 to 10.820µm (5.786 on average), hence lower than the resolution of MSI, 
illustrating the high coregistration precision. 

Computational procedures for identification and characterization of 
phenotypes 

Fluorescence intensity matrix building  

A fluorescence intensity matrix was built to identify phenotypes by cell clustering. 
In brief, all cells were detected on H&E images and a matrix mapping each marker’s 
fluorescent intensity per cell segment was constructed. For high-quality estimate 
of each cell segment’s marker expression, this matrix was cleaned by spillover 
compensation and outlier removal (Fig S2A). 

Cell segmentation and initial matrix building 

Cells were segmented on the H&E image from the fluorescent imaging layer, using 
a watershed cell detection tool from QuPath [24] (Fig S2B (1)). Nuclei were 
identified and expanded by 5 pixels. The thus created image mask containing all 
coordinates of the defined cell segments could be projected to the corresponding 
unmixed multispectral images (Fig S2B (2)). 

Assuming n segmented cells were identified in a single H&E staining image, we first 
built a cell-biomarker matrix	𝑋 ∈ ℝ)×/  harboring the average intensity vectors for 
all fluorescence markers of each cell segment (Fig S2B (3) and (4)), where d is the 
number of biomarkers used for clustering analysis (d = 12 in this study).  
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Spillover compensation  

Although cell segments identified through the watershed detection were kept 
relatively small, overlap with a neighboring cell could not be excluded. To correct 
for contamination of biomarker fluorescence from neighboring cells, a spillover 
compensation was applied on the cell-biomarker matrix, using a previously 
published protocol [5] with minor modifications. Firstly, neighbors of each cell were 
confirmed by a Delaunay triangulation graph (Fig S2C (1)). However, unlike Goltsev 
et al., who constructed a spill coefficient matrix by calculating the percentage 
shared edge per cell segment [5], compensation was here based on the estimated 
overlap in area of the two cells (as illustrated in Fig S2C (3)). For each cell we defined 
its circumscribed ellipse, and calculated the overlapping area of a cell and its 
neighbor’s ellipse (Fig S2C (2) and (4)). An adjacency matrix 𝐴 ∈ ℝ)×) was defined 
as follows: 

𝑨!" =
𝑺𝑪"#	

𝒔#
     (1) 

where 𝒔!  is the area of cell i, and 𝑺𝑪!"  is the common area of cell 𝑖 and 𝑗, and 𝑨!" =
1 when i = j. In Goltsev et al., the adjacency matrix was introduced as follows: 

 𝑨!" =
𝑪"#
𝒑#

     (2) 

where 𝑪!" 	is the length of common edge of cell i and j; 𝒑"  is the perimeter of cell 𝑗.  

This new approach lowers the risk of overcompensation, intrinsic to common edge 
length correction as illustrated in Fig S2D. Compensation by equation (1) effectively 
reduced the number of cells with intensity 0, as compared to the original method 
(equation 2), thus obtaining a compensated intensity matrix 𝑋A ∈ ℝ)×/: 

 𝑿C = 𝑿5𝑨(+     (3) 

Outlier removal 

As shown in Fig S2E (1), (2) and (3), intensities for all markers in 𝑿C  were rescaled 
between 0 to 100 and cell segments with low intensities (<3) for all biomarkers or 
small size (< 50 pixels) were removed for denoising, preserving 102,159 cells from 
the 178,145 detected segments. 

Clustering analysis 

The fluorescence intensity matrices of 148 images, described above, were 
integrated as a whole containing a total of 102,159 12-dimensional single-cell 
phenotypic marker intensities. Cell segments were subject to several clustering 
algorithms (k-medoids [25], Self-organized Map (SOM) [26], X-Shift [27], 
Hierarchical clustering, and Spectral clustering [28]) with different distance metrics. 
Except for X-shift, the number of clusters k was fixed at 70. Since in X-Shift, the 
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number of clusters k depends on the number of nearest neighbors of a cell c, c was 
determined by selecting the clustering result whose k was closest to 70, as to 
compare these algorithms as fair as possible (k=62 using Euclidean distance; k=69 
using Angular distance). Clustering performance was assessed by Silhouette [29], a 
measure of the similarity (range -1 to 1) of a cluster member to its own cluster 
versus to other clusters (Fig S3), where a high coefficient indicates that the member 
is well matched to its own cluster but not to neighboring clusters.  
Visualization of clustering performance 

A minimal spanning tree (MST) [30] and polar histograms were constructed based 
on the median fluorescence intensity of each cell cluster (Fig 4A-B), and the t-SNE 
(t-Distributed Stochastic Neighbor Embedding) [18] plot (Fig S4A) was generated 
using the involved function provided by MathWork 
(https://nl.mathworks.com/help/stats/t-sne.html). Cluster members were also 
overlaid on H&E images for pathological analysis (Fig 5).  

Correlation between superclusters and scRNA-Seq dataset 

Log transformation and standardization were performed for each biomarker (from 
Nuance cell-biomarker matrix) and individual gene (from Zernecke RNA-Seq data) 
and across all cells. We selected 10 single-cell RNA-Seq (scRNA-Seq) genes (Cd44, 
Cd47, Cd68, Mrc1, Ly6c1, H2-Ab1, Itgam, Lamp2, Adgre1, and Plin2) corresponding 
to Nuance biomarkers (CD44, CD47, CD68, CD206, Ly6C, MHCII, CD11b, CD107b, 
F480, and Perilipin2, respectively; Dectin1 expression was not covered in the 
scRNA-Seq dataset and Ly6G+ neutrophils were not included in the myeloid meta-
analysis). Subsequently, the Pearson correlation coefficient between 
transcriptomics-based clusters, as annotated by Zernecke et al., and the imaging 
superclusters was calculated based on the mean of expression or intensity per cell 
cluster, respectively. After deleting the correlations lower than 0.2, the top 2 
connections with the highest correlations were listed in Table S5 and visualized in 
a bipartite graph (Fig 6A).  

I-niche analysis for preferred cell communities 

I-niche analysis was performed as described by Goltsev et al. [5] with some 
modifications. Instead of defining a cell’s i-niche as a ring including a set of first-
order Delaunay neighbors (Fig S5A (1)), we preferred to account for both the first-
order Delaunay neighbors and the Euclidean distance between cells on H&E images, 
in view of the uneven cell density distribution in atherosclerotic plaques. Therefore, 
only neighbor cells were included in the i-niche ring if their Euclidean distance was 
lower than a given threshold (50 pixels) (Fig S5A (2)).  

Assume 𝑩 = [𝒃+, 𝒃6, … , 𝒃']5, 𝑩 ∈ ℝ'×7	, where 𝑁 is the number of cell segments 
in the whole dataset (𝑁 = 102,159) and 𝑚 is the number of supercluster (𝑚	 =
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	17), is an i-niches matrix for recording the fraction of the number of a supercluster 
in an i-niche (Fig S5A, (3) and (4)). For the i-th cell and j-th supercluster, let 𝐷!  be a 
set of cell segments in the i-niche, and 𝐻"  be a set of cell segments belonging to 
supercluster j. Then 𝑏!"  was defined as follows: 

 𝑏!"  = |9"∩;#|
|9"|

     (4) 

𝑩 was clustered into 60 i-niche groups by k-means (Fig S5B). Assume the elements 
in vector 𝒒 ∈ ℝ+×7 represent the numbers of i-niches for 𝑚 central cell types. Co-
occurrence matrix of superclusters (cell communities) 𝑩S = T𝒃S+, 𝒃S6, … , 𝒃S7U

5, 	𝑩S ∈
ℝ7×7 was depicted in a heatmap, where average fraction of superclusters in an i-
niche ring circumventing central cell type 𝑙, was calculated as follows: 

                                                           𝒃S< =
∑ 𝒃𝒊"%&
𝒒&

     (5) 

Functional analysis of superclusters 

Nuclear size and intensity detection 

Nuclei were characterized based on their hematoxylin intensities in post-
multispectral imaging H&E staining. Color deconvolution extracted nuclei-only 
images [22], which were overlaid with the above-described cell segments-defining 
masks. Next, a series of morphological operations was used to extract the nuclei 
area, specifically including gamma correction (γ=4) for contrast adjustment, a dark 
channel prior dehazing method [23] for image haze reduction, and the top-hat 
filtering for uneven illumination correction where the images’ contrast was 
adjusted again to obtain 1% saturation in the intensity values. The final nuclei areas 
were identified by binarizing the processed image and removing single-pixel noise. 
The size of a nucleus was defined as the number of pixels in a nucleus region, and 
the maximum intensity of color deconvoluted image per nucleus was used to 
represent the nuclear haematoxylin staining intensity.  

Ki-67+ cell identification 

For each supercluster separately, we calculated the intensity of Ki-67 staining in all 
cells as a measure of their proliferation rate. To reduce the impact caused by 
artefact Ki-67 signal and improve the accuracy of Ki-67+ cell identification, cells 
were considered Ki-67+ only if the cell pixel harboring the Ki-67 intensity peak (the 
local maximum) coincided with the nucleus pixel of that cell, and if the peak 
intensity was higher than 5. 

Computational procedures for characterizing the cells’ micro-environment 

The pipeline of cell’s micro-environment characterization includes three steps (Fig 
S6). Firstly, m/z peaks were picked from mass spectrums via a series of MSI 
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processing procedures for denoising and reducing the data dimensionality (Fig S6 
(1) and (2)). An MSI pixel was then assigned one of 70 cell clusters by transforming 
coordinates of cells from the multispectral imaging layer to the MSI layer (Fig S6 (3) 
and (4)). Finally, characteristic m/z values were selected from regenerated samples 
using Adaboost based feature selection with 10-fold cross-validation [31, 32]. 

Mass spectrometry imaging preprocessing 

A total of 25 sections from MSI layer with no/minor tissue damage were used for 
lipidomic analysis, as previously described [33]. First, a linear alignment was 
performed on all mass spectra (intensity vs. m/z plots of MSI pixels) using 
FlexAnalysis v3.4 (Bruker Daltonik), choosing m/z 885.6 as calibrant with a 1000 
ppm peak assignment tolerance. The mass spectra were then resampled to 40,000 
peaks within the 400 to 2000 m/z range using the “msresample” function from 
Bioinformatics Toolbox (MathWork[34]) with default parameters to share the same 
separation-unit range. The remaining steps of preprocessing (including baseline 
correction, denoising, and pick peaking) were followed by a peak detection method 
using the UDWT on the mean spectrum (MUDWT) [35]. S/N threshold φ was set at 
6. As a result, 664 m/z peaks were picked for subsequent analyses. 

Assignment of MSI pixels to phenotypic supercluster 

MSI images were linked to the multispectral images using the above-described 2-
step coregistration procedure (Fig S1B), transforming the coordinates of all cell 
segments on the multispectral imaging layer into the MSI layer image. Projected 
cell segments were then checked by histological examination of the corresponding 
H&E image to correct for tissue artefacts or imperfect coregistration of nonidentical 
image layers. Incorrect projections were discarded. For cell segments which are 
spread over more than one MS pixel, the MS pixel was assigned based on the 
coordinates of the centroid of that segment. A pixel-m/z matrix was eventually 
constructed by integration of preprocessed mass spectra from 25 sections. This 
matrix had a total of 11,995 pixels with 17 phenotypic supercluster labels and 664 
m/z peaks (Fig S6). 

Supercluster-specific lipid feature selection  

Cell segment projection onto MSI images was not always flawless, despite manual 
inspection of co-registration quality, as this was based on plaque textures and not 
on the locations of cell segments. Thus, each supercluster included outlier MSI 
pixels. Therefore, for each supercluster, outliers of MSI pixels were smoothed by a 
bootstrapping strategy involving iterative artificial sample generation (the number 
of iterations was 50), based on the average MSI intensities from the pixel-m/z 
matrix of half of randomly selected pixels within that supercluster. 50 samples with 
664 m/z peaks were then generated per supercluster. For superclusters E, F and G, 
or superclusters K, N and O, MSI peak importance was then estimated by summing 
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these estimates over all weak learners (decision tree) in Adaptive Boosting 
(AdaBoost) [32] (using the “predictorImportance” function from Statistics and 
Machine Learning Toolbox, MathWorks[31]). The comparison of classification 
accuracies in 10-fold cross validation between AdaBoost and other ensemble 
learning methods (Random Forest [36], Random Undersampling Boosting 
(RUSBoost) [37], and Linear Programming Boosting (LPBoost) [38]) was shown in 
Fig S7A. The top r important peaks were picked using two strategies based on the 
changing curve of the 10-fold cross-validation accuracies with the number of top 
peaks we used in the model (Fig S7B): 1) the number of peaks with the highest 
accuracy (r = 60 in supercluster E, F and G; r = 46 in supercluster K, N, and O), and 
2) the number of features whose accuracy is not significantly different (p>0.05) 
from the highest accuracy (r = 15 in supercluster E, F and G; r = 5 in supercluster K, 
N, and O). These r peaks’ intensities were presented on heatmaps (from R package: 
ComplexHeatmap [39], Fig 7B and E; Fig S7C and E), and their classification qualities 
were visualized by reducing dimensions from k to 2 using Uniform manifold 
approximation and projection (UMAP) [40] (Fig 7C and F; Fig S7D and F). 

Lipid identification 

MS/MS was performed in negative polarity using data-dependent acquisition (DDA) 
on an Orbitrap Elite (Thermo Fisher Scientific, Bremen, Germany) coupled to a 
MALDI/ESI injector (Spectroglyph LLC, Kennewick, WA, USA) [41], or via manual 
MS/MS acquisition on a timsTOF fleX (Bruker Daltonics, Bremen, Germany). For the 
DDA, an isolation window of 1 Da, activation Q of 0.25, and normalized collision 
energy of 38 (manufacturer units) were used. The full MS was acquired over m/z 
400-2000 at 240,000 mass resolution (FWHM at m/z 400). The injection time was 
set to 250 ms and source pressure was 8.0 Torr. LipostarMSI 1.1.0b28 was used for 
analysis and lipid identification [42]. Manual MS/MS was performed on the timsTOF 
fleX using an isolation window of 1 Da and a collision energy of 35-60 eV, optimized 
per lipid. A total of 1,000 shots were summed, fired at 10 kHz frequency. All lipids 
were identified by accurate mass from Orbitrap acquisition and by manual 
assignment of the fragments using Alex123 Lipid Calculator [43]. 
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Results 
Multispectral immunofluorescent imaging of murine spleen myeloid 
heterogeneity 

Proof of concept for spatial phenotypic heterogeneity mapping by multispectral 
imaging was obtained in murine spleen tissue, with its well-documented 
architecture and microanatomic locations of the different myeloid subsets [44]. 
Although characteristic markers for spleen leukocyte subsets had been established 
before [45] and proven successful in distinguishing them in cytometry [46] or 
immunofluorescence [47], combining multiple markers to reveal relative subset 
locations remained challenging and required sequential staining approaches [5].  

 
Figure 1: Multispectral immunofluorescent imaging and bleaching of tissue autofluorescence. 
Excitation (dotted) and emission (full) spectra of the antibody-linked dyes used in this study are drawn 
against a background that indicates the excitation and detection range of the I3 and N2.1 filter cubes 
(A) or the A and S Blue Aqua filter cubes (D). Illustrative composite pictures adding all imaged 
wavelengths for each filter cube combination (B and E, respectively) could be unmixed into their 
individual spectra, of which pseudo-colored merged pictures are shown (C and F, respectively). A 
schematic overview (G) and picture (H) of the custom-designed bleaching device, featuring a plateau 
that fits up to 12 tissue slides (orange) simultaneously, evenly distributed near-UV (400nm) light 
(purple) by 4 rows of 7 high-power (3W) LEDs (yellow), two power sources (green) and both active 
(fans) and passive (fins) cooling to prevent the LEDs and sections from heating. (I): Examples of murine 
atherosclerotic plaques stained and imaged without or with prior bleaching, illustrating the reduction 
in tissue autofluorescence, the improved signal-to-noise ratio for some of the markers and the 
persistent autofluorescence in the vessel’s media layer. 

In multispectral IF imaging, stepwise detection of fluorescence emission intensity 
over the full visible range at fixed excitation wavelength, a so-called lambda scan, 
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allows to recreate a complete emission spectrum for each individual pixel. By 
comparing this to a pre-defined library of spectra, measured in unstained and 
single-fluorochrome stained tissue sections for each dye (Fig 1A&D), one can 
computationally deconvolute multiplex stained images (Fig 1B&E) into their 
individual components (Fig 1C&F), even despite spectral overlap. This so-called 
unmixing thus creates a greyscale image of the same field of view (FOV) for each 
individual fluorochrome (Fig 2A-K).  

 
Figure 2: Murine spleen multispectral imaging of cellular heterogeneity and distribution. (A-K) 
Representative images of an 11-marker staining of a follicle in 7µm-thick sections of murine spleen. 
The captured spectra were unmixed into the individual dyes representing the 11 markers. (L) Since a 
combination of 11 colors is difficultly distinguishable by eye, a selection of 7 markers was pseudo-
colored and combined into a merged image using Fiji [15] to highlight the respective tissue locations 
of red pulp macrophages (F4/80+), marginal zone macrophages (CD209b+), metallophilic macrophages 
(CD169+), white pulp macrophages (MerTK+), tingible body macrophages (CD68+) and granulocytes 
(Ly6G+), in and circumventing a B- and T-cell rich follicle. 

Typically, polymer or tandem dyes with similar optimal excitation wavelengths but 
distinct emission spectra are combined. To increase the number of compatible 
fluorochromes, we combined dyes that are excited by blue (I3 filter) or green (N2.1 
filter) light (Fig 1A). Then, to even further expand the number of simultaneously 
detectable markers on the same tissue section, a second image is made of the exact 
same FOV, now imaging dyes excited by UV (A filter) and violet (S blue aqua filter) 
light (Fig 1D, Table S1). Single-stained tissues were used to define the individual 
spectra, and the extent of bleed-through between channels was monitored by 
including the appropriate fluorescence-minus-one (FMO) controls during protocol 
setup.  
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We validated the capacity of multiplex spectral imaging to simultaneously 
discriminate and localize the splenic resident myeloid subsets by staining 
cryosections with the nuclear marker 7-aminoactinomycin-D (7-AAD) and 
antibodies against CD1d, CD3, CD45R, CD68, CD169, CD209b, F4/80, Ly6G, MerTK 
and MHC-II, all coupled to inter-compatible dyes, in an 11-plex panel (Table S2). 
Unmixed images demonstrated efficient and clear separation of these markers into 
individual greyscale images (Fig 2A-K), from which a selection was pseudo-colored 
and merged to show the respective myeloid phenotype localizations (Fig 2L). 

Murine atherosclerotic plaque myeloid heterogeneity 

Next, we aimed to map the poorer defined myeloid subsets in murine 
atherosclerotic plaque, a vascular tissue notorious for its stage- and location-
dependent complexity, harboring highly diverse microenvironments and thus 
myeloid heterogeneity. 

Macrophages play a central role throughout the pathogenesis of atherosclerosis. 
Already at steady state, arteries are populated by myeloid cells that play an 
essential role in vascular tone control, amongst others [48]. Upon 
hypercholesterolemia, resident macrophages can clonally expand [49] and 
additional, monocyte-derived macrophages are recruited to the intimal layer [50], 
where they become foam cells by ingesting lipids and produce proteolytic enzymes, 
growth factors and inflammatory mediators, ultimately determining plaque 
stability.  

We now appreciate that all these functions are not executed simultaneously by one 
single phenotype. Rather, macrophages adopt specialized phenotypes, driven by 
the highly heterogeneous micro-environment. Plaque, with its plethora of 
micromilieus, ranging from quiescent, inflammatory, necrotic, smooth muscle cell 
(SMC)-rich, fibrotic, hypoxic to calcified and neovascularized areas, harbors highly 
diverse cellular and molecular environments. 

 Accordingly, conventional histology [51] and, more recently, CyTOF and single-cell 
RNA-Seq [52-58] have already revealed that plaques harbor several distinct 
macrophage subsets, yet spatial information on the identified subsets and their 
molecular context is still lacking.  

Reduction of tissue autofluorescence 

 Atherosclerotic plaques notoriously display high, polychromatic autofluorescence, 
which could cause false-positive signals and cannot be quenched by Sudan Black or 
commercially available kits, as these also quench the often dim signals from 
directly-labeled, non-amplified antibodies [59]. We therefore opted for overnight 
photobleaching [59-61], prior to antibody-staining, using a custom-designed 
bleaching device with high-power near-UV LEDs (Fig 1G-H), which strongly reduced 
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background fluorescence and improved the markers’ signal-to-noise ratio, while 
leaving tissue texture and epitope recognition unaffected. Interestingly, the strong 
monochromatic autofluorescence of the elastin-rich media layer and cap is 
maintained (Fig 1I). 

Atherosclerotic plaque multispectral imaging 

After testing the discriminative power and compatibility of different marker 
combinations and benchmarking each marker with single (and published) IHC 
staining patterns, we selected a 14-marker panel (supplemented with remaining 
autofluorescence) for multispectral imaging. It consisted of 12 phenotypic markers 
known from own experience and relevant literature, a nuclear staining (7-
aminoactinomycin D, 7-AAD) and a marker for proliferation (Ki-67) to map the 
subset’s mitogenic capacity (Table S3) to apply on a cohort of aortic root 
atherosclerotic plaques from high fat diet fed LDL receptor deficient mice. 

Plaque cryosections were stained with this panel and 148 multispectral images 
were recorded and each deconvoluted into 15 individual marker components (Fig 
3B-Q). As this approach leaves the tissue intact, the same sections were 
subsequently stained with hematoxylin and eosin (H&E) (Fig 3A) and aligned to the 
fluorescent images, regarding dimension, resolution and orientation (Fig S1A), 
enabling pathological validation of our findings as well as characterization of cell 
morphology.  

Identification and characterization of plaque myeloid phenotypes 

Contrary to splenic myeloid heterogeneity, where every marker corresponded to a 
specific, known cell type or subset, plaque macrophages often featured more than 
one of the selected markers and were therefore discriminated based on their 
overall marker expression patterns. Cell segments, identified on the corresponding 
H&E images, were overlayed on the individual greyscale images to record all cells’ 
relative intensities for each of the markers (Fig S2B). These were corrected for 
spillover from neighboring cell fluorescence, proportional to the estimated overlap 
of cell masks (Fig S2C-D). Eventually, a total of 102,159 cells were found to be 
positive for at least one of the twelve phenotypic markers (Fig S2E) and were 
subjected to subsequent clustering analyses to define myeloid heterogeneity in 
plaque but also media, adventitia, aortic valves, and cardiac tissue. 
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Figure 3: Murine atherosclerotic plaque multispectral imaging of myeloid heterogeneity. 
Multispectral imaging of a representative murine aortic root atherosclerotic plaque. (A) An H&E 
image, cropped to the same size, orientation and resolution as the fluorescent images. (B-P) Unmixed 
greyscale images for the individual spectra and thus markers. (Q) A selection of these images was 
pseudo-colored and merged using Fiji [15] to illustrate the uneven distribution of these markers over 
the tissue. The signal-to-noise ratio of these images was optimized manually using Fiji for esthetic 
purposes. 

Cells were intentionally over-clustered (number of clusters or k=70) to ensure 
proper segregation of even the rare subsets. Several clustering methods were 
compared for their performance, and as most cells are only partly entrapped in 7 
µm sections, we included both clustering based on absolute, integrated marker 
intensities and the more appropriate relative marker intensities from cosine, rather 
than Euclidian, distance. K-medoid clustering based on cosine distance performed 
best, as judged from silhouette analysis [29] (Fig S3A) and empirical 
histopathological examination of cluster-assigned cells in at least 7 sections from 
different mice. It was therefore selected as method of choice.  

The 70 resulting clusters were presented as a tSNE plot [62] (Fig S4A) or minimal 
spanning tree (MST [30]) to visualize mutual similarity of clusters as well as their 
respective cell numbers (Fig 4A). The marker expression profile for each cluster is 
shown in radar plots (Fig S3B). Next, these 70 clusters were assigned manually to 
17 superclusters (named A–Q, color coded in Fig 4A and Fig S4A), based on inter-
cluster distance in the MST, similarity in marker expression pattern and analysis of 
their predominant tissue localization. Their mean marker expression was visualized 
in Fig 4B and S4D, and their relative abundance was shown in Fig S4B. 
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Next to phenotypic marker expression, adding functional reporters to the staining 
panel can further characterize these superclusters. As an example, the percentage 
of cells positive for Ki-67, a proliferation marker, was projected on the MST (Fig 4C), 
showing almost 10-fold differences in clonal expansion capacity between plaque 
macrophage clusters [63]. Similarly, H&E-based heterogeneity in nuclear size and 
density reflected the sizeable differences between superclusters (Fig 4D-E and Fig 
S4C). 

 
Figure 4: Murine atherosclerotic plaque myeloid cell phenotypic clustering based on multispectral 
imaging. (A) In 148 images from 65 sections of aortic root atherosclerotic plaques from 11 WD-fed 
Ldlr-/- mice, a total of 102,159 cells were identified as positive for at least one of the phenotypic 
markers. They were divided over 70 clusters and represented in a minimal spanning tree, where the 
color code groups the clusters that were combined into 17 superclusters and the circle sizes reflect 
the number of cells in each cluster; (B) Radar plots indicating the mean expression patterns for 12 
phenotypic markers in each of these superclusters; The percentage of Ki-67+ cells (C), mean nuclear 
size (D) and mean nuclear density (E) for each cluster were overlaid on the MST. 

As every of these cells’ tissue location can be traced back, the distribution of the 
superclusters could be projected on the corresponding H&E image (Fig 5A-R). This 
not only allowed for histopathological examination of their morphology by an 
experienced pathologist, which further confirmed the validity of the assigned 
superclusters, but also revealed their preferential localization in five different 
manually annotated tissue compartments (Fig 5S). 
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Figure 5: Tissue distribution of murine atherosclerotic plaque myeloid phenotypes. A representative 
H&E image of a murine aortic root atherosclerotic plaque was overlayed with the localizations of the 
cells that were featured in the 17 superclusters separately (A-Q) or, pseudo-colored, together (R) to 
illustrate the histological localization of the superclusters. For each supercluster, an insert with a high-
magnification image of the area corresponding to the square illustrates representative cells’ (marked 
with red arrowheads) histopathological phenotypes. The superclusters’ distributions over five 
different tissue components (plaque, medial layer, adventitia, cardiac tissue and aortic valves) were 
compared (S). 

Supercluster identification and characterization of the cells’ cellular and 
molecular context 

Single-cell RNA-Seq has been a useful tool not only to illustrate the atherosclerotic 
plaque’s cellular and even myeloid heterogeneity but also to further identify each 
subset [52, 55, 56]. We illustrate its complementarity with our multiplex imaging 
approach by comparing marker expression patterns of the imaging-based 
superclusters to the corresponding genes’ expressions in myeloid cell types 
identified through meta-analysis of existing transcriptomic datasets [58], and 
calculated the similarities between populations defined by both approaches (Table 
S4). Despite the limited number of features, the comparison of gene expression 
with staining intensity or the different cellular composition in aortic arch versus 
aortic root plaques, we found strong correlations that shed a light on the 
phenotypic identities of the superclusters, as discussed below (Fig 6A). 
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Figure 6: Characterization of murine atherosclerotic plaque myeloid phenotypes’ cellular and 
lipidomic contexts. (A) A bipartite graph showing the correlation between the 17 superclusters 
(green) and 9 myeloid cell clusters from Zernecke et al.[58] (blue) based on 10 phenotypic markers. 
Two populations not included in the myeloid scRNA-Seq dataset were added manually (turquoise). 
Node sizes indicate the clusters’ cell count proportion of the respective dataset’s total cell number, 
edge thickness marks the significance level of the correlation; (B) Co-localization of superclusters, 
represented in a heatmap, illustrates that subsets tend to aggregate rather than intermingle with 
other phenotypes; (C) Illustrative examples of MSI m/z peaks that are highly associated with tissue 
compartments such as lumen (Lu), plaque (Pl), aortic valves (Va), adventitia (Ad), cardiomyocytes (Ca) 
or the plaque’s necrotic core (NC); (D) A representative example of a single pixel’s MSI-derived 
lipidomic spectrum, ranging from m/z 400 to 2000. The height of the peaks represents the signal 
intensity and therefore the local corresponding lipid concentration; (E) A heatmap of the 664 m/z peak 
intensities assigned to the 70 clusters or 17 (color-coded) superclusters identifies subset-associated 
lipidomic environments. While the top half of the heatmap contains mostly plaque-associated 
clusters, the bottom half is highly enriched in adventitial clusters. 

Since macrophage phenotypes are orchestrated by their cellular and molecular 
micro-environment, we explored approaches to address both. First, we 
demonstrated the high degree of supercluster compartmentalization, when 
identifying each cell’s nearest neighbors (Fig 6B). This finding was subsequently 
confirmed and refined in cell community mapping by defining first-order Delaunay 
neighbors for each index cell in an i-niche matrix [5] (Fig S5A-B). Both approaches 
showed that most niches are surprisingly homogenous, underpinning the 
importance of context-dependent instructions.  

For complementary characterization of the molecular context associated with the 
superclusters, we performed high-resolution matrix-assisted laser 
desorption/ionization (MALDI) mass spectrometry imaging (MSI) on adjacent 
sections, identifying molecular constituents such as peptides, metabolites or lipids. 
Considering lipids’ central role in atherogenesis, we focused on differences in 
lipidomic context, thereby revealing a combination of potentially phenotype-
directing and subset-derived lipids. 

High-spatial resolution MALDI-MSI for lipids in negative ionization mode (Fig 6C-D) 
was performed on 65 aortic root sections that were thaw-mounted onto indium-
tin oxide (ITO) coated slides, flanking the multispectral imaged sections, and 
followed by an H&E staining on the same sections, as previously described [33] (Fig 
S1C). Due to MSI-intrinsic tissue damage, only 25 of these were selected for 
alignment with their adjacent sections. We designed a two-step coregistration 
protocol to correct for differences in tissue shape, orientation and image 
resolution. This allowed us to align the two data layers at subcellular precision (5.8 
+/- 2.0 µm deviation, based on 40 image alignments in 25 sections) (Fig S1B). Next, 
data layers were spatially linked and the previously determined IF-based cell 
segment coordinates were projected to the adjacent MSI sections, assigning the 
lipid signatures in the 15x15 µm MSI pixels to the different superclusters. The 
measured mass spectra were analysed using a preprocessing pipeline, as previously 
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described [28, 33], including baseline correction, denoising, and peak picking. This 
compressed the lipid list from 40,000 to 664 m/z peaks or features (Fig S6).  

As illustrated by the heatmap that integrates the final lipid set with the phenotypic 
clusters (Fig 6E), not only did we note striking differences in lipidomic environment 
between plaque and adventitial cells but also within these compartments several 
outspoken signatures exist. Furthermore, cell segment organization based on lipid 
context showed close resemblance to the empirical definition of the superclusters 
based on multispectral imaging. 

Characterization of adventitial and plaque myeloid phenotypes 

We highlighted two examples, comparing three distinct adventitial subsets and 
three foam cell phenotypes, respectively, to further illustrate the value and 
relevance of these measurements in the definition and characterization of 
superclusters and their micro-environment. 

Within the adventitial compartment of the aortic roots, three predominant myeloid 
phenotypes were identified (Fig 7A). With high CD206 expression, supercluster N 
corresponds to the prototypical (Lyve1+) vessel wall resident phenotype [48, 64]. A 
second, Ly6CHI population (supercluster O), appeared to reside mainly in activated 
cardiac tissue [65] but was also found in the adjacent inflamed aortic adventitia. 
Thirdly, a population of small, non-mitogenic Dectin1+ MHC-II+ macrophages with 
faint nuclei (supercluster K) represented an inflammatory phenotype in adventitia 
that highly resembled a population with similar characteristics but lower MHC-II 
expression that is divided over the adventitia and media layer of some plaques 
(supercluster L), urging further research on whether these populations would be 
able to cross this physical barrier towards the plaque.  

Lipid signatures corresponding with these three subsets were picked using tree-
based adaptive boosting (AdaBoost [32]) guided exhaustive selection (Fig S7A-B). 
Maximal and optimal performance was provided by 46 or 5 m/z signature sets, 
respectively, which allowed robust segregation of the adventitial subsets solely 
based on this lipidomic profile, as illustrated in heatmaps (Fig 7B & S7C) and UMAP 
plots (Fig 7C & S7D). 
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Figure 7: Comparison of lipidomic contexts of myeloid phenotypes in adventitia and plaque. (A, D) 
The histological localization of three adventitial (K in yellow, N in green, O in red) and three foam cell 
phenotypes (E in lime, F in gold, G in orange), respectively, was overlayed on an H&E staining of 
illustrative plaques; (B, E) Heatmaps reveal the local abundance of the respective 46 and 60 lipids that 
best associated with the different subsets in both tissue compartments; (C, F) UMAPs visualize 
classification performance based on these best correlating lipid features, as compared to the color-
coded classification based on multispectral imaging. 
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Foam cell superclusters were analysed in a similar manner. A prototypical plaque 
macrophage phenotype, foam cells are typified by marked intracellular lipid 
accumulation but are often missed or underrepresented in single-cell approaches 
due to their fragility during tissue processing [58]. In our data, three distinct subsets 
markedly expressing the lipid droplet-associated protein Perilipin2 (Plin2, or 
Adipophilin) could be distinguished (Fig 6D). Inferred from their location proximal 
to the aortic lumen and histopathologically defined limited lipid content, 
supercluster E likely represents an early foam cell phenotype. Supercluster F, 
deeper in plaque, involves highly lipid-laden cells with fading membrane integrity 
as an early sign of necrotic death, thus representing bona fide foam cells. 
Supercluster G’s Plin2 expression [66] and lack of further myeloid markers, together 
with an often spindle-shaped morphology, suggest a smooth muscle cell origin of 
these foam cells [56, 66-68]. Although residing in deeper, necrotic plaque areas, 
they are mitogenic (Fig 4C) rather than necrotic. They share their proliferative 
capacity and CD44 expression with Plin2-negative, non-foamy cells (supercluster 
M), which morphologically correspond to smooth muscle cells. 

In search of lipid signatures, characteristic of these individual superclusters, we 
identified 60-lipid and 15-lipid sets to provide maximal (Fig 7E-F) and optimal (Fig 
S7E-F) accuracy, respectively. These correlations highlight the strong, mutual 
interactions between myeloid phenotypes and their micro-environment. 

Despite relatively low peak intensities of most m/z values determined by high-
resolution MS imaging, we managed to assign 26 of those featured in Fig 7B&E to 
their corresponding lipid identities through tandem mass spectrometry (MS/MS). 
They are listed in Table S5 and their correspondence to the above-highlighted 
superclusters is illustrated in a heatmap (Fig S7G). 

Discussion 
We present a powerful, new pipeline for integrated spatial analysis of cell 
heterogeneity and their immediate molecular context in complex tissue. The 15-
color multispectral imaging approach is rapid and affordable, does not compromise 
the tissue’s integrity and provides high phenotypic resolution, as illustrated here 
for myeloid cells where we were able to distinguish an unprecedented number of 
myeloid subsets and their preferred habitat in murine atherosclerotic plaques. 
Embedded in the above-mentioned pipeline it unfolds its true power, as it offers a 
unique opportunity to define the cellular and molecular micro-environment that 
associates with a cell’s phenotype, providing key information on cells’ crosstalk with 
their direct context.  

Multispectral imaging versus IHC and single cell approaches: Multispectral 
imaging outperforms conventional IHC and IF microscopy approaches on the 
number of markers that can be simultaneously detected, revealing subtle 
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phenotypic differences or cell type co-localizations that were previously overlooked 
or difficult to image. Despite its more limited marker panel, it offers similar 
phenotypic resolution as modern single-cell cytometric [55, 69], CyTOF [57] or 
transcriptomic tissue heterogeneity assessment [52, 55, 56]. This is partly due to 
the higher number of cells analysed: phenotypic clustering was based on well over 
100,000 cells in our study, which is 10 times higher than the cumulative cell number 
in the myeloid meta-analysis of several murine atherosclerosis scRNA-Seq datasets 
(10,551) [58]. Combining the latter dataset with phenotypic and contextual 
information on our superclusters led to new insights in plaque myeloid cell 
diversity.  

Supercluster A corresponds to the inflammatory macrophage subset and 
represents newly-recruited monocyte-like cells lining the plaque’s luminal border. 
The very similar supercluster B bridges the gap to macrophages with 
histopathologically confirmed lipid accumulation. While RNA-Seq studies identified 
one single foamy macrophage subset (Trem2hi), multispectral imaging revealed five 
distinct foam cell subsets (superclusters C, D, E, F & G), of which the first four display 
increasing levels of lipid accumulation as well as of Perilipin2 expression. The last 
one however highly correlates, just like the Perilipin2-negative supercluster M, with 
Zernecke’s monocyte population. Their localization in the more necrotic plaque 
areas, their relatively high proliferative capacity and their often spindle-like 
morphology however suggests these might rather represent transdifferentiated 
smooth muscle cells, thought to make up for up to half of the plaque’s foam cell 
content [56] but not included [52, 55] or indistinguishable from macrophage-
derived foam cells [56] in scRNA-Seq-based studies.  

Similarly, in the adventitia we identified 3 major subsets. A population of 
inflammatory macrophages that resembles the above-described newly-recruited 
inflammatory macrophages but predominantly lines the plaque’s adventitial 
instead of luminal borders (supercluster K), CD206+ macrophages that correspond 
to the Lyve-1+/PF4+ population of resident macrophages (supercluster N) [48, 52, 
64], and Ly6C+ cardiac resident macrophages that infiltrate the inflamed adventitia 
(supercluster O) [65]. The latter was not included in the scRNA-Seq meta-analysis 
since it covers aortic arch plaques while our plaques in the aortic root were in close 
contact with cardiac tissue. Also neutrophils (supercluster P) were missing from the 
transcriptomic dataset as these cells were excluded prior to meta-analysis of the 
myeloid populations. 

Projecting Ki-67 positivity on the clusters highlighted the surprisingly high 
divergence in mitogenic capacity across myeloid phenotypes, some subsets (such 
as G) showing an almost 10-fold higher proportion of Ki-67+ proliferating cells than 
others (such as D). This may partly underly the discrepant results of studies 



Integrating multiplex imaging and MSI | 2 

65  

2 

suggesting the plaque macrophage pool to mainly originate from resident 
macrophage expansion [63] versus monocyte influx [49, 70].  

Phenotype-associated context: Linking phenotypic heterogeneity to cellular and 
molecular context is the second key advance in this study. Both the i-niche‘s 
indication that communities were surprisingly homogenous and the shared lipid 
signature of supercluster members are supportive of a cell’s local context as its 
main phenotype driver, although it remains to be determined whether signature-
contained lipids are causal in or epiphenomena of their phenotype. The pursued 
strategy allows more direct assessment of tissue- or environment-specific 
differentiation signals than conventional transcription factor-centered approaches 
used so far for peritoneal macrophages (GATA6/RARβ, retinoic acid) [71], microglia 
cells (SMAD/TGFβ/Lrrc33) [72], or Kupffer cells (DLL4/TGFβ/LXRα) [73]. 

Several MSI studies by us and others have underpinned the potential of MS imaging 
for mapping lipid patterns in plaque, identifying lysophosphatidylcholine, diacyl 
glycerol, and cholesteryl species to be strongly associated with atherosclerotic 
plaque [33, 74, 75]. Attempts to integrate MSI to histological features [76] or cells 
[77] are very scarce and multi-isotope MSI for thymidine and glucose has been 
deployed to map metabolic and mitogenic activity of plaque cells, respectively [78]. 
Here we have taken one step further, defining the lipid context for each identified 
subset at cellular level. The physiological and metabolic mechanisms involved in the 
accumulation of these context lipids and functional implications of these 
phenotype-lipid correlations remain as yet unclear and require more lipid identities 
to be precisely defined through MALDI-MS/MS. 

Broader applicability of the pipeline: Next to its use for validating or 
complementing single-cell study outcomes, our versatile multispectral imaging 
pipeline lends itself very well for application on other plastic cell lineages (e.g., 
mesenchymal cells, endothelial cells), disease settings, tissues and/or species. In 
that case only the antibody clones, not the dye combination, need to be adapted. 
With the ever-expanding collection of commercially available antibody probes 
developed for cytometry, this will not pose a major hurdle. A key step in the setup 
of a robust multispectral imaging pipeline involved the autofluorescence bleaching. 
Depending on the tissue or environment, autofluorescence can strongly interfere 
with the non-amplified signals. While others have used broad-spectrum 
photobleaching [59], we found that overnight bleaching with a narrow spectrum 
near-UV light was sufficient to almost completely abrogate all auto-fluorescent 
signal to manageable levels, while the persistent signal from the fibrous media layer 
and cap could be utilized to label-free image these structures. 

Limitations of Study: Despite some advantages over other multiplexing 
technologies [4], the here described multispectral imaging comes with its own 
caveats. The need for directly labelled antibodies is a limitation of this multispectral 
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approach when compared to conventional IHC or IF, as it reduces commercially 
available options, precludes signal amplification and often necessitates longer 
exposure times with increased risk of photobleaching. Brightness of each labelled 
antibody cannot be adjusted separately when imaging with fixed exposure time and 
light intensity. Therefore, each antibody’s concentration must first be titrated prior 
to incorporation in the multiplex staining panel, to achieve compatible signal 
strengths an avoid bleed-through from overly bright dyes into the neighboring 
spectra. Moreover, a multi-marker panel also renders staining of formalin-fixed 
paraffin-embedded (FFPE) tissue sections more challenging as this may require 
incompatible antigen retrieval steps for the different antibodies.  

A further limitation involves the linkage of subsets to cell populations defined by 
scRNA-Seq analyses [58]. Due to the limited size of the myeloid marker panel and 
lack of correspondence between protein and gene expression in general, congruity 
based on expression of the 12 myeloid markers used in our study and the scRNA-
Seq signatures of myeloid populations is risky, and especially so when considering 
the incomplete cell recovery in single-cell approaches. Integration of the 
phenotypes with MS imaging-based peptidomic measurements, similar to the here-
presented lipidomic profiles, may partly bypass this issue.  

A final limitation involves the spatial versus mass resolution of MSI, which at 
present does not allow to discern concomitant assessment of the exact chemical 
identity of lipid features at subcellular resolution. This complicates identification of 
micro-environmental cues that are driving the phenotype. Also, limited signal-over-
noise levels of the peaks measured by high-resolution MSI hampers their 
identification by tandem mass spectrometry. However, MSI technology is 
developing at such a high pace, that these challenges are likely to be addressed in 
the near future. 

In conclusion, we introduce a novel pipeline for integrated spatial analysis of cell 
heterogeneity and their immediate molecular context in complex tissues. The 
presented multispectral imaging approach is rapid, affordable and provides high 
phenotypic resolution, as illustrated in myeloid cells. It not only reveals the cells’ 
histological localization but the analysis pipeline equally allows subsequent 
histopathological assessment as well as to associate the cells with process markers 
or their cellular and molecular micro-environment, thereby allowing further 
characterization of the subsets and the identification of their phenotype-driving 
niches. 

Acknowledgements 
The authors would like to thank Wouter Van Der Poten for his help in constructing 
the custom autofluorescence photobleaching tool, and Helma Kuijpers and Kèvin 
Knoops for their technical support.  



Integrating multiplex imaging and MSI | 2 

67  

2 

This work has been supported by the Marie Skłodowska-Curie Actions (H2020 
MSCA-IF) [661099 AtheroMphProliferation to P.G.], the European Research Area 
Network Joint Transnational Call for Cardiovascular Disease (ERA-CVD and the 
Dutch Heart Foundation) [JTC-2017t100 AtheroMacHete to P.G. and E.A.L.B.], the 
Dutch Heart Foundation [Dekker 2020T042 to P.G.] and the China Scholarship 
Council (CSC) [No. 201706990018 to C.L. and No. 201706040068 to J.H.C.]. J.H.C. 
acknowledges the financial support by the Dutch Province of Limburg through the 
LINK program. 

Author contributions 
P.G., E.W., M.J.M.vZ., R.M.A.H. and E.A.L.B. contributed to the study design and 
developed the experimental approach. P.G., J.H.C. and G.E.F. performed the 
experiments. C.L., J.H.C. and B.S.R.C. processed and integrated the data. C.L., P.G., 
J.M.H.K., E.S. and E.A.L.B. developed the data integration approach. P.G., M.G. and 
E.A.L.B. interpreted the data. T.F.E.H., K.W., M.J.M.vZ., B.B., E.C. and R.M.A.H. 
provided essential expertise or tools. P.G., C.L., J.H.C., M.P.C.D. and E.A.L.B. wrote 
the paper. 

Declaration of interests 
The authors declare no competing interests. 

  



Chapter 2 

68 

2 

 

 

Supplemental files 
 
Table S1: An overview of the four filter cubes combined in the multispectral imaging approach; 
Related to Fig 1A & D. 
This overview indicates the range and resolution in which the emission spectra were recorded as 
well as the exposure time per step. 

 

 
Table S2: The dye-conjugated antibodies and their dilutions in the panel used for multispectral 
imaging in WT spleens; Related to Fig 2A-K.  
As an antibody against CD209b was not commercially available labelled with a compatible dye, an 
Alexa488-coupled secondary antibody that did not cross-react with the other antibodies in the 
panel was used. 
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Table S3: The dye-conjugated antibodies and their dilutions in the panel used for multispectral 
imaging in murine aortic root plaques; Related to Fig 3B-P. 
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Table S4: Pearson correlation between superclusters identified through multispectral imaging and 
populations annotated in the meta-analysis of myeloid cells from murine atherosclerotic plaque 
scRNA-Seq datasets by Zernecke et al.; Related to Fig 6A.  

For each supercluster, up to two transcriptome-defined populations with a correlation higher than 
0.2 were assigned. Significant correlations (p<0.05) were displayed in bold. 
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Table S5: Lipid identities corresponding to some of the most prominent MS imaging m/z peaks, as 
identified by MS/MS; Related to Fig 7. 
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Fig S1: Pipeline of the different image registration procedures; Related to Fig 3A & 6E. 
(A) Linear registration of the H&E and multispectral fluorescent images from the same section 
(Fluorescent imaging layer), starting from (1) a 7-AAD spectral image and (2) its corresponding H&E 
staining image, extracting and binarizing the nuclei-related features (3 & 4) and aligning with MMI 
metric (5). (B) Co-registration between the adjacent MS and multispectral imaging layers. H&E 
images from adjacent sections (A2 & C1) were co-registered by a two-step (MMI based linear, and 
landmark-based elastic (Fiji plugin, BUnwarpj)) registration procedure. (C) Alignment of the two 
H&E images of different resolutions from the same section (MSI layer). A linear transformation was 
performed based on the SSD of matched image features between the multi-resolution H&E images. 
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Fig S2: Pipeline of the cell-biomarker matrix building (A); Related to Fig 4A. 
(B) Initial cell-biomarker matrix building. Cell segments (2) on an H&E image from fluorescent 
imaging layer (1), obtained from a watershed plugin of QuPath[24], were mapped to the 
corresponding multispectral images of the 12 phenotypic markers (3), and integrated into a cell-
biomarker matrix X (4) based on the average intensity in individual cell segments. (C) Adjacency 
matrix of spillover compensation building. The adjacency matrix A (4) was constructed via 3 steps: 
for each cell, we (1) defined its neighbors based on Delaunay triangulation, (2) confirmed 
circumscribed ellipses of its neighboring cell segments, (3) calculated its adjacency coefficients 
based on the overlapping area between this cell and the ellipse of its neighbor. The improvement 
compared to the original CODEX approach (Goltsev et al., 2018) is illustrated in (3). For example, 
based on the improved compensation, the spillover coefficient of cell 1 (yellow square) from cell 2 
(grey triangle) is the proportion of overlapping area (orange) to the area of cell 1, which is much 
smaller than the CODEX-defined coefficient ¼, defined by the shared edge (black dotted line) 
divided by the perimeter of cell 1. (D) An example (CD44) for explaining the algorithm for spillover 
compensation. The final corrected cell-biomarker matrix is the product of the original cell-
biomarker matrix and the inverse of the adjacency matrix. (E) Comparison of distributions of cell 
intensities based on different compensation strategies. Compensation increases the number of 
cells with low intensities. However, compared to Goltsev et al., our method is more conservative 
and milder, thereby reducing the risk of “overcompensation”. (F) Visualization of cell outlier 
removal. 
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Fig S3: Silhouette plots to evaluate the results of different clustering methods, and resulting 
radar plots to visualize marker expression patterns; Related to Fig 4A-B.  
(A) A silhouette plot splits cells into 70 clusters (y-axis) and ranks silhouette values of cells (x-axis) 
per cluster, showing how close each point in one cluster is to points in the neighbouring clusters, 
with a range from -1 to 1. The closer a cell’s silhouette gets to +1, the further it is from neighbouring 
clusters. We selected the best performing approach, i.e., the method featuring the highest number 
of cell segments with positive silhouette values (cosine-based K-medoid clustering). (B) Radar plots 
indicate the mean expression patterns of 12 phenotypic markers for each of the 70 clusters 
identified in murine atherosclerotic plaques. 
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Fig S4: Multispectral imaging-based myeloid heterogeneity and cell clustering; Related to Fig 4A-
E. 
(A) The 17 superclusters are pseudo-colored in a tSNE plot. The proportions of cells assigned to 
each supercluster were visualized in (B) and their mean nuclear size and density, as defined in H&E 
stainings, were plotted in (C). (D) Mean expression patterns of all 12 phenotypic markers for the 
17 superclusters were represented at a logarithmic scale to reveal dimmer marker expression not 
visible in the radar plots of Figure 4B. Error bars indicate SEM. 
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Fig S5: i-niche cell community analysis; Related to Fig 6B. 
(A) I-niche matrix building. (1) & (2) An illustration of how i-niche neighbours of cell segments were 
defined in this study. (3) & (4) An example explaining the calculation of i-niche matrix. (B) Cell 
community identification through i-niche revealed 60 different niches that illustrate the significant 
co-localization of the 17 superclusters and cells belonging to the same tissue compartment. 
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Fig S6: Illustration of m/z value selection procedure; Related to Fig 6E.  
(1) & (2) After preprocessing, 664 m/z peaks were selected from the raw MSI data, (3) & (4) Every 
pixel of MSI data was then assigned a certain cell cluster, as defined by multispectral imaging 
intensities in its adjacent section. (5), (6) & (7) Important m/z values were identified from several 
interesting superclusters (e.g., supercluster E, F, G) using Adaboost-based feature selection with 10-
fold cross-validation. 
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Fig S7: Supercluster-specific lipid feature selection; Related to Fig 7.  
(A) The accuracy of four ensemble learning methods in 10-fold cross-validation on supercluster E, 
F, G and supercluster K, N, O. (B) The 10-fold cross-validation accuracies of Adaboost with different 
numbers of selected top m/z features on supercluster E, F, G and supercluster K, N, O. The numbers 
of top lipid features with the highest accuracy are 46 (for K, N, O; dark red circle) and 60 (for E, F, 
G; dark green circle) separately. The smallest numbers of top lipid features with the performance 
which is not significantly different from the highest accuracy are 5 (for K, N, O; light red circle, 
represented in the heat map and UMAP (C-D)) and 15 (for E, F, G; light green circle (represented in 

A B 

C D 
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E-F)). (G) MS/MS identified 26 of the m/z values that differentially correlated with superclusters. 
Their relative intensities, measured over 11,995 pixels that colocalize with the six superclusters 
featured in figure 7, were displayed as a heatmap and intensities above a threshold of 0.7 were 
highlighted with a dot. 



Integrating multiplex imaging and MSI | 2 

81  

2 

References 
1. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, 
Hamilton JA, Ivashkiv LB, Lawrence T et al: Macrophage activation and polarization: 
nomenclature and experimental guidelines. Immunity 2014, 41(1):14-20. 

2. Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, Deswarte K, 
Malissen B, Hammad H, Lambrecht BN: Alveolar macrophages develop from fetal 
monocytes that differentiate into long-lived cells in the first week of life via GM-
CSF. J Exp Med 2013, 210(10):1977-1992. 

3. Guilliams M, Thierry GR, Bonnardel J, Bajenoff M: Establishment and 
Maintenance of the Macrophage Niche. Immunity 2020, 52(3):434-451. 

4. Taube JM, Akturk G, Angelo M, Engle EL, Gnjatic S, Greenbaum S, Greenwald NF, 
Hedvat CV, Hollmann TJ, Juco J et al: The Society for Immunotherapy of Cancer 
statement on best practices for multiplex immunohistochemistry (IHC) and 
immunofluorescence (IF) staining and validation. J Immunother Cancer 2020, 8(1). 

5. Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, Black S, 
Nolan GP: Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed 
Imaging. Cell 2018, 174(4):968-981 e915. 

6. Lin JR, Izar B, Wang S, Yapp C, Mei S, Shah PM, Santagata S, Sorger PK: Highly 
multiplexed immunofluorescence imaging of human tissues and tumors using t-
CyCIF and conventional optical microscopes. Elife 2018, 7. 

7. Radtke AJ, Kandov E, Lowekamp B, Speranza E, Chu CJ, Gola A, Thakur N, Shih R, 
Yao L, Yaniv ZR et al: IBEX: A versatile multiplex optical imaging approach for deep 
phenotyping and spatial analysis of cells in complex tissues. Proc Natl Acad Sci U S 
A 2020, 117(52):33455-33465. 

8. Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schuffler PJ, 
Grolimund D, Buhmann JM, Brandt S et al: Highly multiplexed imaging of tumor 
tissues with subcellular resolution by mass cytometry. Nat Methods 2014, 
11(4):417-422. 

9. Wei L, Chen Z, Shi L, Long R, Anzalone AV, Zhang L, Hu F, Yuste R, Cornish VW, 
Min W: Super-multiplex vibrational imaging. Nature 2017, 544(7651):465-470. 

10. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, Levenson RM, 
Lowe JB, Liu SD, Zhao S et al: Multiplexed ion beam imaging of human breast 
tumors. Nat Med 2014, 20(4):436-442. 

11. Eng CL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin C, Karp C, 
Yuan GC et al: Transcriptome-scale super-resolved imaging in tissues by RNA 
seqFISH. Nature 2019, 568(7751):235-239. 



Chapter 2 

82 

2 

12. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch 
J, Chen LM, Chen F, Macosko EZ: Slide-seq: A scalable technology for measuring 
genome-wide expression at high spatial resolution. Science 2019, 363(6434):1463-
1467. 

13. McDonnell LA, Heeren RM: Imaging mass spectrometry. Mass Spectrom Rev 
2007, 26(4):606-643. 

14. Goossens P, Gijbels MJ, Zernecke A, Eijgelaar W, Vergouwe MN, van der Made 
I, Vanderlocht J, Beckers L, Buurman WA, Daemen MJ et al: Myeloid type I 
interferon signaling promotes atherosclerosis by stimulating macrophage 
recruitment to lesions. Cell Metab 2010, 12(2):142-153. 

15. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, 
Preibisch S, Rueden C, Saalfeld S, Schmid B et al: Fiji: an open-source platform for 
biological-image analysis. Nat Methods 2012, 9(7):676-682. 

16. MATLAB and Image Processing Toolbox Release 2019a, The MathWorks, Inc., 
Natick, Massachusetts, United States. 

17. Zuiderveld K: Contrast Limited Adaptive Histograph Equalization. Graphic Gems 
IV San Diego: Academic Press Professional 1994:474–485. 

18. Lim JS: Two-Dimensional Signal and Image Processing. Englewood Cliffs NJ,: 
Prentice Hall; 1990. 

19. Bradley DaR, G: Adaptive thresholding using the integral image. Journal of 
graphics tools 2007:12(12), 13-21. 

20. Mattes D, Haynor DR, Vesselle H, Lewellyn TK, Eubank W: Nonrigid 
multimodality image registration. In: Medical imaging 2001: image processing: 
2001. 1609–1620. 

21. Rublee E, Rabaud V, Konolige K, Bradski G: ORB: An efficient alternative to SIFT 
or SURF. In: 2011 International conference on computer vision: 2011. 2564–2571. 

22. Hartley R, Zisserman A: Multiple view geometry in computer vision: Cambridge 
university press; 2003. 

23. Arganda-Carreras I, Sorzano COS, Marabini R, Carazo JMa, Ortiz-de-Solorzano 
C, Kybic J: Consistent and elastic registration of histological sections using vector-
spline regularization. In: International Workshop on Computer Vision Approaches 
to Medical Image Analysis: 2006. 85–95. 

24. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, 
McQuaid S, Gray RT, Murray LJ, Coleman HG et al: QuPath: Open source software 
for digital pathology image analysis. Scientific reports 2017, 7:1–7. 



Integrating multiplex imaging and MSI | 2 

83  

2 

25. Park H-S, Jun C-H: A simple and fast algorithm for K-medoids clustering. Expert 
systems with applications 2009, 36:3336–3341. 

26. Vesanto J, Alhoniemi E: Clustering of the self-organizing map. IEEE Transactions 
on neural networks 2000, 11:586–600. 

27. Samusik N, Good Z, Spitzer MH, Davis KL, Nolan GP: Automated mapping of 
phenotype space with single-cell data. Nature methods 2016, 13:493–496. 

28. Ng AY, Jordan MI, Weiss Y: On spectral clustering: Analysis and an algorithm. In: 
Advances in neural information processing systems: 2002. 849–856. 

29. Rousseeuw PJ: Silhouettes: A graphical aid to the interpretation and validation 
of cluster analysis. Journal of Computational and Applied Mathematics 1987, 20:53-
65. 

30. Qiu P, Simonds EF, Bendall SC, Gibbs KD, Jr., Bruggner RV, Linderman MD, Sachs 
K, Nolan GP, Plevritis SK: Extracting a cellular hierarchy from high-dimensional 
cytometry data with SPADE. Nat Biotechnol 2011, 29(10):886-891. 

31. MATLAB and Statistics and Machine Learning Toolbox Release 2019a, The 
MathWorks, Inc., Natick, Massachusetts, United States. 

32. Freund Y, Schapire RE: A desicion-theoretic generalization of on-line learning 
and an application to boosting. In: 1995; Berlin, Heidelberg. Springer Berlin 
Heidelberg: 23-37. 

33. Cao J, Goossens P, Martin-Lorenzo M, Dewez F, Claes BSR, Biessen EAL, Heeren 
RMA, Balluff B: Atheroma-Specific Lipids in ldlr(-/-) and apoe(-/-) Mice Using 2D and 
3D Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. J Am 
Soc Mass Spectrom 2020, 31(9):1825-1832. 

34. MATLAB and Bioinformatics Toolbox Release 2019a, The MathWorks, Inc., 
Natick, Massachusetts, United States. 

35. Morris JS, Coombes KR, Koomen J, Baggerly KA, Kobayashi R: Feature extraction 
and quantification for mass spectrometry in biomedical applications using the 
mean spectrum. Bioinformatics 2005, 21:1764–1775. 

36. Breiman L: Random Forests. Machine Learning 2001, 45:5-32. 

37. Seiffert C, Khoshgoftaar TM, Hulse JV, Napolitano A: RUSBoost: Improving 
classification performance when training data is skewed. In: 2008 19th 
International Conference on Pattern Recognition: 8-11 Dec. 2008 2008. 1-4. 

38. Warmuth MK, Liao J, Rätsch G: Totally corrective boosting algorithms that 
maximize the margin. In: Proceedings of the 23rd international conference on 
Machine learning; Pittsburgh, Pennsylvania, USA. Association for Computing 
Machinery 2006: 1001–1008. 



Chapter 2 

84 

2 

39. Gu Z, Eils R, Schlesner M: Complex heatmaps reveal patterns and correlations 
in multidimensional genomic data. Bioinformatics 2016, 32(18):2847-2849. 

40. McInnes L, Healy J, Saul N, Grossberger L: UMAP: Uniform Manifold 
Approximation and Projection. Journal of Open Source Software 2018, 3:861. 

41. Ellis SR, Paine MRL, Eijkel GB, Pauling JK, Husen P, Jervelund MW, Hermansson 
M, Ejsing CS, Heeren RMA: Automated, parallel mass spectrometry imaging and 
structural identification of lipids. Nat Methods 2018, 15(7):515-518. 

42. Tortorella S, Tiberi P, Bowman AP, Claes BSR, Scupakova K, Heeren RMA, Ellis 
SR, Cruciani G: LipostarMSI: Comprehensive, Vendor-Neutral Software for 
Visualization, Data Analysis, and Automated Molecular Identification in Mass 
Spectrometry Imaging. J Am Soc Mass Spectrom 2020, 31(1):155-163. 

43. Pauling JK, Hermansson M, Hartler J, Christiansen K, Gallego SF, Peng B, Ahrends 
R, Ejsing CS: Proposal for a common nomenclature for fragment ions in mass 
spectra of lipids. PLoS One 2017, 12(11):e0188394. 

44. Lewis SM, Williams A, Eisenbarth SC: Structure and function of the immune 
system in the spleen. Sci Immunol 2019, 4(33). 

45. Davies LC, Jenkins SJ, Allen JE, Taylor PR: Tissue-resident macrophages. Nat 
Immunol 2013, 14(10):986-995. 

46. Hey YY, Tan JK, O'Neill HC: Redefining Myeloid Cell Subsets in Murine Spleen. 
Front Immunol 2015, 6:652. 

47. Sorrelle N, Ganguly D, Dominguez ATA, Zhang Y, Huang H, Dahal LN, Burton N, 
Ziemys A, Brekken RA: Improved Multiplex Immunohistochemistry for Immune 
Microenvironment Evaluation of Mouse Formalin-Fixed, Paraffin-Embedded 
Tissues. J Immunol 2019, 202(1):292-299. 

48. Lim HY, Lim SY, Tan CK, Thiam CH, Goh CC, Carbajo D, Chew SHS, See P, Chakarov 
S, Wang XN et al: Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain 
Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell 
Collagen. Immunity 2018, 49(6):1191. 

49. Williams JW, Zaitsev K, Kim KW, Ivanov S, Saunders BT, Schrank PR, Kim K, 
Elvington A, Kim SH, Tucker CG et al: Limited proliferation capacity of aortic intima 
resident macrophages requires monocyte recruitment for atherosclerotic plaque 
progression. Nat Immunol 2020. 

50. Williams JW, Zaitsev K, Kim KW, Ivanov S, Saunders BT, Schrank PR, Kim K, 
Elvington A, Kim SH, Tucker CG et al: Limited proliferation capacity of aortic intima 
resident macrophages requires monocyte recruitment for atherosclerotic plaque 
progression. Nat Immunol 2020, 21(10):1194-1204. 



Integrating multiplex imaging and MSI | 2 

85  

2 

51. Colin S, Chinetti-Gbaguidi G, Staels B: Macrophage phenotypes in 
atherosclerosis. Immunol Rev 2014, 262(1):153-166. 

52. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, Wolf D, 
Saliba AE, Zernecke A: Single-Cell RNA-Seq Reveals the Transcriptional Landscape 
and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circ Res 2018, 
122(12):1661-1674. 

53. Lin JD, Nishi H, Poles J, Niu X, McCauley C, Rahman K, Brown EJ, Yeung ST, 
Vozhilla N, Weinstock A et al: Single-cell analysis of fate-mapped macrophages 
reveals heterogeneity, including stem-like properties, during atherosclerosis 
progression and regression. JCI Insight 2019, 4(4). 

54. van Kuijk K, Kuppe C, Betsholtz C, Vanlandewijck M, Kramann R, Sluimer JC: 
Heterogeneity and plasticity in healthy and atherosclerotic vasculature explored by 
single-cell sequencing. Cardiovasc Res 2019, 115(12):1705-1715. 

55. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, Hamers AAJ, 
Cochain C, Vafadarnejad E, Saliba AE et al: Atlas of the Immune Cell Repertoire in 
Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass 
Cytometry. Circ Res 2018, 122(12):1675-1688. 

56. Kim K, Shim D, Lee JS, Zaitsev K, Williams JW, Kim KW, Jang MY, Seok Jang H, 
Yun TJ, Lee SH et al: Transcriptome Analysis Reveals Nonfoamy Rather Than Foamy 
Plaque Macrophages Are Proinflammatory in Atherosclerotic Murine Models. Circ 
Res 2018, 123(10):1127-1142. 

57. Cole JE, Park I, Ahern DJ, Kassiteridi C, Danso Abeam D, Goddard ME, Green P, 
Maffia P, Monaco C: Immune cell census in murine atherosclerosis: cytometry by 
time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res 2018, 
114(10):1360-1371. 

58. Zernecke A, Winkels H, Cochain C, Williams JW, Wolf D, Soehnlein O, Robbins 
CS, Monaco C, Park I, McNamara CA et al: Meta-Analysis of Leukocyte Diversity in 
Atherosclerotic Mouse Aortas. Circ Res 2020, 127(3):402-426. 

59. Duong H, Han M: A multispectral LED array for the reduction of background 
autofluorescence in brain tissue. J Neurosci Methods 2013, 220(1):46-54. 

60. Kingsley K, Carroll K, Huff JL, Plopper GE: Photobleaching of arterial 
autofluorescence for immunofluorescence applications. Biotechniques 2001, 
30(4):794-797. 

61. Viegas MS, Martins TC, Seco F, do Carmo A: An improved and cost-effective 
methodology for the reduction of autofluorescence in direct immunofluorescence 
studies on formalin-fixed paraffin-embedded tissues. Eur J Histochem 2007, 
51(1):59-66. 



Chapter 2 

86 

2 

62. van der Maaten L, and Hinton, G: Visualizing Data using t-SNE. Journal of 
Machine Learning Research 2008, 9:2579--2605. 

63. Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, Gorbatov 
R, Sukhova GK, Gerhardt LM, Smyth D et al: Local proliferation dominates lesional 
macrophage accumulation in atherosclerosis. Nat Med 2013, 19(9):1166-1172. 

64. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, Shikatani EA, El-Maklizi 
M, Williams JW, Robins L et al: Self-renewing resident arterial macrophages arise 
from embryonic CX3CR1(+) precursors and circulating monocytes immediately after 
birth. Nat Immunol 2016, 17(2):159-168. 

65. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, 
Gautier EL, Ivanov S, Satpathy AT et al: Embryonic and adult-derived resident 
cardiac macrophages are maintained through distinct mechanisms at steady state 
and during inflammation. Immunity 2014, 40(1):91-104. 

66. Giannotti KC, Weinert S, Viana MN, Leiguez E, Araujo TLS, Laurindo FRM, 
Lomonte B, Braun-Dullaeus R, Teixeira C: A Secreted Phospholipase A2 Induces 
Formation of Smooth Muscle Foam Cells Which Transdifferentiate to Macrophage-
Like State. Molecules 2019, 24(18). 

67. Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, 
Feil R: Transdifferentiation of vascular smooth muscle cells to macrophage-like cells 
during atherogenesis. Circ Res 2014, 115(7):662-667. 

68. Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, 
Swiatlowska P, Newman AA, Greene ES, Straub AC et al: KLF4-dependent 
phenotypic modulation of smooth muscle cells has a key role in atherosclerotic 
plaque pathogenesis. Nat Med 2015, 21(6):628-637. 

69. Spitzer MH, Nolan GP: Mass Cytometry: Single Cells, Many Features. Cell 2016, 
165(4):780-791. 

70. Combadiere C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, Merval R, 
Proudfoot A, Tedgui A, Mallat Z: Combined inhibition of CCL2, CX3CR1, and CCR5 
abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis 
in hypercholesterolemic mice. Circulation 2008, 117(13):1649-1657. 

71. Okabe Y, Medzhitov R: Tissue-specific signals control reversible program of 
localization and functional polarization of macrophages. Cell 2014, 157(4):832-844. 

72. Qin Y, Garrison BS, Ma W, Wang R, Jiang A, Li J, Mistry M, Bronson RT, Santoro 
D, Franco C et al: A Milieu Molecule for TGF-beta Required for Microglia Function 
in the Nervous System. Cell 2018, 174(1):156-171 e116. 

73. Sakai M, Troutman TD, Seidman JS, Ouyang Z, Spann NJ, Abe Y, Ego KM, Bruni 
CM, Deng Z, Schlachetzki JCM et al: Liver-Derived Signals Sequentially Reprogram 



Integrating multiplex imaging and MSI | 2 

87  

2 

Myeloid Enhancers to Initiate and Maintain Kupffer Cell Identity. Immunity 2019, 
51(4):655-670 e658. 

74. Visscher M, Moerman AM, Burgers PC, Van Beusekom HMM, Luider TM, 
Verhagen HJM, Van der Steen AFW, Van der Heiden K, Van Soest G: Data Processing 
Pipeline for Lipid Profiling of Carotid Atherosclerotic Plaque with Mass 
Spectrometry Imaging. J Am Soc Mass Spectrom 2019, 30(9):1790-1800. 

75. Bot M, de Jager SC, MacAleese L, Lagraauw HM, van Berkel TJ, Quax PH, Kuiper 
J, Heeren RM, Biessen EA, Bot I: Lysophosphatidic acid triggers mast cell-driven 
atherosclerotic plaque destabilization by increasing vascular inflammation. J Lipid 
Res 2013, 54(5):1265-1274. 

76. Sun X, Stewart DA, Sandhu R, Kirk EL, Pathmasiri WW, McRitchie SL, Clark RF, 
Troester MA, Sumner SJ: Correlated metabolomic, genomic, and histologic 
phenotypes in histologically normal breast tissue. PLoS One 2018, 13(4):e0193792. 

77. Scupakova K, Dewez F, Walch AK, Heeren RMA, Balluff B: Morphometric Cell 
Classification for Single-Cell MALDI-Mass Spectrometry Imaging. Angew Chem Int 
Ed Engl 2020. 

78. Guillermier C, Doherty SP, Whitney AG, Babaev VR, Linton MF, Steinhauser ML, 
Brown JD: Imaging mass spectrometry reveals heterogeneity of proliferation and 
metabolism in atherosclerosis. JCI Insight 2019, 4(11). 

  



 

 

 
  



Chapter 3 
Spatio-temporal metabolomics reveals 
metabolic changes in the early stage of 
non-alcoholic fatty liver disease in mice 

Chang Lu, Jianhua Cao, Kristiaan Wouters, Marion Gijbels, Marjo M.P.C. 
Donners, Benjamin Balluff, Evgueni Smirnov, Rachel Cavill, Joël M.H. Karel, 
Ron M.A. Heeren, Erik A.L. Biessen†, Pieter Goossens† 

  In preparation 

† Authors contributed equally 

EMBARGOED



Chapter 4 
Cardiovascular disease but not health is 
hallmarked by sex-specific cytokine 
signaling pathways in circulating 
monocytes 

Chang Lu†, Marjo M.P.C. Donners†, Joël M.H. Karel, Hetty de Boer, Anton 
Jan van Zonneveld, Hester den Ruijter, Wouter Jukema, Adriaan Kraaijeveld, 
Johan Kuiper, Gerard Pasterkamp, Rachel Cavill, Javier Perales-Patón, Ele 
Ferrannini, Pieter Goossens, Erik A.L. Biessen 

        Manuscript submitted  

† Authors contributed equally 



 

 

 

 

 



 Sex difference in CVD | 4 

121   

4 

Abstract 
While sex is a major risk factor in cardiovascular disease (CVD) and important 
determinant of its clinical manifestation, the underlying pathogenic mechanisms 
are still largely unknown. In this study, we comprehensively dissected sex-specific 
transcriptional differences in circulating monocytes in a CVD cohort to identify sex 
specific signalling pathways contributing to the disease.  

We generated sex-biased gene expression signatures (GES) by comparing 
monocytes of a cohort of male versus female coronary artery disease (CAD) 
patients (n=450) from the Center for Translational Molecular Medicine–Circulating 
Cells Cohort. Gene set enrichment analysis demonstrated that monocytes from 
female CAD patients carry a stronger chemotaxis and migratory signature than 
those from male CAD patients. We then inferred cytokine signalling activities by 
ridge regression using the CytoSig database of 51 cytokine and growth factor 
regulation profiles. As compared to males, monocytes from females feature a 
higher level of activation of EGF, IFN1, VEGF, GM-CSF and CD40L pathways, 
whereas IL4, INS, HMGB signalling was preferentially activated in males. This 
gender-imbalance was not observed in healthy subjects, as shown for independent 
healthy subject monocyte cohort (GSE56034, n=485). More pronounced GM-CSF 
signalling in monocytes of female CAD patients was confirmed by the significant 
enrichment of GM-CSF-activated monocyte signature in the female gene signature. 
Surprisingly, the enhanced signalling activities could not be explained by increased 
plasma levels of the corresponding ligands, suggesting intrinsic sex differences in 
monocyte signalling regulation. Consistent with our findings, a regulatory network 
constructed to link the main (female activated) transcription factors to the 
identified sex-specific cytokine pathways, revealed jun-B as activator of all female-
specific pathways but IFN1, while being suppressed by male-activated IL-4. 

In conclusion, we observed overt CAD-specific sex differences in monocyte 
transcriptional profiles and cytokine-or growth factor induced responses, which 
provide insights into underlying mechanisms of sex differences in CVD.
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Introduction  
Although ischemic cardiovascular diseases (CVD), including myocardial infarction 
and stroke, is the leading cause of death in both men and women [1], the sexual 
dimorphism in prevalence and presentation of ischemic heart disease (IHD) is well-
known [2]. IHD incidence in young women was reported to be lower than in men, 
however with increasing age, particularly after menopause, this risk profile is 
reversed [3]. Estrogen is thought to be a major contributor to these sex differences, 
by improving arterial function and lipoprotein profile, amongst others. Indeed, 
several major CVD risk factors, such as blood pressure, diabetes, alcohol, markedly 
differ between sexes, especially before menopause. However, CVD risk factors 
were seen to be more impactful in females than in males (relative odds ratios of 
1.5, 1.6 and 1.3 for hypertension, diabetes mellitus and smoking, respectively). This 
points to sexual dimorphism of the risk factor response[1, 4]. This may explain the 
higher prevalence of IHD for females than males with a similar risk factor profile [4, 
5].  

Culminating evidence points out that chronic inflammation, effected by 
macrophages and their precursors, monocytes, plays an important causal role in 
IHD; it contributes to atherosclerotic plaque formation and rupture amongst others 
[6–8]. Indeed, the CANTOS trial showed a significantly reduced secondary event 
rate after IL1 receptor intervention [9]. Macrophages and monocytes are major 
drivers of atherosclerosis[10, 11] and IHD injury repair. They are plastic cells that 
adapt to their environment [12] , which may well differ between males and females. 
This has prompted several groups to study sex-specific differences in macrophages 
and monocytes [13–15], showing differences in monocyte numbers [16, 17] or 
inflammatory response [18, 19]. However, still little is known about sex differences 
in signalling and transcriptional profiles of monocytes in CAD patients. 

This study has interrogated a monocyte cohort from the Center for Translational 
Molecular Medicine (CTMM) – Circulating Cells Cohort that were presented to the 
Maastricht University Medical Center, The Netherlands, for sex-related differences 
in signalling and transcriptional makeup. We first generated the gene expression 
signatures (GES) for male and female CAD patient monocytes. Gene set enrichment 
analysis (GSEA) was then used for interpreting sex-specific differential genes, and 
cytokine and transcription factor (TF) activities were inferred based on Cytosig [20] 
and Dorothea[21] databases respectively. Finally, CAD-specificity of pathways and 
TFs and sex-specific differences of plasma cytokines were validated in an 
independent healthy subject cohort and a CAD plasma proteomics cohort, 
respectively.  
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Methods 
CTMM Cohort 
Human Blood Samples from Center for Translational Molecular Medicine  
A total of 460 CAD patients from the Center for Translational Molecular Medicine 
(CTMM) Circulating Cells Cohort were used for analysing sex differences in CAD. 
CAD patients were defined as subjects diagnosed with stable angina, unstable 
angina, Non-ST elevation Myocardial Infarction (NSTMI), or silent ischemia. All 
participants provided written informed consent prior to participation. This study 
was approved by the Institutional Medical Ethical Review Board of the University 
Medical Center Utrecht, The Netherlands. 

Cell Isolation 
Upon inclusion, blood samples were obtained in ethylenediaminetetraacetic acid 
(EDTA) anti-coagulated vacuum tubes and processed as previously described [22] . 
Briefly, blood was centrifuged at 156x g for 15 minutes, plasma was withdrawn, and 
CD14+ monocytes were isolated using Ficoll-Paque Plus (Sigma), magnetic bead 
isolation (BD Bioscience). Plasma and monocytes were stored at -80°C until needed. 

Flow Cytometry 
To analyse and quantify monocyte subsets, 50 µl of EDTA anti-coagulated whole 
blood was analysed by flow cytometry (Beckman Coulter FC 500) as previously 
described [22] using the antibody panel shown in table 1. Lymphocytes and 
granulocytes were gated based on their scatter properties and confirmed using 
lymphocyte and granulocyte specific antibodies. Monocytes were identified based 
on their scatter properties and positive CD14 staining. Expression of surface 
markers was quantified by relative marker expression and mean fluorescence 
intensity (MFI). 

   Table 1 : Antibodies for flow cytometry  
 

Antibody Company Dilution 

CD14 PC7 BD Biosciences 1:10 

CD16 PC5 BD Biosciences 1:10 

CCR2 PE BD Biosciences 1:5 

CX3CR1 FITC BD Biosciences 1:5 

RNA Isolation and Micro-Array Analysis 
RNA isolation and micro-array data generation of monocyte samples were 
completed by AROS (Denmark). In brief, RNA was isolated using Illumina TotalPrep 
RNA Amplification Kit (Illumina, San Diego, CA, USA) and cDNA was produced. Next, 
labeled cRNA was prepared and used on the array for hybridization. Hybridized 
chips were scanned by Illumina BeadStation (Illumina, Inc., San Diego, CA, U.S.A.). 
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Raw image analysis and signal extraction was performed with Illumina Beadstudio 
Gene Expression software with default settings (no background subtraction) and no 
normalization.  

Data preprocessing 
The CTMM microarray data were exported to R v3.6.3 after quality control using 
GenomeStudio software. Ten of 460 profiles were excluded due to their low 
number of detected genes (< 20% significantly detected genes) or large distance to 
the mean (>100) based on quality control files obtained from GenomeStudio. Log2 
transformation and Robust Spline Normalization (RSN) were performed using lumi 
R package [23] . For the resulting cohort of 450 profiles,  to reduce the effect of 
background noise, the genes with low intensity (more than 90% of patients’ log2 
expressions lower than 7.5) were filtered out. To inspect the preprocessing results, 
batch correction was performed using the sva R package before visualization [24]. 
Eventually, 450 microarrays from 316 men and 134 women with CAD, including 
9,092 genes were used for differential gene expression analysis. All probes have 
been converted to official gene symbols. The schematic diagram of the cohort 
build-up and workflow of the study is shown in Fig 1A. 

Validation Cohorts  
A monocyte cohort from Harvard Medical School, Boston, USA (GSE56034) was 
downloaded from GEO database for validation. CD14+CD16- monocytes were 
sorted from peripheral blood mononuclear cells (PBMCs) of 485 healthy individuals 
(272 women and 213 men). mRNAs of these monocytes were then profiled on 
Affymetrix GeneChip Human Gene ST 1.0 microarrays. Log2 transformation and 
quantile normalization were used for the data pre-processing. After filtering out the 
genes with low intensity (more than 95% of patients’ expressions lower than 100), 
13,556 genes were left for differential gene expression analysis. The mean and 
standard deviation of age for healthy males and females are shown in Table S1. 

Second, proteomics data from a cohort including 187 CAD patients and 341 healthy 
subjects [25] were used to study whether the augmented signalling activities were 
reflecting elevated levels of the corresponding ligands in plasma. The demographics 
of this cohort is shown in Table S2. 

Differential gene expression 
The sex-biased genes were obtained from the pre-processed gene expression 
profile from 450 patients using limma package [26]. More specifically, for each gene 
g, a linear model was built between the gene expression values of g and genders of 
all patients. Significant levels were calculated based on the moderated t-statistics, 
which used empirical Bayes methods to obtain posterior variance estimators (for 
details see the limma tutorial). Ages and batches were added into the linear model 
as covariates for removing their effects. The male/female-biased genes in this study 
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are the genes that shows up/down regulation by comparing males and females. The 
GES here is the log2 fold change of expression between male and female subjects. 
P-values were adjusted by false discovery rate (FDR). 

Gene Set enrichment analyses (GSEA) 
GSEA of Gene Ontology (including Biological Process (BP), Molecular Function (MF), 
and Cellular Component (CC)), KEGG, WikiPathway, and Reactome for sex-related 
GES were performed using the ClusterProfiler R-package [27]. The p-values were 
adjusted for multiple comparison by FDR, and the cut-off was set to 0.05 to avoid 
presenting false discovery significant terms. Gene ratio stands for the percentage 
of genes associated with the given GO/Pathway term to the total number of genes 
in that term.  

Cytokine signalling activity inference 
Cytokine signalling activities were calculated based on the database of target genes 
modulated by cytokines from Cytosig platform (https://cytosig.ccr.cancer.gov/). 
The Cytosig database including in total of 51 cytokines (and growth factors) and 
6466 response genes. As suggested in [20], considering the signature collinearity of 
cytokine profiles, we utilized ridge regression (linearridge function in ‘ridge’ R-
package), as the predictive model of cytokine signalling activities. Only 4,130 genes 
that were overlapped in Cytosig database and the sex-biased GES CTMM cohort 
were used in this model. Composite profiles of cytokine response were the 
explanatory variables, and the sex-biased GES was the response variable. The 
regression coefficients represent cytokine target activities. The ridge regression 
parameter is chosen automatically using ‘ridge’ R package proposed by [28]. The p-
values are computed using the significance test of [29]. P-values were adjusted 
using FDR. 

TF activity inference 
In this study, we predicted both activities of TFs that drive sex-biased GES and that 
drive cytokine-modulated gene profiles, based on the TF-target interaction network 
provided by DoRothEA [21]. Specifically, we first filtered out the TF–target 
interactions with low level of evidence (confidence score D and E). TF activities were 
then calculated using Weighted Connectivity Score (WTCS), a bi-directional version 
of weighted Kolmogorov-Smirnov enrichment statistic (ES) described in [30]. For a 
given TF, assuming 𝑞_𝑝𝑜𝑠 and 𝑞_𝑛𝑒𝑔 are the activated and inhibited target sets of 
TF 𝑞 in DoRothEA, its activity	𝑤 on a cytokine-modulated profile (or sex-biased GES) 
𝑠 is as follows: 

𝑤*,H = k]𝑁𝐸𝑆IJH −𝑁𝐸𝑆)KL^/2, 	if	𝑠𝑔𝑛]𝑁𝐸𝑆IJH^ 	≠ 𝑠𝑔𝑛]𝑁𝐸𝑆)KL^
0, otherwise

               (1) 
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where 𝑁𝐸𝑆IJH is the normalized enrichment score of 𝑞IJH in s and 𝑁𝐸𝑆)KL is the 
normalized enrichment score of 𝑞)KL in 𝑠. P-value is calculated based on 10000-
time gene-wise permutation test. Finally, we selected female-activated TFs and sex-
activated cytokines to construct a TF-cytokine bipartite graph (Fig 4B), where the 
edges between a TF and a cytokine represents the activity of this TF on its target 
genes under the modulation of this cytokine. 

Visualization 
Cytoscape was applied to visualize the WTCS between cytokines and TFs. All other 
plots were generated using ggplot2 package in R. 

Validation on GM-CSF-induced RNA-Seq dataset 
Human CD14+ peripheral blood monocytes were stimulated for 24 h with GM-CSF 
(X ng/ml; n=3) and expression profiles were assessed by RNA-Seq. The parental 
monocytes were used as controls. DEG analysis revealed 132 upregulated genes in 
GM-CSF stimulated vs unstimulated monocytes (log2FC > 0.5; P.adj<0.05). This DEG 
geneset was used to perform GSEA to check if the up-regulated genes were 
enriched in the female-biased gene set from GES in the CTMM monocyte cohort.  

Statistical analysis 
Unpaired two-sided t-tests with non-equal variance were applied to compare the 
gene expressions from females and males in Fig 5B and Fig 3C. Significant level is 
denoted by *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001. All statistical 
analyses were performed in R (v3.6.3).  



 Sex difference in CVD | 4 

127   

4 

Results 
Monocytes from female CAD patients show stronger migratory 
capacity than males 
To identify sex differences in monocyte transcriptomes of CAD patients, we 
compared microarray data from monocytes of male (n=316) and female (n=134) 
CAD patients within the CTMM cohort. The workflow of this study is shown in Figure 
1B. Clinical information of this cohort is listed in Table 2. Except for higher HDL and 
lower creatinine in females, there were no significant differences in other clinical 
characteristics between males and females. Similarly, flow cytometry analyses 
confirmed that the number of classical, non-classical, and intermediate monocytes 
were essentially similar between male and female CAD patients (Fig 2A). We 
observed 48 male- and 107 female-biased genes (Fig 2B), including several 
notorious X or Y chromosome-linked genes, such as PRKY, RPS4Y1, EIFAY and XIST.

 
Figure 1: CTMM cohort and analysis procedure. (A) A schematic of cohort build-up; (B) The schematic 
diagram of the analysis.  

We then performed GSEA based on sex-biased signatures to obtain a more detailed 
view of the functions of sex-biased genes (Fig 2C). While male-biased genes did not 
show clear, significantly enriched GO terms, female-biased genes were significantly 
enriched in pathways related to cellular movement and chemokine- or interleukin 
signaling. Analysis of the genes responsible for the observed enrichment of 
chemokine activity (Fig 2D) term revealed that all GO term chemokine activity 
genes (e.g. CCL2, CCL3, CXCL10) were upregulated in female CAD patients 
compared to males. Similarly, LMNA, PRKX, MMP9 and PTK2 are the top 4 
differentially expressed ‘regulation of cell motility’ term members (Fig 2E), next to 
CCL2 and CCL3 
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Table 2: Demographics of females and males who participated in the CTMM cohort expressed as 
mean ± SD or frequencies (%) 

riskfactor Male (n=316) Female (n=134) p-value 

HDL (mmol/dL) 1.06+0.26 1.23+0.36 9.48E-05 

Triglyceride (mmol/dL) 1.57+0.93 1.54+0.87 0.76 

Systolic Blood Pressure (mmHg) 134.81+18.92 137.89+22.83 0.17 

LDL (mmol/dL) 2.47+0.98 2.71+1.12 0.08 

Smoking (Pack years) 25.41+22.28 26.85+24.33 0.56 

BMI (kg/m2) 27.4+3.89 27.7+5.28 0.56 

glucose 6.51+2.18 6.76+2.09 0.32 

Age 62.48+10.02 62.92+10.66 0.69 

Heart rate 67.49+13.53 69.42+12.44 0.14 

Diastolic Blood Pressure (mmHg） 78.84+11.15 76.46+12.32 0.06 

Creatinine (mmol/dL) 91.86+53.76 74.99+19.84 2.24E-06 

Hypertension  192 (60.76%) 93 (69.4%) 0.08 

Renal failure 6, (1.9%) 3, (2.24%) 0.81 

Diabetes Mellitus 64, (20.25%) 34, (25.37%) 0.26 

Current Smoker 66, (20.89%) 33, (24.63%) 0.38 
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Figure 2: Monocyte transcriptional signature of female CAD patients points to stronger migratory 
potential than that of men. (A) Violin plots showing the percentages of the quantity of classical, non-
classical, and intermediate monocytes from female and male patients. (B) Volcano plot showing sex-
biased genes in CTMM cohort. significant female-biased (log2FC < -0.1 and P.adj <0.05) and male-
biased (log2FC > 0.1 and P.adj <0.05) genes were color-coded with blue and red. (C) Dot plots 
visualized the significant levels of top enriched GO terms and pathways using GSEA. Male/female-
biased categories are color-coded with red/blue. Significant levels are shown by using log10-
transformed adjusted p-values. (D)&(E). Log2FCs of genes in the enriched GO terms (chemokine 
activity and regulation of cell motility) have the top two highest significant levels. 

Identification of male- and female-biased cytokines  
Since chemokine/interleukin signalling and cellular motility related pathways were 
significantly different between sexes, we inferred the cytokine, chemokine as well 
as growth factor pathway activities in male vs female CADs based on the 
intersection of genes from our CTMM cohort and Cytosig database [20] (n=4130 
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genes). EGF, IFN1, GMCSF, VEGFA and CD40L signalling activities were significantly 
enriched in female patients, while INS, HMGB1 and IL4 pathways were enriched in 
male patients (Fig 3A). Indeed, for the female-enriched pathways, the majority of 
cytokine- and growth factor-induced genes are upregulated in female compared to 
male CAD patients (indicated by the blue-colored bars in Fig 3B and Fig S1B), while 
genes suppressed by the female biased ligands were enriched in males (red colors). 
Similarly, genes induced by IL4 and HMGB1 were mostly enriched in males (Fig S1C).  

To determine whether the enhanced signalling activities were reflecting higher 
levels of the ligands in plasma, we interrogated an plasma proteomics dataset from 
the CAPIRE study cohort of CAD and healthy subjects [25]. In this plasma cohort (n 
=155 for CAD males; n=32 for CAD females, n=159 for healthy males, and n=182 for 
healthy females), we could only demonstrate a minor, yet significant, increase in 
VEGF levels in female plasma compared to males, but none of the other ligands 
showed even a trend towards significant differences between male and female CAD 
(Fig S1D), suggesting enhanced sensitivity for these ligands and/or intrinsic 
signalling differences within the monocytes. In line with the enrichment of 
chemokine activity term members in female monocytes (Fig 2D), we did find 
significantly increased plasma levels of CCL3 in female CAD patients (Fig S1D). Next, 
we performed GSEA of signature gene expression profiles of human CD14+ 
peripheral blood monocytes stimulated or not with GM-CSF (24h; 193 genes with 
log2FC >0.5, P.adj <0.05). The intersection of genes between CTMM GES and up-
regulated genes induced by GM-CSF was visualized displayed in Fig 3C. GM-CSF 
induced signature indeed was significantly enriched in female compared to male 
CAD patient monocytes (GSEA, P = 0.0001). Most GM-CSF induced genes, including 
MMP9, LMNA and CCL2 (all enriched GO term members, Fig 2D-E) were indeed 
seen to be significantly increased in female CAD patients. Interestingly, the gene 
transcript with the strongest upregulation in females (see figure 2B), i.e., the X-
linked non-coding RNA XIST, also appeared to be induced by GM-CSF (Log2FC=0.53, 
P.adj =3.54*10-10), next to Fc-gamma receptor 2B (FCGR2B), Early growth response 
gene-2 (EGR-2) and the motility transducer Formyl-peptide receptor 3 (FPR3). 
Moreover, we also found CD40, the receptor mediating CD40L signalling (activated 
in females) to be significantly induced by GM-CSF and enriched in female over male 
CAD patients.  
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Figure 3: Inference of male- and female-biased cytokines using Cytosig. (A) A volcano plot visualizing 
the Cytokine activities of CTMM CAD patients by comparing males versus females. By setting the 
cutoff of FDR adjusted p-value as 0.05, female- and male-biased cytokines were highlighted in blue 
and red. (B) Bar plots showing the top 15 genes (ranked by absolute log2FC) which are modulated by 
IL4, GMCSF and EGF from Cytosig platform. Bar colors indicate the log2FC of these genes in CTMM 
cohort, comparing male vs female patients. (C) A bar graph showing the enrichment of GMCSF-
induced upregulated genes from the RNA-Seq dataset over the sex-biased GES from the CTMM cohort. 
y-axis shows the overlapped genes between the GMCSF-induced upregulated genes from the RNA-
Seq dataset and the GES from the CTMM cohort. X-axis indicates the log2FCs (male versus female) of 
these genes in the CTMM cohort.  

Associations between sex-biased enriched cytokines and TFs  
Our validation experiments point to cell-intrinsic differences in sex specific 
signalling pathways. Therefore, we investigated whether common regulatory 
mechanisms underly the sex-specific pathway activation. Hereto we first calculated 
TFs activities driving these sex-biased genes in CAD based on a TF-target interaction 
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network from DoRothEA [21]. In line with our previous findings, we identified more 
activated TFs in women (n = 31) than in men (n = 3) (Fig 4A). We then inferred the 
activities of these sex-biased TFs to identify which TFs are linked to the 8 ligand-
induced gene profiles from the Cytosig database (Fig 4B) and visualized the TFs that 
are significantly activated or suppressed by the ligands in a bipartite graph (Fig 4C). 
CD40L, EGF and VEGF were found to be linked to several of the TFs enriched in 
female CAD patients. As expected, we found STAT2, IRF1 and IRF9 to be significantly 
associated with IFN1, while NFKB1 and RELA were associated with CD40L. Both 
pathways were significantly enriched in females, while the male-enriched IL-4 
cytokine activity was linked to suppressed STAT2, NFkB and RELA signalling. Most 
notably, JUNB was associated with 4 out 5 female-enriched pathways, i.e., CD40L, 
EGF, VEGF and GM-CSF, and 1 of 2 male-enriched pathways (IL-4).  

To identify the key target genes of TFs associated with these female-activated 
ligand pathways, we visualized the differential gene expressions between 
male/female CAD patients for selected TF’s target genes and their dysregulation 
(log2FC) induced by the respective cytokine/growth factors (Fig S2). Even though 
both the ligand- and TF pathways were highly significantly enriched in females, their 
target genes’ expression showed only modest dysregulation in females compared 
to males. Interestingly, both GM-CSF and JUNB specifically induce the expression of 
LMNA, which is one of the genes with the strongest upregulation in female CAD 
patients compared to males (Fig 2A and Fig S1A), and a dominant gene involved in 
the female enriched GO term ‘cell motility’ (Fig 2D). 

Validation on monocytes from Healthy cohort  
To validate if the sex differences we observed in the CTMM cohort are specific for 
CAD, we calculated pathway activities for the 5 ligands that are enriched in female 
CAD patients (i.e. CD40L, EGF, GMCSF, IFN1, VEGFA) and the 3 ligands that are 
enriched in male CAD patients (i.e. IL4, HMGB1, INS) in a monocyte cohort from 485 
healthy males and females (GSE56034). Fig 5A shows that all these ligands did not 
show any significant activation or suppression scores in healthy men versus 
women, confirming the specificity of these sex differences for CAD. As the average 
age of the healthy cohort (i.e. 32.9±10.9 years for male; 28.5±9.1 years for females) 
is much lower than that of the CTMM cohort, we also analysed a subcohort of all 
subjects above 45 years old (n=43 males, age= 48.8±2.1; n=29 females; age= 
48.9±2.549) (Table S1). As shown in Fig S3, also in this subcohort, GMCSF, CD40L, 
IFN1, IL-4 and HMGB1 signalling was not showing any differences in activation 
status in healthy individuals. Surprisingly, EGF, VEGF and Insulin activities were 
even found to be enriched in the opposite sexes in healthy subjects compared to 
CAD patients, pointing to sex and disease specific differences in ageing of these 
pathways. 
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We then visualized the expression of female-upregulated genes responsible for the 
female-biased GO term enrichment as well as the GM-CSF signature genes, i.e. XIST, 
FCGR2B, EGR2, MMP9, FPR3 and CD40. Fig 5B and C show that these genes were 
significantly upregulated in the monocytes of female compared to male CAD 
patients, but not in the healthy cohort. Only LMNA was already slightly elevated in 
females vs males, but only in the healthy >45 year sub-cohort suggestive of an age-
dependent upregulation in women (Fig S3B). Of note, chemokine CCL2 expression 
was significantly higher in healthy middle-aged men vs women, whereas in CAD it 
was elevated in women. Altogether, these data strongly indicate the observed sex-
biased signalling activities are specifically found in CAD and not in healthy subjects.  

 
Figure 4: Associations between sex-biased enriched cytokines and TFs. (A) Volcano plot of inferred 
TF activities on CAD cohort by comparing male and female subjects. Nodes were color-coded based 
on the WTCS. A TF was defined as a female/male-activated TF if its absolute WTCS is higher than 0.4 
and p-value < 0.05 (B) Heatmap visualizing the activities of TFs that drive female-biased TFs and sex-
biased cytokine in CAD. (C) Bipartite graph showing the connections between TFs that drive female-
biased TFs and sex-biased cytokine in CAD. Only TFs that are significantly enriched in a cytokine-
modulated gene profile are visualized (P <0.05 and absolute value of connectivity score >0.5). 

 
 
 



Chapter 4 

134 

4 

 

 
Figure 5: female-/male-biased genes and cytokines inferred from CTMM CAD cohort were validated 
on a healthy cohort (GSE56034). (A) Activities of 8 CAD-related sex-biased cytokines on CAD and 
healthy cohort. Dashed lines indicate the significant threshold 0.05. (B) Expression levels in the CTMM 
cohort for 15 differentially expressed genes (male vs. female) that are involved in chemokine activity 
(yellow box), regulation of cell motility (green box) and GMCSF-driven target genes (red box). (C) 
Expression levels of the same 15 sex-biased genes as in panel B in a healthy cohort (GSE56034) 

Discussion 
In this study, we examined sex-related differences in signalling pathways and their 
regulation in circulating monocytes of CAD patients. We found monocytes of 
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female CAD patients to have significantly activated CD40L, GM-CSF, EGF, VEGF and 
IFN1 signalling compared to men, whereas male CAD patients’ monocytes displayed 
higher IL-4, Insulin and HMGB1 signalling activities compared to females. These sex 
effects were not observed in healthy subjects. The corresponding cytokine and 
growth factors activating these pathways did not differ between men and women 
in CAD, pointing to downstream differences in pathway regulation. Indeed, several 
of these pathways appeared to share a common transcriptional regulation, with 
JUNB central in 4 of 5 female and 1 of 2 male signalling pathways as most prominent 
sex specific TF. 

Although several studies have shown increased plasma levels of the X-chromosome 
linked CD40L [31, 32], we could not confirm this in the plasma proteomics dataset 
of the CAPIRE study [25]. Except for significantly higher VEGF levels in female CAD 
patients, we did not observe any differences in plasma levels of female- or male-
biased ligands. Type I IFN responses, mediated by the X-chromosome linked Toll-
like receptor 7 (TLR7), are known to be enhanced in females [33], yet we did not 
find differences in IFN1 plasma levels between male and female CAD patients. 
Likewise, levels of HMGB1, reported to be higher in men than in women[34], were 
similar in men and women in the CAPIRE study. Therefore, we assume that sex 
biased differences in signalling activity are mainly pathway intrinsic and reflect sex 
differences in the monocyte’s capacity to respond to a particular cytokine in CAD. 
These findings are in line with the observation of Gupta et al that female 
neutrophils displayed increased responsiveness to type I IFNs, independent of 
serum IFN1 levels [11]. 

We could confirm that the monocyte GM-CSF signalling signature was enriched in 
monocytes of female CAD patients. Moreover, several female-enriched GO term 
members, such as lamin A (LMNA), were induced by GM-CSF, which concurs with 
GMCSF’s reported role in myeloid cell recruitment in inflammatory and 
pathological conditions [35]. 

While some studies reported a role for the nuclear membrane integrity stabiliser 
LMNA in NFkB-dependent inflammation [36], differentiation and migration of 
monocyte/macrophages [37, 38], sex differences in LMNA expression and the 
induction by GM-CSF are to our knowledge hitherto unknown.  

Next to LMNA, GMCSF also induced CD40 which, at least partly, may explain the 
increased CD40L signalling activity in female monocytes. CD40-CD40L are co-
stimulatory molecules well known for their role in inflammatory responses and 
atherosclerosis [39]. Interestingly, elevated expression of CD40L has been 
associated with cardiovascular diseases and risk for acute cardiovascular 
symptoms, also in women [40, 41]. While GM-CSF is mainly thought to act pro-
inflammatory, it also can dampen excessive inflammation. For instance, GM-CSF 
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induced XIST, an X-chromosome linked long non-coding RNA and in fact, the RNA 
with the highest enrichment in females, was recently shown to accelerate wound 
healing in skin by promoting macrophage polarization towards an anti-
inflammatory M2 phenotype [42]. Similar anti-inflammatory effects were reported 
for the GM-CSF induced female-enriched genes early-growth-response gene 2 (egr-
2) [14, 43] and Fc-gamma receptor 2B (FCGR2B) [44]. Although it remains to be 
elucidated how monocyte pathway activities relate to sex differences in CAD 
development or manifestation, it is tempting to speculate that the 
abovementioned inflammation dampening and wound healing responses may 
account for the more stable, fibrocalcific plaque phenotype observed in females 
[45]. 

At premenopausal stages, most sex differences in CAD responses have been 
attributed to sex hormones. For instance, estrogen has been found to have anti-
inflammatory effects on macrophages, by dampening NFκB signalling[18, 19, 46, 
47], to reduce oxidative stress response in healthy murine peritoneal macrophages 
to bias macrophages toward the M2 phenotype [48] and to attenuate their 
migratory capacity [14]. However, sex specific disease mechanisms in post-
menopausal women are less well studied, although CVD risk profiles of women 
increases profoundly even beyond that of men after menopause. Although we 
observed no differences in CVD risk factors between gender in our cohort, except 
for creatinine and HDL levels, it is well known that the relative risk for CVD 
conferred by such risk factors is greater in females than in males[4, 49]. This may 
also match with the seemingly paradoxical bias towards proinflammatory signalling 
in women with CAD in the CTMM cohort.  

Our study has some limitations. While the CTMM contains a reasonable amount of 
316 male and 134 female CAD patients, the cohort of the CAPIRE study is more 
limited and contains an imbalance in the number of male and female CAD patients 
in (Table S2, 32 female CADs and 155 male CADs). Therefore, Welch t test was used 
to compare the protein levels between males and females, to reduce type I error 
rates. Secondly, the average age of the healthy cohort subjects was considerably 
lower than that of the CAD cohorts (i.e. the CTMM patient cohort and the CAPIRE 
study cohort). While >50% of women in the latter cohorts were post-menopausal, 
this did not hold for the healthy cohort (average age men: 32.93±10.96 years, 
women: 28.49±9.11 years). However, also using this subcohort the main findings 
on sex-biased pathways remain valid giving confidence in our findings.  

In conclusion, our study shows gender differences in signalling capacities of 
circulating monocytes in CAD patients. While male monocytes display enhanced 
signalling activities induced by HMGB1, insulin and IL-4, female monocytes are 
enriched in EGF, IFN1, CD40L, GM-CSF and VEGF signalling pathways. Although we 
did observe increases in plasma VEGF levels in female CAD patients compared to 
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males, these enhanced signalling responses mostly represent increased intrinsic 
signalling capacities. We showed increased GM-CSF signalling in female monocytes 
enhanced expression of various genes related to the female-enriched GO terms of 
chemokine activity and regulation of cell motility, as well as the expression of CD40, 
which may contribute to increased CD40L responsiveness.  
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Supplemental files 
 

Table S1: Ages of healthy female and males in the monocyte cohort (GSE56034) expressed as 
mean±SD.  

 Gender Age (Mean±std) 

Whole cohort Male (n=213) 32.93±10.96  

Female (n=272) 28.49±9.11 

Sub-cohort (Age > 45) Male (n=43) 48.81±2.10 

female(n=29) 48.93±2.49 

 

Table S 2: Demographics of females and males who participated in the cohort of proteomics study 
expressed as mean ± SD or proportion. P-values were calculated by Student’s t-test  

 CAD Healthy 

 Female (n=32) Male (n=155) P-value Female (n=182) Male (n=159) P-value 

Diabetes (proportion) 0.16 0.19 0.62 0.09 0.08 0.68 

Smoking (proportion) 0.56 0.26 9.59E-04 0.21 0.19 0.75 

Age (years) 65.38± 6.36 62.22±7.76 0.017 59.86±8.19 56.37±8.16 1.03E-04 

BMI (kg/m2) 28.01±5.79 27.53±3.94 0.65 25.75±4.47 26.31±3.20 0.18 

SBP (mmHg) 132.03±16.37 133.87±15.97 0.56 125.66±14.29 127.25±14.01 0.30 

DBP (mmHg) 80.47±9.32 81.59±8.41 0.53 77.46±7.72 78.94±8.09 0.09 

HDL-C (mg/dL) 49.75±11.80 46.15±11.99 0.12 58.97±16.78 48.45±12.19 1.03E-10 

LDL-C (mg/dL) 126.53±39.64 118.37±32.03 0.28 126.32±34.91 120.29±32.63 0.10 

TG (mg/dL) 130.69±52.56 124.87±69.08 0.59 108.47±76.90 114.65±91.69 0.50 

Cigarettes/day 8.469±11.16 4.78±10.55 0.092 2.75±6.17 3.13±7.54 0.62 

Creatinine (mg/dL) 0.73±0.17 0.90±0.18 6.74E-06 0.69±0.12 0.93±0.133 3.04E-47 
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Fig S1: Inference of cytokine activities based on sex-biased GES using Cytosig. (A) Volcano plot 
showing sex-biased genes based on the overlapped genes of CTMM cohort and Cytosig database. (B) 
& (C) Bar plots showing the top 15 genes (ranked by absolute log2FC) which are modulated by 2 
female-activated cytokines (i.e. GMCSF, and VEGFA, shown in (B); and male-activated cytokines (INS, 
HMGB1, EGF, shown in (C) Bar colors indicate the log 2 fold change of these genes in CTMM cohort, 
comparing male vs female patients. (D) Intensities of 14 ligands from a plasma cohort of individuals 
with (yes) and without (no) CAD. These ligands show enhanced signaling activities calculated based 
on the gene profile of CTMM cohort. 
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Fig S2: Scatters showing the regulations of genes driven by a female-activated TF JUNB (A), CEBPB 
(B) and FOXL2 (C) in CAD and in female-activated cytokines (i.e. VEGFA, CO40L, GMCSF and EGF). 
The X-axis indicates the log 2-fold changes of gene expressions comparing female and male patients 
in the CTMM cohort, and Y-axis is the log 2-fold changes of cytokine-induced gene expressions in the 
Cytosig database. The names of genes which absolute log2FC >0.1 or pvalue < 0.05 in CTMM cohort 
(males verse females) were visualized. 
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Fig S3: Female-/male-biased genes and cytokines inferred from CTMM CAD cohort were validated 
on a sub-healthy cohort (GSE56034, subjects above 45 years old). (A) Activities of 8 CAD-related sex-
biased cytokines on CAD and healthy subcohort of all subjects above 45 years old (n=43 males, age= 
48.81±2.10; n=29 females; age= 48.93±2.49). Dashed lines indicate the significant threshold 0.05. (B) 
Expression levels in the CTMM cohort for 15 differentially expressed genes (male vs. female) that are 
involved in chemokine activity (yellow box), regulation of cell motility (green box) and GMCSF-driven 
target genes (red box). (C) Expression levels of the same 15 sex-biased genes as in panel B in a 
subcohort of all subjects over 45 years of age (43 males, age=48.81±2.10; 29 females, age=48.93±2.49) 
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Cardiometabolic diseases (CMDs), including cardiovascular diseases (CVDs) and 
non-alcoholic fatty liver disease (NAFLD), are characterized by chronic 
inflammation with a key role for monocytes and macrophages [1–4]. In particular, 
macrophages are highly plastic cells, which adjust to their environment to display a 
high level of heterogeneity [4, 5]. Recent advances in omics technology have 
allowed us to characterize genetic, protein, and metabolic makeup of not only bulk 
tissue, but even of individual cells in complex tissue. Rapid technological 
developments in imaging enable us to capture fluorescence signals at high 
resolution while preserving morpho-spatial features [6, 7]. This thesis deployed a 
series of computational strategies based on statistics, machine learning, and image 
processing to analyse high-throughput or imaging data, aiming (1) to dissect the 
heterogeneity of the macrophage population and their molecular environment in 
CVD-affected arteries (more specifically, in atherosclerotic plaque); (2) to analyse 
the heterogeneity of liver compartments and metabolic changes during the 
development of NAFLD; (3) to infer the transcriptional and functional profiles of 
monocytes in the progression of CVD.  

The main results of this thesis are as follows: 
1. We developed a novel approach to distinguish cell types and characterize 

their microenvironments by integrating multiple imaging data layers from 
different platforms (i.e., multispectral, H&E-stained and MALDI-mass 
spectroscopy imaging (MSI)), which has been applied to dissect 
macrophage heterogeneity, as well as their local niche in atherosclerotic 
plaque (chapter 2). 

2. We established a computational pipeline to analyse the spatiotemporal 
heterogeneity of liver tissues from mice with NAFLD based on metabolite 
levels from MALDI-MSI data. This study not only mapped the different 
compartments of liver tissue solely based on their metabolic profile, but 
also enabled to determine the dynamics of metabolite profiles in each 
compartment during disease progression (chapter 3).  

3. We identified differential gene expression in monocytes from male and 
female CAD patients, inferred the transcription factors (TFs) driving this 
difference between sexes and the cytokines associated with it. The findings 
were validated on independent cohorts (chapter 4). 

4. We constructed a gene co-regulation and corresponding regulatory 
network by comparing the gene expression profiles of monocytes from a 
cohort of CAD patients before and after LPS stimulation and identified a 
subnetwork with strong correlation with blood pressure levels, that may 
link inflammation to hypertension (chapter 5). 

The results of my studies not only demonstrate the power of advanced machine 
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learning and statistical models in analysing high-throughput multi-omics data to 
unravel disease mechanisms, but also exemplify the effectiveness and broad 
applicability of the pipelines we developed for cell/tissue heterogeneity analysis. 
This chapter will evaluate the computational methods employed in the thesis, 
describing potential application scenarios in the analysis of cardiometabolic 
diseases and advantages and limitations compared to reported approaches, and 
provide directions for future research.  
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Machine learning versus statistical models in 
cardiometabolic diseases  
Although statistical models have been and continue to be widely used for 
biomedical data analysis, machine learning has gained momentum in the past few 
years. It has achieved increasingly impressive performances for analysis of high-
dimensional datasets, which are ever expanding in size and number [8]. In this 
thesis, I applied different computational strategies in various contexts to explore 
the mechanisms of CMDs. 

Although statistical models and machine learning may employ the same 
approaches, such as linear regression, they serve diverse purposes. (Supervised) 
machine learning is mainly focussed on the model's prediction performance; 
therefore, it requires a test set to evaluate the performance of a trained model. A 
statistical model does not require such a test dataset, but analyses the model for 
example in terms of confidence intervals. The main aim of the statistical model is 
not the performance on future data, but to infer relationship between variables [9, 
10]. This distinction is significant and has major implications for their application on 
biomedical data. 

In the biomedical field, the number of samples available in an experiment (e.g., 
patients, mice) is often limited, and statistical methods can estimate information 
about the populations based on these limited sample sizes. For example, biologists 
are generally interested in which genes, proteins, or metabolites are significantly 
different between separate patient groups, tissues or cell populations, or differ 
with treatment. Statistical methods such as ANOVA and linear-model based 
moderated t-statistics [11] are commonly used approaches to assess differential 
expression in the context of multifactor-designed experiments. In this thesis, I 
applied limma [11] on the CTMM [12] cohort, to compare the gene expression 
differences between male and female CVD patients (chapter 4), revealing female-
biased genes (e.g., LMNA) associated with cell migration. The selected differentially 
expressed genes could be used for predictions, but the performance is often barely 
satisfactory. 

As the size and dimensions of the biomedical data has increased dramatically in 
recent years, a number of problems regarding their analysis have arisen. For 
example, as long as the data size is large enough, the results of hypothesis testing 
will always be significant [13]. Machine learning, which can handle large-scale and 
high-dimensional datasets, has been widely used for CMD prediction, where they 
have shown extraordinary predictive performances [14, 15]. In chapter 3, we have 
studied metabolic changes over time during the progression of NAFLD and in 
different liver compartments; hereto I trained an spatial shrunken centroids (SSC) 
[16] classification model based on pixels on each MALDI-MSI image (with more than 
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10,000 pixel points (samples) on each image, and 504 features (i.e. m/z peaks) per 
pixel point) from healthy mice and then predicted the pixels of the liver tissues from 
mice that were fed different regimens of a high-fat diet, ranging from 16 hours to 
3 weeks. The validity of the compartment classification (i.e., parenchyma, sinusoid, 
and vessels) was confirmed at histological level. On the other hand, a small sample 
size, especially when the feature number by far exceeds sample size, will result in 
the notorious overfitting issue, where the model is only shaped to the training set 
only and performs much worse on the test data set than it did on the training data 
set. In addition, high prediction performance of machine learning unfortunately 
often is at the expense of a lower model interpretability, which leads to its still 
limited application in the study of CMD pathology. 

Although feature selection in machine learning can also be used for identifying gene 
sets that are characteristic of a tissue or condition, its primary goal is to improve 
the model performance by eliminating redundant and irrelevant features [17]. Thus, 
co-linear characteristics will often be deleted since they do not contribute much to 
model improvement. However, it is well known that genes (but also proteins and 
metabolites) do not function independently, but rather in collaboration with others. 
Therefore, analysis of groups of genes with comparable expression patterns is more 
likely to reveal the included biological significance, than selecting a set of genes that 
will give the model the highest prediction accuracy. This is why gene clustering 
strategies are so widely applied in biomedical data analysis. An example can be 
found in chapter 5, where we employed Weighted Gene Co-expression Network 
Analysis (WGCNA) [18] to group genes that are co-regulated in response to a 
lipopolysaccharide (LPS) challenge into functional gene modules. This strategy led 
to the identification of a gene module with a strong correlation to the diastolic 
blood pressure. In chapter 3, a temporal clustering method GPDP [19] was applied 
on the MALDI-MSI data of livers from mice with various levels of NAFLD, for 
pinpointing stage-dependent changes in metabolic pathways (as represented by 
the clusters). Such identification would not have been possible without prior 
grouping of co-expressed metabolites (for instance by regular univariate analysis). 

The recent development of single-cell technology has dramatically increased the 
data size, but fortunately, this was accompanied by a huge increase in the number 
of units (“samples”) per analysis. Cell type identification based on such data 
requires clustering as well, which can either be done guided by signature gene sets 
for single cell RNA-Seq (scRNA-Seq) analysis, or based on marker expression for 
multiplex, multispectral or mass spectrometry imaging analysis. A general pipeline 
for cell type identification first clusters individual cells according to their gene or 
marker expression in an unbiased manner, and then assigns clusters to a particular 
cell type based on a known biomarker signature. In chapter 2, we discovered 
multiple macrophage phenotypes in murine atherosclerosis plaques by grouping 
the cell segments based on the intensity of 12 phenotypic markers (detected by 
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multiplex multispectral immunofluorescent imaging) using cosine-based k-medoid 
clustering. The resulting clusters were then assigned to previously identified cell 
types and subsets, based on similarities in marker profile, albeit with the limitation 
that the cell signature and image markers involved different feature domains 
(genes versus proteins).  

Compared with the above approach, cell clustering based on scRNA-Seq data will 
be more complicated, because of the huge feature (gene) and sample size. As a 
result, one usually needs to perform a gene filtering or dimensionality reduction 
step prior to clustering. Since the multispectral imaging data in chapter 2 only 
contains 12 biomarkers (features), dimensionality reduction is not obligatory and 
may result in loss of information. On the other hand, spillover compensation is 
recommended before clustering these imaging data, because signals from adjacent 
cells could contaminate each other. Therefore, in chapter 2, we have adapted the 
spillover compensation method from Goltsev et al.[20] to reduce the risk of 
overcompensation and applied it before cell clustering. 

How to determine the optimal number of cell clusters or how to evaluate the best 
clustering solution has been an open question. Some groups propagate the use of 
inter-class or intra-class distances (or similarities) (e.g., Silhouette Coefficient and 
Davies-Bouldin Index) as an effective measure to select the most appropriate 
clustering solution[21]. Alternatively, other methods have been described, such as 
Dbscan [22], that circumvent specifying the number of clusters by designing and 
adjusting the parameters ‘minPts‘ (the minimum number of points clustered 
together for a region to be considered dense) and ‘eps’ (a distance measure that 
will be used to locate the points in the neighbourhood of any point). In the chapter 
2 of this thesis, I have compared the Silhouette coefficients of five clustering 
methods based on different distance measures for the same number of clusters 
(k=70), and the best results were obtained with k-medoid clustering based on 
cosine distance. Additionally, to bypass the cluster number uncertainty, a Dirichlet 
process Gaussian process mixture model (DPGP)[19] has been utilized to identify 
metabolite groups with consistent trajectories over time without pre-specified 
cluster counts.  

It should be noted however that without guidance from expert knowledge, gene or 
cell clusters delineated by unsupervised clustering methods sometimes do not 
reflect biologically plausible gene modules or cell phenotypes. To address this issue 
and the fact that clustering often strives for more or less balanced cluster sizes 
(ignoring the presence of rare but true populations), in chapter 2 and 3, I adopted 
an interactive approach to cluster cells or genes, involving a deliberate 
overclustering step after which clusters were merged combining information on 
location and morphology (inspection by a biologist) with simple hierarchical 
clustering to obtain biologically more plausible outcome.  
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In conclusion, statistical models, or machine learning both have their merits, and 
should be applied with care, depending on the research purpose and the data type. 
In general, one could say that, when the sample size is limited and most interest 
lies in the association between variables (e.g., disease risk factors), statistical 
models are typically more appropriate, whereas supervised machine learning is 
regularly a better option when the goal is to predict the patient’s risk of a disease 
and there is a sufficient number of training samples to build a reliable predictive 
model. Unsupervised clustering is able to systematically analyse co-expressed 
genes or quickly group cell types without the knowledge of the ground truth cell 
type. Therefore, statistical methods are essential for assessing CVD risk and 
developing prevention strategies, while machine learning based predictive models 
for patient’s medical data are useful to guide CVD prevention and support the 
clinical decision-making process [23, 24]. 
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Enrichment analysis: a knowledge-based approach for 
interpreting omics profiles 
With the exponential growth of available DNA, RNA, protein, and metabolite 
datasets, we are no longer limited to solely relying on manual searches from the 
literature to evaluate and interpret the results generated by omics analysis. 
Pathway enrichment analysis has become a common approach for solving this 
problem, allowing researchers to obtain mechanistic insight into their gene lists 
[25]. The main procedures for pathway enrichment analysis are similar, whether for 
genes, proteins, or metabolites. In brief, the omics data collected during the 
experiment is utilized to establish the feature list of interest, and statistical 
methods are then employed to determine whether the gene list is enriched in 
members of the pathways from a reference database (e.g. KEGG [26] and 
wikipathway [27]). The results of enrichment analysis are then visualized for further 
in-depth inspection, evaluation, and experimental validation. In this thesis, I have 
employed this process several times to infer the pathways involved in sex-biased 
gene expression signature (GES) from CVD patients (chapter 4), a gene module of 
monocytes that was suppressed by LPS and positive correlated with blood pressure 
levels (chapter 5), as well as the NAFLD-stage-related metabolite clusters (chapter 
3). Furthermore, this procedure has also been utilized for additional tasks, such as 
TF activity inference [28] and drug repurposing [29], as long as we have the 3 
elements of inference: a list of genes of interest, a (public online) database to serve 
as reference, and an appropriate inference method. The performance of the 
analysis results depends on the reliability of the reference database and the 
enrichment method we used.  

Since enrichment analysis aims to quantify the similarity (or overlap) between the 
list of interest and the list in the reference database, the choice and design of the 
enrichment method depends on the data types of the two lists. For over-
representation analysis (ORA), both the gene list in the public database and the 
gene list of interest (generally a significantly up- or down-regulated gene set) are 
unordered gene sets involved in a pathway, so Fisher's exact test is usually used to 
calculate the enrichment of unordered genes of interest in a certain pathway. If the 
generated dataset includes information on differential gene expression (such as t-
values or log2 fold changes of differential expression), ranking-based tests (such as 
the weighted Kolmogorov-Smirnov-like test implemented in GSEA [30]) will 
perform better because they allow detection of small but consistent changes in 
gene expression. However, for some specific tasks (e.g., TF activity inference and 
drug repurposing), the gene list in public databases are in order or/and directed, so 
the weight and direction of the two lists should be taken into account during the 
statistical test. In chapter 4, we inferred TF activity based on the gender-biased GES 
in monocytes from CVD patients and the TF-target database from Dorothea [28], 
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but now utilizing the Weighted Connectivity Score (WTCS) [29], an inference 
method designed for drug repurposing, instead of the default inference method 
(VIPER (Virtual Inference of Protein-activity by Enriched Regulon analysis) [31]). The 
latter approach, originally designed for directed continuous vectors, is less suitable 
for reference gene lists containing only the directions but no weights (such as 
Dorothea) and for an unbalanced gene signature as was the case for the CTMM 
study, where we had more female-biased than male-biased genes. 

VIPER virtually infers protein activity by calculating the enrichment of each regulon 
of the gene regulatory network generated by ARACNe ( [32]) in the GES list using 
an analytic rank-based enrichment analysis (aREA). To be specific, for a GES of 
length 𝑛, the enrichment score of a TF 𝑗 with 𝑘 target genes is defined as follows: 

 

 where and  . 𝑚!"  and 𝑤!"  
describe the correlation and mutual information (MI) between TF 𝑗 and its target 
gene	𝑖 according to the ARACNe network [32], respectively, if 𝑖 is in the set of target 
genes of 𝑗, or equals zero if 𝑖 is not a target gene. As such, the vectors 𝑚∙"  and 𝑤∙"  
are extended from size 𝑘 × 1  to 𝑛 × 1. 𝑡	 is a vector of length 𝑛 , indicating the 
quantile-transformed rank of the GES (in ascending order), and 𝑞  is a vector of 
length 𝑛 , meaning the quantile-transformed symmetrized rank (middle rank 
becoming the lowest rank) of the GES. In brief, VIPER calculates the extent to which 
the orientation and intensity of TF-regulated genes are consistent with their 
orientation and intensity in the GES list (for a detailed description of the aREA and 
VIPER algorithm see [31]).  

However, for Dorothea, the relationship between TF and its target genes only 
contains the directions without weights (i.e., the items in 𝑚!"  = -1 or 1, where 1 
represents forward regulation and -1 represents reverse regulation), and 𝑤!"=1 
because there is no information on MI in Dorothea database. 𝐸𝑆+#  of the above 
equation is therefore equal to 0. Thus, the 𝐸𝑆" =	∑ 𝑚!" 	𝑡!)

!,+  , which is the dot 
product of the regulatory directions of the 𝑗 ’s target genes and their quantile-
transformed rank positions within the GES.  

In chapter 4 we describe a sex-biased signature of genes with significantly different 
expression (log 2 fold change) in males versus female CVD patients, and vice versa. 
This signature is biased as we found more female- than male-biased genes. Hence, 
the middle rank of GES is not 0. Imagine a TF with all female-biased target genes 
but only minor differences in gene expression between males and females, then 
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this TF will be inferred as a male-activated TF if we would use rank-based aREA. In 
contrast, connectivity scores are based on a weighted Kolmogorov-Smirnov 
enrichment statistic [30], which directly weighs the ranked genes using GES and can 
therefore also handle unbalanced numbers of up- and down-regulated genes. 
Furthermore, WTCS is able to determine that a TF should not be a regulator of a 
GES if its positively and negatively regulated target genes are enriched on the same 
side of the GES. Moreover, in chapter 4, WTCS was used for generating a TF-
cytokine network by assessing TF activity from 51 cytokine-induced GESs of the 
Cytosig database of cytokine signalling pathways, to probe the association of TFs 
and cytokines. 

In addition to the statistical inference method, also the quality of the public 
databases has a significant impact on the inference results. For instance, a 
limitation in the analysis of sex-specific pathways in monocytes from CVD (chapter 
4) is the incomplete coverage of genes used for cytokine and TF activity inference. 
The CytoSig database [33] is still in the stage of development and refinement; 
therefore the overlap between genes in CytoSig and sex-biased GES from the 
CTMM cohort was limited. Likewise, although Dorothea integrated human TF-
target interactions from a variety of sources, including literature-selected sources, 
a majority of these interactions were inferred by reverse engineering, and lacks 
experimental or reported evidence [28]. Exclusion of these non-validated 
interactions will obviously compromise the number of genes available for inference 
and such sparse or insufficiently large data are more likely to lead to biased 
inference results. In the future, we expect a steady stream of new datasets to be 
integrated into such reference databases, through the joint efforts of biologists and 
data scientists. 
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Spatial multi-omics integration across platforms  
Atherosclerotic tissue forms a complex microenvironment with a large but 
heterogenous population of immune cells, amongst others [34, 35]. It is important 
to comprehend the differences in these cells within the diseased tissue and how 
they affect plaque initiation, growth and stability for unravelling and understanding 
the complicated immunological environment and designing targeted therapeutics. 
The advent of single-cell omics has allowed the dissection of cell types and 
phenotypes in tissue at much higher precision than was possible by deconvolution 
of bulk transcriptomics. However, scRNA-Seq [36] but also cytometry, be it 
fluorescence-based or by time of flight [37], require prior isolation of single cells 
from the tissue sample, resulting in loss of information on the cells’ location. Some 
imaging techniques such as immunohistochemistry (IHC) and immunofluorescence 
microscopy (IF), while capable of measuring the intensity of cell markers in the 
tissue and at high resolution, suffer from allowing the combination of just a limited 
number of markers and thus offer a limited phenotypic resolution. Only a few 
spatial omics techniques can measure and analyse multi-omics profiles of single 
cells in tissue. To address these problems, in chapter 2, we presented a flexible and 
scalable computational pipeline capable of integrating multispectral IF imaging with 
mass spectrometry imaging information while preserving the cellular spatial 
context, combining the strengths of both approaches. With this pipeline we 
identified a high number of macrophage phenotypes and at the same time 
dissected the specific cellular and molecular microenvironment of these subsets. 

Compared to the conventional spatial or single-cell omics techniques mentioned 
above, this pipeline offers several advantages: First of all, in addition to the ability 
to interactively define cell segments and phenotypes, our pipeline is able to project 
the locations of each phenotype on histological images by automatically aligning 
multispectral images with their corresponding H&E-stained images. Secondly, we 
developed a method to accurately quantify and compare the activity of disease-
relevant cell processes per phenotype, by including a characteristic marker of that 
process in the antibody panel (such as KI67, a proliferation marker). Thirdly, we 
improved the recently reported compensation method (i-NICHE) for cross-cellular 
spillover of marker signals between neighbouring cells, which considerably reduces 
the risk of overcompensation. Fourthly, cross-platform spatial omics data 
integration was achieved by aligning 3 types of imaging data (i.e., multispectral 
imaging, H&E-stained imaging and MALDI-MSI), despite all having different spatial 
resolution. Our approach captures fluorescence and mass spectrometry signals 
from the same region of the tissue (assessed in adjacent sections) without the need 
for expensive and laborious new technology, paving the way for in-situ multi-omics 
analysis and integration. Fifthly, the pipeline is flexible and can, with minor 
adaptation, also be used for other (omics) imaging platforms, such as spatial 
transcriptomics (e.g. seqFISH+[38]) and imaging mass cytometry (IMC). It even 
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allows linking more layers of omics data, to build an integrated multi-omics model 
of the tissue’s cellular phenotypes. 

In the past two years, several approaches have also been proposed to analyse single 
cell heterogeneity at limited spatial resolution. For example, to compensate for the 
lack of spatial transcriptomics resolution, STRIDE deconvolutes spatial 
transcriptomics spots based on the topic profiles trained from a reference scRNA-
Seq data, to estimate the proportion of cell types [39]. To improve the resolution 
of MALDI-MSI, Smets et al. fused reduced-dimensional MSI datasets (based on 
UMAP) and H&E images using Correspondence-Aware Manifold Learning (CAML) 
[40]. While an interesting approach, the nonlinear dimensionality reduction failed 
to extract the ion characteristics from the fused images. Some algorithms focus on 
integrated analysis of multi-omics data from the same cell (e.g., MUSE [41]). 
Nevertheless, when the input image resolution is insufficient (i.e. larger than a cell), 
MUSE can only identify the heterogeneity of tissue regions based on annotated 
information. In contrast to these methods, we were the first to integrate 
multispectral, histological, and MALDI-MSI data to identify individual cell 
phenotypes and analyse cellular communities and lipid profiles.  

Despite the innovations mentioned above, a potential limitation of our approach 
remains the limited spatial resolution of MALDI-MSI. As the MSI pixel size of 
atherosclerotic lesions collected from mice aorta was approximately equal to the 
size of a cell segment from the multispectral imaging layer, the phenotype to which 
an MSI pixel corresponded was assigned according to the coordinates of the 
centroid of cell segments. Thus, the signal of an MSI pixel may be contaminated by 
that from adjacent cell segments. To address this problem, in chapter 2, we 
examined the cell-pixel correspondence and removed a few (21 of 12,016) pixels 
that covered the centroids of two cell segments, to reduce the risk of cross-cell 
contamination. To verify the effectiveness of this strategy, we weighed the mass 
spectra of each cell by the proportion of a cell's area occupied by a pixel and 
obtained essentially similar results. However, recent technological improvements 
have tackled this bottleneck of insufficient spatial resolution. For example, recently 
a High-plex Multiomic Analysis platform, Nanostring CosMX [42], was introduced; 
it offers increased spatial resolution to the subcellular level (< 50 nm) for protein 
and transcriptomics measurements. In addition, t-MALDI-2 claims to achieve a 
spatial resolution of 600 nm [43]. By integrating the imaging data generated by 
these novel technologies, we anticipate that our approach will enable real spatial 
single-cell multi-omics integration. 

Furthermore, the molecular resolution of MALD-MSI is also an issue, as it limits the 
unequivocal assignment of peaks to chemical entities and thus the biological 
interpretation of findings. Even though Tandem Mass Spectrometry (MS/MS)[44] 
was applied in chapter 2 for validating a selection of lipid identities, the limited 
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number of ions that can be analysed simultaneously by MS/MS makes it difficult to 
apply pathway enrichment analyses to infer the subset-specific lipidomic pathways. 

In conclusion, we have pioneered an in-situ cross-platform multi-omics 
computational analysis approach, which opens a new avenue for integrating multi-
omics imaging data with non-equal resolutions. By applying our pipeline on aortic 
tissue from mice with atherosclerosis, we observed that the cell phenotypes 
defined by multispectral imaging intensities differed in mass spectra, 
demonstrating the validity of our approach. We are currently designing a user-
friendly interactive interface to facilitate the analysis and integration of 
multispectral and MSI findings for biologists; such tool will benefit researchers in 
their exploration of cell composition, function, and context in vitro and in healthy 
and diseased tissue.  
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Space- and time-resolved omics analysis: a new 
direction for future study of cell heterogeneity  
MALDI-MSI is an advanced imaging technique for visualizing information on the 
spatial distribution of various molecular types (e.g., metabolites, lipids, peptides) 
and has been used to study the spatial heterogeneity of various tissues [45–47]. 
Time course studies with MALDI-MSI allowed us to dissect the spatial dynamics of 
metabolism in response to a disease trigger. In chapter 3, we analysed metabolomic 
MALDI-MSI data from the livers of Lldr-/- mice during the early stages of NAFLD, to 
understand the metabolic changes associated with progression of NAFLD in 
different liver compartments. 

A few studies have already applied MALDI-MSI to explore the heterogeneity of liver 
tissue [46, 48]. However, the pursued strategy required manual selection of “region 
of interests” in immunohistochemically stained images flanking the MSI-analysed 
section, subsequent alignment thereof with the MSI images and finally 
identification of metabolic features in these regions using supervised or 
unsupervised methods. Our approach does not require H&E-stained images, but 
directly trains the SSC classification model based on MALDI-MSI data from healthy 
mouse livers, to identify three compartments in the liver tissues of the disease 
stages: parenchyma, sinusoids, and vessels. Our study not only demonstrates the 
presence of compartment-specific metabolites, but also avoids errors arising from 
manual co-registration of images and time-consuming manual annotation. 
However, it is less accurate, as it relies on metabolic differences between 
compartments and does not take the heterogeneity of the compartments itself into 
account. For instance, sinusoids are known to harbor both endothelial cells, Kupffer 
cells, perivascular macrophages and stellate cells, each likely to display their own 
metabolomic identity. Furthermore, some MALDI-MSI-based methods for liver 
tissue analysis focus on static comparison of tissues in disease and control states 
for characterization and subsequent visualization of the corresponding ion images, 
and therefore fail to capture the metabolic dynamics involved in the progression of 
NAFLD [49–51]. In chapter 3, we adopted a Dirichlet process Gaussian process 
mixture model (DPGP), originally designed for time series of gene expression 
profiles, to metabolomics data and applied it on the compiled metabolite datasets 
from two identified liver compartments: parenchyma and sinusoids. For each 
compartment, metabolites were clustered according to their trajectories over time, 
thus providing a comprehensive profile of the metabolic changes of that particular 
liver compartment during the early stages of NAFLD. 

In addition to the limitations discussed in chapter 3, the metabolite clusters were 
limited by the clustering method, since one of the assumptions of GPDPs is that 
each m/z peak belongs to only one class. Given the complex chemical reactions and 
interactions between metabolites, future research may involve soft clustering or 
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graph-based clustering approaches to further improve the consistency of clustering 
results with the actual biological systems.  

Overall, the analysis pipeline we proposed is able to not only distinguish liver 
compartments based on MALDI-MSI data, but also identify metabolic changes 
associated with the initiation and progression of NAFLD, thus providing new leads 
for the discovery of biomarkers for liver compartments and early stage of NAFLD. 
Although spatio-temporal omics analysis is still in its infancy, we expect that as the 
resolution (both in mass and space) of spatial omics improves and the costs of 
detection decrease, more and more computational strategies will be developed to 
herald a new era of spatio-temporal histological analysis and really understand the 
dynamics of disease at molecular and cellular level. 
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Concluding remarks and future perspective  
In this chapter, we have compared the potential of statistical and machine learning-
based computational approaches for analysis of different biomedical data types 
and research purposes. We highlighted the application scenarios of these 
approaches in this thesis (chapter 2 to 5) and showed their effectiveness in 
analysing omics data to dissect molecular mechanisms in disease processes. 
Moreover, we described the basic concepts behind and procedure of enrichment 
analysis methods, discussed the applicability of various types of approaches with 
examples from this thesis (chapter 3, 4 and 5), and emphasized the important 
impact of public resources and statistical methods on inferred results. We 
demonstrated the superiority of a cross-platform spatial multi-omics integration 
pipeline (chapter 2) as compared to conventional and recent spatial omics analysis 
methods in dissecting cell heterogeneity as well as the cells’ microenvironment, 
and explored the flexibility and broader applicability of the approach. Finally, we 
discussed advances in MALDI-MSI-based spatio-temporal metabolomic analysis for 
liver tissue heterogeneity and pointed out the advantages and limitations of the 
approach presented in chapter 3 for identifying liver compartments and capturing 
metabolite dynamics associated with disease processes. 

Omics technology is rapidly developing at several levels: from bulk tissue analysis 
to single-cell analysis, from individual images to image cubes, from single timepoint 
to time series studies, and from single-omics to multi-omics. Updates to these 
techniques are accompanied by increasingly complex data, attracting data 
scientists and bioinformaticians to design effective tools to assist biologists in 
solving specific challenges. Examples include single-cell analyses to map cell 
heterogeneity in tissue; imaging analyses that probe the association between cells 
and their microenvironment, and time-series analyses that track changes in genes, 
proteins, or metabolites upon a disease or stimulus challenge. However, current 
computational methods are still constrained by the spatial resolution and the 
number of features that can be analysed simultaneously. As the spatial resolution 
of imaging technologies increases, I anticipate that, eventually, approaches that can 
integrate multi-omics information and simultaneously obtain spatial distribution 
and temporal dynamics at single-cell resolution will become a new hotspot. 
Undoubtedly, this will allow us to gain a more comprehensive insight into the 
complexity and diversity of cells in diseased tissues, contributing significantly to 
deciphering the mechanisms of cardiometabolic and other diseases and thereby 
reducing morbidity and mortality. 
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Worldwide, cardiometabolic diseases (e.g., cardiovascular disease (CVD), diabetes, 
and non-alcoholic fatty liver disease (NAFLD)) have acquired almost epidemic 
proportions in the past few decades due to the widespread adoption of a western 
lifestyle. They compromise heart and liver functions and underlie the two main 
causes of death worldwide, ischemic heart disease and stroke. The development 
of these diseases is characterized by lipid accumulation, inflammatory responses, 
and metabolic dysfunction in the arterial wall (a process referred to as 
atherosclerosis) and liver (“fatty liver disease” or NAFLD). For both, macrophages 
and their precursors, monocytes, are important contributors.  

The rapid development in high-throughput and imaging technologies have enabled 
researchers to detect profiles of genes, proteins, and metabolites within individuals 
and cells. These techniques are increasingly applied to study cardiometabolic 
diseases. However, their potential to explore the pathogenesis has not been fully 
exploited. In this thesis, we aim to analyse high-dimensional omics and imaging 
data of plaque and liver through a combination of computational strategies 
including statistical inference, machine learning and image processing, to dissect 
the pathogenesis of atherosclerosis and NAFLD at the molecular and spatial level. 

Macrophages exhibit extreme plasticity, adopting a broad range of micro-
environment-driven phenotypes. Exploring their heterogeneity throughout the 
course of atherosclerosis will be crucial to the discovery of new diagnostic and 
therapeutic measures. However, most of the commonly used techniques for 
quantifying cell markers cannot simultaneously measure sufficient features to 
properly describe the heterogeneity or do not provide spatial information at single-
cell resolution. In chapter 2, we proposed a computational pipeline to integrate 
multiple imaging data layers from the same sample but derived from different 
platforms (i.e., multispectral imaging, MALDI mass spectrometry imaging (MALDI-
MSI), and histologic imaging). Our approach enabled to identify cell phenotypes, 
pinpoint their locations in the tissue, reveal the cell community landscape, and 
characterize the metabolic environment of identified cell subsets. Our method 
demonstrated its effectiveness in analysing macrophage heterogeneity in 
atherosclerotic plaques but will also be applicable to other types of tissues, diseases 
and cells. 

The metabolism of hepatocytes has been shown to be severely disrupted with the 
development of NAFLD, as metabolomic studies have shown. However, most 
metabolomics efforts that mapped the dynamics of these changes lacked spatial 
information. In chapter 3, we fused both supervised and unsupervised MSI image 
segmentation algorithms to deploy a liver compartment recognition model, 
resulting in the identification of three distinct liver compartments in the early stage 
of murine NAFLD, which were assigned “parenchyma”, “sinusoids” and “vessels”, 
based on their localisation and morphology. Metabolites were then clustered 
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according to their trajectories over the disease progression for the individual 
compartments. Our approach identified liver compartments solely based on the 
metabolite features from MALDI-MSI, indicating the presence of compartment-
specific metabolic pathways, while avoiding the potential errors in aligning 
histological images with MALDI-MSI images, as well as extensive manual annotation 
on histological images. In addition, spatio-temporal analysis of mouse liver helps to 
monitor the metabolite dynamics during the disease progression within the 
separate compartments, leading to a deeper understanding of the processes that 
occur in the early stage of NAFLD. 

Several risk factors have been identified, that increase the chance of developing 
cardiometabolic diseases, of which some are linked to an unhealthy lifestyle. 
However, it is unclear if these risk factors impact circulating monocytes, precursors 
of macrophages and thereby important players in many diseases. Therefore, in 
chapters 4 and 5, we aimed to identify monocyte key gene programs and pathways 
associated with the risk factors of CVD (which is mainly caused by atherosclerosis) 
by analysing the monocyte expression profiles of a CVD cohort collected by the 
Center for Translational Molecular Medicine (CTMM). We first studied disease-
relevant sex differences in the transcriptional makeup of monocytic cells (chapter 
4). For this purpose, we compared monocyte expression profiles of male and 
female CVD patient in the CTMM cohort, and generated sex-biased gene 
signatures. Then we adopted multiple enrichment analysis approaches based on 
several publicly available pathway, transcription factor (TF)-target interaction, and 
cytokine data resources, to infer pathway, TF, and cytokine signalling activities of 
male vs female monocytes. This led us to pinpoint female- and male-skewed 
cytokine signalling cascades in CVD. Validation of our findings in an independent 
healthy subject cohort showed that the observed sex differences were CVD-
specific. In addition, we constructed a cytokine-TF network by inferring TF activities 
for the expression profiles of the identified sex-specific cytokine signalling 
pathways, which revealed Jun-B as central activator of most female-specific 
pathways. In chapter 5, we investigated the correlation between other CVD risk 
factors and the response capacity of CVD patient-derived monocytes to an 
inflammatory stimulus (lipopolysaccharide). As we show, CVD patients with high 
(diastolic) blood pressure tended to have a weaker monocyte inflammatory 
response. We then constructed a gene co-regulation and corresponding regulatory 
network and identified a sub-network with strong correlation with blood pressure. 
Moreover, this network pointed to a dysfunction in the cells’ energy production 
(mitochondrial respiration). Finally, we pursued to a network-guided drug 
repurposing approach to identify iloprost as potential candidate to target this 
network. This drug, which is currently used to treat pulmonary hypertension, could 
potentially target the network that connects a weakened inflammatory response in 
monocytes (and potentially other cells) to diastolic hypertension. 
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In chapter 6, I summarised the main findings of my thesis, further explained the 
computational approaches used from chapters 2 to 5 and explored potential 
application scenarios thereof in the study of cardiometabolic diseases, including 
their advantages and remaining limitations, and provided an outlook on future 
related areas.
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Wereldwijd hebben cardiometabole aandoeningen, zoals aderverkalking, diabetes, 
suikerziekte en leververvetting en -ontsteking, de laatste decennia bijna 
epidemische proporties aangenomen, deels als gevolg van een westerse levensstijl. 
De verminderde hart- en leverfunctie waarmee zij gepaard gaan liggen ten 
grondslag aan de twee belangrijkste doodsoorzaken wereldwijd, ischemische 
hartziekten en beroerten. De ontwikkeling van deze ziekten wordt gekenmerkt 
door vetophoping, ontstekingsreacties en metabolische disfunctie in de 
slagaderwand (een proces dat atherosclerose wordt genoemd) en de lever 
(leververvetting of NAFLD). Macrofagen en hun voorlopercel, de monocyt, dragen 
voor beide aandoeningen belangrijk bij aan het ziekteproces .  

Snelle ontwikkelingen op het gebied van high-throughput en 
beeldvormingstechnologieën hebben onderzoekers in staat gesteld om gen-, eiwit- 
en metabolietprofielen van weefsel en cellen snel en volledig in kaart te brengen. 
Deze technieken worden in toenemende mate toegepast om cardiometabole 
ziekten te bestuderen. Hun onderzoekspotentieel voor deze ziekten is echter nog 
niet volledig benut. In dit proefschrift willen we hoog-dimensionale omics en 
beeldvormingsdata van plaque en lever analyseren door gebruik te maken van een 
combinatie van computationele strategieën, waaronder statistische inferentie, 
machinaal leren en beeldverwerking, met als uiteindelijke doel de ontwikkeling van 
atherosclerose en NAFLD op moleculair en ruimtelijk niveau te ontrafelen. 

Macrofagen vertonen een extreme plasticiteit en kunnen een breed scala aan 
functies aannemen afhankelijk van de locatie en de fase van het ziekteproces. Het 
onderzoeken van hun heterogeniteit zal van cruciaal belang zijn voor de ontdekking 
van nieuwe diagnostische en therapeutische mogelijkheden. Echter, de meest 
gebruikte technieken voor het kwantificeren van cel-markers kunnen niet 
voldoende kenmerken tegelijk meten om de cellulaire heterogeniteit voldoende in 
kaart te brengen, of geven geen ruimtelijke informatie over de cellen. In hoofdstuk 
2, stelden we een integratie-pijplijn voor om meerdere lagen van beeldvorming, 
uitgevoerd op eenzelfde monster via verschillende microscopische en chemische 
analysetechnieken (multispectrale beeldvorming, MALDI massaspectrometrie 
beeldvorming (MALDI-MSI) en histologische beeldvorming), te integreren tot een 
ruimtelijk model van het zieke weefsel. Onze aanpak maakte het mogelijk om de 
verschijningsvorm, locatie en directe moleculaire (en cellulaire) omgeving van elke 
cel in het zieke weefsel in kaart te brengen. Onze methode is al succesvol toegepast 
bij het analyseren van macrofaag heterogeniteit in aderverkalking maar is zeker ook 
toepasbaar op andere types van weefsels, ziekten en cellen. 

Het metabolisme van levercellen blijkt ernstig verstoord te zijn tijdens de 
ontwikkeling van NAFLD, zoals metabolomics studies al eerder hebben aangetoond. 
Echter, de meeste metabolomics studies waarin de dynamiek van deze 
veranderingen geanalyseerd is misten ruimtelijke informatie, terwijl MALDI-MSI 
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analyses van leverweefsel geen informatie verstrekten over de veranderingen 
doorheen het ziekteverloop. In hoofdstuk 3 hebben we zowel gestuurde als 
ongestuurde MSI beeldbewerkingsalgoritmen toegepast om de diverse 
levercompartimenten te kunnen onderscheiden; dit resulteerde in de identificatie 
van drie verschillende compartimenten in muizenlever: "parenchym", "sinusoïde" 
en "bloedvat". Voor elk individueel compartiment werden vervolgens de 
metabolieten geclusterd op basis van hun expressieprofiel in de loop van de 
ziekteprogressie. Onze aanpak bleek in staat de belangrijke structurele 
compartimenten in muizenlever te identificeren, enkel op basis van hun 
metabolietprofiel en ongeacht het ziektestadium. Dit wijst niet alleen op de 
aanwezigheid van compartiment-specifieke metabolieten, maar maakt het ook 
mogelijk potentiële fouten in het uitlijnen van histologische beelden bij het 
integreren van verschillende datalagen te omzeilen. Bovendien stelde dit ons in 
staat om het ziekteproces voor elk compartiment afzonderlijk te volgen in de tijd. 
Dit laatste leidde tot een dieper inzicht in de metabole processen in het 
beginstadium van NAFLD. 

De risicofactoren die bijdragen aan de ontwikkeling van cardiometabole ziekten zijn 
inmiddels grotendeels bekend en diverse factoren blijken daarbij verband te 
houden met een ongezonde levensstijl. Het is echter onduidelijk of deze 
risicofactoren ook invloed hebben op een ontstekingsceltype in het bloed, de 
monocyt, die betrokken is bij de ontwikkeling van de bovengenoemde 
cardiometabole aandoeningen. Daarom hebben wij in hoofdstuk 4 en 5 getracht de 
belangrijkste genprogramma's en signaaltransductieroutes te identificeren die in 
dit celtype correleren met risicofactoren voor hart- en vaatziekten. Hiervoor 
hebben we de beschikbare expressieprofielen geanalyseerd van monocyten uit een 
CVD-cohort dat verzameld is in het kader van het Center for Translational Molecular 
Medicine programma (CTMM). We bestudeerden daarbij voor het ziekteproces 
relevante man-vrouw verschillen in het expressieprofiel van monocyten (hoofdstuk 
4) en waren in staat geslachts-specifieke genetische signaturen voor hart- en 
vaatziekten aan te tonen. Vervolgens hebben we meerdere analyses uitgevoerd op 
basis van openbaar beschikbare gegevensbronnen om de belangrijkste 
signaaltransductieroutes in dit celtype in kaart te brengen die kenmerkend waren 
voor mannelijke en vrouwelijke patiënten met hart- en vaatziekten. Validatie van 
onze bevindingen in een onafhankelijk cohort van gezonde proefpersonen toonde 
aan dat de waargenomen sekseverschillen inderdaad enkel golden voor 
hartpatiënten. Daarnaast hebben we een genregulatienetwerk gebouwd door 
transcriptiefactor-activiteiten af te leiden uit de expressieprofielen van de 
geïdentificeerde sekse-specifieke cytokine-signaleringspaden. Jun-B kwam daarbij 
naar voren als centrale activator van de het gros van de vrouw-specifieke paden.  

In hoofdstuk 5 hebben we de correlatie onderzocht tussen andere risicofactoren 
en de reactie van monocyten in patiënten met hart- en vaatziekten op een 
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ontstekingsprikkel (lipopolysaccharide). We hebben aangetoond dat CVD-
patiënten met een hoge (diastolische) bloeddruk een zwakkere ontstekingsreactie 
vertoonden. Vervolgens hebben we een gen (co)regulatienetwerk geconstrueerd 
en daarbij een regulatienetwerk geïdentificeerd met een sterk correlatie met hoge 
bloeddruk. Dit netwerk wees op een verminderd functioneren van de cellulaire 
energieproductie (mitochondriale ademhaling). Tenslotte hebben we een aantal 
geneesmiddelen kunnen selecteren, via een computeralgoritme, waarvan het 
aannemelijk is dat ze dit netwerk (en daarmee de bloeddruk) kunnen corrigeren. 
Een van deze geneesmiddelen, iloprost, wordt momenteel al gebruikt om 
pulmonale hypertensie te behandelen, maar zou dus deels via correctie van de 
verzwakte afweerreactie van monocyten kunnen werken. 

In hoofdstuk 6 heb ik de belangrijkste bevindingen van mijn proefschrift 
samengevat, de in de hoofdstukken 2 tot en met 5 gebruikte rekenkundige 
technieken en mogelijke toepassingsscenario's daarvan in het onderzoek naar 
cardiometabole ziekten nader toegelicht, de voordelen en tekortkomingen ervan 
besproken en ideeën voor verdere verfijning en verbetering van deze 
technologieën gepresenteerd. 
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        由于不健康的生活方式的广泛流行，在过去的几十年里代谢性心血管病

(cardiometabolic diseases), 包括心血管疾病（CVD）、糖尿病和非酒精性脂肪
肝（NAFLD), 已成为影响全球经济社会发展的重大公共卫生问题。这些疾病

严重损害心脏和肝脏的功能，已成为全世界两个主要的死亡原因--缺血性心

脏病和中风的首要致病因素。这些疾病的发展特点是脂质积累、炎症反应和

动脉壁（被称为动脉粥样硬化的过程）和肝脏（NAFLD）的代谢功能紊乱。

对于这两种情况，巨噬细胞和它们的前体单核细胞，都是重要的贡献者。 

         高通量和成像组学技术的快速发展使研究人员能够检测个人和细胞内的

基因、蛋白质和代谢物的概况。然而，目前的技术在探索心脏代谢性疾病的

发病机制方面的潜力还没有得到充分的开发。 在这篇论文中，我们旨在通过

统计推理、机器学习和图像处理等计算策略的组合来分析高维的全息影像数

据，在分子水平上研究两种最常见的代谢性心血管病--心血管疾病(CVD)和非

酒精性脂肪肝(NAFLD)的发病机理。 

         巨噬细胞表现出极强的可塑性，在动脉粥样硬化的过程中根据环境的不

同而演化出一系列表型。探索它们的异质性对于发现新的诊断和治疗措施至

关重要。然而，大多数量化细胞标志物的技术不能测量足够的特征来正确描

述异质性，或者不能提供单细胞分辨率下细胞的位置信息。在第二章中，我

们提出了一个综合计算管道，以整合来自同一样品但不同平台的多种成像数

据（即多光谱成像、MALDI 质谱成像（MALDI-MSI）和组织学成像）。我们

的方法能够识别细胞表型，准确定位它们在组织上的位置，提供一个细胞类

型相互作用的视图，并描述它们的代谢环境。我们的方法不仅证明了其在分

析动脉粥样硬化斑块中巨噬细胞异质性的有效性，而且也适用于其他类型的

组织、疾病和细胞。 

        已有研究表明，随着非酒精性脂肪肝的发展，肝细胞的代谢会受到严重

破坏。然而，许多关于肝脏组织 MALDI-MSI 的研究仍然缺乏对代谢物随疾病

进展的动态变化的追踪以及对空间异质性的剖析。在第三章中，我融合了有

监督和无监督的 MSI 图像分割算法，部署了一个肝脏分区识别模型，从而识

别了非酒精性脂肪肝早期阶段的小鼠的三个不同的肝脏分区：实质、肝窦和

血管。然后，根据各个区间的疾病进展轨迹对代谢物进行聚类。该方法仅根

据 MALDI-MSI 的代谢物特征来确定肝脏分区，表明分区特定代谢物的存在，

从而避免了将组织学图像与 MALDI-MSI 图像对齐的潜在错误，以及对组织学

图像的大量人工注释。此外，小鼠肝脏的时空分析有助于识别疾病发展过程

中不同区间内代谢物的动态变化，从而更深入地了解非酒精性脂肪肝的代谢

紊乱。 
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        尽管一些生物学特征和不健康的生活方式与心血管疾病风险的增加有关，

但目前还不清楚这些因素如何影响心血管疾病中最重要的细胞类型之一:循环

单核细胞的活动。因此，在第四章和第五章中，我们旨在通过分析转化分子

医学中心（CTMM）收集的 CVD 队列的单核细胞表达谱，确定与 CVD 风险因

素相关的单核细胞关键基因程序和途径。我们首先在第四章中研究了明显的

性别差异在多大程度上反映了单核细胞中转录构成的差异。我们通过比较

CTMM 队列中的男性和女性 CVD 患者，产生了性别偏见的基因特征，然后根

据一些公开的路径、转录因子-靶基因相互作用和细胞因子资源，采用多种富

集分析方法来推断路径、转录因子和细胞因子信号活动。这使我们确定了心

血管疾病中女性和男性激活的途径和细胞因子。在一个独立的健康队列中的

验证结果也显示，这些基于单核细胞转录谱推断的性别差异是心血管疾病特

有的。此外，我们通过推断细胞因子诱导的转录谱的转录因子活性，构建了

一个细胞因子-转录因子网络，该网络显示 jun-B 是大多数女性特定途径的激

活剂。在第五章中，我们研究了心血管疾病风险因素与心血管疾病受试者单

核细胞先天免疫反应能力之间的相关性，这使我们观察到高血压的 CVD 患者

的单核细胞对 LPS 的反应较弱。然后，我们根据 CVD 患者的 LPS 反应谱构建

了一个基因共调和相应的调控网络，发现与血压水平呈现最强相关性的子网

络与氧化磷酸化途径和呼吸电子链运输有关。药物再利用锁定了伊洛前列腺

素，一种用于治疗肺动脉高压的药物，能够增强 LPS 反应，这在一定程度上

证实了我们对高血压和 LPS 反应之间关联的推断。 

        第六章总结了本论文的主要发现，进一步解释了第二章至第五章所使用

的计算方法及其在心脏代谢性疾病研究中的应用场景，探讨了它们的优势和

局限性，并对相关领域的未来进行了展望。
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Scientific Impact 
In the past decade, high-throughput technologies are booming and have propelled 
biomedical research to a new level. The development of single-cell omics (e.g., 
scRNA-Seq and CyTOF) has enabled researchers to uncover rare cell types and 
detect cellular heterogeneity. This has made it a valuable tool not only for studying 
cardiometabolic diseases, but also in other disease domains such as cancer, 
immunology, microbiology, and neurology [1, 2]. The pathologies of these diseases 
are typically complex and closely related to the microenvironment of the cells in 
the diseased tissue. However, as all information of the cell’s location is lost due to 
tissue dissociation steps before analysis, these single-cell technologies are unable 
to analyse the microenvironment of cells. Some spatial omics techniques, such as 
10x Visium[3] (transcriptomics), are unable to identify the phenotypes of individual 
cells due to their low spatial resolution. In addition, some imaging techniques either 
do not capture enough features (e.g., immunofluorescent microscopy (IF)) or are 
expensive (e.g., CODEX [4]). Therefore, biologists urgently require affordable and 
effective ways to identify cell types while visualizing their spatial distributions and 
dissecting the cellular and molecular microenvironments. In response to this 
pressing requirement, I proposed a novel computational pipeline in chapter 2. The 
pipeline implements several functions. First, it allows biologists to distinguish cell 
phenotypes in an interactive manner based on the relative intensities of multiplex 
signals in multispectral imaging. Secondly, it visualizes individual cells and cell 
communities on histological images, helping pathologists to quickly verify their 
identities. Thirdly, this approach links multiple omics imaging data (i.e., 
multispectral imaging and MSI) with the corresponding histological images in 
tissue, allowing to dissect the molecular environment of cells from multiviews. As 
this approach is affordable and applicable to a wide range of cell types and tissues, 
it may represent a breakthrough in linking molecular context to cellular phenotype 
and function in healthy and diseased tissues. In the end, this not only provides new 
insights into pathogenesis of disease and leads for prevention and/or treatment of 
cardiovascular disease, cancer, neurological disorders, and a range of other 
diseases, the recently developed user-friendly interface also brings 
MSI/multispectral image analysis within the reach of biologists and pathologists, 
who are not or marginally skilled in R or Matlab. 

In the field of spatial metabolomics, MALDI-MSI detects metabolite levels in tissue 
while preserving spatial information [5]. However, to study metabolite differences 
across different sections of the tissue, researchers always manually designate the 
regions of interest (ROIs) on the histological image for each section, and then align 
the histological image with the optical image from MALDI-MSI. This requires a 
significant amount of time and effort. Moreover, this approach is error-prone 
especially if tissue sections used for histology and MS imaging differ (for instance 
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due to the laser-inflicted tissue damage). In chapter 3, I presented a new strategy 
to identify liver compartments using a combination of supervised and unsupervised 
MSI segmentation algorithms, with circumvents the need of a histological image. 
Accurate segmentation of parenchyma, sinusoid, and vessel on MALDI-MSI images 
indicates the presence of compartment-specific metabolites that are not associated 
with disease progression. Validation for these identified metabolites is expected to 
completely free researchers from the time-consuming and repetitive annotation 
work and to also bring breakthroughs in future studies of metabolism in liver. 

In chapter 4 and 5, I interrogated a monocyte transcriptomics dataset to extract 
sex-specific cytokine signalling pathways and hypertension-associated gene 
networks, respectively. Although both findings still need validation in an 
independent genetic or genomics dataset, they could pave the way for the design 
of new drugs for tailored intervention in ischemic heart disease or hypertension-
associated heart failure. Moreover, as monocyte isolation is only mildly invasive, 
the leads could represent new genetic diagnostics for early stages of heart failure 
and microcirculatory dysfunction, or for the effectiveness of sex-specific 
interventions in CVD development in women. 

Societal Impact 
Therapeutic intervention in cardiometabolic diseases is complicated by the 
profound heterogeneity of disease-driving inflammatory cells. However, this 
heterogeneity was hitherto only poorly studied. The comprehensive pipeline 
proposed in chapter 2 allows to identify an unprecedented number of myeloid 
phenotypes in murine atherosclerotic tissues and to dissect the cellular and 
molecular microenvironment associated with these phenotypes. With this 
approach we are able to demonstrate that plaque myeloid phenotypes often have 
a unique and characteristic cellular and molecular environment, which offers the 
possibility of treating atherosclerosis by altering the macrophage 
microenvironment. Such new insights could eventually benefit many patients as 
they allow the design of more tailored precision medicines that target the right 
subset in the right patient. 

Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous and complex disease 
that affects approximately 20% to 25% of Europeans and 30% to 40% of 
Americans[6, 7]. Metabolic disturbances are one of the main features of NAFLD 
progression [8]. Therefore, determining the spatial distribution of metabolites on 
liver tissue and the metabolic changes with disease progression is essential to 
decipher the heterogeneity of liver tissue and to gain insight into NAFLD. In chapter 
3, our sptio-temporal analysis of mouse liver tissue and enrichment analysis for 
metabolic clusters revealed that metabolite clusters within sinusoids and 
parenchyma during the early stage of NAFLD involve mostly identical and a small 
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number of differential pathways. While our studies are basic in nature, findings may 
benefit the design of a new generation of precision medicines or life-style 
interventions that target the aberrant metabolism in NAFLD. Moreover, the 
identified disease-associated metabolites could serve as early reporters of the 
disease. 

Substantial evidence has shown that male and female CVD patients differ in terms 
of underlying causes, presentation, and prognosis of the disease. Meanwhile, most 
studies on CVD risk factors still mainly focus on male patients [9]. In chapter 4, we 
observed distinct CVD-specific sex differences in monocyte transcriptional profiles 
and cytokine activities, and female patients are more activated in EGF, IFN1, CD40L, 
GM-CSF and VEGF signalling pathways than males. More relevant, we Identified a 
common regulator of the disturbed signalling pathways that may serve as target for 
genetic linkage studies or for interventions specifically in women. Translating these 
findings into practice will contribute to reducing gender disparities in preventive 
care and improving clinical CVD treatments for women. 

Hypertension is widely acknowledged as major risk factor for cardiovascular disease 
and blood pressure control has become one of the main means to prevent 
cardiovascular diseases [10, 11]. Nevertheless, the underlying mechanism behind 
the link between them is not clear. In chapter 5, we uncovered the negative 
correlation between blood pressure and LPS response of monocytes, indicating the 
reason why hypertension is a risk factor for CVD may be related to the suppressed 
immune response. This finding could improve treatment options for CVD disease 
associated with hypertension in the future. Furthermore, we inferred that iloprost, 
a drug capable of targeting this disease network, may not only enhance a 
compromised LPS response in monocytes in CVD-susceptible subjects, but may also 
represent an effective drug in the treatment of diastolic hypertension-related CVD. 

Conclusion 
The computational approaches developed in this thesis greatly facilitate the work 
of biomedical researchers. Additionally, the findings based on these computational 
analyses deepen the understanding of cardiometabolic diseases and contribute to 
the development of more effective therapeutic options for an early conquest of this 
disease. 
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7AAD 7-Aminoactinomycin-D  
AdaBoost Adaptive Boosting 
aREA Analytic Rank-Based Enrichment Analysis  
BP Biological Process  
BP Blood Pressure 
CAD Coronary Artery Disease  
CC Cellular Component  
CD40L  CD40 Ligand 
CLAHE Contrast-Limited Adaptive Histogram Equalization 
Cmap Connectivity Map  
CMDs Cardiometabolic Diseases 
COX Cyclooxygenases  
COX7C C Oxidase Subunit 7C  
CRP C-reactive protein 
CTMM  Center for Translational Molecular Medicine 
CVD Cardiovascular Disease  
DBP Diastolic Blood Pressure 
DDA Data-Dependent Acquisition  
DEG Differential Expressed Gene 
DIABLO Data Integration Analysis for Biomarker Discovery Using 

Latent Components  
DP Dirichlet Process  
DPGP Dirichlet Process Gaussian Process Mixture Models  
DPI Data Processing Inequality  
EDTA Ethylenediaminetetraacetic Acid  
EGF Epidermal Growth Factor 
ES Enrichment Statistic  
FA Fatty Acid  
FCGR2B Fc-Gamma Receptor 2B 
FDR False Discovery Rate  
FFPE Formalin-Fixed Paraffin-Embedded 
FMO Fluorescence-Minus-One  
FOV Fluorescent Fields of View  
GES Gene Expression Signatures 
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor 
GO Gene Ontology  
GP Gaussian Process    
GRN Gene Regulatory Network  
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GSEA Gene Set Enrichment Analysis  
H&E Haematoxylin and Eosin  
HDL High-Density Lipoproteins 
HDST High-Definition Spatial Transcriptomics  
HFD High-Fat Diet 
HMGB High Mobility Group Box 
HSP Heat Shock Protein  
IF Immunofluorescence  
IFN1 Interferon Type I  
IFN-γ Interferon- γ  
IHC Immunohistoclhemistry  
IHD Ischemic Heart Disease  
IL-13 Interleukin 13  
IL-4 Interleukin 4 
IL-4 Interleukin-4 
IMC Imaging Mass Cytometry  
INS Insulin 
ITO Indium-Tin Oxide  
K-S Kolmogorov-Smirnov 
LDL Low-Density Lipoproteins 
LMNA Lamin A  
log2FC log 2 fold change 
LPBoost Linear Programming Boosting 
LPS Lipopolysaccharides 
m/z mass-to-charge ratio 
MALDI-MSI Matrix-Assisted Laser Desorption Ionization-MSI 
MF Molecular Function  
MFI Mean Fluorescence Intensity 
MI Mutual Information  
MMI Mattes Mutual Information 
MS Mass Spectrometry  
MS/MS Tandem Mass Spectrometry 
MSI Mass Spectrometry Imaging 
MST Minimal Spanning Tree 
NAFLD Non-Alcoholic Fatty Liver Disease  
NASH Non-Alcoholic Steatohepatitis  
NES Normalized Enrichment Score  
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NGS Next-Generation Sequencing 
NSTMI Non-ST Elevation Myocardial Infarction  
ORA Overrepresentation Analysis  
ORB Oriented FAST and Rotated BRIEF  
oxLDL Oxidized Low-Density Lipoprotein  
oxPHOS Oxidative Phosphorylation 
OxPLs Oxidized Phospholipids 
PCA Principal Component Analysis 
PGE2 Prostaglandin E2  
PGH2 Prostaglandin H2 
RAAS Renin-Angiotensin-Aldosterone System 
RNA-Seq RNA Sequencing 
ROIs Regions of Interest 
RSN Robust Spline Normalization 
RUSBoost Random Undersampling Boosting  
SASA Spatially Aware Structurally Adaptive 
SBP Systolic Blood Pressure 
scRNA-Seq Single Cell RNA Sequencing 
SMC Smooth Muscle Cell  
SNN Shared Nearest Neighbour 
SOM Self-organized Map 
SSC Spatial Shrunken Centroids  
STEMI ST-Elevation Myocardial Infarction  
TF Transcription Factor 
TG Triglycerides  
TLR4  Toll-Like Receptor 4 
TOM Topological Overlap Measure 
tSNE T-Distributed Stochastic Neighbour Embedding 
UCP-2 Uncoupling Protein-2  
Umap Uniform Manifold Approximation and Projection 
VEGF Vascular Endothelial Growth Factor 
WGCNA Weighted Gene Correlation Network Analysis  
WHO World Health Organization 
WTCS Weighted Connectivity Score  

 

 



Appendices 

 222 

A 

 

 



 

 

 

Appendices 
Acknowledgements 

致谢 
 

  



 

 

 

 



Acknowledgements | A 

 225 

A 

Five years ago, when I was still in the distant land of China longing for a wonderful 
life in the Netherlands, I didn't realize how hard it would be to get a PhD degree. 
Today, with the enormous stress, frustration and massive gray hair, I am coming to 
the end of my career of a PhD student. However, to be honest, I have greatly 
enjoyed doing this PhD (not all the time), mainly due to the countless people 
around me who support and encourage me. 

First of all, I would like to express my sincere gratitude to all the members of the 
dissertation committee, Prof. I.C.W. Arts, Prof. J. Jankowski, Prof. T. Uras and Dr. 
C. Seiler for your time in evaluating my dissertation and for your valuable 
comments. 

Next, I would like to give my deepest appreciation to my supervision team. 

Prof. dr. Erik A.L. Biessen, you are the most important person for my PhD study. I 
have always felt that the main reason why our group more like a family rather than 
just a research group is because of your attractive personality. Therefore, I am 
actually your big fan (Probably not obvious, but you know Chinese people are 
always shy). I made some mistakes during my research. However, you have never 
blamed me even once, but just help me deal with problems. In particular, in the 
final year of my PhD study, I can't imagine how I would have been able to keep 
going to finish my thesis without your support and encouragement. You have no 
idea how loudly I cried when I read your email saying, "there's light at the end of 
the tunnel, isn't there?”. I was fortunate to come to Maastricht from China 5 years 
ago, and to be your PhD student. Thank you for always encouraging me to be myself 
and for always listening patiently to my ideas. A thousand words come together to 
say that you are the best tutor I have ever met. It is a pity that I don't have time to 
learn more from you, but I look forward to keeping in touch with you in the future! 

Dr. Joël M.H. Karel, I can't tell you how lucky I feel to have you as my supervisor. 
Although we were not in the same office building, you still did your best to give me 
the support and guidance I needed to find my own niche in a team full of biologists. 
I still remember you coming to our lab and teaching me about "low-pass and high-
pass filtering" and I thought you were amazing at that time, always making complex 
knowledge easy to understand. In addition, I was very impressed by your rigorous 
approach to academics. You were the one who kept telling me to dissect the 
distribution of each data set and the principles of the algorithm in depth, rather 
than just for application. I will always keep this in mind in my future research path. 

Dr. Pieter Goossens, as your first PhD student, many thanks for your help and 
supports in both of my research and life. I am glad that you become my co-
supervisor. During my time with you, I not only learned how to work with biologists, 
but also learned a lot of biological knowledge from you. No matter how simple a 
question I asked, you always explained to me patiently. In addition, I was also very 



Appendices 

 226 

A 

touched by the care you took in my life. I still remember you taking the drill to my 
house to install the chandelier. Besides, I preserved the red envelope you gave me 
on New Year's Eve. I wish you, a rising academic star in the field of biology, a bright 
future in the research of macrophages. 

I would also like to highlight three truly exceptional people who have been 
extremely supportive and helpful to me in my PhD projects: dr. Marjo Donners,, dr. 
Evgeni Smirnov, and dr. Rachel Cavill.  

Marjo, first, thank you for your support and help with my thesis and paper. To be 
honest, I am pretty much enjoying the time together with you, though we have only 
been working with you for two years. You are very willing to understand my 
computational work and I enjoy listening to you talk about interesting biology. We 
always had a clear division of labor and smooth communication. In addition, I am 
grateful for your help and interest in my life. I will never forget the rainy morning 
of my car accident when you picked up helpless me from the police. 

Rachel, I always thought that if only I had met you earlier, the life of my PhD would 
be much easier. Under your guidance, I saved much time in delving into articles and 
books to find solutions when my research was stuck. Especially during the time of 
lock down, our regular meetings and weekly discussions not only helped me in 
giving my project a boost, but also greatly eased my anxiety. 

Evgeni, you are an excellent and reliable data scientist in my opinion. Thank you for 
your patience in answer my questions at each of our regular meetings. I don't know 
if you remember that we went to the university canteen for discussing problems of 
my project. Come to think of it, that was really a fun experience. 

Next, I would also like to extend my thanks to the people with whom I collaborated 
in my PhD. First of all, I am grateful for the help provided by M4I. Prof. dr. Ron M.A. 
Heeren, and dr. Benjamin Balluff, thanks for providing me the MSI data and the 
teaching me the data processing procedures. Eva and Britt, thanks for your help 
with the validation of lipids and metabolites. Jianhua (花花), 很幸运不仅能够和

你成为好朋友，并且还是项目上的合作伙伴。不得不说，以中国人的合作方

式，工作效率确实要高出不少。祝贺你找到了爱情，也希望我们两个有机会

继续一起浪呀！In addition, I would like to thank the people I have known from 
the Department of Advanced Computing Sciences, Maastricht University. Briassouli, 
thanks for teaching me the image processing course, and I am glad that I passed the 
final exam with a high score! For the people from S&C meeting, although we didn't 
spend much time together (I was already in the last year of my Ph.D. when I started 
to participate in the meetings), I enjoyed the time with you, in the way of both 
online and onsite. Next, I would like to thank dr. Javier Perales-Patón from institute 
of computational biomedicine, Heidelberg University. Thank you for the endless 



Acknowledgements | A 

 227 

A 

supports and kind help of the Gender Study. We become colleagues nowadays, so 
I look forward to more communications and collaborations in our future! 

Additionally, I would like to thank the guys in our lab.  

Adele, I feel lucky to have met and become friends with you in Maastricht. I will 
miss the time that we cooked, ran and play squash together, and hopefully will 
meet again in Heidelberg or black forest! Valeria, I especially adore that you are 
passionate about everything and everyone, and always have the courage to speak 
your mind. Baixue and Zhenyu, I am very happy that you two Chinese joined our 
group in my last year of PhD, to make our ‘Pathology China Town’ possible. I am 
also thankful that during this limited time, we went on a trip to Iceland, which was 
tortuous, but full of memories. All the best for your research and hope Zhenyu will 
come back next year so that we can start new adventure! Olivia, I'm so glad you're 
still in Maastricht, so we got to see each other a few times before I left. Hope you 
enjoy your current job and life! Jan, Daniella, and Han, thanks for your help and 
concern as senior PhD students to me when I just come to Maastricht. Jan, hope 
you are doing well in Germany! Daniella, you are my first Dutch friend here so 
thanks for everything you have done for me. I assume will become a mommy soon? 
Congratulations in advance on the new little addition to your family! Han, 作为实

验室里和我有相似背景的师兄，感谢你博士期间的陪伴。如今你虽然身在瑞

典，但我相信，四年里的“相依为命”的情谊是真切且无需太多言语的。希

望你和仝乐师姐在瑞典健康顺利！ Laura, I am glad to see that you are interested 
in Chinese food, but it is a pity that we did not find an opportunity to cook together 
again before I moved. You are very welcome to travel to China, to sample the 
myriad of Chinese cuisine! Elias, you are such a funny and nice guy who can keep 
our group energized even during the epidemic! Unfortunately, I couldn't join the 
trip to Berlin with you, but maybe you can consider the destination of your next trip 
as 'Heidelberg' so that we will see each other again! Renee and Sebastian, you are 
always hard working so do not forget to enjoy your life and have a good coffee 
downstairs. Otherwise, the headache and backache will come to you (don't ask me 
how I know it). Judith, although I didn't work with you much during my PhD, I still 
can feel your rigorous attitude towards academics. On the other hand, you are a 
lively and interesting person in life. Thank you for inviting me to your pool party, 
and I look forward to working with you in the future! Lieve, I especially enjoyed 
talking to you because you always came across as kind and approachable. You were 
the first postdoc I came in contact with after I arrived in Maastricht and I am glad 
you were still in our group when I graduated. Margaux, Kim, Ruud, Marion, Anke, 
Jasper, Jenny, Axel, Suzan, Gregorio, Mat, and Dlzar, thank you all for your help 
and supports in my PhD. I will miss all the members in this big EVP family and wish 
you all the best in future! !  



Appendices 

 228 

A 

轮到感谢一起玩耍的小伙伴们了。博士的最后一年里我真的是抑郁又脆弱，

生活感情学业一团糟，活着全凭一口气。然而，全靠家人和小伙伴们得支持，

才让你们看到仍然健在的我。 

石帅，不得不说你是我博士最后一年的光。虽然被你治愈的过程蜜汁诡异。

当我将百分百经历投入到毕业和科研上，但却毫无进展时，那种绝望感几乎

要将我吞没。但因为你的日常捣乱骚扰，我必须分出一半的精力应付你，科

研忽然就变得无关紧要了:）。刘丹，我真的很佩服你好像有用不完的精力，

再大的困难也能微笑面对，我要向你学习，也希望你和唐哥还有你家宝宝在

这里茁壮成长！Pmax, I'm so glad that we were able to meet again in Maastricht 
a year after your graduation, and it seemed that nothing had changed. I really miss 
our travel days in Portugal and Spain, and the time we played Mahjong together 
J.Hope we still have chance to travel together! 陈琳，还记得我第一次去你家吃

火锅吗，哈哈，好久没联系了，你和你家猫在国内都要开开心心的呀。丁伶

伶和张礼川，真的感觉真的好久不见了，真怀念你们还在这里的日子，我们

几个一起出去玩，或者在家里聚餐，真的是毕业前为数不多的开心的回忆了，

希望你们和宝宝在国内一切都好。宗盛华师兄，虽然没太多机会见面，但是

我一直记得我生病的时候你对我的帮助，但愿你家小玉米还记得我 J。汤梦

资，很庆幸和你一起来了欧洲，更庆幸在你回国之前跟你去了克罗地亚，作

为相识八年的同学加好友，祝愿你在武汉事业爱情双顺利。还有惠泺潼，罗

倩，苌新伟，张曼莉，王雅文，余艺文……这些同届的小伙伴们，以及张硕，

石镇伟，冯正……这些师兄师姐们，虽然大家已经各奔东西，但马城依然有

我们共同的回忆，我们一起跨年，参会，过圣诞，包饺子，狼人杀，甚至还

有编程比赛……年纪大了脑子也愈发迟钝，所以，这里还要感谢所有我没提

及但熟悉的人，谢谢你们在我博士生涯里留下的印记。 

最重要的，也是最最要感谢的，是无条件支持我的父母：路书先生和马成龙

女士 (The most importantly, I would like to thank my parents, Mr. Shu Lu and Mrs. 
Chenglong Ma)。我不止一次自我感慨我要多幸运才能遇到你们这么开明的父

母，从我去外地上大学，到有留学梦，到千里迢迢奔赴荷兰，再到如今的在

德国继续科研之路，纵使有万般的不舍和思念，你们还是全力支持我朝向更

好的未来，支持我做我想做的事情。很多时候你们可能并不懂我在干什么，

却还是愿意听我抱怨科研的不顺利，并尽自己所能来帮我解决问题和缓解压

力。我向来不愿意麻烦别人，也不愿意展示自己脆弱的一面，所以一个人的

毕业季有多难熬只有你们知道，有几次感觉要撑不下去崩溃的时候也只有你

们知道。我总是想，我能完成并提交这本论文，一半的功劳都要归功于你们，

归功于我坚信，纵使我什么也做不好，你们也依然会坚定地在我身后支持我。 

博士生涯说长很长，说短似乎一瞬间就过去了。呆得时间久了，竟有种“只

闻新人笑，不见旧人哭”的悲戚感。离开马城之际，我一边感慨自己对马城

太过熟悉，熟悉到凌晨三四点也可以在学校和家之间横行；另一方面，又忽



Acknowledgements | A 

 229 

A 

然间对这里无比怀念，以至于回家路上的一棵树，一个斜坡都能让我没来由
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