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Prof. dr. P. Habibović and Prof. dr. J. Wang

in accordance with the decision of the Board of Deans,
to be defended in public

on Tuesday 27th of September 2022, at 10.00 hours

by

Doudou Gong



Supervisor
Prof. dr. H.J.M. Peters

Co-supervisor
Dr. B.J. Dietzenbacher

Assessment Committee
Prof. dr. A.J. Vermeulen (Chair)
Prof. dr. J.R. van den Brink (VU University Amsterdam)
Dr. A. Perea
Dr. M. Quant (Tilburg University)
Prof. dr. H. Sun (Northwestern Polytechnical University)

© Doudou Gong, Maastricht 2022.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of the author.

Production & Cover ProefschriftMaken || www.proefschriftmaken.nl
ISBN 978-94-6423-911-9



Contents

1 Introduction 1

2 Two-bound core games 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 The nucleolus . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 The egalitarian core . . . . . . . . . . . . . . . . . . . . 30
2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . 35

3 Reduced two-bound core games 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Reduced games and axiomatization of the core . . . . . 42
3.4 Axiomatization of the nucleolus . . . . . . . . . . . . . 45
3.5 Axiomatization of the egalitarian core . . . . . . . . . . 47
3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . 49

4 Mechanisms for bankruptcy problems 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 The divide-and-choose game . . . . . . . . . . . . . . . 58
4.4 The divide-and-object game . . . . . . . . . . . . . . . . 70
4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . 77

5 Mechanisms for division problems with single-dipped pref-
erences 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Nash equilibrium . . . . . . . . . . . . . . . . . . . . . . 88



Contents

5.4 Pareto optimal Nash equilibrium, strong equilibrium,
implementation, and the single-peaked case . . . . . . 94

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . 106

Bibliography 107

Impact of the thesis 115

Summary 117

Acknowledgments 119

About the author 121



1
Introduction

Game Theory is an extremely valuable subject that studies broad co-
operation and conflict among rational and intelligent decision mak-
ers, who are also referred to as players or agents. Rationality implies
that players choose their strategies so as to maximize their individ-
ual payoffs, and intelligence means that players are capable to deduce
their best strategies. Since the fundamental book entitled Theory of
Games and Economic Behavior (von Neumann and Morgenstern, 1944)
was published, game theory has become a key ingredient in the areas
of Economics, Computer Science, Biology, Engineering, Operations Re-
search and so forth. Generally, game theory is classified into two parts:
cooperative game theory and non-cooperative game theory. This thesis
has topics from both parts.

In the first two chapters after the Introduction, we focus on cooperative
games. In the theory of cooperative games (with transferable utility),
players collaborate in coalitions to generate profits. Cooperative game
theory analyzes how to allocate profits generated by the grand coali-
tion among the players in a fair way, and provides several significant
solution concepts. Among the central solution concepts are the core,
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Chapter 1. Introduction

the egalitarian core (Arin and Iñarra, 2001), the Shapley value (Shap-
ley, 1953), and the nucleolus (Schmeidler, 1969). These solutions can be
studied in a class of cooperative games with the same structure, such
as the class of convex games (Shapley, 1971) and the class of balanced
games (Bondareva, 1963). On the one hand, the relations of these solu-
tions and equivalent expressions of these solutions for a specific class
are explored. On the other hand, inspired by Shapley (1953), these so-
lutions can be characterized using the axiomatic method. Given some
desirable properties of solutions, a solution is axiomatically character-
ized if it uniquely satisfies a combination of independent properties.
In this thesis, a new class of cooperative games is introduced, called
two-bound core games, where the core is nonempty and can be de-
scribed by a lower bound and an upper bound on the pre-imputations.
We show that the core of each two-bound core game can be described
equivalently by the pair of exact core bounds, which are defined by
the minimum and maximum individual payoffs within the core. Then,
three possible cases are presented to stretch the exact core bounds of
a two-bound core game while retaining the core description. We also
show that all Davis-Maschler reduced games of two-bound core games
with respect to core elements are two-bound core games, and the core
of these reduced games can be described by the same pair of bounds.
Moreover, new equivalent expressions of the nucleolus and the egali-
tarian core of two-bound core games in terms of the exact core bounds
are provided, and new axiomatic characterizations for the core, the
nucleolus and the egalitarian core are given by associated reduced
game properties. Interestingly, the egalitarian core for two-bound core
games is a single-valued solution.

Next, we focus on non-cooperative games. Non-cooperative game the-
ory analyzes the strategies of players under the condition that binding
agreements are not possible. A (weakly) dominant strategy of a player
means that playing this strategy is at least as good as any other strat-
egy, regardless of the strategies chosen by the other players. A Nash
equilibrium (Nash, 1951) is a profile of strategies where each player’s
strategy is a best response against the Nash equilibrium strategies of
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the other players. So, in a Nash equilibrium, each player will not be
better off by individually deviating from it. A strong equilibrium (Au-
mann, 1959) is a strategy profile where no coalition can profitably de-
viate from it. Note that all dominant strategy equilibria and all strong
equilibria are Nash equilibria.

Mechanism design, as a valuable tool to analyze actions among play-
ers, can be used to deal with various economic and social issues includ-
ing division problems. Specifically, a mechanism applied to a division
problem induces a non-cooperative game, where individual players
act strategically. Therefore, a Nash equilibrium outcome can be re-
garded as an allocation among players. In this sense, mechanism de-
sign can be used to implement allocations for division problems. Con-
versely, given a mechanism, it can be studied what allocations are ob-
tained in equilibrium for an arbitrary division problem. In this thesis,
a few mechanisms are designed to solve two kinds of division prob-
lems: bankruptcy problems and division problems with single-dipped
preferences.

Based on a sequential partition method, a divide-and-choose mech-
anism and a divide-and-object mechanism are designed to deal with
bankruptcy problems. We show that the unique Nash equilibrium out-
come of the corresponding non-cooperative game is the allocation of
the constrained equal awards rule. This implies that we give a new
non-cooperative interpretation of the constrained equal awards rule
for bankruptcy problems.

Then a mechanism, which allocates one unit of an infinitely divisible
commodity among agents reporting a number between zero and one,
is considered to solve division problems with single-dipped prefer-
ences. When the mechanism is anonymous, monotonic, standard and
order-preserving, the Pareto optimal Nash and strong equilibria coin-
cide and assign Pareto optimal allocations that are characterized by
so-called maximal coalitions: non-involved agents prefer getting zero
over an equal coalition share, whereas for agents in the coalition the
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Chapter 1. Introduction

opposite holds. Pareto optimality means that there is no other alloca-
tion which is as good as a desired allocation for everyone and strictly
better for at least one player.

Overview

This dissertation is organized as follows.

In Chapter 2, we introduce the new class of two-bound core games, where
the core can be described by a lower bound and an upper bound on
the payoffs of the players. Many classes of games turn out to be two-
bound core games. We show that the core of each two-bound core
game can be described equivalently by the pair of exact core bounds,
and study to what extent the exact core bounds can be stretched while
retaining the core description. We provide explicit expressions of the
nucleolus for two-bound core games in terms of all pairs of bounds
describing the core, using the Talmud rule for bankruptcy problems.
We also show that the egalitarian core for two-bound core games is
a single-valued solution, and provide an explicit expression in terms
of the exact core bounds. Moreover, we study to what extent these
expressions are robust against game changes.

In Chapter 3, we study Davis-Maschler reduced games of two-bound
core games and show that all these reduced games with respect to core
elements are two-bound core games with the same pair of bounds.
Based on associated reduced game properties, we axiomatically char-
acterize the core, the nucleolus, and the egalitarian core for two-bound
core games.

In Chapter 4, we design two mechanisms for bankruptcy problems
based on a sequential partition method. The idea of this method is that
claimants gather and partition the estate in a given order. Given the as-
cending order of claims, we design the divide-and-choose mechanism by
combining sequential partition with the reversal selection process, and
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design the divide-and-object mechanism by combining sequential par-
tition with the bilateral objection process. For each non-cooperative
game induced by our mechanisms for bankruptcy problems, we show
that the unique Nash equilibrium outcome is consistent with the allo-
cation of the constrained equal awards rule.

In Chapter 5, a mechanism is designed for division problems with
single-dipped preferences, which allocates one unit of an infinitely di-
visible commodity among agents reporting a number between zero
and one. Nash, Pareto optimal Nash, and strong equilibria are ana-
lyzed for the games induced by such a mechanism. One of the main
results is that when the mechanism is anonymous, monotonic, stan-
dard and order-preserving, then the Pareto optimal Nash and strong
equilibria coincide and assign Pareto optimal allocations that are char-
acterized by so-called maximal coalitions: non-involved agents prefer
getting zero over an equal coalition share, whereas for agents in the
coalition the opposite holds.
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2
Two-bound core games

Adapted from: Gong, D., B. Dietzenbacher, and H. Peters. Two-bound
core games and the nucleolus. WorkingPaper 020. Maastricht University,
Graduate School of Business and Economics, 2021.
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2.1 Introduction

In the theory of cooperative games (with transferable utility), players
collaborate in coalitions to generate profits. Cooperative game the-
ory analyzes how to allocate profits generated by the grand coalition
among the players in a fair way, and provides several significant solu-
tion concepts.

A central solution concept is the core, which consists of all coalitionally
stable pre-imputations, that is, no coalition will obtain more by devi-
ating from cooperation in the grand coalition. Bondareva (1963) and
Shapley (1967) showed that the core is nonempty if and only if the cor-
responding cooperative game is balanced. Other important solution
concepts are the nucleolus (Schmeidler, 1969), which lexicographically
minimizes the excesses of coalitions, and the egalitarian core (Arin and
Iñarra, 2001), which assigns all core allocations from which no other
core allocation can be obtained by a transfer from a richer to a poorer
player. The nucleolus and the egalitarian core select from the core in
each balanced game.

Quant et al (2005) studied the class of compromise stable games where
the core coincides with the core cover (Tijs and Lipperts, 1982), and
provided an explicit expression of the nucleolus for this class using
the Talmud rule for bankruptcy problems. The core cover is the set
of pre-imputations between a specific pair of bounds. In this chapter,
we generalize the approach of Quant et al (2005) to all games where
the core equals the set of pre-imputations between an arbitrary pair of
bounds, which we call two-bound core games.

We show that the core of each two-bound core game can be described
equivalently by the pair of exact core bounds (Bondareva and Driessen,
1994), which are defined by the minimum and maximum individual
payoffs within the core. Inspired by Quant et al (2005), we provide
conditions to check whether a game is a two-bound core game, and
describe the extreme points of the core for each such game. All bal-
anced games with at most three players are two-bound core games,
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Chapter 2. Two-bound core games

but this does not hold for more players.

We study to what extent the exact core bounds of a two-bound core
game can be stretched while retaining the core description. It turns
out that only three possible cases exist. In the first case, only the lower
bounds are decreased for players who obtain their lower exact core
bounds when all other players obtain their upper exact core bounds,
while keeping all other bounds fixed. In the second case, only the up-
per bounds are increased for players who obtain their upper exact core
bounds when all other players obtain their lower exact core bounds,
while keeping all other bounds fixed. In the third case, both the lower
bound is decreased and the upper bound is increased for only a single
player who obtains the lower exact core bound when all other players
obtain their upper exact core bounds and obtains the upper exact core
bound when all other players obtain their lower exact core bounds.

In line with Quant et al (2005), we provide an explicit expression of the
nucleolus for two-bound core games in terms of the exact core bounds
using the Talmud rule. In fact, the nucleolus of these games can be
equivalently expressed by each pair of bounds describing the core.
Then, we show that the egalitarian core for two-bound core games is
single-valued, and we provide an explicit expression of it in terms of
the exact core bounds. Finally, we study to what extent these expres-
sions are robust against game changes.

The remainder of this chapter is organized as follows. Section 2.2 intro-
duces preliminary definitions and notation about cooperative games
and bankruptcy problems. In Section 2.3, we formally introduce two-
bound core games. The nucleolus and the egalitarian core for two-
bound core games are studied in Sections 2.4 and 2.5, respectively. Fi-
nally, we conclude this chapter with some remarks in Section 2.6.
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2.2 Preliminaries

Let N be a nonempty and finite set of players and let 2N be the collec-
tion of all subsets of N . An order of N is a bijection σ : {1, . . . , |N |} →
N , where |N | denotes the cardinality of N , and σ(i) represents the
player at position i. The set of all orders of N is denoted by Π(N).
Denote by R+ the set of all non-negative real numbers.

Let x, y ∈ RN . We denote x + y = (xi + yi)i∈N , x − y = (xi − yi)i∈N ,
and λx = (λxi)i∈N for all λ ∈ R. Moreover, x ≥ y denotes xi ≥ yi for
all i ∈ N , and x > y denotes xi > yi for all i ∈ N . The notations ≤ and
< are defined analogously. We denote

[x, y] =
{
z ∈ RN

∣∣ x ≤ z ≤ y
}
.

A cooperative game with transferable utility (a game, for short) is a pair
(N, v), where v : 2N → R is the characteristic function with v(∅) = 0,
representing the worth v(S) for each coalition S ⊆ N when the players
in S cooperate. The set of all games with player set N is denoted by
ΓN . For simplicity, we write v ∈ ΓN rather than (N, v) ∈ ΓN .

Let v ∈ ΓN . The pre-imputation set of v is

X(v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N)

}
,

the imputation set of v is

I(v) = {x ∈ X(v) | ∀i ∈ N : xi ≥ v({i})} ,

and the core of v is

C(v) =

{
x ∈ X(v)

∣∣∣∣∣ ∀S ⊆ N :
∑
i∈S

xi ≥ v(S)

}
.

Note that C(v) ⊆ I(v) ⊆ X(v), and C(λv + a) = λC(v) + a for all
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Chapter 2. Two-bound core games

λ ∈ R+ and a ∈ RN , where λv + a ∈ ΓN is defined by (λv + a)(S) =
λv(S) +

∑
i∈S ai for all S ⊆ N .

Bondareva (1963) and Shapley (1967) showed that a game v ∈ ΓN is
balanced if and only if C(v) ̸= ∅. The set of all balanced games with
player set N is denoted by ΓN

b . A game v ∈ ΓN is convex (Shapley,
1971) if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N . The set of
all convex games with player set N is denoted by ΓN

c . It is known that
ΓN
c ⊆ ΓN

b ⊆ ΓN .

A solution φ on a domain of games assigns to each game v in this do-
main a nonempty set φ(v) ⊆ X(v). A solution φ on a domain of games
is single-valued if |φ(v)|= 1 for each v in this domain. For a single-
valued solution φ on a domain of games and a game v in this domain,
φ(v) is often identified with its unique element.

The egalitarian core (Arin and Iñarra, 2001) is the solution EC that as-
signs to each game v ∈ ΓN the set

EC(v) =
{
x ∈ C(v)

∣∣ ∀i,j∈N :xi>xj : s
x
ij(v) = 0

}
,

where for all i, j ∈ N with i ̸= j and all x ∈ RN ,

sxij(v) = max
S∈2N :i∈S,j /∈S

{
v(S)−

∑
k∈S

xk

}
.

The egalitarian core consists of all core elements from which no other
core element can be obtained by a transfer from a richer to a poorer
player.

The nucleolus (Schmeidler, 1969) is the solution η that assigns to each
game v ∈ ΓN with I(v) ̸= ∅ the unique imputation x ∈ I(v) satisfying
θ(x) ≼ θ(y) for all y ∈ I(v), where θ(x) ∈ R2|N|−2 is the vector of ex-
cesses v(S)−

∑
i∈S xi for all S ∈ 2N \{N, ∅} arranged in non-increasing

order, i.e., θk(x) ≥ θℓ(x) for all 1 ≤ k < ℓ ≤ 2|N | − 2, and θ(x) ≼ θ(y) if
there exists 1 ≤ t ≤ 2|N | − 2 such that θt(x) < θt(y) and θk(x) = θk(y)
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for all 1 ≤ k < t, or θ(x) = θ(y). It is easy to see that η(v) ∈ C(v) for all
v ∈ ΓN

b , and η(λv + a) = λη(v) + a for all λ ∈ R+ and a ∈ RN .

A bankruptcy problem is a triple (N,E, c), where E ∈ R+ is the estate to
be divided and c ∈ RN

+ is the vector of claims satisfying
∑

i∈N ci ≥ E.
The set of all bankruptcy problems with player set N is denoted by
BN . For simplicity, we write (E, c) ∈ BN rather than (N,E, c) ∈ BN .

A bankruptcy rule f : BN → RN
+ assigns to each bankruptcy problem

(E, c) ∈ BN a payoff vector f(E, c) ∈ RN
+ such that

∑
i∈N fi(E, c) =

E and fi(E, c) ≤ ci for all i ∈ N . A bankruptcy rule f is self-dual
(Aumann and Maschler, 1985) if for all (E, c) ∈ BN ,

f(E, c) = c− f

(∑
i∈N

ci − E, c

)
.

A bankruptcy rule f is invariant under claims truncation if for all (E, c) ∈
BN ,

f(E, c) = f (E, (min{ci, E})i∈N ) .

The Talmud (TAL) rule assigns to each bankruptcy problem (E, c) ∈ BN

and each player i ∈ N ,

fTAL
i (E, c) =


min {ci/2, λ} if

∑
i∈N

ci ≥ 2E,

max {ci/2, ci − λ} if
∑
i∈N

ci < 2E,

where λ ∈ R is such that
∑

i∈N fTAL
i (E, c) = E.

Aumann and Maschler (1985) showed that the Talmud rule is self-dual
and invariant under claims truncation.

The bankruptcy game (O’Neill, 1982) vE,c ∈ ΓN associated to bankruptcy
problem (E, c) ∈ BN assigns to each coalition S ⊆ N the residual estate

13



Chapter 2. Two-bound core games

after all other claims have been satisfied, i.e.,

vE,c(S) = max

0, E −
∑

i∈N\S

ci

 .

Curiel et al (1987) showed that bankruptcy games are convex games.
Aumann and Maschler (1985) showed that for each bankruptcy prob-
lem, the payoff vector assigned by the Talmud rule coincides with the
nucleolus of the corresponding bankruptcy game.

2.3 The model

In this section, we introduce two-bound core games, where the core
equals the set of pre-imputations between a lower bound and an upper
bound. Let v ∈ ΓN . Given l, u ∈ RN , the l,u-efficient set of v

[l, u] ∩X(v)

consists of all pre-imputations between lower bound l and upper
bound u, i.e., it is the intersection of the pre-imputation set and the
|N |-dimensional hypercube restricted by l and u, so it is a convex set.
If this set is nonempty, then its extreme points can be described as
follows. Similar to Quant et al (2005), we define ml,u,σ(v) ∈ RN for all
σ ∈ Π(N) and all k ∈ {1, . . . , |N |} by

ml,u,σ
σ(k) (v) =



uσ(k) if
k∑

j=1
uσ(j) +

|N |∑
j=k+1

lσ(j) ≤ v(N),

lσ(k) if
k−1∑
j=1

uσ(j) +
|N |∑
j=k

lσ(j) ≥ v(N),

v(N)−
k−1∑
j=1

uσ(j) −
|N |∑

j=k+1

lσ(j) otherwise.

14



Thus, ml,u,σ(v) assigns to the first players in σ their upper bound pay-
offs in such a way that the last players in σ are assigned their lower
bound payoffs. The pivot player of ml,u,σ(v) is the first player in σ
who is not assigned the upper bound payoff. If all the players receive
their upper bound payoffs, then the last player is the pivot player of
ml,u,σ(v). These definitions are straightforward generalizations of con-
cepts in Quant et al (2005) to arbitrary lower and upper bounds, which
can be used to describe the l,u-efficient set.

Lemma 2.1
Let v ∈ ΓN and let l, u ∈ RN be such that [l, u] ∩X(v) ̸= ∅. Then

[l, u] ∩X(v) = conv
{
ml,u,σ(v)

∣∣∣ σ ∈ Π(N)
}
.

Proof. In view of ml,u,σ(v) ∈ [l, u] ∩ X(v) for all σ ∈ Π(N), together
with the convexity of [l, u] ∩X(v) and conv{ml,u,σ(v) | σ ∈ Π(N)}, we
have

conv
{
ml,u,σ(v)

∣∣∣ σ ∈ Π(N)
}
⊆ [l, u] ∩X(v).

Let x ∈ RN be an arbitrary extreme point of [l, u] ∩X(v), i.e., for each
0 < λ < 1 and all y, z ∈ [l, u] ∩ X(v), λy + (1 − λ)z = x implies that
x = y = z. We claim that there exists at most one player i ∈ N such
that li < xi < ui and [xj = lj or xj = uj for all j ∈ N \ {i}]. Assume, to
the contrary, that there exist i, j ∈ N with i ̸= j such that li < xi < ui
and lj < xj < uj . Let 0 < ε < min{xi− li, ui−xi, xj − lj , uj −xj}, let x′

be defined by x′i = xi+ ε, x′j = xj − ε and x′k = xk for all k ∈ N \ {i, j},
and let x′′ be defined by x′′i = xi − ε, x′′j = xj + ε and x′′k = xk for all
k ∈ N \ {i, j}. Then x′, x′′ ∈ [l, u] ∩ X(v) and x = 1

2x
′ + 1

2x
′′, which

contradicts the fact that x is an extreme point of [l, u] ∩X(v).

If xi = li or xi = ui for all i ∈ N , then it holds that x = ml,u,σ(v) for all
σ ∈ Π(N) such that xσ(k) = uσ(k) if and only if k ≤ |{i ∈ N | xi = ui}|.
If there exists i ∈ N such that li < xi < ui and [xj = lj or xj = uj for
all j ∈ N \ {i}], then it holds that x = ml,u,σ(v) for all σ ∈ Π(N) such
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Chapter 2. Two-bound core games

that [xσ(k) = uσ(k) if and only if k ≤ |{j ∈ N | xj = uj}|] and σ(|{j ∈
N | xj = uj}|+1) = i. Again with the convexity of [l, u] ∩ X(v) and
conv{ml,u,σ(v) | σ ∈ Π(N)}, we have [l, u] ∩ X(v) ⊆ conv{ml,u,σ(v) |
σ ∈ Π(N)}.

The l,u-efficient set and the core are both convex subsets of the pre-
imputation set. We are interested in l,u-efficient sets that contain the
core. Many well-known sets are of this type, such as the imputation
set and the core cover (Tijs and Lipperts, 1982).

Example 2.1
Let v ∈ ΓN . Define l, u ∈ RN by

li = v({i}) and ui = v(N)−
∑

j∈N\{i}

v({j})

for all i ∈ N . Then [l, u] ∩X(v) = I(v), so the l,u-efficient set contains
the core. △

Example 2.2
Let v ∈ ΓN . Define l, u ∈ RN by

li = v({i}) and ui = v(N)− v(N \ {i})

for all i ∈ N . Then C(v) ⊆ [l, u]∩X(v), i.e., the l,u-efficient set contains
the core. △

Example 2.3
Let v ∈ ΓN . Define l, u ∈ RN by

li = max
S∈2N :i∈S

v(S)−
∑

j∈S\{i}

(v(N)− v(N \ {j}))

 and

ui = v(N)− v(N \ {i})

16



for all i ∈ N . Then [l, u]∩X(v) defines the core cover (Tijs and Lipperts,
1982), which contains the core. Quant et al (2005) defined compromise
stable games as games where the core cover coincides with the core.

△

To check whether a core-containing l,u-efficient set coincides with the
core, we only need to verify a specific inequality for each nonempty
coalition.

Theorem 2.1
Let v ∈ ΓN

b and let l, u ∈ RN be such that C(v) ⊆ [l, u]. Then C(v) =
[l, u] ∩X(v) if and only if for each S ∈ 2N \ {∅},

v(S) ≤ max

∑
i∈S

li, v(N)−
∑

i∈N\S

ui

 . (2.1)

Proof. For the only-if part, assume that C(v) = [l, u] ∩ X(v). Then,
according to Lemma 2.1, we have ml,u,σ(v) ∈ C(v) for all σ ∈ Π(N).
Let S ∈ 2N \ {∅} and consider σ∗ ∈ Π(N) such that σ∗(k) ∈ N \ S for
all k ∈ {1, . . . , |N \S|}. If the pivot player of ml,u,σ∗

(v) is an element of
N \ S, then ml,u,σ∗

i (v) = li for all i ∈ S, so

v(S) ≤
∑
i∈S

ml,u,σ∗

i (v) =
∑
i∈S

li.

If the pivot player of ml,u,σ∗
(v) is an element of S, then ml,u,σ∗

i (v) = ui
for all i ∈ N \ S, so

v(S) ≤
∑
i∈S

ml,u,σ∗

i (v) = v(N)−
∑

i∈N\S

ml,u,σ∗

i (v) = v(N)−
∑

i∈N\S

ui.

Combining these two cases, we obtain expression (2.1).

For the if-part, assume that expression (2.1) holds for all S ∈ 2N \
{∅}. We only need to prove that [l, u] ∩ X(v) ⊆ C(v). In view of the

17
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convexity of the core, together with Lemma 2.1, it suffices to show that
ml,u,σ(v) ∈ C(v) for all σ ∈ Π(N). For all S ∈ 2N\{∅} and all σ ∈ Π(N),

v(S) ≤max

∑
i∈S

li, v(N)−
∑

i∈N\S

ui


≤max

∑
i∈S

ml,u,σ
i (v), v(N)−

∑
i∈N\S

ml,u,σ
i (v)

 =
∑
i∈S

ml,u,σ
i (v).

Hence, ml,u,σ(v) ∈ C(v) for all σ ∈ Π(N).

Theorem 2.1 generalizes the work of Quant et al (2005), where this re-
sult was proven for the specific pair of bounds in Example 2.3. If the
l,u-efficient set does not contain the core, then expression (2.1) may
hold even when the core does not coincide with the l,u-efficient set.
This is shown by the following example.

Example 2.4
Let N = {1, 2} and let v ∈ ΓN be given by v({1}) = 1, v({2}) = 2
and v(N) = 4. Define l, u ∈ RN by l1 = u1 = 3

2 and l2 = u2 =
5
2 . It is easy to verify that expression (2.1) holds for each nonempty
coalition. However, C(v) = {x ∈ RN | x1 + x2 = 4, x1 ≥ 1, x2 ≥ 2} and
[l, u] ∩X(v) = {(32 ,

5
2)}. Clearly, C(v) ̸= [l, u] ∩X(v). △

We focus on games where the core coincides with some l,u-efficient set.
These games are called two-bound core games.

Definition 2.1
A game v ∈ ΓN

b is a two-bound core game if there exist l, u ∈ RN such
that

C(v) = [l, u] ∩X(v).

18



The set of all two-bound core games with player set N is denoted by
ΓN
t . It is worthwhile mentioning that many classical games are two-

bound core games. For example, additive games, unanimity games,
bankruptcy games (O’Neill, 1982), 1-convex games (Driessen, 1985),
big boss games (Muto et al, 1988), clan games (Potters et al, 1989), com-
promise stable games (Quant et al, 2005) and reasonable stable games
(Dietzenbacher, 2018).

It turns out that the core of each two-bound core game can be described
by the following specific pair of bounds. Let v ∈ ΓN

b . The lower exact
core bound is defined by

l∗i (v) = min
x∈C(v)

xi for all i ∈ N.

The upper exact core bound is defined by

u∗i (v) = max
x∈C(v)

xi for all i ∈ N.

Computational aspects of the lower and upper exact core bounds were
studied by Bondareva and Driessen (1994).

Lemma 2.2
A game v ∈ ΓN

b is a two-bound core game if and only if

C(v) = [l∗(v), u∗(v)] ∩X(v).

Proof. The if-part follows directly from the definition of two-bound
core games. For the only-if part, assume that C(v) = [l, u] ∩ X(v)
for some l, u ∈ RN . Then li ≤ l∗i (v) and ui ≥ u∗i (v) for all i ∈ N ,
so [l∗(v), u∗(v)] ⊆ [l, u]. Together with C(v) ⊆ [l∗(v), u∗(v)] ∩ X(v), it
follows that C(v) ⊆ [l∗(v), u∗(v)]∩X(v) ⊆ [l, u]∩X(v) = C(v). Hence,
C(v) = [l∗(v), u∗(v)] ∩X(v).

All balanced games with at most three players are two-bound core
games, but this does not hold for more players.

19



Chapter 2. Two-bound core games

Proposition 2.1
ΓN
t = ΓN

b if and only if |N | ≤ 3.

Proof. Let v ∈ ΓN
b with |N | = 2. Then it can be seen directly that

v ∈ ΓN
t since l∗i (v) = v({i}) and u∗i (v) = v(N)−v(N \{i}) for all i ∈ N ,

which implies that v(S) ≤ max{
∑

i∈S l∗i (v), v(N) −
∑

i∈N\S u∗i (v)} for
all S ∈ 2N \ {∅}, so Theorem 2.1 applies.

Let v ∈ ΓN
b with |N |= 3. For all i ∈ N ,

v({i}) ≤ l∗i (v) ≤ max

l∗i (v), v(N)−
∑

j∈N\{i}

u∗j (v)

 .

For all S ∈ 2N with |S|= 2,

v(S) ≤ v(N)−
∑

i∈N\S

u∗i (v) ≤ max

∑
i∈S

l∗i (v), v(N)−
∑

i∈N\S

u∗i (v)

 .

Hence, v ∈ ΓN
t by Theorem 2.1.

Let v ∈ ΓN
b with |N |> 3 be defined by v(N) = 3, v({i, j}) = 1 for

distinct i, j ∈ N and v(S) = 0 otherwise. Then l∗k(v) = 0 for all k ∈ N ,
u∗i (v) = u∗j (v) = 3, and u∗k(v) = 2 for all k ∈ N \ {i, j}. This implies
that

v({i, j}) = 1 > 0 + 0 = l∗i (v) + l∗j (v)

and

v({i, j}) = 1 > 3− 2(|N |−2) = v(N)−
∑

k∈N\{i,j}

u∗k(v).

Hence, v /∈ ΓN
t by Theorem 2.1 and Lemma 2.2.

In what follows next, we study to what extent the exact core bounds
of a two-bound core game can be stretched while retaining the core
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description. It turns out that the exact core bounds can be stretched in
only three different ways.

Proposition 2.2
Let v ∈ ΓN

t . If there exist l, u ∈ RN with [l, u] ̸= [l∗(v), u∗(v)] such that
C(v) = [l, u] ∩X(v), then exactly one of the following cases holds:

(i) l ≤ l∗(v) and u = u∗(v),

(ii) l = l∗(v) and u ≥ u∗(v),

(iii) there exists i ∈ N such that li < l∗i (v), ui > u∗i (v), and lj = l∗j (v) and
uj = u∗j (v) for all j ∈ N \ {i}.

Proof. In view of l ≤ l∗(v) and u ≥ u∗(v), it suffices to prove that if
l ̸= l∗(v) and u ̸= u∗(v), then case (iii) arises. Assume to the contrary
that there exist i, j ∈ N with i ̸= j such that li < l∗i (v) and uj > u∗j (v).
Let x ∈ C(v). Define x′ by x′i = xi − ε, x′j = xj + ε and x′k = xk
for all k ∈ N \ {i, j}, where ε = min{xi − li, uj − xj} ≥ min{l∗i (v) −
li, uj − u∗j (v)} > 0. Then x′ ∈ [l, u] ∩ X(v), but x′ /∈ C(v) in view of
x′i = li < l∗i (v) or x′j = uj > u∗i (v). So, C(v) ̸= [l, u] ∩X(v), which is a
contradiction.

Moreover, we show that the first case in Proposition 2.2 arises only if
the players whose lower bounds are decreased obtain their lower ex-
act core bounds when all other players obtain their upper exact core
bounds. The second case in Proposition 2.2 arises only if the play-
ers whose upper bounds are increased obtain their upper exact core
bounds when all other players obtain their lower exact core bounds.
The third case in Proposition 2.2 arises only if the player whose exact
core bounds are stretched obtains the lower exact core bound when all
other players obtain their upper exact core bounds and obtains the up-
per exact core bound when all other players obtain their lower exact
core bounds.
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Chapter 2. Two-bound core games

Theorem 2.2
Let v ∈ ΓN

t and let l, u ∈ RN . Then the following statements hold:

(i) If l ≤ l∗(v) and u = u∗(v), then C(v) = [l, u] ∩X(v) if and only if

v(N) = l∗i (v) +
∑

j∈N\{i}

u∗j (v) for all i ∈ N with li < l∗i (v).

(ii) If l = l∗(v) and u ≥ u∗(v), then C(v) = [l, u] ∩X(v) if and only if

v(N) = u∗i (v) +
∑

j∈N\{i}

l∗j (v) for all i ∈ N with ui > u∗i (v).

(iii) If there exists i ∈ N such that li < l∗i (v), ui > u∗i (v), and lj = l∗j (v)
and uj = u∗j (v) for all j ∈ N \ {i}, then C(v) = [l, u] ∩X(v) if and
only if

u∗i (v) +
∑

j∈N\{i}

l∗j (v) = v(N) = l∗i (v) +
∑

j∈N\{i}

u∗j (v). (2.2)

Proof. (i) For the only-if part, assume that C(v) = [l, u] ∩X(v), where
l ≤ l∗(v) and u = u∗(v). We show that v(N) = l∗i (v) +

∑
j∈N\{i} u

∗
j (v)

for all i ∈ N with li < l∗i (v). Assume, to the contrary, that there exists
i ∈ N with li < l∗i (v) such that v(N) ̸= l∗i (v) +

∑
j∈N\{i} u

∗
j (v). Let

x ∈ C(v) be such that xi = l∗i (v). Then we have

v(N) = xi +
∑

j∈N\{i}

xj < l∗i (v) +
∑

j∈N\{i}

u∗j (v).

It follows that there exists j ∈ N \ {i} such that xj < u∗j (v). Define
x′ by x′i = xi − ε, x′j = xj + ε and x′k = xk for all k ∈ N \ {i, j},
where 0 < ε < min{xi − li, u

∗
j (v) − xj}. Then x′ ∈ [l, u] ∩ X(v), but

x′ /∈ C(v) in view of x′i < xi = l∗i (v). So, C(v) ̸= [l, u] ∩X(v), which is
a contradiction.
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For the if-part, assume that l ≤ l∗(v) and u = u∗(v) such that v(N) =
l∗i (v) +

∑
j∈N\{i} u

∗
j (v) for all i ∈ N with li < l∗i (v). We show that

C(v) = [l, u] ∩ X(v). In view of C(v) = [l∗(v), u∗(v)] ∩ X(v) ⊆ [l, u] ∩
X(v), we only need to prove that [l, u] ∩ X(v) ⊆ [l∗(v), u∗(v)] ∩ X(v).
Let x ∈ [l, u] ∩X(v). Then xi ≥ li = l∗i (v) for all i ∈ N with li = l∗i (v).
For all i ∈ N with li < l∗i (v),

xi ≥ v(N)−
∑

j∈N\{i}

uj = v(N)−
∑

j∈N\{i}

u∗j (v) = l∗i (v).

Together with x ≤ u = u∗(v), we obtain that x ∈ [l∗(v), u∗(v)] ∩X(v).
Hence, [l, u] ∩X(v) ⊆ [l∗(v), u∗(v)] ∩X(v).

(ii) The proof is analogous to the proof of (i).

(iii) For the only-if part, assume that C(v) = [l, u] ∩ X(v), where li <
l∗i (v), ui > u∗i (v), and lj = l∗j (v) and uj = u∗j (v) for all j ∈ N \ {i}.
We show that expression (2.2) holds. Assume that v(N) ̸= u∗i (v) +∑

j∈N\{i} l
∗
j (v) or v(N) ̸= l∗i (v) +

∑
j∈N\{i} u

∗
j (v). Then, analogous to

the proofs of (i) and (ii), it follows that C(v) ̸= [l, u]∩X(v), which is a
contradiction.

For the if-part, assume that there exists i ∈ N such that li < l∗i (v),
ui > u∗i (v), lj = l∗j (v) and uj = u∗j (v) for all j ∈ N \ {i}, and expression
(2.2) holds. We show that C(v) = [l, u] ∩ X(v). In view of C(v) =
[l∗(v), u∗(v)] ∩X(v) ⊆ [l, u] ∩X(v), we only need to prove that [l, u] ∩
X(v) ⊆ [l∗(v), u∗(v)] ∩X(v). Let x ∈ [l, u] ∩X(v). Then

xi ≥ v(N)−
∑

j∈N\{i}

uj = v(N)−
∑

j∈N\{i}

u∗j (v) = l∗i (v)

and xj ≥ lj = l∗j (v) for all j ∈ N \ {i}, so x ≥ l∗(v). Similarly,

xi ≤ v(N)−
∑

j∈N\{i}

lj = v(N)−
∑

j∈N\{i}

l∗j (v) = u∗i (v)

and xj ≤ uj = u∗j (v) for all j ∈ N \ {i}, so x ≤ u∗(v). It follows that
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x ∈ [l∗(v), u∗(v)]∩X(v). Hence, [l, u]∩X(v) ⊆ [l∗(v), u∗(v)]∩X(v).

Proposition 2.2 and Theorem 2.2 directly imply the following result,
which shows exactly under which condition two-bound core games
can be described by different pairs of bounds.

Corollary 2.1
Let v ∈ ΓN

t . Then there exist l, u ∈ RN with [l, u] ̸= [l∗(v), u∗(v)] such that
C(v) = [l, u] ∩ X(v) if and only if there exists i ∈ N such that v(N) =
l∗i (v) +

∑
j∈N\{i} u

∗
j (v) or v(N) = u∗i (v) +

∑
j∈N\{i} l

∗
j (v).

2.4 The nucleolus

In this section, we consider the nucleolus of two-bound core games.
Quant et al (2005) provided an explicit expression of the nucleolus
for compromise stable games in terms of the pair of bounds in Exam-
ple 2.3, using the Talmud rule for bankruptcy problems. On the one
hand, we extend their approach by providing an explicit expression of
the nucleolus for all two-bound core games in terms of the exact core
bounds. On the other hand, we show that the nucleolus can be equiv-
alently expressed by each pair of bounds describing the core.

Lemma 2.3
Let v ∈ ΓN

t . Then

η(v) = l∗(v) + fTAL

(
v(N)−

∑
i∈N

l∗i (v), u
∗(v)− l∗(v)

)

= u∗(v)− fTAL

(∑
i∈N

u∗i (v)− v(N), u∗(v)− l∗(v)

)
.
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Proof. Define w ∈ ΓN by w(S) = v(S) −
∑

i∈S l∗i (v) for all S ∈ 2N .
Then l∗i (w) = 0 and u∗i (w) = u∗i (v) − l∗i (v) for all i ∈ N , C(w) =
[l∗(w), u∗(w)] ∩X(w), and η(v) = l∗(v) + η(w).

For each i ∈ N , there exists x ∈ C(w) such that xi = l∗i (w), so

0 = l∗i (w) = xi = w(N)−
∑

j∈N\{i}

xi ≥ w(N)−
∑

j∈N\{i}

u∗j (w).

Similarly, for each i ∈ N , there exists x ∈ C(w) such that xi = u∗i (w),
so

u∗i (w) = xi = w(N)−
∑

j∈N\{i}

xi ≤ w(N)−
∑

j∈N\{i}

l∗j (w) = w(N).

Define (E, c) ∈ BN by E = w(N) and c = u∗(w). Then vE,c(N) = E =
w(N) and for all i ∈ N ,

l∗i (vE,c) = max

0, E −
∑

j∈N\{i}

cj

 = max

0, w(N)−
∑

j∈N\{i}

u∗i (w)


= 0 = l∗i (w)

and
u∗i (vE,c) = min{E, ci} = min{w(N), u∗i (w)} = u∗i (w).

This implies that

C(vE,c) = [l∗(vE,c), u
∗(vE,c)] ∩X(vE,c)

=

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = vE,c(N) and l∗(vE,c) ≤ x ≤ u∗(vE,c)

}

=

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = w(N) and l∗(w) ≤ x ≤ u∗(w)

}
= [l∗(w), u∗(w)] ∩X(w) = C(w).
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Potters and Tijs (1994) showed that the nucleoli of two balanced games
are equal if their cores are equal and at least one of the two games is
convex. Since vE,c is convex, this implies that η(vE,c) = η(w). Apply-
ing self-duality,

η(v) = l∗(v) + η(w)

= l∗(v) + η(vE,c)

= l∗(v) + fTAL(E, c)

= l∗(v) + fTAL(w(N), u∗(w))

= l∗(v) + fTAL

(
v(N)−

∑
i∈N

l∗i (v), u
∗(v)− l∗(v)

)

= u∗(v)− fTAL

(∑
i∈N

u∗i (v)− v(N), u∗(v)− l∗(v)

)
.

The proof of Lemma 2.3 is similar to the proof of Theorem 4.2 of Quant
et al (2005). However, as the following example shows, the expres-
sion obtained by Quant et al (2005) in terms of the pair of bounds in
Example 2.3 is not valid for all two-bound core games.

Example 2.5
Let v ∈ ΓN

t with N = {1, . . . , n} and n ≥ 4 be defined by v(N) =
v({1, 2}) = v({1, 3}) = 1 and v(S) = 0 otherwise. Then l∗(v) = u∗(v) =
(1, 0, . . . , 0) and C(v) = {(1, 0, . . . , 0)}, so

η(v) = (1, 0, . . . , 0) + fTAL (0, (0, . . . , 0)) = (1, 0, . . . , 0).

However, v is not a compromise stable game, and η(v) cannot be ex-
pressed using the lower bound l = (0, . . . , 0) and the upper bound
u = (1, . . . , 1) from Example 2.3 in view of

η(v) ̸= (0, . . . , 0) + fTAL (1, (1, . . . , 1)) = (
1

n
, . . . ,

1

n
). △
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More generally, the nucleolus of two-bound core games can be equiva-
lently expressed in terms of each pair of bounds describing the core.

Theorem 2.3
Let v ∈ ΓN

t . Then

η(v) = l + fTAL

(
v(N)−

∑
i∈N

li, u− l

)

= u− fTAL

(∑
i∈N

ui − v(N), u− l

)

for all l, u ∈ RN such that C(v) = [l, u] ∩X(v).

Proof. Let l, u ∈ RN be such that C(v) = [l, u] ∩ X(v). If we have
[l, u] = [l∗(v), u∗(v)], then the statement follows directly from Lemma
2.3. Suppose that [l, u] ̸= [l∗(v), u∗(v)]. Then, by Proposition 2.2, ex-
actly one of the following cases holds.

(i) l ≤ l∗(v) and u = u∗(v).

By Theorem 2.2, v(N) = l∗i (v) +
∑

j∈N\{i} u
∗
j (v) for all i ∈ N with

li < l∗i (v). This implies that
∑

j∈N u∗j (v)−v(N) = u∗i (v)− l∗i (v) < ui− li
for all i ∈ N with li < l∗i (v). Applying Lemma 2.3, invariance under
claims truncation, and self-duality,

η(v) = u∗(v)− fTAL

(∑
i∈N

u∗i (v)− v(N), u∗(v)− l∗(v)

)

= u− fTAL

(∑
i∈N

ui − v(N), u− l∗(v)

)

= u− fTAL

(∑
i∈N

ui − v(N), u− l

)
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= l + fTAL

(
v(N)−

∑
i∈N

li, u− l

)
.

(ii) l = l∗(v) and u ≥ u∗(v).

By Theorem 2.2, v(N) = u∗i (v) +
∑

j∈N\{i} l
∗
j (v) for all i ∈ N with

ui > u∗i (v). This implies that v(N)−
∑

j∈N l∗j (v) = u∗i (v)−l∗i (v) < ui−li
for all i ∈ N with ui > u∗i (v). Applying Lemma 2.3, invariance under
claims truncation, and self-duality,

η(v) = l∗(v) + fTAL

(
v(N)−

∑
i∈N

l∗i (v), u
∗(v)− l∗(v)

)

= l + fTAL

(
v(N)−

∑
i∈N

li, u
∗(v)− l

)

= l + fTAL

(
v(N)−

∑
i∈N

li, u− l

)

= u− fTAL

(∑
i∈N

ui − v(N), u− l

)
.

(iii) There exists i ∈ N such that li < l∗i (v), ui > u∗i (v), lj = l∗j (v) and
uj = u∗j (v) for all j ∈ N \ {i}.

By Theorem 2.2,

v(N)−
∑
j∈N

l∗j (v) = u∗i (v)− l∗i (v) =
∑
j∈N

u∗j (v)− v(N).

This implies that v(N) = 1
2

∑
j∈N (u∗j (v) + l∗j (v)). Then

η(v) = l∗(v) + fTAL

v(N)−
∑
j∈N

l∗j (v), u
∗(v)− l∗(v)


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= l∗(v) + fTAL

1

2

∑
j∈N

(u∗j (v)− l∗j (v)), u
∗(v)− l∗(v)


= l∗(v) +

1

2
(u∗(v)− l∗(v))

=
1

2
(u∗(v) + l∗(v)).

Define (E∗, c∗) ∈ BN by E∗ = v(N)−
∑

j∈N l∗j (v) and c∗ = u∗(v)−l∗(v),
and define (E, c) ∈ BN by E = v(N)−

∑
j∈N lj and c = u− l. Then

E − E∗ =
∑
j∈N

l∗j (v)−
∑
j∈N

lj = l∗i (v)− li > 0,

ci − c∗i = (ui − u∗i (v)) + (l∗i (v)− li) > E − E∗,

and cj = c∗j for all j ∈ N \ {i}. Moreover, for all j ∈ N \ {i},

ci > c∗i = u∗i (v)− l∗i (v) = v(N)−
∑
k∈N

l∗k(v) ≥ u∗j (v)− l∗j (v) = c∗j = cj .

This implies that fTAL
i (E, c) = fTAL

i (E∗, c∗)+E−E∗ = fTAL
i (E∗, c∗)+

l∗i (v) − li and fTAL
j (E, c) = fTAL

j (E∗, c∗) for all j ∈ N \ {i}. Applying
Lemma 2.3 and self-duality,

η(v) = l∗(v) + fTAL

(
v(N)−

∑
i∈N

l∗i (v), u
∗(v)− l∗(v)

)
= l∗(v) + fTAL (E∗, c∗)

= l + fTAL (E, c)

= l + fTAL

(
v(N)−

∑
i∈N

li, u− l

)

= u− fTAL

(∑
i∈N

ui − v(N), u− l

)
.
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Chapter 2. Two-bound core games

Example 2.6
Let v ∈ ΓN

t with N = {1, 2, 3} be defined by v({1}) = v({2}) = 2,
v({3}) = 4, v({1, 2}) = 10, v({1, 3}) = 6, v({2, 3}) = 12, and v(N) = 20.
Then l∗(v) = (2, 2, 4) and u∗(v) = (8, 14, 10). Since l∗1(v) + u∗2(v) +
l∗3(v) = v(N) = u∗1(v) + l∗2(v) + u∗3(v), Theorems 2.2 and 2.3 imply that

η(v) = (2, 2, 4) + fTAL (12, (6, 12, 6)) = (8, 14, 10)− fTAL (12, (6, 12, 6))

= (2, 0, 4) + fTAL (14, (6, 14, 6)) = (8, 20, 10)− fTAL (18, (6, 18, 6))

= (2, 0, 4) + fTAL (14, (6, 20, 6)) = (8, 20, 10)− fTAL (18, (6, 20, 6))

= (5, 8, 7).

The first two expressions are in terms of the lower exact core bounds
and the upper exact core bounds. The third expression is based on
a decrease of only the lower exact core bound of player 2 to l2 = 0.
The fourth expression is based on an increase of only the upper exact
core bound of player 2 to u2 = 20. The fifth and sixth expressions
are based on a decrease of player 2’s lower bound to l2 = 0 and an
increase of player 2’s upper bound to u2 = 20 simultaneously. In view
of u∗1(v)+ l∗2(v)+ l∗3(v) < v(N) < l∗1(v)+u∗2(v)+u∗3(v) and l∗1(v)+ l∗2(v)+
u∗3(v) < v(N) < u∗1(v) + u∗2(v) + l∗3(v), the lower and upper exact core
bounds of players 1 and 3 cannot be stretched. △

2.5 The egalitarian core

In this section, we show that the egalitarian core for two-bound core
games is single-valued and we provide an explicit expression of it in
terms of the exact core bounds.

To show this result, we first show that the core of a two-bound core
game is equal to the core of a particular convex game, where the worth
of each coalition is defined by the minimum total payoff of its members
in any pre-imputation between the two bounds.
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Theorem 2.4
Let v ∈ ΓN

t . Then there exists v̂ ∈ ΓN
c such that C(v̂) = C(v).

Proof. Let l, u ∈ RN be such that C(v) = [l, u]∩X(v). Define v̂ ∈ ΓN by

v̂(S) = max

∑
i∈S

li, v(N)−
∑

i∈N\S

ui

 for all S ∈ 2N .

By Theorem 2.1, v(S) ≤ v̂(S) for all S ∈ 2N \ {∅}. Hence C(v̂) ⊆ C(v).
We claim that C(v̂) = C(v). Suppose, to the contrary, that there exists
x ∈ C(v) \ C(v̂). Let S ∈ 2N \ {N, ∅} be such that

∑
i∈S xi < v̂(S).

If v̂(S) =
∑

i∈S li, then
∑

i∈S xi <
∑

i∈S li, so xi < li for some i ∈ S,
contradicting x ∈ C(v). If v̂(S) = v(N) −

∑
i∈N\S ui, then

∑
i∈S xi <

v(N)−
∑

i∈N\S ui, so xi > ui for some i ∈ N\S, contradicting x ∈ C(v).
Hence, C(v) = C(v̂), which implies that v̂ ∈ ΓN

t .

For all S, T ∈ 2N ,

v̂(S) + v̂(T )

= max

∑
i∈S

li, v(N)−
∑

i∈N\S

ui

+max

∑
i∈T

li, v(N)−
∑

i∈N\T

ui


= max

∑
i∈S

li +
∑
i∈T

li, v(N) +
∑
i∈S

li −
∑

i∈N\T

ui,

v(N) +
∑
i∈T

li −
∑

i∈N\S

ui, 2v(N)−
∑

i∈N\S

ui −
∑

i∈N\T

ui


≤ max

 ∑
i∈S∪T

li +
∑

i∈S∩T
li, v(N) +

∑
i∈S

li −
∑

i∈N\T

ui +
∑

i∈S\T

(ui − li),

v(N) +
∑
i∈T

li −
∑

i∈N\S

ui +
∑

i∈T\S

(ui − li),
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2v(N)−
∑

i∈N\S

ui −
∑

i∈N\T

ui


= max

 ∑
i∈S∪T

li +
∑

i∈S∩T
li, v(N) +

∑
i∈S∩T

li −
∑

i∈N\(S∪T )

ui, v(N)+

∑
i∈S∩T

li −
∑

i∈N\(S∪T )

ui, 2v(N)−
∑

i∈N\(S∪T )

ui −
∑

i∈N\(S∩T )

ui


≤ max

 ∑
i∈S∪T

li, v(N)−
∑

i∈N\(S∪T )

ui

+

max

 ∑
i∈S∩T

li, v(N)−
∑

i∈N\(S∩T )

ui


= v̂(S ∪ T ) + v̂(S ∩ T ).

Hence, v̂ ∈ ΓN
c .

The following example shows that a convex game may not be a two-
bound core game, and a two-bound core game may not be a convex
game. Moreover, the egalitarian core of the corresponding game is
given as follows.

Example 2.7
Let N = {1, 2, 3, 4} and let w ∈ ΓN

c be given by

w(S) =


2 if S = N,

1 if S ∈ {{1, 2}, {1, 2, 3}, {1, 2, 4}},
0 otherwise.

Then we have l∗(w) = (0, 0, 0, 0), u∗(w) = (2, 2, 1, 1). It is easily seen
that (0, 0, 1, 1) ∈ [l∗(w), u∗(w)] ∩ X(w), but (0, 0, 1, 1) /∈ C(w). Hence,
w /∈ ΓN

t .
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Let N = {1, 2, 3} and let v ∈ ΓN
t be given by

v(S) =

{
1 if S ∈ {{1, 2}, {1, 3}, {1, 2, 3}},
0 otherwise.

Then v({1, 2}) + v({1, 3}) > v({1}) + v({1, 2, 3}). Hence, v /∈ ΓN
c .

Moreover, EC(w) =
{
(12 ,

1
2 ,

1
2 ,

1
2)
}

and EC(v) = {(1, 0, 0)}. △

By Theorem 2.4, the core of a two-bound core game is equal to the
core of a particular convex game. It can be shown that if two games
have equal cores, then the games have equal egalitarian cores. Arin
and Iñarra (2001) showed that the egalitarian core is single-valued for
convex games. This implies that the egalitarian core for two-bound
core games is single-valued. We provide an explicit expression.

Theorem 2.5
The egalitarian core of a two-bound core game v ∈ ΓN

t is given by

ECi(v) =


l∗i (v) if λ ≤ l∗i (v),

λ if l∗i (v) ≤ λ ≤ u∗i (v),

u∗i (v) if λ ≥ u∗i (v),

for all i ∈ N , where λ ∈ R is such that
∑

i∈N ECi(v) = v(N).

Proof. Let v ∈ ΓN
t . Then it holds that |EC(v)|= 1. Define x ∈ RN by

xi = min{max{l∗i (v), λ}, u∗i (v)} for all i ∈ N , where λ ∈ R is such that∑
i∈N xi = v(N). Then x ∈ [l∗(v), u∗(v)] ∩ X(v), so x ∈ C(v). Let

i, j ∈ N be such that xi > xj . Then xi = l∗i (v) or xj = u∗i (v). Suppose
for the sake of contradiction that sxij(v) ̸= 0. Then sxij(v) < 0, so v(S) <∑

k∈S xk for all S ∈ 2N with i ∈ S and j /∈ S. Let 0 < ε < −sxij(v).
Define x′ ∈ RN by x′i = xi − ε, x′j = xj + ε, and x′k = xk for all
k ∈ N \ {i, j}. Then x′ ∈ C(v), which contradicts the definition of l∗i (v)
or u∗j (v).
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Chapter 2. Two-bound core games

So far, we have studied to what extent the exact core bounds of a two-
bound core game can be stretched while retaining the core, nucleolus
and egalitarian core descriptions. Instead of stretching the lower and
upper bounds, we can also study to what extent these expressions are
robust against game changes. It turns out that the worths of coalitions
can be increased subject to specific restrictions.

Theorem 2.6
Let v ∈ ΓN

t and let l, u ∈ RN be such that C(v) = [l, u] ∩X(v). If w ∈ ΓN

is such that v(S) ≤ w(S) ≤ max{
∑

i∈S li, v(N) −
∑

i∈N\S ui} for all S ∈
2N \ {∅}, then the following statements hold:

(i) C(v) = C(w),

(ii) η(v) = η(w).

(iii) EC(v) = EC(w).

Proof. (i) Define v̂ ∈ ΓN by v̂(S) = max{
∑

i∈S li, v(N) −
∑

i∈N\S ui}
for all S ∈ 2N \ {∅}. Let w ∈ ΓN be such that v(S) ≤ w(S) ≤ v̂(S) for
all S ∈ 2N \ {∅}. Then C(v̂) ⊆ C(w) ⊆ C(v). By Theorem 2.4, we have
C(v) = C(v̂). Hence, C(v) = C(w) = C(v̂).

(ii) Statement (i) implies that w ∈ ΓN
t and C(w) = C(v) = [l, u] ∩

X(v) = [l, u] ∩X(w). By Theorem 2.3,

η(v) = l + fTAL

(
v(N)−

∑
i∈N

li, u− l

)

= l + fTAL

(
w(N)−

∑
i∈N

li, u− l

)
= η(w).

(iii) Statement (i) implies that w ∈ ΓN
t and l∗(v) = l∗(w) and u∗(v) =

u∗(w). By Theorem 2.5, it is obvious that EC(v) = EC(w).
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2.6 Concluding remarks
In this chapter, we introduced the large class of two-bound core games
and provided explicit expressions of the nucleolus in terms of all pairs
of bounds describing the core, using the Talmud rule for bankruptcy
problems, and the egalitarian core in terms of the pair of exact core
bounds. Other solutions for two-bound core games are directly ob-
tained by replacing the role of the Talmud rule in these expressions
by any other bankruptcy rule. Quant et al (2006) studied these ex-
tensions from a general point of view and paid particular attention to
the specific random arrival rule (O’Neill, 1982). González-Dı́az et al
(2005) followed a similar approach with a focus on the adjusted pro-
portional rule (Curiel et al, 1987). Future research could study exten-
sions of these and other bankruptcy rules to the class of two-bound
core games.
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3
Reduced two-bound core games

Adapted from: Gong, D., B. Dietzenbacher, and H. Peters. Reduced two-
bound core games. WorkingPaper 001. Maastricht University, Graduate
School of Business and Economics, 2022.
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3.1 Introduction

Cooperative games describe situations where players collaborate in
coalitions and generate profits. A pre-imputation allocates the total
profit among all players in the game. The main issue is to select reason-
able pre-imputations for each game. Among the central solution con-
cepts are the core, the nucleolus (Schmeidler, 1969), and the egalitarian
core (Arin and Iñarra, 2001). The core assigns all pre-imputations that
are stable against coalitional deviations. The nucleolus assigns the al-
location that lexicographically minimizes the excesses of all coalitions,
which is a core allocation whenever the core is nonempty. The egalitar-
ian core assigns all core allocations from which no other core allocation
can be obtained by a transfer from a richer to a poorer player.

In the previous chapter, we introduced the class of two-bound core
games, where the core is nonempty and can be described by a lower
bound and an upper bound on the pre-imputations. Many classes of
games turned out to be two-bound core games. We showed that the
core of each two-bound core game can be described equivalently by
the pair of exact core bounds, and studied to what extent the exact core
bounds can be stretched while retaining the core description. We also
provided explicit expressions of the nucleolus and the egalitarian core
for two-bound core games in terms of the pairs of bounds describing
the core.

In this chapter, we study Davis-Maschler reduced games of two-bound
core games and show that all these reduced games with respect to core
elements are two-bound core games. Moreover, the core of these re-
duced games can be described by the same pair of bounds. A solu-
tion satisfies the bilateral reduced game property (Davis and Maschler,
1965) if each pre-imputation assigned to the original game is consis-
tently assigned to all reduced games with two players. A solution sat-
isfies the converse reduced game property (Davis and Maschler, 1965)
if each pre-imputation assigned to all reduced games with two play-
ers is assigned to the original game. Using the bilateral reduced game
property and the converse reduced game property, we axiomatically
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Chapter 3. Reduced two-bound core games

characterize the core, the nucleolus, and the egalitarian core for two-
bound core games.

The remainder of this chapter is organized as follows. Section 3.2 re-
calls some definitions and notations for cooperative games. Section 3.3
studies Davis-Maschler reduced games of two-bound core games and
axiomatically characterizes the core. Sections 3.4 and 3.5 axiomatically
characterize the nucleolus and the egalitarian core, respectively. Sec-
tion 3.6 shows independence of these axiomatic characterizations.

3.2 Preliminaries

Let N be a nonempty and finite set of players and let 2N be the col-
lection of all subsets of N . For x, y ∈ RN , x ≥ y denotes xi ≥ yi for
all i ∈ N , and x > y denotes xi > yi for all i ∈ N . The notations
≤ and < are defined analogously. We denote x + y = (xi + yi)i∈N ,
x − y = (xi − yi)i∈N , [x, y] =

{
z ∈ RN

∣∣ x ≤ z ≤ y
}

, λx = (λxi)i∈N for
all λ ∈ R, and xS = (xi)i∈S for all S ∈ 2N \ {∅}.

A cooperative game with transferable utility (a game, for short) is a pair
(N, v), where v : 2N → R is the characteristic function assigning to each
coalition S ∈ 2N its worth, with v(∅) = 0. The set of all games with
player set N is denoted by ΓN . For simplicity, we write v ∈ ΓN rather
than (N, v) ∈ ΓN .

Let v ∈ ΓN . The pre-imputation set of v is

X(v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N)

}
,

the core of v is

C(v) =

{
x ∈ X(v)

∣∣∣∣∣ ∀S∈2N :
∑
i∈S

xi ≥ v(S)

}
,
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and the egalitarian core (Arin and Iñarra, 2001) of v is

EC(v) =
{
x ∈ C(v)

∣∣ ∀i,j∈N :xi>xj : s
x
ij(v) = 0

}
,

where for all i, j ∈ N with i ̸= j and all x ∈ RN ,

sxij(v) = max
S∈2N :i∈S,j /∈S

{
v(S)−

∑
k∈S

xk

}
.

The set of all games with nonempty core and player set N is denoted
by ΓN

b . A game v ∈ ΓN is convex (Shapley, 1971) if v(S) + v(T ) ≤
v(S ∪ T ) + v(S ∩ T ) for all S, T ∈ 2N . The set of all convex games with
player set N is denoted by ΓN

c . It is known that ΓN
c ⊆ ΓN

b .

A game v ∈ ΓN
b is a two-bound core game (see Definition 2.1) if there

exist l, u ∈ RN such that C(v) = [l, u] ∩ X(v), which is equivalent to
C(v) = [l∗(v), u∗(v)] ∩ X(v), where l∗i (v) = minx∈C(v) xi and u∗i (v) =
maxx∈C(v) xi for all i ∈ N . The bounds l∗ and u∗ were also studied by
Bondareva and Driessen (1994). The set of all two-bound core games
with player set N is denoted by ΓN

t .

A solution φ on a domain of games assigns to each game v in this do-
main a nonempty set φ(v) ⊆ X(v). Note that φ(v) = {v(N)} for each
game v with one player. A solution φ on a domain of games is single-
valued if |φ(v)|= 1 for each v in this domain. For a single-valued solu-
tion φ on a domain of games and a game v in this domain, φ(v) is often
identified with its unique element.

The nucleolus η (Schmeidler, 1969) is a single-valued solution that
assigns to each game with nonempty core a unique core element.
Maschler et al (1971) showed that the nucleolus of a convex game
v ∈ ΓN

c is given by

η(v) = {x ∈ X(v) | ∀i,j∈N,i ̸=j : s
x
ij(v) = sxji(v)}.
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3.3 Reduced games and axiomatization of the core
In this section, we study Davis-Maschler reduced games of two-bound
core games, and axiomatically characterize the core for two-bound core
games.

The reduced game (Davis and Maschler, 1965) of v ∈ ΓN
t on T ∈ 2N \{∅}

with respect to x ∈ RN , denoted by vxT ∈ ΓT , is defined by

vxT (S) =


v(N)−

∑
i∈N\T xi if S = T ,

max
Q⊆N\T

{
v(S ∪Q)−

∑
i∈Q

xi

}
if S ∈ 2T \ {∅, T},

0 if S = ∅.

In other words, the worth of a coalition in a reduced game is defined
as the maximal surplus in cooperation with any subgroup of players
in the original game that are not present in the reduced game. It turns
out that all reduced games of two-bound core games with respect to
core elements are two-bound core games. Moreover, the core of these
reduced games can be described by the same pair of bounds.

Theorem 3.1
Let v ∈ ΓN

t , T ∈ 2N \ {∅}, x ∈ C(v), and let l, u ∈ RN be such that
C(v) = [l, u] ∩X(v). Then

C(vxT ) = [lT , uT ] ∩X(vxT ).

Proof. Let y ∈ C(vxT ). Then∑
i∈T

yi+
∑

i∈N\T

xi = vxT (T )+
∑

i∈N\T

xi = v(N)−
∑

i∈N\T

xi+
∑

i∈N\T

xi = v(N).

Let S ∈ 2N . If S ∩ T = ∅, then∑
i∈S∩T

yi +
∑

i∈S\T

xi =
∑
i∈S

xi ≥ v(S).
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If S ∩ T = T , then∑
i∈S∩T

yi +
∑

i∈S\T

xi = vxT (T ) +
∑

i∈S\T

xi

= v(N)−
∑

i∈N\T

xi +
∑

i∈S\T

xi =
∑
i∈S

xi ≥ v(S).

If S ∩ T /∈ {∅, T}, then∑
i∈S∩T

yi +
∑

i∈S\T

xi ≥ vxT (S ∩ T ) +
∑

i∈S\T

xi

= max
Q⊆N\T

v((S ∩ T ) ∪Q)−
∑
i∈Q

xi

+
∑

i∈S\T

xi

≥ v(S)−
∑

i∈S\T

xi +
∑

i∈S\T

xi

= v(S).

This means that (y, xN\T ) ∈ C(v), so (y, xN\T ) ∈ [l, u] ∩ X(v), which
implies that y ∈ [lT , uT ] ∩X(vxT ). Hence, C(vxT ) ⊆ [lT , uT ] ∩X(vxT ).

Let y ∈ [lT , uT ] ∩X(vxT ). Then (y, xN\T ) ∈ [l, u] ∩X(v), so (y, xN\T ) ∈
C(v). Let S ∈ 2T \ {∅, T}. For all Q ⊆ N \ T ,∑

i∈S
yi =

∑
i∈S

yi +
∑
i∈Q

xi −
∑
i∈Q

xi ≥ v(S ∪Q)−
∑
i∈Q

xi,

so ∑
i∈S

yi ≥ max
Q⊆N\T

v(S ∪Q)−
∑
i∈Q

xi

 = vxT (S).

This implies that y ∈ C(vxT ). Hence, [lT , uT ] ∩X(vxT ) ⊆ C(vxT ).

A solution satisfies the bilateral reduced game property if the restriction
of each pre-imputation assigned to the original game is consistently
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assigned to all reduced games with two players. A solution satisfies
the converse reduced game property if each two-player restriction of a pre-
imputation is assigned to the corresponding reduced game, then this
pre-imputation is assigned to the original game.

Bilateral reduced game property (Davis and Maschler, 1965)
For all v ∈ ΓN

t , all T ∈ 2N with |T |= 2, and all x ∈ φ(v), we have
vxT ∈ ΓT

t and xT ∈ φ(vxT ).

Converse reduced game property (Davis and Maschler, 1965)
For all v ∈ ΓN

t and all x ∈ X(v), if vxT ∈ ΓT
t and xT ∈ φ(vxT ) for all

T ∈ 2N with |T |= 2, then x ∈ φ(v).

By requiring the solution to assign the core to all two-bound core
games with two players, Peleg (1986) characterized the core of games
using the bilateral reduced game property and the converse reduced
game property. We obtain a similar axiomatic characterization of the
core for two-bound core games.

Unanimity (Peleg, 1986)
For all v ∈ ΓN

t with |N |= 2, we have φ(v) = {x ∈ X(v) | ∀i∈N : xi ≥
v({i})}.

Theorem 3.2
The core is the unique solution for two-bound core games satisfying unanim-
ity, the bilateral reduced game property, and the converse reduced game prop-
erty.

Proof. Clearly, the core satisfies unanimity. To prove that the core sat-
isfies the bilateral reduced game property, let v ∈ ΓN

t , let T ∈ 2N

with |T |= 2, let x ∈ C(v), and let l, u ∈ RN be such that C(v) =
[l, u] ∩ X(v). By Theorem 3.1, C(vxT ) = [lT , uT ] ∩ X(vxT ). In view of
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xT ∈ [lT , uT ] ∩ X(vxT ), this implies that vxT ∈ ΓT
t and xT ∈ C(vxT ).

Hence, the core satisfies the bilateral reduced game property.

To prove that the core satisfies the converse reduced game property, let
v ∈ ΓN

t and let x ∈ X(v) be such that vxT ∈ ΓT
t and xT ∈ C(vxT ) for all

T ∈ 2N with |T |= 2. Let S ∈ 2N \{∅, N} and let j ∈ N \S. For all i ∈ S,

xi ≥ vx{i,j}({i}) = max
Q⊆N\{i,j}

v({i} ∪Q)−
∑
k∈Q

xi

 ≥ v(S)−
∑

k∈S\{i}

xk,

so
∑

i∈S xi ≥ v(S). This implies that x ∈ C(v). Hence, the core satisfies
the converse reduced game property.

To prove uniqueness, let φ be a solution for two-bound core games
satisfying unanimity, the bilateral reduced game property, and the con-
verse reduced game property. We show that φ(v) = C(v) for all v ∈
ΓN
t . By unanimity, φ(v) = C(v) for all v ∈ ΓN

t with |N |≤ 2. Let v ∈ ΓN
t

with |N |≥ 3.

Let x ∈ φ(v). By the bilateral reduced game property of φ, vxT ∈ ΓT
t and

xT ∈ φ(vxT ) for all T ∈ 2N with |T |= 2, so xT ∈ C(vxT ) for all T ∈ 2N

with |T |= 2. By the converse reduced game property of the core, this
implies that x ∈ C(v). Hence, φ(v) ⊆ C(v).

Let x ∈ C(v). By the bilateral reduced game property of the core, vxT ∈
ΓT
t and xT ∈ C(vxT ) for all T ∈ 2N with |T |= 2, so xT ∈ φ(vxT ) for all

T ∈ 2N with |T |= 2. By the converse reduced game property of φ, this
implies that x ∈ φ(v). Hence, C(v) ⊆ φ(v).

3.4 Axiomatization of the nucleolus

In this section, we axiomatically characterize the nucleolus for two-
bound core games using the Davis-Maschler reduced game properties.
The nucleolus η (Schmeidler, 1969) is a single-valued solution that as-
signs to each game with nonempty core a unique core element. In
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Theorem 2.3, we provide an explicit expression of the nucleolus for
two-bound core games.

By requiring the solution to assign the nucleolus to all two-bound core
games with two players, we obtain an axiomatic characterization of the
nucleolus for two-bound core games using the bilateral reduced game
property.

Standardness (Aumann and Maschler, 1985)
For all v ∈ ΓN

t with |N |= 2 and all i ∈ N , we have

φi(v) = v({i}) + 1

2
(v(N)− v({i})− v(N \ {i})) .

Theorem 3.3
The nucleolus is the unique solution for two-bound core games satisfying
standardness and the bilateral reduced game property.

Proof. It is known that the nucleolus satisfies standardness. To prove
that the nucleolus satisfies the bilateral reduced game property and
the converse reduced game property (used in the uniqueness part), let
v ∈ ΓN

t , let l, u ∈ RN be such that C(v) = [l, u]∩X(v), and let x ∈ X(v).
By Theorem 2.4, there exists v̂ ∈ ΓN

c such that C(v̂) = C(v). Theorem
2.6 implies that η(v̂) = η(v). Maschler et al (1971) showed that the
convexity of v̂ implies that

η(v̂) =
{
x ∈ X(v̂)

∣∣ ∀i,j∈N,i ̸=j : s
x
ij(v̂) = sxji(v̂)

}
,

where sxij(v̂) = maxS∈2N :i∈S,j /∈S{v̂(S) −
∑

k∈S xk} for all i, j ∈ N with
i ̸= j. For all i, j ∈ N with i ̸= j,

s
x{i,j}
ij (v̂x{i,j}) = v̂x{i,j}({i})− xi

= max
Q⊆N\{i,j}

v̂(Q ∪ {i})−
∑
k∈Q

xk

− xi
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= max
S∈2N :i∈S,j /∈S

{
v̂(S)−

∑
k∈S

xk

}
= sxij(v̂).

This implies that x = η(v̂) if and only if v̂xT ∈ ΓT
t and xT = η(v̂xT ) for

all T ∈ 2N with |T |= 2. By Theorem 3.1, if x ∈ C(v) and C(v) = C(v̂),
then C(v̂xT ) = C(vxT ) = [lT , uT ] ∩ X(vxT ) for all T ∈ 2N with |T |= 2.
By Theorem 2.4, x ∈ C(v) if and only if vxT ∈ ΓT

t and xT ∈ C(vxT )
for all T ∈ 2N with |T |= 2. Together, this implies that x = η(v) if
and only if vxT ∈ ΓT

t and xT = η(vxT ) for all T ∈ 2N with |T |= 2.
Hence, the nucleolus satisfies the bilateral reduced game property and
the converse reduced game property.

To prove uniqueness, let φ be a solution for two-bound core games
satisfying standardness and the bilateral reduced game property. We
show that φ(v) = η(v) for all v ∈ ΓN

t . By standardness, φ(v) = η(v) for
all v ∈ ΓN

t with |N |≤ 2. Let v ∈ ΓN
t with |N |≥ 3 and let x ∈ φ(v). By

the bilateral reduced game property of φ, vxT ∈ ΓT
t and xT ∈ φ(vxT ) for

all T ∈ 2N with |T |= 2, so xT = η(vxT ) for all T ∈ 2N with |T |= 2. By
the converse reduced game property of the nucleolus, this implies that
x = η(v). Hence, φ(v) = η(v).

3.5 Axiomatization of the egalitarian core
In this section, we axiomatically characterize the egalitarian core for
two-bound core games using the Davis-Maschler reduced game prop-
erties. The egalitarian core consists of all core elements from which
no other core element can be obtained by a transfer from a richer to a
poorer player. In Theorem 2.5, we provide an explicit expression of the
egalitarian core for two-bound core games.

By requiring the solution to assign the egalitarian core to all games
with two players, Arin and Iñarra (2001) obtained an axiomatic charac-
terization of the egalitarian core for convex games in conjunction with
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the bilateral reduced game property and the converse reduced game
property. We obtain a similar axiomatic characterization of the egali-
tarian core for two-bound core games without requiring the converse
reduced game property.

Constrained egalitarianism (Dutta, 1990)
For all v ∈ ΓN

t with |N |= 2 and all i ∈ N , we have

φi(v) =

{
max{v({i}), 12v(N)} if v({i}) ≥ v(N \ {i}),
v(N)− φN\{i}(v) if v({i}) ≤ v(N \ {i}).

Theorem 3.4
The egalitarian core is the unique solution for two-bound core games satisfy-
ing constrained egalitarianism and the bilateral reduced game property.

Proof. It is known that the egalitarian core satisfies constrained egali-
tarianism. To prove that the egalitarian core satisfies the bilateral re-
duced game property and the converse reduced game property (used
in the uniqueness part), let v ∈ ΓN

t and let x ∈ X(v). By Theorem 3.2,
x ∈ C(v) if and only if vxT ∈ ΓT

t and xT ∈ C(vxT ) for all T ∈ 2N with
|T |= 2. For all i, j ∈ N with i ̸= j,

s
x{i,j}
ij (vx{i,j}) = vx{i,j}({i})− xi

= max
Q⊆N\{i,j}

v(Q ∪ {i})−
∑
k∈Q

xk

− xi

= max
S∈2N :i∈S,j /∈S

{
v(S)−

∑
k∈S

xk

}
= sxij(v).

This implies that x = EC(v) if and only if vxT ∈ ΓT
t and xT = EC(vxT )

for all T ∈ 2N with |T |= 2. Hence, the egalitarian core satisfies the bi-
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lateral reduced game property and the converse reduced game prop-
erty.

To prove uniqueness, let φ be a solution for two-bound core games
satisfying constrained egalitarianism and the bilateral reduced game
property. We show that φ(v) = EC(v) for all v ∈ ΓN

t . By constrained
egalitarianism, φ(v) = EC(v) for all v ∈ ΓN

t with |N |≤ 2. Let v ∈ ΓN
t

with |N |≥ 3 and let x ∈ φ(v). By the bilateral reduced game property
of φ, vxT ∈ ΓT

t and xT ∈ φ(vxT ) for all T ∈ 2N with |T |= 2, so xT =
EC(vxT ) for all T ∈ 2N with |T |= 2. By the converse reduced game
property of the egalitarian core, this implies that x = EC(v). Hence,
φ(v) = EC(v).

3.6 Concluding remarks

In this chapter, we axiomatically characterized the core, the nucleolus,
and the egalitarian core for two-bound core games. In fact, it can be
shown that these solutions satisfy the stronger reduced game property
which requires that the restriction of each pre-imputation assigned to
the original game is consistently assigned to all reduced games (not
only with two players), but the weaker bilateral reduced game prop-
erty suffices in the axiomatic characterizations. To show that the prop-
erties in these axiomatic characterizations are independent, we intro-
duce the following additional solutions.

A solution that satisfies unanimity and the converse reduced game
property, but does not satisfy the bilateral reduced game property, is
the solution X̂ , which is for all v ∈ ΓN

t defined by

X̂(v) =

{
C(v) if |N |≤ 2,

X(v) if |N |≥ 3.

A solution that satisfies unanimity and the bilateral reduced game
property, but does not satisfy the converse reduced game property, is
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Chapter 3. Reduced two-bound core games

the solution Ĉ, which is for all v ∈ ΓN
t defined by

Ĉ(v) =

{
C(v) if |N |≤ 2,

η(v) if |N |≥ 3.

A solution that satisfies standardness, but does not satisfy the bilat-
eral reduced game property, is the solution η̂, which is for all v ∈ ΓN

t

defined by

η̂(v) =

{
η(v) if |N |≤ 2,

X(v) if |N |≥ 3.

A solution that satisfies constrained egalitarianism, but does not satisfy
the bilateral reduced game property, is the solution ÊC, which is for
all v ∈ ΓN

t defined by

ÊC(v) =

{
EC(v) if |N |≤ 2,

X(v) if |N |≥ 3.

An overview of these solutions, their properties, and the axiomatic
characterizations is presented in the following table. Here, + indicates
that the rule satisfies the property, − indicates the rule does not satisfy
the property, and ∗ indicates the axiomatic characterizations.

C η EC X̂ Ĉ η̂ ÊC

unanimity +∗ − − + + − −
standardness − +∗ − − − + −
constrained egalitarianism − − +∗ − − − +

bilateral reduced game property +∗ +∗ +∗ − + − −
converse reduced game property +∗ + + + − − −

Hence, the properties in Theorems 3.2, 3.3, and 3.4 are independent.
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4
Mechanisms for bankruptcy

problems

Adapted from: Gong, D., G. Xu, X. Jin, and L. Gogoi. A sequential
partition method for non-cooperative games of bankruptcy problems. TOP,
2022, 30(2), 359-379.
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4.1 Introduction

Bankruptcy problems (O’Neill, 1982), also known as estate division
problems or claims problems, study the situations where an insuffi-
cient estate is allocated among several agents, each of whom has a
claim on the estate. The initial approach to solve bankruptcy prob-
lems implicitly assumes the presence of an authority, like a court or
an arbitrator, who can dispose the estate directly after knowing all
claims. Based on this device, several fundamental bankruptcy rules
are proposed and studied widely, such as the proportional (PRO) rule,
the constrained equal awards (CEA) rule, the constrained equal losses
(CEL) rule, the Talmud (TAL) rule, etc. Most relevant work about
the bankruptcy rules is devoted to a cooperative and axiomatic expla-
nation, and it can be seen in two recent overviews (Thomson, 2003;
Thomson, 2015).

In addition, bankruptcy problems are also dealt with by mechanism
design and non-cooperative games. A Nash equilibrium of the non-
cooperative game induced by a mechanism and a bankruptcy prob-
lem is a good prediction of the strategies of the agents, and there-
fore the equilibrium outcome can be regarded as an allocation of the
estate. From this perspective of view, several interesting approaches
have been explored.

A main research line is following Chun (1989), Serrano (1995) and
Dagan et al (1997), in which each agent simultaneously announces a
payoff vector (called proposal) and then these agents act strategically
based on their proposals, or only a special agent proposes and leads
the game, while other agents negotiate with the proposer. Chang and
Hu (2008) introduced an axiomatization of the f -just rule and designed
the corresponding non-cooperative game to interpret this rule. Li and
Ju (2014) considered a non-cooperative approach to Talmud solution.
Giménez-Gómez (2014) introduced a game that combines the dimin-
ishing claims and unanimous concessions procedures, thereby justify-
ing the rules based on averaging. Tsay and Yeh (2019) designed games

53



Chapter 4. Mechanisms for bankruptcy problems

to strategically justify a class of bankruptcy rules, in which bilateral
negotiations are considered.

Other research lines contain: (i) Garcı́a-Jurado et al (2006) and Ash-
lagi et al (2012) considered the non-cooperative games in which agents
have simpler strategy spaces and the equilibrium achieved based on
constraints of rules. (ii) Atlamaz et al (2011) and Peters et al (2019) pro-
posed a non-cooperative approach by allowing agents to put multiple
claims on the same part of the estate. (iii) Kıbrıs and Kıbrıs (2013) and
Karagözoğlu (2014) constructed a non-cooperative investment game
to explain the proportional rule in the economy. (iv) In the aspect of
manipulation via merging or splitting claims, the relevant work can
be seen in Ju (2003), Moreno-Ternero (2006, 2007), and Ju and Moreno-
Ternero (2011).

In this chapter, we consider mechanisms for bankruptcy problems, and
explore a sequential partition method for non-cooperative games of
bankruptcy problems under the general assumption that the estate and
claims are common knowledge, and each agent acts individually. To
better introduce this method, we might as well treat the entire estate as
a homogeneous cake and each agent takes a morsel of the cake as his
payoff. Then, the idea of this method is that agents gather and each
of them successively partitions an admissible morsel from the cake
in a given order. Here, an agent, in his turn, has known how much
each of his predecessors partitions, and his strategy is the portion he
partitions, potentially depending on the strategies of his predecessors
and expressing the amount he desires (We use he to refer any type of
agents).

Obviously, different non-cooperative games are formed by considering
different arrival orders and combining the sequential partition with
other non-cooperative processes. In this chapter, we mainly focus on
the ascending order of claims and study two following games in detail,
leaving other non-cooperative games to be explored further.

Combining the sequential partition with the reversal selection pro-
cesses, we present the divide-and-choose game, which is similar to the
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process in the cake-division problem (Crawford, 1977). First, each
agent successively partitions a morsel by announcing a number in as-
cending order of the claims. Intuitively, the number represents the
size of the morsel and implies the portion he asks for himself. Then,
each one chooses one of the currently existing morsels as his payoff
in reverse order. Note that every morsel can be chosen only once. We
show that there is a unique Nash equilibrium outcome, and it coincides
with the allocation of the CEA rule, seeing papers (Dagan, 1996; Her-
rero and Villar, 2002; Yeh, 2006; Yeh, 2008) for results supporting this
rule. Although the Nash equilibrium outcome is not a subgame per-
fect equilibrium outcome for most bankruptcy problems, an approxi-
mation of it can be achieved when the game ends. We also show that
there is no dominant strategy equilibrium outcome.

Next, we present the divide-and-object game by combining the sequen-
tial partition with the bilateral objection processes. First, agents suc-
cessively partition in the same way as the above. Then, an agent can
object to another who cuts off a plethoric morsel, where the objection is
defined by a bilateral principle. As a result, the initiator receives more
rewards and the target is punished severely so as to prevent him from
announcing arbitrarily. If there are no objections among agents, each
one takes the morsel partitioned by himself. We show that the unique
Nash equilibrium outcome is consistent with the allocation of the CEA
rule, which is also a subgame perfect equilibrium outcome.

The rest of this chapter is organized as follows. Section 4.2 introduces
some basic definitions and notation. The divide-and-choose game and
the divide-and-object game are studied in Section 4.3 and Section 4.4,
respectively. Section 4.5 concludes with detailed comparisons of a few
related non-cooperative games.
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4.2 Preliminaries

In this section, we recall the definitions and notation about bankruptcy
problems and bankruptcy rules, and introduce some additional defini-
tions and notation.

Let N be a nonempty and finite set of agents. A bankruptcy problem is a
triple (T,E, c), where T ∈ 2N \ {∅}, E ∈ R+ is the estate to be divided
and c ∈ RT

+ is the vector of claims satisfying
∑

i∈T ci ≥ E. The set
of all bankruptcy problems with agent set T is denoted by BT . For
simplicity, we write (E, c) ∈ BT rather than (T,E, c) ∈ BT .

A bankruptcy rule f : BT → RT
+ assigns to each bankruptcy problem

(E, c) ∈ BT with T ∈ 2N \ {∅} a payoff vector f(E, c) ∈ RT
+ such that∑

i∈T fi(E, c) = E and fi(E, c) ≤ ci for all i ∈ T .

A bankruptcy rule f satisfies order-preservation of payoffs if fi(E, c) ≤
fj(E, c) for all (E, c) ∈ BT with T ∈ 2N \ {∅} and all i, j ∈ T with
ci ≤ cj .

A bankruptcy rule f satisfies consistency if for all (E, c) ∈ BN and T ∈
2N \ {∅},

fT (E, c) = f

(∑
i∈T

fi(E, c), cT

)
, (4.1)

where fT (E, c) = (fi(E, c))i∈T and cT = (ci)i∈T . A bankruptcy rule f
satisfies bilateral consistency if expression (4.1) holds for all T ⊆ N with
|T | = 2.

The constrained equal awards (CEA) rule assigns to each bankruptcy
problem (E, c) ∈ BN and each agent i ∈ N ,

fCEA
i (E, c) = min{ci, λ},

where λ ∈ R is such that
∑

i∈N fCEA
i (E, c) = E. It assigns the estate as

equally as possible provided that no one gets more than his claim.

56



The constrained equal losses (CEL) rule assigns to each bankruptcy prob-
lem (E, c) ∈ BN and each agent i ∈ N ,

fCEL
i (E, c) = max{ci − λ, 0},

where λ ∈ R is such that
∑

i∈N fCEL
i (E, c) = E. It assigns the losses∑

i∈N ci−E as equally as possible provided that no one gets a negative
payoff.

The proportional (PRO) rule assigns to each bankruptcy problem
(E, c) ∈ BN and each agent i ∈ N ,

fPRO
i (E, c) = λci,

where λ ∈ R is such that
∑

i∈N fPRO
i (E, c) = E. It assigns the estate in

proportion to the claims of agents.

It is well-known that the CEA rule, the CEL rule and the PRO rule sat-
isfy order preservation of payoffs and bilateral consistency (Thomson,
2003; Thomson, 2015).

Let (E, c) ∈ BN . In this chapter, we assume that N = {1, . . . , n}, E > 0
and ci > 0 for all i ∈ N . Moreover, without loss of generality, let∑

i∈N ci > E and c1 ≤ c2 ≤ . . . ≤ cn. Let Π(N) be the set of all
permutations of agent set N .

Denote ti =
∑i

k=1 ck + (n− i)ci for each i ∈ N and t0 = 0, and denote
Ti = (ti−1, ti] for each 1 ≤ i < n and Tn = (tn−1, tn). It is easily
seen that ti−1 = ti if and only if ci−1 = ci, and it follows that Ti = ∅.
Moreover, we have Ti ∩ Tj = ∅ for distinct i, j ∈ N , and ∪i∈NTi =
(0,

∑
i∈N ci). With these notations, we give the following equivalent

expression of the CEA rule.

For each (E, c) ∈ BN , there is a unique l ∈ N such that E ∈ Tl and for
all i ∈ N ,

fCEA
i (E, c) =

{
ci if i < l,
E−

∑
k<l ck

n−l+1 if i ≥ l.
(4.2)
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4.3 The divide-and-choose game
In this section, we introduce a divide-and-choose mechanism to deal
with bankruptcy problems. Given an arbitrary bankruptcy problem
(E, c) ∈ BN , we can obtain the following divide-and-choose game,
denoted by M(E, c). When no confusion arises, the notation M(E, c)
is abbreviated to M for convenience.

The divide-and-choose game M :

Stage 1: Each agent i ∈ N successively announces a number xi ∈ R+

in ascending order of the claims. The number agent i announces can
not exceed his claim and the current residual estate, that is,

xi ∈

{
[0,min{ci, E}] if i = 1,[
0,min{ci, E −

∑i−1
k=1 xk}

]
if 2 ≤ i ≤ n.

We call the vector x = (x1, . . . , xn) a proposal. Note that a proposal x is
not necessarily efficient, i.e., it could be that

∑n
i=1 xi < E.

Stage 2: Each agent i ∈ N successively chooses a coordinate of x in
reverse order. Note that each coordinate is chosen only once. The game
ends with the outcome that every agent receives the amount of estate
he chooses.

Since a rational agent will always choose the largest number he can
choose, the outcome in M is the payoff vector xσ = (xσσ(1), . . . , x

σ
σ(n)),

where σ ∈ Π(N) is such that xσσ(1) ≤ ... ≤ xσσ(n). Here, expression
xσi = xj represents that agent i chooses the number announced by
agent j. We call σ ∈ Π(N) a feasible permutation with respect to x if xσ

is such that xσσ(1) ≤ ... ≤ xσσ(n). Therefore, the payoff vector obtained in
Stage 2 is directly determined by the proposal in Stage 1. So, an agent’s
strategy in M can be simplified as his strategy in Stage 1.

In Stage 1, the strategy of agent 1, denoted by S1, is the number
he announces, i.e., S1 ∈ [0,min{ci, E}]. For 2 ≤ i ≤ n, the strategy
of agent i, denoted by Si, is a function Si : {(x1, . . . , xi−1) ∈
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R{1,...,i−1}
+ | ∀j∈{1,...,i−1} : xj ≤ min{cj , E −

∑j−1
k=1 xk}} → R+ such that

Si(x1, . . . , xi−1) ≤ min{ci, E −
∑i−1

j=1 xj}. For every i ∈ N , we denote
by Si the set of all strategies of agent i. Denote by SN =

∏
i∈N Si

the set of all strategy profiles of M , and S−i =
∏

j∈N\{i} Sj the set of
all strategy profiles of all agents other than agent i, where a strategy
profile of M is denoted by SN = (Si)i∈N .

Note that a strategy profile is a vector of n functions (when S1 is re-
garded as a constant function), yet a proposal is a vector of n numbers.
A strategy profile uniquely determines a proposal, not vice versa. The
reason is that given an independent variable, the same dependent vari-
able can be obtained in different functions. Moreover, the different
strategy profiles which determine the same proposal also determine
the same outcome in M . It means that these strategy profiles are equiv-
alent to each other.

For the sake of convenience, we slightly abuse the notation (x) to de-
note an arbitrary strategy profile which uniquely determines the pro-
posal x = (x1, x2, . . . , xn). Specifically, a strategy profile (x) repre-
sents that the strategy of agent 1 is x1, the strategy of agent 2 is “when
agent 1 announces x1, I announce x2; when agent 1 announces other
numbers, I announce a feasible number”, the strategy of agent 3 is
“when agent 1 and agent 2 announce x1 and x2 respectively, I an-
nounce x3; when they announce other numbers, I announce a feasi-
ble number”, and so on. At the end of Stage 1, it derives the proposal
x = (x1, x2, . . . , xn).

In what follows next, we firstly introduce some notation which is pre-
requisite to define the Nash equilibrium of M , and then we define the
dominant strategy equilibrium of M .

For each proposal x and each xi ̸= yi ∈
[
0,min{ci, E −

∑i−1
k=1 xk}

]
, we

denote by

x|yi = {z is a proposal | zi = yi and zk = xk for all k < i}
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the set of all possible proposals if agent i begins to deviate from x and
announces yi when M proceeds to him. For convenience, we denote
x ∤ xi = ∪

yi ̸=xi

(x|yi). For each strategy profile SN = (Si)i∈N ∈ SN , we

denote by u(SN ) the outcome of M . Then we have u(SN ) = xσ, where
x is the corresponding proposal by strategy profile SN , and σ ∈ Π is a
feasible permutation of x.

Definition 4.1
Let (E, c) ∈ BN . Then a strategy profile S∗

N ∈ SN is a Nash equilibrium
of M if for all i ∈ N and all Si ∈ Si,

ui(S
∗
N ) ≥ ui(Si, S

∗
−i). (4.3)

Assume that x and z are the proposals obtained by strategy profiles S∗
N

and (Si, S
∗
−i), respectively. Then inequality (4.3) equals to xσσ(i) ≥ zττ(i),

where σ and τ are feasible permutations of x and z, respectively. It
indicates that agent i cannot receive more by first deviating from his
strategy S∗

i , that is, first not announcing xi. If expression (4.3) holds
for all i ∈ N , we say that S∗

N is a Nash equilibrium of M . It can be
seen that in M , each strategy profile with the same proposal x is also a
Nash equilibrium of M since it results in the same outcome in M . So,
we use strategy profile (x) rather than strategy profile S∗

N in the rest of
this chapter. The same applies to later Definition 4.3.

Definition 4.2
Let (E, c) ∈ BN . Then S∗

i ∈ Si is a dominant strategy for agent i of M
if for all Si ∈ Si \ {S∗

i } and all S−i ∈ S−i,

ui(S
∗
i , S−i) ≥ ui(Si, S−i), (4.4)

Inequality (4.4) indicates that a dominant strategy of an agent arises
when he will always prefer to play a particular strategy over other
strategies regardless of other agents’ strategies. A dominant strategy
equilibrium arises when this holds for all agents.
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We show that the Nash equilibrium outcome of M is unique and it co-
incides with the allocation of the CEA rule. We proceed by two steps.
First, we construct a Nash equilibrium in which the outcome is con-
sistent with the allocation of the CEA rule (in Theorem 4.1). Then, we
verify the uniqueness (in Theorem 4.2).

Theorem 4.1
Let (E, c) ∈ BN . Then each strategy profile SN ∈ SN with u(SN ) =
fCEA(E, c) is a Nash equilibrium of M .

Proof. Let SN ∈ SN , and let s = fCEA(E, c) be the corresponding pro-
posal by SN . Since the CEA rule satisfies order preservation of payoffs,
the permutation σ : σ(i) → i for all i ∈ N , is a feasible permutation of
s. Hence, we have sσ = s = fCEA(E, c).

To prove the equilibrium, we need to verify that sσσ(i) ≥ zττ(i) for all
i ∈ N and (z) ∈ SN satisfying z ∈ s ∤ si, where σ and τ are feasible
permutations with respect to x and z, respectively.

For i = 1, we consider two cases.

Case 1. E ∈ T1. According to expression (4.2), we have fCEA
j (E, c) =

E/n for all j ∈ N .

For each z ∈ s ∤ s1, we argue that zττ(1) ≤ E/n. If not, assume zττ(1) >

E/n. Since zττ(j) ≥ zττ(1) for all 2 ≤ j ≤ n, it follows that
∑

j∈N zττ(j) >

E, which is a contradiction to our process. Hence, we have sσσ(1) =

fCEA
1 (E, c) = E/n ≥ zττ(1).

Case 2. E ∈ ∪
2≤j≤n

Tj . In this case, we have fCEA
1 (E, c) = c1 and

fCEA
j (E, c) ≥ c1 for all j ≥ 2.

For each y1 ̸= s1, we consider z ∈ s|y1. Since y1 < s1 = c1 and agent 1
is the last one to choose, then he will obtain y1 if zj ≥ y1 for all j ≥ 2
and obtain zl satisfying zl = min

j≥2
zj if {j|j ≥ 2 and zj < y1} ≠ ∅. In

view of zl < y1, we conclude that sσσ(1) = fCEA
1 (E, c) = c1 > y1 ≥ zττ(1).
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Then, for each 2 ≤ i ≤ n, we also consider two cases.

Case 1. E ∈ ∪
1≤k≤i

Tk. With expression (4.2), we have fCEA
k (E, c) = ck

for all k < i and fCEA
j (E, c) =

E−
∑i−1

k=1 ck
n−i+1 for all j ≥ i.

Assume that there exists z ∈ s ∤ si such that sσσ(i) < zττ(i). We denote
by ϵ = zττ(i) − sσσ(i) the positive excess. Since zττ(j) ≥ zττ(i) = sσσ(i) + ϵ,
together with zk = sk ≤ si = sσσ(i), it is impossible that agent j chooses
the number announced by agent k. According to order preservation
of payoffs of the CEA rule, we have τ(k) = k for each k < i. Thus, it
holds that

∑
j∈N

zττ(j) =
i−1∑
k=1

zk +
n∑

j=i

zττ(j) =
i−1∑
k=1

sk +
n∑

j=i

zττ(j)

≥
i−1∑
k=1

sσσ(k) +

n∑
j=i

(sσσ(i) + ϵ) = E + (n− i+ 1)ϵ > E,

which violates the process. Hence, we have sσσ(i) ≥ zττ(i).

Case 2. E ∈ ∪
i<j≤n

Tj . As a result, we have fCEA
k (E, c) = ck for all k ≤ i,

and fCEA
j (E, c) ≥ ci for all j > i.

For each yi ̸= si, we consider z ∈ s|yi, that is, agent i announces
yi < si = ci, together with sk = ck ≤ ci for all k < i, it follows
that zk ≤ ci for all 1 ≤ k ≤ i. Hence, we have zττ(i) = max{yi, ci−1}
if zj ≥ max{yi, ci−1} for all j > i, and zττ(i) ≤ max{yi, ci−1} if {j >

i | zj < max{yi, ci−1}} ≠ ∅. Thus, we conclude that sσσ(i) = ci ≥
max{yi, ci−1} ≥ zττ(i).

In summary, for all i ∈ N and (z) ∈ SN satisfying z ∈ s ∤ si, we have
sσσ(i) ≥ zττ(i). Therefore, (s) is a Nash equilibrium of M with outcome
fCEA(E, c).
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To show uniqueness, we first introduce Lemma 4.1 to show that in M ,
there exist an agent i and a step-up proposal x such that xi is infinitely
close to fCEA

i (E, c), which is not affected by his predecessors.

Lemma 4.1
Let (E, c) ∈ BN with E ∈ Ti for some 1 ≤ i ≤ n. Assume that, when M
proceeds to i, agent k has announced xk for each k < i. Then, for an arbitrary
ϵ > 0, there is a proposal x such that xj > xj−1 > fCEA

i (E, c) − ϵ for all
j > i.

Proof. If i = 1, we have T1 = (0, nc1] and fCEA
1 (E, c) = E/n. In this

case, we construct an x = (x1, . . . , xn) as follows.

We assume that agent 1 announces x1 = E/n− ϵ1, where

0 < ϵ1 <

n∑
j=2

cj −
n− 1

n
E, (4.5)

then the residual estate satisfies that n−1
n E + ϵ1 <

∑n
j=2 cj .

Then, for each 2 ≤ j ≤ n−1, agent j announces xj = E/n+
∑j−1

k=1
ϵk

n−k−
ϵj , where

0 < ϵj <
n∑

k=j+1

ck −
n− j

n
E −

j−1∑
k=1

n− j

n− k
ϵk. (4.6)

The currently residual estate satisfies that n−j
n E +

∑j−1
k=1

n−j
n−k ϵk + ϵj <∑n

k=j+1 ck. Finally, agent n announces xn = E/n+
∑n−2

k=1
ϵk

n−k + ϵn−1 =

E/n+
∑n−1

k=1
ϵk

n−k .

Note that the bounds of ϵ1, . . . , ϵn−1 are given so as to ensure xn ≤ cn.
The same applies to the rest of this proof.

According to the definition of x, it is easy to verify that, for 2 ≤ j ≤
n− 1, xj > xj−1 if ϵj < n−j+2

n−j+1ϵj−1, and xn > xn−1.
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Therefore, for ϵ > 0, let ϵ1 < ϵ be such hat expression (4.5) holds, and let
ϵj < n−j+2

n−j+1ϵj−1 be such that expression (4.6) holds. Then we conclude
that xj > xj−1 ≥ E/n− ϵ1 > fCEA

1 (E, c)− ϵ.

If 2 ≤ i ≤ n−1, with expression (4.2), we have fCEA
j (E, c) =

E−
∑j−1

k=1 ck
n−j+1

for all j ≥ i. Similarly, we construct an x as follows.

Assume that agent i announces xi = fCEA
i (E, c)− ϵi, where

0 < ϵi <

n∑
j=i+1

cj −
n− i

n− i+ 1
(E −

i−1∑
k=1

ck), (4.7)

for i < j < n, agent j announces xj = fCEA
j (E, c) +

∑j−1
k=i

ϵk
n−k − ϵj ,

where

0 < ϵj <

n∑
k=i+1

ck −
n− j

n− i+ 1
(E −

i−1∑
k=1

ck)−
j−1∑
k=i

n− j

n− k
ϵk, (4.8)

and agent n announces xn = fCEA
n (E, c) +

∑n−1
k=i

ϵk
n−k .

The similar conclusion is that, for ϵ > 0, let ϵi < ϵ be such taht expres-
sion (4.7) holds, and let ϵj < n−j+2

n−j+1ϵj−1 be such that expression (4.8)
holds. Then we have xj > xj−1 ≥ fCEA

i (E, c)− ϵi > fCEA
i (E, c)− ϵ.

If i = n, we have fCEA
k (E, c) = ck for each k < n and fCEA

n (E, c) >
cn−1. For an arbitrary ϵ > 0, assuming ϵn < ϵ, then if agent n an-
nounces xn = fCEA

n (E, c) − ϵn, we have xn = fCEA
n (E, c) − ϵn >

fCEA
n (E, c)− ϵ.

Combining these three cases, we obtain this result.

Theorem 4.2
Let (E, c) ∈ BN . Then the unique Nash equilibrium outcome of M is
fCEA(E, c).
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Proof. We have shown that s = fCEA(E, c) is a Nash equilibrium out-
come of M . To prove uniqueness, we assume that a strategy profile (r)
satisfying r = (r1, . . . , rn) is an arbitrary Nash equilibrium, then we
verify that r = s, that is, (r) and (s) are equivalent to each other.

First, we prove that rττ(1) ≥ sσσ(1) = s1, where τ and σ are feasible
permutations of r and s, respectively. Supposing by contrary that
rττ(1) < s1, then we consider two cases.

Case 1. E ∈ T1. According to Lemma 4.1, let ϵ < s1 − rττ(1), then there
is a proposal x such that xj > xj−1 > s1 − ϵ for each j > 1. It follows
that agent 1’ payoff equals to x1, where x1 > s1 − ϵ > rττ(1). In view
of x ∈ r ∤ r1, we obtain a contradiction to the assumption that (r) is a
Nash equilibrium. Therefore, rττ(1) ≥ s1.

Case 2. E ∈ Tj , where 1 < j ≤ n. We have s1 = c1.

If r1 < s1, it is easy to verify that s ∈ r ∤ r1 satisfies sσσ(1) > r1 ≥
min{r1, . . . , rn} = rττ(1), which is a contradiction.

If r1 = s1, with the assumption rττ(1) < s1 and Lemma 4.1, we construct
an x such that

xk =


1
2(r

τ
τ(1) + s1) if k = 1,

ck if 1 < k < j,

sj − ϵ if k = j,

xk if k > j,

where ϵ < sj − cj−1 and xk > xk−1 for each k > j. Then, we have
x1 ≤ . . . ≤ xn, which implies that x ∈ r ∤ r1 is a contradiction to the
assumption that (r) is a Nash equilibrium.

Therefore, we have rττ(1) ≥ s1.

Then, for each 2 ≤ i ≤ n, we verify that rττ(i) ≥ si holds if rττ(k) ≥ sk for
all 1 ≤ k < i. We again consider two cases.
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Case 1. E ∈ Tk and k < i. According to expression (4.2), we have
si = si−1. We conclude immediately that rττ(i) ≥ rττ(i−1) ≥ si−1 = si.

Case 2. E ∈ Tk and k ≥ i. In a way similar to the proof of rττ(1) ≥ s1,
supposing conversely that rττ(i) < si, we can always construct an ϵ > 0

and an x ∈ r ∤ ri such that rττ(i) − ϵ < xi < . . . < xn. It entails that (x)
is a contradiction of the Nash equilibrium (r).

Hence, it holds that rττ(i) ≥ si for all 2 ≤ i ≤ n.

In conclusion, if (r) is an arbitrary Nash equilibrium, for all i ∈ N ,
we have rττ(i) ≥ si. In view of

∑
i∈N rττ(i) =

∑
i∈N si = E, we obtain

rττ(i) = si, which implies that s is the unique Nash equilibrium outcome
of M . From expression (4.2), it is easy to verify that ri = ti, where ti ∈
{rττ(j)|j ∈ N, rττ(j) = rττ(i)}. So, we conclude that ri = si for all i ∈ N ,
which means that the Nash equilibrium outcome can be achieved by
an arbitrary equivalent strategy profile (s).

Theorems 4.1 and 4.2 indicate that it is opportune for agents to follow
the proposal s in M . Then, the unique Nash equilibrium outcome of
M coincides with the allocation of the CEA rule. Based on this result,
we say that the game M gives a non-cooperative interpretation to the
CEA rule.

Herein, we present an illustrative example.

Example 4.1
Let (E, c) ∈ BN with N = {1, 2}, E = 10 and c = (6, 7). Then, the
corresponding game M includes the following four steps, where steps
1 and 2 are in Stage 1, and steps 3 and 4 are in Stage 2.

Step 1. agent 1 announces x1 ∈ [0, 6];

Step 2. agent 2 announces x2 ∈ [0,min{7, 10− x1}];

Step 3. agent 2 takes x1 or x2 as his payoff;

Step 4. agent 1 chooses the other left.
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In M , the proposal is x = (x1, x2), and the payoff vector is (x1, x2) if
x1 ≤ x2, and (x2, x1) if x1 > x2. By Theorems 4.1 and 4.2, s = (s1, s2) =
(5, 5) is the unique Nash equilibrium outcome. △

However, in Example 4.1, s = (5, 5) is not a subgame perfect equi-
librium outcome. The reason is that if the strategies S1 = y1 and
S2(y1) = y2 satisfy the following condition:

y2 =


7 if 0 ≤ y1 < 3,

10− y1 if 3 ≤ y1 < 6 and y1 ̸= 5,

0 if y1 = 5,

then agent 1 is better off announcing y1 ̸= 5. It means that the strategy
s1 = 5 is not optimal for agent 1.

Moreover, s is not a dominant strategy equilibrium outcome by Exam-
ple 4.1, since S1 = 5 is not a dominant strategy for agent 1. In Example
4.1, when agent 1 announces s1 = 5, consequently the minimal payoff
of agent 2 is 5, which equals to s2. Hence, agent 2 can indifferently
announce a number in [0, 5].

Generally, the reason of disappearance of the subgame perfect equilib-
rium is that an agent can announce arbitrarily, if he believes that he
can receive equilibrium payoff even though not announcing it by him-
self. It corresponds to the bankruptcy problem (E, c) ∈ BN satisfying
{i, j ∈ N |fCEA

i (E, c) = fCEA
j (E, c)} ̸= ∅. This motivates the following

proposition.

Proposition 4.1
Let (E, c) ∈ BN and let s = fCEA(E, c) be the proposal in M . Then, s is the
unique subgame perfect equilibrium outcome of M if E ∈ Tn and ci ̸= cj for
all i, j ∈ N with i ̸= j.

Proof. For each (E, c) ∈ BN with E ∈ Tn and ci ̸= cj for all i ̸= j,
we have fCEA

1 (E, c) < . . . < fCEA
n (E, c). Then, we prove that s is
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a subgame perfect equilibrium outcome by backward induction. For
each 2 ≤ i ≤ n and 1 ≤ k < i, when M proceeds to agent i, assuming
that xk is the number agent k announces, we denote

P i := {k | k < i, xk ̸= sk}.

For agent n, if Pn = ∅, then agent n is better off announcing zn = sn
according to Theorem 4.1. If Pn ̸= ∅, agent n will announce

zn = argmax
yn

πn(x1, . . . , xn−1, yn), (4.9)

where πn(x1, . . . , xn−1, yn) denotes the payoffs agent n receives in the
end of M with respect to proposal (x1, . . . , xn−1, yn).

For agent n−1, if Pn−1 = ∅, he knows that if he announces sn−1, agent
n will announce sn. According to Theorem 4.1, it is optimal for agent
n− 1 to announce zn−1 = sn−1. If Pn−1 ̸= ∅, agent n− 1 will announce

zn−1 = argmax
yn−1

πn−1(x1, . . . , xn−2, yn−1, zn),

where zn is given by expression (4.9) such that xn−1 = zn−1.

We analyze the next agent similarly and this process stops until agent
1. Agent 1 knows that if he announces s1, it is optimal for each sub-
sequent agent j to announce sj . Theorem 4.1 has shown that agent 1
is better off announcing s1. Hence, we conclude that, for each i ∈ N ,
agent i will announce si.

Therefore, s is a subgame perfect equilibrium outcome. It is common
knowledge that a subgame perfect equilibrium outcome must be a
Nash equilibrium outcome. Together with Theorem 4.2, we conclude
that s is the unique subgame perfect equilibrium outcome of M .

Even though s is not a subgame perfect equilibrium outcome in most
bankruptcy problems, according to Lemma 4.1, for an arbitrary ϵ > 0,
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agent i is capable of receiving payoff more than si − ϵ. Therefore, the
game M ends with an approximation of s.

In Example 4.1, we have shown that, for each (E, c) ∈ BN , fCEA(E, c)
is not a dominant strategy equilibrium outcome. Actually, we can ver-
ify that there is no dominant strategy equilibrium outcome in M .

Proposition 4.2
Let (E, c) ∈ BN . Then s = fCEA(E, c) is not a dominant strategy equilib-
rium outcome of M .

Proof. We only need to prove that S1 = s1 is not a dominant strategy
for agent 1. We consider two cases.

Case 1. E ∈ T1. By expression (4.2), we have s1 = E/n.

We consider strategy profile (S1, S2(x1), . . . , Sn(x1, . . . , xn−1)) ∈ SN ,
where for each 2 ≤ i ≤ n, the strategy of agent i is such that
Si(x1, . . . , xi−1) = xi satisfying

xi =


0 if x1 = s1,
x1
2 if x1 < s1,
E−x1
n−1 if x1 > s1.

Then, when agent 1 announces x1 = s1, the outcome is (0, . . . , 0, E/n);
When agent 1 announces x1 < s1, the outcome is (x1

2 , . . . ,
x1
2 , x1); When

agent 1 announces x1 > s1, the outcome is (E−x1
n−1 , . . . , E−x1

n−1 , x1). It is
obvious that S1 = s1 is not a dominant strategy for agent 1.

Case 2. E ∈ Tj for 1 < j ≤ n. According to expression (4.2) again, we
have s1 = c1.

Similarly, we consider (S1, S2(x1), . . . , Sn(x1, . . . , xn−1)) ∈ SN , where
for each 2 ≤ i ≤ n, the strategy of agent i is such that Si(x1, . . . , xi−1) =
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xi satisfying

xi =

{
0 if x1 = s1,
x1
2 if x1 < s1.

It is easy to verify that when agent 1 announces x1 = s1, the outcome
is (0, . . . , 0, c1); and when agent 1 announces x1 < s1, the outcome is
(x1
2 , . . . ,

x1
2 , x1). Therefore, S1 = c1 is not a dominant strategy.

In conclusion, S1 = s1 is not a dominant strategy. It follows that s =
fCEA(E, c) is not a dominant strategy equilibrium outcome.

As is known to all, a dominant strategy equilibrium outcome must be
a Nash equilibrium outcome. Together with Theorem 4.2 and Propo-
sition 4.2, we conclude that there is no dominant strategy equilibrium
outcome in M . The reason is that a dominant strategy of an agent
means that the strategy is at least as good as another strategy, regard-
less of the strategies of the other agents. However, in M , the others
can unite in reducing one’s payoff by playing special strategies even
although these strategies may derive a lose-lose scenario.

In the next section, we introduce another mechanism to deal with
bankruptcy problems by substituting the choice procedure in Stage 2
of M to a bargaining procedure. For the same reason, the dominant
strategy equilibrium outcome also does not exist in the corresponding
non-cooperative games. So we only focus on the Nash equilibrium
outcome. It turns out that the unique Nash equilibrium outcome is
again consistent with the allocation of the CEA rule, which is also a
subgame perfect equilibrium outcome.

4.4 The divide-and-object game

In this section, we introduce a divide-and-object mechanism to solve
bankruptcy problems. Given an arbitrary bankruptcy problem (E, c) ∈
BN , we can obtain the following divide-and-object game, denoted by
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M ′(E, c). When no confusion arises, the notation M ′(E, c) is abbrevi-
ated to M ′ for convenience.

The divide-and-object game M ′:

Stage 1: Each agent i ∈ N successively announces a number xi ∈ R+ in
ascending order of the claims. The number agent i announces cannot
exceed his claim and the current residual estate, that is,

xi ∈

{
[0,min{ci, E}] if i = 1,[
0,min{ci, E −

∑i−1
k=1 xk}

]
if 2 ≤ i ≤ n.

Similarly, x = (x1, . . . , xn) is called a proposal. For distinct i, j ∈ N , an
objection of i against j with respect to x is denoted by Γij , if

xi < ϕi(xi + xj , (ci, cj)), (4.10)

where ϕ is the following bilateral principle for bankruptcy problem
(E, c) ∈ BN :

ϕ(E, c) =

{
(E/2, E/2) if 0 < E < 2c1,

(c1, E − c1) if 2c1 ≤ E < c1 + c2.
(4.11)

We say that there is no objection for agent i if and only if it holds that
for j ̸= i,

ϕi(xi + xj , (ci, cj)) = xi. (4.12)

Note that if there is no objection for agent i, then agent i cannot ob-
ject against any other agent, and any other agent cannot object against
him.

Stage 2: All agents try to object against other agents. An agent receives
nothing as long as he is objected by others. If an agent has the oppor-
tunity to object against more than one agent, he will naturally object
against the one who announces the largest number. If more than one
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agent announce the largest number, the target is chosen randomly. It
turns out that for each i ∈ N , one of the following cases will occur:

1. There is no objection for agent i. Agent i receives payoff xi when
the game ends.

2. Γji arises. Agent i receives 0 when the game ends.

3. Γki does not exist for all k ∈ N \ {i}, but Γij arises. The game
ends with the outcome that agent i obtains ϕi(xi + xj , (ci, cj)).

We state some explanations with regards to the game M ′. Firstly, one
gets 0 as long as he is objected, so he carefully announces his own num-
ber to avoid this severe punishment. Secondly, by expression (4.10),
agent i receives more if he can object. It is positive that the excess mo-
tivates agents to object against others.

Next, we consider the Nash equilibrium of M ′. Much like in M , an
agent’s strategy in M ′ can be simplified as his strategy in Stage 1. Note
that Stage 1 of two games are the same. When there is no confusion,
we continue to use the notation (x) to refer to an arbitrary equivalent
strategy profile in M ′ which uniquely determines the proposal x. The
same applies to the other notations.

Definition 4.3
Let (E, c) ∈ BN . Then a strategy profile S∗

N ∈ SN is a Nash equilibrium
of M ′ if for all i ∈ N and all Si ∈ Si,

πi(S
∗
N ) ≥ πi(Si, S

∗
−i), (4.13)

where πi(S
∗
N ) and πi(Si, S

∗
−i) denotes the payoffs agent i receives in

the end of M ′.

For simplicity, for a strategy profile (x) ∈ SN , we write πi(x) ≥ πi(z) in
expression (4.13), where (z) ∈ SN satisfying z ∈ x ∤ xi. Similarly with
expression (4.3), inequality (4.13) indicates that agent i cannot receive
more by first not announcing xi in M ′. If the inequality holds for all
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i ∈ N , we say that (x) is a Nash equilibrium of M ′. In M , we naturally
assume that a rational agent must choose the largest number he can
choose. Herein, we assume that a rational agent in M ′ must not be
objected by his predecessors since he has known their strategies before
he starts to announce.

In the following, we show that there is a unique Nash equilibrium out-
come of M ′ and it coincides with the allocation of the CEA rule. We
proceed by two steps. First, we construct a Nash equilibrium (s) of
M ′, where the outcome equals to the allocation of the CEA rule (in
Theorem 4.3). Then, we verify uniqueness (in Theorem 4.4).

To prove these results, we first introduce some lemmas to show how
objections form among agents.

Lemma 4.2
Let (E, c) ∈ BN and let x be a proposal in M ′. Then for i, j ∈ N with i < j,
Γji is formed if xi > xj .

Proof. If xi > xj , we have xi + xj < 2xi ≤ 2ci. According to expression
(4.11), it holds that

ϕ(xi + xj , (ci, cj)) = (
xi + xj

2
,
xi + xj

2
).

Since ϕi(xi + xj , (ci, cj)) =
xi+xj

2 < xi, with expression (4.10), we con-
clude that there is an objection Γji.

Lemma 4.3
Let (E, c) ∈ BN and let x be a proposal in M ′. Then agent i will be objected

if xi > E/n for i = 1 and xi >
E−

∑i−1
k=1 xk

n−i+1 for 2 ≤ i ≤ n.

Proof. If x1 > E/n, we argue that there is at least an agent j ≥ 2 such
that xj < E/n. On the contrary, assume that xj ≥ E/n for all 2 ≤
j ≤ n. Together with x1 > E/n, it holds that

∑n
i=1 xi > E, which is a
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contradiction. Hence, we have xj < E/n < x1. According to Lemma
4.2, Γj1 is formed.

If xi >
E−

∑i−1
k=1 xk

n−i+1 for 2 ≤ i ≤ n, then we can similarly verify that there

is at least an agent j > i such that xj <
E−

∑i−1
k=1 xk

n−i+1 < xi. Using Lemma
4.2, Γji is formed.

Lemma 4.4
Let (E, c) ∈ BN and let x be a proposal in M ′. Then for distinct i, j ∈ N ,
there is an objection Γji if xi > xj and xj < cj .

Proof. If i < j, according to Lemma 4.2, we conclude that there is an
objection Γji. If j < i, in view of expression (4.11), we have

ϕi(xj + xi, (cj , ci)) =

{
xj+xi

2 if xj + xi < 2cj ,

xj + xi − cj if xj + xi ≥ 2cj .

It is easy to verify that ϕi(xi + xj , (ci, cj)) < xi. With expression (4.10),
Γji is formed immediately.

Based on Lemmas 4.2, 4.3 and 4.4, we show the main results in M ′.

Theorem 4.3
Let (E, c) ∈ BN . Then each strategy profile SN ∈ SN with π(SN ) =
fCEA(E, c) is a Nash equilibrium of M ′.

Proof. Let SN ∈ SN , and let s = fCEA(E, c) be the corresponding pro-
posal of SN . First, we verify that π(SN ) = π(s) = fCEA(E, c). Since the
CEA rule satisfies bilateral consistency, we have for distinct i, j ∈ N ,

(si, sj) = (ϕi(si + sj , (ci, cj)), ϕj(si + sj , (ci, cj))).

According to expression (4.12), there are no objections among agents.
Therefore, the game M ′ ends with the outcome π(s) = s = fCEA(E, c).
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Then, we prove that (s) is a Nash equilibrium. To prove this, we only
need to prove that πi(s) ≥ πi(z) for all i ∈ N and (z) ∈ SN satisfying
z ∈ s ∤ si.

For i = 1, we consider two cases.

Case 1. E ∈ T1. With expression (4.2), we have fCEA
j (E, c) = E/n for

all j ∈ N .

For each y1 ̸= s1, we consider z ∈ s|y1. According to Lemma 4.3, agent
1 will be objected if y1 > s1 = E/n and π1(z) = 0. Hence, we consider
y1 < s1. With Lemma 4.4 and y1 < s1 ≤ c1, Γ1j arises if zj > y1 for each
j ≥ 2. To avoid being objected, each subsequent agent j will announce
zj ≤ y1. It follows that π1(z) = y1 < s1 if there is no objection for agent
1, and π1(z) = 0 if he is objected. Hence, we have π1(s) > π1(z) for all
z ∈ s|y1.

Case 2. E ∈ ∪
2≤j≤n

Tj . In this case, we have fCEA
1 (E, c) = c1 and

fCEA
j (E, c) ≥ c1 for all j ≥ 2.

For each y1 < s1 = c1, we consider z ∈ s|y1. In view of Lemma 4.4,
every subsequent agent j is better off announcing zj ≤ y1 to avoid
being objected. With the similar analysis in Case 1, we conclude that
π1(s) > π1(z) for all z ∈ s|y1.

Then, for each 2 ≤ i ≤ n, we also consider two cases.

Case 1. E ∈ ∪
1≤k≤i

Tk. We have fCEA
j (E, c) =

E−
∑i−1

k=1 f
CEA
k

n−i+1 for all j ≥ i.

For each yi ̸= si, we consider z ∈ s|yi. With Lemma 4.3, we know
that agent i will be objected by his predecessors and receive nothing if
yi > si. So, we consider yi < si. With Lemma 4.2, every subsequent
agent j will announce zj ≤ yi to avoid being objected. So, agent i can
only object to his predecessors if possible. Then, we have πi(z) = 0
if agent i is objected, πi(z) = ϕi(si−1 + yi, (ci−1, ci)) if no one objects
to agent i but Γi(i−1) arises, and πi(z) = yi if there is no objection for
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agent i. It is easy to verify that πi(z) < si, and hence, πi(s) > πi(z) for
all z ∈ s|yi.

Case 2. E ∈ ∪
i<j≤n

Tj . We have fCEA
k (E, c) = ck for all k ≤ i.

If agent i announces yi < si = ci, similarly, it holds that πi(s) > πi(z)
for all z ∈ s|yi.

In short, we verify that πi(s) > πi(z) for all i ∈ N and (z) ∈ SN sat-
isfying z ∈ s ∤ si. It implies that (s) is a Nash equilibrium of M ′ with
outcome fCEA(E, c).

Theorem 4.4
Let (E, c) ∈ BN . Then the unique Nash equilibrium outcome of M ′ is
fCEA(E, c).

Proof. Without loss of generality, let (r) satisfying r = (r1, . . . , rn) be
an arbitrary Nash equilibrium of M ′. We denote

j = min{i ∈ N |ri ̸= si}.

According to Theorem 4.3, there is an (s) satisfying s ∈ r|ri such that
πj(r) < πj(s), which is a contradiction of the Nash equilibrium (r). So,
we conclude that (r) and (s) are equivalent to each other, i.e., r = s.
It means that s is the unique Nash equilibrium outcome of M ′. Obvi-
ously, it can be achieved by a strategy profile (s).

Theorems 4.3 and 4.4 show that the allocation of the CEA rule is the
unique Nash equilibrium outcome of M ′. Moreover, it is also a sub-
game perfect equilibrium outcome.

Theorem 4.5
Let (E, c) ∈ BN . Then the unique subgame perfect equilibrium outcome of
M ′ is fCEA(E, c).
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We omit the proof of Theorem 4.5 since it is similar to the proof of
Proposition 4.1. It is an immediate conclusion from Theorems 4.3 and
4.4. In other words, the game M ′ also gives a non-cooperative inter-
pretation to the CEA rule.

4.5 Concluding remarks

Our games are related to Dagan et al (1997), Chang and Hu (2008),
Li and Ju (2014) and Tsay and Yeh (2019). Dagan et al (1997) intro-
duced a game form using bilateral principle to implement consistent
bankruptcy rules. In the game, one of the agents with the largest claim
proposes an allocation, called a proposal, and other agents make se-
quential responses to the proposal by either accepting or rejecting it.
The agent who accepts the proposal receives the corresponding payoff
of it, and the agent who rejects the proposal receives his payoff deter-
mined by a predetermined bilateral principle.

Chang and Hu (2008) considered a two-stage game form to implement
consistent bankruptcy rules. In Stage 1, each agent proposes an alloca-
tion and a permutation of the agents. If all the agents propose the same
allocation, the unique allocation is called the proposal and the compo-
sition of the permutations decides an agent to the current proposer.
Then, the game proceeds to Stage 2; Otherwise, the game ends with
a non-positive payoff vector. In Stage 2, the current proposer either
accepts the proposal or rejects it. In case of acceptance, the proposal
is the outcome of the game. In case of rejection, the proposer chooses
an agent to negotiate by a bilateral principle, and the residual agents
receive the payoffs specified in the proposal.

Li and Hu (2014) proposed a repetitive two-step game form to imple-
ment bankruptcy rules. Herein, we only focus on the game implement-
ing the CEA rule. In the first round, one of the agents with the largest
claim divides the estate into n non-negative parts satisfying efficiency
in Step 1. In Step 2, each agent successively chooses a part in ascending
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order of the claims. If the chosen part does not exceed his claim, he re-
ceives this part and leaves the game. If an agent firstly chooses the part
exceeding his claim, he receives his claim and leaves the game. Then,
the next round starts. The residual agents divide the residual estate by
repeating Step 1 and Step 2. The game ends until every agent receives
a payoff.

Tsay and Yeh (2019) first introduced strategic implementations of three
bankruptcy rules for bankruptcy problems with two agents. Then,
they considered a three-stage game to implement them. In Stage 1,
each agent announces an allocation and a permutation of the agents.
The composition of the permutations decides an agent to the coordi-
nator. If all the agents, except possibly for the coordinator, announce
the same allocation, the unique allocation is the proposal; Otherwise,
the allocation announced by the coordinator is the proposal. In Stage
2, the coordinator either accepts the proposal or rejects it. In case of ac-
ceptance, the proposal is the outcome of the game. In case of rejection,
the proposer chooses an agent to negotiate. In Stage 3, the coordinator
and the chosen agent play a two-person non-cooperative game, and
the residual agents receive the payoffs specified in the proposal.

However, our games are different from their games in the following
points.

(1) The way of forming a proposal: In Dagan et al (1997) and Li and
Ju (2014), one of the agents with the largest claim announces a pro-
posal. In Chang and Hu (2008) and Tsay and Yeh (2019), every agent
announces a proposal simultaneously. Unlike them, our games pro-
vide a sequential partition method, in which each agent successively
announces a number to form a proposal. Specifically, each agent has
the right to propose, but only determines a part of the proposal.

(2) Implementing efficiency: In Dagan et al (1997), Chang and Hu
(2008) and Tsay and Yeh (2019), a feasible proposal is an allocation
(satisfying efficiency). In Li and Ju (2014), it is a division of the estate
satisfying efficiency. However, a proposal in our games is not neces-
sarily efficient. The absence of efficiency is fair to guarantee that the
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last agent has more strategies than announcing uniquely. Although an
efficient proposal is not required in our games, the unique Nash equi-
librium outcome satisfies efficiency.

(3) Divide-and-choose processes: Li and Ju (2014) and Tsay and Yeh
(2019) also mentioned divide-and-choose games to implement the
CEA rule. However, there are essential differences between our
game M and their games. In Li and Ju (2014), the partition process is
accomplished by one agent, and the selection process is implemented
in ascending order of the claims. Furthermore, their game is designed
in a repetitive way. In Tsay and Yeh (2019), their game is only
defined in two-person bankruptcy problems, in which one agent
proposes a division, and the other responds by either accepting or
rejecting it. Compared to their games, our game M is designed for
all bankruptcy problems. The partition process is accomplished by
everyone in ascending order of the claims, and the selection process is
implemented in reverse order. Moreover, if we change the ascending
order in M to other partition orders, the unique Nash equilibrium
outcome disappears.

(4) Negotiation processes: Dagan et al (1997) and Chang and Hu (2008)
mentioned bargaining games to implement the CEA rule. Besides the
differences in forming a proposal, our game M ′ has two main differ-
ences compared to theirs. First, one agent in M ′ can negotiate with an
arbitrary other agent if an objection arises between them. However, in
Dagan et al (1997) and Chang and Hu (2008), a negotiation only arises
along with a particular agent. Next, when two agents play a bilateral
negotiation, one receives 0 if he is objected in M ′, and the other re-
ceives a payoff decided by the bilateral principle. However, in Dagan
et al (1997) and Chang and Hu (2008), two agents, who play a bilateral
negotiation, both receive the amounts in this bilateral principle.

Furthermore, the non-cooperative interpretations of the CEL rule and
the PRO rule can be given in a similar way.

The CEL rule: As the dual of the CEA rule, the CEL rule can be im-
plemented similarly if for each (E, c) ∈ BN , we treat the losses L =
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∑
i∈N ci − E as a homogeneous cake and deal with it using the same

processes in both M and M ′.

In addition, if we define the bilateral principle in expression (4.11) by
for each (E, c) ∈ BN ,

ϕ(E, c) =

{
(0, E) if 0 < E < c2 − c1,

(E+c1−c2
2 , E−c1+c2

2 ) if c2 − c1 ≤ E < c1 + c2,

then gCEL(E, c) is the unique Nash equilibrium outcome of M ′.
However, it is no longer a subgame perfect equilibrium outcome.
The reason is that one agent may obtain 0 if he follows the proposal
gCEL(E, c), which means that he can announce arbitrarily without
receiving less. Moreover, in M ′, the ascending partition order can be
changed to an arbitrary partition order, which also leads to the unique
Nash equilibrium outcome gCEL(E, c).

The PRO rule: If we define the bilateral principle in expression (4.11)
by for each (E, c) ∈ BN ,

ϕ(E, c) = (
c1

c1 + c2
E,

c2
c1 + c2

E),

then gPRO(E, c) is the unique Nash equilibrium outcome of M ′. More-
over, it is also a subgame perfect equilibrium outcome. Similarly, the
partition order can be given randomly, which leads to the same equi-
librium outcome.

In summary, a sequential partition method for non-cooperative games
of bankruptcy problems is given in this chapter, in which a proposal
is formed sequentially. It is not only concise but also effective, which
is able to interpret a family of bankruptcy rules. We can also combine
the sequential partition process with other non-cooperative processes.
More interesting games are worth to be explored in the future.
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5
Mechanisms for division problems

with single-dipped preferences

Adapted from: Gong, D., B. Dietzenbacher, and H. Peters. Mechanisms
for division problems with single-dipped preferences. WorkingPaper 007.
Maastricht University, Graduate School of Business and Economics,
2022.

81





5.1 Introduction

We consider the problem of allocating one unit of an infinitely divisible
commodity among agents with single-dipped preferences. A single-
dipped preference has a worst point, the dip, and preference strictly
increases in both directions away from the dip. Such a preference
may arise from maximizing a strictly quasiconvex utility function on
a (budget) line, and reflects that an agent prefers extremes over com-
binations – for instance, a university employee may prefer either only
teaching or only research over a combination of the two.

We take a mechanism design approach: each agent reports a number
between zero and one, and a mechanism is a map assigning an allo-
cation of the commodity among the agents, which is evaluated by the
agents according to their preferences. Under a number of conditions
on mechanisms, we analyze the Nash, Pareto optimal Nash, and strong
equilibria for each single-dipped preference profile, and the resulting
allocations, in the induced game. Mechanisms are related to (social
choice) rules: these assign an allocation to each profile of preferences.
In particular, a rule which only depends on the dips of the reported
preferences, gives rise to a mechanism.

Almost throughout, we assume that a mechanism is anonymous and
monotonic. The latter condition means that if an agent reports a higher
or lower number, then that agent’s share increases or decreases, if pos-
sible. The motivation for this monotonicity requirement is that it pro-
vides the agents with ample strategic possibilities to influence their
shares – thus, it makes the mechanism highly sensitive to the strate-
gies of the agents.

After preliminaries in Section 5.2, in Section 5.3 we discuss Nash equi-
libria of games induced by a mechanism and single-dipped preference
profiles. The main insight here is that in every Nash equilibrium each
agent plays 0 or 1, and we characterize all Nash equilibria (Theorem
5.1). If there are two agents then a Nash equilibrium always exists
(Proposition 5.1), but this is no longer true for more than two agents.
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In Section 5.4 we consider Pareto optimal Nash equilibria, and we
show that an additional condition on a mechanism, namely that when
every agent plays 0 or 1, the agents who play 0 receive 0 and the agents
who play 1 equally share the commodity, is necessary and sufficient
for the existence of a Pareto optimal Nash equilibrium for all games,
i.e., all preference profiles. Moreover, in this case the Pareto optimal
Nash equilibria are exactly those strategy profiles where agents in a
so-called maximal coalition play 1 and the other agents play 0 – ‘max-
imal’ means that as many agents as possible (given the restrictions of
best reply and Pareto optimality) play 1 and get a positive share. Under
the further condition of order-preservation on a mechanism – meaning
that playing a higher number than another agent results in obtaining
a higher share than that agent – these Pareto optimal Nash equilibria
are, moreover, strong equilibria (Aumann, 1959): no coalition can prof-
itably deviate. As a consequence, under the mentioned conditions on
a mechanism a selection – denoted by M – of the Pareto social choice
correspondence is implemented in strong equilibrium, namely picking
the Pareto optimal allocations that are characterized by so-called max-
imal coalitions: this means that outside agents prefer getting zero over
equally sharing the one unit with the agents in the coalition, whereas
for agents in the coalition the opposite holds.

Sprumont (1991) shows that under a few natural conditions, the so-
called uniform rule is the unique strategy-proof (Gibbard, 1973; Sat-
terthwaite, 1975) rule for division problems with single-peaked pref-
erences – a preference is single-peaked if there is a unique best point,
the peak, and preference decreases in both directions away from this
peak. Bochet et al (2021) – combining work of Bochet and Sakai (2009)
and Thomson (2009) – show that under similar assumptions as ours,
equilibria (Nash, Pareto optimal Nash, strong) end up in the allocation
assigned by the uniform rule – see Section 5.4.4. While the uniform
rule for single-peaked preferences is strategy-proof, we show in Sec-
tion 5.4.4 that no selection from the implemented correspondence M
for single-dipped preferences is strategy-proof.

Single-dipped and single-peaked preferences were already studied by
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Inada (1964). For single-dipped preferences in division problems, see
Klaus et al (1997), who characterize Pareto optimal allocations (we
use their result in Section 5.4), and study strategy-proofness of rules.
For strategy-proofness in problems with indivisible goods and single-
dipped preferences see Klaus (2001a, 2001b) and Tamura (2022), and
for probabilistic rules see Ehlers (2002). Doghmi (2013) shows that
Maskin-monotonicity is still a necessary condition for implementation;
indeed, it is not difficult to show that the correspondence M is Maskin
monotonic.

There is a relatively large literature on single-dipped preferences and
public goods (also sometimes called public bads), including Peremans
and Storcken (1999), Barberà et al (2012), Bossert and Peters (2014),
Öztürk et al (2013, 2014), Manjunath (2014), Ayllón and Caramuta
(2016), Tapki (2016), Yamamura (2016), Lahiri et al (2017), and
Feigenbaum et al (2020).

5.2 Preliminaries

In this section we introduce allocations, preferences, mechanisms,
rules, and equilibria.

5.2.1 Allocations, preferences, mechanisms, and equilibria

For n ∈ N with n ≥ 2, let N = {1, . . . , n} be the set of agents. Among
these agents one unit of a perfectly divisible good has to be distributed.
The set of all allocations is denoted by A =

{
x ∈ [0, 1]N

∣∣ ∑
i∈N xi = 1

}
.

A subset of agents is also called a coalition.

An agent’s preference is a transitive and complete binary relation R
on the interval [0, 1]. We denote by P strict preference, and by I in-
difference: αPβ if αRβ and not βRα, and αIβ if αRβ and βRα, for
α, β ∈ [0, 1]. By RN = (Ri)i∈N we denote a profile of preferences (for
N ).
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An allocation x ∈ A is Pareto optimal at a preference profile RN if there
is no x′ ∈ A such that x′iRixi for all i ∈ N and x′iPixi for at least one
i ∈ N .

In this chapter we focus on mechanisms in order to select allocations.
A mechanism is a map g : [0, 1]N → A. A preference profile RN and a
mechanism g induce a non-cooperative game (RN , g) as follows. Each
agent i ∈ N has strategy set [0, 1]. A profile of strategies r = (ri)i∈N ∈
[0, 1]N results in an allocation g(r) ∈ A, evaluated by each agent i via
Ri. A profile r∗ is a Nash equilibrium of the game (RN , g) if for all i ∈ N
and ri ∈ [0, 1],

gi(r
∗)Rigi(ri, r

∗
−i),

where r∗−i = (r∗j )j∈N\{i}. A Nash equilibrium r∗ is a Pareto optimal
Nash equilibrium in the game (RN , g) if g(r∗) is Pareto optimal at RN .
A profile r∗ is a strong equilibrium if there are no ∅ ≠ S ⊆ N and r′S ∈
[0, 1]S such that

gi(r
′
S , r

∗
N\S)Rigi(r

∗) for all i ∈ S

and
gj(r

′
S , r

∗
N\S)Pjgj(r

∗) for some j ∈ S,

where r∗N\S = (r∗i )i∈N\S .

In most of this chapter we focus on single-dipped preferences. A pref-
erence R is single-dipped if there is a dip d(R) ∈ [0, 1] such that for all
α, β ∈ [0, 1],

α < β ≤ d(R) ⇒ αPβ and α > β ≥ d(R) ⇒ αPβ.

The set of all single-dipped preferences is denoted by D, and DN is the
set of all single-dipped preference profiles.

A preference R is called single-peaked if there is a peak p(R) ∈ [0, 1] such
that for all α, β ∈ [0, 1],

p(R) ≥ α > β ⇒ αPβ and p(R) ≤ α < β ⇒ αPβ.
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The set of all single-peaked preferences is denoted by P , and PN is the
set of all single-peaked preference profiles.

5.2.2 Mechanisms versus rules

A mechanism is – indeed – a mechanical device that is used to non-
cooperatively determine an allocation, given a strategy profile. A (so-
cial choice) rule is a map φ assigning to each preference profile within a
given set, an allocation. If such a rule φ on DN or on PN depends only
on the dips or only on the peaks of a preference profile (i.e., is dips-only
or peaks-only), then it can be identified with a mechanism according to
our definition. An agent’s strategy can then be interpreted as the agent
reporting a dip or peak – not necessarily the true dip or peak. In this
sense, the peaks-only rules for single-peaked preference profiles stud-
ied in for instance Sprumont (1991) or Bochet et al (2021) can be seen
as mechanisms. On the other hand, a property like Pareto optimality
makes sense for rules (meaning that they assign a Pareto optimal allo-
cation to each preference profile), but not for mechanisms, which are
defined independently of preference profiles. In most of what follows,
we impose the following additional conditions on a mechanism g:

• anonymity: gi(rπ) = gπ(i)(r) for all r ∈ [0, 1]N and every permuta-
tion π of N , where rπ = (rπ(i))i∈N .

• monotonicity: for all r ∈ [0, 1]N , i ∈ N and r′i ∈ [0, 1],

r′i > ri and gi(r) < 1 ⇒ gi(r
′
i, r−i) > gi(r),

r′i < ri and gi(r) > 0 ⇒ gi(r
′
i, r−i) < gi(r),

where (r′i, r−i) is obtained from r by replacing ri by r′i.

The set of all anonymous and monotonic mechanisms is denoted by
G.

The monotonicity condition is closely related to the condition of ‘strict
own-peak monotonicity’ in Bochet et al (2021) when the latter is ap-
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plied to rules that are peaks-only. The difference is that the condition
in Bochet et al (2021) allows that an agent i receives 0 when that agent’s
strategy ri is positive. Under our monotonicity condition this is not
possible (see Lemma 5.2).

We conclude this section with two examples of mechanisms in G.

Example 5.1
Let N = {1, 2} and let g : [0, 1]N → A be defined by for each r ∈ [0, 1]N ,

g(r) =

(
1 + r1 − r2

2
,
1− r1 + r2

2

)
.

Then g is anonymous and monotonic, and thus g ∈ G. △

Example 5.2
Let g : [0, 1]N → A be defined by for each r ∈ [0, 1]N and i ∈ N ,

gi(r) =


ri∑

j∈N rj
if
∑
j∈N

rj ≥ 1

1− (n−1)(1−ri)
n−

∑
j∈N rj

if
∑
j∈N

rj ≤ 1.

This mechanism corresponds to the ‘symmetrized proportional rule’
in Bochet et al (2021). Again, g is anonymous and monotonic, and
therefore g ∈ G. △

In the next two sections we analyze Nash equilibria, Pareto optimal
Nash equilibria, and strong equilibria in games with single-dipped
preference profiles, induced by mechanisms in G.

5.3 Nash equilibrium
Before stating the main results, we formulate two elementary lemmas
concerning single-dipped preferences and mechanisms, respectively.
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The first lemma recalls the well-known fact (Inada, 1964) that if an
agent with a single-dipped preference prefers α to β in [0, 1], then this
agent prefers α to each γ between α and β. This will be used several
times in the sequel.

Lemma 5.1
Let R ∈ D and let α, β ∈ [0, 1] with αRβ. Then αRγ for all γ ∈ [0, 1] with
min{α, β} ≤ γ ≤ max{α, β}.

Proof. If d(R) ≤ min{α, β}, then d(R) ≤ β ≤ α, so αRγ for all β ≤
γ ≤ α. If d(R) ≥ max{α, β}, then d(R) ≥ β ≥ α, so αRγ for all
α ≤ γ ≤ β. If min{α, β} < d(R) < max{α, β}, then we have αRγ for all
min{α, d(R)} ≤ γ ≤ max{α, d(R)}, and αRβRγ for all min{β, d(R)} ≤
γ ≤ max{β, d(R)}. Therefore, αRγ for all min{α, β} ≤ γ ≤ max{α, β}.

The next lemma shows that a monotonic mechanism assigns 0 to an
agent only if his strategy is 0, and assigns 1 to an agent only if his
strategy is 1.

Lemma 5.2
Let g be a monotonic mechanism and let r ∈ [0, 1]N . Then ri = 0 for each
i ∈ N with gi(r) = 0, and ri = 1 for each i ∈ N with gi(r) = 1.

Proof. For each i ∈ N with gi(r) = 0, if ri ̸= 0, then gi(r
′
i, r−i) = 0 for

all 0 ≤ r′i < ri, which contradicts monotonicity of g. For each i ∈ N
with gi(r) = 1, if ri ̸= 1, then gi(r

′
i, r−i) = 1 for all ri < r′i ≤ 1, which

again contradicts monotonicity of g.

The following two lemmas are about properties of Nash equilibria for
single-dipped preference profiles. We first show that for a monotonic
mechanism and a single-dipped preference profile, no agent receives
his dip in a Nash equilibrium.
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Lemma 5.3
Let RN ∈ DN and let g be a monotonic mechanism. If a strategy profile
r∗ ∈ [0, 1]N is a Nash equilibrium of (RN , g), then gi(r

∗) ̸= d(Ri) for all
i ∈ N .

Proof. Let i ∈ N . Assume, to the contrary, that r∗ ∈ [0, 1]N with
gi(r

∗) = d(Ri), is a Nash equilibrium of (RN , g). Then we have
gi(ri, r

∗
−i) = d(Ri) for all ri ∈ [0, 1], which is a contradiction to

monotonicity of g.

Next, we show that, in a Nash equilibrium, an agent’s strategy is 0 if
his allocation is less than his dip, and is 1 if his allocation is more than
his dip .

Lemma 5.4
Let RN ∈ DN , let g be a monotonic mechanism, and let strategy profile
r∗ ∈ [0, 1]N be a Nash equilibrium of (RN , g). Then r∗i = 0 for all i ∈ N
with gi(r

∗) < d(Ri), and r∗i = 1 for all i ∈ N with gi(r
∗) > d(Ri).

Proof. Let i ∈ N with gi(r
∗) < d(Ri). If gi(r∗) = 0, then r∗i = 0 by

Lemma 5.2. If gi(r
∗) > 0 with r∗i ̸= 0, then from monotonicity, we

have gi(ri, r
∗
−i) < gi(r

∗) < d(Ri) for all 0 ≤ ri < r∗i . This implies that
gi(ri, r

∗
−i)Pigi(r

∗), which is a contradiction to the assumption that r∗ is
a Nash equilibrium. Hence, r∗i = 0.

The case gi(r
∗) > d(Ri) is analogous.

We now introduce some additional notation for a mechanism g ∈ G.
For each S ⊆ N , define eS ∈ RN by eSi = 1 for all i ∈ S, and eSj = 0 for
all j ∈ N \ S. Then, by anonymity we have gi(e

∅) = gi(e
N ) = 1

n for all
i ∈ N , and there exist numbers p1(g), . . . , pn−1(g) ∈ [0, 1] such that for
each S ∈ 2N \ {∅, N} and i ∈ S,

gi(e
S) = ps(g),

90



where s = |S|. It follows that for each S ∈ 2N \{∅, N} and j ∈ N \S,

gj(e
S) = qs(g),

where sps(g) + (n − s)qs(g) = 1 for all s = 1, . . . , n − 1. When no
confusion arises, the notations ps(g) and qs(g) are abbreviated to ps and
qs, respectively. For convenience, we denote p0 = pn = q0 = qn = 1

n .
Then, by monotonicity and Lemma 5.2, it holds that for each i ∈ N and
S ⊆ N \ {i},

ps+1 = gi(e
S∪{i}) > gi(e

S) = qs.

The following theorem characterizes the Nash equilibria in games in-
duced by mechanisms in G.

Theorem 5.1
Let RN ∈ DN , g ∈ G, and let r∗ ∈ [0, 1]N . Then r∗ is a Nash equilibrium of
(RN , g) if and only if r∗ = eS for S ∈ 2N such that psRiq

s−1 for all i ∈ S
and qsRjp

s+1 for all j ∈ N \ S.

Proof. For the if-part, assume that r∗ = eS for S ∈ 2N such that
psRiq

s−1 for all i ∈ S and qsRjp
s+1 for all j ∈ N \ S. We prove that r∗

is a Nash equilibrium.

For each i ∈ S, we have r∗i = 1 and psRiq
s−1, which means that

gi(1, r
∗
−i)Rigi(0, r

∗
−i). With monotonicity, it holds that for all ri ∈ [0, 1],

gi(0, r
∗
−i) ≤ gi(ri, r

∗
−i) ≤ gi(1, r

∗
−i).

According to Lemma 5.1, we conclude that gi(r
∗)Rigi(ri, r

∗
−i) for all

ri ∈ [0, 1]. For each j ∈ N \ S, we have r∗j = 0 and qsRjp
s+1, which

means that gj(0, r∗−j)Rjgj(1, r
∗
−j). From monotonicity and Lemma 5.1

again, it holds that gj(r∗)Rjgj(rj , r
∗
−j) for all rj ∈ [0, 1]. So, r∗ = eS is a

Nash equilibrium.

For the only-if part, assume that r∗ is a Nash equilibrium. From Lem-
mas 5.3 and 5.4, we have r∗ = eS for some S ∈ 2N . In view of
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gi(r
∗)Rigi(0, r

∗
−i) for all i ∈ S and gj(r

∗)Rjgj(1, r
∗
−j) for all j ∈ N \ S,

it holds that psRiq
s−1 for all i ∈ S and qsRjp

s+1 for all j ∈ N \ S.

Theorem 5.1 can also be used to show that a Nash equilibrium does
not have to exist, for instance in the following example.

Example 5.3
Let N = {1, 2, 3} and let g ∈ G satisfy that p2 > p1. By this assump-
tion and monotonicity, it follows that q2 < q1 < 1

3 < p1 < p2. Con-
sider RN ∈ DN such that q2P1q

1P1p
2P1p

1P1
1
3 , p2P2q

2P2q
1P2

1
3P2p

1 and
q1P3p

2. Then e∅ is not a Nash equilibrium in view of p1P1
1
3 ; e{1} and

e{3} are not Nash equilibria in view of p2P2q
1; e{2} is not a Nash equi-

librium in view of 1
3P2p

1; e{1,2} and e{1,3} are not Nash equilibria in
view of q1P1p

2; e{2,3} is not a Nash equilibrium in view of q1P3p
2; and

eN is not a Nash equilibrium in view of q2P1
1
3 . From Theorem 5.1 it

follows that the game (RN , g) has no Nash equilibrium.

A possible mechanism g ∈ G to which this example applies is as fol-
lows. For each r ∈ [0, 1]N and distinct i, j, k ∈ N let

gi(r) =
8 + 2ri − rj − rk + 2rirj + 2rirk − 4rjrk

24
.

Since g(1, 0, 0) = (1024 ,
7
24 ,

7
24) and g(1, 1, 0) = (1124 ,

11
24 ,

2
24), we have q2 =

2
24 < q1 = 7

24 < 1
3 < p1 = 10

24 < p2 = 11
24 . △

We conclude this section by showing that for two agents a Nash equi-
librium always exists.

Proposition 5.1
Let N = {1, 2}, RN ∈ DN and g ∈ G. Then the game (RN , g) has a Nash
equilibrium.

Proof. By ps+1 > qs for all s = 0, 1, . . . , n− 1, we have p1 > 1
2 > q1. We

consider three cases.
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(a) Suppose that p1P1q
1. Then, by Lemma 5.1, p1R1

1
2 .

(a1) First suppose that q1R2p
1. Then, according to Lemma 5.1, we have

q1R2
1
2 . It follows that g1(1, 0)R1g1(0, 0) and g2(1, 0)R2g1(1, 1). With

monotonicity and Lemma 5.1 again, it holds that g1(1, 0)P1g1(r1, 0) and
g2(1, 0)P2g2(1, r2) for all r1, r2 ∈ [0, 1]. So, r∗ = (1, 0) is a Nash equilib-
rium.

(a2) Second, suppose that p1R2q
1. Then, by Lemma 5.1, p1R2

1
2 .

(a2.1) If 1
2P1q

1 and 1
2P2q

1, then it holds that g1(1, 1)P1g1(0, 1) and
g2(1, 1)P2g2(1, 0). From monotonicity and Lemma 5.1, it holds that
g1(1, 1)R1g1(r1, 1) and g2(1, 1)R2g2(1, r2) for all r1, r2 ∈ [0, 1]. So,
r∗ = (1, 1) is a Nash equilibrium.

(a2.2) If q1R1
1
2 , together with p1R2

1
2 , then we have g1(1, 0)R1g1(0, 0)

and g2(1, 0)R2g2(1, 1). With monotonicity and Lemma 5.1 again, we
have g1(1, 0)R1g1(r1, 0) and g2(1, 0)R2g2(1, r2) for all r1, r2 ∈ [0, 1]. So,
r∗ = (1, 0) is a Nash equilibrium.

(a2.3) If q1R2
1
2 , then similar to (a2.2), we can prove that r∗ = (0, 1) is a

Nash equilibrium.

(b) Suppose that p1I1q1. Then, p1R1
1
2 and q1R1

1
2 .

(b1) If p1P2q
1, then p1R2

1
2 . So, g1(0, 1)P1g1(1, 1) and g2(0, 1)P2g2(0, 0).

With monotonicity and Lemma 5.1, it holds that g1(0, 1)R1g1(r1, 1) and
g2(0, 1)R2g2(0, r2) for all r1, r2 ∈ [0, 1]. So, r∗ = (0, 1) is a Nash equilib-
rium.

(b2) If q1R2p
1, then q1R2

1
2 . Similar to (b1), we can prove that r∗ = (1, 0)

is a Nash equilibrium.

(c) Suppose that q1P1p
1. Then, by Lemma 5.1, q1R1

1
2 .

(c1) First, suppose that p1R2q
1, then similar to (a1), we can verify that

(0, 1) is a Nash equilibrium.

(c2) Second, suppose that q1P2p
1. Then, q1R2

1
2 .
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(c2.1) If 1
2P1p

1 and 1
2P2p

1, then it holds that g1(0, 0)P1g1(1, 0) and
g2(0, 0)P2g1(0, 1). With monotonicity and Lemma 5.1, it holds that
g1(0, 0)R1g1(r1, 0) and g2(0, 0)R2g2(0, r2) for all r1, r2 ∈ [0, 1]. So,
r∗ = (0, 0) is a Nash equilibrium.

(c2.2) If p1R1
1
2 , together with q1R2

1
2 , we have g1(1, 0)R1g1(0, 0) and

g2(1, 0)R2g1(1, 1). With monotonicity and Lemma 5.1, it holds that
g1(1, 0)R1g1(r1, 0) and g2(1, 0)P2g2(1, r2) for all r1, r2 ∈ [0, 1]. So, r∗ =
(1, 0) is a Nash equilibrium.

(c2.3) If, finally, p1R2
1
2 , then similar to (c2.2), it can be proved r∗ = (0, 1)

is a Nash equilibrium.

5.4 Pareto optimal Nash equilibrium, strong
equilibrium, implementation, and the
single-peaked case

In this section, we first consider Pareto optimal Nash equilibria,
i.e., Nash equilibria resulting in Pareto optimal allocations. Next,
we strengthen this to strong equilibria: no subset of agents can
profitably deviate, in the sense that every member is at least as well
off, and at least one member is better off. Third, we discuss the related
issue of implementation: which social choice correspondence, i.e.,
multi-valued rule, collects exactly the Pareto optimal Nash equilibria
or strong equilibria for a given mechanism? Finally, we compare this
to the findings of Bochet et al (2021) for single-peaked preferences.

5.4.1 Pareto optimal Nash equilibrium

Pareto optimal allocations for single-dipped preference profiles were
characterized by Klaus et al (1997). For each RN ∈ DN , we denote by
N+(RN ) = {i ∈ N | 1Pi0} the set of agents who strictly prefer 1 to
0, by N0(RN ) = {i ∈ N | 0Ii1} the set of agents who are indifferent
between 0 and 1, and by N−(RN ) = {i ∈ N | 0Pi1} the set of agents
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who strictly prefer 0 to 1. The mentioned characterization by Klaus et
al (1997) is as follows.

Lemma 5.5
Let RN ∈ DN . An allocation x ∈ A is Pareto optimal at RN if and only if

(i) If N+(RN ) ̸= ∅, then xi = 0 for every i ∈ N \N+(RN ), and for every
i ∈ N+(RN ) either xi = 0 or xiPi0 .

(ii) If N+(RN ) = ∅ and N0(RN ) ̸= ∅, then x = e{i} for some i ∈
N0(RN ).

(iii) If N−(RN ) = N , then for every i ∈ N either xi = 1 or xiPi1.

We first introduce so-called maximal coalitions, which are useful to
describe Pareto optimal Nash equilibria.

Definition 5.1
Let RN ∈ DN .

(a) The sharing index of an agent i ∈ N at RN is the number mi(RN )
defined by

mi(RN ) =

{
0 if i /∈ N+(RN ),
max

{
k ∈ {1, . . . , |N+(RN )|}

∣∣ 1
kPi0

}
if i ∈ N+(RN ).

(b) A coalition S ⊆ N is a maximal coalition at RN if the following
holds.

(i) If N+(RN ) ̸= ∅, then S ⊆ N+(RN ) such that mi(RN ) ≥ |S|
for every i ∈ S and mj(RN ) ≤ |S| for every j ∈ N \ S.

(ii) If N+(RN ) = ∅ and N0(RN ) ̸= ∅, then S = {i} for some
i ∈ N0(RN ).

(iii) If N−(RN ) = N , and {j ∈ N | 1Rj
1
n} ̸= ∅, then S = {i} for

some i ∈ N with 1Ri
1
n .
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(iv) If N−(RN ) = N , and {j ∈ N | 1Rj
1
n} = ∅, then S = ∅.

The collection of all maximal coalitions at RN is denoted by
M(RN ).

△

The sharing index of an agent i ∈ N+(RN ) is the maximal size of a
coalition of agents strictly preferring one over zero, including i, such
that equally sharing the commodity with the members of this coali-
tion is still preferable over receiving 0. For i /∈ N+(RN ), this is zero.
In Case (i) in (b), a maximal coalition consists of agents who strictly
prefer 1 over 0 at RN . Such a coalition is formed by starting with the
agent(s) with maximal sharing index, next adding agent(s) with sec-
ond maximal sharing index, etc., until the size of the coalition exceeds
the sharing indices of the remaining agents. See Example 5.4 for an
illustration. In a similar spirit, in Case (ii) in (b), a maximal coalition
consists of any arbitrary single agent indifferent between 0 and 1. In
Case (iii) in (b), where all agents strictly prefer 0 over 1, a maximal
coalition consists of an arbitrary single agent who (weakly) prefers 1
over 1

n . If there are no such agents, then Case (iv) in (b) applies and the
only maximal coalition is the empty coalition.

Example 5.4
Let N = {1, 2, 3} and let RN satisfy 1

3P10, 1
2Pi0 and 0Ri

1
3 for i = 2, 3.

Then N+(RN ) = N , m1(RN ) = 3, and m2(RN ) = m3(RN ) = 2. To con-
struct a maximal coalition we start with agent 1 and then add either
agent 2 or agent 3, to obtain {1, 2} and {1, 3} as maximal coalitions.
Coalition {2, 3} is not maximal since m1(RN ) = 3 > 2 = |{2, 3}|, and
coalition N is not maximal since m2(RN ) = 2 < 3 = |N |. Also sin-
gleton coalitions are not maximal: {1} is not maximal since m2(RN ) =
2 > |{1}|, {2} is not maximal since m1(RN ) = 3 > |{2}|, and {3} is not
maximal since m1(RN ) = 3 > |{3}|. △

The basic reason why maximal coalitions play a role in our analysis is
that a member of such a coalition prefers receiving an equal share over
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receiving 0 and therefore would not deviate and leave the coalition; on
the other hand, there is no outside agent who would gain by joining
the coalition. This will be made precise in Theorem 5.2.

We first formulate an additional property for a mechanism g.

Standardness
Let g ∈ G. g is standard if g(eS) = 1

|S|e
S for all S ∈ 2N \ {∅}.

If g is standard, then ps = 1
s and qs = 0 for each s = 1, 2, . . . , n− 1. The

mechanisms in Examples 5.1 and 5.2 are standard, but the mechanism
in Example 5.3 is not standard.

We show that standardness of a mechanism is a necessary and suffi-
cient condition for all games based on this mechanism to have a Pareto
optimal Nash equilibrium.

Lemma 5.6
Let g ∈ G and suppose that (RN , g) has a Pareto optimal Nash equilibrium
for every RN ∈ DN . Then g is standard.

Proof. For each S ∈ 2N \ {∅, N}, we consider RS
N ∈ DN such that

d(RS
i ) = 0 for all i ∈ S and d(RS

j ) = 1 for all j ∈ N \ S. Then
N+(R

S
N ) = S. From Lemmas 5.3 and 5.4, it follows that the only Nash

equilibrium in the game (RS
N , g) is r∗ = eS . From Lemma 5.5, we have

gj(r
∗) = 0 for all j ∈ N\N+(R

S
N ) = N\S. It follows that gi(r∗) = 1

|S| for
all i ∈ S. Together with g(eN ) = 1

|N | , we conclude that g(eS) = 1
|S|e

S

for all S ∈ 2N \ {∅}. This implies that g is standard.

Lemma 5.6 says that standardness of the mechanism is a necessary con-
dition for a Pareto optimal Nash equilibrium to exist in every game
induced by this mechanism. The sufficiency part follows from the fol-
lowing theorem, which is a main result of this chapter.
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Theorem 5.2
Let RN ∈ DN and let g ∈ G be standard. A strategy profile r∗ ∈ [0, 1]N is
a Pareto optimal Nash equilibrium of (RN , g) if and only if r∗ = eS for some
S ∈ M(RN ).

Proof. For the if-part, let S ∈ M(RN ). We prove that r∗ = eS is a Pareto
optimal Nash equilibrium.

Case (i): N+(RN ) ̸= ∅.

Let i ∈ S. Then r∗i = 1 and gi(r
∗) = 1

|S| . Since 1
|S| ≥ 1

mi(RN ) and
1

mi(RN )Pi0, we have that 1
|S|Pi0, which implies that gi(r∗)Pigi(0, r

∗
−i).

Monotonicity then implies gi(0, r
∗
−i) ≤ gi(ri, r

∗
−i) ≤ gi(r

∗) for all ri ∈
[0, 1], and by Lemma 5.1, gi(r∗)Rigi(ri, r

∗
−i) for all ri ∈ [0, 1].

If i ∈ N+(RN ) \ S, then r∗i = 0 and gi(r
∗) = 0. In view of |S| + 1 >

mi(RN ), it holds that |S|+ 1 ≥ mi(RN ) + 1, i.e., 1
|S|+1 ≤ 1

mi(RN )+1 . To-
gether with 0Ri

1
mi(RN )+1 , by Lemma 5.1, we have 0Ri

1
|S|+1 , which im-

plies that gi(r∗)Rigi(1, r
∗
−i). With monotonicity and Lemma 5.1 again,

we can similarly verify that gi(r∗)Rigi(ri, r
∗
−i) for all ri ∈ [0, 1].

For i ∈ N \ N+(RN ), in view of S ⊆ N+(RN ), we have i ∈ N \ S,
r∗i = 0 and gi(r

∗) = 0. In view of 0Ri1, by Lemma 5.1, we have
gi(r

∗)Rigi(ri, r
∗
−i) for all ri ∈ [0, 1].

Thus, gi(r∗)Rigi(ri, r
∗
−i) for all i ∈ N and ri ∈ [0, 1], which implies that

r∗ = eS is a Nash equilibrium.

Case (ii): N+(RN ) = ∅ and N0(RN ) ̸= ∅.

Let S = {i} with i ∈ N0(RN ). Then gi(r
∗) = 1 and gj(r

∗) = 0 for
all j ∈ N \ {i}. For agent i, in view of 1Ri0, by Lemma 5.1, it holds
that gi(r∗)Rigi(ri, r

∗
−i) for all ri ∈ [0, 1]. For each agent j ∈ N \ {i}, in

view of 0Rj1, by Lemma 5.1 again, we have gj(r
∗)Rjgj(rj , r

∗
−j) for all

rj ∈ [0, 1]. So, r∗ = e{i} is a Nash equilibrium.

Case (iii): N−(RN ) = N .
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If S = {i} for some i ∈ N , then 1Ri
1
n , Then r∗j = 0 and gj(r

∗) = 0 for all
j ∈ N \{i}. In view of 0Pj1, by Lemma 5.1, we have gj(r

∗)Rjgj(rj , r
∗
−j)

for all rj ∈ [0, 1]. With monotonicity, we have gi(ri, r
∗
−i) ≥ 1

n for all ri ∈
(0, 1]. In view of 1Ri

1
n , by Lemma 5.1 again, we have gi(r

∗)Rigi(ri, r
∗
−i)

for all ri ∈ [0, 1]. So, r∗ = e{i} is a Nash equilibrium.

If S = ∅, then 1
nPi1 for all i ∈ N . For each i ∈ N , if ri > 0, with

monotonicity, we have gi(ri, r
∗
−i) > gi(0, r

∗
−i) =

1
n . Together with 1

nPi1,
by Lemma 5.1, we have gi(r

∗)Rigi(ri, r
∗
−i) for all ri ∈ [0, 1]. So, r∗ = e∅

is a Nash equilibrium.

Combining these three cases, we conclude that for each S ∈ M(RN ),
r∗ = eS is a Nash equilibrium. Lemma 5.5 implies that g(r∗) is Pareto
optimal at RN .

For the only-if part, assume that r∗ is a Pareto optimal Nash equilib-
rium. From Theorem 5.1, it follows that r∗ = eS for some S ∈ 2N . We
prove that S ∈ M(RN ).

Case (i): N+(RN ) ̸= ∅.

Assume, to the contrary, that S /∈ M(RN ). Let T ∈ M(RN ). First, we
prove that |S| = |T |.

Since g(eS) and g(eT ) are Pareto optimal at RN , from Lemma 5.5, we
have 1

|S|Pi0 for all i ∈ S, and 1
|T |Pi0 for all i ∈ T . Since eS (by assump-

tion) and eT (from the if-part) are Nash equilibria of (RN , g), we have
0Rj

1
|S|+1 for all j ∈ N \ S, and 0Rj

1
|T |+1 for all j ∈ N \ T . If |S| < |T |,

then there exists k ∈ T \ S such that 1
|T |Pk0 and 0Rk

1
|S|+1 . However, in

view of |S| < |T |, we have |S|+ 1 ≤ |T |, i.e., 1
|T | ≤

1
|S|+1 . From Lemma

5.1, it follows that 0Rk
1
|T | , which is a contradiction. If |S| > |T |, we

similarly obtain a contradiction. Thus, |S| = |T |.

Then, since S /∈ M(RN ) and |S| = |T |, there exist i ∈ S and j ∈ N \ S
such that mi(RN ) < mj(RN ). By Lemma 5.5, we have 1

|S|Pi0. It follows
that |S| ≤ mi(RN ). So, |S| < mj(RN ), i.e., 1

|S|+1 ≥ 1
mj(RN ) . In view
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of 1
mj(RN )Pj0, we have 1

|S|+1Pj0. This implies that gj(1, eS−j)Pjgj(e
S),

which contradicts the assumption that eS is a Nash equilibrium. Thus
, S ∈ M(RN ).

Case (ii): N+(RN ) = ∅ and N0(RN ) ̸= ∅.

From Lemma 5.5, g(eT ) is not Pareto optimal for all T ∈ 2N \M(RN ).
Thus, S ∈ M(RN ).

Case (iii): N−(RN ) = N .

If there exists i ∈ N such that 1Ri
1
n , then e∅ is not a Pareto optimal

Nash equilibrium, hence S ̸= ∅. Since 0Pj1 for all j ∈ N , it follows
that eT is not a Nash equilibrium for each T ∈ 2N with |T | ≥ 2. Hence,
|S| = 1. For j ∈ N such that 1

nPj1, it is easily seen that e{j} is not a
Nash equilibrium. Thus, S ∈ M(RN ).

Finally, suppose that {i ∈ N | 1Ri
1
n} = ∅, i.e., 1

nPi1 for all i ∈ N .
If T ̸= ∅, then since 0Pi1 and 1

nPi1 for all i ∈ N , it follows that
gi(e

T\{i})Pigi(e
T ) for all i ∈ T , which implies that eT is not a Nash

equilibrium. So, S = ∅ ∈ M(RN ), and the proof of the theorem is
complete.

Theorem 5.2 shows that for a standard mechanism, the Pareto optimal
Nash equilibria are those strategy profiles in which all agents in a max-
imal coalition play 1 and all other agents play 0. Since there exists at
least one maximal coalition for every single-dipped preference profile,
Lemma 5.6 and Theorem 5.2 imply the result announced earlier.

Corollary 5.1
Let g ∈ G. There exists a Pareto optimal Nash equilibrium of (RN , g) for
every RN ∈ DN if and only if g is standard.

The next example shows that for a game based on a standard mech-
anism, besides Pareto optimal Nash equilibria, there may exist Nash
equilibria without Pareto optimal outcomes, or Pareto optimal out-
comes, not obtained in any Nash equilibrium.
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Example 5.5
Let N = {1, 2} and let g ∈ G be as in Example 5.1.

(a) Consider RN ∈ DN such that 1P10P1
1
2 and 0P21P2

1
2 . Then, we

have g1(0, 1)P1g1(1, 1) and g2(0, 1)P2g2(0, 0). With monotonicity and
Lemma 5.1, it follows that g1(0, 1)R1g1(r1, 1) and g2(0, 1)R2g2(0, r2) for
all r1, r2 ∈ [0, 1]. So, e{2} = (0, 1) is a Nash equilibrium. However,
g(e{2}) = (0, 1) is not Pareto optimal at RN . In fact, Theorem 5.2 im-
plies that the unique Pareto optimal Nash equilibrium is e{1} = (1, 0).

(b) Consider RN ∈ DN such that d(R1) = d(R2) = 0. Then x =
g(12 ,

1
3) = ( 7

12 ,
5
12) is Pareto optimal at RN , but there is no S ∈ 2N such

that g(eS) = x. Thus, Theorem 5.1 implies that there is no Nash equilib-
rium r∗ such that g(r∗) = x. In fact, m1(RN ) = m2(RN ) = 2, and hence
the unique maximal coalition is N . From Theorem 5.2 (or direct inspec-
tion), the unique Pareto optimal Nash equilibrium is eN = (1, 1). △

5.4.2 Strong equilibrium

In this subsection we consider a further strengthening of Pareto opti-
mal Nash equilibrium, namely strong equilibrium (Aumann, 1959): no
coalition can profitably deviate. We will show that the Pareto optimal
Nash equilibria and strong equilibria coincide if, besides anonymous,
monotonic, and standard, the mechanism is order-preserving.1

Order-preservation
A mechanism g is order-preserving if gi(r) ≥ gj(r) for all r ∈ [0, 1]N and
i, j ∈ N with ri ≥ rj .

Theorem 5.3
Let RN ∈ DN and let g ∈ G be standard and order-preserving. If a strategy
profile is a Pareto optimal Nash equilibrium of (RN , g) if and only if it is a
strong equilibrium.

1A similar condition also occurs in Bochet et al (2021) under the name ‘peak order
preservation’.
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Proof. We start with the only-if part. Let S ∈ M(RN ). By Theorem
5.2, it is sufficient to verify that eS is a strong equilibrium. Assume, to
the contrary, that there exist T ∈ 2N \ {∅} and rT ∈ [0, 1]T such that
gi(rT , e

S
N\T )Rigi(e

S) for all i ∈ T and gj(rT , e
S
N\T )Pjgj(e

S) for some
j ∈ T . We consider three cases.

Case (i): N+(RN ) ̸= ∅.

If S ∩ T ̸= ∅, then for each i ∈ S ∩ T , it holds that gi(rT , eSN\T ) ≥
1
|S| in

view of 1
|S|Pi0 from Theorem 5.2 and gi(rT , e

S
N\T )Rigi(e

S) by assump-
tion. By order-preservation, it follows that for all j ∈ S \ T ,

gj(rT , e
S
N\T ) ≥ gi(rT , e

S
N\T ) ≥

1

|S|
.

So, we have gi(rT , eSN\T ) =
1
|S| = gi(e

S) for all i ∈ S, and gj(rT , e
S
N\T ) =

0 = gj(e
S) for all j ∈ N \ S, i.e., gk(rT , eSN\T )Ikgk(e

S) for all k ∈ T ,
contradicting our assumption.

If S ∩ T = ∅, then we claim that gi(rT , eSN\T ) ≤
1

|S|+1 for each i ∈ T . If
not, take i ∈ T with gi(rT , e

S
N\T ) >

1
|S|+1 . Then for all j ∈ S,

gj(rT , e
S
N\T ) ≥ gi(rT , e

S
N\T ) >

1

|S|+ 1
.

It follows that
∑

k∈T∪S gk(rT , e
S
N\T ) > 1, which is not possible. In

view of 0Ri
1

|S|+1 from Theorem 5.2, together with Lemma 5.1, we have
gi(e

S)Rigi(rT , e
S
N\T ) for all i ∈ T , which contradicts our assumption.

Case (ii): N+(RN ) = ∅ and N0(RN ) ̸= ∅.

In this case, S = {i} for some i ∈ N0(RN ). Then g(eS) = e{i}.
Since 1Ii0 and 0Rj1 for all j ∈ N \ {i}, by Lemma 5.1 we have
gk(e

S)Rigk(rT , e
S
N\T ) for all k ∈ T , which is a contradiction to our

assumption.

Case (iii): N−(RN ) = N .
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If S = {i} for some i ∈ N , then 1Ri
1
n . It follows that gj(e

S) = 0

for all j ∈ N \ {i}. Since e{i} is a Nash equilibrium, it holds that
T ̸= {i}. For each k ∈ T \ {i}, we have gk(e

S)Rkgk(rT , e
S
N\T ) from

0Pk1 and Lemma 5.1. Together with our assumption, it follows that
gk(rT , e

S
N\T ) = gk(e

S) = 0 for all k ∈ T \ {i}. By order-preservation,
we have gj(rT , e

S
N\T ) = 0 for all j ∈ N \ {i}. So, g(rT , eSN\T ) = g(eS),

which is a contradiction.

If S = ∅, then 1
nPi1 for all i ∈ N . For each k ∈ T , in view of

gk(rT , e
S
N\T )Rkgk(e

S) and 0Pk
1
nPk1, we have gk(rT , e

S
N\T ) ≤ 1

n . By
order-preservation, it holds that gj(rT , eSN\T ) ≤ gk(rT , e

S
N\T ) ≤ 1

n for
all j ∈ N \ T and k ∈ T . So, gk(rT , eSN\T ) = gk(e

S) = 1
n for all k ∈ T ,

which is a contradiction. This concludes the proof of the only-if part.

For the if-part, suppose that r∗ is a strong equilibrium of (RN , g). Ob-
viously, r∗ is a Nash equilibrium. By Theorem 5.1, there is a coalition S
such that r∗ = eS . Since g is standard, we have g(eS) = 1

|S|e
S if S ̸= ∅.

If S = ∅, then g(eS) = 1
ne

N .

If S = ∅, then, since eS is a Nash equilibrium, we have 1
nRi1 for all

i ∈ N , which implies that g(eS) = 1
ne

N is Pareto optimal.

If |S|≥ 2, then, again since eS is a Nash equilibrium, 1
|S|Ri0 for all

i ∈ S; in this case, if xiRigi(e
S) for some x ∈ A and all i ∈ N , then

in particular xi ≥ 1
|S| for all i ∈ S, which implies x = g(eS) and, thus,

g(eS) is Pareto optimal.

Finally, suppose that |S|= 1, say S = {n}.

If 1Pn0 then clearly g(eS) = (0, . . . , 0, 1) is Pareto optimal.

If 1In0 and there is some j ̸= n with 1Pj0, then {j, n} can profitably
deviate by rj = 1 and rn = 0, contradicting that eS is a strong equilib-
rium; hence, 0Rj1 for all j ̸= n, so that g(eS) = (0, . . . , 0, 1) is Pareto
optimal.
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If 0Pn1 and there is some j ̸= n with 1Rj0, then {j, n} can profitably
deviate by rj = 1 and rn = 0, contradicting that eS is a strong equilib-
rium; hence, 0Pj1 for all j ̸= n, so that g(eS) = (0, . . . , 0, 1) is Pareto
optimal. This concludes the proof of the if-part.

5.4.3 Implementation

In this subsection we reformulate our main results in terms of imple-
mentation. A social choice correspondence F is a map assigning to each
preference profile RN ∈ DN a nonempty set of allocations. If this set
always consists of exactly one allocation, then F is a rule, as defined
earlier in Section 5.2. We say that a mechanism g implements F in Pareto
optimal Nash equilibrium if

F (RN ) = {g(r) ∈ A | r is a Pareto optimal
Nash equilibrium of (RN , g)}

for every preference profile RN ∈ DN . Mechanism g implements F in
strong equilibrium if

F (RN ) = {g(r) ∈ A | r is a strong equilibrium of (RN , g)}

for every preference profile RN ∈ DN . For each S ⊆ N define the
allocation êS ∈ A by

êS =

{ 1
|S|e

S if S ̸= ∅
( 1n , . . . ,

1
n) if S = ∅.

Define the social choice correspondence M on DN by

M(RN ) = {êS ∈ A | S ∈ M(RN )}

for every RN ∈ DN . We now have the following corollary from Theo-
rems 5.2 and 5.3.
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Corollary 5.2
Let g ∈ G. If g is standard, then g implements M in Pareto optimal Nash
equilibrium. If g is standard and order-preserving, then g implements M in
strong equilibrium.

5.4.4 Single-peaked preferences

The case of single-peaked preferences is extensively studied in Bochet
et al (2021). The result that is most closely related to our approach is
their Theorem 2, which applies to peaks-only rules – these are equiv-
alent to mechanisms in our sense. Under conditions on rules (mech-
anisms g), partly similar to ours, they show that the Pareto optimal
Nash equilibria and strong equilibria in a game (RN , g) coincide and
result in the uniform allocation, for every RN ∈ PN . An allocation
x ∈ A is the uniform allocation at RN ∈ PN if there is a λ ∈ [0, 1] such
that

xi =

min{p(Ri), λ} if
∑

i∈N
p(Ri) ≥ 1

max{p(Ri), λ} if
∑

i∈N
p(Ri) ≤ 1.

The uniform allocation is the allocation assigned by the uniform rule
(single-valued social choice correspondence) U , characterized by Spru-
mont (1991). At the uniform allocation, either all agents obtain at most
their peaks or all agents obtain at least their peaks, or both, and thus
the uniform allocation is is indeed Pareto optimal (it is ‘same-sided’).
The proof of the following proposition is straightforward, and there-
fore omitted.

Sprumont (1991) shows that the uniform rule is the unique anony-
mous, Pareto optimal, and strategy-proof rule. Recall that a rule F
is strategy-proof if Fi(RN )RiFi(R

′
i, RN\{i}) for every preference pro-

file RN , agent i ∈ N , and preference R′
i, where preferences are chosen

within a specific domain, for instance P or D. The following example
shows that, in the single-dipped case, rules obtained by selecting from
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M are not strategy-proof. Let F :D → A such that F (RN ) ∈ M(RN )
for every RN ∈ DN .

Example 5.6
Let RN ∈ DN such that 0Pi1Ri

1
n for all i ∈ N . Then we have

M(RN ) = {{i} | i ∈ N}, and therefore F (RN ) = e{j} for some j ∈ N
(cf. Theorem 5.2). Consider R′

j ∈ D such that 0P ′
j1 and 1

nP
′
j1. Then

M(R′
j , R−j) = {{i} | i ∈ N \ {j}}, and therefore Fj(R

′
j , R−j) = 0, so

that Fj(R
′
j , R−j)PjFj(RN ). Hence, F is not strategy-proof. △

5.5 Concluding remarks
We have shown that in division problems with single-dipped prefer-
ences, the Pareto optimal Nash and strong equilibria of games induced
by a fairly general class of mechanisms, result in Pareto optimal alloca-
tions characterized by maximal coalitions. A natural extension of our
analysis and the analysis in Bochet et al (2021) is to other domains of
preferences, notably if both single-dipped and single-peaked prefer-
ences in a profile are allowed.

106



Bibliography

[1] Arin, J. and E. Inarra (2001). Egalitarian solutions in the core. Inter-
national Journal of Game Theory, 30(2), 187-193.
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Impact of the thesis

Division problems are common in the real world, and most relevant
work is devoted to find a fair allocation when the allocated resource is
insufficient for the agents with specific demands. This thesis focuses
on two classes of valuable division problems: bankruptcy problems
and division problems with single-dipped preferences. Bankruptcy
problems study the situations where an insufficient estate is allocated
among several claimants, each of whom has a claim on the estate.
For example, when a company goes bankrupt, how should an au-
thority liquidate the residual assets of the company among its cred-
itors. Another example is how to allocate one’s heritage among his
heirs, when their debts are totally more than the amount of inheritance.
Division problems with single-dipped preferences consider the prob-
lems of allocating one unit of an infinitely divisible commodity among
agents with single-dipped preferences. A single-dipped preference has
a worst point, the dip, and preference strictly increases in both direc-
tions away from the dip. Such a preference may arise, for instance,
when allocating time between two types of work and an agent prefers
spending time on only one of the two instead of on a combination –
think of research versus teaching at a university. Another example is
a two-goods exchange economy with fixed prices and a strictly quasi-
convex utility function, which induces a single-dipped preference on
the budget line.

This thesis provides new mechanisms to deal with these division prob-
lems. Following these mechanisms, some reasonable allocations can be
achieved in Nash equilibria of the induced non-cooperative games. In
bankruptcy problems, the allocation of the constrained equal awards
rule is implemented. In division problems with single-dipped prefer-
ences, a selection of the Pareto social choice correspondence is imple-
mented, namely picking the Pareto optimal allocations that are charac-
terized by so-called maximal coalitions: this means that outside agents

115



Impact of the thesis

prefer getting zero over equally sharing the one unit with the agents in
the coalition, whereas for agents in the coalition the opposite holds.

Moreover, the new class of two-bound core (cooperative) games is
introduced in this thesis, where the core is nonempty and can be
described by a lower bound and an upper bound on the allocations.
Many games are two-bound core games, including additive games,
all balanced games with at most three players, unanimity games,
bankruptcy games, 1-convex games, big boss games, clan games,
compromise stable games, and reasonable stable games. The core,
the nucleolus, and the egalitarian core are studied on this new
domain. On the one hand, new expressions of these solutions are
provided, which make the calculations of these solutions easier. On
the other hand, based on associated reduced game properties, new
axiomatic characterizations of these solutions on the new domain are
provided.
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Summary

This thesis involves cooperative games, non-cooperative games, and
mechanism design. We introduce a new class of cooperative games,
and study several important solutions in this domain. Then, we de-
sign mechanisms for division problems, and consider equilibria in the
induced non-cooperative games.

Quant et al (2005) studied the class of compromise stable games
where the core coincides with the core cover (Tijs and Lipperts, 1982).
The core cover is the set of pre-imputations between a specific pair of
bounds. We generalize the approach of Quant et al (2005) to all games
where the core equals the set of pre-imputations between an arbitrary
pair of bounds, which we call two-bound core games. We show that
the core of each two-bound core game can be described equivalently
by the pair of exact core bounds (Bondareva and Driessen, 1994), and
study to what extent the exact core bounds of a two-bound core game
can be stretched while retaining the core description. We provide
explicit expressions of the nucleolus (Schmeidler, 1969) and the
egalitarian core (Arin and Iñarra, 2001) for two-bound core games in
terms of the exact core bounds. We also show that the egalitarian core
for two-bound core games is a single-valued solution. Then, we study
Davis-Maschler reduced games of two-bound core games. Based on
associated reduced game properties, we axiomatically characterize
the core, the nucleolus, and the egalitarian core for two-bound core
games.

In addition, we design mechanisms to solve bankruptcy problems
and division problems with single-dipped preferences. We consider
a sequential partition method for bankruptcy problems. The idea
of this method is that claimants gather and successively partition
the estate in a given order. On the basis of the ascending order of
claims, a divide-and-choose mechanism and a divide-and-object
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Summary

mechanism are designed. For each non-cooperative game induced by
our mechanisms for bankruptcy problems, we show that the unique
Nash equilibrium outcome is consistent with the allocation of the
constrained equal awards rule. Then, we consider a mechanism for
division problems with single-dipped preferences, which allocates
one unit of an infinitely divisible commodity among agents reporting
a number between zero and one. Nash, Pareto optimal Nash,
and strong equilibria are analyzed for the games induced by our
mechanism. We show that when the mechanism is anonymous,
monotonic, standard and order-preserving, the Pareto optimal Nash
and strong equilibria coincide and assign Pareto optimal allocations
that are characterized by so-called maximal coalitions: non-involved
agents prefer getting zero over an equal coalition share, whereas for
agents in the coalition the opposite holds.
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