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Abstract. Computer-Aided Diagnosis (CADx) systems can play a cru-
cial role as a second opinion for endoscopists to improve the overall opti-
cal diagnostic performance of colonoscopies. While such supportive sys-
tems hold great potential, optimal clinical implementation is currently
impeded, since deep neural network-based systems often tend to overesti-
mate the confidence about their decisions. In other words, these systems
are poorly calibrated, and, hence, may assign high prediction scores to
samples associated with incorrect model predictions. For the optimal
clinical workflow integration and physician-AI collaboration, a reliable
CADx system should provide accurate and well-calibrated classification
confidence. An important application of these models is characteriza-
tion of Colorectal polyps (CRPs), that are potential precursor lesions of
Colorectal cancer (CRC). An improved optical diagnosis of CRPs dur-
ing the colonoscopy procedure is essential for an appropriate treatment
strategy. In this paper, we incorporate Bayesian variational inference and
investigate the performance of a hybrid Bayesian neural network-based
CADx system for the characterization of CRPs. Results of conducted
experiments demonstrate that this Bayesian variational inference-based
approach is capable of quantifying model uncertainty along with calibra-
tion confidence. This framework is able to obtain classification accuracy
comparable to the deterministic version of the network, while achieving
a 24.65% and 9.14% lower Expected Calibration Error (ECE) compared
to the uncalibrated and calibrated deterministic network using a post-
processing calibration technique, respectively.
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1 Introduction

Colorectal cancer (CRC) ranks third in terms of most diagnosed cancer and
appears as the second cause of cancer deaths in the world [1]. Colorectal polyps
(CRPs) are precursor lesions of CRC and can be divided into two major cate-
gories, non-neoplastic and neoplastic. Non-neoplastic polyps, including Hyper-
plastic polyps (HP), are considered as benign polyps. In contrast, neoplastic
polyps are consisting of the Adenomas (ADs) and Sessile Serrated Lesions (SSLs)
and can harbor a malignant potential. It is possible to prevent CRC if these
polyps are detected and removed at an early stage of the disease [2]. Colonoscopy
is the most common procedure for screening and characterization of CRPs.
Computer-aided diagnosis (CADx) systems can assist physicians with a more
reliable diagnosis, by characterizing CRPs using optical methods.

With the advancement of deep neural networks, excellent results obtained
by different CADx systems have been reported in literature for detection [3,4],
segmentation [3,5,6], or classification [4,7–9] of CRPs. However, despite their
recent success, these systems have not been extensively adopted in the clinical
pilot studies so far. An important reason for the slow adoption of these systems is
that neural networks are often over-confident in their decisions and fail to express
the uncertainty over their predictions [10]. Thus, these systems may produce high
class probabilities for incorrect predictions. These high-probability predictions
can create harmful biases on physicians’ decisions and become life-threatening in
a clinical setting. Therefore, it is important that a model is capable of producing
well-calibrated classification confidence along with its predictions.

Research on confidence calibration and the estimation of classification uncer-
tainty, in the field of CRP characterization, has been limited. In [11,12], the
authors investigated the roles of confidence calibration in CRP characterization
via extra post-processing steps. As an alternative, alleviating the need for such
additional training stages, Bayesian models have been widely adopted in dif-
ferent applications due to their ability to capture reliable uncertainty measures
over the decision of the network during the training process, as evidenced by
work of Krishnan et al. [13] for activity recognition. Bayesian neural networks
(BNNs) [14,15] offer a probabilistic interpretation of deep learning models, by
placing distributions over the model parameters and thereby learning from an
ensemble of possible distributions of weights. Conversely, conventional Deep Neu-
ral Networks (DNNs) tend to disregard uncertainty around the model parameters
by obtaining maximum likelihood estimates, which, in combination with most
common loss functions, leads to overconfident decisions.

In this work, we propose a CADx system based on Bayesian variational infer-
ence [16] for characterization of CRPs. The system offers confidence calibration
during the training procedure, in contrast to earlier studies on this topic [11,12],
which require an extra post-processing step for the same purpose. Our results
demonstrate that the proposed approach is not only competitive in terms of
classification accuracy with respect to a Deterministic version of the model, but
it is also able to provide reliable confidence measures. To the best of our knowl-
edge, this is the first research study deploying a Bayesian variational inference



110 N. Dehghani et al.

framework for characterization of CRPs and expressing confidence-calibrated
classification results.

2 Methodology

2.1 Dataset

The experiments conducted in this study are performed on data collected at
the Catharina Hospital Eindhoven (CHE) and the Maastricht University Med-
ical Center+ (MUMC+), in the Netherlands, and the Queen Alexandra Hos-
pital (QA) in Portsmouth, United Kingdom. The dataset includes images with
White-Light Endoscopy (WLE), Blue Light Imaging (BLI), and Linked Color
Imaging (LCI)1 modalities acquired from CHE and QA. Images collected at
the MUMC+ have i-Scan modality in Modes 1, 2, and 32. Several different
polyp types are included, namely: HPs, ADs, SSLs and adenocarcinomas. The
latter three polyp types are considered pre-malignant, and HPs are catego-
rized as benign. In this study, experiments are carried out to classify CRPs
into benign and (pre)malignant classes. To assess the classification performance
of the proposed method, a total number of 2,287 images were used, including
1,836 pre-malignant polyps and 451 benign polyps. To evaluate the performance
on unseen data, an independent test set is constructed, comprising 86 distinct
polyps (258 images), of which 19 are benign and 67 pre-malignant. For each
polyp, images from all three modalities are contained in the test set. The remain-
der of the data is split with 80/20% ratio for training and validation process,
respectively, resulting into a training set of 316 benign and 1,308 pre-malignant
images, while the validation set has 78 benign and 327 pre-malignant images.
To prevent data leakage, all polyps from the same patient are kept together in
one set (separation on patient basis).

2.2 Bayesian Neural Networks

Bayesian neural networks (BNNs) offer a probabilistic interpretation of deep
learning models by learning a posterior distribution over the weights. As a result,
the model will be robust to overfitting and is able to offer uncertainty estimates
over the output probabilities.

In Bayesian statistics, network parameters are considered as one large random
vector w, where the prior distribution of the weights is expressed as p(w). If
X = {x1, ..., xβ} denotes a set of training samples and y = (y1, ..., yβ)T stands
for the corresponding class labels, the posterior probability of the weights after
observing the dataset is expressed as:

p(w|y,X) =
p(y|w,X)p(w)

∫
p(y|w,X)p(w)dw

. (1)

1 EG-760 Colonoscope (FujifilmR© Corporation, Tokyo, Japan).
2 EC38-i10F2 Colonoscope (PENTAXR© Medical, Hoya Corp., Tokyo, Japan).
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Classical assumptions on stochastic independence and modeling in deep learn-
ing, expresses the probability p(y|w,X) as the product of the neural network
outputs for all the training samples. Therefore, the integration over the very
high-dimensional space of weights in the denominator of p(y|w,X), makes the
posterior generally intractable. Variational inference aims at approximating the
posterior p(w|y,X) by a distribution (qΘ(w)) that is most similar to the posterior
distribution obtained by the model. This can be accomplished by Monte Carlo
sampling of the posterior of model parameters and minimizing the Kullback-
Leibler divergence (KL-divergence) between the variational distribution and the
posterior: DKL(qΘ(w)||p(w|y,X)).

Fig. 1. Deterministic and hybrid Bayesian model architectures. On the left, the
EfficientNet-B4 network is used as the base network and is followed by: (a) 3 fully-
connected (FC) layers (addressed as the DNN); (b) 2 FC layers and 1 Bayesian layer;
(c) 1 FC layer and 2 Bayesian layers; (d) 3 Bayesian layers (addressed as the BNN).
The predictions made by the DNN are also passed to a post-processing calibration
block. The outputs of all the networks are compared in the performance evaluation
block.

2.3 Model Architecture

The block diagram of the employed framework is presented in Fig. 1. We use
the EfficientNet-B4 architecture [17], pre-trained on ImageNet [18], as a base
network and replace the classification layers with different sets of layers. As
shown in Fig. 1 (a), the base architecture with 3 fully-connected (FC) layers
serves as the Deterministic neural network (DNN).

The hybrid Bayesian models are achieved by gradually replacing each of the
FC output layers with a Bayesian variational layer, which results in architectures
(b) to (d) from Fig. 1. A Gaussian distribution is adopted to model the prior dis-
tribution of the weights and bias parameters in the Bayesian variational layers.
During the training procedure, the aim is to minimize the KL-divergence by
making multiple inference passes through the hybrid Bayesian networks. Infer-
ence passes are implemented using the Gradient Accumulation technique [19], to
reduce the memory consumption. Flipout layers, as introduced by Wen et al. [20],
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serve as our Bayesian linear layers, due to their ability to decorrelate the gradi-
ents within a mini-batch as a result of implicitly sampling pseudo-independent
weight perturbations for each data point.

In a first experiment, the calibration performance of the DNN is compared
to the hybrid Bayesian model with 3 variational layers (BNN), using the relia-
bility diagrams [21,22] and confidence measures that will be introduced later. A
temperature scaling [10] method is also used to calibrate output results of the
DNN (Calibrated DNN) to provide a better comparison with the BNN results.
In another experiment, we will gradually adapt the DNN architecture towards
a BNN by replacing its FC layers with variational layers, and evaluate the gen-
eralization and robustness property of the different degree of hybridization.

2.4 Evaluation Metrics

The performance of both approaches is measured and compared by computing
various types of calibration error metrics. These metrics are calculated from the
reliability diagram [21,22]. A reliability diagram shows accuracy as a function
of the predicted confidence of samples, by grouping predictions into bins, based
on their predicted confidence. To calculate the metrics predictions are grouped
into M bins of size 1

M , and the accuracy of each bin is computed. Let Bm be the
set of indices of samples whose prediction confidence falls into the interval Im =
(m−1

M , m
M ]. The accuracy and average confidence within bin Bm is defined as:

acc(Bm) =
1

|Bm|
∑

i∈Bm

1(ŷi = yi). (2)

conf(Bm) =
1

|Bm|
∑

i∈Bm

(p̂i). (3)

In the above equation, ŷi and yi are the predicted and true class labels, respec-
tively, and p̂i is the confidence for sample i. One important error metric is
Expected Calibration Error (ECE), that is the weighted average of the cali-
bration error across all bins. Moreover, the Maximum Calibration Error (MCE)
determines the largest error across the bins. In line with the MCE, we also use
the Average Calibration Error (ACE), that determines the average error across
the non-empty bins (M+). Finally, the Over-Confidence Error (OE) is speci-
fied as the weighted average of the errors across bins where confidence exceeds
accuracy. These errors are covered by the following equations:

ECE =
M∑

m=1

Bm

n |acc(Bm) − conf(Bm)|. (4)

MCE = max
m∈1,...,M

acc(Bm) − conf(Bm)|. (5)

ACE = 1
M+

M∑

m=1
acc(Bm) − conf(Bm)|. (6)

OE =
M∑

m=1

Bm

n [conf(Bm).max(conf(Bm) − acc(Bm), 0)]. (7)
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3 Results

3.1 Experimental Setting

We evaluate our Bayesian network (BNN) in multiple experiments using the
introduced CRP dataset and compare the obtained results with the uncali-
brated and calibrated deterministic versions of the network (DNN). Input images
for both networks are resized to 256× 256 pixels, while compatibility of the
dataset with ImageNet pre-trained networks is ensured by channel-wisely sub-
tracting the mean and dividing by the standard deviation of ImageNet data. For
an improved generalization, data augmentation is applied using the following
transformations: horizontal and vertical flipping, rotation, Gaussian blurring,
contrast/saturation/brightness enhancements, random affine, and perspective
transforms. For the optimization, we use the Adam optimizer with a learning
rate of 10−5, (β1,β2)=(0.9,0.999). Due to the class imbalance, an independent
batch generator is used to ensure that each of the classes is represented during
training.

A mini-batch size of 16 (7 benign/9 pre-malignant) images is used and a the
data is shuffled after each epoch. The training iteration ends when all benign
images are seen once by the network. The experiments are implemented using
the PyTorch framework and executed on a GeForce RTX 2080 Ti. To train the
different hybrid BNN model variations, we perform multiple stochastic forward
passes on the final (1–3) FC variational layers with Monte Carlo sampling on the
weight posterior distributions. In our experiments, for a better generalization
of the model, 10 forward passes provide reliable estimates. Subsequently, the
predictive mean is obtained by averaging the confidence estimates from inference
passes.

3.2 Calibration-performance Assessment

In order to verify the ability of the BNN to provide reliable confidence measures,
we visualize and compare the calibration performance of the BNN with the DNN
by using reliability diagrams. In these diagrams, the degree of miscalibration
can be assessed by the gap between the plotted accuracy and the ideal diagonal.
A high calibration performance can be achieved when the bin accuracy aligns
closely with the ideal diagonal (expected accuracy). Figure 2 shows the reliability
diagrams of the BNN, DNN, and the calibrated DNN with temperature scaling.
The Green/Red bars indicate the Under/Over-Confidence, respectively. It can
be observed that the BNN is better calibrated, as the achieved accuracies of
the bins better approximate the expected accuracies (i.e. the bars align closer
along the ideal diagonal). For the DNN and the calibrated DNN, the reliability
diagrams show larger gaps between the achieved and the expected accuracies,
especially for the higher confidence values.

Using the introduced calibration measures, a more quantitative comparison
of the calibration performance of the three networks is achieved. Table 1 demon-
strates a lower MCE of 0.2539 for the BNN compared to 0.2654 for the DNN,
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Fig. 2. Reliability diagrams for (left) the BNN, (center) the DNN, and (right) the
calibrated DNN with temperature scaling.

Table 1. Calibration performance comparison for various experimented networks.

Network ECE MCE ACE OE

Bayesian network (BNN) 0.1699 0.2539 0.1296 0.0753

Deterministic network (DNN) 0.2255 0.2910 0.1721 0.0978

Calibrated deterministic network (Cal. DNN) 0.1870 0.2654 0.1388 0.0758

and 0.2910 for the calibrated DNN. In addition, the BNN network is able to
achieve lower error rates using other calibration measures compared to the DNN
as well as the calibrated DNN with the temperature scaling technique.

3.3 Model Performance Comparison

We evaluate our Bayesian and Deterministic models on the CRP dataset. In
Table 2, a comparison of the obtained classification accuracy, Sensitivity, Speci-
ficity, area under curve (AUC), negative predictive value (NPV), and positive
predictive value (PPV) on the test dataset are presented for each of the networks.
The results show a very similar overall performance between the two networks,
with most of the employed metrics exhibiting only a negligible difference.

3.4 Generalization and Robustness to Over-Fitting Assessment

In another experiment, we investigate the effect of increasing the Bayesian level
of the deterministic network, by gradually replacing each of the FC layers of
the Deterministic network by a Flipout variational layer, and obtain a network
with increasingly more Bayesian layers (see Fig. 1 (b)–(d)), and finally obtain a
network with 3 Bayesian FC layers. We have compared various versions of this

Table 2. Bayesian vs. Deterministic neural network performance assessment.

Network Phase Acc. Sens. Spec. AUC NPV PPV

Bayesian network (BNN) Test 84.10 90.55 61.40 0.89 64.81 89.22

Deterministic network (DNN) Test 84.88 90.05 66.67 0.89 65.52 90.50
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Fig. 3. Comparison of the F1-score during training and validation phase for (left) the
Bayesian (BNN) and the Deterministic (DNN) networks, and (right) the different levels
of hybridization for the Bayesian network.

hybrid BNN, in terms of F1-score of the training and validation phase and the
result is available in Fig. 3 at the right. As demonstrated by the plots, the DNN
shows a drop in validation F1-score as the training process advances, which shows
that the model is over-fitting on the training data. On the other hand, the hybrid
network with 3 Bayesian layers obtains a higher validation F1-score regarding its
training F1-score and, therefore, offers a better generalized performance. Another
important observation is that both networks with 1 and 2 Bayesian layers have a
similar performance as the DNN, while experiencing the over-fitting problem to
a lower degree. This possibly indicates the insufficiency of the Bayesian effect of
the networks. It can be noticed that the network with 3 Bayesian layers (BNN)
is capable of achieving comparable validation F1-score and expresses a better
robustness towards over-fitting.

4 Discussion and Conclusion

Both an optimal clinical workflow integration and the physician-AI collaboration
necessitate a reliable CADx system that is capable of capturing an accurate and
well-calibrated classification confidence. In this regard, we incorporate Bayesian
variational inference and investigate the performance of a hybrid Bayesian neural
network architecture for the characterization of CRPs. The presented quantita-
tive and qualitative results demonstrate that the BNN is capable of expressing
reliable uncertainty measures and better calibrated classification confidence com-
pared to a peer Deterministic network. Furthermore, the hybrid BNN approach
is able to outperform a temperature-scaling calibrated DNN and provides lower
calibration errors. Moreover, it alleviates the need for an additional calibration
data set. A further hybridization experiment, based on replacing output layers
with Bayesian variational layers, shows that the best performance is obtained
by using 3 Bayesian layers. The better generalization property and being less
prone to over-fitting, makes BNNs a suitable choice for small datasets. However,
dealing with imbalanced classes can be an important challenge that should be
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further investigated. Bayesian networks are generally slower and have high mem-
ory consumption during training due to the required sampling for inference, and
are heavily reliable on the prior distribution initialization for achieving a good
predictive accuracy. This opens an interesting direction for future work, inves-
tigating whether assigning class-specific prior distributions can be beneficial for
classes with less data availability.
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