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ABSTRACT

We study the dynamics of an oscillatory system with pulse delayed feedback and noise of two types: (i) phase noise acting on the oscillator and
(ii) stochastic fluctuations of the feedback delay. Using an event-based approach, we reduce the system dynamics to a stochastic discrete map.
For weak noise, we find that the oscillator fluctuates around a deterministic state, and we derive an autoregressive model describing the system
dynamics. For stronger noise, the oscillator demonstrates noise-induced switching between various deterministic states; our theory provides
a good estimate of the switching statistics in the linear limit. We show that the robustness of the system toward this switching is strikingly
different depending on the type of noise. We compare the analytical results for linear coupling to numerical simulations of nonlinear coupling
and find that the linear model also provides a qualitative explanation for the differences in robustness to both types of noise. Moreover, phase
noise drives the system toward higher frequencies, while stochastic delays do not, and we relate this effect to our theoretical results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0100698

Pulse-like interactions appear in neuronal populations, optical
setups, electronic oscillators, and various other systems. Such
interactions typically lead to non-smooth dynamics: the reception
of a pulse leads to an abrupt change of the system state, which
becomes an instant “jump” in the limit of infinitely short pulses.
Here, we consider the non-smooth dynamics of an oscillator with
pulse self-coupling. The feedback loop contains a temporal delay,
and the system is also subject to noise. We consider two types of
stochastic perturbations: noise acting on the oscillator, and per-
turbations acting on the delay line. We show that these different
sources of noise both induce switching between different coex-
isting states, but the system shows opposite scaling properties
of the switching characteristics. We use an event-based approach
to derive a stochastic map describing the system evolution from
one pulse to the next. For weak noise, after linearization, the
map has the form of an autoregressive process, which allows
us to obtain detailed statistics of the system fluctuations. As
the noise level increases, we observe switching events between

different metastable states of the system. We obtain analytical
expressions for the switching characteristics, which provide an
accurate description of the linearized system and offer a qualita-
tive explanation for the switching dynamics for general coupling
functions.

I. INTRODUCTION

Systems with pulse-like interactions, i.e., signals with a short
duration compared to other characteristic time scales, are ubiq-
uitous in nature. Such systems include populations of biological
neurons,1 cardiac cells,2 wireless networks,3 chemical and electronic
oscillators,4–7 optical systems,8 and many others. In the limit of
infinitely short pulses, the dynamics of such systems becomes non-
smooth since the system state changes instantly at the moment of
pulse arrival. A common approach to studying non-smooth dynam-
ics of oscillatory systems with pulse interaction is to describe the
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oscillator by its phase and the interaction by the so-called phase
resetting curve (PRC).9 The PRC describes how the input pulse
delays or advances the oscillator depending on the momentary
phase of the oscillator when the pulse is received. Models of pulse-
coupled phase oscillators interacting via phase resetting curves have
been shown to display a variety of dynamical behavior, such as
synchronous10,11 and asynchronous12,13 states, as well as clustered14,15

and splay states.16

Due to the non-smooth nature of pulse-coupled systems, dis-
crete maps are a natural tool to explore their dynamics. Such maps
describe the system evolution from one pulse to another and allow
one to study its dynamics numerically or analytically. Moreover, the
map-based approach remains applicable even if the propagation of
pulses in the system takes a finite time.17,18 Thus, pulse-coupled sys-
tems provide a convenient framework to study the effect of temporal
delays, since the pulse nature of the interactions ensures finite-
dimensional dynamics. The underlying reason is that only the (dis-
crete) moments of pulse emission play a role in the future dynamics,
not the (continuous) history of the system in a delay window.

The role of delay on the non-smooth dynamics of pulse-
coupled oscillators has been extensively studied, in small motifs of
only a few elements19–22 and in large ensembles.23,24 Delays were
shown to cause multistability in recurrent neural loops25,26 and lead
to the emergence of complex high-period and chaotic behavior in
oscillatory systems with pulse feedback.27,28

In this paper, we extend our earlier work29 and show that pulse-
interacting systems are well suited to study the effect of stochastic
fluctuations of different types, thanks to the discrete nature of the
coupling. In particular, we consider an oscillator with pulse delayed
coupling and introduce noise of two types: (i) phase noise acting
on the oscillator and (ii) stochastic fluctuations of the coupling
delay. The model of the oscillator with pulse delayed feedback is
formulated and described in Sec. II.

In Sec. III, we introduce noise to the model. In contrast to
Ref. 29, this model contains both types of noise simultaneously. We
show that the map-based approach still can be applied to describe
the noisy dynamics of the system and propose the event-based inte-
gration scheme that we use for numerical simulations of the system.
We approximate the dynamics of the system in the limit of weak
noise in Sec. IV: we show that if the system fluctuates around a
deterministic state, the dynamics is well described by an autoregres-
sive process. For stronger noise, the map-based approach sheds light
on the system switching between different deterministic states. Our
theory allows us to predict the lifetimes of different states and their
scaling, in the case of a linear PRC. The most prominent finding is
a significant dependence of the scaling of the lifetimes on the noise
type: For stochastic delays, the lifetimes decrease exponentially with
the coupling strength, but for phase noise, the dependence is non-
monotonous with a pronounced maximum. A similar effect was
described numerically already in Ref. 29; however, in the case of
phase noise, the theoretical explanation relied on a comparison with
the continuously coupled system, which is only valid for weak cou-
pling. In particular, this did not allow us to discover the decrease of
the lifetimes for strong coupling in the case of phase noise. The map-
based approach in this paper is valid for stronger coupling as well,
so we replenish the omission of the earlier work and provide a solid
theoretical ground for the problem.

In Sec. V, we show numerically the scaling properties for
nonlinear coupling functions. Although the linear model does not
provide a quantitatively accurate estimate of lifetime in this case, the
qualitative behavior is well captured by the linear model. Moreover,
we discover a novel effect of speeding up the dynamics by phase
noise compared to stochastic delays, and we provide an explanation
for this effect with our linear theory. Finally, we briefly summarize
our results in Sec. VI.

II. MODEL

We start by introducing the deterministic model for a phase
oscillator subject to pulse delayed feedback,27

dθ(t)

dt
= 1 + εZ (θ(t − 0))

∑

ts

δ(t − ts − τ). (1)

The oscillator’s phase θ(t) evolves with a natural frequency that we
normalized to 1; each time when it reaches unity, the oscillator emits
a pulse and the phase is reset to 0. These moments of pulse emis-
sion are denoted as ts. The emitted pulses are sent into a delay line
and arrive back at the oscillator after a delay time τ . The arrival
of a pulse causes an instant phase shift, the magnitude of this shift
is determined by the phase resetting curve Z(θ) and the feedback
strength ε,

θ(t + 0) = θ(t − 0)+ εZ(θ(t − 0)), (2)

where θ(t − 0) and θ(t + 0) denote the phase before and after the
reception of the pulse, respectively.

System (1) was studied in detail in Ref. 28, we briefly discuss
the main dynamical regimes in the following. We look at the phase
evolution between the emission of a pulse, at t = ts0 , and reception
of the same pulse, at t = ts0 + τ ≡ t∗. This pulse arrives during a
later inter-spike interval, so we have ts−1 < t∗ < ts, for some integer
s > s0. We can write for the total phase increment 1θs between ts0

and t∗,

1θs = τ + ε
∑

ts0<tk+τ<t∗

Z(θ(tk + τ)), (3)

where the first term corresponds to the increment due to the con-
stant speed and the second term represents the phase shifts due to
the pulses arriving during the past delay interval. Note that in this
expression, we did not take into account the phase resets from one
to zero each time when the oscillator emits pulses. Thus, in order to
obtain the reception phaseψs = θ(t∗ − 0), one needs to subtract the
number of completed cycles Cs within the past delay interval. Since
θ(ts0) = 0, one obtains

ψs = 1θs mod 1 = 1θs − Cs. (4)

Note that Cs equals the number of pulse timings stored in the
delay line (without counting the pulse at t = t∗) and Cs + 1 = s − s0;
therefore, we call it the “capacity” of the system. The deterministic
dynamics of system (1) and the main variables used in the model are
sketched in Fig. 1. From Eqs. (3) and (4), one can define the (mean)
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FIG. 1. Sketch of the typical deterministic dynamics of a pulse-coupled oscillator
with delayed feedback. The phase shift due to pulse reception is indicated in blue,
and the pulse emission and subsequent phase resetting events in red. The timings
and phases used in the model description are also indicated.

frequency ωs as the phase increment per delay interval,

ωs =
1θs

τ
=

Cs

τ
+
ψs

τ
= 1 +

ε

τ

s−1
∑

k=s−Cs

Z(ψk). (5)

The dynamics of spiking oscillators is most often characterized
by the inter-spike intervals (ISIs) Ts = ts − ts−1. The frequency ωs

relates to the average inter-spike interval over the past delay win-

dow in the following way: since we have that
∑s−1

k=s−Cs
Tk = Cs −

ε
∑s−1

k=s−Cs
Z(ψk), we find

ωs = 1 +
Cs

τ
(1 − 〈Ts〉) , (6)

where 〈Ts〉 = 1
Cs

∑s−1
k=s−Cs

Tk (here and further, by 〈·〉, we denote

averaging over all the complete ISIs in the delay line). This rela-
tion depends on the temporal capacity Cs, but this dependence is
not strong. As long as the coupling is relatively weak (which is an
assumption for the validity of phase models) and the delay is large
enough, we have Cs/τ ≈ 1, and ωs ≈ 2 − 〈Ts〉.

We mostly record the frequency ωs and not the interspike
interval Ts for several reasons. First, the frequency ωs allows direct
comparison to continuously coupled phase oscillators.30 Also there,
a description of the stochastic system is based on the average
frequency per delay interval. Second, a single instance ωs = (ψs

+ Cs)/τ is related to the interspike interval 〈Ts〉 averaged over Cs

instances; thus, the frequency shows less fluctuations than the ISIs
and allows direct numerical processing. This is illustrated in Sec. III
[see Figs. 4(a)–4(c)].

To find the main deterministic regimes, we combine Eqs. (3)
and (4) and obtain a nonlinear map in the reception phases ψs, with
dimension Cs,

ψs = (τ − Cs)+ ε

s−1
∑

k=s−Cs

Z(ψk). (7)

It was shown that under quite general assumptions on the
phase response function Z(·), the deterministic system dynamics
unfolds in such a way that exactly one pulse arrives to the oscilla-
tor between any two consecutive moments of the pulse emission.28

In that case, the capacity of the dynamical regime stays constant
Cs ≡ C, and the map provides a valid description of such a regime
with a specific capacity C. Note, however, that the capacity is not a
characteristic of the system itself but a characteristic of the regime
it is in. Further, we show that the system might be multistable,
i.e., has several regimes with different capacities for the fixed set of
parameters.

The fixed points of the map Eq. (7) correspond to the basic peri-
odic regimes and are characterized by a constant capacity C and a
constant reception phase ψC. They can be found by solving

ψC = τ − C + εCZ(ψC). (8)

Consequently, the frequency ωC and the inter-spike interval TC

are also constant, they are given, respectively, by ωC = ψC+C

τ
and

TC = 1 − εZ(ψC).
Clearly, the number of solutions with different capacities

increases with the coupling strength ε and the feedback delay τ .
Solutions for which −1 < εZ′(ψ) < 1

C
holds are stable.28 For a

PRC that fulfills Z(0) = Z(1) = 0, meaning that the phase does not
change when a pulse is received at the moment of spiking, this results
in a stable “basic solution,” with a capacity C∗ = bτc, the largest
integer not greater than τ . This capacity corresponds to the num-
ber of natural cycles within a delay interval. For vanishing coupling
strength ε → 0, we have TC∗ → 1,ωC∗ → 1, andψC∗ → τ − C∗. As
the coupling strength ε increases, solutions with a different capacity
C emerge in saddle-node bifurcations, in the following, we denote
the frequency, inter-spike interval, and reception phase associated
with the stable solution as ωC, TC, and ψC, respectively.

We show this structure for two different phase response curves
in Fig. 2. First, we consider the PRC Z(θ) = 1

2π
sin(2πθ). This is

the pulse-coupled version of a regular Hopf normal form oscillator31

and can both delay and speed up the oscillator, depending on the
reception phase. It allows direct comparison with sinusoidally cou-
pled phase oscillators with continuous coupling. The frequencies
and interspike intervals of the different regular spiking regimes are
shown in Figs. 2(a) and 2(b) for increasing coupling strength. In
order to illustrate the emergence of multiple solutions, we select a
relatively large value of the delay τ = 15.95, for which we have the
basic solution with capacity C∗ = 15 always stable. As ε increases,
solutions with C = 16, C = 14, and C = 17 emerge; solutions with
the highest capacity correspond to the highest frequency, and the
smallest ISI. The set of solutions is approximately centered around
the natural frequency ω = 1 (both in terms of the frequencies and
in terms of the ISIs), the structure of the solution set is reminiscent
of the frequency locked states in coupled phase oscillators with con-
tinuous sinusoidal coupling.30 This set of solutions also reminds us
of the external cavity modes in semiconductor lasers with delayed
feedback,33 a similarity that results from the sinusoidal coupling
term.

Second, we consider a PRC Z(θ) = 1
2π
(1 − cos(2πθ)); this

PRC resembles a θ-neuron.32 This cosine PRC is always positive,
and, thus, the phase is always advanced due to an incoming pulse.
In Figs. 2(c) and 2(d), we show the frequencies and ISIs of the basic
regimes for the same value of the delay τ = 15.95; the basic solution
with C∗ = 15 is also present here. In contrast to the sinusoidal cou-
pling, only solutions with higher frequency and smaller ISI emerge
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FIG. 2. Frequencies [(a) and (c)] and inter-spike interval [(b) and (d)] of the regular spiking solutions, for varying coupling strength ε. Full lines correspond to stable solutions,
and dashed lines represent unstable solutions. Z(θ) = 1

2π
sin(2πθ) [(a) and (b)] and Z(θ) = 1

2π
(1 − cos(2πθ)) [(c) and (d)] and τ = 15.95.

as ε increases: for our choice of parameters, solutions with capacities
C = 16 to C = 22 consecutively appear.

III. STOCHASTIC MODEL AND INTEGRATION SCHEME

We described in Sec. II, the deterministic system [Eq. (1)]
with multiple stable coexisting states, we now consider the effect of
stochastic fluctuations. Since the system consists of two major com-
ponents, the oscillator and the delay line, we introduce two different
types of stochastic perturbations: those acting on the oscillator and
those acting on the feedback delay. The system with these two types
of noise is governed by the equation

dθ

dt
= 1 + εZ (θ(t − 0))

∑

ts

δ(t − ts − (τ + γ ξs))+ ση(t). (9)

The stochastic perturbations on the oscillator are modeled by an
additive noise term ση(t), with η(t) a standard Gaussian white noise
with 〈η(t)η(t′)〉 = δ(t − t′) and σ 2 the noise intensity. We call this
additive noise acting on the oscillator “phase noise.” The stochasti-
cally varying delay is implemented in the following way: the delay
of the pulse being received in the sth ISI is given by τ + γ ξs, with
ξs a random deviation, and γ 2 is the intensity of the delay fluctua-
tions. The deviations ξs are assumed to be independent and normally
distributed with zero mean and unit variance. We always chose γ
small and truncate the distribution, so that the delay remains posi-
tive and the pulse order does not change. Note that the system with
pulse coupling is quite convenient for the introduction of randomly
varying delays because of the discrete nature of the pulses.

Since the pulse nature of the system preserves in the presence
of noise, its dynamics again unfolds as a sequence of discrete events
corresponding to the emission and the reception of the pulses. We
trace the system dynamics starting from t0 = 0 and an arbitrary ini-
tial phase θ0 ∈ (0, 1). While the oscillator does not receive or emit
pulses, the phase evolution is Brownian motion with drift,

dθ

dt
= 1 + ση(t). (10)

This process is interrupted by a discrete event of one of the two
types. The first possible event is that the phase reaches unity at t = ts,
and the oscillator emits a pulse. The probability distribution of this
moment ts, is an inverse Gaussian distribution with a mean 1 − θ0,

f(ts|θ0) =
1 − θ0

σ
√

2π(ts − t0)
3

exp

(

−
(1 − θ0 − ts)

2

2σ 2ts

)

. (11)

The second possibility is that the oscillator receives a pulse at
t = t∗ < ts, i.e., before it reaches unity, t∗ is the first timing stored in
the delay line. In this case,34 the distribution of the reception phase
θ(t∗ − 0) ≡ ψs is given by

f(ψs|θ0, t
∗) =

1

σ
√

2π t∗

{

exp

[

−
(ψs − θ0 − t∗)2

2σ 2t∗

]

− exp

[

2 − 2θ0

σ 2
−
(2 − ψs + θ0 + t∗)2

2σ 2t∗

]}

, (12)
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FIG. 3. Time trace of the frequency (a), ISIs (b), and frequency histogram (blue
dots) (c) (in logarithmic scale). We compare the frequency distribution to the the-
oretical weak noise approximation (full black line) [Eq. (29)], and the deterministic
solution with C = 17 is indicated by the full blue line. Parameters are ε = 0.8,
τ = 15.95, σ = 0.01 and γ = 0, and Z(θ) = 1

2π
(1 − cos(2πθ)).

where we used an absorbing boundary condition f(1|θ0, t
∗) = 0.

Note that the integral
∫ 1

−∞ f(ψs|θ0, t
∗)dψs = P1 < 1, which corre-

sponds to a non-zero flow through the boundary.
This notion of the two types of possible discrete events leads

to a simple event-based integration scheme: at any time t and oscil-
lator phase θ(t), we generate the next spike timing ts according to
the distribution (11) and compare to the first pulse reception time
t∗ that is stored in the delay line. Then two different outcomes are
possible: (i) With a probability P1, we have ts > t∗. In this case, the
next event is the arrival of a pulse. We generate the reception phase
θ(t∗ − 0) = ψs according to the distribution (12), then we update
the phase to θ(t∗ + 0) = ψs + εZ(ψs) and update time to t = t∗. The
pulse at t = t∗ is removed from the delay line. (ii) With a probability
P2 = 1 − P1, we have ts < t∗, and the oscillator emits a pulse before
it receives one. We then update time to t = ts and reset the oscillator
phase. We add a new spike reception time t∗ = ts + τ + γ ξs+Cs to
the delay line.

After each of these outcomes, we repeat the same procedure,
which allows us to simulate the system dynamics for an arbitrar-
ily long time. Figures 3 and 4 show two examples of the simulation
with the cosine PRC, for weak and strong noise, respectively. The
initial phase was selected randomly in both cases, while in the delay
line, pulses were stored at integer values of time (corresponding to
the natural cycle). For weak noise (illustrated in Fig. 3), we see that
the frequency ωs, plotted in panel (a), and the inter-spike intervals
Ts, plotted in panel (b), fluctuate near the values corresponding to
the regular spiking solution of the deterministic system with C = 17,
indicated by the full blue line. Note that the magnitude of the fluc-
tuations is much larger for the inter-spike intervals Ts than for the
frequency ωs, since the frequency depends on the averaged inter-
spike interval. We also show the distribution of the frequency in
panel (c).

For strong noise, shown in Fig. 4, we see in the time trace of
the frequency [Fig. 4(a)], apart from the fluctuations near the deter-
ministic solutions, sporadic hopping from one solution to another.
In particular, the system switches between the two solutions with
C = 17 and C = 18. Note that the boundary between the two
regimes corresponds to ωτ = C + ψu, with ψu the reception phase
associated with the unstable state between two stable regimes. These
hopping events are also visible in the time trace of the averaged ISI
[Fig. 4(c)].

Note that, for the cosine PRC, the temporal capacity Cs switches
constantly, without this indicating a hopping event. This is because,
for the central frequencies, we have ψC ≈ 3

4
, while ψu ≈ 1

4
. This

means that pulse reception and pulse emission do not necessarily
alternate; pulse reception is typically at three quarters of a cycle, but
may vary between a quarter in the same cycle, and a quarter into the
next cycle.

In contrast, for the sinusoidal PRC, as the delay time and cou-
pling strength increase, we have that, for a solution with fixed capac-
ity ψu → 0 (for C < C∗) or ψu → 1 (for C > C∗) as the coupling
strength ε increases. Hence, for large enough delays, the tempo-
ral capacity Cs does indicate effectively the regime of the oscillator.
Thus, if the oscillator does not receive a pulse within an ISI, or
receives two pulses within an ISI, this typically indicates a hopping
event to another regime.

IV. WEAK NOISE APPROXIMATION

A. Derivation of an autoregressive process

The integration scheme is exact, but the probability distribu-
tions (11) and (12) do not allow for straightforward insight into the
system behavior. In the following, we study the dynamics in the limit
of weak noise σ � 1 and γ � 1, when the probability distributions
(11) and (12) can be approximated by normal distributions. For
weak noise, the system fluctuates around a deterministic solution
with a fixed capacity C, as illustrated by the numerical simulations
shown in Fig. 3. We can also assume pulse reception and emission
alternate. Under these assumptions, we show that it is possible to
approximate the dynamics as an autoregressive process.

We model the system in terms of the deviations xs in the spike
reception timings within an interspike interval,

xs = t∗ − ts−1 − ψC, (13)

and the deviations ys of the interspike intervals,

ys = Ts − TC = ts − ts−1 − TC. (14)

We follow the dynamics between two pulse emissions. At
t = ts−1, the phase is reset, θ(ts−1) = 0. Since we assume that the
emission and reception of a pulse alternate, the next event is
the reception of a pulse, at t = t∗ = ts−1 + ψC + xs. During the
time between these events, the phase experiences Brownian motion
[Eq. (10)]. Thus, before the pulse reception, the reception phase
θ(t∗ − 0) = ψs is distributed according to (11), which we approx-
imate by a normal distribution with mean ψC + xs, and variance
σ 2(ψC + xs) ≈ σ 2ψC. Here, we use that the noise strength σ 2, and
the deviations xs from the deterministic state are small, and we only
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FIG. 4. (a) Time trace of the frequency, (b) ISIs, (c) ISI averaged over a window of 17 occurrences, and (d) frequency histogram. We added the deterministic solutions: solid
blue lines denote the stable regimes, and dotted-dashed red lines correspond to unstable regimes. In panel (d), all deterministic solutions are shown; in panels (a)–(c), only
those that play a role in the dynamics. Parameters are ε = 0.8, τ = 15.95, σ = 0.1 and γ = 0, and Z(θ) = 1

2π
(1 − cos(2πθ)).

consider first order terms. This leads to

ψs = (t∗ − ts−1)+
√

t∗ − ts−1η1 ≈ ψC + xs + σ
√

ψCη1, (15)

where η1 is a standard Gaussian random number. After receiving the
pulse, the phase becomes

θ(t∗ + 0) = ψs + εZ(ψs)

≈ (ψC + εZ(ψC))+ (1 + εZ′(ψC))(xs + σ
√

ψCη1),
(16)

where we use a linear approximation of the PRC, as the deviations
from the deterministic state are small.

The next event is pulse emission, at t = ts. The time until the
phase reaches unity, and emits the next pulse, is given by Eq. (11).
For weak noise, we approximate the inverse Gaussian distribution
by a Gaussian distribution with mean 1 − θ(t∗ + 0) and variance
σ 2(1 − θ(t∗ + 0)) ≈ σ 2(TC − ψC). We find

ts = t∗ + (1 − θ(t∗ + 0))+ σ
√

1 − θ(t∗ + 0)η2

≈ ts−1 + TC − εZ′(ψC)xs

− σ
(

√

ψC(1 + εZ′(ψC))η1 −
√

TC − ψCη2

)

, (17)

where η2 is another independent standard Gaussian random num-
ber. Finally, we find for the deviation of the inter-spike interval
ys = Ts − TC = ts+1 − ts − TC,

ys = −εZ′(ψC)xs + σ

√

ψC(1 + εZ′(ψC))
2 + (TC − ψC)ηs. (18)

Here, we combined the two random Gaussian terms proportional
to η1 and η2 to a single term proportional to the standard Gaussian
random number ηs.

In order to find a second equation relating the deviations xs and
ys, we use the relation between emission time ts−C−1 and reception
time t∗ of the same pulse,

t∗ = τ + γ ξs + ts−C−1.

We can write, using Eq. (13),

t∗ − ts−1 = ψC + xs = (τ + γ ξs)− (ts−1 − ts−C−1)

= (τ + γ ξs)−
s−1
∑

k=s−C

Tk. (19)

Subtracting the deterministic values, we find

xs = γ ξs −
s−1
∑

k=s−C

yk. (20)

Finally, we obtain a single equation for ys by combining Eqs. (18)
and (20),

ys = εZ′(ψC)

s−1
∑

k=s−C

yk + vzzs, (21)

where zs is a standard Gaussian random number and vz is given by

vz =
(

εZ′(ψC)
)2
γ 2 +

(

ψC(1 + εZ′(ψC))
2 + (TC − ψC)

)

σ 2. (22)
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B. Analysis of the autoregressive process

The process equation (21) constitutes an autoregressive process
of order C (AR(C)); the solution is stationary if the corresponding
deterministic solution is stable. It is straightforward to compute the
autocorrelation function.38 By taking the time-average of both sides
of Eq. (21), we quickly find that 〈ys〉 = 0, i.e., the distribution of
ISIs is indeed centered around the deterministic value TC. Next, we
multiply the equation with ys−n, 1 ≤ n ≤ C, average over time and
normalize by the variance vy = E(y2

s ) [where E(·) denotes the mean
over the time trace]. This leads to the Yule–Walker equations38 for

the autocorrelation function, ρy(n) = E(ysys−n)

vy
,

ρy(n) = εZ′(ψ)

C−n
∑

k=1−n

ρy(k). (23)

Using the basic properties of the autocorrelation function
(ρy(0) = 1 and ρy(n) = ρy(−n)), the solution reads

ρy(n) =
εZ′(ψC)

1 − εZ′(ψC)(C − 1)
for 1 ≤ n ≤ C. (24)

The capacities of the solutions involved in the dynamics scale with
the feedback delay. Thus, for large delays, we have ρy(n) ≈ − 1

C
,

the inter-spike intervals within the delay line are weakly negatively
correlated.

We obtain the variance of the distribution of ISIs vy by mul-
tiplying Eq. (21) with itself and substituting the autocorrelation
values. We find for the variance,

vy = vz

1 − εZ′(ψC)(C − 1)

1 − εZ′(ψC)(C − 1)− ε2Z′(ψC)
2C

, (25)

which, for large capacities C � ε−1, reduces to
vy ≈ vz/(1 + εZ′(ψC)).

The Yule–Walker equations also allow us to compute the
autocorrelation function for values n > C: for n = C + 1, we find

ρy(C + 1) = εZ′(ψC)

C
∑

k=1

ρy(k)

=
C(εZ′(ψC))

2

1 − εZ′(ψC)(C − 1)

≈ −εZ′(ψC), (26)

meaning that the autocorrelation function ρy(n) shows a peak
around the delay time. This peak decays exponentially: for
n = C + m, (0 < m < C), we find

ρy(C + m) = εZ′(ψC)

(

C+m−2
∑

k=m

ρy(k)+ ρy(C + m − 1)

)

≈ −εZ′(ψC)
(

1 + εZ′(ψC)
)m−1

. (27)

We compare these theoretical predictions to numerical simu-
lations of the stochastic system (9) in a wide range of parameters,
for the sinusoidal PRC Z(θ) = 1

2π
sin(2πθ) and a delay τ = 100.5

(which is large enough to use the simplified expressions for large
delays). For this delay, the deterministic system always has a central

solution with capacity C∗ = 100, a reception phase ψ100 = 1
2

and
period T100 = 1, irrespective of the coupling strength ε. We used
this solution as an initial condition and simulated until the oscillator
reached 106 pulses.

In Fig. 5, we compare several statistics of the numerical data
to the theoretical predictions. Figure 5(a) shows the autocorrela-
tion function ρy(n) of the ISIs, for the system fluctuating around
the central state with C∗ = 100. The agreement with the theoretical
prediction is excellent: the autocorrelation function is very close to
the small predicted value −1/C∗, except for the peaks at the multi-
ples of C∗ + 1. In Fig. 5(b), we show the variance of the inter-spike
intervals for varying coupling strength ε and different noise inten-
sities; again, the agreement with the theory is remarkable. Similarly,
Fig. 5(c) shows the variance vs the noise intensity for fixed coupling
strength ε = 0.5. The theoretical approximation is very good for
weak noise but deteriorates at σ = γ & 0.1, which is to be expected
as the theory relies on a weak noise approximation. A closer look
at the system dynamics reveals that for such strong noise, the sys-
tem starts hopping between different solutions. Although our theory
does not apply in this case, in Sec. IV C, we show that it still allows
us to calculate important characteristics of this hopping.

C. Hopping

The autoregressive model [Eqs. (21) and (22)] describes the
dynamics when the system fluctuates around a single deterministic
state, with a fixed capacity C. Nevertheless, it allows one to describe
the switching events when the system escapes the basin of attrac-
tion of one deterministic state, and switches to another state. As
indicated by the numerical simulations shown in Fig. 4, such a hop-
ping event is indicated by the frequency ωs passing an unstable state
ωu = ψu+Cs

τ
, and, thus, it corresponds to the reception phase ψs

reaching the unstable value ψu. Therefore, it is instructive to look at
the deviations ws = ψs − ψC of the reception phase from its steady
state value, given by Eq. (15),

ws = xs + σ
√

ψCη1. (28)

For weak noise, the reception phases are normally distributed
around the deterministic value. Taking into account Eqs. (20)
and (24), it is straightforward to obtain the variance vw of the
reception phases,

vw = γ 2 + σ 2ψC + vy

C

1 − εZ′(ψC)(C − 1)
. (29)

For large delays, this simplifies to

vw ≈
TC + εZ′(ψC)ψC

−εZ′(ψC)(1 + εZ′(ψC))
σ 2 +

1

1 + εZ′(ψC)
γ 2. (30)

A switching event corresponds to the reception phaseψs reach-
ing an unstable state ψu, and this constitutes a large deviation from
the deterministic value ψC. A linear approximation of the PRC is no
longer valid; therefore, we avoid this restriction with a linear PRC,

Z(θ) =
1

2
− θ , (31)

for which Z′(ψC) = −1 is constant, and, conveniently, ψu = 0 = 1,
for all unstable solutions, irrespective of the capacity. This linear
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FIG. 5. Statistics of system (9)—numerical results vs the predictions of the weak noise theory, for system fluctuations around the state with C∗ = 100. (a) The autocorrelation
function ρy(n). Red dashed line denotes the level ρy = −1/100. (b) The variance of the inter-spike intervals vs coupling strength ε for various values of the noise intensities:
σ = 0.001 and γ = 0 (green circles), σ = 0 and γ = 0.001 (blue diamonds), σ = γ = 0.001 (magenta crosses), σ = γ = 0.0015 (red squares), and σ = γ = 0.002
(cyan asterisks.) Solid lines show the theoretical predictions. (c) The variance of the inter-spike intervals vs the noise intensity σ = γ for fixed coupling strength ε = 0.5.
Blue circles: numerical results, red line: theoretical predictions. Other parameters are τ = 100.5 and Z(θ) = 1

2π
sin(2πθ).

PRC is however unrealistic with respect to any real-world applica-
tion.

For this PRC, a switching event corresponds to the reception
phase exiting the interval [0, 1]: The capacity of the deterministic
state increases by one when ψs exceeds one and decreases by one
when ψs drops below zero. For long enough delays, the variance
[Eq. (30)] is the same for all states,

vw =
γ 2

1 − ε
+ σ 2 2 − ε

2ε(1 − ε)
. (32)

In order to obtain the switching statistics, one should solve the first
passage time problem for autoregressive processes, which is highly
nontrivial.35 However, due to the low correlations for large delays,
it is possible to estimate the switching rate as the probability to find
a value of ψs beyond the boundary. Provided that ψs is normally
distributed with mean ψC and variance vw, it is easy to estimate the
probabilities r±(C) of switching to a solution with a higher or lower
capacity,

r+(C) ≈ P(ψs > 1) = 1 −8

(

1 − ψC√
vw

)

, (33)

r−(C) ≈ P(ψs < 0) = 8

(

−ψC√
vw

)

, (34)

where8(x) = 0.5(1 + erf(x/
√

2)).
For weak noise, these probabilities are small, and using an

approximation for the tails of the error function, we obtain

r±(C) ≈
√

vw

2
√
π1±

exp

(

−
12

±

2vw

)

, (35)

where 1+ = 1 − ψC and 1− = ψC are the distances from ψC to 1
or 0, respectively.

In the following, we choose τ = C∗ + 1/2, where C∗ is the
capacity of the basic solution. For the linear PRC (31), this results

in a period TC∗ = 1 and a reception phase ψC∗ = 1/2 for this basic
solution. The other solutions are arranged around the basic solution,
the spectrum of solutions is similar to that of the sinusoidal PRC,
mostly for the central solutions. Then, from Eq. (8), it is straightfor-
ward to show that for the linear PRC, the reception phases ψC of the
different stable regimes are given by

ψC =
1

2
+

C∗ − C

1 + εC
. (36)

For the modes close to the central solution, and for large delays, we
have C − C∗ � τ , so that we can approximate the distances1± by

1±≈
1

2
±

C − C∗

ετ
, (37)

and the switching rates r±(C) by

r±(C) ≈
√

vw

π
exp

(

−
1

8vw

)

exp

(

±
C∗ − C

2vwετ

)

. (38)

Here, we neglected the terms of the order τ−2 inside the exponent
and the terms of the order τ−1 outside of the exponent. Then, the
average lifetime of the stable mode with capacity C equals L(C)
= ((r+(C)+ r−(C))

−1 and can be approximated as

L(C) ≈
1

2

√

π

vw

exp

(

1

8vw

)[

cosh

(

C − C∗

2εvwτ

)]−1

. (39)

This result [Eq. (39)] for the average lifetime of different states
reveals some major differences between the effect of both types of
noise. For phase noise only, we have vw = 2−ε

2ε(1−ε)σ
2 [see Eq. (30)].

This results in an approximate scaling of the lifetime of a central
solution

L(C∗) ∝ exp

(

1

8σ 2

2ε(1 − ε)

2 − ε

)

.

Chaos 32, 093141 (2022); doi: 10.1063/5.0100698 32, 093141-8

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 6. Statistics of system (9) for hopping, for a linear
PRC [Eq. (31)] and τ = 100.5. (a) Average lifetime of the
central solution L(C∗) for varying phase noise strength σ ,
ε = 0.2 and γ = 0. (b) L(C∗) vs delay fluctuations γ , for
ε = 0.4 and σ = 0. (c) L(C∗) vs the coupling strength ε, for
σ = 0.06 and γ = 0. (d) L(C∗) vs the coupling strength ε
for γ = 0.08 and σ = 0. Blue lines—theoretical predictions
(39) and red circles—numerical results. Insets in panels (a)
and (b): lifetimes of different solutions vs their capacity for
σ = 0.06 and γ = 0.1, respectively.

Thus, the lifetime L(C∗) scales exponentially with σ−2, and, for small
coupling ε � 1, we find that it increases exponentially with the

coupling strength, L(C∗) ∝ e
ε

8σ2 .
If only the delay shows stochastic fluctuations, the linear theory

predicts the opposite scaling: we have vw = γ 2

1−ε . This results in an
exponential decrease of the lifetime with the coupling strength,

L(C∗) ∝ exp

(

1 − ε

8γ 2

)

.

We compare the theoretical result for the lifetimes with numer-
ical simulations of the oscillator with a linear PRC in Fig. 6. Here, we
simulated the system until 104 switching events were detected. We
show in Fig. 6(a) the lifetime of the central solution C∗ vs the noise
strength, for phase noise, while Fig. 6(b) shows the same results
for stochastic delay fluctuations. The numerical results (red circles)
fairly agree with the theoretical predictions (blue lines). The small
discrepancy is not surprising, because of the many approximations
applied. It should be noted that the discrepancy is higher for the side
modes than for the central mode, as can be seen from the insets.
The theory also predicts the scaling of the lifetime with coupling
strength correctly, albeit with some discrepancies: Fig. 6(c) shows
the lifetime of the central solution vs the coupling strength for phase
noise, and Fig. 6(d) for stochastic delays: We find, as predicted by
the theory, that the role of the coupling strength ε is strikingly dif-
ferent in the two scenarios. For the delay fluctuations, the lifetimes
decrease exponentially with the coupling strength, while for the
phase noise the dependence of the lifetimes on the coupling strength
is non-monotonous. The system turns out to be most robust for
intermediate coupling strength, while for small or large coupling the
lifetimes vanish.

Theoretically, from the switching rates, one can also calcu-
late the distribution over the different deterministic regimes, and
from there, the width of frequency distribution. Assume detailed
balance p(C)r+(C) = p(C + 1)r−(C + 1) and note that r±(C)
∼ exp(±β(C∗ − C)), where β = (2vwετ)

−1. Then, one can write

p(C∗ + n) = p(C∗) e−βn2
. (40)

This defines a discrete normal distribution whose variance can be
estimated as36

vC ≈ εvwτ . (41)

Since ωs = Cs+ψs
τ

, we find for the variance of the frequency distribu-
tion,

vω ≈
vC

τ 2
≈
εvw

τ
≈
(

1 +
ε

2(1 − ε)

)

σ 2

τ
+

ε

1 − ε

γ 2

τ
. (42)

Since the theoretical prediction of the lifetimes for side modes
C 6= C∗ is not sufficiently accurate, Eq. (42) does not provide a good
quantitative approximation for the width of the frequency distri-
bution. However, the different dependency on both types of noise
does explain some qualitative features we found in earlier work29 for
nonlinear PRCs.

V. SIMULATIONS

The theory developed above applies to a linear PRC, for which
it does provide a good quantitative approximation for the lifetimes.
Specifically, the linear model predicts a very different scaling of the
hopping statistics with the coupling strength ε for both types of
noise, as is shown in Fig. 6. In this section, we show that some
of the main scaling properties that we found for the linear PRC
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FIG. 7. Average lifetime of the central state with capacity C = 20; for phase
noise (red circles), σ = 0.1, γ = 0 and for stochastic delays (blue diamonds),
σ = 0, γ = 0.17; for the PRC, (a) Z(θ) = 1

2π
sin(2πθ), τ = 20.5 and

(b) Z(θ) = 1
2π
(1 − cos(2πθ)), τ = 20.75 − 20 ε

2π
.

also apply to more realistic models. For this sake, we simulated
the system [Eq. (9)] with the same two PRCs, the sinusoidal and
the cosinusoidal ones. For stochastic delays, we averaged over up
to N = 50 000 hopping events; for phase noise, we recorded up to
N = 10 000 events.

For the sinusoidal PRC, we chose τ = 20.5 and calculated the
average lifetime of the central solution with capacity C∗ = 20; note
that we chose the delay such that for this state, irrespective of ε, we
have T20 = 1, ψ20 = 1

2
. As Z′(ψ20) = −1 does not change with the

coupling strength, this choice allows us to study the role of ε with-
out the need to adjust for a varying reception phase. The lifetime
of this central state for varying ε is shown in Fig. 7(a): for phase
noise only (red circles), we see an exponential increase of the life-
time with ε for small coupling, the lifetime then reaches a maximum
and decreases slightly as ε → 1. This initial exponential increase is
reminiscent of the stochastic switching properties for continuous
coupling and additive noise,30 which is not surprising since, for small

FIG. 8. Histogram of the frequency ωs, for (a) phase noise, σ = 0.1, γ = 0
and (b) stochastic delays, γ = 0.11, σ = 0. Other parameters are ε = 0.8,
τ = 15.95, we used a PRC Z(θ) = 1

2π
sin(2πθ). The stable deterministic

frequencies ω15 and ω16 are indicated by the full blue lines, and the red dotted-

dashed line corresponds to the unstable state ωu = ψu+16

τ
.

FIG. 9. Histogram of the frequency ωs, for (a) phase noise σ = 0.1, γ = 0
and (b) stochastic delays, γ = 0.11, σ = 0. Other parameters are ε = 0.8,
τ = 15.95, we used a PRC Z(θ) = 1

2π
(1 − cos(2πθ)). The stable determin-

istic frequencies ω17 and ω18 are indicated by the full blue lines, and the red

dotted-dashed line corresponds to the unstable state ωu = ψu+18

τ
.

ε, the pulse-coupled system can be approximated by a continuously
coupled system.11 It also corresponds to the behavior of the linear
model. However, in contrast to the linear model, we only see a slight
decrease of the lifetime as ε → 1. For stochastic delays (blue dia-
monds), we observe an exponential decrease of the lifetime with the
coupling strength ε, similar to the linear model.

For the cosine PRC, we also compared the lifetime of the cen-
tral state with capacity C = 20, and in this case,ψ20 = 3

4
. In order to

keep ψ20 constant as the coupling increases, we adjust the delay to
τ = 20.75 − 20 ε

2π
. The lifetimes only depend weakly on the delay,

and this dependency disappears as the delay increases; we have
shown this numerically in earlier work,29 and this property appears
in the linear theory [Eq. (29)] as well as for continuous coupling.30

We find qualitatively similar scaling of the lifetimes for both PRCs:
also for the cosine PRC, shown in Fig. 7(b), we see an exponen-
tial decrease of the lifetimes with increasing ε for stochastic delays,
and an initial exponential increase, followed by a slight decrease, for
phase noise.

In the linear model, we use a constant and negative Z′(·); this
assumption certainly does not apply to the sinusoidal PRC or to the
cosine PRC around the switching points ψu, and the linear model
can, therefore, only be expected to provide qualitative information.
However, the linear model does explain the qualitative difference
between the scaling properties of both types of noise. Indeed, while
for phase noise the lifetimes is non-monotonically dependent on the
coupling strength with a maximum at the intermediate values, they
monotonically decrease with the coupling strength for stochastic
delays.

The two different types of noise do not only result in different
switching statistics. In Fig. 8, we compare the distributions of ωs for
a sinusoidal PRC due to phase noise and stochastic delays. All other
parameters, and, hence, the deterministic solutions are the same,
and, in both cases, the system switches between the solutions with
C = 15 and with C = 16. Note, however, that in the frequency distri-
bution due to phase noise [shown in panel (a)], the faster state with
C = 16 is attended most often, while for stochastic delays [shown
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FIG. 10. Deviation of the average ISI Tavg − T20, over 10
7 spikes or 50 000

switching events (whichever occurs sooner) for phase noise σ = 0.1, γ = 0 (red
squares) and stochastic delays, γ = 0.17, σ = 0 (blue circles). Other parame-
ters are for panel (a) τ = 20.5, we used a PRC Z(θ) = 1

2π
sin(2πθ) and panel

(b) τ = 20.75 − ε

2π
and Z(θ) = 1

2π
(1 − cos(2πθ)).

in panel (b)], the peak at the slower solution C = 15 is highest. For
larger delays and a more symmetric set of solutions, we also see an
effect in the lifetimes. The faster solutions have a longer lifetime than
their slower counterparts for the same Z′(ψC) (not shown).

This shift of the frequency distribution toward faster solutions
is also present for the cosine PRC, as is shown in Fig. 9. In this case,
the system has a slower solution with C = 17 and a faster one with
C = 18. While for phase noise [panel (a)] both states are almost
equally often attended, the system has a preference for the slower
regime for stochastic delays [panel (b)].

We quantify this effect in Fig. 10: we compare the average ISI
over the whole time trace to the ISI of the central solution with
C = 20, for the same parameters as Fig. 7. For the sinusoidal PRC,
shown in Fig. 10(a), when there is only a stochastic delay, the aver-
age ISI stays very close to the ISI of the central state T20 = 1 for
all values of the coupling. This means that the distribution of the

FIG. 11. Variance vw of the reception phase around the different determinis-
tic states (blue diamonds), for 2 × 105 pulses each. The deterministic states
have capacities C = 85 − 112. The red curve is the weak noise approximation
[Eq. (30)]. The parameters are chosen such that no switching occurs, τ = 100.5,
ε = 0.85, γ = σ = 10−3, and the PRC is given by Z(θ) = 1

2π
sin(2πθ).

frequencies is symmetric around this central frequency ω = 1. In
contrast, for phase noise, the average ISI decreases as the coupling
increases, showing that the system shifts toward higher frequencies.

In Fig. 10(b), we show similar results for the cosine PRC. The
set of solutions is not symmetrical in this case (see Fig. 2) and both
for phase noise and stochastic delay, the average ISI deviates from
the central solution T20 as the coupling increases. However, we see
again that in the presence of phase noise, the average ISI is clearly
smaller than due to stochastic delays, and this difference grows with
the coupling strength.

This peculiar effect of speeding up by phase noise can to some
extent be deduced from the expression for the variance [Eq. (30)] of
the reception phases in the weak noise approximation: the contribu-
tion to the variance due the stochastic delays, which is proportional
to γ , only depends on Z′(ψC). For the sinusoidal PRC, this results in
a variance being symmetric around ψC = 1

2
.

When including the phase noise term, proportional to σ 2, the
dependency on ψC is more complicated. We show the variance vw

of the reception phases ψs in Fig. 11, for sinusoidal coupling, and
equal contributions of both types of noise, the numerical data for a
large delay (blue diamonds) and the theoretical value (full red line)
correspond very well. The dependency is non-monotonous, and in
particular, it is asymmetric: the faster regimes, with a shorter ISI TC

and a reception phase ψC ∈
(

1
4
, 1

2

)

, typically have a smaller variance
than the slower regimes [for the same Z′(ψC)]—the size of this effect
depends on the coupling strength and the precise shape of the PRC.

VI. CONCLUSION

In this paper, we present a detailed study of a phase oscillator
with pulse delayed feedback subject to two types of noise: addi-
tive phase noise acting on the oscillator and stochastic fluctuations
of the coupling delay. Pulse-coupled oscillators are a well-known
example of non-smooth dynamics since their state undergoes abrupt
jumps when they receive pulses. The presence of such jumps allows
us to develop event-based techniques, which describe the system
evolution from one pulse to another. Here, we extend this event-
based approach to noisy systems and suggest an integration scheme
based on a stochastic map. This scheme allows efficient and fast
simulation of the system in the presence of either or both noise
sources.

We mostly concentrate on the case of large enough delays,
when there is a range of coupling strengths, for which the system
has multiple coexisting stable regimes. These regimes are character-
ized by a constant interspike interval, constant temporal capacity,
constant reception phase, and constant frequency. We show that
in the limit of weak noise, the system fluctuates around one of the
deterministic states; in that case, the dynamics can be described as
an autoregressive process. This allows us to analytically calculate the
magnitude of the fluctuations and the autocorrelation function. We
show that these analytical results are in good agreement with numer-
ical simulations. For large delays, the autocorrelation function of the
ISI time series resembles the typical pattern of chaotic systems with
a large feedback delay, with reappearing peaks at multiples of the
delay time.37

As the noise strength increases, the system starts to deviate sig-
nificantly from the deterministic solutions, which naturally leads to
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a collapse of the linear theory. The most interesting effects are then
observed in the presence of multistability: the noisy system starts to
switch sporadically between different deterministic solutions. Sur-
prisingly, the linear theory still provides relevant information on
this switching: In the particular case of a linear PRC, it allows
one to estimate the lifetimes of different solutions and their scal-
ing with system parameters, such as noise strength and coupling
strength.

Our theory reveals a number of nontrivial effects, which under-
line the key difference between the two types of noise. Surprisingly,
the scaling of the lifetimes with the coupling strength turns out to be
the opposite for phase noise and for stochastic delays. In particular,
the lifetimes decrease exponentially with the coupling strength for
stochastic delays, while for phase noise, they initially increase expo-
nentially and reach a maximum for intermediate coupling strength,
after which they steeply decrease.

These scaling properties predicted by the linear theory also
hold for general, nonlinear PRCs. We simulated an oscillator with
a sinusoidal PRC, and one with a cosine-shaped PRC, and found the
same qualitative scaling as for the linear PRC: The lifetimes decrease
exponentially with the coupling strength for stochastic delays, and
for additive phase noise they initially increase exponentially, similar
to the continuously coupled system, but, in contrast to continu-
ously coupled systems, they reach a maximum for intermediate
coupling. In contrast to the linear PRC, the lifetimes do not vanish as
ε → 1. We attribute this discrepancy to the fact that the system with
nonlinear PRC shows a multijitter bifurcation.27

The numerical simulations also reveal another characteristic
effect of phase noise: it speeds up the dynamics, i.e., phase noise
makes the system prefer solutions with higher frequencies. For
stochastically varying delays, this effect is much smaller or even
opposite.

To conclude, the achievement of this paper is twofold. First,
we propose an event-based integration scheme applicable to pulse-
coupled systems in the presence of different types of noise. While
the analytical treatment and numerical methods for additive phase
noise are well established, the influence of stochastic delays has not
yet been extensively explored. Our event-based approach allows a
straightforward implementation of both noise sources and allows
us to establish an analytical framework to estimate the switch-
ing statistics. Second, we demonstrate that the effects of phase
noise and delay fluctuations can be drastically different: we show
this analytically with a linear PRC, and our theory shows good
correspondence to numerical simulations. We show numerically
qualitatively similar scaling results for two different nonlinear
PRCs.

Our results can potentially be applied to more complex sys-
tems, such as networks of pulse-coupled oscillators to which the
event-based approach can be easily generalized. Based on our
results, we expect/hypothesize that in such networks, the action of
the noise on the nodes (oscillators) and the links (delay lines) might
lead to different effects, and this is worth further study.
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