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Elka Korutcheva1,3,a) and Wolfgang Kinzel4

1Departamento de Fı́sica Fundamental, UNED, Spain
2Department of Mathematics, Aston University, B4 7ET Birmingham, United Kingdom

3G. Nadjakov Inst. Solid State Physics, Bulgarian Academy of Sciences, BG-1784, Sofia, Bulgaria
4Institute for Theoretical Physics, Würzburg University, Germany

a)Corresponding author: elka@fisfun.uned.es

Abstract. In this communication we present some of our recent results on the synchronization properties of directed delay-coupled
networks of a small-world type, whose topology changes with time. Our simulations of a network of non-linear elements show
that a random change of topology enhances the stability of a synchronized state, depending on the interplay between different
time-scales in the dynamics. The results are analytically explained in the linear limit, where the dynamics is expressed in terms of
an effective connectivity matrix. In the limit of fast network fluctuations, this effective connectivity is given by the arithmetic mean
of the temporal adjacency matrices. When the coupling topology changes slowly, the effective adjacency matrix is given by the
geometric mean. The transition between both regimes is numerically studied for linear network elements.

Introduction

The cooperative behavior of chaotic systems in interaction can lead to partial and global synchronization [1]. Often,
the finite traveling speed of information between interacting elements leads to a coupling delay. This coupling delay
can induce distinctive patterns of chaos synchronization which have been observed in, for example, neural networks
[2, 3] and semi-conductor lasers [4]. On the other side, time-varying networks are very common in different contexts
such as (and not limited to) social networks or neural networks [6, 7]. Synchronization in time-varying networks has
been intensively studied in a variety of systems paying attention to the statistical properties of the networks concerning
partial or full consensus with applications to control theory [8].

In a previous publication [9] we have incorporated both ingredients: time delay in the interactions and a time-
varying topology. We considered an interaction network of coupled chaotic maps (Bernoulli and Logistic) with a
single coupling delay, while the connection topology varied with a characteristic time scale among an ensemble of
small-world (SW) networks. We found that random fluctuations in the network connectivity may enhance or reduce
the stability of a synchronized state, depending on the interplay between the network time-scales. This behavior has
been recently theoretically explained in the linear limit [10] by showing that the connectivity matrix can be expressed
in terms of an “effective” one, which is given by the arithmetic or geometric average over the different adjacency
matrices in the case of fast or slow network fluctuations respectively.

In this paper we present our latest results concerning the synchronization behavior of the above mentioned sys-
tems. We first describe our model. Then, we will highlight the theoretical predictions within the fast and slow approx-
imations, comparing with numerical simulations.

Synchronization of delay-coupled chaotic networks

We study the behavior of N classical units, characterized by a single degree of freedom ui(t), i ∈ {1, · · · ,N} and time
t ∈ N, whose evolution is given by:
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FIGURE 1. Left: A N = 30 network with a clockwise rotating backbone and p = 0.3, so the number of shortcuts is Ns = 9. The
strength of each link is denoted by its color: black is 1 and grey is 1/2. Right: Synchronization level histories for a fluctuating SW
network of Bernoulli maps with different fluctuation times. Parameter values are N = 30, ε = 0.6, p = 0.5, τ = 100 for different
values of Tn = 10, 15, 20, 50.

ui(t + 1) = (1 − ε) f (ui(t)) + ε
∑

j

Ai j(t) f (u j(t − τ)). (1)

Here ε ∈ [0, 1] is a real parameter which measures the strength of the interaction, τ is the coupling delay and
f : [0, 1] 7→ [0, 1] is a chaotic map. We consider a Bernoulli map, modelled as f (x) = ax mod 1 with a ∈ R+.
The coupling topology is given by the network adjacency matrix A, which satisfies a stochasticity condition so as
to guarantee the existence of a synchronized solution. We analyze a family of Newman-Watts networks [11], keep-
ing a chiral outside ring fixed in order to have a connected network of N sites whose non-zero entries are Ai,i+1 for
i = 1, . . .N−1, and AN,1. For every node we establish a directed link to another randomly chosen node with probability
p ∈ [0, 1]. An example of such a SW network is shown in Figure 1 (left).

Fluctuating networks

When allowing the network to fluctuate, the connectivity matrix A becomes time-dependent: After a network
switching period Tn a new matrix A is selected from an ensemble of all row-normalized SW graphs with fixed N and
p. Thus, all our choices for A guarantee the existence of a synchronized solution, but its stability varies.

In order to characterize the synchronization we have chosen the logarithm of the spatial deviation over the
network nodes

S(t) ≡ − ln(σ(t)), (2)

where

σ(t) ≡

√√√
1
N

N∑
i=1

(ui(t) − µ(t))2, µ(t) ≡
1
N

N∑
i=1

ui(t). (3)

The synchronization Lyapunov exponent (SLE) λ, that will be used further, is calculated as the average linear rate
at which the synchronization level changes with time 〈S(t)〉 ∼ S0 − λt. In the right panel of Figure 1 we represent
the evolution of the synchronization level for a few actual realizations of Eq. (1) of a SW network with N = 30,
ε = 0.6, p = 0.5 and delay τ = 100 for different switching times Tn. The parameters have been chosen so that most
static choices of A will lead to de-synchronization [9]. Yet, for relatively fast network switching, Tn = 10, the system
synchronizes, while increasing Tn and going towards the slow fluctuation limit makes the synchronization unstable, so
in actual simulations it de-synchronizes. The time required to de-synchronize decreases with increasing Tn, an effect
that was already reported in Ref. [9].
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Linearized Model
In order to understand the physics behind this behavior, we proposed recently a linearized model [10]. This model
explains the synchronization effect observed in the fluctuating SW network and the role of the interplay between the
different time scales. In the following we briefly summarize the most important results presented in Ref. [10].

Eq. (1) can be linearized around the symmetric solution u1(t) = u2(t) = · · · = uN(t) ≡ u0(t), yielding an
approximate effective equation for small deviations around the synchronization manifold. Defining xi(t) ≡ ui(t)−u0(t)
and ẋ ≡ dx/dt, we have

ẋ(t) = −λ0x + κA(t)x(t − τ) , (4)

where, for the Bernoulli case, λ0 = − ln |a(1 − ε)|, and κ = aε. Notice that λ−1
0 is the time-scale associated with the

decay towards synchronization in absence of interaction. There are other two time-scales which are relevant to this
problem: the time-delay of the interaction τ, and the network fluctuation time Tn. The interplay between these three
time-scales provides a rich phenomenology.

In some cases, we have been able to show that the synchronization properties of Eq. (4) correspond to a static case
with some effective topology, given by a certain effective adjacency matrix Aeff , whose properties we will describe.

In the fast network approximation, the network fluctuations are faster than all other time-scales: Tn � λ−1
0 and

Tn � τ. Therefore, it is very natural to expect that the system will present a similar behavior to a static network with
some average topology, as it has been shown in other situations [12]. If we make the basic approximation that

x(t0 + Tn) ≈ x(t0) + Tnẋ(t) ≈ x(t0) + Tn (−λ0x(t0) + κA1x(t0 − τ)) , (5)

we obtain the following expression at t = t0 + MTn and up to first order in Tn:

ẋ(t0) ≈
1

MTn
(x(t0 + MTn) − x(t0)) ≈ −λ0x(t0) +

κ

M

M∑
m=1

Amx(t0 − τ) . (6)

The last expression naturally introduces an “effective” adjacency matrix [10]

Aeff =
1
M

M∑
m=1

Am. (7)

By using the above effective adjacency matrix and working within the fast switching approximation, we obtained
the decay rate given by the most unstable solution from the Master stability function. Numerical simulations with a
network alternating between two non-commuting adjacency matrices A1 and A2, presented in our previous publication
[10], show an excellent agreement with the above exponential decay rate λ.

In the slow network approximation, the network time Tn is similar to the coupling delay τ, and both are larger
than the instantaneous decay rate λ−1

0 of the nodes, i.e. λ−1
0 � Tn ∼ τ. The coupling is constant during each delay

interval, thus one can perform the analysis by integrating Eq. (4). By using an arbitrary initial conditions x0(t), t ∈
[−τ, 0] and decomposing it into its Fourier components, one can find the evolution of the n-th mode during the first
delay interval

x1(t) =
∑

n

x1neiωnt, (8)

with

x1n =
κ

λ0 + iωn
A1x0n, (9)

where ωn = 2πn/τ (see Ref. [10] for details). Repeating this procedure for M alternations of the topology, one finally
ends up with an effective adjacency matrix, which in this case is given by the geometric mean of the matrices A1, A2, · · ·
along the time evolution

Aeff =

 M∏
m=1

Am

1/M

. (10)
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FIGURE 2. TDR for a system composed of N = 9 nodes, τ = 100 and λ0 = κ = 1. The left and right panels employ different
couples of stochastic matrices, randomly selected and non-commuting. Notice the strong parity effect for different ratios τ/Tn

reported in Ref. [10]. The horizontal lines correspond to the theoretical predictions: green (continuous) line for the fast switching
approximation and blue (discontinuous) for the slow switching one.

Numerical analysis for the decay rates, performed in the case of slow network approximation shows again a very good
agreement with the theoretical predictions [10].

Simulations in fluctuating networks
We can calculate the transverse decay rate (TDR) of the linear system Eq. (4), by numerically integrating the system
and estimating the exponential decay rate of the spatial variance of the nodes {xi(t)} [10]. For a static adjacency matrix
A with second largest eigenvalue γ the TDR is expected to behave in the following way [9, 10, 13]:

TDR =
1
τ

log
∣∣∣∣∣κγλ0

∣∣∣∣∣ . (11)

Figure 2 shows such TDR as a function of τ/Tn for two different systems with N = 9, τ = 100 and λ0 = κ = 1,
with a topology alternating between two different sets of two random stochastic matrices. The first salient feature
of the two plots is the strong parity oscillation, which is the reason why we chose this representation of the data.
This parity effect is also theoretically explained in our previous work [10]. The green (continuous) line provides the
predicted TDR associated to fast switching, which is provided by the arithmetic average of the adjacency matrices,
while the blue (discontinuous) line provides the TDR associated with the slow switching approximation, which is
given by the geometric mean. We can observe a good qualitative agreement between our theory and simulations in
Figure 2: for large τ/Tn, the TDR curve approaches the fast switching prediction, while for moderate and low τ/Tn
the TDR curve approaches the slow switching prediction.

The validity of our predictions regarding the arithmetic and geometrical average of the adjacency matrices ex-
tends to the non-linear case of the Bernoulli network given by Eq. (1), as it is shown in our earlier publications [10].
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