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Figure 1: Left: Double diamond framework illustrating how the design thinking modes are separated into convergent and
divergent cognitive operations. Right: Interaction plot showing the effects of rotating leadership on team performance for
different modes.

ABSTRACT
Collaborative creativity is an essential part of modern teamwork
and is often supported by formal techniques, such as design think-
ing. Current support tools are often limited in scope as understand-
ing the time-varying nature and structure of team communication
is insufficient. We investigate how collaborative creative activities
in new product development teams can be digitally supported while
maintaining face-to-face communication. This work analyzes to
what extent paralinguistic and proxemic features of team interac-
tion relate to performance in new product development teams and
if and how this relationship differs for different stages in the de-
sign process. This is investigated by applying multilevel modeling
on data collected during a four-week new product development
cycle. The cycle was completed by four teams, during which data
were collected automatically using sociometric badges that cap-
ture social signals of team interactions. In addition, the data are
combined with survey-based measurements on the team’s daily
design process and periodic performance evaluations. The current
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paper provides evidence that social signals are related to team per-
formance and that this relationship varies across the stages in the
product design process. Certain social signals contribute positively
in one stage but less in other stages, showing the importance of
using multimodal signals when modeling high-level collaborative
patterns. This research contributes to the literature by providing a
better understanding of relevant factors when designing supporting
tools or methods for collaborative creative problem solving.
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1 INTRODUCTION
Organizations increasingly realize that teams can be a highly ef-
fective working unit when striving for creativity in the workplace
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[2]. However, not all teamwork is considered good teamwork and,
as Salas and Reyes [31] write, “a team of experts does not nec-
essarily make an expert team.” In other words, extensive domain
knowledge does not prevent a team from failing if its members
do not know how to work together effectively. Indeed, research
on collaborative problem solving has found that more often than
not, collaboration results in “process loss” instead of “process gain;”
group interaction fails to yield performance that exceeds that of
the individual group members [12]. Collaborative problem solv-
ing requires more than simply joining forces. However, the field
remains mute on what determines the success of collaborative prob-
lem solving. Teams need to exchange knowledge and information
while coordinating skills to stimulate idea generation. We will refer
to this process of communication, coordination and interpretation
as collaborative creative problem solving (CCPS) [13]. While prior
research shows that communication contributes to effective CCPS,
we possess only limited knowledge of how team communication
contributes to performance. Team communication relies on mutual
information exchange across various modalities, including verbal
(i.e., paralinguistic) and nonverbal (i.e., proxemic) modalities. Par-
alinguistics relates to all aspects of spoken communication except
the semantic content. Proxemics relates to how people use space
when communicating. These features have proven to be robust in
previous studies of nonverbal communication. They stem from a
diverse set of domains such as sociology and psychology [11] and,
most recently, human–computer interaction (HCI) [21]. Scholars
in these domains have investigated human proxemic and paralin-
guistic behavior since the 1920s. The utilization of paralinguistic
and proxemic modalities has shown to vary across tasks, and some
studies have found a structural difference between communication
patterns in teams during different CCPS tasks [14, 17].

One reason for the variability across tasks seems to be related
to team cognition. Indeed, it has been argued that team communi-
cation is an indicator of team cognition as communication reveals
cognitive processing at the team level [4, 37]. Further, research
has identified that team cognition can vary throughout the CCPS
process depending on the group’s cognitive state. For example,
Stempfle and Badke-Schaub [35] have identified different cognitive
operations teams utilized for different tasks during the design think-
ing process, a method used for CCPS (Figure 1). Consequentially we
propose that when investigating communication in teams during
CCPS, research should differentiate between tasks when evaluating
team performance to account for the underlying cognitive opera-
tions utilized by the teammembers. Throughout this paper, the term
mode will be used to differentiate these interactions for different
tasks within teams. Few studies have investigated the association
between different modes and social signals on performance. The
current paper is one of the first investigations using proxemics and
paralinguistics multimodal models to understand design thinking
collaboration dynamics. We aim to demonstrate the value of using
these mult-modal signals when modeling high-level collaborative
patterns to understand team performance.

This study investigates the relationship between social signals
and overall team performance and how that relationship differs
across modes. We use a data set collected during real-world meet-
ings of new product development teams to answer this question.

Using multilevel modeling, we observe that the relationship be-
tween the proxemic feature rotating leadership on performance is
significantly moderated by mode. We demonstrate that variation
between working individually, in small subgroups and in full teams
collaborating in close proximity is more beneficial for performance
in the need-finding phase of the product development process than
in the prototyping phase.

Our contribution is that we have found a measurable interaction
effect of mode on the relationship of social signals on team perfor-
mance. This finding is important as the literature thus far does not
differentiate between CCPS tasks, ignoring the underlying cognitive
operations of the teams. This highlights a significant shortcoming
of the current literature that could limit understanding: the effects
of different social signals during specific modes might go unnoticed
when they are combined within the same analysis.

We believe that the conclusions drawn from this analysis are
applicable to research on team performance and contribute to the
foundations for future research aiming to enhance collaborative
capabilities, such as through automated support tools for CCPS
or novel design thinking process frameworks. Both these research
streams need to consider the underlying cognitive operations to
help teams perform better.

2 RELATEDWORK
2.1 Collaborative Creative Problem Solving

Through Design Thinking
Design thinking is commonly used as a methodology by teams
working with creative or innovative processes within companies. It
involves two or more people engaged in a coordinated attempt to
find a joint solution to a problem by establishing common ground
that pertains to the problem space and jointly developing a so-
lution that accommodates multiple perspectives [6, 36]. Various
definitions of formal methods that underline the design thinking
methodology exist in the literature. However, three modes com-
monly cited within a design thinking approach are need finding
(NF), ideation (ID), and prototyping PR. NF is the process of defining
the problem. ID is the process of generating ideas and solutions.
PR encompasses building models to facilitate the development and
selection of concepts [20, 33].

We chose design thinking because it is a commonly applied
methodology that entails two very distinguished cognitive opera-
tions: divergent and convergent thinking. While divergent thinking
aims to find many possible answers or options to a particular prob-
lem, convergent thinking narrows down multiple ideas into a single
solution [10]. During the design thinking process, teams use con-
vergent and divergent thinking to explore the problem and solution
space to apply CCPS successfully. NF inhabits the problem space,
utilizing a mix of divergent and convergent thinking. ID and PR
share the solution space while utilizing only divergent and conver-
gent thinking, respectively (see Figure 1).

2.2 Modeling Behavioral Patterns During
Collaborations

Research on the impact of communication on team performance
is spread across various streams of literature. The most prominent
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Figure 2: Overview of the data collection and analysis pro-
cess

research streams are HCI, organizational science, and cognitive
science literature. This research has identified a variety of factors
found to predict team-level task performance [29]. One promi-
nent research stream focuses on evaluating social signals, such
as proxemic and paralinguistic behavior, during team interactions
[19, 22, 41]. However, few studies have investigated the associa-
tion between different modes and social signals on performance.
Prior work is often limited to investigating a single type of mode
[7, 8, 19, 32], with studies such as Eloy et al. [8] differentiating
between goal type but not between modes. Studies that do include
multiple modes assume that all will benefit from the same social
signals, as seen in the study byWoolley et al. [39] on understanding
collective intelligence in teams. While that study asks participants
to solve a wide range of tasks, it does not attempt to identify how
the relationship between different signals and collective intelligence
changes for the different participant modes.

While early work for data-driven modeling on collaboration
behavior patterns has mainly aimed to model lower-level behav-
ioral dimensions, such as turn taking [28], recent efforts go beyond
low-level signals to model high-level collaborative behavioral pat-
terns. For example, postural markers, such as forward and backward
leaning, have been used in human activity recognition to differenti-
ate team member group functions [5]. Proxemic features, such as
time spent in close proximity, are indicators of knowledge-sharing
dynamics and affect group creativity [9, 15].

As uni-modal features often cannot richly capture complex social
interactions, multimodal signals have been increasingly used in
modeling high-level collaborative patterns. An example of this is the
study by Murray and Oertel [22] that modeled task performance on
a team problem-solving task. They trained a random forest classifier
to predict task performance from vocal and linguistic features. The
multimodal feature set outperformed the uni-modal feature set,
demonstrating the added value of multimodal data collection.

Utilizing these signals in successful machine learning models re-
quires theoretical foundations drawn from HCI and organizational
science literature with regard to team dynamics. Until recently,
these dynamics have remained elusive due to their complexity and
lack of quantitative measures. However, wearable electronic devices
have made collecting detailed information on team communica-
tion affordable. Research indicates that there is predictive power
in social signals collected with these devices [27]. This is particu-
larly applicable to collocated collaboration settings because face-
to-face teamwork remains the dominant mode for solving complex
problems despite the increasing amount of work done by virtual
teams. Furthermore, collocated collaboration provides unique ben-
efits that are not easy to achieve in digitally mediated forms of

teamwork [26], such as increasing creativity [9] and performance
[23]. While preliminary work has demonstrated the feasibility and
utility of leveraging multimodal signals to predict behavioral pat-
terns during collaboration activities, more research is needed to
understand which data sources best predict certain activities. A
detailed overview of the current state of the literature on collocated
collaboration modeling using multimodal interaction modeling can
be found in Praharaj’s [30] comprehensive literature analysis.

3 METHOD
3.1 Data Set
We aim to investigate team-level performance within a collabora-
tive product development task using a data set published earlier
[17]. We chose this data set for several reasons. First, it was col-
lected during a design thinking process and provides information
on the participants’ mode on a given day. Second, the data set con-
tains team-level performance assessed within the context of a real
company. This will help us better understand the interplay of social
signals and modes with regard to team performance. Lastly, prior
analysis of this data set revealed a “sociometric DNA” within the
modes expressed as structural differences in the patterns of the
individual modes[17]. We believe that understanding how these dif-
ferences link to performance is the next step toward understanding
and improving social signals in team communication.

The data set contains social signals collected from a group of
young professionals engaging in a new product development (NPD)
sprint exercise at a large consultancy. In total, 18 participants split
into four groups of 4–5 members each were observed over 13 days.
Team members were unfamiliar with each other before the start of
the project. All teams worked without supervision, so each team
structured their workdays and scheduled team meetings as neces-
sary. The teams had no formally defined hierarchy, and no formal
roles were established. Data on the participants were collected us-
ing wearable electronic devices during working hours, excluding
lunch breaks. The wearable electronic device used in this data col-
lection is a sociometric badge that automatically measures social
signals derived from speech, body motion, and relative location.
Sociometric badges are well established in the literature, having
been successfully deployed in a variety of organizational contexts
with a variety of predictor variables. The badges have been used
to predict organizationally relevant outcomes such as job attitude
and performance [25], job satisfaction [24], network cohesion [40],
creativity [38], group performance [23], and group collaboration
[16].

As not all group members were present on all days, only 222
instances of sociometric signals are available out of 234 potential
instances. The features used in this study are derived from these
speech and proximity signals as provided by the Sociometric Solu-
tions software [34]. All participants were asked to complete daily
questionnaires to provide information on the design thinking activi-
ties after finishing all work-related activities.We have only included
the answers assessing how much time (in percentages) participants
spent each day on the three different modes. The response rate
to this question was 100%, providing 222 responses. Eight senior
consultants assessed the team performance of each group at the
location site.
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3.2 Variables
Data from several studies suggest that even at small sample sizes,
significant patterns can be measured by social signals extracted
from the sociometric badges. These signals, hereinafter referred to
as features, include turn taking, activity levels, and proximity within
the network [27]. Prior work [17] focuses on features that capture
the rotation of nonverbal behavior in teams. That research assessed
the predictability of design thinking mode using five different rota-
tion features: rotating leadership (RL), rotating contributions (RC),
turn taking (TTK), successful interruptions (SI), and unsuccessful
interruptions (UI). We used variance inflaction factor (VIF) values
to assess if multicollinearity is present to avoid inflated regression
coefficients. Due to the multicollinearity of the interruption features
(SI & UI) with each other and with turn taking, the interruption fea-
tures will be excluded from the analysis. We made this decision as
turn taking is a well-established feature in the literature [27]. Only
the descriptions of RL, RC, and TTKwill be covered in the following
sections. Furthermore, the dependent variable team performance
(Overall Performance) and the moderation variable design thinking
mode (MODE) will be explained.

3.2.1 Rotating Leadership. Rotating leadership (RL) in this data
set is calculated from the proxemic features measured by the socio-
metric badges via infrared and Bluetooth signals. It represents the
physical location of each participant in relation to the others, and
it changes over time. Teams showing high values in RL go through
many changes in the number of team members in proximity to each
other throughout the day. The groups in this study often split up
and worked individually before coming together again to jointly
work on the project. The resulting data form a social network evolv-
ing through the data collection period. RL reveals changing network
structures where people oscillate between peripheral and more cen-
tral positions. In social network analysis terms, RL is a measure of
the frequency in which people change their betweenness centrality
in the team when represented as a graph. Betweenness centrality
is calculated by dividing the times a node in a network is located
on the shortest path by the total number of paths. RL represents
the changes within the centrality by counting the number of local
maxima and minima over time for a person [17, 18].

This is described in the equation below, where the superscript
BC indicates that the local minima and maxima are for the between-
ness centrality curve, and i indicates the person. Higher numbers
indicate more rotation of leadership.

RLi = #localMinimaBCi + #localMaximaBCi (1)

Research has shown that this measure has a relevant impact on
knowledge-sharing dynamics, affects individual and group creativ-
ity, and can be a predictor of innovative performance [1, 9]. RL is a
day-level variable.

3.2.2 Rotating Contribution. Like RL, rotating contribution (RC)
is a consistent indicator of creativity, a key component of CCPS.
For both signals, more rotation is positively related to performance
during creative tasks, while less rotation is preferable for non-
creative tasks [9]. In contrast to RL, which is a proxemic measure
of rotation, RC measures paralinguistic rotation. Specifically, it
measures the oscillation of the contribution index (CI, or speakinд−

listeninд/speakinд + listeninд) by counting the number of local
maxima and minima in the CI curve of a person over time. It thus
represents how frequently people change the amount of time they
spend listening vs. speaking [27]. RC is a day-level variable.

3.2.3 Turn Taking. TTK in groups has been associated with col-
lective intelligence and is, in general, considered a measure of the
involvement of all team members, which is crucial for team success
[3, 39]. Lower numbers of turns taken and increased mean speaking
segment length are correlated to group effects such as diminished
perceptions of individual and group creativity, as well as lower
levels of involvement [27]. Within this data set, turns are speak-
ing segments that occur after and within 10 seconds of another
speaking segment. Two speaking segments do not need to be from
different people to count as a turn; one person can “self-turn” by
pausing and then starting to speak again. This would count as two
turns. TTK is a day-level variable.

3.2.4 Team Performance. Overall performance was collected via a
survey from senior consultants. The consultants were asked to rate
the overall quality of each team’s performance at the end of every
workweek. The performance measure was assessed on a Likert
scale ranging from 1 to 10, with 5 as a neutral point. The team
performance measure was measured on a weekly basis and is thus
a week-level variable.

3.2.5 Design Thinking Mode. MODE is defined by the percentages
reported by the participants. Each observation corresponds to a
participant’s answer on a given day and is a day-level variable. Each
observation was assigned one of four classes: NF, ID, PR or MIXED,
depending on whether the participant indicated that at least 60% of
the day was spent in the corresponding mode. This cut-off point
was chosen to ensure single labeling. For example, an observation
indicating 40% NF and 60% ID was assigned to the class ID. The
MIXED class was assigned if no mode was present for more than
60% on a given day. MODE is a day-level variable.

4 ANALYSIS AND RESULTS
Multilevel modeling was applied because measurements in the data
are not independent. All variables were either: (1) measured per
participant (RL, RC, TTK and MODE); or (2) measured per team
(overall performance). The participant variables weremeasured on a
daily basis, and the team variable is measured on a weekly basis. To
account for our data structure, we conducted mixed effect modeling
where individuals were nested in teams, and time was included
as a random slope. In the first step, we tested the assumptions
and prepared the data. Data inspection revealed that the data is
normally distributed, and homogeneity of variance can be assumed.
The features were standardized because they were measured at
different scales. With the aim of this analysis in mind, we removed
all data points assigned the class MIXED in MODE, reducing the
number of data points from 222 to 156.

4.1 Overall Performance
The guiding research question for this analysis is how different
features affect overall performance and how this relationship differs
for different modes. To evaluate the moderating effect of MODE,
effect coding was used on the remaining three levels of MODE,
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Table 1: Log Likelihood Test

Model AIC LogL Chisq Df Pr(>Chisq)

Unconditional Means 381.36 −186.68
Random Slope 215.43 −99.71 173.94 4 0.0000

Random Slope 215.43 −99.71
Perf - RL*MODE 203.71 −88.86 21.71 5 0.0006
Perf - RC*MODE 212.81 −93.41 12.62 5 0.0273
Perf - TTK*MODE 210.55 −92.27 14.88 5 0.0109

Note: Akaike information criterion (AIC); Log likelihood values (LogL)
χ 2 (Chisq); Degrees of freedom (df)

creating two regressors. We used the class PR in MODE as a con-
trasting group, so observations in this class were assigned a −1.
Thus, we created one regressor named NF-PR for modes of the NF
class assigned a 1 and another named ID-PR for observations of
the ID class assigned a 0. In line with the recommended procedure
for multilevel analysis, we developed a sequence of models from
the simplest to the most complex. We compared model fit using
AIC, which penalizes for model complexity. If the AIC is lower
for a more complex model, then the gain in fit is worth the extra
complexity. In addition, we also conducted likelihood ratio tests
for all presented models to assess if the model fit improvement is
statistically significant. All models use overall performance as the
dependent variable.

We start by building the most basic model, an unconditional
means model. This model has no predictors and allows the in-
tercept to vary for participants nested in teams. This model lets
participants have their own baseline values but assumes that par-
ticipants respond to time in exactly the same way. The next step
in model fitting is to build a random intercept and slope model. In
addition to allowing the intercept to vary for participants nested
in teams, the random slope model allows each group line to have
a different slope, hence allowing the explanatory variable to have
a different effect for each group over time. We conduct a likeli-
hood ratio test using maximum likelihood estimates to see if al-
lowing the slope to vary per week improves our model fit. The
results in Table 1 show a significant improvement from the uncon-
ditional mean model to the random slope model, increasing χ2 by
173.94, (d f = 4,p < 2.2e −16). The improved fit is also indicated by
the AIC score, which is lower for the random slope model. As this
model not only shows a better model fit but also makes sense for
our data structure, we will be using a random slope model structure
when adding our level-one predictors.

Table 1 shows the results of the likelihood ratio test. Six dif-
ferent models were generated, but only models with significant
coefficients for the predictors are presented in the tables. Adding
the predictors by themselves did not yield significant coefficients.
However, all moderation models showed significant coefficients.
Evaluating the model fit between all models, we can observe that
Model Perf - RL*MODE (Table 1) outperforms all models with an
AIC score of 203.71. Adding the predictors MODE and RL to this
model provides the largest χ2 improvements. Table 2 shows the
results for the random slope models with the interaction effects

Table 2: Mixed Effect Models for Overall Performance

Overall Performance

RL*MODE RC*MODE TTK*MODE

RL 0.049∗∗
(0.017)

RC −0.001
(0.008)

TTK 0.00004
(0.00003)

NF-PR −0.127∗ −0.176∗∗ −0.183∗∗
(0.059) (0.058) (0.059)

ID-PR −0.031 0.018 0.011
(0.053) (0.054) (0.055)

RL:NF-PR 0.067∗
(0.027)

RL:ID-PR −0.040∗
(0.018)

RC:NF-PR −0.004
(0.013)

RC:ID-PR 0.010
(0.010)

TTK:NF-PR −0.00001
(0.00003)

TTK:ID-PR 0.00002
(0.00003)

Constant 7.058∗∗∗ 7.019∗∗∗ 7.027∗∗∗
(0.101) (0.107) (0.114)

Observations 156 156 156
Log Likelihood −104.595 −110.350 −126.408
Akaike Inf. Crit. 235.190 246.701 278.816
Bayesian Inf. Crit. 274.839 286.349 318.464

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

between the factors and MODE. Looking at the models, we can
observe a negative direct effect of the regressor NF-PR, which indi-
cates that the NF class of MODE contributes negatively to overall
performance compared to the contrasting group PR, which was
coded with −1. There seems to be no significant effect of the class
ID on performance compared to PR as measured by the regressor
ID-PR. Looking at the interaction effect specifically, we can observe
that the relationship between RL and performance is significantly
moderated by MODE. The expected change in the overall perfor-
mance for a one-unit increase in RL when a team is in the NF class
of MODE is 0.067 higher than when a team is in the PR class. The
expected change in the overall performance for a one-unit increase
in RL when a team is in the ID class of MODE is −0.04 lower than
a team in the PR class (Table 2 – Model RL*MODE). This is to say,
for NL, an increase in RL is related to an increase in overall perfor-
mance. This effect is not as strong (PR) or even not detected (ID)

122



C&C ’22, June 20–23, 2022, San Servolo, Venice Kohl et al.

for the other modes. These relationships are visualized in the inter-
action plot Figure 1. We do not observe a significant moderation
effect for RC or TTK (Table 2 – Model RC*MODE & TTK*MODE)

5 DISCUSSION AND CONCLUSION
Following our analysis, we can answer our research question. Our
results show differences in the effect of social signals on team per-
formance for different participant modes. Different features (specif-
ically RL) affect overall team performance, and this relationship
differs over different design thinking modes. While all modes bene-
fit from increased RL, NF does so significantly more than ID and
PR. More research is necessary to understand why we observe this
relationship. A likely explanation is that while high RL values are
associated with positive performance in creative tasks, the direc-
tionality of the correlation changes for non-creative activities. The
wide spread of variance within the ideation mode and the overall
lower impact on the performance mode might indicate that these
modes include more non-creative activities as they occur later in
the design thinking process.

The key contribution of our paper is the investigation into the
relationship between proxemic and paralinguistic features and per-
formance for different modes, which until now has not been ex-
plored to a large extent. By analyzing a data set of fairly limited
rotational features, this research demonstrates that communication
patterns have correlations with team performance and that these
correlations differ across different modes. These findings can guide
future research designs aimed at understanding the relationship
between communication and team performance.

Further, we are adding to the limited knowledge pool of under-
standing the relationship between social signals and team perfor-
mance. This contribution to the existing knowledge is vital as it
can help to analyze team interaction dynamics during CCPS. Most
work on team performance within the social signal processing
community has focused on single-mode analysis. The impact of
mode on performance has been underexplored. We demonstrate the
usefulness and necessity of differentiating between modes when un-
derstanding proxemic and paralinguistic features in relation to task
performance by utilizing those features captured in a real-world
work environment.

Future work will look at different features and how to combine
them to yield further improvements. In addition, moremodes should
be explored to understand how paralinguistic and proxemic features
relate to different types of CCPS.

Furthermore, the proposed relationship should also be evaluated
in a more controlled setting to examine the effects with less noise.
Such studies should separately evaluate the modes without the
interaction between them that is observed in the current study.
Such examinations could also include a more focused performance
evaluation that evaluates the performance of the individual mode
instead of overall performance.

Finally, these findings pave the way for the exploration of auto-
mated coaching of teams by creating interventions to guide teams
to interact in ways that should result in optimal team performance
for their current mode.
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