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ABSTRACT

Introduction: Distant metastases (DMs) are the primary
driver of mortality for patients with early stage NSCLC
receiving stereotactic body radiation therapy (SBRT), yet
patient-level risk is difficult to predict. We developed and
validated a model to predict individualized risk of DM in
this population.

Methods: We used a multi-institutional database of 1280
patients with cT1-3N0M0 NSCLC treated with SBRT from
2006 to 2015 for model development and internal valida-
tion. A Fine and Gray (FG) regression model was built to
predict 1-year DM risk and compared with a random sur-
vival forests model. The higher performing model was
evaluated on an external data set of 130 patients from a
separate institution. Discriminatory performance was eval-
uated using the time-dependent area under the curve
(AUC). Calibration was assessed graphically and with Brier
scores.

Results: The FG model yielded an AUC of 0.71 (95% con-
fidence interval [CI]: 0.57–0.86) compared with the AUC of
random survival forest at 0.69 (95% CI: 0.63–0.85) in the
internal test set and was selected for further testing. On
external validation, the FG model yielded an AUC of 0.70
(95% CI: 0.57–0.83) with good calibration (Brier score:
0.08). The model identified a high-risk patient subgroup
with greater 1-year DM rates in the internal test (20.0% [3
of 15] versus 2.9% [7 of 241], p ¼ 0.001) and external
validation (21.4% [3 of 15] versus 7.8% [9 of 116], p ¼
0.095). A model nomogram and online application was
made available.
Journal of Thoracic Oncology Vol. - No. -: -–-
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Conclusions: We developed and externally validated a
practical model that predicts DM risk in patients with
NSCLC receiving SBRT which may help select patients for
systemic therapy.

� 2022 International Association for the Study of Lung
Cancer. Published by Elsevier Inc. All rights reserved.

Keywords: NSCLC; SBRT; Distant metastases; Systemic
therapy; Nomogram
Introduction
Stereotactic body radiotherapy (SBRT) is standard of

care for medically inoperable patients with early stage
NSCLC.1 Local control rates for SBRT are reported to be
more than 90% at 3 years.2,3 Nevertheless, a primary driver
of morbidity and mortality is the development of distant
metastases (DMs), which occur in up to 20% to 30% of
patients.4–6 This suggests a need for systemic treatment
intensification and has led to ongoing clinical trials using
immunotherapy and targeted agents in this setting.6–11 Most
of these trials are open to all patients with early stage
NSCLC despite the likelihood that there are subgroups of
patients who are at higher risk than others for the devel-
opment of DM.12,13 Furthermore, a considerable percentage
of medically inoperable patients are unable to tolerate sys-
temic therapy owing to poor performance status and other
medical comorbidities.6 Previous data have revealed that the
indiscriminate use of adjuvant systemic therapy for NSCLC
without careful patient selection is associated with worse
survival outcomes.12 As such, proper identification of pa-
tients with a high risk of developing distant disease is crucial
to maximizing the net benefit of adjuvant therapy strategies
and tailoring follow-up protocols after treatment.

Several factors have been hypothesized to be asso-
ciated with the increased risk of DM after SBRT,
including larger tumor size, higher tumor fluorodeox-
yglucose avidity, and poor tumor differentiation.13–17

Nevertheless, these factors have not been robustly vali-
dated, and it remains unclear how they should be used to
guide individualized management.

By leveraging large, multi-institutional databases
along with statistical and machine learning techniques,
we aimed to build a model that can predict the risk of
DM after SBRT and help select patients most likely to
benefit from systemic therapy or enrollment in systemic
therapy trials.

Materials and Methods
Data Sources and Study Cohorts

We received approval from the Institutional Review
Boards and Human Investigation Committees of participating
institutions before conducting this study. The report is in
accordance with the TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis) statement (type 3).18 We evaluated two statistical
and machine learning models to predict DM risk while ac-
counting for the competing risk of death owing to other
causes, which could confound the true risk of DM.19 For
model development, we used a deidentified multi-
institutional database including patient information from
five academic sites affiliated with Yale School of Medicine
and 109 community sites affiliated with 21st Century
Oncology (21C), a national private practice organization in
the United States. Data collection for the Yale database was
performed by four physician investigators (BK, JM, JS, and
SG). Data collection for the 21C database was conducted by a
trained data abstractor (RR) using a standardized instrument
(Supplement). We included consecutive patients with clinical
T1-3N0M0 (American Joint Committee on Cancer seventh
edition) NSCLC without synchronous primary tumors treated
with definitive SBRT from 2006 to 2015. Demographic and
clinical data collected included age at diagnosis, Eastern
Cooperative Oncology Group (ECOG) status, tumor size
(maximum diameter radiographically, in centimeters), tumor
histology (adenocarcinoma, squamous cell carcinoma, poorly
differentiated NSCLC not otherwise specified, and unbiop-
sied), smoking status, prior lung cancer, maximum tumor
standardized uptake value (SUVmax) on positron emission
tomography scan, and prescription biological equivalent dose
to 95% of the planning target volume assuming a tumor
alpha-beta ratio of 10. The lung lobe in which the primary
tumor was discovered was documented given data revealing
that tumor location is correlated with prognosis.20,21

Patients were excluded if they had systemic therapy
before, during, or after their SBRT treatment course or
received a prescription biologically effective dose
(BED10) of less than 100 Gy to 95% of the planning
target volume22 (Supplementary Table 1).

For external validation, we used an independent, retro-
spective data set from the Brigham and Women’s Hospital/
Dana-Farber Cancer Institute (BWH/DFCI) Department of
Radiation Oncology, which included consecutive patients
with clinical T1-3N0M0 (American Joint Committee on
Cancer seventh edition) NSCLC treated with definitive SBRT
from 2010 to 2016. The same exclusion criteria were
applied to this patient cohort as the development set and
the same demographic and clinical information as described
previously were abstracted. All institutions adhered to the
National Comprehensive Cancer Network (NCCN) guidelines
for diagnostic surveillance imaging for early stage NSCLC
after SBRT.
Study End Point
Patients with radiographically identified distant dis-

ease or multifocal pulmonary recurrence were
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Figure 1. Study framework describing the development and validation of the RFS and FG models. A developmental data set
was randomly split into a training set (80% of the initial data set) and a testing set (20% of the initial data set). Both RFS and
FG models were developed on the training set and locked for testing on the testing set. The model with the best discrimi-
natory ability was then tested on an external validation set. AUC, area under the curve; BWH/DFCI, Brigham and Women’s
Hospital/Dana-Farber Cancer Institute; FG, Fine and Gray; RFS, random forest survival.
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documented as having DM, the primary study end point,
and were documented as such regardless of preceding or
synchronous local or regional failures. Months to DM and
overall survival (OS) were defined as the time from the
first fraction of SBRT to the date of distant failure or
death. Date of death was determined through medical
record review when available or web-based search for
obituary notice.
Model Development and Statistical Analysis
All analyses were performed in R version 4.0.0

(http://www.R-project.org; The R Foundation). We used
the following two methods for model development: (1)
Fine and Gray (FG) competing risk regression and (2)
random forest survival (RFS) for competing risks. The
outcome of interest was the development of DM at 1 year
accounting for the competing risk of death. A summary of
the study framework can be found in Figure 1.

The Yale-21C data set was randomly split into a
training set (80%) and a test set (20%). Each model
was developed on the training set, locked, and tested
on the internal test set. The highest performing model
was selected for testing on the external validation set.
The primary study end point was model discrimina-
tory performance by means of the area under the
curve (AUC) of the time-dependent receiver operating
curve at 1 year. Although we chose a primary evalu-
ation end point of 1-year DM risk partly owing to the
limitation of short median follow-up time in our data,
we felt that it was an appropriate end point to capture
high-risk patients as most DM occur within 1 to 2
years after SBRT.23 Calibration plots were used to
compare the predicted values with the observed
values at 1 year, with pairs of observed and predicted
values falling in line at a 45� angle and Brier score
indicating goodness of fit.

Our FG model was built using the riskRegression
package in R.24,25 Univariate competing risk analysis was
carried out for each variable. Tumor size (maximum
diameter) and SUVmax were included in the base model,
given the strong evidence and rationale for their associ-
ation with prognosis.13,26–28 Tumor size was dichoto-
mized at 2 cm, which was the median size in the training
set and has been used as inclusion criteria for an ongoing
systemic therapy trial.11 Other variables were included in
the final multivariate model using backward selection if p
value is less than 0.1.

http://www.r-project.org/
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We constructed our RFS model for competing risks
using the randomForestSRC package in R (Supplementary
Materials).29 After the FG and RFS models were optimized
and locked, we evaluated their discriminatory perfor-
mance using the Yale-21C internal test set (20%), and the
highest performing model was tested on the external
validation set.

We calculated the external validation sample size
needed to detect a type I error of 5% with 80% power
assuming a null hypothesis of AUC 0.50, an alternative
hypothesis on the basis of the internal test set results,
and a ratio of negative-to-positive DM events of 5:1.
Power calculations were performed using MedCalc v19
(MedCalc Software, Belgium).

To determine if performance was altered by imputing
missing data, we conducted a sensitivity analysis using
regression imputation for model development
(Supplementary Materials).

Results
Study Cohort Characteristics

There were 1280 patients from the combined Yale-
21C data set who met the inclusion criteria and were
used as training (n ¼ 1024) and internal (n ¼ 256) test
sets. There were 130 patients from the BWH/DFCI who
met the criteria for the external validation data set
(Supplementary Fig. 1).

Median follow-up in the Yale-21C data set was 20.7
months (interquartile range [IQR]: 9.7–35.9) and 25.4
months (IQR: 15.9–34.4) in the BWH/DFCI data set (p ¼
0.098) (Table 1). There were 172 (13.4%) overall DM
events in the Yale-21C data set and 23 (17.7%) in the
BWH/DFCI data set (p ¼ 0.181). At 12 months, there
were 76 (5.9%) DM events in the Yale-21C data set and
12 (9.2%) in the BWH/DFCI data set (p ¼ 0.139). In the
Yale-21C data set, the median age at diagnosis was
higher (77 y [IQR: 70–83] versus 74 y [IQR: 67–80], p <

0.001) and the percentage of tumors greater than 2 cm
was higher (49.1% versus 36.2%, p ¼ 0.005). There
were no tumors greater than 7 cm in either data set.
Only 1.9% of tumors in the Yale-21C data set measured
more than 5 cm, whereas no tumors in the BWH/DFCI
data set measured more than 5 cm (Supplementary
Table 1). In the Yale-21C data set, 73.4% (n ¼ 940) of
patients had an ECOG performance status of less than 2
compared with 63.9% (n ¼ 83) of patients in the BWH/
DFCI data set (p ¼ 0.004). Cumulative incidence curves
for DM and death owing to other causes are found in
Supplementary Figure 2A and B.
Model Development and Internal Validation
The final FG model consisted of tumor size, SUVmax,

age, ECOG status, prior lung cancer, and histology
(Table 2). The time-dependent AUC for the model was
0.71 (95% confidence interval [CI]: 0.57–0.86, Brier
score: 0.04) at 1 year in the internal test set (n ¼ 256)
(Fig. 2A and B).

The RFS model consisted of tumor size, SUVmax, age,
ECOG status, prior lung cancer, histology, lung cancer
lobe location, and smoking history. The RFS model
revealed a time-dependent AUC of 0.69 (95% CI: 0.63–
0.85, Brier score: 0.04) at 1 year in the internal test set
(Supplementary Fig. 3).

The time-dependent AUC for the RFS and FG
models evaluated on the internal test set was plotted
over a range of DM time points from 12 to 36
months (Supplementary Fig. 4). Performance was
comparable at all time points with overlapping 95%
CIs. The significant overlap between the receiver-
operator curves of the RFS and FG models suggests
that there is no significant difference in discrimina-
tory performance between both models. Given its
simplicity, reproducibility, and interpretability, the
FG model was selected for further testing. Sensitivity
analysis using multiple imputation with regression to
account for missing data revealed no significant dif-
ferences compared with the original FG model
(Supplementary Tables 2 and 3).
External Validation
On the basis of an alternative hypothesis of AUC at

0.70 (based on internal test results), we calculated that
an external validation sample size of at least 120 pa-
tients would be required for hypothesis testing.
Following data abstraction and applying our inclusion
and exclusion criteria, our final external validation data
set consisted of 130 patients. The time-dependent AUC
for the FG model in the external validation data set was
0.70 (95% CI: 0.56–0.83, Brier score: 0.08) at 12 months,
revealing good calibration over the predicted risk range
(Fig. 2C and D).

The FG model was developed into a nomogram for
the prediction of DM at 1 year, with values ranging from
4% to 22% (Fig. 3). The FG model was also implemented
as an R-based ShinyApp and publicly released online
(Risk of Distant Metatasis after Lung SBRT [URL:
https://predictdm.shinyapps.io/App-1/]).
Delineation of a High-Risk Patient Subgroup
Using the parameters of the nomogram, we defined a

subgroup of patients at a high risk of developing DM at 1
year, including patients younger than the median age (77
y), ECOG less than 2, tumor size greater than 2 cm,
SUVmax greater than or equal to 2.5, and either adeno-
carcinoma or NSCLC not otherwise specified. The SUVmax

threshold of 2.5 was chosen because this value was

https://predictdm.shinyapps.io/App-1/


Table 1. Patient Characteristics

Patient Characteristics
Yale-21st Century Oncology
Lung Cancer Database n ¼ 1280

BWH/DFCI Lung Cancer
Database n ¼ 130 p Value

Median time to distant metastases in mo, median (IQR) 19.5 (8.6–34.5) 23.4 (12.7–32.2) 0.539
Median follow-up time in mo, median (IQR) 20.7 (9.7–35.9) 25.4 (15.7–34.4) 0.098
Percentage of patients with distant metastases 13.4% (172/1280) 17.7% (23/141) 0.181
Tumor size in cm, median (IQR) 2.0 (1.5–2.8) 1.8 (1.5–2.5) 0.004
SUVmax, median (IQR) 6.0 (3.5–10.0) 4.2 (2.4–6.1) <0.001
Age in y, median (IQR) 77 (70–83) 74 (67–80) <0.001
Median BED10, median (IQR) (fractionation scheme) 132.0 (100.0–132.0) 151.2 (115.5–151.2) <0.001
Tumor size in cm, n (%)
�2 651 (50.9) 83 (63.9) 0.005
>2 629 (49.1) 47 (36.2)

ECOG score, n (%) 0.020
<2 940 (73.4) 83 (63.9)
�2 340 (26.6) 47 (36.2)

Histology, n (%) 0.062
Adenocarcinoma 444 (34.7) 51 (39.2)
Squamous cell carcinoma 343 (26.8) 27 (20.8)
NSCLC, NOS 210 (16.4) 14 (10.8)
Unbiopsied 283 (22.1) 38 (29.2)

Grade, n (%) 0.031
Well differentiated 76 (5.9) 4 (3.08)
Moderately differentiated 166 (13.0) 14 (10.8)
Poorly differentiated 199 (15.6) 10 (7.7)
Unknowna 556 (43.4) 64 (49.2)
Unbiopsied 283 (22.1) 38 (29.2)

Lung lobe of primary tumor, n (%) 0.240
Left upper lobe 328 (25.6) 36 (27.7)
Left lower lobe 181 (14.1) 22 (16.9)
Right upper lobe 447 (34.9) 33 (25.4)
Right middle lobe 91 (7.1) 9 (6.9)
Right lower lobe 233 (18.2) 30 (23.1)

Smoking, n (%) 0.708
Never smoker 78 (6.1) 9 (6.9)
Prior or current smoker 1202 (93.9) 11 (93.1)

Prior lung cancer, n (%) <0.001
No 1090 (85.2) 85 (65.4)
Yes 190 (14.8) 45 (34.6)

aPatients categorized as having unknown grade include those with tumor histologic confirmation without documentation of grade.
BED10, biologically effective dose; BWH/DFCI, Brigham and Women’s Hospital/Dana-Farber Cancer Institute; DM, distant metastasis; ECOG, Eastern Cooper-
ative Oncology Group; IQR, interquartile range; NOS, not otherwise specified; SUVmax, maximum tumor standardized uptake value.
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historically used to distinguish pulmonary malignancies
from benign nodules.30 Data have revealed that solid
malignant lesions typically have a SUVmax of 2.5 or
greater whereas ground-glass lesions have lower SUVmax

values, suggesting this may be a useful threshold for
distinguishing radiographically distinct subsets of
tumors.31,32

High-risk patients had greater rates of DM overall and
at 1 year in the training set (23.9% [17 of 71] versus
12.5% [119 of 953], p ¼ 0.006 and 18.3% [13 of 71]
versus 5.6% [53 of 953], p < 0.001, respectively), the in-
ternal test set (26.7% [4 of 15] versus 13.3% [32 of 241],
p ¼ 0.148 and 20.0% [3 of 15] versus 2.9% [7 of 241], p ¼
0.001, respectively), and the external validation data set
(28.6% [4 of 14] versus 16.4% [19 of 116], p ¼ 0.259 and
21.4% [3 of 15] versus 7.8% [9 of 116], p ¼ 0.095,
respectively).
Discussion
We developed and externally validated a computa-

tional model on the basis of multi-institutional data to
predict DM risk for patients with early stage NSCLC
treated with SBRT. It is the first externally validated
model to predict DMs in SBRT patients and is publicly
available for use online. With stable AUCs of approxi-
mately 0.70 on internal and external testing and good
calibration, our model reveals predictive performance on
par with other models that have found routine use in
oncologic care.33,34 The model relies on six often



Table 2. Fine and Gray Competing Risk Regression Analysis of Factors Correlated With Risk of Distant Metastasis in the
Internal Training Set (N ¼ 1024)

Patient Characteristics

Univariable Analysis Multivariable Analysis

SHR 95% CI p SHR 95% CI p

Age in y at diagnosis 0.98 0.96–0.99 0.010 0.98 0.96–0.99 0.019
SUVmax 1.00 0.98–1.03 0.808 1.01 0.98–1.04 0.678
Tumor size

�2 — — — — — —

>2 1.12 0.80–1.57 0.499 1.20 0.84–1.73 0.323
Histology

Adenocarcinoma — — — — — —

Squamous cell carcinoma 0.72 0.47–1.11 0.141 0.71 0.45–1.12 0.145
NSCLC, NOS 1.00 0.63–1.59 0.989 0.98 0.61–1.56 0.918
Unbiopsied 0.62 0.38–1.01 0.057 0.63 0.39–1.03 0.063

Lung lobe of primary tumor
Left upper lobe — — —

Left lower lobe 0.96 0.53–1.74 0.900
Right upper lobe 1.21 0.76–1.91 0.418
Right middle lobe 1.68 0.90–3.16 0.102
Right lower lobe 1.30 0.77–2.20 0.325

ECOG
<2 — — — — — —

�2 0.61 0.39–0.93 0.021 0.62 0.40–0.95 0.027
Smoking

Never smoker — — —

Prior or current smoker 1.40 0.57–3.47 0.461
Prior lung cancer

No — — — — — —

Yes 1.52 1.01–2.26 0.045 1.47 0.96–2.27 0.080

CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; NOS, not otherwise specified; SHR, subdistribution hazard ratio; SUVmax, maximum tumor
standardized uptake value.
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collected clinical and pathologic variables and, impor-
tantly, maintained stable performance (AUC: 0.70) on an
external validation set that had large baseline differences
in patient and tumor characteristics compared with the
development set, portending strong model generaliz-
ability. Despite the consistently high rates of local con-
trol in patients with early stage NSCLC treated with
SBRT, DM remains the dominant reason for treatment
failure. This study reveals that there is a wide range of
DM risk for early stage NSCLC treated with SBRT and
that the resulting model may be helpful in selecting pa-
tients most likely to benefit from systemic therapy and
avoiding indiscriminate use in those at low risk for
metastasis. In addition, patients with a higher risk of
distant disease may benefit from intensified follow-up
after treatment, and our model can help clinicians
determine appropriate follow-up schedules on the basis
of patient risk factors.

The NCCN guidelines list adjuvant chemotherapy as a
consideration for high-risk patients who receive SBRT,
but this high-risk cohort is vaguely defined.35 As such,
several retrospective studies have attempted to deter-
mine which patients may benefit from systemic therapy.
Some of the most current and robust tools for the pre-
diction of OS, progression-free survival, and time to
progression for patients with early stage NSCLC are the
nomograms constructed by Kang et al.16 at MD Anderson
Cancer Center. Although these nomograms were rigor-
ously developed, they are limited given their reliance on
training data from a single institution and lack of
external validation. Furthermore, they perform best on
OS end points, not disease progression end points (AUC:
0.60 for time to progression). This may be related to the
inclusion of certain serum inflammatory and pulmonary
markers in the model, which may be associated with OS,
but not disease control or DM.36

In addition, prior nomograms do not make the
distinction between risk of death owing to DM or
risk of death from unrelated reasons. Considering
that most patients with early stage NSCLC who
receive SBRT are elderly with multiple comorbidities,
this distinction is important when making decisions
regarding the administration of systemic therapy.
Because our model is adjusted for competing risk of
death, it may better generalize across institutions
and clinical trial settings where patient age and



Figure 2. Time-dependent calibration (A) and ROC (B) plots for the FG model for competing risks at 12 months in the internal
test data set. Time-dependent calibration (C) and ROC (D) plots for the FG model for competing risks at 12 months in the
external validation data set. AUC, area under the curve; FG, Fine and Gray; RFS, random forest survival.
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performance status distribution vary. In addition, our
model distinguishes distant from local failure, which
each has different implications for treatment escala-
tion approaches.

Several other studies have aimed to identify risk
factors associated with the development of metastatic
disease in patients with early stage NSCLC, outside of the
SBRT setting. Chong et al.37 developed a random forest
classifier that predicts the risk of lymph node metastases
in early stage lung adenocarcinoma in a surgical popu-
lation with high performance (AUC ¼ 0.921).37 Never-
theless, their patient sample all underwent surgery with
mediastinal and hilar lymph node dissection, and their
model heavily relies on pathologic information that is
generally unavailable for patients receiving SBRT,
including lymphovascular invasion, pleural invasion, and
the presence of a solid component.

In another study, Gu et al.38 built a logistic regression
model using serum inflammatory markers such as
platelet-to-lymphocyte ratios, lactate dehydrogenase,
neural-specific enolase, carcinoembryonic antigen, and
cytokeratin 19 fragments with good discriminatory
ability in patients before receiving therapy. This study
highlights that serum laboratory markers could be
correlated with increased risk of DMs. Nevertheless, it is
unclear whether the conclusions of this study can be
applied to clinically node-negative patients with NSCLC
who undergo SBRT.

Finally, Wu et al.14 determined imaging features on
positron emission tomography that were associated with
the development of DMs in early stage NSCLC receiving
surgery using a quantitative radiomic approach. Quan-
titative imaging features, that is, radiomics, represent
interesting ways to better predict disease outcomes,
though these findings are preliminary, have not been
externally validated, and were derived from a small,
single-institution cohort.

Compared with prior studies, our model provides
immediate clinical relevance in that it uses practical
clinical variables while still maintaining good discrimi-
natory performance that was stable across different in-
stitutions. It is novel in that was developed from a large,
mixed community-academic practice population, exter-
nally validated, and specific to patients receiving SBRT
for extensive-stage NSCLC.

Because more recent machine learning models were
found to have improved capacity to model complex data,
we sought to determine whether we could build a higher



Figure 3. Nomogram for predicting risk of DM at 1 year on the basis of Fine and Gray competing risk regression model. The
model was developed on 1024 patients from the study development set. It was validated on an internal hold-out set of 256
patients and an external cohort of 130 patients. DM, distant metastasis; ECOG, Eastern Cooperative Oncology Group; NOS,
not otherwise specified; SUV, standardized uptake value.
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performing model using a random survival forest algo-
rithm. Notably, there was no significant difference in
performance between our RFS and FG model at all time
points evaluated, likely owing to the relatively low
number of variables included. In addition, the greater
complexity of the RFS model came at the cost of inter-
pretability whereas the simplicity of the FG model gave
us greater insight into the relationships between the
model variables and the risk of DM. As such, we chose
the FG model for further validation and development
into a clinically usable tool.

Our FG model included size, SUVmax, age, ECOG status,
prior lung cancer, and histology, which each has bio-
logically plausible rationale as to their association with
DM. The importance of tumor size has been found in
multiple studies, including CALGB 9633, which revealed
that postoperative chemotherapy was associated with
improved survival outcomes in patients with resected
tumors greater than or equal to 4 cm.13 Although these
data cannot be directly extrapolated to patients who
receive SBRT, it is consistent with an abundance of
retrospective data that suggest tumor size is an impor-
tant prognostic feature.39–41 In addition to tumor size,
SUVmax values have been found in numerous studies to
be associated with tumor aggressiveness and risk of
DM.14,15,42,43 These findings are reflected in an ongoing
trial testing the addition of atezolizumab to SBRT for
patients with early stage NSCLC with tumor size greater
than or equal to 2 cm and/or SUVmax greater than or
equal to 6.2.11 Younger age and better performance
status were predictive of a greater risk of metastases,
which may be, in part, due to lower competing risk of
death and longer follow-up associated with these fea-
tures, though competing risk modeling likely diminishes
this effect compared with survival models. In addition,
Suidan et al.44 suggested that patients younger than 50
years had higher rates of driver mutations and were
more likely to develop brain metastases during the
course of their disease compared with their older
counterparts, which is consistent with the findings of our
study.

There are several limitations to this study. Given the
retrospective nature of the data, the results are inevi-
tably subject to selection bias. Although patient follow-
up was concordant with the NCCN guidelines, there
may have been discrepancies in surveillance scan in-
tervals that could have contributed to bias in doc-
umenting DM. There were a substantial number of
patients in both data sets (22%–29%) who were treated
without pathologic confirmation. Although this limits the
ability to model certain pathologic markers that may be
associated with DM in this subset of patients, it also
represents a real-world inoperable population wherein
SBRT sometimes is delivered without tissue confirma-
tion. In addition, there may exist other risk factors for
DM that we were unable to capture given database
limitations. Tumor grade was one such variable that we
did not include in our model owing to the significant
number of undocumented cases. Although this limits our
ability to study the effects of tumor grade on metastatic
potential, it reflects real-world practice settings when
grade is not always documented on surgical pathology
report. In addition, there is little evidence suggesting a
correlation between grade and prognosis in this setting,
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and SUVmax, which was robustly captured in our study,
may be a better predictor of tumor aggressiveness.45

Emerging data suggest that tumor driver mutations are
important prognostic and predictive factors for patients
with early stage NSCLC.46 Future models incorporating
driver mutation status will likely further improve
decision-making for these patients, though these data are
not yet routinely collected for early stage, inoperable
patients. Finally, the median study follow-up time is less
than 2 years, which may have contributed to a lower-
than-expected incidence of DM overall. As such, our
data are not mature enough to capture all future end
points and should only inform risk of DMs within the
first year after SBRT. Nevertheless, most DMs occur
within 1 to 2 years of treatment, and the primary 1-year
prediction end point accurately identified those patients
at highest risk of dissemination.23

In conclusion, we developed and externally validated
a practical competing risk model to predict risk of DM in
early stage NSCLC after SBRT. Although our model has
fair discriminatory ability, we recommend the model
undergo independent and prospective validation given
the small sample of our external validation set, and we
have released a practical nomogram to facilitate this.
Although we believe that we have maximized the po-
tential predictive power of routine clinicopathologic
variables to predict DMs, there is still room for
improvement. We hypothesize that genomic, radiomic,
and serum-based markers could be leveraged in
conjunction with more advanced machine or deep-
learning algorithms to generate further improvements.
CRediT Authorship Contribution
Statement

Benjamin H. Kann, Sarah J. Gao: Conceptualization.
Benjamin H. Kann, John M. Stahl, Joseph A. Miccio,

Sarah J. Gao: Data curation.
Benjamin H. Kann, Sarah J. Gao, Lan Jin: Formal

analysis.
Benjamin H. Kann, Sarah J. Gao: Writing—original

draft.
Hugh W. Meadows, Timothy D. Shafman, Cary P.

Gross, James B. Yu, MD, Hugo J. W. L. Aerts, Joseph A.
Miccio, John M. Stahl, Raymond H. Mak, Roy H.
Decker, Benjamin H. Kann: Writing—review and
editing.
Supplementary Data
Note: To access the supplementary material accompa-
nying this article, visit the online version of the Journal of
Thoracic Oncology at www.jto.org and at https://doi.
org/10.1016/j.jtho.2022.11.007.
References
1. Videtic GMM, Donington J, Giuliani M, et al. Stereotactic

body radiation therapy for early-stage non-small cell
lung cancer: executive summary of an ASTRO evidence-
based guideline. Pract Radiat Oncol. 2017;7:295–301.

2. Baumann P, Nyman J, Hoyer M, et al. Outcome in a pro-
spective phase II trial of medically inoperable stage I non-
small-cell lung cancer patients treated with stereotactic
body radiotherapy. J Clin Oncol. 2009;27:3290–3296.

3. Wegner RE, Ahmed N, Hasan S, Schumacher LY, Van
Deusen M, Colonias A. SBRT for early stage lung cancer:
outcomes from biopsy-proven and empirically treated
lesions. Lung Cancer Manag. 2018;7:LMT01.

4. Cushman TR, Gomez D, Kumar R, et al. Combining ra-
diation plus immunotherapy to improve systemic im-
mune response. J Thorac Dis. 2018;10(suppl 3):S468–
S479.

5. Lin AJ, Roach M, Bradley J, Robinson C. Combining ste-
reotactic body radiation therapy with immunotherapy:
current data and future directions. Transl Lung Cancer
Res. 2019;8:107–115.

6. Kann BH, Miccio JA, Stahl JM, et al. Stereotactic
body radiotherapy with adjuvant systemic therapy for
early-stage non-small cell lung carcinoma: a multi-
institutional analysis. Radiother Oncol. 2019;132:188–
196.

7. Ernani V, Appiah AK, Marr A, Marr A, et al. Adjuvant
systemic therapy in patients with early-stage NSCLC
treated with stereotactic body radiation therapy.
J Thorac Oncol. 2019;14:475–481.

8. ClinicalTrials.gov. SBRT with immunotherapy in early
stage non-small cell lung cancer: tolerability and lung
effects. https://clinicaltrials.gov/ct2/show/NCT033833
02. Accessed March 22, 2022.

9. ClinicalTrials.gov. Pembrolizumab after lung SBRT for
medically inoperable early stage non-small cell lung
cancer. https://clinicaltrials.gov/ct2/show/NCT0357422
0. Accessed March 22, 2022.

10. ClinicalTrials.gov. Stereotactic body radiation therapy
(SBRT) combined with avelumab (anti-PD-L1) for man-
agement of early stage non-small cell lung cancer
(NSCLC). https://www.clinicaltrials.gov/ct2/show/
NCT03050554. Accessed March 22, 2022.

11. ClinicalTrials.gov. Testing the addition of the drug ate-
zolizumab to the usual radiation treatment for patients
with early non-small cell lung cancer. https://
clinicaltrials.gov/ct2/show/NCT04214262. Accessed
March 22, 2022.

12. Foster CC, Rusthoven CG, Sher DJ, et al. Adjuvant
chemotherapy following stereotactic body radiotherapy
for early stage non-small-cell lung cancer is associated
with lower overall survival: a National Cancer Database
analysis. Lung Cancer. 2019;130:162–168.

13. Strauss GM, Herndon JE 2nd, Maddaus MA, et al. Adju-
vant paclitaxel plus carboplatin compared with obser-
vation in stage IB non-small-cell lung cancer: CALGB
9633 with the Cancer and Leukemia Group B. J Clin
Oncol. 2008;26:5043–5051.

14. Wu J, Aguilera T, Shultz D, et al. Early-stage non–small
cell lung cancer: quantitative imaging characteristics

http://www.jto.org/
https://doi.org/10.1016/j.jtho.2022.11.007
https://doi.org/10.1016/j.jtho.2022.11.007
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref1
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref1
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref1
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref1
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref2
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref2
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref2
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref2
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref3
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref3
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref3
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref3
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref4
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref4
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref4
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref4
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref5
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref5
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref5
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref5
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref6
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref6
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref6
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref6
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref6
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref7
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref7
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref7
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref7
https://clinicaltrials.gov/ct2/show/NCT03383302
https://clinicaltrials.gov/ct2/show/NCT03383302
https://clinicaltrials.gov/ct2/show/NCT03574220
https://clinicaltrials.gov/ct2/show/NCT03574220
https://www.clinicaltrials.gov/ct2/show/NCT03050554
https://www.clinicaltrials.gov/ct2/show/NCT03050554
https://clinicaltrials.gov/ct2/show/NCT04214262
https://clinicaltrials.gov/ct2/show/NCT04214262
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref12
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref12
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref12
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref12
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref12
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref13
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref13
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref13
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref13
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref13
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref14
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref14


10 Gao et al Journal of Thoracic Oncology Vol. - No. -
of 18F fluorodeoxyglucose PET/CT allow prediction of
distant metastasis. Radiology. 2016;281:270–278.

15. Clarke K, Taremi M, Dahele M, et al. Stereotactic body
radiotherapy (SBRT) for non-small cell lung cancer
(NSCLC): is FDG-PET a predictor of outcome? Radiother
Oncol. 2012;104:62–66.

16. Kang J, Ning MS, Feng H, et al. Predicting 5-year pro-
gression and survival outcomes for early stage non-small
cell lung cancer treated with stereotactic ablative ra-
diation therapy: development and validation of robust
prognostic nomograms. Int J Radiat Oncol Biol Phys.
2020;106:90–99.

17. Wood DE. National Comprehensive Cancer Network
(NCCN) clinical practice guidelines for lung cancer
screening. Thorac Surg Clin. 2015;25:185–197.

18. Collins GS, Reitsma JB, Altman DG, Moons KG.
Transparent Reporting of a multivariable prediction
model for Individual Prognosis or Diagnosis
(TRIPOD): the TRIPOD Statement. Br J Surg.
2015;102:148–158.

19. Basak R, Mistry H, Chen RC. Understanding competing
risks. Int J Radiat Oncol Biol Phys. 2021;110:636–640.

20. Lv X, Cao J, Dai X, Rusidanmu A. Survival rates after
lobectomy versus sublobar resection for early-stage right
middle lobe non-small cell lung cancer. Thorac Cancer.
2018;9:1026–1031.

21. Peleg H, Antkowiak JG, Lane WW, Regal AM,
Takita H. Prognosis after resection of non-small cell
lung cancer of the right middle lobe. J Surg Oncol.
1987;35:230–234.

22. Onishi H, Shirato H, Nagata Y, et al. Hypofractionated
stereotactic radiotherapy (HypoFXSRT) for stage I non-
small cell lung cancer: updated results of 257 patients
in a Japanese multi-institutional study. J Thorac Oncol.
2007;2(suppl 3):S94–S100.

23. Pfannschmidt J. Editorial on “Long-term survival
outcome after postoperative recurrence of non-small
cell lung cancer: who is ‘cured’ from postoperative
recurrence?”. J Thorac Dis. 2018;10:610–613.

24. Gerds TA, Blanche P, Mortensen R, et al. riskRegression,
R Package version 3.5.0. 2021. https://cran.r-project.
org/web/packages/riskRegression/riskRegression.pdf;
2021. Accessed March 22, 2022

25. Gerds TA, Andersen PK, Kattan MW. Calibration plots for
risk prediction models in the presence of competing
risks. Stat Med. 2014;33:3191–3203.

26. Pathak R, Goldberg SB, Canavan M, et al. Association of
survival with adjuvant chemotherapy among patients
with early-stage non-small cell lung cancer with vs
without high-risk clinicopathologic features. JAMA
Oncol. 2020;6:1741–1750.

27. Hanin FX, Lonneux M, Cornet J, et al. Prognostic value of
FDG uptake in early stage non-small cell lung cancer. Eur
J Cardio Thorac Surg. 2008;33:819–823.

28. Horne ZD, Clump DA, Vargo JA, et al. Pretreatment
SUVmax predicts progression-free survival in early-stage
non-small cell lung cancer treated with stereotactic
body radiation therapy. Radiat Oncol. 2014;9:41.

29. Ishwaran H. Fast unified random forests for survival,
regression, and classification (RF-SRC), R package
version 2.9.3. Vol. 2020. https://cran.r-project.org/
web/packages/randomForestSRC/randomForestSRC.
pdf. Accessed March 22, 2022.

30. Gould MK, Maclean CC, Kuschner WG, Rydzak CE,
Owens DK. Accuracy of positron emission tomography for
diagnosis of pulmonary nodules and mass lesions: a
meta-analysis. JAMA. 2001;285:914–924.

31. Heyneman LE, Patz EF. PET imaging in patients with
bronchioloalveolar cell carcinoma. Lung Cancer.
2002;38:261–266.

32. Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K,
Uno K. Evaluation of F-18 fluorodeoxyglucose (FDG) PET
scanning for pulmonary nodules less than 3 cm in diam-
eter, with special reference to the CT images. Lung
Cancer. 2004;45:19–27.

33. Tendulkar RD, Agrawal S, Gao T, et al. Contemporary
update of a multi-institutional predictive nomogram for
salvage radiotherapy after radical prostatectomy. J Clin
Oncol. 2016;34:3648–3654.

34. Creutzberg CL, van Stiphout RG, Nout RA, et al. Nomo-
grams for prediction of outcome with or without adju-
vant radiation therapy for patients with endometrial
cancer: a pooled analysis of PORTEC-1 and PORTEC-2
trials. Int J Radiat Oncol Biol Phys. 2015;91:530–539.

35. National Comprehensive Cancer Network. Non-small cell
lung cancer. https://www.nccn.org/professionals/
physician_gls/pdf/nscl.pdf. Accessed March 22, 2022.

36. Tong YS, Tan J, Zhou XL, Song YQ, Song YJ. Systemic
immune-inflammation index predicting chemoradiation
resistance and poor outcome in patients with stage III
non-small cell lung cancer. J Transl Med. 2017;15:221.

37. Chong Y, Wu Y, Liu J, et al. Clinicopathological models for
predicting lymph node metastasis in patients with early-
stage lung adenocarcinoma: the application of machine
learning algorithms. J Thorac Dis. 2021;13:4033–4042.

38. Gu W, Hu M, Wang W, Shi C, Mei J. Development and
validation of a novel nomogram for predicting tumor-
distant-metastasis in patients with early T1-2 stage lung
adenocarcinoma. Ther Clin Risk Manag. 2020;16:1213–
1225.

39. Dubben HH, Thames HD, Beck-Bornholdt HP. Tumor vol-
ume: a basic and specific response predictor in radio-
therapy. Radiother Oncol. 1998;47:167–174.

40. Dehing-Oberije C, De Ruysscher D, van der Weide H,
et al. Tumor volume combined with number of positive
lymph node stations is a more important prognostic
factor than TNM stage for survival of non-small-cell lung
cancer patients treated with (chemo)radiotherapy. Int J
Radiat Oncol Biol Phys. 2008;70:1039–1044.

41. Shan Q, Fan Y, Guo J, Han X, Wang H, Wang Z. Rela-
tionship between tumor size and metastatic site in pa-
tients with stage IV non-small cell lung cancer: a large
SEER-based study. PeerJ. 2019;7:e7822.

42. Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA. The
maximum standardized uptake values on positron emis-
sion tomography of a non-small cell lung cancer predict
stage, recurrence, and survival. J Thorac Cardiovasc
Surg. 2005;130:151–159.

43. Yildirim F, Yurdakul AS, Türk M, Akdemir ÜÖ, Öztürk C.
The affect of the metabolic activity of the primary tu-
mor to lymph node and distant metastasis in non-small
cell lung cancer. Eur Respir J. 2014;44(suppl 58):344.

http://refhub.elsevier.com/S1556-0864(22)01909-8/sref14
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref14
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref15
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref15
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref15
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref15
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref16
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref16
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref16
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref16
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref16
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref16
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref17
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref17
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref17
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref18
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref18
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref18
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref18
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref18
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref19
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref19
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref20
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref20
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref20
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref20
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref21
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref21
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref21
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref21
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref22
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref22
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref22
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref22
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref22
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref23
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref23
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref23
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref23
https://cran.r-project.org/web/packages/riskRegression/riskRegression.pdf
https://cran.r-project.org/web/packages/riskRegression/riskRegression.pdf
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref25
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref25
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref25
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref26
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref26
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref26
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref26
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref26
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref27
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref27
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref27
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref28
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref28
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref28
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref28
https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf
https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf
https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref30
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref30
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref30
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref30
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref31
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref31
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref31
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref32
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref32
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref32
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref32
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref32
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref33
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref33
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref33
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref33
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref34
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref34
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref34
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref34
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref34
https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref36
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref36
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref36
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref36
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref37
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref37
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref37
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref37
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref38
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref38
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref38
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref38
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref38
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref39
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref39
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref39
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref40
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref40
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref40
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref40
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref40
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref40
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref41
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref41
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref41
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref41
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref42
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref42
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref42
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref42
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref42
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref43
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref43
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref43
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref43


--- 2022 Metastases After SBRT in NSCLC 11
44. Suidan AM, Roisman L, Belilovski Rozenblum A, et al.
Lung cancer in young patients: higher rate of driver
mutations and brain involvement, but better survival.
J Glob Oncol. 2019;5:1–8.

45. Duan XY, Wang W, Li M, Li Y, Guo YM. Predictive signifi-
cance of standardized uptake value parameters of FDG-
PET in patients with non-small cell lung carcinoma. Braz
J Med Biol Res. 2015;48:267–272.

46. Chevallier M, Borgeaud M, Addeo A, Friedlaender A.
Oncogenic driver mutations in non-small cell lung can-
cer: past, present and future. World J Clin Oncol.
2021;12:217–237.

http://refhub.elsevier.com/S1556-0864(22)01909-8/sref44
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref44
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref44
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref44
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref45
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref45
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref45
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref45
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref46
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref46
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref46
http://refhub.elsevier.com/S1556-0864(22)01909-8/sref46

	Prediction of Distant Metastases After Stereotactic Body Radiation Therapy for Early Stage NSCLC: Development and External  ...
	Introduction
	Materials and Methods
	Data Sources and Study Cohorts
	Study End Point
	Model Development and Statistical Analysis

	Results
	Study Cohort Characteristics
	Model Development and Internal Validation
	External Validation
	Delineation of a High-Risk Patient Subgroup

	Discussion
	CRediT Authorship Contribution Statement
	Supplementary Data
	References


