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1
Introduction

A time series is a variable that is observed over time at a certain
frequency. It can for instance be a stock price that is tracked every
minute or gross domestic product measured quarterly. Time series
models therefore intend to explain the evolution over time of these
variables. Most linear models however require stationary series,
namely variables fluctuating around their mean. Nonetheless,
stationary time series can sometimes be characterised by some
non-linear features. For instance, locally explosive episodes, which
are long lasting increases followed by a sudden crash, are difficultly
modeled with linear models. Such episodes, defined in this thesis
as bubbles, can be observed in many commodity prices, inflation
rates, stock prices or cryptocurrencies for instance. Most models that
intend to capture these processes are thus either highly non-linear or
constructed to alternate between distinct specifications, requiring the
estimation of a substantial amount of coefficients.

As an example, Figure 1.1 depicts West Texas Intermediate (WTI)
and Brent crude oil monthly prices between mid 1987 to late 2020.
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Figure 1.1: WTI and Brent crude oil prices

The episode in 2008, observed in both series, clearly represents the
above-mentioned bubble pattern. Commodities are at the bottom of
the supply chain leading to global consumption. Hence, persistent
increases in commodity prices will induce a surge in marginal costs
along the supply chains. This will in turn translate to a persistent
increase in inflation, thus also affecting households. Understanding
the dynamics and behaviours of such processes is therefore of great
importance for investors but also for policy makers. There can
be many reasons for these bubbles, it can be the anticipation of a
policy implementation after an announcement, speculation, supply
shortages, etc. The fact is that we do not always know the reason,
and more specifically, rarely do we know when the sudden drop will
happen. This emphasises the importance of not only being able to
model them but also to forecast them.

One could for instance think of various variables that help explain the
price of oil over time. However, their inclusion in a model would
imply the necessity to have the predictions of these variables to
forecast the price of oil itself. For this reason, autoregressive (AR)
models became very popular. They proved to provide great fit to the
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data in many applications and often demonstrated better forecast
performances.

An AR model explains a variable today with its own past observations.
An AR(p) process, say yt, depends on its last p values and the model
looks as follows,

yt = ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt.

The roots of the lag polynomial (1 − ϕ1L − ϕ2L
2 − · · · − ϕpL

p) all lie
outside the unit circle for stationary processes, with L being the lag
operator Liyt = yt−i. The error term εt follows an i.i.d. distribution,
often assumed to be Gaussian. The next value yt+1, for instance,
would easily be predicted using the last p observed values of the
process. Such models have proven to outperform a significant
amount of models in various areas of applications. However, they
are unable to capture non-linear dynamics. Hence, the need to
construct parsimonious and stationary models for series characterised
by non-linear features gave rise, in line with the aforementioned
autoregressive models, to mixed causal-noncausal (MAR) models.

MAR models are autoregressive models not only using past values of
the process but also future values. The model is constructed in a mul-
tiplicative structure of the backward- and forward-looking lag polyno-
mials as follows,

Φ(L)Ψ(L−1)yt = εt, (1.1)

where L−i is the lead operator, L−iyt = yt+i. An MAR(r, s) process,
wifh r lags and s leads, has therefore a lag polynomial Φ(L) of order
r and a lead polynomial Ψ(L−1) of order s. While having both lag
and lead polynomials stationary, this model manages to capture
non-linear features such as bubbles. A condition for the identification
of MAR models is the non-Gaussianity of the error term, which
appears to be quite common in practice and thus not restrictive.
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Chapter 1. Introduction

An MAR process can be filtered into a purely causal and a purely non-
causal component. The following filtration of the process yt,

ut = Φ(L)yt,

makes ut a purely noncausal MAR(0, s) process,

Ψ(L−1)ut = εt.

This purely noncausal component ut will be the process of interest
in most of the chapters of this thesis since it is the forward looking
component of MAR models that makes derivations or forecasts more
intricate. Results are then easily extendable to mixed processes.

The increasing interest in MAR models and their numerous empirical
applications in the literature demonstrate their versatility and the
benefits of using these models in many areas of applications. MAR
models have proven to provide a better fit than purely causal models
for inflation rates (Lanne and Saikkonen, 2011), Bitcoin prices (Hencic
and Gouriéroux, 2015), crude oil prices (Gourieroux, Jasiak, and Tong,
2021) and many other commodity prices and financial times series
(see among others Hecq, Lieb, and Telg, 2016; Fries and Zakoı̈an,
2019a). However, the literature employing and analysing MAR
models for prediction purposes is still very limited. This thesis hence
focuses primarily on the forecasting aspect of these models.

The thesis first aims attention at univariate models with a unique
lead, since it is already sufficient to generate the bubble pattern
in a series. As an example, Figure 1.2 shows the differences in
trajectories of transitory shocks in purely causal, noncausal and
mixed processes, namely with a lag and/or a lead. In a purely causal
process (graph (a)), shocks have a sudden impact which will wear
off over time, while for a purely noncausal process (graph (b)) the
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impact is mirrored, there is an anticipating effect until the time of
the shock. Logically, for mixed processes (graph (c) and (d)), shocks
have an impact both before and after, and the symmetry of the
impact around the shock depends on the magnitude of the coefficients.

(a) MAR(1,0) with ϕ = 0.8 (b) MAR(0,1) with ψ = 0.8

(c) MAR(1,1) with (ϕ, ψ) = (0.8, 0.8) (d) MAR(1,1) with (ϕ, ψ) = (0.3, 0.8)

Figure 1.2: Effects of a lag and a lead on transitory shocks of MAR processes

Forecasting a purely causal process is straightforward, however this
is not the case in the presence of a lead. Indeed, there is the need to
forecast future values which are dependent on even farther future
values. However, this can be overcome and it is possible to recover, or
approximate, the conditional distribution of the process. That is, the
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Chapter 1. Introduction

probability density function of the forecasted values given the past
observed points. This allows to recover, especially during explosive
episodes, the bimodality of the conditional distribution of MAR
processes, which would not be captured by purely backward-looking
models. This bimodality assigns probabilities to the two distinct
potential outcomes that can happen, namely a further increase or a
sudden drop. These bimodal densities carry therefore much more
information and are more representative of future outcomes than
point forecasts or than unimodal distributions derived from purely
causal AR models for instance.

Chapter 2 first analyses MAR(0,1) processes with Cauchy-distributed
errors, for which a closed-form expression of the predictive density
exists. This allows to have a benchmark of the performance of the
approximation methods. The first method was developed by Lanne,
Luoto, and Saikkonen (2012) and is based on simulations of future
errors to approximate for instance point forecasts or conditional
cumulative probabilities, at a given forecast horizon. However,
this approach becomes quite computationally demanding when
the whole conditional density is needed. The second method was
developed by Gouriéroux and Jasiak (2016) and allows to obtain the
whole conditional density using sample approximations. While this
approach is much more efficient in obtaining predictive densities,
it depends on the sample size and also becomes computationally
demanding as the forecast horizon increases. To account for the latter,
Gouriéroux and Jasiak (2016) developed a sampling importance
resampling (SIR) algorithm, which recovers the conditional density
from an instrumental model from which it is easier to forecast. We
find that for median values, all approaches yield similar results,
however we start observing discrepancies as the process starts
deviating.

The first issue one may face when analysing time series is the
non-stationarity of the data. Taking the first difference of the series
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will for instance eliminate the bubble-looking patterns that are of
interest. Furthermore, time series are often stationary around a
(non)linear trend. It is the latter that we consider in Chapter 3,
which first analyses the impact of different detrending methods on
the identification of MAR models in a simulation study. The chapter
then turns to the forecast of the oil prices shown in Figure 1.1 during
the COVID-19 pandemic outbreak. We employ the Hodrick-Prescott
(HP) filter developed by Hodrick and Prescott (1997) but also two
polynomial trends of orders 4 and 6 to illustrate the variations
in results based on the detrending method applied. A criticism
of the HP-filter or large order polynomial trends is their lack of
interpretation. Hence, we also detrend the series using the US crude
oil Strategic Petroleum Reserves (SPR), which are last resort reserves.
They are much less volatile than crude oil stocks for instance and
appear to follow the same trend as crude oil prices.

Chapter 4 proposes a short-term credibility index for Central banks
that employ an inflation targeting system. The chapter is more
specifically applied to Brazil, where the central bank provides a
target inflation and tolerance bounds around it since 1999. The
inflation rate is modelled using MAR models and we forecast the
inflation rate during a rather stable period, which allows us to use
both the method of Lanne, Luoto, and Saikkonen (2012) and the SIR
algorithm developed by Gouriéroux and Jasiak (2016) to forecast
farther horizons. We thus estimate the probabilities that the inflation
rate will remain within the target bounds announced by the Central
bank 1, 3 and 6 months ahead and investigate the added value of
including three key drivers of the economy in the model. We then use
the obtained one-month ahead probabilities as a short-term credibility
index of the Central bank targeting system. We suggest employing
receiver operating characteristic curves to determine the optimal
probability threshold from which the bank is predicted to be credible.
The literature on the credibility of Central banks is quite extensive
but mostly focuses long term credibility based on people’s beliefs.
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Chapter 1. Introduction

We argue that our short-term credibility index is complementary to
long-term indices, and together provide a more detailed and clearer
picture of the current and predicted credibility of the Central Bank
inflation targeting system.

Chapter 5 addresses more general forms of MAR models and
investigates cases with more than one lead. This Chapter gathers
some partial results and some more promising results for future
applied research with MAR(r, s) models. Analogously to Chapter
2, the initial motivation of this chapter is to obtain a theoretical
benchmark of the predictive density to evaluate the performance of
the approximations methods. The first part of the chapter hence
attempts to find the closed-form expression of the conditional
distribution of an MAR(0,2) process with Cauchy-distributed errors,
as an extension of the findings of Gouriéroux and Zakoı̈an (2013) for
processes with one lead. We fist present the marginal distribution of
the MAR(0,2) process, which is also Cauchy, but unfortunately, we
were not able to derive the theoretical conditional distribution. This
however, does not prevent the use of the approximation methods
and their results can be analysed based on the knowledge we know
from the first chapters. The second part of this chapter proposes
a prediction method built on the two existing ones. It allows to
estimate the conditional density using simulations in a more efficient
way than from the approach of Lanne, Luoto, and Saikkonen (2012).
This proposed method is compared to the sample-based approach of
Gouriéroux and Jasiak (2016) on simulated series and both approaches
are then illustrated on the price index of all metals, strongly forward
looking as it is identified as an MAR(0,2).

Chapter 6 turns to the multivariate framework of MAR models,
denoted as VMAR. We often notice similarities in the locally explosive
episodes in series such as in many commodity prices for instance
or cryptocurrencies. This chapter therefore proposes ways to detect
such commonalities in the noncausal components. A particularity
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of the VMAR model is that the multiplicative structure as defined
in (1.1) is not commutative. In the univariate setting, we have that
Φ(L)Ψ(L−1) = Ψ(L−1)Φ(L), however, this is not the case in the
multivariate model, given the non commutativity property of the
matrix product. It implies that there exist two distinct, yet equivalent,
representations of the same process with different coefficient matrices.
The chapter therefore first investigates the conditions for the presence
of common bubbles (CB), for each of the representations. We find
that the representation starting with the lead polynomial makes the
detection of CB easier. From that, we propose a likelihood ratio test
comparing an unrestricted model which does not have commonalities
with a restricted model on which commonalities are imposed. We also
consider model selection using information criteria to detect CB. We
present a simulations study and the approach is then illustrated on
three commodity indices. While they follow similar patterns we were
not able to detect commonalities neither in the bivariate combinations
nor in the trivariate models.

9





2
Forecasting bubbles with mixed
causal-noncausal autoregressive

models

Adapted from: Alain Hecq and Elisa Voisin (2021). “Forecasting
bubbles with mixed causal-noncausal autoregressive models”. In:
Econometrics and Statistics 20, pp. 29–45.
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Chapter 2. Forecasting bubbles with mixed causal-noncausal
autoregressive models

Abstract
Density forecasts of locally explosive processes are investigated using
mixed causal-noncausal models, namely time series models with both
lag and lead components. In the absence of theoretical expressions
for the predictive density for a large range of potential error distribu-
tions, two approximation methods are analysed and compared using
Monte Carlo simulations. The focus is on the prediction of one-step
ahead probabilities of turning points during bubble episodes. A thor-
ough analysis provides some guidance in using these approximation
methods during extreme events, with the suggestion to consider both
approaches together as they jointly carry more information. The anal-
ysis is illustrated with an application on Nickel prices, focusing on the
financial crisis bubble.
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2.1 Introduction

Locally explosive episodes have long been observed in financial
and economic time series. Such patterns, often observed in stock
prices, can be triggered by anticipation or speculation. Given this
forward-looking aspect, expectation models have been prevalent for
modelling them. As shown for instance by Gouriéroux, Jasiak, and
Monfort (2016), equilibrium rational expectation models admit a
multiplicity of solutions, and some of them feature such speculative
bubble patterns. In this chapter, speculative bubbles, or simply
bubbles refer to as processes characterised by a rapid and persistent
increase followed by a sudden crash. Some authors define bubbles
as deviations from the fundamental solution of a present value type
model (e.g. Diba and Grossman, 1988). Those bubbles might not have
the non-linear pattern that we investigate in this chapter. From an
empirical point of view, models employed to capture bubble features
range from simple approaches, such as single bubble models with a
constant probability of crash, to rather complex models depending
on numerous parameters (e.g. see the autoregressive specifications
with breaks in the autoregressive roots of Phillips, Wu, and Yu, 2011).
Although those latter models may a posteriori fit the data well, they
are either not designed for prediction purposes or render predictions
intricate due to their dependence on extensive parameters estimation.
Mixed causal-noncausal autoregressive (hereafter MAR) models are
hence an appealing alternative to model such type of stationary
non-linear time series.

MAR processes are univariate autoregressive models incorporating
not only lags but also leads of the dependent variable, with potentially
heavy-tailed errors (e.g. Cauchy and Student’s t distributions). While
being parsimonious, MAR models generate non-linear dynamics such
as locally explosive episodes in a strictly stationary setting (Fries
and Zakoı̈an, 2019b). So far, the focus has mainly been put on the
identification and the estimation of such models. Lanne, Luoto, and
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autoregressive models

Saikkonen (2012), Hencic and Gouriéroux (2015) and Hecq, Lieb,
and Telg (2016) show that the inclusion of noncausal components
(leads) in autoregressive models is favoured, explaining respectively
the observed bubbles in inflation series, in Bitcoin prices and in the
demand of solar panels in Belgium. A logically arising interrogation
concerns the ability of MAR models to forecast. Gouriéroux and
Zakoı̈an (2017) derive conditional point and density forecasts of
purely noncausal MAR(0,1) processes with Cauchy-distributed
errors. Fries (2018) derives up to the fourth conditional moments
of α-stable MAR(0,1) processes and shows that during explosive
episodes the conditional distribution simplifies to a Bernoulli process
putting weight on a crash and a further increase. Other distributions
however, such as Student’s t distributions for instance, leads to
an absence of closed-form results for the conditional moments
and distribution. Due to the absence of theoretical formulas to
predict such processes, Lanne, Luoto, and Saikkonen (2012) and
Gouriéroux and Jasiak (2016) developed numerical approximation
methods based on simulations and on past realised values respectively.

A key feature of MAR models is their ability to generate locally
explosive episodes. Yet, the literature regarding the proficiency of
such models to predict turning points during explosive episodes
as well as the performance of the aforementioned approximation
methods remains scarce (see also Lanne, Nyberg, Saarinen, et al., 2012;
Gouriéroux, Hencic, and Jasiak, 2018). The first contribution of this
chapter is consequently to focus on extreme episodes and to analyse
and compare in details the two numerical approaches developed
for forecasting MAR process. The chapter considers MAR(r,1)
processes with unconstrained r number of lags, a unique positive
lead coefficient and a fat-tail error distribution (possibly with infinite
variance). We compare approximation methods to theoretical results
and then assess their performance when no-closed form expressions
exist.
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We show that at the outset of a bubble the predictive density of
the process splits into a bi-modal distribution, putting weights
on a crash and on a further increase. This corroborates Fries’s
(2018) results for α-stable MAR(0,1) processes and would not be
detected with standard Gaussian ARMA models. We detect that
both approximation methods yield similar and accurate probabilities
during stable episodes but differ during bubbles. Overall, we find
that the simulations-based approach of Lanne, Luoto, and Saikkonen
(2012) is a good approximation of theoretical probabilities, given
an adequate number of simulations, and that the sample-based
method of Gouriéroux and Jasiak (2016) is characterised by a learning
mechanism. The latter is composed of the theoretical probabilities
that are inflated or deflated by past events in the sample. Our results
show that combining results obtained from the two methods can
help decompose the sample-based probabilities into (a proxy of)
the theoretical probabilities and the learnt probabilities, when no
closed-form exist.

The chapter is constructed as follows. Section 2.2 introduces mixed
causal-noncausal autoregressive models. Section 2.3 discusses how
they can be used for prediction when the conditional moments and
densities admit closed-form expressions. In Section 2.4 are presented
the simulations-based forecasting approach proposed by Lanne, Lu-
oto, and Saikkonen (2012), followed by the sample-based method pro-
posed by Gouriéroux and Jasiak (2016). Both approaches are first com-
pared to Cauchy-derived closed-form results to illustrate their perfor-
mance and are then applied to Student’s t-distributed processes. In
Section 2.5 both approximation methods are illustrated with an appli-
cation to a detrended Nickel prices series that has been found to follow
an MAR(1,1) process. Section 2.6 concludes.
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2.2 Mixed causal-noncausal autoregressive models

Consider the univariate MAR(r,s) process defined as follows,

Φ(L)Ψ(L−1)yt = εt,

where L and L−1 are respectively the lag and lead operators; Φ and Ψ
are two invertible polynomials with degrees r and s respectively. That
is, Φ(L) = (1−ϕ1L−· · ·−ϕrL

r) and Ψ(L−1) = (1−ψ1L
−1−· · ·−ψsL

−s)
with roots strictly outside the unit circle. The error term εt is i.i.d,
following a non-Gaussian distribution. This assumption, not empir-
ically restrictive since non-normality is widely observed in financial
and economic time series, is necessary to achieve the identification of
the model. An MAR(r,s) model can also be expressed as a causal AR
model where yt depends on its own past,

Φ(L)yt = ut, (2.1)

where ut denotes the purely noncausal component of the errors εt,
which itself depends on its own future,

Ψ(L−1)ut = εt. (2.2)

Alternatively, we can also filter the process as Φ(L)vt = εt with
Ψ(L−1)yt = vt to obtain the backward component of the errors, vt. The
process yt admits a stationary infinite two-sided MA representation
and depends on past, present and future values of εt,

yt =

+∞∑
i=−∞

aiεt−i.

The case in which all coefficients ai for −∞ < i ≤ 0 (resp. 0 ≤ i < ∞)
are equal to 0, corresponds to a purely causal (resp. noncausal) model.

In spite of their apparent simplicity and their parsimonious
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representation, MAR models often provide a better fit to economic
and financial data than ARMA models as they capture non-linear
dynamics such as bubbles or asymmetric cycles. Figure 2.1 displays
how the presence of a lag, a lead, or both, affects the shape of
transitory shocks in MAR processes. Purely causal (resp. noncausal)
processes are only affected by a shock after (resp. before) the impact;
this is shown in graph (a) (resp. (b)). Consequently, mixed processes
are affected both in anticipation and after the shock; the shape of
the locally explosive episode (mostly forward or backward looking)
depends on the magnitude of the lag and lead coefficients. When the
coefficients are identical (c) the effects of the shock are symmetric
around the impact. When the coefficient of the lead is higher (d), the
explosive episode is more analogous to what we refer to as a bubble
with an asymmetry around the peak, making the increasing phase
more persistent than the decrease.

The usual practice for estimating and identifying MAR models is as
follows. It is well known that methods based on first and second mo-
ments (e.g. OLS) are unable to distinguish between purely causal, non-
causal or mixed processes as their autocovariance functions are iden-
tical. Fitting an autoregressive model by OLS (the so called pseudo
causal model) allows however to estimate the sum of leads and lags
components, p. Note that a non-Gaussian MLE can give misleading re-
sults (Gouriéroux and Jasiak, 2018). Subsequently, the respective num-
bers of lags (r) and leads (s), such that r+s = p, can be estimated by an
approximate maximum likelihood (hereafter AML) approach (Lanne
and Saikkonen, 2011). The selected model is the one maximising the
AML with respect to the positive integers r and s and the continuous
parameters Ω = (Φ,Ψ,Θ), where Φ = (ϕ1, . . . , ϕr), Ψ = (ψ1, . . . , ψs)
and Θ comprises the error distribution parameters, such as the scale or
location for instance. The AML estimator is defined as follows,

(
Φ̂, Ψ̂, Θ̂

)
= argmaxΦ,Ψ,Θ

T−s∑
t=r+1

ln
[
g
(
Φ(L)Ψ(L−1)yt; Θ

)]
,
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(a) MAR(1,0) with ϕ = 0.8 (b) MAR(0,1) with ψ = 0.8

(c) MAR(1,1) with (ϕ, ψ) = (0.8, 0.8) (d) MAR(1,1) with (ϕ, ψ) = (0.3, 0.8)

Figure 2.1: Effects of a lag and a lead on transitory shocks of MAR processes

where g denotes the pdf of the error term, satisfying the regularity
conditions (Andrews, Davis, and Breidt, 2006). Lanne and Saikkonen
(2011) show that the resulting (local) maximum likelihood estimator
is consistent, asymptotically normal and that (Ψ̂, Φ̂) and Θ̂ are
asymptotically independent, for Student’s t-distributed errors with
finite variance. Since an analytic solution of the maximisation problem
at hand is not directly available, numerical gradient-based procedures
can be employed. Hecq, Lieb, and Telg (2016) indicate that estimating
MAR models is easier for more volatile series since the convergence of
the estimator is empirically faster for distributions with fatter tails.
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They propose an alternative way to obtain the standard errors, a
method implemented in the R package MARX (Hecq, Lieb, and Telg,
2017a).

While with a unique positive lead coefficient, say ψ, explosive episodes
increase at a fixed rate ψ−1 until a sudden crash, other specifications
induce more complex patterns not resembling the bubble pattern that
this analysis focuses on. This chapter hence only provides results for
stationary MAR(r,1) processes,

Φ(L)(1− ψL−1)yt = εt,

with ψ > 0 and where Φ(L) is the lag polynomial of order r ≥ 0. We
will refer to ut = Φ(L)yt as the purely non-causal component of the
process. Throughout the analysis we consider three distributions: the
standard Cauchy, the Student’s t(2) and the Student’s t(3) distributions.
Furthermore, the data generating process (hereafter dgp) is assumed
correctly identified to disregard the estimation uncertainty.

2.3 Predictions using closed-form expressions

Conditional expectations can be used to predict the next points but
forecasting densities is more informative to analyse the probabilities
of potential future paths. The latter can be employed to evaluate the
probabilities of a turning point in an explosive episode. However,
the anticipative aspect of MAR models complicates their use for
predictions. Results are not as straightforward as they could be
with purely backward-looking ARMA models. Although in some
cases point and density forecasts can be directly obtained from the
assumed errors distribution, they sometimes need to be approximated.

Given a correctly identified dgp, the information sets
(y1, . . . , yT , y

∗
T+1, . . . , y

∗
T+h) and (v1, . . . , vr, εr+1, . . . , εT−1, uT , u

∗
T+1,
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. . . , u∗T+h), where vt = Φ(L)−1εt and ut = (1 − ψL−1)−1εt,
are equivalent (Gouriéroux and Jasiak, 2016). The asterisk
indicates future values of the variables to be forecasted. This
equivalence allows to predict future values of the mixed
process y from predictions of the forward-looking component
of the process, namely u, using the relation Φ(L)yt = ut. Most
prediction methods hence aim attention at purely noncausal processes.

2.3.1 Point predictions

The linear projection on the past does not correspond, for MAR pro-
cesses, to the conditional expectation (Gouriéroux and Jasiak, 2018).
Gouriéroux and Zakoı̈an (2017) derive the first two conditional mo-
ments of MAR(0,1) processes, here denoted as ut. They show that
for Cauchy processes, with a positive lead coefficient, the conditional
point forecast of uT+1 is a random walk,

E[uT+1|FT ] = uT . (2.3)

This is puzzling since despite being stationary, the Cauchy-distributed
process uT+1 has a unit root in its conditional expectation. Fries (2018)
provides up to the fourth conditional moments of α-stable-distributed
MAR(0,1) processes, given some admissible parametrisation of the tail
and asymmetry parameters. He also derives the limiting distribution
of those four moments when the process diverges. He shows that dur-
ing an explosive episode, the computation of those moments gets con-
siderably simplified and are characteristic of a weighted Bernoulli dis-
tribution charging probability ψαh to the value ψ−huT and (1 − ψαh)
to value zero, for a tail parameter 0 < α < 2 and a forecast hori-
zon h ≥ 1. Those results indicate that along a bubble, the process
can only either keep on increasing at fixed rate or drop to zero. For
Cauchy-distributed processes (α = 1), the mean forecast during an ex-
plosive episode remains equal to Equation (2.3), yet for other α-stable
distributions the conditional expectation may be drastically simplified.
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Overall, during an explosive episode, the conditional expectation of an
MAR(0,1) process is a weighted average of the crash and the further
increase (hence the random walk for Cauchy-distributed processes).
Clearly, point forecasts in this case lose substantial information and
density forecasts would consequently be more instructive.

2.3.2 Density predictions

The joint conditional predictive density (as named by Gouriéroux
and Jasiak, 2016) or the causal transition distribution (as named by
Gouriéroux and Zakoı̈an, 2017) of the h future values of an MAR(0,1)
process, (u∗T+1, . . . , u

∗
T+h), which is a Markov process of order one,

can be obtained given the value of the last observed point uT . While
the interest is on predicting the future given contemporaneous and
past information, it is only possible, by the model definition, to derive
the density of a point conditional on its future point. Bayes’ Theorem
is applied repeatedly until all conditional pdf ’s are conditioned on the
value of future points. The resulting predictive density of an h-step
ahead forecast is as follows,

l(u∗T+1, . . . , u
∗
T+h|uT )

= l(uT , u
∗
T+1, . . . , u

∗
T+h−1|u∗T+h)×

l(u∗T+h)

l(uT )

=

{
l(uT |u∗T+1, . . . , u

∗
T+h)l(u

∗
T+1|u∗T+2, . . . , u

∗
T+h) . . . l(u

∗
T+h−1|u∗T+h)

}
×

l(u∗T+h)

l(uT )
,

where l denotes densities associated with the noncausal process ut.
The process ut is a Markov process of order one, hence the condition-
ing information set of the densities can be reduced to a single future
point. Furthermore, Equation (2.2) states that εt = ut − ψut+1, thus,
given the value of ut+1, the conditional density of ut is equivalent to
the density of εt (which is known) evaluated at the point ut − ψut+1.
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Since uτ = ψuτ+1 + ετ and because uτ+1 and ετ are independent for
all 1 ≤ τ ≤ T , we have fuτ |uτ+1

(x) = fετ+ψuτ+1|uτ+1
(x) = fετ |uτ+1

(x −
ψuτ+1) = fε(x − ψuτ+1). For simplicity, the density distributions re-
lated to ut (resp. εt) are just denoted by l (resp. g). That is, for any
assumed error distribution g we have,

l(u∗T+1, . . . , u
∗
T+h|uT )

=
{
l(uT |u∗T+1)l(u

∗
T+1|u∗T+2) . . . l(u

∗
T+h−1|u∗T+h)

}
×

l(u∗T+h)

l(uT )

= g(uT − ψu∗T+1) . . . g(u
∗
T+h−1 − ψu∗T+h)×

l(u∗T+h)

l(uT )
.

(2.4)

Whereas with Student’s t-distributed errors the stationary pdf
of ut does not admit a closed-form expression, Gouriéroux and
Zakoı̈an (2013) present closed-form solutions for the predictive
density of purely noncausal MAR(0,1) processes when the errors are
Cauchy-distributed. We know that

ut = ψut+1 + εt =
∞∑
i=0

ψiεt+i,

and they show that the characteristic function of the infinite sum corre-
sponds to that of a Cauchy with scale parameter γ

(1−ψ) , where γ is the
scale of the Cauchy distribution of the errors εt. Hence, the purely
noncausal component ut of an MAR(r,1) Cauchy process follows a
Cauchy

(
0, γ

(1−ψ)

)
distribution and its predictive density can be com-
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puted as follows,

l(u∗T+1, . . . , u
∗
T+h|uT )

=
1

(πγ)h

(
1

1 +
(uT−ψu∗

T+1)
2

γ2

. . .
1

1 +
(u∗

T+h−1−ψu∗
T+h)

2

γ2

)

×
γ2 + (1− ψ)2u2T

γ2 + (1− ψ)2(u∗T+h)
2
.

(2.5)

To illustrate the evolution of the predictive density when the series
departs from central values, Figure 2.2 shows one-step ahead forecasts
for different levels (0.79, 9.81 and 63.53) corresponding to quantiles
0.55, 0.85 and 0.975 of a purely noncausal process with a lead
coefficient of 0.8 and standard Cauchy-distributed errors. By using
quantiles, explosive episodes can be compared between different
distributions and parameters. While the predictive distribution is
uni-modal for median-level values, it splits and becomes bi-modal
when the series departs from such values. As the series diverges, the
bi-modality of the conditional distribution becomes more evident. The
two modes correspond to a drop to 0 and a continuous increase at rate
0.8−1 and each event has probability 0.2 and 0.8 respectively. Those
results corroborate Fries’s (2018) findings in the case of diverging
Cauchy-distributed MAR(0,1) series. Note that results are analogous
for any lead coefficient ψ, with corresponding probabilities of a crash
equal to 1 − ψ. Bi-modality in this chapter will therefore designate
the split of the conditional density and not the bi-modality sometimes
observed in the estimation of the coefficients of MAR models that are
subject to starting values (Hecq, Lieb, and Telg, 2016; Bec, Nielsen,
and Saı̈di, 2020b))

Figure 2.3 shows the evolution, as the variable increases, of two-step
ahead forecasts of the same process, namely a purely noncausal
process with lead coefficient 0.8 and Cauchy-distributed errors,
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Figure 2.2: Evolution of the 1-step ahead predictive density as the level of the
series increases for a Cauchy MAR(0,1) with ψ = 0.8.

evaluated at the same points as in Figure 2.2. The graphs depict
the joint density of u∗T+1 (x-axis) and u∗T+2 (y-axis). The bi-modality
of the predictive density can also be observed here. For high levels
of the series, the split of the distribution is evident; at each step the
series can either keep on increasing or drop to zero, and the latter
corresponds to an absorbing state. An interpretation of the regions of
the graphs with respect to potential future shapes of the series was
given by Gouriéroux and Jasiak (2016).

Figure 2.3: Evolution of the 2-step ahead joint predictive density as the level
of the series increases for an MAR(0,1) with ψ = 0.8 and Cauchy-distributed
errors

For MAR(r,1) processes, one-step ahead density forecasts consist in
shifting the predictive density of the purely non-causal component by
the causal part of the process, namely by ϕ1yT + ... + ϕryT−r+1. For
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an h-step ahead forecast, with h ≥ 1, the predictive density of y∗T+h

depends on the joint conditional density of (u∗T+1, . . . , u
∗
T+h). One way

of approaching this is to express the predictive density (2.5) in terms
of y∗T+k, with 1 ≤ k ≤ h. For instance, for the following MAR(1,1)
process,

(1− ϕL)(1− ψL−1)yt = εt,

where εt ∼ Cauchy(0, γ), the joint predictive density of
(y∗T+1, . . . , y

∗
T+h) can be obtained by substituting the noncausal

process ut in (2.5) as follows,

l(y∗T+1, . . . , y
∗
T+h|yT ,yT−1) =

1

(πγ)h
× 1

1 +
((yT−ϕyT−1)−ψ(y∗T+1−ϕyT ))

2

γ2

× . . .
1

1 +
((y∗T+h−1−ϕy∗T+h−2)−ψ(y∗T+h−ϕy∗T+h−1))

2

γ2

× γ2 + (1− ψ)2(yT − ϕyT−1)
2

γ2 + (1− ψ)2(y∗T+h − ϕy∗T+h−1)
2
.

Overall, density predictions yield a more complete forecast as they
carry more information regarding potential future patterns of the se-
ries than conditional expectations. They cannot be easily graphically
displayed for forecast horizons larger than 2 as we investigate joint
predictions. Yet, results can be used to compute the probabilities re-
garding future patterns. Nonetheless, as indicated by Fries (2018) for
α-stable distributions, explosive episodes seem to be memoryless and
as the series diverges, the probabilities of a crash tend to the constant
1 − ψαh for a given horizon h ≥ 1. Even though as h → ∞ this proba-
bility tends to 1, it may not be very realistic when it comes to real data.
We may expect the probabilities of a crash in stock prices for instance to
increase with the level of prices. Furthermore, the assumption of other
fat-tail distributions (e.g. Student’s t) generally leads to the absence
of closed-form expressions for the conditional moments and densities.
The next section presents two approaches to approximate conditional
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densities in such circumstances; the first one is based on simulations
(Lanne, Luoto, and Saikkonen, 2012) and the second one uses sample
counterparts (Gouriéroux and Jasiak, 2016).

2.4 Predictions using approximation methods

The upcoming subsections first provide the general formulas for h-step
ahead approximated predictive densities of MAR(r,1) processes before
focusing on one-step ahead predictions. The two approximation meth-
ods are analysed in details for such horizon. We first investigate the
case for which theoretical closed-form expressions exist, that is when
the errors are Cauchy-distributed. This allows to gauge the approx-
imation of both approaches prior to analysing and comparing them
with error distributions for which no closed-form expressions exist.
For this, we employ Student’s t distributions with 2 and 3 degrees of
freedom (respectively with infinite and finite variance). Note that re-
sults for processes with higher lead orders can be found in the respec-
tive articles of Lanne, Luoto, and Saikkonen (2012) and Gouriéroux
and Jasiak (2016).

2.4.1 Predictions using simulations-based approximations

Lanne, Luoto, and Saikkonen (2012) base their methodology on the
fact that the noncausal component of the errors, ut, can be expressed
as an infinite sum of future errors, which in the MAR(r,1) case is as
follows,

ut = Ψ(L−1)−1εt =

∞∑
i=0

ψiεt+i.

Since stationarity is assumed, and because in applications ψ rarely ex-
ceeds 0.9, the sequence (ψi) converges rapidly to zero. Hence, they
assumed that there exists an integer M large enough so that any future
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point of the noncausal component of the errors can be approximated
by the following finite sum,

u∗T+h ≈
M−h∑
i=0

ψiε∗T+h+i, (2.6)

for any forecast horizon h ≥ 1.

As explained before, any point forecast y∗T+h, with h ≥ 1, of an
MAR(r,1) process depends on the sequence forecast (u∗T+1, . . . , u

∗
T+h).

Employing the approximations of (2.6), it is therefore sufficient to
forecast a sequence of M future errors (ε∗T+1, . . . , ε

∗
T+M ) – which we

will denote ε∗+ – to obtain approximated predictions for the variable
of interest. Instead of deriving an M-dimensional conditional joint
density function (Lanne, Luoto, and Saikkonen (2012) use M = 50),
they introduce a way to obtain conditional point and cumulative
density forecasts. While the approach they propose to estimate the
standard errors of the coefficients requires finite moments for the
errors distribution, this restriction is not necessary for their forecasting
method (Lanne and Saikkonen, 2011).

Using the companion form of an MAR(r,1) model, y∗T+h can be ex-
pressed by recursion as the sum of a known component (at time T )
and a combination of h future values of ut, where the latter, based on
(2.6), can be approximated from M future errors,

y∗T+h = ι′ΦhyT +
h−1∑
k=0

ι′Φkιu∗T+h−k

≈ ι′ΦhyT +

h−1∑
k=0

ι′Φkι

M−h+k∑
i=0

ψiε∗T+h−k+i,

(2.7)

27



Chapter 2. Forecasting bubbles with mixed causal-noncausal
autoregressive models

yT =


yT
yT−1

...
yT−r+1

 , Φ =


ϕ1 ϕ2 . . . . . . ϕr

1 0 . . . . . . 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

 and ι =


1
0
...
0

 .

(r × r) (r × 1)

Let g(ε∗+|uT ) be the conditional joint distribution of the M future errors,
which, using Bayes’ Theorem can be expressed as follows,

g(ε∗+|uT ) =
l(uT |ε∗+)
l(uT )

g(ε∗+).

Thus, for any function q,

E
[
q(ε∗+)|uT

]
=

∫
q(ε∗+)g(ε

∗
+|uT )dε∗+

=
1

l(uT )

∫
q(ε∗+)l(uT |ε∗+)g(ε∗+)dε∗+

=
Eε∗+

[
q(ε∗+)l(uT |ε∗+)

]
l(uT )

.

(2.8)

Similarly as before, l(uT |ε∗+) can be obtained from the error distribu-
tion g. Yet, since it is conditional on ε∗+ instead of u∗T+1, we can only
obtain an approximation. Using this approximation and the Iterated
Expectation theorem, the marginal distribution of uT can be approxi-
mated as follows,

l(uT ) = Eε∗+
[l(uT |ε∗+)] ≈ Eε∗+

[
g

(
uT −

M∑
i=1

ψiε∗T+i

)]
.

Overall, by plugging the aforementioned approximation in (2.8), we
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obtain

E
[
q(ε∗+)|uT

]
≈

Eε∗+

[
q(ε∗+)g

(
uT −

∑M
i=1 ψ

iε∗T+i

)]

Eε∗+

[
g
(
uT −

∑M
i=1 ψ

iε∗T+i

)] .

Let ε∗(j)+ =
(
ε
∗(j)
T+1, . . . , ε

∗(j)
T+M

)
, with 1 ≤ j ≤ N , be the j-th simulated

series of M independent errors, randomly drawn from the assumed
distribution of the process. Assuming that the number of simulations
N is large enough, the conditional expectation of interest can be ap-
proximated as follows,

E
[
q(ε∗+)|uT

]
≈

N−1
∑N

j=1 q
(
ε
∗(j)
+

)
g
(
uT −

∑M
i=1 ψ

iε
∗(j)
T+i

)
N−1

∑N
j=1 g

(
uT −

∑M
i=1 ψ

iε
∗(j)
T+i

) . (2.9)

Based on Equation (2.7), for any MAR(r,1) process
and for any forecast horizon h ≥ 1, choosing
q(ε∗+) = 1(ι′ΦhyT +

∑h−1
k=0 ι

′Φkι
∑M−h+k

i=0 ψiε∗T+h−k+i ≤ x)
in (2.9) provides an approximation of P(y∗T+h ≤ x|FT ). With
this approach, we can therefore obtain directly the cumulative
probabilities of y∗T+h and by computing its value for all possible x we
can obtain the whole conditional cdf of y∗T+h, independent of previous
forecasted points,

P
(
y∗T+h ≤ x|FT

)
= E

[
1(y∗T+h ≤ x)|FT

]
≈ E

[
1

(
ι′ΦhyT +

h−1∑
k=0

ι′Φkι

M−h+k∑
i=0

ψiε∗T+h−k+i ≤ x

)∣∣∣∣uT , yT
]
.
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As an illustration, let us consider again an MAR(0,1) process with a
lead coefficient of 0.8 and Cauchy-distributed errors. The complete
one-step ahead predictive cdf is computed for all potential x and is
approximated using the N = 10 000 simulations suggested by Lanne,
Luoto, and Saikkonen (2012) at each iteration and we increase the trun-
cation parameter M to 100. It simplifies as follows,

P
(
u∗T+h ≤ x|FT

)
≈ E

[
1

(
100−1∑
j=0

0.8jε∗T+1+j ≤ x

)∣∣∣∣uT
]

≈

∑10 000
j=1 1

(∑100−1
j=0 0.8jε

∗(j)
T+1+j ≤ x

)
g
(
uT −

∑100
i=1 0.8

iε
∗(j)
T+i

)
∑10 000

j=1 g
(
uT −

∑100
i=1 0.8

iε
∗(j)
T+i

) .

(2.10)

The Mean Squared Errors (henceforth MSE) between the
approximated and the theoretical cumulative probabilities are
presented on graph (a) in Figure 2.4. They are computed for different
values of uT , corresponding to quantiles ranging from Q(0.95) to
Q(0.999) of the MAR process. The theoretical cdf is computed
using closed-form expressions and the approximated cumulative
probabilities evaluated using Equation (2.10). They are computed for
a large number of points x (as shown in graph (b) of Figure 2.4) and
we report the MSE over all points. Namely we report the average
squared distance from the theoretical cumulative probabilities to
the ones obtained from simulations. The MSEs increase with the
level of the series (from 0.0002 to 0.2384 for quantiles 0.95 to 0.999).
For illustration, graph (b) in Figure 2.4 compares the probabilities
obtained with 10 000 and 100 000 simulations with the theoretical cdf
for quantile 0.99. The average discrepancies between the estimated
and theoretical cumulative probabilities significantly decrease for
larger number of simulations (light grey against dark grey line) and
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results converge towards the theoretical distribution (black line). For
such process, the quantile 0.99 correspond to a value of uT of around
160 and we can see that with 10 000 simulations (light grey line), the
probability that the process at uT+1 will be at most 50 is around 0.6
while it theoretically should be roughly 0.2. In this example, the
method overestimates the theoretical probabilities by up to 0.4 with
10 000 simulations, and only by up to 0.05 with 100 000 simulations.
Furthermore, it is important to note that the bi-modality of the
conditional distribution of an explosive episode is captured by this
approach.

(a) Evolution of the MSE of the cumula-
tive probabilities estimations with 10 000
simulations for increasing quantiles.

(b) Estimated cumulative probabilities
for Q(0.99) using 10 000 and 100 000 sim-
ulations compared to the theoretical cdf.

Figure 2.4: Sensitivity of estimations to the number of simulations for an
MAR(0,1) with ψ = 0.8 and Cauchy distributed errors.

Figure 2.5 depicts the empirical distribution of 1 000 iterations of the
same experiment with different number of simulations. Since this
chapter focuses on the investigation of turning point of explosive
episodes, each iteration consists in computing the probabilities of
a decrease of at least 25% when the last observed value is equal
to 318.3, corresponding to the quantile 0.995 of the process. The
theoretical probability of a crash is equal to 0.2 and as the number
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of simulations increases, results converge to this value. For lower
number of simulations the same experiment repeated twice may lead
to contradicting results. This stems from the fact that we investigate
explosive episodes. Recall that bubbles are triggered by a future
extreme value in the error terms and if no simulated paths among all
simulations can trigger such increase, then the probabilities may be
significantly misleading. Conclusions are similar for different lead
coefficients (results available upon request), the simulations-based
probabilities are a good approximation of theoretical Cauchy-
derived probabilities ((1 − ψ) during explosive episodes), when the
number of simulations is coherently chosen w.r.t. the level of the series.

Figure 2.5: Empirical distributions of 1 000 repeated forecasts using different
numbers of simulations for an MAR(0,1) process with ψ = 0.8 and Cauchy
distributed errors evaluated at quantile 0.995.

Previous results help evaluating the ability of the described
method to approximate theoretical results, however, analysing its
performance for distributions lacking closed-form predictions needs
to be performed. We consider Student’s t(2) and t(3) distributions
and reiterate the same analysis as above. Values corresponding
to identical quantiles vary between distributions. While for a
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Cauchy (t(1)) distributed MAR(0,1) process with ψ = 0.8, Q(0.995)
corresponds to a value of 318.3, it corresponds to 17.35 and 8.75
for t(2) and t(3) respectively. Note that quantiles of processes with
Student’s t-distributed errors were empirically estimated. The rate of
increase remains identical (here, 0.8−1) across distributions, hence the
bi-modality (crash and increase) given a last observed quantile is less
evident for larger degrees of freedom, due to the lower corresponding
values. That is, probabilities of a crash in such cases will be sensitive
to the defined magnitude of the crash.

Figure 2.6 shows the approximated cumulative probabilities
computed at last values corresponding to quantile 0.995 for both
Student’s t(2) and t(3) distributed MAR(0,1) processes, with ψ = 0.8
(in analogy to graph (b) of Figure 2.4). We can see that indeed,
given a quantile, the bi-modality of the conditional distribution
is less apparent for larger degrees of freedom. We also find that
approximations are less sensitive to the number of simulations
for larger degrees of freedom. This stems from the fact that while
the last value of each series correspond to identical quantiles, the
values induced by the natural rate of increase of the bubble do not.
For instance, 318.3 and 8.75 both correspond to the quantile 0.995
for the Cauchy- and t(3)-distributed processes, but 0.8−1 × 318.3
and 0.8−1 × 8.75 in turn correspond respectively to quantiles 0.999
and 0.986. The latter is by definition most likely to be drawn in
the simulations, implying that for such level of the series the
method is less sensitive to the number of simulated paths for larger
degrees of freedom. We also observe that as the number of simu-
lations increases, the probabilities converge towards a unique function.

To generalise our first findings, Table 2.1 displays the probabilities
of a decrease of at least 25% once a value corresponding to quantile
0.995 is reached for the three distributions and for three distinct lead
coefficients. Theoretical probabilities are also reported for Cauchy
(t(1)) distributed errors obtained with the closed-form expression
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Figure 2.6: Estimated cumulative probabilities evaluated at Q(0.995) using
10 000 and 100 000 simulations for MAR(0,1) processes with ψ = 0.8 and with
t(2) (left) or t(3) (right) distributed errors.

(2.5). Simulations-based probabilities are obtained with 1 000 000
simulations and we report the average of 1 000 iterations.

Table 2.1: Probabilities of a crash of at least 25% when quantile 0.995 is at-
tained

Lead coefficient Theoretical Simulations-based
ψ Cauchy/t(1) t(1) t(2) t(3)

0.2 .794 .793 .937 .960
0.5 .497 .499 .718 .792
0.8 .201 .203 .358 .435

Reported probabilities for the simulations-based approach are the aver-
age over 1 000 forecasts using 1 000 000 simulations.

We find that the theoretical and simulations-based probabilities for
t(1)-distributed errors do not differ by more than 0.002 on average.
Since approximations are much more sensitive to the number of
simulations for lower degrees of freedom, as was indicated by Figure
2.6, we can expect the probabilities obtained for the t(2) and t(3)
distributions to differ from theoretical probabilities by not more than
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0.002 on average, given the attained quantile. The probabilities of a
turning point significantly increase with the degrees of freedom of the
distribution and with lower lead coefficients. For the investigated
quantile, a process with t(3)-distributed errors and a lead coefficient
of 0.2 has a probability of only 0.04 to keep on increasing as opposed
to 0.206 for the Cauchy-distributed process. Furthermore, simulations
(results available upon request) indicate that as the series diverges,
the probabilities of a crash tend to a constant for all processes. For
MAR(0,1) processes with a lead coefficient of 0.8 for instance, the
probabilities of a downturn tends to 0.2, 0.36 and 0.48 as the bubble
increases for t(1), t(2) and t(3) respectively. Intriguingly, these results
are conforming with the crash probabilities (at horizon 1) of explosive
MAR(0,1) α-stable processes, 1 − ψα, with ψ = 0.8 and α equal to the
degrees of freedom of the Student’s t distribution. This might suggest
that Fries’s (2018) findings hold for more general error distributions.

Overall, Lanne, Luoto, and Saikkonen’s (2012) approach behaves co-
herently with what was expected from the degrees of freedom, the
level of the series and the lead coefficients. This method seems to
provide good approximations of theoretical probabilities. With a suf-
ficiently large number of simulations, the probabilities obtained with
Cauchy errors converge to the theoretical distribution. While for t(2)
and t(3) results cannot be compared to a theoretical benchmark, esti-
mated probabilities also converge to a unique distribution which we
can expect to be a proxy for the theoretical conditional cumulative
density. We will therefore employ the simulations-based probabilities
(given a sufficiently large number of simulations) as proxies for theo-
retical probabilities when no closed-forms exist. Analogously to theo-
retical probabilities, the simulated ones also tend to a constant during
explosive episodes. That is, after some threshold probabilities of crash
remain constant, which as mentioned before does not seem very real-
istic when we think of prices for instance.
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2.4.2 Predictions using sample-based approximations

This section studies the approach proposed by Gouriéroux and Jasiak
(2016). Based on past values of the series, this method does not require
closed-form expressions for the marginal distribution of the noncausal
process ut. They derive a sample-based estimator of the predictive
density (2.4). The marginal distributions of ut can be expressed as fol-
lows,

l(ut) = Eut+1 [l(ut|ut+1)].

Again, the noncausal relationship described in Equation (2.2) is used to
evaluate the conditional distribution of l(ut|ut+1) with the distribution
of the errors, g(ut−ψut+1). While Lanne, Luoto, and Saikkonen (2012)
employed simulations to approximate expected values, Gouriéroux
and Jasiak (2016) use sample-based counterparts. The expected value
here is approximated by the average obtained using all points from the
sample for the conditioning variable,

l(uτ ) = Euτ+1 [g(uτ − ψuτ+1)] ≈
1

T

T∑
i=1

{
g(uτ − ψui)

}
, (2.11)

with τ = {T, T + h}, necessary to evaluate (2.4). Hence, given the
entire sample, the predictive density for the MAR(0,1) process ut can be
approximated by substituting the marginal densities with their sample
counterparts (2.11) in (2.4),

l(u∗T+1, . . . , u
∗
T+h|FT )

≈ g(uT − ψu∗T+1) . . . g(u
∗
T+h−1 − ψu∗T+h)

∑T
i=2 g(u

∗
T+h − ψui)∑T

i=2 g(uT − ψui)
.

(2.12)

For centred and symmetrical uni-modal distributions, such as the
Cauchy and the Student’s t that are employed in this analysis, the
probability density function is by definition maximised at zero.
That is, the densities g, as they are evaluated in Equation (2.12), are
maximised at the points where uτ − ψui = 0 and tend to zero as
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the difference widens. Since at time T all observations up to uT are
used in the estimation, the ratio in Equation (2.12) only varies as a
function of u∗T+h and will be maximised for paths that were already
undertaken. Furthermore, the denominator

∑T
i=2 g(uT − ui) decreases

towards zero as uT diverges from all past values of the sample
(i.e. during an explosive episode). This implies that we can expect
this approximation method to put more weight on forecast points
corresponding to already observed paths and that this tendency will
be exacerbated during bubbles.

Analogously to Section 2.3, given a correctly identified model,
the predictive density of an MAR(r,1) process can be obtained by
substituting the filtered noncausal process ut by the mixed process yt
in (2.12). As an illustration, the h-step ahead predictive density of
an MAR(1,1) process with undefined non-Gaussian distribution g is
obtained using the whole sample up to time T as follows,

l(y∗T+1, . . . ,y
∗
T+h|FT ) ≈ g((yT − ϕyT−1)− ψ(y∗T+1 − ϕyT ))× . . .

. . .× g((y∗T+h−1 − ϕy∗T+h−2)− ψ(y∗T+h − ϕy∗T+h−1))

×
∑T

i=2 g(y
∗
T+h − ϕy∗T+h−1 − ψ(yi − ϕyi−1))∑T

i=2 g(yT − ϕyT−1 − ψ(yi − ϕyi−1))
.

For comparison purposes with the simulations-based approach, let us
again consider an MAR(0,1) process with a lead coefficient of 0.8 and
standard Cauchy-distributed errors. For median levels of the series,
results are similar between closed-form and sample-based predictions
regardless of past behaviours. However, as the series departs from
central values, discrepancies emerge and are path-dependent. To
illustrate this feature, Figure 2.7 shows one-step ahead density
forecasts performed at time T = 200 of two different MAR(0,1)
trajectories, both ending at 63.53 corresponding to quantile 0.975.
Series 1 (left) only has smaller explosive episodes before the one
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at which predictions are performed while series 2 already lived
a more considerable bubble before. The one-step ahead density
predictions are estimated using formula (2.12) and compared to
closed-form Cauchy results derived from (2.5) in the bottom graphs.
The estimator captures the split of the density of the explosive
episode but we can observe discrepancies between the estimated and
theoretical densities. For series 1 (left), the estimator overestimates
the probabilities corresponding to a crash as all past values are lower
than the last observed point. For series 2 (right), it overestimates
potential increases, which is explained by the fact that the series
already attained such point before and kept on increasing. Predictions
with this approach are therefore case-specific and can be characterised
by a learning mechanism based on past behaviours. Probabilities can
be empirically derived from the obtained predictive densities. For
instance, the probabilities of a decrease of at least 25% are theoretically
0.205 for such process but are respectively equal to 0.557 and 0.263
for series 1 and 2. The difference stems from the aforementioned
learning mechanism. The choice of the event (e.g. magnitude of
the crash) and thus the threshold used to calculate the probabilities
may have a considerable impact on the results. Theoretically, for
such processes and quantiles, the probabilities of a drop of 75% are
only 0.032 lower than for a drop of 25%. This indicates that the
arbitrary definition of a crash (e.g. a drop of 25% or of 75%) does not
significantly affect the resulting probabilities. However, for series 1
(resp. 2), the probabilities of a drop of at least 75% are 0.11 (resp. 0.05)
lower than for a drop of 25%. The learning mechanism can hence
induce substantial probabilities for scenarios in between the crash and
the further increase.

While the simulations-based approach previously described only
depends on parameters estimated and the last observed value,
the sample-based method depends also on the entire trajectory
and the sample size. Hence, in the intent to generalise results in a
similar way as in the previous sections, the parameters considered
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Figure 2.7: Comparison between estimated and theoretical 1-step ahead pre-
dictive densities for Cauchy MAR(0,1) with ψ = 0.8 evaluated at quantile
0.975 for 2 distinct trajectories.

in Table 2.1 also need to interact with various sample sizes and
over multiple trajectories. We first simulate sets of 1 000 different
MAR(0,1) trajectories (with Cauchy-distributed errors for the purpose
of comparing with theoretical results) ending at quantiles 0.99 or
0.995, with lead coefficients 0.2, 0.5 or 0.8 and sample size 100, 200,
500 or 1000. This results in 24 sets of 1 000 replications and for all of
them we compute probabilities of a crash of at least 25%, performed
at the last observed point. As an illustration, Figure 2.8 reports the
distribution of the 1 000 probabilities obtained from given groups
of trajectories, for the two quantiles, the three lead coefficients
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(varying from top to bottom) but only two sample sizes (500 in
the left column and 1 000 in the right column). Each graph depicts
the distributions of probabilities derived from the same processes
with identical lead coefficient and sample size, and ending at one
of the two considered quantiles (Q(0.99) represented by the black
line and Q(0.995) by the filled grey density function). The vertical
dashed line represents the theoretical probabilities (obtained from
closed-form expressions). Overall, the probabilities diverge more
from one trajectory to another for: (i) larger lead coefficients (lower
graphs compared to top ones), (ii) larger sample sizes (right column
compared to left) and (iii) low quantiles (black line compared to
grey area). Larger lead coefficients imply longer-lasting bubbles and
therefore more extreme points over the whole sample and enlarging
the sample size increases the overall number of extreme episodes. A
lower quantile implies larger occurrence of the given value in the
series. Hence, as explained above, previous bubbles and thus the
frequency of observing similar values in the sample significantly
affect probabilities obtained with this approach. Based on its learning
mechanism, if a similar level has already been attained in the past,
this method will indicate large probabilities that the series will keep
on increasing, as it already happened before. That is, for two distinct
replications of the same process, ending at the exact same point, one
trajectory may have probability zero of crashing while the other may
have a probability of 0.6 for instance. However, probabilities are
upper bounded, where the upper bound is also the most recurrent
probability (main mode of the distribution). We can see that for lower
lead coefficient, this mode is closer to the theoretical probability.
Hence, the larger the lead coefficient, the more the sample-based
method tends to overestimate probabilities of a crash compared
to theoretical probabilities. This is also for larger lead coefficients
that the probabilities between trajectories vary the most (fatter left tail).

Table 2.2 summarises the same results as Table 2.1 does for the
simulations-based approach. However, due to the case-specificity
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Figure 2.8: Distributions of estimated probabilities of a crash of at least 25%
from 1 000 different trajectories evaluated at two different quantiles with dis-
tinct lead coefficients and sample sizes.
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of the sample-based method, results must be presented for various
sample sizes (100, 200, 500 and 1 000) and be summarised over
multiple trajectories of the same process. We report the main mode
and the first quartile of the distribution of the 1 000 probabilities
obtained from different replications of the same process, ending at
the same point. The first quartile indicates how much probabilities
vary from one trajectory to another and the mode indicates the
upper-bound and by definition the most recurrent probability over
the 1 000 replications. Analogously to Table 2.1 we consider Student’s
t(1)-, t(2)- and t(3)-distributed processes. Probabilities are compared
to theoretical probabilities (for t(2) and t(3), the results obtained in
Table 2.1 are taken as proxies for the theoretical probabilities). By
comparing the theoretical probabilities with the column ’Mode’ (the
most frequently observed probabilities over the 1 000 replications) we
notice that the tendency of the sample-based method to overestimate
the probabilities of a crash is lower for larger degrees of freedom in
the errors distribution given a lead coefficient. For a lead coefficient of
0.2 and a Cauchy-distributed process for instance, the mode is 0.034
above theoretical probabilities while it is at most 0.002 above for a
t(3)-distributed process. Conclusions drawn from the illustrative
examples of Cauchy-distributed processes in Figure 2.8 can be
generalised for the three distributions, namely that an increase in
the sample size and in the lead coefficient lead to significantly more
varying results, even though those discrepancies overall decrease
with larger degrees of freedom. Nevertheless, due to the dependence
on past points and the case-specificity of this approach, it is rather
challenging to demonstrate theoretical guarantees or convergence of
this approximation method during explosive episodes.

The focus of this chapter is on one-step ahead forecasts but farther
predictions are possible, however increasingly computationally
demanding. Gouriéroux and Jasiak (2016) propose a method to
tackle this issue by elaborating a Sampling Importance Resampling
(SIR) algorithm. The algorithm aims at recovering a predictive
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Table 2.2: Sample-based probabilities of a crash of at least 25% evaluated at
Q(0.995) for 1 000 replications of each model

ψ
Sample t(1) t(2) t(3)

size Theor. 1st Q. Mode Simul. 1st Q. Mode Simul. 1st Q. Mode

0.2

100

.794

.828 .828

.937

.941 .941

.960

.961 .962
200 .828 .828 .941 .941 .961 .961
500 .825 .828 .941 .941 .961 .961
1000 .824 .828 .940 .941 .961 .961

0.5

100

.497

.664 .665

.718

.772 .776

.792

.808 .819
200 .657 .665 .756 .776 .802 .818
500 .629 .665 .738 .775 .795 .819
1000 .611 .665 .714 .775 .789 .815

0.8

100

.201

.555 .556

.358

.544 .597

.435

.428 .606
200 .553 .556 .458 .603 .391 .590
500 .404 .556 .259 .607 .369 .491
1000 .343 .556 .290 .605 .379 .416

Theor. corresponds to theoretical probabilities (Simul. correspond to the simulations-
based probabilities reported in Table 2.1 and used as proxies for theoretical
probabilities). Are also reported the 1st quantile and the mode of the distribution of
the 1 000 probabilities of each scenario.

density based on simulations from a misspecified instrumental
model from which it is easier to simulate. They suggest using
a Gaussian AR model of order s (here an AR(1)) to simulate the
process ut. Results are available upon request but overall this
approach recovers the intended densities for median levels of the
series but fails to recover both the parts corresponding to the crash
and to the increase during explosive episodes. The failure of the
algorithm for high levels of the series stems from the intention
to recover a bi-modal distribution from a uni-modal distribution.
If the variance of the uni-modal instrumental distribution is not
large enough to cover both modes of the sample-based density,
the algorithm will not be able to recover the whole conditional
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distribution. The shape of the Normal distribution significantly
depends on past behaviours of the series since the variance is
estimated as the variance of the residuals of the MAR model. Hence,
for more volatile series, the variance of the instrumental Normal
distribution will be larger, yet, as the variable increases and the
two modes diverge, there will always be a point from which the
SIR algorithm does not succeed in recovering the density anymore.
While the algorithm is not needed for one-step ahead predictions
when computations are not too demanding, the conclusions drawn
are the same for larger forecasts horizons of explosive episodes,
for which the algorithm may miss parts of the joint conditional density.

Gouriéroux, Hencic, and Jasiak (2018) find that the quality of forecasts
diminishes when the series follows an explosive episode. Indeed,
approximations errors amplify with the level of the series, and there
is a point from which the SIR algorithm does not recover the whole
density anymore. Yet, we find that the sample-based estimator
captures the split of the conditional density as the series departs from
central values and comprises both the crash and increase parts of the
predictive density. Furthermore, it yields time varying probabilities
based on its learning mechanism. While sample-based predictive
densities based on Student’s t-distributions cannot be compared to
closed-form predictions, results corroborate the conclusions drawn
with Cauchy. Thinner tails in the errors distribution lead to higher
probabilities of crash for given quantiles of an MAR process. A
limitation is that when closed-form results are not available, we
cannot disentangle how much of the derived probabilities are induced
by the underlying distribution and how much by past behaviours. To
tackle this, the probabilities estimated with the simulations-based
approach of Lanne, Luoto, and Saikkonen (2012) can be used as
benchmark as they seem to be good approximations of theoretical
probabilities. Such data-driven approach alleviates the issue of
constant probabilities that theory or the simulations-based method
suggests during explosive episodes. Yet, this is at the costs of heavy
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computations that increase with the forecast horizon.

2.5 Empirical analysis

We now empirically analyse the two approaches presented in Section
2.4. Karapanagiotidis (2014) and Lof and Nyberg (2017) find evidence
that non-causal models generally provide better fits for commodity
price series. We hence forecast the bubble pattern in commodity
prices and in particular in the monthly Global price of Nickel. The
series is obtained from the International Monetary Fund and spans
the period from January 1980 to September 2019. There seems to be
a positive trend in the data but making the series stationary is far
from obvious. Indeed, usual unit root tests do not perform well for
this type of variable with very large spikes. For instance ADF tests
would reject the null of a unit root against both a mean and a trend
reverting alternative. A conclusion that does not seem satisfactory
from the graphs of the data. However, transformations of the data
may affect the dynamics of the process, like a X-11 seasonal filter does
for instance (see Hecq, Telg, and Lieb, 2017). It might also well be that
the series is stationary around a shift in mean. Hencic and Gouriéroux
(2015) use a cubic deterministic trend to isolate the bubble in the
Bitcoin. Hecq and Voisin (2022) find that underestimating the order of
a polynomial trend can have substantial impacts on the dynamics of
the series and show that the Hodrick-Prescott (hereafter HP) filtering
can be used as an alternative that does not require any assumption
regarding the order of the trend. They find that with the penalising
parameter suggested by Ravn and Uhlig (2002), i.e. λ = 129 600 for
monthly time series, the filtering preserves the bubble features of the
data and thus provides a stationary time series with locally explosive
episodes (which would disappear when taking the returns).

The HP-detrended series is reported in Figure 2.9. We first estimate
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an autoregressive model by OLS on the whole HP-detrended Nickel
price series. Information criteria (AIC, BIC and HQ) all advocate a
pseudo lag length of p = 2. The three possible MAR(r,s) specifications
are consequently an MAR(2,0), an MAR(1,1) or an MAR(0,2). Using
the MARX package of Hecq, Lieb, and Telg (2017a) an MAR(1,1) with
a t-distribution with a degree of freedom of 1.45 and a scale parameter
of 390 is favoured. The value of the causal and the noncausal
parameters are respectively 0.66 and 0.73. We are consequently in the
situation in which the predictive density does not admit closed-form
expressions (although not very far from the Cauchy) but the sample-
and simulations-based approaches can be used.

Figure 2.9: HP-detrended monthly Nickel prices series and the points at
which forecasts are performed.

We aim attention at the main explosive episode, which crashed in
June 2007. To investigate the evolution of the predicted probabilities
along the bubble with settings as close as possible to the assumptions
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made throughout this chapter, we assume that the model is correctly
identified (parameters estimated over the whole sample) at each
point of interest and hence perform in-sample forecasts. The points
at which we perform predictions are represented by the diamonds
on the trajectory in Figure 2.9. We investigate five points along the
main explosive episode and one after to capture the effects of the
inclusion of the crash in the predictions. Each point is assigned an
index between 1 and 6 indicating their order of arrival. At each point,
we compute the one-step ahead sample-based predictive density and
compute probabilities for three different magnitudes of crash derived
from both the sample- and simulations-based approaches. Since
simulations-based estimations are good approximations (with a large
enough number of simulations) of theoretical results, we consider
them as a proxy for theoretical probabilities to which sample-based
probabilities are compared.

Results are reported in Table 2.3. The quantiles corresponding to
each of the six points were empirically evaluated, based on the
estimated model, and are presented in the second column. The whole
sample up to the points of interest was used to approximate the
conditional density function in the sample-based approach. For the
simulations-based method, given the degrees of freedom estimated
for the errors distribution and the quantiles to be investigated,
5 000 000 simulations were employed at each iteration, to ensure the
accuracy of the results. We report the probabilities obtained with the
sample-based approach (columns ‘samp.’), the simulations-based
approach (‘sims.’) as well as the difference between the two resulting
probabilities (‘diff.’). We investigate the probabilities of three
magnitudes of decreases, up to 40% (‘< 60%yT ’). We do not consider
larger drops since with a lag coefficient of 0.66, the left mode of the
conditional distribution is located at 66% of the last observed value
and the probabilities of larger drops quickly decay to zero. This can
be seen in the column < 60%yT , the probabilities are already almost
all below 0.10 for points along the bubble. Hence, let us focus on
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Table 2.3: One-step ahead probabilities of events for detrended monthly
Nickel prices at six different point in time

Point Quantile
< yT < 80%yT < 60%yT

samp. sims. diff. samp. sims. diff. samp. sims. diff.

1 .376 .744 .771 -.028 .842 .844 -.003 .904 .886 -.018
2 .951 .536 .328 -.207 .459 .247 -.212 .128 .075 -.053
3 .985 .600 .360 -.239 .533 .314 -.219 .059 .048 -.011
4 .989 .603 .365 -.238 .548 .331 -.217 .040 .039 -.001
5 .993 .616 .380 -.236 .541 .343 -.198 .024 .028 -.004

6 .949 .331 .323 -.080 .263 .240 -.023 .078 .070 -.008
The quantiles were evaluated with simulations based on the estimated model. Samp.
(resp. sims.) represents sample-based (resp. simulations-based) probabilities. For
the simulations-based approach the following settings were employed: M = 100
and N = 5000 000. Results with this approach are assumed to be proxies for the
theoretical ones.

the first two blocks of results, namely probabilities of a decrease and
probabilities of a crash of at least 20%.

Points 1 to 5 capture the evolution from the outset to the peak of the
bubble. During this episode the series departs from below median
values (Q(0.376)) to reach a value corresponding to a quantile of 0.993
at the top of the bubble. Columns ‘diff.’ indicate that, except for
point 1 (for which both methods yield roughly the same results), the
sample-based approach always overestimates probabilities compared
to the ones obtained with the simulations. Once the series enters the
explosive episode, the discrepancies between the two approaches
widen. For probabilities of a decrease for instance (‘< yt’), the
differences of the probabilities between the two methods increase
until the series has exceeded all past points (remains almost constant
from point 3 to 5). The discrepancies for the probabilities of larger
crashes vary more due to the significant probabilities assigned by the
sample-based approach to points between the crash and the natural
rate of increase. Overall, the results are in line with Table 2.2 from
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Section 2.4 for such lead coefficient, sample size and t distribution, for
which the sample-based methods usually overestimates probabilities
of a crash. The difference between the probabilities of the two
methods represents how much of the sample-based probabilities
are induced by its learning mechanism. This indicates that once all
past values are exceeded, the uncertainty added to the theoretical
probabilities remains more or less constant. Not only does the
difference between the probabilities of the methods remains constant
after the series has exceeded all past values, but also the probabilities
of each method themselves. We can see that after point 3, probabilities
do not increase by more than 0.02. This suggests that both theoretical
and learnt probabilities would probably remain constant along the
bubble if it were to increase more after point 5. Additionally, note that
the simulated probabilities of a downturn (column ‘< yT ’) from points
3 to 5 are very close to the probabilities of a crash of an explosive
α-stable MAR(0,1) process, 1 − ψα, with ψ = 0.73 and α = 1.45,
suggesting again the applicability of Fries’s (2018) results to more
general errors distributions. Furthermore, while probabilities indicate
almost the same probabilities for the series to drop by 5% than to drop
by 20%, they suggest that the crash would most likely not be larger
than 40%; and indeed, after point 5, when the bubble burst, the series
dropped by 37%.

Point 6 was chosen to illustrate the learning mechanism of the
sample-based method and the value at point 6 corresponds to a
quantile slightly lower than point 2. Hence, as expected, since
simulations-based probabilities are not affected by past values,
probabilities of a decrease are slightly lower as well. However, as
the main explosive episode is now included in the sample-based
predictions, the learning mechanism suggests less risk of a crash as
the series already entered a bubble after reaching this point before.
This leads to probabilities of a decrease 0.205 lower than at point 2
and 0.196 lower for a crash of at least 25%. The discrepancies between
the sample- and simulations-based probabilities are now less than
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0.08 for the two magnitudes.

To wrap up, the use of both approaches when the distribution of
the errors does not allow for closed-form expressions can help
disentangle how much probabilities in the sample-based approach are
induced by past behaviours. Indeed, even if probabilities of a turning
point were continuously increasing with the level of the variable,
the discrepancy between the probabilities of the two approaches,
capturing the variation in uncertainty regarding the downturn may
remain constant after some point as we have seen in this empirical
example. The two approaches carry different information; on the
one hand, the sample-based approach relies on past behaviours and
is usually yielding higher probabilities of turning points. On the
other hand the simulations-based approach yields probabilities solely
induced by the underlying model. Yet, both methods capture the
bi-modality of the conditional density during explosive episodes,
which indicates the outset of a bubble. The two approaches can be
used individually or combined, based on preferences and on beliefs
regarding the process.

2.6 Conclusion

This chapter analyses and compares in details two approximation
methods developed to forecast mixed causal-noncausal autoregressive
(MAR) processes. MAR models can be employed in a parsimonious
setting to model nonlinear dynamics that would otherwise require
much more complex modelling. This chapter aims attention at
predictive densities rather than point forecasts as they are more
informative, especially in the case of explosive episodes, and focuses
on one-step ahead probabilities of turning point of MAR(r,1)
processes.
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The simulations-based (Lanne, Luoto, and Saikkonen, 2012) and
sample-based (Gouriéroux and Jasiak, 2016) methods are first
compared to theoretical results using various MAR processes with
Cauchy-distributed errors to have a benchmark of their respective
performance. The two approximation approaches are then applied
to Student’s t-distributed processes, with 2 and 3 degrees of freedom
(cases for which no closed-form expression exist). We find that
simulations-based predictive probabilities are a good approximation
of theoretical results obtained with Cauchy-distributed errors, given
a large enough number of simulations in the approximations. We
show that with t(2)- and t(3)-distributed errors, the predictive
cumulative probabilities also converge (as the number of simulations
increases) to a unique distribution. Probabilities of a downturn
during explosive episodes are conforming with Fries’s (2018) findings
for α-stable distribution which might indicate their applicability to
more general error distributions. We therefore suggest employing the
simulations-based probabilities as proxy for theoretical probabilities,
given a sufficient number of simulations. We further find that
sample-based predictive densities start to deviate from both the
closed-form (when available) and the simulations-based densities
when the series depart from its central values. The discrepancies tend
to increase with the lead coefficient, the sample size and for low
degrees of freedom of the Student’s t distribution. The sample-based
approach gives time-varying probabilities and depends on how
similar the event under investigation is to past events; it is therefore
case specific and is characterised by a learning mechanism. This
approach yields results that are a mixture of probabilities ensuing
from the underlying distribution and probabilities learnt from
past behaviours of the series. Note that both methods capture the
bi-modality of the conditional distribution as the series diverges from
central values, which is an indicator of a potential bubble outset and
which was expected from Fries’s (2018) results.

We illustrate the two methods with detrended monthly Nickel price
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series. When the underlying distribution does not admit closed-form
expressions for the predictive densities, the only way to disentangle
the theoretical probabilities from the learnt probabilities is to employ
the simulations-based probabilities as proxy for the theoretical ones.
The approximation prediction methods may lack theoretical grounds
but provide valuable information based on the estimated model and
on past behaviours of the series in a parsimonious way. The informa-
tion provided by both approaches could for instance be employed to
construct investment strategies but further research should be carried
with respect to the design and the performance of such practice with a
comparison to existing methods.
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3
Predicting crashes in oil prices

during the COVID-19 pandemic
with mixed causal-noncausal models

Adapted from: Alain Hecq and Elisa Voisin (2022). “Predicting bub-
ble bursts in oil prices during the COVID-19 pandemic with mixed
causal-noncausal models”. In: Advances in Econometrics in honor of Joon
Y. Park. Forthcoming.
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Abstract
This chapter aims at shedding light upon how transforming or de-
trending a series can substantially impact predictions of mixed causal-
noncausal (MAR) models, namely dynamic processes that depend not
only on their lags but also on their leads. MAR models have been
successfully implemented on commodity prices as they allow to gen-
erate nonlinear features such as locally explosive episodes (denoted
here as bubbles) in a strictly stationary setting. We consider multi-
ple detrending methods and investigate, using Monte Carlo simula-
tions, to what extent they preserve the bubble patterns observed in
the raw data. MAR models relies on the dynamics observed in the se-
ries alone and does not require economical background to construct a
structural model, which can sometimes be intricate to specify or which
may lack parsimony. We investigate oil prices and estimate probabili-
ties of crashes before and during the first 2020 wave of the COVID-19
pandemic. We consider three different mechanical detrending meth-
ods and compare them to a detrending performed using the level of
strategic petroleum reserves.
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3.1 Introduction

This chapter aims at forecasting Brent and WTI oil price series dur-
ing the first wave of the COVID-19 pandemic outbreak in 2020 using
the recent literature on mixed causal-noncausal autoregressive models
(hereafter MAR). Namely, time series processes with lags but also leads
components and non-Gaussian errors. This new specification can, in a
parsimonious way, model locally explosive episodes in a strictly sta-
tionary setting. It can therefore capture nonlinear features such as
bubbles (which is defined here as a persistent increase followed by
a sudden crash), often observed in commodities prices, while stan-
dard linear autoregressive models (e.g. ARMA models) cannot do
so. MAR models have successfully been implemented on several com-
modity price series (see inter alia Hecq and Voisin, 2021; Hecq, Issler,
and Telg, 2020; Fries and Zakoı̈an, 2019a; Gouriéroux and Zakoı̈an,
2017; Cubadda, Hecq, and Telg, 2019; Lof and Nyberg, 2017; Kara-
panagiotidis, 2014).1 Similarly to Gouriéroux and Zakoı̈an (2013), our
goal when introducing a lead component in oil prices is not to provide
an economic justification for the existence of a rational bubble. How-
ever, the link with a present value model between prices and dividends
(Campbell and Shiller, 1987) can enrich the discussion and it also ex-
plains the difficulties to find economic fundamentals for oil prices.
This motivates our choice to use proxies such as technical methods to
extract the bubble component. Let us indeed consider a general model
(see Diba and Grossman, 1988) in which the real current stock price
Pt is linked to the present value of next period’s expected stock price

1An alternative strategy to ours is to consider autoregressive processes with breaks
in coefficients. Indeed, autoregressive processes with successively unit roots, ex-
plosive and stable stationary episodes are also able to capture locally explosive
episodes. See among many others Phillips, Wu, and Yu (2011) and the survey pa-
pers by Homm and Breitung (2012) or Bertelsen (2019). Yet, for the purpose of
forecasting, we argue for the choice of a model with constant coefficients as more
adequate.
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Pt+1, dividend payments Dt+1 and an unobserved variable ut+1,

Pt =
1

1 + r
Et[Pt+1 + αDt+1 + ut+1], (3.1)

with Et the conditional expectation given the information set known at
time t. The discount factor is 1

1+r with r being a time-invariant interest
rate. The general solution of (3.1) is (e.g. Diba and Grossman, 1988)

Pt =
∞∑
i=1

(
1

1 + r

)i

Et[αDt+i + ut+i] +Bt = PF
t +Bt, (3.2)

where the actual price deviates from its fundamental value PF
t by the

amount of the rational bubble Bt. As shown by Gourieroux, Jasiak,
and Monfort (2020), MAR processes provide stationary solutions for
the modeling of the bubbles component in (3.2) (see also Fries, 2021).

However, oil prices are challenging time series to forecast and
model (see Baumeister and Kilian,2016 and for a survey on
oil prices forecasting see Alquist, Kilian, and Vigfusson, 2013).
Unlike for equity prices, measuring commodities fundamentals
might not be as straightforward (Brooks, Prokopczuk, and Wu,
2015). Pindyck (1993) and Alquist and Kilian (2010) consider the
convenience yield, that is, a premium associated with holding an
underlying product instead of derivative securities or contracts.
It typically increases when costs associated with physical storage
are low. Yet, not only is the convenience yield not easy to measure
but there also are other factors driving each of the demand and
supply side of crude oil: the level of stocks, economic activity,
geopolitical considerations, shifts in expectations regarding the
oil market, etc. While there is a large literature on modeling and
forecasting the price of oil using structural models that incorporate
economic fundamentals (see Kilian and Zhou, 2020b), our model
is parsimonious and exploits the statistical properties of oil prices only.
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As can be seen in Figure 3.3 in Section 3.4, oil prices series do not
appear to be stationary over time. Consequently, before estimating
MAR models we intend to extract a smooth time-varying trend to
render the series stationary without affecting the dynamics. By
extracting a trend from the series we do not claim to identify the
fundamental values of oil prices but instead detrend the series
while preserving the dynamics of the prices in the remaining cycle
and more specifically the noncausal component. As such, we
obtain stationary series that retain their forward-looking aspect
and which can be modeled as MAR processes. Obviously, a wrong
detrending can give misleading results if it alters the dynamics of the
cycle. Consequently, investigating the impact of different technical
detrending filters on the identification of MAR models is the first
contribution of this paper. Similarly to what Canova (1998) does for
business cycles, we investigate the extent to which the identification
of causal and noncausal dynamics are sensitive to different filters.
We then study the consequences on the predictive densities of oil
prices after applying different detrending methods. Inspired by the
work of Kilian and Murphy (2014), who constructed a structural
VAR model of the global market for crude oil, we make use of US
crude oil Strategic Petroleum Reserve (SPR), a sub-part of total
petroleum stocks, for a potential trend in oil prices in Section 3.4.
Hence, the second contribution of this chapter is to compare the MAR
estimations and predictions of oil price series after using technical de-
trending with the results obtained after detrending with the SPR levels.

The rest of this chapter is as follows. Section 3.2 describes mixed
causal-noncausal models and explains the different technical
detrending methods employed in this analysis, leaving the locally
explosive components in the cycle. In Section 3.3, the impact of the
different detrending filters on model identifications is investigated
using a Monte Carlo study, based on trends estimated in oil prices
series. We investigate the identification of the models but also the

57



Chapter 3. Predicting crashes in oil prices during the COVID-19
pandemic with mixed causal-noncausal models

magnitude of the coefficients estimated as they are the main drivers
of the predictions. Section 3.4 analyses the impact of these filters on
the WTI and the Brent crude oil price series for ex-post and real-time
analyses. We compare the results with those obtained after detrending
with US SPR levels. We show how each detrending approach affects
probabilities that oil price crashes in the period capturing the first
2020 wave of the COVID-19 pandemic. Section 3.5 concludes.

3.2 Mixed causal-noncausal models and filtering

3.2.1 The model

MAR(r, s) denotes dynamic processes that depend on their r lags as for
usual autoregressive processes but also on their s leads in the following
multiplicative form

Φ(L)Ψ(L−1)yt = εt, (3.3)

with L the backward operator, i.e., Lyt = yt−1 gives
lags and L−1yt = yt+1 produces leads. When
Ψ(L−1) = (1 − ψ1L

−1 − ... − ψsL−s) = 1, namely when
ψ1 = ... = ψs = 0, the univariate process yt is a purely causal
autoregressive process, denoted MAR(r,0) or simply AR(r) model,
Φ(L)yt = εt. Reciprocally, the process is a purely noncausal
MAR(0, s) model Ψ(L−1)yt = εt, when ϕ1 = ... = ϕr = 0 in
Φ(L) = (1 − ϕ1L − ... − ϕrL

r). The roots of both the causal and
noncausal polynomials are assumed to lie outside the unit circle,
that is Φ(z) = 0 and Ψ(z) = 0 for |z|> 1 respectively. These
conditions imply that the series yt admits a two-sided moving average
representation yt =

∑∞
j=−∞ γjεt−j , such that γj = 0 for all j < 0

implies a purely causal process yt (with respect to εt) and a purely
noncausal model when γj = 0 for all j > 0 (Lanne and Saikkonen,
2011). Error terms εt are assumed iid (and not only weak white
noise) non-Gaussian (with potentially infinite variance) to ensure the
identifiability of the causal and the noncausal parts (Breidt et al., 1991;
Gouriéroux and Zakoı̈an, 2015). While noncausal models are strictly
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stationary, their conditional moments are time-varying. A purely
stationary noncausal MAR(0,1) Cauchy-distributed process, has a
unit root in its conditional mean and exhibit ARCH-type effects (see
Gouriéroux and Zakoı̈an, 2017; Cavaliere, Nielsen, and Rahbek, 2018).

Figure 3.1 shows a purely causal (a) and a purely noncausal (b)
trajectories induced by the same Student’s t(2)-distributed errors,
both with coefficient 0.8 and 200 observations. For the purely causal
process, a shock is unforeseeable and affects the series only once it
happened, inducing a large jump in the series. On the other hand, for
purely noncausal processes, a shock impacts the process ahead of
time, mirroring the purely causal trajectory. Indeed, we see that the
series already reacts to a positive shock by increasing until a sudden
crash, creating bubble patterns. This anticipative aspect is widely
observed in financial and economics time series. The detrended
Brent crude oil prices as shown in Figure 3.5 noticeably exhibit such
features, the most apparent episode being the 2008 financial crisis. A
combination of causal and noncausal dynamics consequently creates
some asymmetry around a shock, varying with the magnitude of the
respective coefficients.

(a) MAR(1,0) with ϕ = 0.8 (b) MAR(0,1) with ψ = 0.8

Figure 3.1: Purely causal (a) and noncausal (b) trajectories
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The advantage with oil prices is that they already underwent bubbles
in the past, and those previous locally explosive episodes will help
identifying MAR models. In the case where series are for the first
time following a long and abnormal increase, an explosive process is
difficult to distinguish from a stationary locally explosive one.

The focus of this chapter is on the probabilities of crashes. Predictions
are performed using the approximation methods of Gouriéroux and
Jasiak (2016) and Lanne, Luoto, and Saikkonen (2012) since no closed-
form of the predictive density exists when the errors of the process
follow a Student’t distribution. For a detailed analysis of the two ap-
proximation methods see Hecq and Voisin (2021).2

3.2.2 Filtering the data

The requirement of yt being stationarity for both lag and
lead polynomials gave rise to different strategies to transform
nonstationary series to stationary ones. Hecq, Issler, and Telg (2020)
and Cubadda, Hecq, and Telg (2019) assume3 that their commodity
price series are I(1) and work with the returns ∆yt. However, this
operation eliminates most of the locally explosive behaviors and the
transformed series consist of many spikes instead.

In this paper, we capture the trending behavior of the observed series
denoted ỹt in different ways using the general form

ỹt = ft + yt,

where
Φ(L)Ψ(L−1)yt = εt.

2A description of the methods used in this analysis can be found in Section 2.4.
3The locally explosive features of the data make unit root tests doubtful.
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In this framework, ỹt is the (potentially nonstationary) observed series
and ft a generic trend function. The deviation of ỹt from its trend is an
MAR(r, s) process. Several authors, although sometimes not explicitly,
use this decomposition. Cavaliere, Nielsen, and Rahbek (2018) opt for
the choice of a particular time period with no trend and hence use only
an intercept ft = µ. Hencic and Gouriéroux (2015) detrend ỹt using
a polynomial trend function of order three. In summary, we could
consider several choices among the following deterministic trends,

f
(1)
t = µ,

f
(2)
t = µ+ βDt, with Dt = 1 when t ≥ tbreak and 0 otherwise,

f
(3)
t = α0 + α1t+ ...+ αkt

k, with k ∈ Z+ and t = 1, 2, . . . , T.

Note (see Section 3.4) that since a larger order of polynomial allows
for more flexibility, we consider polynomial trends of order four and
six for the trending pattern of the monthly oil prices series considered
in this analysis. More complex trends, constructed as a combination
of the aforementioned examples could also be considered, such as
(multiple) breaks in trends for instance.

Hecq and Voisin (2021) use the Hodrick-Prescott filter (HP) before de-
tecting bubbles in Nickel monthly prices. The HP filter, as opposed
to the aforementioned deterministic trends, extracts the trend process
f
(4)
t via a minimisation that relies on a penalising parameter denoted
λ.

min
{f (4)

t }Tt=1

{
T∑
t=1

(ỹt − f
(4)
t )2 + λ

T∑
t=3

[
(f

(4)
t − f

(4)
t−1)− (f

(4)
t−1 − f

(4)
t−2)

]2}
.

The larger this parameter, the smoother the trend component is (that
is, with λ approaching infinity, the extracting trend becomes linear).
For details about the HP filter see Hodrick and Prescott (1997). It is
now commonly accepted to use λ = 1600 for quarterly data. For other
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frequencies, the rule of thumb consists in adjusting the parameter to
the frequency relative to quarterly data,

λ =

(
number of observations per year

4

)i

× 1 600,

with either i = 2 (Backus and Kehoe, 1992) or i = 4 (Ravn and Uhlig,
2002), yielding respectively a penalising parameter of 14 400 and
129 600 for monthly series. Most criticisms of the HP filter concern its
application on series with complicated stochastic and deterministic
trends. Phillips and Shi (2019) propose an adaptation of the filter
improving its accuracy for such series.4 We investigate in Section 3.3
the potential dynamic distortions that can be induced by HP filtering
(see among others Hamilton, 2018) but find no significant distortions
of the mixed causal-noncausal dynamics.

Note that we are not interested in the exact value of a forecast but
rather in its direction and potential magnitude. This is why we ex-
tract smooth trends to preserve the dynamics in the series. This al-
lows to estimate predictive densities of oil prices based on the statisti-
cal properties of the data alone in a parsimonious way, and not from
the construction of complicated structural models. However, wrongly
detrending the series could have a significant impact on the estimation
of the noncausal dynamics of the process, which could in turn strongly
under- or over-estimate the longevity of explosive episodes and there-
fore of the probabilities of crashes and of turning points.

3.3 Monte Carlo analysis - Effects of detrending
The aim of this section is to analyse the effect of wrongly detrending
a series, both on the identification of the MAR model and on the

4In our case, the proposed boosting algorithm absorbs too much dynamics and cap-
tures the bubble in the trend component.
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subsequent predictions performed with the resulting model. We base
this analysis on stylised facts observed in oil prices series.

3.3.1 Accuracy of detrending

We simulate 5 000 trajectories for 12 distinct data generating processes
(hereafter dgp), composed of a trend and a stationary dynamic process
denoted as cycle. All dgps are generated by Student’s t-distributed
errors with 2 degrees of freedom, a value frequently observed in
financial time series, and with 400 observations. For the cycles,
we consider purely noncausal processes with a lead coefficient
of 0.8, purely causal processes with a lag coefficient of 0.6 and
mixed causal-noncausal processes with a lag coefficient of 0.6 and
a lead coefficient of 0.8. The heavy-tailed distribution generates
extreme values, inducing bubble-like phenomena in processes with
noncausal components. We are interested in mostly forward looking
processes characterised by long lasting bubbles hence the choice
of coefficients. We consider three different deterministic trends:
a linear trend with breaks (denoted breaks) and two polynomial
trends up to orders 4 and 6 (denoted respectively τ4 and τ6 for
simplicity). The coefficients of the trends were estimated on the
monthly WTI crude oil prices series between 1986 and 2019.
Figure 3.2 depicts the three mentioned trends to which purely
causal, noncausal and mixed causal-noncausal trajectories are
added. Additionally, we consider processes with an intercept only.
This results overall in 12 sets of 5 000 trajectories of the form ỹt = ft+yt.

Four detrending methods are employed for each trajectories, with the
general form ỹt = f̂t + ŷt. Estimated polynomial trends of orders 4
and 6 and HP filters with λ = 14 000 and λ = 129 600 are applied
(respectively denoted t4, t6, HP1 and HP2).5 To gauge and compare

5The estimated polynomial trends are denoted t4 and t6 to distinguish them from
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Figure 3.2: Trends estimated on WTI oil prices series

the accuracy of the detrending methods, Table 3.1 shows the average
mean square errors (MSE) between the true cycle of ỹt (yt) and the
one obtained after detrending (ŷt). The average MSEs are computed
over the 5 000 replications of each dgp and for the four detrending ap-
proaches,

MSEk,d =
1

5 000

5 000∑
i=1

1

400

400∑
t=1

(y
(k,i)
t − ŷ

(k,i,d)
t )2,

where k indicates the dgp, d the detrending method used, and i the i-th
replication with 1 ≤ i ≤ 5 000.

The MSEs are minimised when the correct polynomial trend is
employed or when the lower order is employed (4 in this case) in
the absence of trend in the dgp. However, underestimating the order
of the polynomial trend leads to significantly larger discrepancies.
Distortions between the true cycle and the detrended series are

the polynomial trends part of the dgps τ4 and τ6.
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larger for mixed causal-noncausal processes than for purely causal
or noncausal processes. Furthermore, in the presence of noncausal
dynamics the HP filter with λ = 14 400 (HP1) distorts more the series
than HP2. Hence, we can expect that a low penalising parameter
in the HP filter mostly captures some of the noncausal dynamics.
However, HP1 distorts the least the cycles to which the linear trend
with breaks was added. It is the method that best manages to mimic
this non-smooth trend due to this flexibility induced by its low
penalising parameter.

Table 3.1: Average Mean Squared Errors between true cycles and detrended
series

DGP Detrended with
t4 t6 HP1 HP2

MAR(0,1) + no trend 5.23 7.61 11.44 7.15
MAR(0,1) + τ4 4.55 6.03 9.62 7.50
MAR(0,1) + τ6 62.42 6.38 11.35 11.26
MAR(0,1) + breaks 79.02 55.78 31.84 47.65

MAR(1,1) + no trend 22.69 31.05 48.58 30.81
MAR(1,1) + τ4 42.74 65.18 91.42 57.60
MAR(1,1) + τ6 85.91 39.57 61.21 43.02
MAR(1,1) + breaks 101.48 86.93 78.36 77.18

MAR(1,0) + no trend 1.20 1.64 2.55 1.58
MAR(1,0) + τ4 0.96 1.34 2.14 2.70
MAR(1,0) + τ6 59.24 2.45 4.21 6.73
MAR(1,0) + breaks 76.42 52.19 26.30 44.10

Are reported the average MSEs over 5 000 trajectories with sample
size T = 400. HP1 corresponds to the HP filter with λ = 14 400 and
HP2 to the HP filter with λ = 129 600.
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3.3.2 Effects of detrending on model identification

To investigate the impact of detrending on dynamic processes, we
perform MAR estimations on the raw and detrended series from
each dgp. The estimation of MAR models first consists in estimating
the pseudo causal lag order. Since the autocorrelation structure of
mixed or purely causal and noncausal processes are identical, we can
estimate the order of autocorrelation (p) with information criteria
by OLS. Once this order p is estimated, the identification of the lag
and lead orders (r and s respectively) is performed by maximum
likelihood among all MAR(r,s) models such that r + s = p (Lanne and
Saikkonen, 2011). We do so using the MARX package in R (Hecq,
Lieb, and Telg, 2017b).

Table 3.2 presents the frequencies of identifying wrong models in each
of the 12 dgp, based on the detrending methods, with a maximum
pseudo causal lag order of 4.6 Proportions of a wrongly identified
the pseudo lag order in the first step of the estimation using BIC are
reported (p ̸= 1 and p ̸= 2), as well as the proportions of wrongly
identified MAR models, namely when at least one of the lag or lead
order mis-identified. We also report the frequency with which no
noncausal dynamics is identified (s = 0). For the purely causal
processes we only report in the last column (s > 0), i.e. the frequency
with which spurious noncausal dynamics is detected.

Let us first focus on the models with noncausal dynamics (the
MAR(0,1) and MAR(1,1) dgps) for which we report the frequencies
with which we over- or underestimate the pseudo causal lag order in
the first step of the estimation. We can see that HP1 under-performs
relative to the other approaches. Indeed, around twice as many lag
orders are wrongly estimated in the first step on average, with a
maximum of 22.84% for the MAR(1,1) processes with breaks in the

6Results when the pseudo lag order is fixed to the correct one (p = 1 or p = 2 for
mixed models) are available upon request.
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linear trend. However, this non-smooth trend seems to be difficult to
capture by the filters considered in this analysis. We can see from
the last five rows of Table 3.2 that detrending this type of processes
with breaks – with the four methods employed here – does not
improve the correct identification of the orders of the model, and
can even make it worse for MAR(1,1). This can be explained by the
construction of the trend, mimicking somehow a bubble pattern, with
a long and persistent expansion when the linear trend is present and
followed by a sudden crash when the series returns to a stationary
process. This might be mistaken for noncausal dynamics, ensuring a
non zero lead order identification when the series is not detrended.
This claim is supported by the results in the last column, indicating
large proportions of wrongly detected noncausal dynamics for each
detrending approaches, with 7.54% for HP1 and more than 28% for
the others. For the dgps with other trends (or only intercept) HP1

wrongly estimates the pseudo causal lag order at most 10.78% of
the time. For the three other detrending methods the pseudo lag
order is wrongly identified in less than 7.3% of the cases. Note that
when the lag order is wrongly identified, it is almost always due to
over-identification. The discrepancy between the two HP filters is
explained by the low penalising parameter in HP1 allowing the trend
to mimic the series too much. By that, some of the dynamics of the
MAR process are absorbed by the trend.

It is notably more harmful not to detrend when necessary than the
contrary. As can be seen on the upper rows of Table 3.2, applying
polynomial trends or HP2 do not increase the proportions of wrongly
identified models by more than 1.6% compared to estimations on
the raw series. However, when the existing trend is ignored, the
pseudo lag order is wrongly estimated twice as much on the raw
series than for the detrended series, and the MAR models are wrongly
identified up to 6 times more than the best performing detrending
method. Furthermore, the incorrect identification of the pseudo lag
order p accounts for most of the proportion of wrongly identified

67



Chapter 3. Predicting crashes in oil prices during the COVID-19
pandemic with mixed causal-noncausal models

MAR models. If p is correctly estimated, the model is also correctly
identified in more than 99% of the cases. Note that the pseudo
causal lag order identified is never zero, meaning that no detrending
completely absorbs all dynamics. Besides, in no more than 0.62% the
detrending methods killed the noncausal dynamics, as is indicated by
the columns s = 0.

Let us now consider the last column, displaying the results for purely
causal processes. We here investigate whether detrending can create
spurious noncausal dynamics (s > 0). We find that (ignoring the dgp
composed of the trend with breaks) as long as the polynomial trend
order is not underestimated, in less than 3.46% of the cases noncausal
dynamics was wrongly detected. For the processes with a polynomial
trend of order 6, detrending with a polynomial trend of order 4 creates
spurious noncausal dynamics in 60.02% of the cases.

Overall, for a dgp with noncausal dynamics, the impact of ignoring
a trend is quite significant while detrending when not necessary has
negligible effects on model identification. Both the polynomial trends
and the HP filter with λ = 129 600 (HP2) perform equally well with
respect to identifying the correct orders of the model. Choosing a
penalising parameter λ too low alters the dynamics of the process as
shown by the results from HP1. All of the approaches almost always
retain the noncausal dynamics, but rarely create spurious noncausal
dynamics when nonexistent in the dgp (except when the polynomial
trend order is underestimated). The lead order is not always the
correct one but in less than 0.62% for all cases no noncausal dynamics
is found. The presented results only report identification of the model
lag and lead orders. To have a better understanding of the impact of
the detrending methods on the dynamics, focus needs to be put on
the impact on the estimated coefficients and parameters of the models
identified.
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Table 3.2: Percentages of mis-identified MAR models
Detrending

p ̸= 1
wrong

s = 0 p ̸= 2
wrong

s = 0 s > 0
method MAR MAR

MAR(0,1) + no trend MAR(1,1) + no trend MAR(1,0) + no trend
raw 5.50 5.50 0.00 4.74 4.74 0.00 0.52
t4 5.46 5.58 0.14 4.64 4.68 0.04 0.72
t6 5.70 5.86 0.22 4.94 5.04 0.06 0.88
HP1 10.78 11.24 0.52 8.18 8.44 0.22 1.86
HP2 6.84 7.10 0.28 5.56 5.66 0.06 1.02

MAR(0,1) + τ4 MAR(1,1) + τ4 MAR(1,0) + τ4

raw 12.10 43.84 35.04 9.70 16.38 7.22 32.76
t4 6.44 6.72 0.28 4.70 4.74 0.04 0.78
t6 6.76 6.96 0.20 4.86 4.94 0.08 0.76
HP1 10.28 10.88 0.60 7.64 7.90 0.22 2.52
HP2 6.24 6.56 0.32 5.36 5.56 0.14 1.92

MAR(0,1) + τ6 MAR(1,1) + τ6 MAR(1,0) + τ6

raw 13.18 36.14 26.04 9.04 15.56 7.12 35.44
t4 7.30 7.36 0.08 4.00 4.14 0.04 60.02
t6 6.54 6.68 0.14 4.48 4.68 0.04 0.92
HP1 9.40 9.84 0.44 7.90 8.24 0.22 2.86
HP2 5.94 6.12 0.18 4.86 5.12 0.06 3.46

MAR(0,1) + breaks MAR(1,1) + breaks MAR(1,0) + breaks
raw 4.54 4.92 0.68 6.34 7.68 1.38 94.60
t4 3.44 4.00 0.60 8.68 8.74 0.22 38.24
t6 3.40 3.86 0.58 10.70 10.86 0.24 28.24
HP1 4.00 4.58 0.62 22.84 23.24 0.26 7.54
HP2 3.38 3.70 0.40 12.70 12.82 0.18 28.92

During the first stage of the model identification, the maximum number of lags in
the pseudo lag model is set to 4. Results are in percentages of the 5 000 trajectories.
T = 400. HP1 corresponds to the HP filter with λ = 14 400 and HP2 to the HP filter
with λ = 129 600.

Detailed results on the impact on estimated coefficients are available
in Appendix A. Overall, we find that due to low penalisation, HP1

absorbs too much of the dynamics (mostly the noncausal ones) in the
resulting trend. Hence, for monthly data, we advise to use the HP
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filter with penalisation parameter 129 600. It is also rather harmful to
underestimate the order of the polynomial trend, which results in a sig-
nificantly larger lead coefficient. When the fundamental trend consists
of breaks (mimicking bubbles), the smooth detrending methods do not
succeed in capturing the trend and this translates in much more persis-
tent noncausal dynamics. We also investigate the effect of detrending
white noise series; while for the raw series, 6.82% of the models were
identified with dynamics, 7.34% were identified with dynamics for the
HP filtered series with penalising parameters 129 600. Hence we find
no significant creation of dynamics when applying the HP filter to a
white noise.

3.4 Predicting crashes in oil prices

This section investigates the impact of detrending both for in-sample
and real-time analyses. WTI and Brent crude oil monthly prices
series are employed, ranging from June 1987 to December 2020. The
series consist of end-of-period prices, which enables us to adequately
time our analysis based on the outbreak of the COVID-19 pandemic
and the appearances of worldwide regulations and lock-downs to
counter its spread. Figure 3.3 shows that both series are characterised
by bubble episodes, which we define in this chapter as rapidly
increasing episodes followed by a sharp decline, the main one being
during the financial crises in 2008. The series are also characterised
by various sudden crashes. The highlighted gray bar represents the
period of interest in this analysis. The earliest point of the period is
December 2019; at this point almost no information was available
on the coronavirus and no worldwide outbreak had already taken
place. Then, we can see that as the outbreak started and regulations
were increasingly being imposed worldwide, the price of crude oil
significantly dropped. Brent crude oil prices fell from around $68 at
the end of December 2019 to around $15 by the end of March 2020,
point at which most European countries imposed national lock-
downs. The restrictions of movement within and between countries
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thus induced a sharp and sudden decrease in the demand for crude oil.

As shown in Figure 3.3, the series are probably nonstationary but
considering their growth rate would eliminate the locally explosive
episodes that are interesting to exploit. The two series appear almost
identical until the 2008 financial crisis, period from which we can
observe more apparent discrepancies. The last part of the samples is
rather noisy and volatile, and estimating a trend on such a part is not
straightforward.7 We seek to extract a smooth trend without affecting
the dynamics of the series. Based on the findings of Section 3.3, we
consider the deterministic polynomial trends of orders 4 and 6 as well
as the HP filter with λ = 129 600 (denoted t4, t6 and HP respectively).
We furthermore employ an economic variable – described in the
following section – as another trend to compare economically
motivated detrending with mechanical detrendings. The analysis
focuses on the probabilities for oil prices to drop and investigates the
potential magnitude of such decrease. We first consider an in-sample
analysis, that is, the trends and the MAR models are estimated over
the whole sample, from June 1987 to December 2020. Then, we fix the
estimated parameters and use this information to perform one-month
ahead density forecasts for the months of January, February, March
and April 2020. The in-sample analysis includes as much information
as possible and therefore reduces estimation uncertainty. We then
compare the in-sample analysis to a real-time forecast exercise. In the
real time analysis, we re-estimate the trends and the MAR models at
each point of the period of interest. That is, we consider an expanding
sample and perform one-month ahead density forecasts for points
that are out-of-sample.

7Figure 3.11 in Appendix B shows the oil prices deflated with the consumer price
index.
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Figure 3.3: Monthly crude oil prices

3.4.1 Economic variables to detrend series

There is an extensive literature on modeling oil prices using economic
variables. As an example, Kilian and Murphy (2014) construct a
structural VAR model for the real price of oil, making use of stationary
transformations of economic variables, namely the real economic
activity index constructed in Kilian (2009) as well as inventories and
production of crude oil. In this analysis we however do not construct
a structural model for the price of oil, but instead we investigate
ways of detrending prices without altering the inherent dynamics
of the process. As such, we suggest employing the US crude oil
Strategic Petroleum Reserve (hereafter SPR) levels. These reserves
were established primarily to reduce the impact of disruptions in
supplies of petroleum stocks (Kilian and Zhou, 2020a). This variable
therefore incorporates not only expectations regarding the economic
activity but also regarding the production of crude oil. US SPR stock
is depicted against WTI crude oil prices in Figure 3.4.

SPR is significantly less volatile than total crude oil stocks as it is a last
resort reserve and is not often made use of as it requires approval of the
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Figure 3.4: Raw WTI prices and US crude oil SPR stocks

US President.8 This characteristic of the series makes it a good candi-
date for the smooth trend we intend to extract from oil price series. We
hence detrend prices (both nominal and real) by taking the residuals
from a standard OLS regression of prices on crude oil SPR levels.9

3.4.2 In-sample analysis

To save space, Figure 3.5 only depicts the detrended Brent series,10

after the polynomial trends, the HP filter and SPR levels were used to
detrend the whole sample. The SPR-detrended series consists of the
residuals obtained from a standard OLS regression of the prices on the
SPR levels. We can see that the HP-detrended series (black solid line)
and the t6-detrended series (dashed line) are very much alike over the
majority of the sample. The polynomial trend of order 4 (dotted line)

8Limited release can be allowed by the Secretary of Energy for crude oil loans to
non-governmental entities, as is described by the Energy department of the US.

9As shown in Figure 3.3, WTI and Brent price series seem to follow a similar trend;
we therefore also employ US SPR stocks to detrend Brent prices. The remaining
cycles look similar to the HP-detrended series and are therefore stationary.

10Data and results for the prices-adjusted series that are not presented here are avail-
able upon request.
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however seems to induce some more variations than the other two
mechanical detrending. This is especially visible at the beginning
and at the end of the sample, stemming from the lack of flexibility
of such trend due to its lower order. This latter detrending method
suggests that the end of 2020 is as extreme as the period between 2010
and 2014, during which prices were in fact twice as large. We can
see that overall SPR-detrended series follows a similar pattern than
the others but shows slightly more persistent dynamics. This could
stem from the fact that the SPR series, while being rather smooth,
still displays more dynamics than the 3 other trends considered here.
Hence, it could slightly alter the dynamics in the remaining cycle.
SPR-detrended series has a correlation of 0.84 with both HP- and
t6-detrended series. Note that until the end of the 1980s, there was
a persistent increase in SPR due to the creation and initial filling of
the reserves which started in 1977, explaining the induced downward
trend at the beginning of the detrended sample.
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Figure 3.5: Detrended Brent prices

We estimate MAR models with Student’s t-distributed errors and set
the maximum pseudo lag length in the first stage on the estimation
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to 4. All resulting models are MAR(1,1) and are reported in Table
3.3. We report the lag and lead coefficients as well as the degrees
of freedom of the distribution and their respective standard errors
in parentheses. Models estimated on series that were detrended
with a polynomial trend of order 6 and with the HP filter are the
most similar, as suggested by Figure 3.5. Models estimated after
detrending with the polynomial trend of order 4 slightly deviate
from the two others and always have a larger lead coefficient, hence
indicating more persistence in the explosive episodes. Recall that
Section 3.3 suggests that underestimating the trend order in mixed
causal-noncausal models induces on average an overestimation of the
noncausal coefficient. All series are mostly forward looking, as the
lead coefficients are at least 0.8 while the lag coefficients are at most
0.31.11 We can see that, as expected, SPR-detrended series are slightly
more persistent in their noncausal dynamics with a lead coefficient up
to 0.1 larger than other detrending methods and also slightly larger
degrees of freedom induced by more persistent extreme events. The
identification of the dynamics is overall consistent across series and
their transformation. Note that adjusting the series for inflation leads
to larger estimated degrees of freedom for the Student’s t distribution
but overall to similar dynamics.

Lacking closed-form expressions for the predictive densities, we use
the two data-driven approaches mentioned in Section 3.2. We employ
the simulations-based approach of Lanne, Luoto, and Saikkonen
(2012), which only depends on the model estimated and the last
observed point and compare, it approximate the density by use
of simulations. We compare this method with the sample-based
approach of Gouriéroux and Jasiak (2016), which uses past values in

11The bi-modality of the coefficient distribution in the estimation can lead, in the op-
timisation of the likelihood function, to a local maximum (Bec, Nielsen, and Saı̈di,
2020b). This phenomenon is subject to initial values and can induce a switch be-
tween the lag and lead coefficients. This was however thoroughly checked in the
analysis.
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Table 3.3: Estimated MAR models

Series
MAR(1,1) estimations per detrending method

t4 t6 HP SPR
ϕ ψ t(γ) ϕ ψ t(γ) ϕ ψ t(γ) ϕ ψ t(γ)

WTI 0.25 0.88 2.25 0.29 0.82 1.93 0.29 0.80 1.85 0.24 0.90 2.60
(0.03) (0.01) (0.36) (0.03) (0.02) (0.29) (0.03) (0.02) (0.28) (0.03) (0.01) (0.37)

WTIreal 0.22 0.88 3.05 0.26 0.83 2.75 0.26 0.81 2.63 0.22 0.91 3.44
(0.04) (0.02) (0.49) (0.04) (0.02) (0.50) (0.04) (0.02) (0.49) (0.04) (0.02) (0.69)

Brent 0.31 0.89 1.93 0.31 0.86 1.82 0.31 0.83 1.83 0.31 0.92 2.18
(0.03) (0.01) (0.27) (0.03) (0.02) (0.33) (0.03) (0.02) (0.31) (0.03) (0.01) (0.34)

Brentreal 0.26 0.90 2.59 0.27 0.86 2.48 0.27 0.84 2.45 0.25 0.92 2.90
(0.04) (0.02) (0.55) (0.04) (0.02) (0.56) (0.04) (0.02) (0.57) (0.04) (0.02) (0.53)

The models are obtained with a maximum pseudo lag order of 4 and for each series
the model identified was an MAR(1,1). ϕ is the lag coefficient, ψ is the lead coefficient
and γ the degrees of freedom of the Student’s t distribution. The polynomial
trend are trends up to the order indicated and the HP filtering is performed with a
penalisation parameter λ = 129 600. In parentheses are reported the standard error
of the coefficients estimated obtained with the MARX package (Hecq, Lieb, and Telg,
2017b).

the forecasting step to approximate the conditional density. Table 3.4
shows the one-month ahead probabilities that the series will decrease
(hence be lower than its last observed value) and the probabilities
that the series will drop by more than 1 standard deviation (the
standard deviations are calculated empirically over the whole
sample). Forecasts are performed for January, February, March and
April 2020 and results from the two prediction methods are reported
for each of the detrended nominal series. We focus on the nominal
series as they are the prices people observe and because the estimated
models for real series are noticeably similar.12 While we advocate the
use of predictive densities to get the best picture of potential future
prices, we choose 2 arbitrary probabilities to present for a matter of
comparison and to save space. Nonetheless, the probabilities for any

12Results for price-adjusted series can be found in Appendix B, probabilities slightly
vary however the patterns described in the results for nominal series are identical.
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event can be computed from the methods used here, and they could
for instance be employed in the construction of risk measures.

Table 3.4: One-step ahead probabilities

Series
Detrended Jan. Feb. Mar. Apr.

with samp. sims. samp. sims. samp. sims. samp. sims.

WTI

Probability of a decrease
t4 .444 .423 .784 .762 .722 .681 .828 .825
t6 .414 .437 .873 .851 .726 .748 .583 .705
HP .411 .422 .869 .836 .701 .730 .544 .675
SPR .432 .440 .808 .768 .691 .687 .738 .781

Probability of a decrease > 1 s.d.
t4 .052 .044 .016 .017 .006 .008 .018 .015
t6 .041 .042 .007 .011 .004 .005 .177 .322
HP .047 .045 .007 .012 .005 .006 .227 .399
SPR .012 .010 .005 .005 .002 .003 .005 .014

Brent

Probability of a decrease
t4 .379 .346 .806 .800 .718 .696 .879 .852
t6 .398 .400 .886 .864 .792 .768 .569 .770
HP .397 .396 .880 .853 .757 .745 .500 .720
SPR .386 .390 .861 .824 .786 .731 .678 .860

Probability of a decrease > 1 s.d.
t4 .044 .035 .016 .016 .007 .008 .071 .106
t6 .034 .034 .004 .011 .001 .005 .308 .552
HP .037 .038 .008 .012 .003 .006 .350 .591
SPR .012 .010 .003 .006 .000 .003 .025 .065

For the simulations-based approach (sims.) the truncation parameter M = 100 and
1 000 000 simulations were used. Standard deviations (s.d.) are calculated over the
detrended samples and are around 15 for all nominal series.

At the end of December 2019 oil prices were around $60 per barrel,
they had been fluctuating around this price over the last three years.
All detrending methods yield values for December that are above the
90th percentile of the samples, suggesting high but not extreme levels.
At that point in time, no international alerts regarding the risk of a
pandemic had been made yet. Probabilities that prices will drop in
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January are roughly 0.4 for all series and for both forecasting methods.
However, probabilities that prices will drop by more than 1 standard
deviation are at most 0.052. This confirms that crude oil prices are in
a period of volatile and rather high prices, but it does not suggest a
bubble behavior with a potential large drop. This can also be seen
by the difference between the sample-based and simulations-based
predictions. Hecq and Voisin (2021) show that discrepancies between
the two approaches mostly arise during extreme episodes. Here, they
do not differ by more than 3.3% for the probabilities of a decrease, and
by no more than 0.9% for the probabilities of a sharper decrease.

At the end of January 2020, international alerts regarding the
spread of the novel coronavirus had been made, which induced an
unforeseeable drop in prices. Yet, the t4-detrended series only fell by
half a standard deviation and the other two by 75% (resp. 80%) of a
standard deviation for the Brent (resp. WTI) series. Values remained
however above median values. Forecasts based on both methods
suggest a continuity in the decrease for February with probabilities
ranging from 0.76 to 0.88, yet, they indicate almost zero probability
that the drop will be substantial (more than a standard deviation).
They hence suggest a return to median values, meaning a return to
fundamental prices. Both prediction methods again provide results
diverging by no more than 3.3%. By the end of February 2020,
mass gatherings started to be forbidden and the first advice for the
quarantine of individuals to contain the spread of the virus had
be made. The increasing worldwide pressure hence kept pushing
prices down. Yet, no decrease in the detrended series was larger than
60% of a standard deviation, which was once again in line with the
predictions. The series reached their median levels, forecasts for
March suggested that series would remain stable around those values,
yet favoring a further slight decrease as prices had been declining
for the last three consecutive periods. Probabilities of a sharp drop
decreased even more towards zero and both prediction methods
yielded again similar probabilities.
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In March 2020 the worldwide situation worsened significantly and the
World Health Organisation declared COVID-19 a global pandemic.
Many countries imposed strict movement restrictions within and
across borders, and curfews and lock-downs were implemented.
This sudden drop in crude oil demand led to a considerable fall in
prices, WTI prices fell by 55% and Brent prices by 71%. Values of
the detrended series fell by more than 2 standard deviations and
reached the 2nd and 3rd percentile for HP -, SPR- and t6-detrending.
This indicates a negatively explosive episode, and therefore a
negative bubble below fundamental prices. The t4-detrending values
correspond to at least the 10th percentile, suggesting a less extreme
episode, compared to the previous behavior of the series. Until
this point both predicting methods yielded similar probabilities.
However, the discrepancy between the probabilities now attain 0.24
difference, where the simulations-based probabilities of a decrease
are always larger than the sample-based probabilities. Hecq and
Voisin (2021) show that the discrepancies between the sample- and
simulations-based approaches widen during explosive episodes. This
is why probabilities for t4-detrending series are still very similar
across the forecasting methods as opposed to the other detrending
methods. They also show that the larger the lead coefficient, the more
the sample-results tend to yield larger probabilities of a turning point
than the ones computed with simulations. This stems from the fact
that the series had attained a few times this point before (in 2008 and
in 2015) and turned back towards median value. It is therefore, based
on the learning mechanism of the sample-based approach, less likely
that the series will keep on decreasing. It is important to notice that
even though prices dropped significantly, probabilities that they will
keep on decreasing are lower than before for HP - and t6-detrended
series as well as for SPR-detrended Brent. However, compared
to previous forecasts, probabilities now suggest that if the series
actually kept on decreasing, it could likely be by more than 1 standard
deviation as it has now entered an explosive episode. SPR-detrended
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WTI series has a larger probabilities of decrease than for the previous
month, however, as can be notice, the probabilities of the sharper
decrease for both SPR-detrended series are much closer to 0 than
with other detrending. This stems from the larger degrees of freedom
as well as larger lead coefficient and slightly lower lag coefficient.

Figure 3.6 illustrates the evolution of the predictive densities of the
HP-detrended Brent series over the time span. On the x− axis are the
predictions and on the y − axis their corresponding probability den-
sity. The vertical dashed line corresponds to the last value, that is, in
graph (a), the vertical line is the detrended value of Brent prices for
December 2019. We can clearly observe the bi-modality of the distri-
bution when the series deviates from median values, as shown for the
forecasts of January and April, which exacerbate during the explosive
negative episode. The range and shape of the density also explains the
discrepancies between probabilities of a decrease and probabilities of
a decrease of more than 1 standard deviation.13

To illustrate the valuable information provided by the predictive
densities of MAR models, graph (a) of Figure 3.7 depicts the
predictive density for April 2020 using a Gaussian AR(2) model
instead of an MAR(1,1) on HP -detrended Brent prices. The predictive
density is obtained using the closed-form of the conditional normal
distribution. We can see that the mode of the density corresponds to a
further decrease, but it now lacks the bi-modality and therefore does
not suggest a return to central values as does the MAR predictive
density shown on graph (d) of Figure 3.6. As such, once the series
enters a locally – here negative – explosive episode, the AR(2) only
predicts a continuing decrease of the prices. Graph (b) of Figure 3.7
displays the sample-based predictive density of the SPR-detrended
Brent series. We can see that the larger lead coefficient implies a lower
rate of decrease (this can be seen as the distance between the two

13Results for all other series, available upon request, follow a similar pattern.
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(a) January 2020 (b) February 2020

(c) March 2020 (d) April 2020

Figure 3.6: One-step ahead predictive densities of HP-detrended Brent prices
obtained with the sample-based prediction method.

modes), but it indicates larger probabilities of a further decrease as
large lead coefficients imply longer lasting explosive episodes. This is
why the right mode, which corresponds to a return to central values
has a much lower weight on the density.

The MAR models employed here are univariate, hence no exogenous
information is incorporated, as opposed to MARX models (see
Hecq, Issler, and Telg (2020) and Hecq, Issler, and Voisin (2022)).
Disregarding exogenous variables facilitates forecasting but can
sometimes lead to consequential lack of information. For instance, it
is expected that crude oil prices should be lower-bounded as they
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Figure 3.7: One-step ahead predictive densities of HP-detrended Brent prices
obtained with the sample-based prediction method.

cannot decrease indefinitely and become increasingly negative.
Simulations-based probabilities cannot not take that into account
as they are only based on the model estimated. Sample-based
probabilities however, since prices have never become negative (or
at least not long enough to be visible on monthly series), will tend to
limit the probabilities that it will happen in the future, even without
incorporating additional information within the model, based on its
learning mechanism.

Overall, HP- and t6-detrending provide similar results both for
estimation and predictions. SPR-detrending, as mentioned earlier
yields slightly different dynamics which might stem from the
dynamics that are inherent to the stock variable itself. Detrending
with t4 yields slightly different results for the estimation but which in
turn yields quite different results for predictions. We saw in Figure
3.5 that detrending with a polynomial trend of order 4 induced
different dynamics in the remaining cycle than the other mechanical
detrending. This also corroborates the results found in Section 3.3
about the risks of underestimating the order of a polynomial trend
on the dynamics of the series. We can also see in Figure 3.5 that the
main differences between all detrending methods appear at the end
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of the sample. HP and SPR detrending are almost identical while
t6 provides slightly lower values. On the other hand, t4-detrending
yields significantly larger value than the others for the end of the
sample.

3.4.3 Real-time analysis

To illustrate the difficulties and the limitations of detrending and
forecasting in real time, we compare the results obtained in real
time to the ones obtained in-sample for Brent prices with t4, t6 and
HP detrending. We did not include SPR detrending in this Section
as we are interested in detrending methods that are affected by
sample expansion and while with SPR detrending we still need to
re-estimate the model at each point, the trend itself does not change.
Table 3.5 shows the estimated MAR models for the expanding
samples after each detrending. We can see that the expansion of the
sample, even with the inclusion of the large drop of March 2020 did
not affect the identification of the model nor the dynamics. Lead and
lag coefficients vary by no more than 0.03. The estimated degrees of
freedom of the Student’s t distribution are rather stable until the data
point of March is included, which induced decrease between 0.07 and
0.1 for all series, getting therefore closer to the parameter estimated
ex-post. This stability in the estimation of the models suggest that
probabilities should not significantly differ either.

To investigate the sensitivity of the detrending methods to the
addition of new data points, Figure 3.8 shows how the detrended
series vary based on the stopping point of the sample. The dashed
line corresponds to the ex-post detrended series, hence when all
data points until December 2020 are included. Then, the expanding
samples are depicted from the light blue curve (sample stopping in
December 2019) to the black curve (sample until March 2020). While
detrending with t4 induced the most spurious dynamics over the
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Table 3.5: Estimated MAR models on different Brent prices samples

Sample
MAR(1,1) estimations per detrending method

t4 t6 HP
ϕ ψ t(γ) ϕ ψ t(γ) ϕ ψ t(γ)

In-sample 0.31 0.89 1.93 0.31 0.86 1.82 0.31 0.83 1.83
(0.03) (0.01) (0.27) (0.03) (0.02) (0.33) (0.03) (0.02) (0.31)

→ Dec 0.30 0.89 2.06 0.29 0.86 1.98 0.29 0.84 1.97
(0.03) (0.01) (0.27) (0.03) (0.02) (0.33) (0.03) (0.02) (0.31)

→ Jan 0.30 0.89 2.05 0.29 0.86 1.97 0.28 0.84 1.97
(0.03) (0.01) (0.31) (0.03) (0.02) (0.33) (0.03) (0.02) (0.31)

→ Feb 0.30 0.89 2.07 0.31 0.85 1.97 0.30 0.83 1.97
(0.03) (0.01) (0.31) (0.03) (0.02) (0.32) (0.03) (0.02) (0.31)

→ Mar 0.30 0.89 1.97 0.31 0.85 1.89 0.30 0.83 1.90
(0.03) (0.02) (0.36) (0.03) (0.02) (0.36) (0.03) (0.02) (0.33)

See Table 3.3.

sample, it seems, as well as the HP filter, to be less affected by the
addition of the new points than the t6-detrending. In graph (a), we
can see that the 4 detrended series are almost identical, even once
the point for March is added. In graph (c), corresponding to the
HP-detrended series, we can see that the 3 first detrended series are
almost identical but that the inclusion of March creates a slight shift
in the detrended series. In this case also, the inclusion of even later
points will induce further shifts of the estimated trend. However,
for the polynomial trend of order 6, as depicted in graph (b), we can
see that the inclusion of each point creates a noticeable shift in the
estimated trend. From this, we expect the t6-detrended series to be the
ones for which the probabilities differ the most from the in-sample
probabilities. Indeed, even if the estimated model is almost identical,
the substantial discrepancies between the real-time and ex-post
detrended series may impact probabilities, especially during (mildly)
explosive episodes.
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(a) t4-detrended Brent

(b) t6-detrended Brent

(c) HP -detrended Brent

Figure 3.8: In-sample (dashed curve) vs real-time detrending of Brent prices

Figure 3.9 depicts the evolution of the one-month ahead probabilities
with expanding window. In black are the in-sample probabilities
and in orange the real-time probabilities. For the real-time analysis,
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the trend and the model is re-estimated at each point. The full
lines are the probabilities of a decrease and the dashed lines are the
probabilities of a decrease of more than 1 standard deviation. Graph
(a) (resp. (b)) represents the sample-based (resp. simulations-based)
probabilities. As expected, the simulations-based probabilities are
the least affected by the re-estimation of the model at each point,
since we did not observe significant alteration in the estimations.
However, as shown in Figure 3.8, it is indeed the t6-detrending that
is the most sensitive to the expansion of the sample. Furthermore,
we can see that mostly the probabilities of a decrease are affected,
as the probabilities of a drop of more than 1 standard deviation
are not significantly deviating from the in-sample probabilities.
Overall, this indicates that real-time forecasting would have
indicated on average lower probabilities of a decrease, at each
point and for both approaches. Yet, it would have indicated equal,
if not slightly higher, probabilities for the larger drop. Hence,
probabilities of more extreme events, namely the tails of the pre-
dictive densities, seem to be the least affected by alteration of the trend.

Overall, it seems that the HP-filter is the least sensitive to the change
of sample size within this analysis. Results with t4-detrending also
emphasises the risks of underestimating the order of the trend. More-
over, while the HP-filter and the polynomial trend of order 6 perform
similarly in this analysis, assuming the order of a polynomial trend
requires additional understanding regarding the deviations of the se-
ries from its fundamental trend. Deterministic trends appear also to
be more sensitive to the addition of points in a real-time exercise than
the HP filter. Furthermore, while simulations-based probabilities are
not characterised by the learning mechanism of the sample-based ap-
proach, they are less affected by expanding samples, as long as the
model estimated remains consistent. However, as mentioned earlier,
with a model that lacks exogenous information, the sample-based ap-
proach relying more on past behavior can potentially offset the short-
comings.
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(a) Sample-based probabilities

(b) Simulations-based probabilities

Figure 3.9: Evolution of in-sample (black solid and dashed lines) and real-
time (orange solid and dashed lines) probabilities over time

3.5 Conclusion

This chapter aims at shedding light upon how transforming or
detrending a series can substantially impact predictions of mixed
causal-noncausal models. Assuming a polynomial trend of order 4 for
WTI and Brent series probably alters the dynamics in the remaining
cycle. The HP filter (with penalising parameter λ = 129 600) does not
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require any further assumptions with respect to the trend and can
therefore be an adequate filter in cases where the trend is unknown.
Knowing the actual trend or using exogenous variables for it is
also not straightforward. We use US crude oil strategic petroleum
reserves (SPR) to detrend oil price series to illustrate this option.
We show that by detrending with SPR we obtain similar results
to the HP and polynomial trend of order 6 detrending. However,
detrending with a variable that has seasonality or dynamics will
alter the dynamics left in the cycle. Overall, caution is needed when
detrending a series, and some filtering such as polynomial trends
may require additional understanding regarding the deviations of
the series from its fundamental trend. Nonetheless, once the series
is detrended, resulting in a stationary series, using MAR models
is a straightforward approach to model nonlinear time series. They
capture the locally explosive episodes observed in oil prices in a
strictly stationary setting. While the bi-modality of the predictive
density would not be detected with standard Gaussian ARMA
models, it could be detected with complex nonlinear models, but
such model lacks the parsimonious characteristic of MAR models.
The data-driven prediction methods may lack theoretical grounds
but provide valuable information based on the estimated model and
on past behaviors of the series in a parsimonious way. This chapter
focuses on one-step ahead predictions of decrease in crude oil prices
during the first wave of the COVID-19 pandemic.
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Appendix A Impact of detrending on estimated
coefficients

We now investigate the persistence of the dynamics from the
magnitude of the estimated coefficients. For instance, a lower lead
coefficient will indicate shorter lived bubbles compared to the true
generated process and thus increases the probabilities of a crash
during an explosive episode. The same goes for larger degrees of
freedom when the errors follow a Student’s t distribution: larger
degrees of freedom correspond to thinner tails, and thus rarer extreme
values and thus makes less probable long lasting explosive episodes.

We investigate the distribution of the estimated coefficients given
a correctly identified model. Frequencies of wrongly identified
models per dgp and detrending method are shown in the columns
‘wrong MAR’ of Table 3.2. Hence, proportions of correctly identified
models range between 76.76% and 96.3% of the 5 000 replications,
but are almost always above 90%. Figure 3.10 reports the box plots
of estimated coefficients for the purely noncausal (left column)
and mixed causal-noncausal (center and right columns, for the lag
and lead coefficients respectively) processes after each of the four
detrending approaches is applied. We indicate the true coefficients,
0.6 and 0.8 for the lag and lead respectively, by the vertical dotted
line. The box plots indicate the minimum, maximum, the interquartile
range and the median. The HP1-filtered series (with λ = 14 000) are
on average characterised by lower estimated lead and lag coefficients
than the other detrended series. This is due to the low penalisation
of the filter, capturing too much of the dynamics, reducing the
persistence of the true noncausal process. Furthermore, we can
see that using polynomial trends does not affect estimations of the
coefficients, on average, as long as the order of the trend estimated is
at least that of the true trend. That is, underestimating the order of the
trend leads to an alteration of the dynamics and in our case, to more
persistent noncausal dynamics. The HP2 filter performs similarly to
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t6, but we can expect that if the true trend was a higher order, HP2

would perform better. The constructed linear trend with breaks leads
to much larger noncausal coefficients for all detrending methods.
The second break in the trend mimics the crash of a bubble and the
long expansion preceding it leads to the identification of the model
with a larger lead coefficient, which corroborates the earlier findings.
Importantly, lag coefficients are on average correctly identified
(the distributions of the estimated degrees of freedom, available
upon request, show that they are not significantly affected by the
detrending either). A wrong detrending therefore mostly affects the
noncausal dynamics of the processes.

90



MAR(0,1) + no trend MAR(1,1) + no trend

MAR(0,1) + τ4 MAR(1,1)+ τ4

MAR(0,1) + τ6 MAR(1,1)+ τ6

MAR(0,1) + breaks MAR(1,1) + breaks

Figure 3.10: Distribution of estimated MAR coefficients
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Appendix B Results for price adjusted series

Figure 3.11: Monthly crude oil prices deflated with Consumer Price Index

92



Table 3.6: One-step ahead probabilities

Series
Detrended Jan. Feb. Mar. Apr.

with samp. sims. samp. sims. samp. sims. samp. sims.

WTIreal

Probability of a decrease
t4 .533 .476 .735 .704 .668 .637 .794 .789
t6 .511 .503 .775 .753 .646 .662 .696 .656
HP .501 .492 .765 .738 .645 .642 .660 .626
SPR .470 .446 .637 .656 .529 .586 .639 .693

Probability of a decrease > 1 s.d.
t4 .034 .030 .014 .016 .008 .008 .010 .007
t6 .030 .029 .010 .013 .005 .006 .064 .090
HP .034 .032 .010 .015 .006 .008 .104 .125
SPR .002 .002 .002 .002 .001 .001 .002 .007

Brentreal

Probability of a decrease
t4 .461 .428 .739 .714 .666 .639 .856 .850
t6 .485 .468 .790 .765 .693 .677 .721 .736
HP .476 .462 .780 .750 .675 .656 .651 .675
SPR .526 .440 .715 .705 .606 .627 .643 .797

Probability of a decrease > 1 s.d.
t4 .033 .026 .015 .015 .008 .009 .027 .023
t6 .027 .026 .009 .013 .000 .007 .134 .215
HP .030 .029 .011 .015 .000 .008 .210 .294
SPR .002 .003 .002 .003 .001 .002 .007 .020

For the simulations-based approach (sims.) the truncation parameter M = 100 and
1 000 000 simulations were used. Standard deviations (s.d.) are calculated over the
detrended samples.
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4
A short term credibility index for

central banks under inflation
targeting: an application to Brazil

Adapted from: Alain Hecq, João Victor Issler, and
Elisa Voisin (2022). A short term credibility index for central
banks under inflation targeting: an application to Brazil. DOI:
10.48550/ARXIV.2205.00924.
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Abstract
This chapter uses predictive densities obtained via mixed
causal-noncausal autoregressive models to evaluate the statistical
sustainability of Brazilian inflation targeting system with the tolerance
bounds. The probabilities give an indication of the short-term
credibility of the targeting system without requiring modelling
people’s beliefs. We employ receiver operating characteristic curves
to determine the optimal probability threshold from which the bank
is predicted to be credible. We also investigate the added value of
including experts predictions of key macroeconomic variables.
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4.1 Introduction

With the introduction of the Real Plan in July 1994, and later in 1999
with the Inflation Targeting Regime, actual Brazilian inflation has been
substantially smaller compared to the previous hyperinflation period
of the 1970s and 80s. Annual inflation computed with the Extended
National Consumer Price Index (IPCA1), the reference variable for
the Brazilian Inflation-Targeting Regime, is 6.07% on average between
January 1997 and October 2020. Figure 4.1 displays the IPCA annual
inflation rate for that period, together with the upper and lower
tolerance bounds set within the regime. These tolerance bounds were
2 to 2.5 percentage points from the target inflation until 2017 and are
now 1.5 percentage points above and below the target. With the
noticeable exception of years 2001-2003 and 2015-2016, the Central
Bank of Brazil (BCB) succeeded to ensure that the IPCA’s annual
inflation remains within or close to the tolerance interval.

The question that we want to answer in this chapter is whether, in any
given month, it is sustainable for inflation to stay within the actual
tolerance bounds set in advance by the Inflation-Targeting Regime
of the Brazilian Central Bank (BCB). We do this by computing the
conditional probability that actual inflation stays within the bounds
in the near future (1- to 6-month ahead) using a forward-looking
approach that allows current inflation to depend on future inflation as
well on lagged inflation. This is the first original contribution of this
paper.

1The IPCA targets population families with household income ranging from 1 to
40 minimum wages. This income range guarantees a 90% coverage of families
living in 13 geographic zones: metropolitan areas of Belém, Fortaleza, Recife, Sal-
vador, Belo Horizonte, Vitória, Rio de Janeiro, São Paulo, Curitiba, Porto Alegre,
as well as the Federal District and the cities of Goiânia and Campo Grande. Basket
items include Food and Beverages, Housing, Household Articles, Wearing Ap-
parel, Transportation, Health and Personal Care, Personal Expenses, Education
and Communication.
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Figure 4.1: Annual inflation rate in Brazil and the target bounds

Applying the techniques discussed in this chapter to other countries
is straightforward, as long as we are able to obtain their respective
targets and bounds. So, the second original contribution of this
chapter is to propose a new methodological approach to measure the
credibility of central banks under an Inflation-Targeting Regime. Due to
the nature of the problem we were set to answer, this methodology is
related to short-term credibility as opposed to longer term credibility
indices that have been proposed in the literature. Hence, we provide a
complement to these techniques.

Although we employ a forward-looking approach, the information
used to compute these probabilities across time only condition on
current information. Indeed, we use a mixed causal-noncausal model
– MAR(r, s)) – a process with a lag polynomial of order r (as in the
usual autoregressive AR(r) model), but with a lead polynomial of
order s as well. The introduction of a forward component makes
sense for modelling inflation, since many economic models link
current inflation to their future expected value which is captured by
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the forward component introduced in the MAR(r, s) class. Moreover,
this class also allows modelling parsimoniously nonlinear features in
inflation, which the simpler linear setup misses. MAR models were
introduced by Lanne, Luoto, and Saikkonen (2012) and refined by
Gouriéroux and Jasiak (2016). Here we use the framework proposed
in Hecq and Voisin (2021) and Hecq and Voisin (2022).

We do showcase the Brazilian experience, despite the fact that the
techniques employed in this chapter have a broader application.
Inflation has been a major problem for this country over the years
and inflation has been in and out the bounds according to Figure
4.1. So, we would have two polar cases at hand: when the central
bank policy had the desired effect on inflation and when it had not.
Another interesting feature about Brazil is that, as far as we know, the
BCB has the most complete data base on inflation expectations on
earth – The Focus data base. It contains high frequency (daily) data on
inflation expectations (also on other key macroeconomic variables)
from current month all the way to 12 months ahead, and then on
yearly intervals. This allows expectations data to be used to help
forecast future inflation as a proxy for it, employing the MARX model
proposed by Hecq, Issler, and Telg (2020), where strictly-exogeneous
regressors are used in the model.

Most of the literature on central-bank credibility measures whether
people expect or not that the central bank will meet their target;
see Blinder (2000). This implies the need for modelling people’s
expectations regarding future inflation. As shown by Issler and
Soares (2022), and the references therein, it is not straightforward
to compute people’s beliefs, and results can change substantially
based on the method being employed. This chapter instead
focuses on the actual inflation process and asks whether it
will remain within the announced bounds. It does not require
modelling people’s beliefs. It is based on the econometric prop-
erties and the dynamics of inflation using a forward-looking approach.

99



Chapter 4. A short term credibility index for central banks under
inflation targeting: an application to Brazil

Empirically, the chapter first identifies the MAR(r, s) model on
IPCA annual inflation. We found that the 12-month inflation rate
follows a MAR(1,1) process with the error term having a Student’s t
distribution with 3.25 degrees of freedom. This is our benchmark
case, but we also experiment with alternative specifications. Using the
approach in Hecq and Voisin (2021) and Hecq and Voisin (2022), and
our benchmark specification, we evaluate the probabilities that the
inflation rate stays on track in the future within the announced target
bounds.

Finally, in our last original contribution, we compare the empirical
results of our proposed short-term index to those of the literature
by employing a receiver operating characteristic curve (ROC curve),
something that is not common in the literature. For every measure of
credibility, the ROC curve plots the true-positive and the false-positive
rates for different probability thresholds used in classifying states
(credible vs. non-credible). Our results show promise for the method
propose in this chapter as a complement to the existing ones, which
are focused on credibility at longer horizons.

The rest of the chapter is as follows. Section 4.2 provides a summary of
the model and estimation methods used here. Section 4.3 summarizes
the main methods that have been developed to forecast with MAR
models. Section 4.4 provides the estimated probabilities for the infla-
tion to stay within announced bounds at various horizons. In Section
4.5 we ask whether adding the information of experts forecasters from
the Focus database helps forecasting the conditional probabilities com-
puted here. Section 4.6 compares our short-term credibility measure
with existing credibility indices presented in the literature. Section 4.7
concludes.
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4.2 Mixed causal-noncausal models

4.2.1 Notation

An MAR(r, s) process yt depends on its r lags as for usual autoregres-
sive processes but also on its s leads in the following multiplicative
form

Φ(L)Ψ(L−1)yt = εt,

with L is the backshift operator, i.e., Lyt = yt−1

gives lags and L−1yt = yt+1 produces leads. When
Ψ(L−1) = (1 − φ1L

−1 − ... − φsL
−s) = 1, namely when

φ1 = ... = φs = 0, the process yt is a purely causal autoregressive
process, denoted AR(r,0) or simply AR(r) model Φ(L)yt = εt. The
process is a purely noncausal AR(0, s) model Ψ(L−1)yt = εt, when
ϕ1 = ... = ϕr = 0 in Φ(L) = (1 − ϕ1L − ... − ϕrL

r). The roots of both
the causal and noncausal polynomials are assumed to lie outside
the unit circle, that is ϕ(z) = 0 and φ(z) = 0 for |z|> 1 respectively.
These conditions imply that the series yt admits a two-sided moving
average (MA) representation yt =

∑∞
j=−∞ ψjεt−j , such that ψj = 0

for all j < 0 implies a purely causal process yt (with respect to εt)
and a purely noncausal model when ψj = 0 for all j > 0 (Lanne and
Saikkonen, 2011). Error terms εt are assumed i.i.d. (and not only weak
white noise) non-Gaussian to ensure the identifiability of the causal
and the noncausal part (Breidt et al., 1991).

There is a increasing literature making use of MAR models; see
among others Karapanagiotidis (2014), Hencic and Gouriéroux (2015),
Gouriéroux and Jasiak (2016), Lof and Nyberg (2017), Hecq and Sun
(2021), Bec, Nielsen, and Saı̈di (2020a), Gourieroux, Jasiak, and Tong
(2021), Gourieroux, Hencic, and Jasiak (2021).
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4.2.2 Estimation results on IPCA

Let πt denote the year-on-year inflation rate in Brazil at time t. The
hybrid New Keynesian Phillips Curve (NKPC) regression is such as

πt = γfEt[πt+1] + γbπt−1 + βxt + ϵt,

where Et[·] the conditional expectation at time t, xt is a measure for
marginal costs, which is not directly observable (a potential proxy can
be the output gap) and ϵt an i.i.d. error term. Adding and subtracting
γfπt+1 and rearranging terms, gives

πt = γfπt+1 + γbπt−1 + βxt + γf (Et[πt+1]− πt+1) + ϵt︸ ︷︷ ︸
≡ηt+1

,

where the newly defined disturbance term ηt+1 consists of three
different parts: (i) the expectation error (Et[πt+1]− πt+1) which
is assumed i.i.d. following the literature on rational expectations
models, (ii) the marginal costs variable xt and (iii) an i.i.d. error
ϵt. Hence, the time series properties of ηt+1 will depend on those
of xt, but xt is assumed to be adequately approximated by a
finite-order autoregression (Lanne and Luoto, 2013). Subsequently,
the newly obtained equation is divided by γf and lagged by
one period to obtain (1 − γ−1

f L + γ−1
f γbL

2)πt = −γ−1
f ηt. Next,

a(z) ≡ (1 − γ−1
f z + γ−1

f γbz
2) can be written as the product of two

polynomials, i.e., a(z) = (1 − ϕz)(1 − φ∗z) with |ϕ|< 1 and |φ∗|> 1
for plausible values of γf and γb leading to a stable mixed causal
noncausal formulation. See Lanne and Luoto (2013) for details. The
MAR models we consider in this chapter are not a direct mapping of
the NKPC but rather an estimation of the dynamics emanating from
the transformations of the Philips curve mentioned above.

We have used the MARX package developed by Hecq, Lieb, and Telg
(2017b)2 and found on the whole sample an MAR(1,1) with a Student’s

2We look at different starting value to avoid the bimodality trap of the MAR(r,s)
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t with 3.25 degrees of freedom. Standard errors computed as in Hecq,
Lieb, and Telg (2016) are in brackets.

(1− 0.58
(0.035)

L)(1− 0.94
(0.016)

L−1)πt = εt, εt ∼ t(3.25) (4.1)

To analyse the stability of the estimation we recursively estimate the
orders of the MAR(r,s) model and the corresponding coefficients
with an expanding window. The initial sample goes from January
1997 to April 2005 (100 data points) and the last one goes to
January 2020 (277 data points). Note that at each point the
model identified was an MAR(1,1), we hence only provide the
graphs of the recursive estimates of the lag coefficient, the lead
coefficient and the degrees of freedom of the Student’s t dis-
tribution in Figure 4.2 with the corresponding 95% confidence interval.

We can see that adding data points does not affect the value of the
estimated coefficients. Over the 177 points added, the value of the
lag coefficients slightly decreases from 0.62 to 0.58 whereas the lead
coefficient varies between 0.936 and 0.948 and stabilises around
0.944 towards the end of the sample. The degrees of freedom vary
between 3 and 3.7 and converges towards 3.25 towards the end of the
sample. Hence, the slightly different models estimated in real time
for recursive out of sample forecasts will not significantly affect the
calculated probabilities and they will therefore be comparable. Note
that from the correlogram of the residuals we might detect a seasonal
MA(12) component. This feature is probably due to the construction
of the year on year monthly inflation. Over differencing at some
seasonal frequencies can introduce that moving average pattern. We
keep working with this annual series as this is the target variable
considered by the central bank. For our investigation that component

estimated coefficients. This is not implemented in MARX so far. Note that Hecq,
Issler, and Telg (2020) show how to estimate such a model directly without solving
for the exogenous variable xt. This will be estimated in Section 4.5.
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Figure 4.2: Recursive estimates of the coefficients based on end point of sam-
ple and their 95% C.I.
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mainly impacts standard errors. Mixed models with MA components
(genuine or spurious) are also out of the scope of this paper.

Expanding the multiplicative model (4.1) we obtain,

πt =
0.58

1 + 0.58× 0.94
πt−1 +

0.94

1 + 0.58× 0.94
πt+1 +

1

1 + 0.58× 0.94
εt

= 0.38πt−1 + 0.61πt+1 + ε∗t .

The obtained coefficients for the lag and lead are of the same magni-
tude as in the literature on the NKPC, and we can notice that they add
up to close to unity, which is often a restriction imposed for model
identification (see among others Gali, Gertler, and Lopez-Salido, 2005;
Nason and Smith, 2008).

4.3 Predicting the probabilities to stay in the bounds
With Cauchy- and Levy-distributed errors, the conditional density of
an MAR(r,s) process admits closed-form expressions, this is however
not the case for Student’s t distributed processes (Gouriéroux and
Zakoı̈an, 2017). Assuming Student’s t errors offers more flexibility
than the Cauchy distribution, which might be too extreme, especially
for inflation series that are not particularly volatile. Hence, in the
absence of closed-form expressions for the predictive density, two
approximations methods have been developed. The first one is based
on simulations and was proposed by Lanne, Luoto, and Saikkonen
(2012). The second one employs past realised values instead of
simulations and was proposed by Gouriéroux and Jasiak (2016).
However, as the latter becomes too computationally demanding when
the forecast horizon increases, Gouriéroux and Jasiak (2016) proposed
a Sampling Importance Resampling (henceforth SIR) algorithm
facilitating longer horizon forecasts with this method. While the
algorithm does not always work for extreme events, it provides
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accurate results when the variables are rather stable, which is the
case with the inflation series that we investigate here. Overall, both
approaches use the decomposition of the mixed process into a causal
and a noncausal component as such

ut ≡ Φ(L)πt

vt ≡ Ψ(L−1)πt.
(4.2)

The process ut is the purely noncausal component of the errors, on
which we will focus. In this analysis, since the inflation series is an
MAR(1,1), the process ut is a purely noncausal process of order 1,

Ψ(L−1)ut = εt

ut = ψut+1 + εt.
(4.3)

4.3.1 Simulations-based approach

The purely noncausal component of the errors, ut, can be expressed
as an infinite sum of future error terms in its MA representation. The
stationarity of the process ensures the existence of an integer M large
enough to approximate this infinite representation as such (Lanne, Lu-
oto, and Saikkonen, 2012),

ut ≈
M∑
i=0

ψiεt+i, (4.4)

Let lbt and ubt be the lower and upper bound for inflation in Brazil
assessed for time t. We are interested in the conditional probabilities
that inflation will be within the bounds at a given horizon h, where T
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is the last observed point in the sample,

P
(
lbT+h ≤ π∗

T+h ≤ ubT+h|FT

)
= P

(
π∗
T+h ≤ ubT+h|FT

)
− P

(
π∗
T+h ≤ lbT+h|FT

)
= ET

[
1(π∗

T+h ≤ ubT+h)− 1(π∗
T+h ≤ lbT+h)

]
(4.5)

The indicator function 1() is equal to 1 when the condition is met and
0 otherwise.

Since πt = ϕπt−1 + ut, by recursive substitution and using the approx-
imation equation (4.4), we obtain,

πT+h = ϕhπT +

h∑
i=0

ϕiuT+h−i

≈ ϕhπT +

h∑
i=0

M−h−i∑
j=0

ϕiψjεT+h−i+j ,

(4.6)

where M is the truncation parameter introduced in Equation (4.4). Sub-
stituting this approximation in (4.5), an approximation of the condi-
tional probabilities is the following,

P
(
lbT+h ≤ π∗

T+h ≤ ubT+h|FT

)
≈

ET

[
1

(
πT +

h∑
i=0

M−h−i∑
j=0

ϕiψjεT+h−i+j ≤ ubT+h

)

− 1

(
πT +

h∑
i=0

M−h−i∑
j=0

ϕiψjεT+h−i+j ≤ lbT+h

)] (4.7)

Given the information set known at time T, the indicator
functions in (4.7) are only functions of the M future errors,
ε∗+ =

(
ε∗T+1, . . . , ε

∗
T+M

)
. Let q(ε∗+) be the function providing the value
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of the difference between the two indicator functions. Furthermore,
let ε∗(j)+ =

(
ε
∗(j)
T+1, . . . , ε

∗(j)
T+M

)
, with 1 ≤ j ≤ N , be the j-th simulated

series of M independent errors, randomly drawn from the errors
distribution, here a Student’s t(3.25). Assuming that the number of
simulations N and the truncation parameter M are large enough, the
probability that the inflation rate (which follows an MAR(1,1) process)
will remain within the bounds in h months can be approximated as
such (Lanne, Luoto, and Saikkonen, 2012), 3

P
(
lbT+h ≤ π∗

T+h ≤ ubT+h|FT

)
≈ ET

[
q(ε∗+)

]

≈

∑N
j=1 q

(
ε
∗(j)
+

)
g
(
uT −

∑M
i=1 ψ

iε
∗(j)
T+i

)
∑N

j=1 g
(
uT −

∑M
i=1 ψ

iε
∗(j)
T+i

) ,

(4.8)
where g is the pdf of the Student’s t(3.25) distribution.

Hecq and Voisin (2021) results show that with Cauchy-distributed er-
rors, this approach is a good estimator of theoretical probabilities but
are significantly sensitive to the number of simulations N during lo-
cally explosive episodes. For Student’s t distributions however, results
cannot be compared to theoretical ones, but as the number of simula-
tions gets larger, the derived densities converge to a unique function.
Overall Hecq and Voisin (2021) show that: (i) for degrees of freedom
close to 3 and (ii) during stable episodes, this approach yields consis-
tent results that are not significantly sensitive to the number of sim-
ulations, as long as it is reasonably large. Hence, choosing the right
number of simulations per iteration should not be a worry in this anal-
ysis.

3See Section 2.4.1 for more detailed derivations of the estimator.
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4.3.2 Sample-based approach

As an alternative to using simulations, Gouriéroux and Jasiak (2016)
employ all past observed values of the process to approximate the
marginal distributions of noncausal processes. They propose the fol-
lowing sample-based approximation of the predictive density of an
MAR(0,1),4

l(u∗T+1, . . . , u
∗
T+h|FT )

≈ g(uT − ψu∗T+1) . . . g(u
∗
T+h−1 − ψu∗T+h)

∑T
i=2 g(u

∗
T+h − ψui)∑T

i=2 g(uT − ψui)
,

(4.9)

where g is the pdf of a Student’s t distribution with 3.25 degrees of
freedom.

Given a correctly identified model and based on the equivalence
of the information sets (π1, . . . , πT , π

∗
T+1, . . . , π

∗
T+h) and

(v1, ε2, . . . , εT−1, uT , u
∗
T+1, . . . , u

∗
T+h) (Gouriéroux and Jasiak, 2016),

where vt = πt − ψπt+1, the predictive density of the MAR(1,1) process
πt can be obtained by substituting the filtered noncausal process ut by
the mixed process πt in (4.9),

l(π∗
T+1, . . . ,π

∗
T+h|FT ) ≈ g((πT − ϕπT−1)− ψ(π∗

T+1 − ϕπT ))× . . .

. . .× g((π∗
T+h−1 − ϕπ∗

T+h−2)− ψ(π∗
T+h − ϕπ∗

T+h−1))

×
∑T

i=2 g(π
∗
T+h − ϕπ∗

T+h−1 − ψ(πi − ϕπi−1))∑T
i=2 g(πT − ϕπT−1 − ψ(πi − ϕπi−1))

.

(4.10)

Evidently, evaluating the conditional joint density over all possible
outcomes becomes considerably computationally demanding as the
forecast horizon increases. This is why Gouriéroux and Jasiak (2016)

4See Section 2.4.2 for more detailed derivations of the estimator.
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developed a Sampling Importance Resampling (henceforth SIR) algo-
rithm to counter this computational limitation. We provide details and
describe the algorithm in the subsequent Section. We will therefore
employ estimator (4.10) for a forecast horizon of 1 (see (4.11)) and will
use the SIR algorithm for horizons of 3 and 6 months.

l(π∗
T+1|FT ) ≈ g

(
πT − ϕπT−1 − ψ(π∗

T+1 − ϕπT )
)

×

∑T
i=2 g

(
π∗
T+1 − ϕπ∗

T − ψ(πi − ϕπi−1)
)

∑T
i=2 g

(
πT − ϕπT−1 − ψ(πi − ϕπi−1)

) . (4.11)

This estimator provides predicted probabilities that are a combination
of theoretical probabilities and probabilities induced by past events;
results are therefore case-specific and are based on a learning
mechanism (Hecq and Voisin, 2021). For values close to the median
this approach provides accurate and similar results to theoretical
probabilities (when available) and to the simulations-based method
of Lanne, Luoto, and Saikkonen (2012) for one-step ahead forecasts.
Discrepancies widen as the level of the series increases.

4.3.3 Sampling Importance Resampling algorithm

As previously mentioned, estimator (4.10) developed by Gouriéroux
and Jasiak (2016) is substantially computationally demanding to em-
ploy for long forecast horizons and simulating from this distribution is
rather intricate. The authors then proposed a SIR algorithm to counter
this. The algorithm consists in simulating potential paths of future
noncausal components ut’s from an instrumental misspecified model
from which it is easier to simulate. The distribution (4.10) of interest
is then recovered using a weighted resampling of the simulations and
the relation (4.3) between the inflation rate πt and its noncausal com-
ponent ut. Gouriéroux and Zakoı̈an (2013) note that a Markov process
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in reverse time is also a Markov process – of the same order – in calen-
dar time with non-linear dynamics. Hence, since in this analysis ut is a
non-causal MAR(0,1) process, it could be expressed as a causal AR(1)
process, with non-linear dynamics. For a study on misspecified causal
analysis of noncausal processes see Gouriéroux and Jasiak (2018). Fol-
lowing Gouriéroux and Jasiak (2016), we employ a Gaussian AR(1)
model as instrumental model for the algorithm,

ut = ρ̃ut−1 + ε̃t. (4.12)

The parameter ρ̃ is estimated using standard OLS on the observed
values ut filtered from the initial MAR(1, 1) process πt. The errors
ε̃t ∼ IIN(0, σ̂2), where σ̂2 is the MAR residuals variance, ·̃ indicates es-
timation from the instrumental model, and ·̂ from the initial MAR(1, 1)
model. The conditional predictive density for the instrumental process
is as follows,

F̃ (u∗T+1, . . . , u
∗
T+H |uT )

= l̃(u∗T+H |u∗T+H−1)l̃(u
∗
T+H−1|u∗T+H−2) . . . l̃(u

∗
T+1|uT )

= f(u∗T+H − ρ̃u∗T+H−1)f(u
∗
T+H−1 − ρ̃u∗T+H−2) . . . f(u

∗
T+1 − ρ̃uT ),

(4.13)

where F̃ is the predictive conditional distribution of h future ut’s from
the instrumental model and f the pdf of a normal distribution with
mean zero and variance σ̂2. Even though this model is clearly misspec-
ified, the resampling step should automatically correct for the induced
misspecifications (Gouriéroux and Jasiak, 2016). The algorithm for h-
step ahead predictions is as follows (see also Gourieroux, Hencic, and
Jasiak, 2021),

1. Sampling: Draw K series of h independent values ε̃ from a nor-
mal distribution N(0, σ̂2). Using the recursive equation (4.12)
and the last observed value uT , compute the K simulated paths
(ũiT+1, . . . , ũ

i
T+H), respectively stacked in Ũ i’s, i = 1, . . . ,K.

111



Chapter 4. A short term credibility index for central banks under
inflation targeting: an application to Brazil

2. Importance: Denote Π(Ũ i) the conditional density (4.10) evalu-
ated at the path (ũiT+1, . . . , ũ

i
T+H). Compute the weights wi =

Π̂(Ũ i)/F̃ (Ũ i) with i = 1, . . . ,K. Namely, the ratio between the
value of the density the algorithm intends to recover and the
value of the instrumental density.

3. Resampling: Draw with probability weighting based on
the previously computed weights and replacement S paths
(ũsT+1, . . . , ũ

s
T+H), s = 1, . . . , S, from the K simulated series in

the sampling step, with respective weights wi.

Once the set of S re-sampled Ũ i’s is obtained, each simulated
path (ũsT+1, . . . , ũsT+H), s = 1, . . . , S can be transformed into the
corresponding future path for the variable of interest (π∗

T+1, . . . , π
∗
T+H)

using on the causal relation in Equation (4.3).

As stated by Gouriéroux and Jasiak (2016), if the number of initial sim-
ulations K is large enough, simulating from the instrumental Gaus-
sian model and applying the SIR algorithm is equivalent to simulating
directly from the distribution of interest. It avoids simulating from
a too complicated distribution, or avoids the simulation of too many
extreme values. Hecq and Voisin (2021) find that this approach may
not function well during extreme events as the instrumental density
becomes too different from the one to recover. The instrumental den-
sity (derived from normally distributed errors) is unimodal while the
predictive density of a purely noncausal process during an explosive
episode is bi-modal with a significantly larger range. This implies that
during extreme events the instrumental conditional density is some-
times zero where the target distribution is not. This implies that dur-
ing extreme episode the distribution derived from the algorithm may
not converge to the target one since parts of the distribution are not
simulated in the first step of the algorithm, regardless of the number
of simulations. Further research should be done to improve the algo-
rithm in such cases. However, we focus here on stable periods and this
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limit of the algorithm does therefore not affect our analysis.

4.4 Forecasting with MAR model

Using the model estimated in Section 4.2, we perform pseudo-real-
time 1-, 3- and 6-months forecasts of the probabilities to remain within
the bounds with expanding window from November 2016 to January
2020. We hence put emphasis on short-term predictions which could
provide warnings that the year-on-year inflation will be outside the
target bounds in the near future. We first analyse the impact of the
choice of forecasting method as well as the impact of the forecast
horizon on the probabilities. As shown previously in Figure 4.2,
the estimation of the model is stable and particularly so after 2016.
Therefore, re-estimating the model with expanding window at each
point of forecasts does not have a significant impact on the results
and represents a good real-time forecasting analysis. We can hence
obtain 39 pseudo real-time probability forecasts for each of the three
horizons and each of the two methods.

Figure 4.3 depicts the differences between the predictions made
with the simulations based method (solid line) of Lanne, Luoto, and
Saikkonen (2012)5, and the SIR algorithm (dashed line) employing the
sample-based method of Gouriéroux and Jasiak (2016)6. Graph (a)
shows the 1-month ahead forecasts performed with increasing sample
at each point. Graph (b) and (c) correspond to 3- and 6-months ahead
forecasts respectively. All forecasts are performed at the same 39
points, starting in November 2016. Note that as the analysis does
not regard extreme episodes, the 1-step ahead density forecasts
obtained with the SIR algorithm and the sample-based method
of Gouriéroux and Jasiak (2016) were identical7. For a thorough

5Employing 1 000 000 simulations at each iteration.
6Employing 100 000 simulations in the first step and 10 000 resampling forecasts.
7Results available upon request.
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analysis of their respective performance see Hecq and Voisin, 2021.
Since they perform similarly and because the SIR algorithm is less
computationally demanding we only present the SIR results alongside
the simulations-based results (LLS).
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Figure 4.3: Probability forecasts for inflation to remain within the bounds

We can see that the differences between the two methods increase
with the horizon. For one-step ahead forecasts, both approaches
yield almost the same results at each point in time, while for the
6-months ahead forecasts they differ on average by 0.09, with the
SIR probabilities always larger than LLS. This indicates that LLS
predicts more volatile fluctuations in the inflation rate than the
SIR for longer horizons, hence suggesting lower probabilities to
remain within the bounds. Furthermore, we can see that while
probabilities vary significantly at a 1-month horizon (from 0.08
to 1), they converge around 0.6 for both methods as the horizon
increases to 6 months. That is, as the forecast horizon increases, the
uncertainty prevails, regardless of being within or outside the bounds
at the moment of the forecast, which yields almost 50/50 chance
to meet the target at at 6-months horizon.8 This is because we are
investigating a period during which there is no explosive episodes. In-
flation is relatively stable though close to the lower bound of the target.

8Table 4.1 in Appendix A summarizes the results.
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4.5 MARX model

4.5.1 Model representation

MAR models with additional strictly exogenous variables have been
introduced by Hecq, Issler, and Telg (2020). The so called MARX
model allows to estimate the effects of covariates without aggregating
them in the error term as in the MAR(r, s) model of Section 4.2. The
MARX(r, s, q) for a stationary time series πt (here, the annual IPCA
inflation rate) reads as follows

ϕ(L)φ(L−1)πt − β′Xt = εt, (4.14)

where ϕ(L) and φ(L−1) are the lag and lead polynomials of order r and
s with r + s = p and q is the number of strictly exogenous variables.
We still assume that the roots of both polynomials lie outside the unit
circle. When q = 0, the process reduces to a standard MAR(r, s). In case
q > 0, the process no longer has a strictly stationary solution solely in
terms of εt, but involves additionally Xt (consisting of q exogenous
variables). That is,

πt = γ(L,L−1)εt + γ(L,L−1)β′Xt =
∞∑

j=−∞
γjzt−j , (4.15)

where zt−j = εt−j +
∑q

i=1 βixi,t−j and γ(L,L−1) is an operator sat-
isfying γ(L,L−1)ϕ(L)φ(L−1) = 1 such that πt has a two-sided MA-
representation augmented with past, current and future values of Xt.
Consequently, denoting x̃i,t = βixi,t, πt consists of a two-sided MA
representation and the sum of q processes x̃i,t that are passed through
a two-sided linear filter with coefficients resulting from inverting the
product [ϕ(L)φ(L−1)]. Similarly to the MAR, the MARX can be de-
composed in u and v components, namely the noncausal and causal
components respectively,

ut ≡ ϕ(L)πt ↔ φ(L−1)ut − β′Xt = εt, (4.16)
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vt ≡ φ(L−1)πt ↔ ϕ(L)vt − β′Xt = εt. (4.17)

This (u, v) representation is useful to simulate variable and to forecast
MAR processes. See Hecq, Issler, and Telg (2020) for details on the
model.

4.5.2 Data

We evaluate to what extent key drivers of inflation identified by the
BCB, have an influence on the probability that inflation stays within
the target bounds. The variables we consider are the year-on-year per-
centage change in industrial production9 (ipt), the year-on-year per-
centage change in the Real/US$ exchange rate (ext) where the rate
refers to the last working day of the period and the year-on-year per-
centage change in the Selic target interest rate (irt). We denote Xt =
(ipt, ext, irt) the stacked stationary exogenous variables at time t. We
use published indicators of the three variables (retrieved from FRED
and from the Central Bank of Brazil databases). For coherence and
comparison purpose we use the same sample as for Section 4.2, namely
from January 1997 to January 2020.

4.5.3 Estimation results

The aim of this section is to analyse the added value of augmenting
the MAR(1,1) model identified in Section 4.4 with exogenous variables.
Hence, we identify the MARX(1,1,q) model best fitting the data, using
the strategy proposed in Hecq, Issler, and Telg (2020). We first estimate
an ARDL model using a maximum likelihood approach and find that
BIC favors an ARDL(2,0,0,0), namely an AR(2) with only contempora-
neous values of the three regressors. The increase of the goodness of

9We prefer to use the industrial production index as a measure of economic activity
over the GDP that is available quarterly.
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fit is however not substantial, the R̄2 increases from 0.977 to 0.980. The
estimated model is the following (HCSE standard errors in brackets),

πt = 1.46
(.05)

πt−1 − 0.50
(.05)

πt−2 + 2.21
(.56)

ipt + 0.87
(.17)

ext + 0.23
(.09)

irt + ηt.

All three regressors have a significant impact on annual inflation and
only their contemporaneous values are selected. The value of the
Jarque and Bera normality test is 185.3 with a p− value < 0.0001.

Following the methodology described in Hecq, Issler, and Telg (2020)
we compare all MARX(1,1,3) considering all possible time indices of
the exogenous variables (namely their lag, lead or contemporaneous
value). The model maximizing the likelihood function is the following
MARX(1,1,3) with a t(3.39) (standard errors in brackets),

(1− 0.50
(.04)

L)(1− 0.97
(.01)

L−1)πt = −1.64
(.38)

ipt+1 − 0.53
(.09)

ext+1 − 0.04
(.08)

irt+1 + εt.

(4.18)
That is, the model maximizing the likelihood function includes the
lead of the three exogenous variables. The year-on-year inflation rate
is therefore influenced by anticipations in the key economic variables
considered here. The coefficients might not represent actual effects
but instead corrections of the effect already captured by the coefficient
on the lead of the inflation rate. We do not focus on that.10 We can see
that the lag coefficient has slightly decreased (by 0.04) while the lead
coefficient is now slightly higher (by 0.03).

10We acknowledge the fact that these regressors might not be fully strictly exogenous.
Yet, we provide this analysis to illustrate the use of MARX models and take advan-
tage of the availability of frequent forecasts for these variables which enables using
MARX models to forecast without needing to predict the exogenous variables sep-
arately.
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4.5.4 Predictions with Focus data

Hecq, Issler, and Telg (2020) find that the forecasts obtained in
a MARX are superior to the ones of a MAR model when the
future values of the regressors are known. The gain diminishes
when the regressors must be forecasted as well, using an
ARMA model for instance. The choice of exogenous variables
in this analysis was motivated by the fact that those variables
are forecasted and updated on a daily basis by experts in the
Focus database maintained by the Brazilian Central Bank.11

Previous periods are re-evaluated until the official numbers are
published and forecasts for future periods are available at various
horizons. This allows to perform forecasts using MARX models
without modelling and forecasting separately the exogenous variables.

In this study, when performing predictions, we take the overall
median of experts’ forecasts for the future values of X in real time.
This means for instance that in May 2019 we take the forecasts of the
explanatory variables for the next months made at the end of May
2019. Furthermore, to ensure coherence in the data, we also replace
the last three data points (in this example we replace March, April
and May 2019) by the last vintages available at the point at which the
forecast is preformed.

Alike the MARX process πt, the MA representation of the noncausal
component ut is also augmented by contemporaneous and future val-

11See https://www.bcb.gov.br/en/monetarypolicy/marketexpectations. The Brazil-
ian survey on economic forecasters is unique. Everyday, a set of experts (from
banks, fund managers, brokers, consulting companies, etc) give their evaluation
on the future of inflation rate as well as for several key macroeconomic variables
regarding the Brazilian economy. Most variables are published before the release
of the Brazilian consumer price index, which is made public around the 10th of the
subsequent month. Some variables have some delays and they also often continue
to be forecasted for several vintages after the end of the corresponding month.
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ues of Xt,

ut = φ(L−1)−1[β′Xt + εt]

=
∞∑
i=0

ψi[β′Xt+i + εt+i].
(4.19)

In analogy to Equation (4.4), the method of Lanne, Luoto, and
Saikkonen (2012) – if possibly extended to MARX models – would
require a truncation parameter M large enough to approximate (4.19).
This implies that M future values of the exogenous variables would
be needed to perform forecasts with such approach. Lanne, Luoto,
and Saikkonen (2012) suggest using M=50 which represents more
than four years of monthly predictions.

On the other hand, the method of Gouriéroux and Jasiak (2016)
only requires as many predictions of the exogenous variables as the
forecast horizon. This makes this approach the most suitable for this
analysis. As explained in Section 4.4, for one-step ahead forecasts,
the estimator (4.11) can be employed, but as the forecast horizon
increases the SIR algorithm alleviates the computational limitations of
the estimator. The SIR approach simulates the noncausal component
of the process using a purely causal instrumental model and then
transforms those simulations into simulations of the variable of
interest using the causal relation between πt and ut described in (4.2).

We use the following instrumental model for the SIR algorithm,

ut = ρut−1 + η1ipt + η2ext + η3irt + ϵt, (4.20)

where ϵt ∼ N(0, σ2). This instrumental model is the pseudo causal
model obtained by inverting the time indices in the noncausal
representation of ut. The parameters are obtained using standard OLS
on the whole sample.
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As mentioned, to resemble a real time forecast, we replace the values
for the last three observations (from T-2 to T) by the evaluations made
by experts for the exogenous variables at time T, and we take the six
consecutive months forecasts made at the same point in time. Alike
Section 4.4, we perform 1-, 3- and 6-months ahead forecasts at the
end of each month from November 2016 to January 2020. The SIR
algorithm is employed the same way as for the MAR. We re-estimate
the model every time, yet we fix the time indices of the variables to be
the ones in model (4.18).12

Figure 4.4 shows point forecasts obtained from the MAR model of Sec-
tion 4.4 (dashed lines) compared to the point forecasts obtained with
the MARX model (dotted lines). Forecasts at the different horizons
are compared to realized inflation rate (black solid line) and the an-
nounced target bounds (grey solid lines). We can see that the inclusion
of exogenous variables does not significantly alter the predictions, es-
pecially for short-term horizons. An explanation to this is that fore-
casts of yearly changes in the exogenous variables around that time
were very close to 0 as we are investigating a stable period. We can
however notice that when the inclusion of exogenous variables has an
impact, it becomes increasingly noticeable at larger horizons. We can
therefore expect that during unstable and more volatile periods the
inclusion of exogenous variables should influence more significantly
forecasts and predictive densities. Another explanation is that inflation
might already be influenced by expectations of the exogenous vari-
ables. Hence, their inclusion might most of the time not be enough to
significantly alter predictions.

12Note that estimation is stable for all coefficients and predictions are thus easily com-
parable from one point in time to another.
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Figure 4.4: MAR vs MARX
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Chapter 4. A short term credibility index for central banks under
inflation targeting: an application to Brazil

4.6 Short-term credibility

There is a long tradition of evaluating the credibility of central banks.
Svensson (2000) for instance measures credibility as the distance
between expected and targeted inflation. A commonly used definition
of central bank credibility is the following: a central bank is credible
if people believe it will do what it says (Blinder, 2000). This definition
however implies the need for modelling people’s beliefs, which is not
straightforward and can induce significantly different results based
on the assumptions and model construction (see the reference list in
Issler and Soares, 2022). Some construct the credibility as an inverse
function of the gap between expectation and target, using different
ad-hoc thresholds for what is considered credible or not (see among
others Cecchetti and Krause, 2002 and Mendonça and Souza, 2007).
Bomfim and Rudebusch (2000) construct expected inflation as a
weighted average of the target and past inflation rate and interpret
credibility as the weight of the latter. Dovern, Fritsche, and Slacalek
(2012) use professional forecasters’ predictions and interpret the
discrepancies between them as an indication of lack of credibility.
Issler and Soares (2022) propose a bias-corrected measure of inflation
expectation using survey data and construct a credibility index based
on whether the target falls within the confidence interval of their
expectation measure. Most credibility measures are constructed for
long-term horizons, such as 12 months ahead for instance, so that
short-term shocks to inflation vanish.

We take a different stand-point and measure credibility not from the
perspective of people’ beliefs but from the dynamics in past inflation
rates, building on the forward-looking characteristics of MAR
models. That is, we use the probabilities that yearly inflation remains
within the target bounds as an indication of whether the Central
bank’s target is currently credible or not. This measure therefore
only relies on the statistical and dynamic properties of inflation
and not on people’s beliefs. To retain and employ all the dynamics
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in realised inflation rates, we use monthly year-on-year inflation
rate, which implies that our forecasts are based on shorter time
horizons than the one-year-ahead expectations used in most of the
aforementioned methods to build the credibility indices. We therefore
measure short-term credibility and not long-term, which explains the
discrepancies obtained with other approaches. Indeed, short-term
predictions carry more shocks than one-year ahead forecasts. Our
approach can be used in real time, here on a monthly basis, as an early
warning that yearly inflation will exit the bounds in the near future.

For comparison purposes we use the same time span as the analysis
of Issler and Soares (2022), namely from January 2007 to April 2017.
Figure 4.5 compares our short-term credibility measurement with the
longer-term credibility index proposed in Issler and Soares (2022)
– denoted as IS. The short-term credibility index is the 1-month
ahead simulations-based probabilities (LLS) that yearly inflation will
remain within the target bounds (the red solid line), derived from
the forward-looking MAR model. The discrepancies between the
two methods stem from the horizon and perspective of each index.
Recall that the long-term index is constructed a year ahead, that is,
in 2013 for instance, people did not believe the Central bank would
be credible in 2014. However, on a shorter-term basis, it seemed
much more likely that the target would be met, hence a much larger
short-term index. Our short-term approach does not investigate
whether people trust the central bank to reach its goals in a year
but instead whether it seems likely to happen at short horizons
based on realized inflation rates. This makes the two approaches
complementary.

To provide a better understanding of the indices we construct the
receiver operating characteristic (ROC) curves. It represents the
accuracy of the credibility measures as the threshold from which we
consider the Central bank to be credible varies. That is, for a given
threshold x and a given forecasted credibility index, the Central bank
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Figure 4.5: Comparison credibility indices

is predicted to be credible if the index is above x and we compare it to
the actual inflation rate in the same month. We can then compute the
rates of true and false positives for each given threshold and index.
A true positive is when the bank is predicted to be credible and the
actual inflation rates turns out to be within the tolerance bounds and
a false positive is when the bank was predicted to be credible but the
inflation rate ended up outside the bounds. We consider the long
term indices that part of the analysis by Issler and Soares (2022),
namely the index they construct (IS), DM is the index developed by
Mendonça and Souza (2007), CK the index by Cecchetti and Krause
(2002), DGMS by Mendonça and Souza (2009) and LL by Levieuge,
Lucotte, and Ringuedé (2018). Figure 4.6 depicts the ROC curves for
each of the indices. Graph (a) is our short-term index and graph (b) is
for the long-term indices. It was expected to find that the short-term
approach would outperform long-term forecasts in detecting when
the inflation rate will exit the target bounds since predictions are
made for a much closer horizon. For all indices, the ROC curves go
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from the top right corner when the threshold is set to 0 and to the
bottom left corner when the threshold is set to 1. The sensitivity of
each index to changes in the thresholds in between those extremes
vary significantly from one to another. We see on graph (a) for the
short-term index that thresholds between 0.4 and 0.9 provide a true
positive rate above 0.8 and a false positive rate of less than 0.15. Hence
this approach is not particularly sensitive to the choice of threshold
for accurate results. The choice of threshold then only depends on
the preference of the practitioner regarding the wanted true and
false positive rates. We can however notice that long-term indices
are much more sensitive to the choice of thresholds. We only depict
the points for thresholds 0.4 and 0.9, but we can first notice how, for
most methods, changes in thresholds in between those values will
yield a very different results accuracy. Naturally, the longer horizon of
these predictions imply a loss in precision, however, the results across
long term indices are noticeably different. Some methods tend to
overestimate the credibility, while others tend to underestimate it. If
we compare our short-term index with the IS long-term index, which
is not dependent on ad-hoc benchmarks or thresholds, we notice
that people believe the Central bank to be much less credible that it
actually is a year ahead. Indeed, any probability threshold in the ROC
curve above 0.4 yield rather low true positive rates.

Overall, while our short-term credibility index might be affected by
short-term shocks in the inflation rate, it does not require any mod-
elling of people’s beliefs, or does not require any ad-hoc decisions
of benchmarks. It can serve as an early warning of exiting the tar-
get bounds. The different perspective that our measure takes makes
it complementary to longer-horizons credibility indices. Indeed, the
long term credibility index built from people’s beliefs combined with
short-term probabilities to meet the target provide a clearer and more
complete picture of the reliability of inflation targeting system.
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4.7 Conclusion
This chapter investigates the probabilities that the Brazilian inflation
rate remains within the target bounds determined by the central bank.
We estimate mixed causal-noncausal models with leads and lags of
the inflation rate and the first noticeable results are the stability of the
parameters estimation over time. Contrary to usual practice when em-
ploying mixed causal noncausal models, which consists in forecasting
bubble bursts, we choose the stable period between 2017 and 2020 for
the forecasting exercise. This allows us to forecast at farther horizons
using a sampling importance resampling algorithm. We perform 1-,
3- and 6-months ahead probability forecasts. For short-horizons fore-
casts we correctly track probabilities to stay in the target bounds and
interpret those results as the short-term credibility of the inflation tar-
geting system based on historical inflation without the need to model
people’s beliefs. In longer horizon, probabilities seem to converge to
a 50/50 result. We augment the univariate model with key economic
variables and results show that during stable times, the addition of
those variables do not impact significantly the predictions obtained
from the univariate model. We then compare our measure of short-
term credibility of the central bank with existing indices in the litera-
ture. We find that the distinct horizon and perspective used to build
the indices makes our short-term credibility index complementary to
the existing long-term indices. We employ receiver operating charac-
teristic curves to determine the adequate probability threshold from
which the Central bank is predicted to be credible or not.
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Appendix A Summary of forecasted probabilities

Table 4.1: Probabilities for inflation to remain within the bounds at the indi-
cated months based on different forecast horizons and methods

Dates
Dec-16 Jan-17 Fev-17 Mar-17 Avr-17 May-17 Jun-17 Jul-17 Aug-17 Sep-17 Oct-17

1-M
LLS 0.540 0.659 0.991 0.996 0.997 0.991 0.877 0.201 0.143 0.079 0.156
SIR 0.542 0.660 0.996 0.997 1.000 0.996 0.921 0.271 0.194 0.121 0.188

3-M
LLS 0.491 0.694 0.887 0.879 0.894 0.771 0.612 0.351 0.369
SIR 0.498 0.720 0.916 0.914 0.930 0.862 0.721 0.471 0.482

6-M
LLS 0.500 0.580 0.663 0.664 0.671 0.628
SIR 0.553 0.626 0.717 0.742 0.759 0.720

Nov-17 Dec-17 Jan-18 Fev-18 Mar-18 Avr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18

1-M
LLS 0.295 0.358 0.590 0.307 0.323 0.151 0.301 0.426 0.976 0.996 0.996
SIR 0.322 0.401 0.620 0.354 0.356 0.168 0.321 0.447 0.990 0.999 0.999

3-M
LLS 0.307 0.448 0.547 0.560 0.640 0.488 0.510 0.393 0.523 0.574 0.411
SIR 0.404 0.534 0.638 0.647 0.709 0.593 0.589 0.458 0.593 0.644 0.454

6-M
LLS 0.576 0.466 0.485 0.453 0.536 0.575 0.571 0.604 0.541 0.547 0.497
SIR 0.690 0.625 0.612 0.582 0.671 0.678 0.670 0.687 0.652 0.661 0.597

Oct-18 Nov-18 Dec-18 Jan-19 Fev-19 Mar-19 Avr-19 May-19 Jun-19 Jul-19 Aug-19

1-M
LLS 0.995 0.996 0.988 0.991 0.996 0.997 0.977 0.954 0.993 0.375 0.913
SIR 0.999 1.000 0.996 0.997 1.000 0.999 0.982 0.964 0.998 0.540 0.943

3-M
LLS 0.892 0.852 0.856 0.862 0.823 0.810 0.882 0.896 0.653 0.658 0.886
SIR 0.931 0.897 0.880 0.881 0.891 0.876 0.917 0.935 0.693 0.696 0.915

6-M
LLS 0.560 0.578 0.344 0.643 0.669 0.589 0.643 0.645 0.647 0.674 0.679
SIR 0.657 0.675 0.412 0.693 0.751 0.625 0.692 0.741 0.725 0.756 0.750

Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Fev-20 Mar-20 Avr-20 May-20 Jun-20 Jul-20

1-M
LLS 0.989 0.333 0.164 0.993 0.95 0.994
SIR 0.996 0.415 0.201 0.998 0.961 0.998

3-M
LLS 0.306 0.695 0.857 0.410 0.453 0.882 0.492 0.877
SIR 0.454 0.778 0.904 0.510 0.579 0.910 0.527 0.895

6-M
LLS 0.499 0.518 0.667 0.405 0.635 0.667 0.529 0.514 0.642 0.403 0.649
SIR 0.565 0.579 0.729 0.555 0.723 0.716 0.656 0.665 0.688 0.446 0.708

Probabilities for inflation to remain between the bounds. LLS correspond to
the simulations-based approach proposed by Lanne, Luoto, and Saikkonen (2012),
1 000 000 were employed. SIR correspond to the sampling importance resampling al-
gorithm based on the sample-based approach proposed by Gouriéroux and Jasiak,
100 000 simulations were used in the first step, and 10 000 in the resampling step.
Shaded columns represent months during which inflation was below the bounds.
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Abstract
We investigate, as an extension to the case with one lead, the possibil-
ity to derive the closed-form of the conditional distribution of Cauchy-
distributed mixed causal-noncausal processes with two leads. As a
first step we derive the marginal distribution of the process, which
is also a Cauchy distribution. The second step is the derivation of a
bivariate distribution necessary to obtain a closed-form of the condi-
tional distribution. This step has not been successful yet and is there-
fore left for further research. Then, we propose a prediction approach
which builds on the two existing methods developed to approximate
the conditional distribution of MAR(r, s) processes in the absence of
closed-form. We compare the results obtained from the proposed ap-
proach with the densities obtained from its sample-based counterpart,
developed by Gouriéroux and Jasiak (2016), in a simulation study. We
then forecast the price index of all metals as a real life illustration of
the two methods.
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5.1 Introduction
Mixed causal-noncausal autoregressive (hereafter MAR) models have
proven to be suitable in modelling stationary processes characterised
by non-linear features. MAR models can capture these non-linear char-
acteristics while being parsimonious and within a strictly stationary
setting. An MAR(r, s) is defined as follows,

Φ(L)Ψ(L−1)yt = εt,

where L is the lag operator, Liyt = yt−i and L−1 the lead operator,
L−iyt = yt+i. Both lag polynomials Φ(L) = (1− ϕ1L− . . .− ϕrL

r) and
Ψ(L−1) = (1−ψ1L

−1− . . .−ψsL
−s) have roots strictly outside the unit

circle to fulfill the stationarity condition. Note that the error term εt
must be non-Gaussian for identification purposes. The mixed process
can then be decomposed into a purely causal and a purely noncausal
components. The following filtration,

ut = Φ(L)yt,

makes ut a purely noncausal process,

Ψ(L−1)ut = εt. (5.1)

This purely noncausal component ut is the process of interest in the
chapter. Indeed, it is the forward-looking part of the process that
makes derivations and forecasts more intricate. Results are then easily
extendable to mixed processes.

The literature regarding the estimation of MAR(r, s) models is
now extensive, however, the literature regarding the forecasts
of MAR processes, and especially with multiple leads, is
still scarce. This chapter thus focuses on the predictions of
MAR processes with more than one lead. It first aims atten-
tion at the theoretical aspect and then turns to more empirical analyses.
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Assuming a Cauchy distribution for the error term εt is rather
extreme and restrictive compared to a Student’s t-distribution,
which provides more flexibility as the degrees of freedom adjust
to the recurrence of extreme values. However, out of the two
distributions only the Cauchy entails a closed-form expression of
the conditional distribution of MAR(0,1) processes (Gouriéroux
and Zakoı̈an, 2013). Facing the lack of closed-form for suitable
model specifications, Lanne, Luoto, and Saikkonen (2012) and
Gouriéroux and Jasiak (2016) proposed approximation methods,
using respectively simulations and sample-based approximations.
Hecq and Voisin (2021) evaluates the performance of these approaches
for MAR(0, 1) processes by first comparing them to the closed-form
results with Cauchy-distributed errors. Since a t(1)-distribution
coincides with a Cauchy(0,1), this allows to obtain a benchmark of
their performance for the most extreme t-distribution to better under-
stand how they behave even in the absence of closed-form expressions.

One lead is enough to capture locally explosive episodes, yet
processes are often identified, in applied research, as MARs with
more than one lead. For instance, Fries and Zakoı̈an (2019a) detect 2
to 3 leads in Soybean prices, Sugar prices and Shiller price/earning
ratio and Giancaterini and Hecq (2022) identify an MAR(2,2) for
the variation of daily COVID-19 deaths in Belgium. This shows
the importance of also having a theoretical understanding of
the conditional distribution of more general MAR(r, s). The first
motivation of this chapter is thus to extend the findings of Gouriéroux
and Zakoı̈an (2013) to Cauchy-distributed MAR(0, 2) processes.

The first step we take is the investigation of the marginal distribution
of the process ut. We find that it is Cauchy-distributed and obtain
a closed-form expression of the scale when the roots of the lead
polynomial are real. When the roots are complex however, we do
not find a closed-form and thus approximate it. The second step
is the derivation of the joint distribution of the bivariate process
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(ut, ut+1), which is necessary to obtain the conditional distribution of
interest f(ut|ut+1, ut+2). We determine that it is a bivariate Cauchy
distribution but do not find a general form of the parameters of the
distribution. We therefore leave this inquiry for future research.

While we could not compare the approximation methods with the
Cauchy-derived closed-form results as was done in Hecq and Voisin
(2021) for models with one lead, the approximation methods can still
be used and compared between one another. The simulations-based
method of Lanne, Luoto, and Saikkonen (2012) is derived to obtain,
at a given horizon, a point forecast or a conditional cumulative
density value. Throughout this thesis, we argue for the use of
density forecasts instead of point forecasts, as they carry much more
information. Hence, estimating the entire conditional distribution
with this approach is quite computationally demanding. The
approach of Gouriéroux and Jasiak (2016) allows to approximate
the entire conditional distribution using sample averages. While
this approach is sensitive to the sample size, it is more efficient in
obtaining the complete predictive density. This approach however
becomes increasingly computationally demanding as the forecast
horizon H increases. Indeed, it predicts the density of the whole path
up to T+H whereas the method of Lanne, Luoto, and Saikkonen (2012)
only predicts the density of the point T+H.

The second motivation and contribution of this chapter is the
proposition of a forecasting method combining the two existing ones.
We suggest employing simulations in the spirit of Lanne, Luoto, and
Saikkonen (2012), to approximate the conditional distribution like
Gouriéroux and Jasiak (2016) do, using simulations-based averages
instead. We compare the results of this proposed approach with the
sample-based methods on simulated MAR(0, 2) series with different
sets of parameters. We investigate their respective sensitivity to the
number of simulations and to the sample size. Then, to illustrate the
methods we predict the last 12 months of the metals price index,
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which is a period of volatile prices due to the impact of the COVID-19
pandemic, in a pseudo-real life forecasting exercise.

The chapter is constructed as follows. Section 5.2 presents the
derivations of the marginal densities of MAR(0, 2) Cauchy-distributed
processes. Section 5.3 describes the existing approximation
methods to forecast MAR(0, s) processes and introduces the new
simulations-based approach for approximating the conditional
density. Section 5.4 compares the sample-based approach of
Gouriéroux and Jasiak (2016) and the proposed simulations-based
counterpart in a simulation study. Section 5.5 then illustrates the
methods on detrended metals price index, which are identified as an
MAR(0, 2). Section 5.6 then concludes.

5.2 MAR(0,2) with Cauchy distributed errors
This section intends to derive the conditional density of a
Cauchy-distributed MAR(0, 2) process, as an extension of the findings
of Gouriéroux and Zakoı̈an (2013) for the MAR(0, 1) case. Recall that
an MAR(0, 1) process is defined as ut = ψut+1 + εt. The H-step ahead
predictive density of an MAR(0, 1) process is the following,

f(uT+1, . . . , uT+H |uT ) =
f(uT , uT+1, . . . , uT+H)

f(uT )

=
f(uT |uT+1)× f(uT+1|uT+2) . . . f(uT+H−1|uT+H)× f(uT+H)

f(uT )
.

(5.2)

The conditional densities in the form of f(ut|ut+1) are the pdf of the er-
rors’ distribution, evaluated at the point ut−ψut+1. The part of the den-
sity that is often unknown or does not have a closed-form expression
is the ratio of the marginal densities. Gouriéroux and Zakoı̈an (2013)
show that if the error term εt is Cauchy-distributed, then the predic-
tive density (5.2) admits a closed-form. Indeed, if εt ∼ Cauchy(0, γ),
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the marginal distribution of ut is a Cauchy
(
0, γ

1−|ψ|

)
. Other errors’

distributions, such as Student’s t, while being more flexible and pro-
viding a better fit than Cauchy, lead to the absence of closed-form
for the predictive density. The one-step ahead predictive density of
a Cauchy-distributed MAR(0, 1) process therefore corresponds to the
following,

f(uT+1|uT ) =
f(uT |uT+1)× f(uT+1)

f(uT )

=
1

πγ
× γ2

(uT − ψuT+1)2 + γ2
×

γ2 + (1− |ψ|)2u2T
γ2 + (1− |ψ|)2u2T+1

.

Let us now consider a purely noncausal MAR(0, 2) process,

ut = ψ1ut+1 + ψ2ut+2 + εt, with εt ∼ Cauchy(0, γ).

As a natural extension of the MAR(0,1) predictive density (5.2), the
H-step ahead conditional distribution of an MAR(0, 2) process is the
following,

f(uT+1, . . . , uT+H |uT−1, uT )

=
f(uT−1, uT , uT+1, . . . , uT+H)

f(uT−1, uT )

= f(uT−1|uT , uT+1) f(uT |uT+1, uT+2) . . . f(uT+H−2|uT+H−1, uT+H)

× f(uT+H−1, uT+H)

f(uT−1, uT )
.

(5.3)

Analogously to the MAR(0, 1) case, the conditional distributions in
the form of f(ut|ut+1, ut+2) are the pdf of a Cauchy(0, γ) evaluated at
the point ut − ψ1ut+1 − ψ2ut+2. However, to obtain a closed-form
of the predictive density 5.3, we now need to determine the joint
distribution of the bivariate process f(ut, ut+1). To do so, we first
investigate the marginal distribution of the process ut.
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Consider the MA representation of the MAR(0, 2) process,

ut = (1− ψ1L
−1 − ψ2L

−2)−1εt.

Let λ1 and λ2 be the inverted roots of the lag polynomial (1−ψ1L
−1 −

ψ2L
−2). The coefficients of the MA representation can thus be obtained

as follows,

(1− ψ1L
−1 − ψ2L

−2)−1εt =
((
1− λ1L

−1
) (

1− λ2L
−1

))−1
εt

=
λ1

λ1 − λ2

1

1− λ1L−1
εt −

λ2

λ1 − λ2

1

1− λ2L−1
εt

=

∞∑
j=0

(
λ1

λ1 − λ2
λj
1 −

λ2

λ1 − λ2
λj
2

)
εt+j

=
∞∑
j=0

(
λj+1
1 − λj+1

2

λ1 − λ2

)
εt+j .

To fulfill the stationarity condition, both inverted roots must be inside
the unit circle.

Substituting the process ut with its MA representation in the general
form of its characteristic function, we obtain,

E
[
eiτut

]
= E

eiτ ∑∞
j=0

(
λ
j+1
1 −λ

j+1
2

λ1−λ2

)
εt+j

 =

∞∏
j=0

E

eiτ
(

λ
j+1
1 −λ

j+1
2

λ1−λ2

)
εt+j

 .

Recall that the error term εt is i.i.d Cauchy(0, γ), hence the above entity
is the infinite product of the characteristic functions of processes with

distribution Cauchy

(
0,

∣∣∣∣λj+1
1 −λj+1

2
λ1−λ2

∣∣∣∣γ). Thus, writing out the func-

tional form of the characteristic functions, we can recover the charac-

136



teristic function of the process ut,

∞∏
j=0

E

eiτ
(

λ
j+1
1 −λ

j+1
2

λ1−λ2

)
εt+j

 =

∞∏
j=0

e
−|τ |

∣∣∣∣λj+1
1 −λ

j+1
2

λ1−λ2

∣∣∣∣γ

= e
−|τ |

∑∞
j=0

∣∣∣∣λj+1
1 −λ

j+1
2

λ1−λ2

∣∣∣∣γ
.

It entails that the characteristic function of the process ut is that of a

Cauchy-distributed process with scale γ
∑∞

j=0

∣∣∣∣λj+1
1 −λj+1

2
λ1−λ2

∣∣∣∣. Hence, the

marginal distribution of the MAR(0, 2) Cauchy-distributed process ut
is the following,

ut ∼ Cauchy

0, γ

∞∑
j=0

∣∣∣∣∣λj+1
1 − λj+1

2

λ1 − λ2

∣∣∣∣∣
 . (5.4)

The upcoming sections investigate the convergence of the infinite sum
in the scale parameter. We first analyse the scale when the roots of the
lead polynomial are real and then investigate the case when the roots
are complex.

5.2.1 Lead polynomial with real roots

When the roots of the lag polynomials (1 − ψ1L
−1 − ψ2L

−2) are real,
that is when the determinant ∆ ≡ ψ2

1 + 4ψ2 ≥ 0, the inverted roots λ1

and λ2 are defined as such,

λ1 =
ψ1 −

√
ψ2
1 + 4ψ2

2
λ2 =

ψ1 +
√
ψ2
1 + 4ψ2

2
.

For any admissible combination of the lead coefficients yielding real
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roots, we therefore have that,

λ1 − λ2 =
ψ1 −

√
ψ2
1 + 4ψ2

2
− ψ1 +

√
ψ2
1 + 4ψ2

2

= −
√
∆ < 0.

This means that for all potential real inverted roots of the lag
polynomial as they are defined above we have λ1 < λ2.

It implies that there are two possible scenarios. The first one is
|λ1| > |λ2|, which is always satisfied when λ1 < λ2 < 0 and for some
combinations of coefficients satisfying λ1 < 0 < λ2. This scenario
requires ψ1 < 0 for the conditions to met. The second scenario,
namely |λ1|< |λ2|, is always satisfied when 0 < λ1 < λ2 and for some
combinations of coefficients satisfying λ1 < 0 < λ2. As opposed to the
first one, this scenario requires ψ1 > 0.

Let us first focus on the first scenario, namely |λ1| > |λ2|. Since we
know that λ1 < λ2, it implies that, for an arbitrary number i, λi

1 > λi
2

when i is even and λi
1 < λi

2 when i is odd. Therefore, the infinite sum
from the scale parameter in (5.4) can be expressed as follows,

∞∑
j=0

∣∣∣∣∣λj+1
1 − λj+1

2

λ1 − λ2

∣∣∣∣∣ = 1

|λ1 − λ2|

∞∑
j=0

∣∣∣λj+1
1 − λj+1

2

∣∣∣
=

1

λ2 − λ1

∞∑
j=0

(−1)j(λj+1
2 − λj+1

1 )

=
λ2

λ2 − λ1

∞∑
j=0

(− λ2)
j − λ1

λ2 − λ1

∞∑
j=0

(− λ1)
j

=
λ2

λ2 − λ1

1

1 + λ2
− λ1

λ2 − λ1

1

1 + λ1

=
1

(1 + λ1)(1 + λ2)
=

1

1 + λ1 + λ2 + λ1λ2
.
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Note that λ1λ2 = −ψ2. Hence, by substituting the inverted roots with
their values, we find that the infinite sum converges to the following,

∞∑
j=0

∣∣∣∣λj+1
1 − λj+1

2

λ1 − λ2

∣∣∣∣ = 1

1 + ψ1−
√
∆

2 + ψ1+
√
∆

2 − ψ2

=
1

1 + ψ1 − ψ2
.

Let us now consider the second scenario, |λ1|< |λ2|. This scenario im-
plies that λi

1 < λi
2 for any arbitrary number i. Hence, the infinite sum

from the scale parameter in (5.4) can be expressed as follows,

∞∑
j=0

∣∣∣∣∣λj+1
1 − λj+1

2

λ1 − λ2

∣∣∣∣∣ = λ2

λ2 − λ1

∞∑
j=0

λj
2 −

λ1

λ2 − λ1

∞∑
j=0

λj
1

=
λ2

λ2 − λ1

1

1− λ2
− λ1

λ2 − λ1

1

1− λ1

=
1

(1− λ1)(1− λ2)
=

1

1− λ1 − λ2 + λ1λ2
.

Again, by substituting the inverted roots with their values we find that
the infinite sum converges to the following,

∞∑
j=0

∣∣∣∣λj+1
1 − λj+1

2

λ1 − λ2

∣∣∣∣ = 1

1− ψ1−
√
∆

2 − ψ1+
√
∆

2 − ψ2

=
1

1− ψ1 − ψ2
.

Since the first scenario requires ψ1 < 0 and the second scenario re-
quires ψ1 > 0, the marginal distribution of the process ut, as defined in
(5.4), can be generalized, when the roots of the lag polynomial are real,
as follows,

Cauchy

(
0,

γ

1− |ψ1|−ψ2

)
. (5.5)
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Chapter 5. Mixed causal-noncausal processes with multiple leads

5.2.2 Lead polynomial with complex roots

Let us now turn to the case when the roots of the lag polynomial (1 −
ψ1L

−1 − ψ2L
−2) are complex. It thus implies a negative determinant

∆ = ψ2
1 + 4ψ2 < 0 and the two inverted roots λ1 and λ2 are now as

follows,

λ1 =
ψ1

2
− i

√
−∆

2
λ2 =

ψ1

2
+ i

√
−∆

2
.

Complex roots can only be obtained with a negative second lead
coefficient, and more specifically when ψ2 < −ψ2

1
4 .

Let r be the modulus of the two conjugate complex roots, which must
be smaller than 1 to satisfy stationarity conditions. Hence,

r ≡ |λ1|= |λ2| =

√(ψ1

2

)2
+

(√−∆

2

)2
=

√
−ψ2 < 1,

which implies that −1 < ψ2 < −ψ2
1
4 . Furthermore, let us denote θ ≡

−arctan
(√

−∆
ψ1

)
the argument of λ1, and thus −θ the argument of λ2.

The infinite sum of the scale parameter in (5.4) can thus be expressed
in terms of the polar forms of the inverted roots as follows,

∞∑
j=0

∣∣∣∣λj+1
1 − λj+1

2

λ1 − λ2

∣∣∣∣ = ∞∑
n=1

∣∣∣∣λn
1 − λn

2

λ1 − λ2

∣∣∣∣
=

∞∑
n=1

∣∣∣rn(cos(nθ)− i sin(nθ))− rn(cos(nθ) + i sin(nθ))
∣∣∣

√
−∆

=

∞∑
n=1

∣∣∣2rni sin(nθ)∣∣∣
√
−∆

=
2√
−∆

∞∑
n=1

rn |sin(nθ)| .
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We were not able to derive a closed-form expression of the latter and
could therefore not provide a closed-form of the scale of the marginal
distribution of the process ut when its roots are complex. However,
since 0 < r =

√
−ψ2 < 1 and 0 ≤ |sin(nθ)| ≤ 1, the infinite sum con-

verges at a faster rate than
∑∞

n=1 r
n and can therefore be approximated

as such,

∞∑
j=0

∣∣∣∣λj+1
1 − λj+1

2

λ1 − λ2

∣∣∣∣ = 2√
−∆

∞∑
n=1

rn|sin(nθ)|

≈ 2√
−∆

K∑
n=1

√
−ψ2

n
∣∣∣∣sin(

n arctan

(√
−∆

ψ1

)) ∣∣∣∣,
(5.6)

where K is large enough for approximation errors to be negligible.
Note that since arctan(x) = −arctan(−x) and sin(x) = −sin(−x), the
scale does not depend on the sign of ψ1 but only on |ψ1|, analogously
to the case with real roots.

5.2.3 Summarising results

Let us define the scale of the marginal distribution of the MAR(0, 2)
process ut with Cauchy(0, 1)-distributed errors as δ. That is,

ut ∼ Cauchy(0, δ).

Table 5.1 displays the scale δ for all feasible combinations of lead
coefficients fulfilling the stationarity conditions, where we only
consider increments of 0.1. The scale, for both real and complex roots,
is dependent on the sign and value of ψ2 but only on the magnitude of
|ψ1|. We thus present the marginal scales for feasible pairs of (|ψ1|, ψ2).
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Chapter 5. Mixed causal-noncausal processes with multiple leads

The gray cells are the combinations of coefficients corresponding to
real roots in the lag polynomial, hence it is the exact values of the
scales evaluated using Equation (5.5). The other combinations of
coefficients coincide with complex roots, for which the scales are
approximated using Equation (5.6) with K = 200.

We can notice that when the roots are real, the scale of the marginal
distribution increases with the absolute value of both coefficients.
When the roots are complex, the scale increases with the absolute
value of ψ2 but decreases when |ψ1| increases. Note that the scales
would increase to even higher values if smaller increments were
considered for the most extreme cases. Furthermore, if instead the
errors of the MAR(0,2) process are Cauchy(0, γ)-distributed, then all
marginal scales should be multiplied by γ.

Overall, Table 5.1 helps understanding the role of each of the lead
coefficients on the scale of the process.

While we found that the marginal distribution of the process is
Cauchy, recall that we are interested in the joint distribution of the
bivariate process (ut, ut+1). Note that a random vector is said to have
a multivariate Cauchy distribution if any linear combinations of its
components follows a Cauchy distribution.

Hence, consider now a linear combination of ut and ut+1, for arbitrary
scalars a and b,

a ut + b ut+1 = a

∞∑
i=0

(
λi+1
1 − λi+1

2

λ1 − λ2

)
εt+i + b

∞∑
i=0

(
λi+1
1 − λi+1

2

λ1 − λ2

)
εt+1+i

= a εt +

∞∑
i=1

(
a(λi+1

1 − λi+1
2 ) + b(λi

1 − λi
2)

λ1 − λ2

)
εt+i.
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Chapter 5. Mixed causal-noncausal processes with multiple leads

It corresponds to a linear combination of independent
Cauchy-distributed errors. This implies that any linear combina-
tion of ut and ut+1 follows a Cauchy distribution, which entails
that the joint process (ut, ut+1) follows a bivariate Cauchy distribution.

We did not find a general representation of the parameters of the
bivariate distribution and thus cannot present a closed-form for the
conditional density (5.3). We hence leave this inquiry to further
research.

As mentioned before, assuming a Cauchy distribution for the error
term is rather restrictive. Indeed, in the empirical literature most
models are estimated with Student’s t-distributed error terms with
degrees of freedom larger than 1. We however wanted to evaluate the
benchmark performance of the existing approximation methods on
simulated Cauchy-distributed series, analogously to what was done
in Hecq and Voisin (2021) with MAR(0, 1) models. Hence, we for now
also leave this for future analyses.

5.3 Forecasting an MAR(0,s) process

Let us now consider the more general MAR(0, s) process,

ut = ψ1ut+1 + ψ2ut+2 + · · ·+ ψsut+s + εt,

where εt is for instance Student’s t-distributed, implying that the con-
ditional density of the MAR(0, s) process does not admit a closed-form
expression. The conditional density, extending (5.3) to the case with s
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leads, is the following,

f(uT+1, . . . , uT+H |uT−s+1, . . . , uT )

=
f(uT−s+1|uT−s+2, . . . , uT+1) . . . f(uT+H−s|uT+H−s+1, . . . , uT+H)

f(uT−s+1, . . . , uT )

× f(uT+H−s+1, . . . , uT+H).

While we do not know the joint distributions f(uT−s+1, . . . , uT ) and
f(uT+H−s+1, . . . , uT+H), they can be expressed in terms of the condi-
tional expectations,

f(uT+1, . . . , uT+H |uT−s+1, . . . , uT )

=
f(uT−s+1|uT−s+2, . . . , uT+1) . . . f(uT+H−s|uT+H−s+1, . . . , uT+H)

E
[
f(uT−s+1|uT−s+2, . . . , uT , u∗T+1) . . . f(uT |u∗T+1, . . . , u

∗
T+s)

]
∗

× E
[
f(uT+H−s+1|uT+H−s+2, . . . , u

∗
T+H+1) . . .

. . . f(uT+H |u∗T+H+1, . . . , u
∗
T+H+s)

]
∗
,

(5.7)

where E[·]∗ is the expectation conditioned on the values indicated by
a ∗. The product of conditional distributions within the expectations
are conditioned on the paths of values (u∗T+1, . . . , u

∗
T+s) and

(u∗T+H+1, . . . , u
∗
T+H+s) respectively.

As described in the previous chapters, when no closed-form exists
for the conditional distribution (e.g. when s > 1 or with Student’s
t-distributed errors), the approximation methods of Lanne, Luoto, and
Saikkonen (2012) and Gouriéroux and Jasiak (2016) can be employed.
See Hecq and Voisin (2021) for an analysis of their performance for
MAR(0, 1) processes and see the respective articles for more details on
the methods.
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Chapter 5. Mixed causal-noncausal processes with multiple leads

5.3.1 Existing approaches

Gouriéroux and Jasiak (2016) provide a general formula (for any num-
ber of lags and leads, forecast horizon and distribution) for estimating
the conditional density in the absence of closed-form expression. It is
based on (5.7). They propose to approximate the conditional expecta-
tions using the sample average, employing all past values,

f(uT+1, . . . , uT+H |uT−s+1, . . . , uT ) ≈
gs(ûT−s+1, ûT−s+2, . . . , uT+1) . . . gs(uT+H−s, uT+H−s+1, . . . , uT+H)∑T−s+1

t=1

{
gs(ûT−s+1, . . . , ûT , ût) . . . gs(ûT , ût, . . . , ût+s−1)

}
×

T−s+1∑
t=1

{
gs(uT+H−s+1, . . . , uT+H , ût) . . . gs(uT+H , ût, . . . , ût+s−1)

}
,

(5.8)

where gs(ut, . . . , ut+s) is the assumed distribution of the error term
evaluated at the point (ut − ψ1ut+1 − · · · − ψsut+s). The conditional
expectations in (5.7) are thus approximated as the average based on
the whole observed sample, denoted as (û1, . . . , ûT ).

Lanne, Luoto, and Saikkonen (2012) on the other hand employ the MA
representation of the noncausal component ut and base their method-
ology on the assumption that there exists an integer M large enough
so that any future point of the noncausal component can be approxi-
mated, with negligible error. They therefore base their methodology
on the fact that the MAR(0, s) process can be approximated by the fol-
lowing finite sum,

uT+h ≈
M−h∑
i=0

ι′


ψ1 . . . ψs−1 ψs

1 0 . . . 0
...

. . . . . .
...

0 0 1 0


i

ι εT+h+i =

M−h∑
i=0

βi εT+h+i, (5.9)
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for any h ≥ 1, where ι′ = [1 0 · · · 0] of size 1× s.

Lanne, Luoto, and Saikkonen (2012) propose a general formula to com-
pute the conditional expected value of any function of the M future er-
rors, approximated using simulations. Their method allows to obtain
point forecasts, or, by choosing the function to be the following indi-
cator function, namely being 1 when the condition is fulfilled and zero
otherwise, to obtain an approximation of the conditional cumulative
density of the MAR(0, s) process at a given point x,

ET

[
1(uT+h ≤ x)

]
= P

(
uT+h ≤ x|FT

)
≈ ET

[
1

(
M−h+i∑
j=0

βjεT+h−i+j ≤ x

)]
.

Hence, by computing its value for all possible x covering the range
of potential values for uT+h, we can obtain the whole conditional
cdf of uT+h. In turn, we can recover the conditional pdf. However,
this approach becomes quite computationally demanding as each
estimated density point requires a large set of simulations and needs
to be iterated a significant amount of time over all possible x to obtain
the complete conditional density.

Overall, the method of Gouriéroux and Jasiak (2016) is more efficient
in obtaining entire predictive densities for short horizons but becomes
computationally demanding for farther horizons as it derives the
predictive density of the path until T + H . The method of Lanne,
Luoto, and Saikkonen (2012) on the other hand, while less efficient
in obtaining complete predictive densities, can be used to obtain the
predictive density at farther horizons as it only predicts the point
T +H and not the path leading to it.
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Chapter 5. Mixed causal-noncausal processes with multiple leads

5.3.2 Combining approaches

Combining the approaches presented above, we suggest a new
way of approximating the conditional density in the absence of
closed-form. While Gouriéroux and Jasiak (2016) employ all past
values to approximate the expected values in Equation (5.7) by using
their sample average, we instead suggest the use of simulations, as
do Lanne, Luoto, and Saikkonen (2012). Indeed, especially for small
samples, using past values can yield distorted estimated densities as
was shown in Hecq and Voisin (2021).

Hence, we suggest approximating (5.7) using simulated paths of
(u∗T+1, . . . , u

∗
T+H+s) instead of observed paths. The distribution

of the errors is well known and sets of M i.i.d errors can easily be
simulated from it. Hence, the nth simulated path, which is denoted as
(u

(n)
T+1, . . . , u

(n)
T+H+s), is derived from the nth set of M simulated future

errors,

u
(n)
T+h ≈

M−h∑
i=0

βiε
(n)
T+h+i, for n = 1, . . . , N,

where βi are the coefficients from Equation (5.9) and N the overall
number of simulated paths.

Equation (5.7) can then be approximated by taking the averages over
all N simulated paths. The H-step ahead predictive density of an

148



MAR(0, s) process is hence approximated as follows,

f̂ (uT+1, . . . , uT+H |uT−s+1, . . . , uT )

=

 gs(uT−s+1, . . . , uT+1) . . . gs(uT+H−s, . . . , uT+H)∑N
n=1

{
gs(uT−s+1, . . . , uT , u

(n)
T+1) . . . gs(uT , u

(n)
T+1, . . . , u

(n)
T+s)

}


×
N∑

n=1

{
gs(uT+H−s+1, . . . , uT+H , u

(n)
T+H+1) . . .

. . . gs(uT+H , u
(n)
T+H+1, . . . , u

(n)
T+H+s)

}
.

(5.10)

This allows to obtain the the complete predictive density in a more
efficient way than with the method of Lanne, Luoto, and Saikkonen
(2012). However, the same limitations as the sample-based approach
apply when the horizon increases. We will therefore now focus on 1-
step ahead forecasts.

5.4 Simulations

To illustrate the application of the aforementioned forecasting
methods on MAR(0, 2), we simulate three samples of 10 000
realisations of Student’s t-distributed error terms, with 1, 2 and
2.5 degrees of freedom. We then transform the three samples into
MAR(0, 2) processes by employing two combinations of coefficients,
namely (ψ1, ψ2) = (0.5, 0.3) and (1.1, −0.3), which correspond to real
and complex roots in the lead polynomial respectively. That is, for
each of the three samples of 10 000 errors, we obtain two MAR(0, 2)
processes.

Figure 5.1 depicts the last 500 data points of the samples derived from
the t(1) errors. We only show the last 500 points (out of 10 000) to see
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Chapter 5. Mixed causal-noncausal processes with multiple leads

(a) ψ1 = 0.5, ψ2 = 0.3
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Figure 5.1: Last 500 points of simulated series with t(1) errors
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Figure 5.2: Last 500 points of simulated series with t(2) errors
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(a) ψ1 = 0.5, ψ2 = 0.3
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Figure 5.3: Last 500 points of simulated series with t(2.5) errors
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more clearly that all series are deviating form central values at the
last point of the sample, point at which the forecasts are performed.
We can see that the series with real roots, while looking similar to
the series with complex roots, seems more noisy with a slightly
smaller range, given the same errors trajectory. The same applies for
the t(2)- and t(2.5)-distributed series, as depicted in Figures 5.2 and
Figure 5.3 respectively. We can notice that the volatility of the sample
significantly decreases as soon as the variance becomes finite, even
though the error distribution still has fat tails.

To investigate the impact of the sample size on the forecasting method
of Gouriéroux and Jasiak (2016), we take the last 200, 500, 1 000 or the
whole sample of length 10 000, so that the last points are always the
same. We employ Equation (5.8) with s = 2 and H = 1 to approximate
the 1-step ahead predictive density and denote the method as GJ.
For the approach that we propose in this chapter – namely using
approximation (5.10) – we employ 10 000, 50 000, 100 000 or 200 000
simulations. For both methods we use the true parameters as we
intend to disentangle the sensitivity of the prediction methods from
the impact of the sample size on the estimation of the model.

Figures 5.4, 5.5 and 5.6 show the evolution of the one-step ahead
predictive densities when the sample size (for the method GJ)
and when the number of simulations (for the simulations-based
approximations) increase. The figures are for t(1)-, t(2)- and
t(2.5)-distributed processes respectively. The top 8 graphs are
for coefficients (ψ1, ψ2) = (0.5, 0.3) and the bottom graphs for
(ψ1, ψ2) = (1.1,−0.3). The first row displays the results of the sample-
based method with different sample sizes and the bottom row for the
approach proposed in this chapter for different number of simulations.

The first noticeable results is that the impact of the sample size and of
the number of simulations decreases significantly for processes with
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Figure 5.4: Density forecasts of series with t(1) errors
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Figure 5.5: Density forecasts of series with t(2) errors
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Figure 5.6: Density forecasts of series with t(2.5) errors
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finite variance (Figure 5.6). Indeed, due to the significantly lower
volatility of the process with t(2.5)-distributed errors, a small amount
of simulations and a small sample size is sufficient to recover the
same predictive density with both methods.

The more noticeable differences between the GJ graphs of Figure 5.4
and 5.5 with different sample sizes is due to extreme values that
are much more likely to happen with infinite variance. Based on
the learning mechanism that this method has, which relies on past
behaviours, the presence, or not, of extreme values in the studied
sample can have a notable impact on the obtained conditional density.
Figure 5.7 shows the complete simulated samples of the series with
coefficients (ψ1, ψ2) = (0.5, 0.3) to gauge the range and the recurrence
of extreme values based on the distribution of the errors. As expected,
both of them decrease as the degrees of freedom increase and it also
illustrates how more extreme are the Cauchy-distributed errors.

The simulations-based method that we propose in this chapter yields
much noisier results. We notice that the noise decreases as the number
of simulations increases. Yet, 200 000 simulations for explosive
episodes with errors with infinite variance sometimes does not appear
to be enough. For the finite variance case however, as shown in Figure
5.6, 10 000 simulations provides the same results as 200 000.

Overall, results are in line with what Hecq and Voisin (2021)
show. The discrepancies between simulations- and sample-based
approaches are prevalent in more volatile processes. While the GJ
method is affected by the sample size, the approach is much more
efficient in obtaining a neat predictive density for large samples.
Indeed, the simulations-based approach requires a significant amount
of simulations to correct the noisiness of the results. However, as
shown by Figure 5.4 with (ψ1, ψ2) = (1.1,−0.3), even with a sample of
1 000 points, the density is still noticeably distorted from the learning
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Figure 5.7: Entire sample of series with coefficients (ψ1, ψ2) = (0.5, 0.3) for
each errors distribution
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mechanism of the method. The approaches are thus complementary,
with a large enough sample size the GJ method will be more efficient,
however when the sample size is too small, the simulations-based
approach can correct for it. It also depends on the weight an applied
researcher wants to put on past behaviours. If one believes that there
is a strong learning process for instance, then the GJ method is more
suitable. For more theoretical results, then simulations-based densities
will sometimes be more accurate and the number of simulations can
always be increased.

Future research could consist of a more theoretical analysis of the
method proposed in this chapter. It could also consists in an analysis
including less extreme episodes for instance or investigate 2-step
ahead forecasts, which can still be easily visualised graphically. The
implications of the 2-dimensional predictive densities obtained from
the methods employed in this analysis for the path until T+2 could be
compared to the density forecast of the point at T+2, obtained from
the method of Lanne, Luoto, and Saikkonen (2012).

5.5 An empirical example
As an empirical example we employ the monthly price index of all
metals, retrieved from the IMF. The base year is 2016 and the index
includes base and precious metals. The sample ranges from January
1992 until April 2022 yielding a sample of 364 data points. We
detrend the series using the Hodrick-Prescott (HP) filter developed by
Hodrick and Prescott (1997) and estimate the MAR(r, s) model on the
remaining cycle.

The raw and detrended series are depicted in Figure 5.8. The most
notable volatile periods are around the financial crisis of 2008 and the
period during the COVID-19 pandemic. We will focus on the latter.
The volatility in the last period of the sample was first induced by the
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various restrictions imposed to limit the spread of COVID-19 which
was then followed by unprecedented levels of government stimuli.
All these affected both the supply and the demand sides, which
triggered the noticeable volatility in prices.

To estimate the MAR(r, s) model, we first estimate the pseudo lag
order p using Schwarz information criterion on a Gaussian causal AR
model. We identify the order of autocorrelation p to be equal to 2.
Hence, we then compare the likelihood values of all MAR(r, s) models
such that r + s = 2 with Student’s t-distributed errors. The model
with the highest likelihood value is an MAR(0, 2).

The detrended metals price index (denoted as yt) is therefore identified
as an MAR(0, 2) and the estimated coefficients are the following,

yt = 1.27yt+1 − 0.34yt+2 + εt, with εt ∼ t(1.42).

Most commodity prices are indeed found to be forward looking (see
for instance Fries and Zakoı̈an, 2019a; Hecq and Voisin, 2022).

We perform density forecasts using the sample-based approach of
Gouriéroux and Jasiak (2016) and the simulations-based counterpart
proposed in this chapter on the last 12 months of the sample. We
perform pseudo-real life forecasts and thus detrend and re-estimate
the model at each point of the predictions with expanding window.
The first predictions performed are in May 2021, right before the
noticeable peak of June 2021.

Figure 5.9 shows all 12 density forecasts made at the indicated
months. The sample-based method is represented by the solid lines
and the simulations-based method by the dashed lines, obtained with
200 000 simulations.
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Figure 5.9: Density forecasts of detrended metals price index

162



We can notice that the densities across the two approaches differ the
most around the peaks of locally explosive episodes. Indeed, they pre-
dominantly differ between May and July 2021 and in April 2022. The
results are therefore in line with the findings of Section 5.4 for such
sample size and t-distribution. First, for a t(1.42)-distributed process,
the deviations from the estimated trend even at the peaks is not that
extreme, which implies less discrepancy between the two methods.
Then, when the detrended index is close to central values and thus
when the predictive densities are unimodal, both approaches yield al-
most identical densities.

5.6 Conclusion
This chapters investigates the possibility to derive closed-form theoret-
ical conditional density functions of Cauchy-distributed mixed causal-
noncausal processes with two leads. While assuming a Student’s t-
distribution offers more flexibility than Cauchy, it entails the absence
of closed-form for the conditional distribution of the process. Investi-
gating the Cauchy case would allow to evaluate the benchmark perfor-
mance of the methods aiming at approximating the predictive density.
We could not obtain all parts of the conditional distribution and were
therefore not able to obtain a closed-form. We present the marginal
distribution of the MAR(0, 2) and leave the rest to future research. We
then propose a prediction approach which builds on the two existing
approximation methods. It approximates the conditional distribution
using simulations and does not depend on the sample size. In a sim-
ulation study, we compare and analyse its results with the ones of a
sample-based counterpart, based on different distributions and pa-
rameters. We also analyse their respective sensitivity to the number
of simulations employed and the sample size. We then illustrate both
approaches by forecasting the metals price index which is identified as
an MAR(0, 2) process.
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6
Detecting common bubbles in

multivariate mixed causal-noncausal
models

Adapted from: Gianluca Cubadda, Alain Hecq, and Elisa Voisin
(2022). Detecting common bubbles in multivariate mixed causal-noncausal
models. DOI: 10.48550/ARXIV.2207.11557.
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Chapter 6. Detecting common bubbles in multivariate mixed
causal-noncausal models

Abstract
This chapter proposes methods to investigate whether the bubble pat-
terns observed in individual series are common to various series. We
detect the non-linear dynamics using the recent mixed causal and non-
causal models. Both a likelihood ratio test and information criteria
are investigated, the former having better performances in our Monte
Carlo simulations. Implementing our approach on three commodity
prices we do not find evidence of commonalities although some series
look very similar.
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6.1 Introduction

Economic and financial time series exhibit many distinctive
characteristics among which the presence of serial correlation, some
seasonality, stochastic or deterministic trends, time varying volatility,
non-linearities. However, in multivariate analyses, namely when one
investigates relationships between variables, it is frequent to observe
that one or more of these features that were detected in individual
series are common to several variables. We talk about common
features when such features are annihilated with some suitable
combinations. The most famous example is probably cointegration,
that is the presence of common stochastic trends (Engle and Granger,
1987). Other forms of co-movements (Engle and Kozicki, 1993)
have also been studied, giving rise to developments around the
notions of common cyclical features (Vahid and Engle, 1993), common
deterministic seasonality (Engle and Hylleberg, 1996), common
volatility (Engle and Susmel, 1993), co-breaking (Hendry and
Massmann, 2007), etc. Recognizing these common feature structures
presents numerous advantages from an economic perspective (e.g.
the whole literature on the existence of long-run relationships).
There are also several implications for statistical modeling. Imposing
the commonalities helps to reduce the number of parameters that
must be estimated. That potentially leads to efficiency gains and to
improvements in forecasts accuracy (Issler and Vahid, 2001). The
factor structure underlying common features can also be used to
forecast a set of time series using only the forecasts of the common
component and the estimated loadings.

Building on such a common features approach, we propose in this
chapter to detect the presence of common bubbles in stationary time
series. Intuitively, the idea is to detect in univariate time series bubble
patterns and to investigate whether those bubbles would be common
to a set of assets. In the affirmative, a portfolio composed of those
series would not have such a non-linear local explosive characteristic.
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Chapter 6. Detecting common bubbles in multivariate mixed
causal-noncausal models

There are several ways to capture bubbles in the data. We rely on
mixed causal-noncausal models (denoted MAR(r, s) hereafter),
namely autoregressive time series that depend on both r lags and s
leads. There is indeed a recent interest in the properties of noncausal
processes associated with a blooming of applications on commodity
prices, inflation or cryptocurrency series as well as the developments
around the notion of non-fundamental shocks. See Hecq and Voisin
(2022) for the references therein. We choose to consider mixed causal
and noncausal models as they might also be used for forecasting. This
is not necessarily the case with other approaches aiming at identifying
bubble phases. In a MAR(r, s) framework, in the presence of common
bubbles among a set of time series, several variables can be forecasted
with one of the series (and their loadings).

Cubadda, Hecq, and Telg (2019) extend the canonical correlation
framework of Vahid and Engle (1993) from purely causal vector
autoregressive models (namely the traditional serial correlation
common feature approach within a VAR) to purely noncausal VARs (a
VAR with leads only). They show that more commonalities emerge
when we also look at VARs in reverse time. The tests statistics
they developed do not generally work for mixed models though.
Consequently, we extend their work and we propose a likelihood
ratio test that compares the unrestricted multivariate vector mixed
causal-noncausal model (hereafter VMAR(r, s)) with its restricted
version in which reduced ranks are imposed on the lead polynomial
matrix, which is our notion of common bubbles. Indeed, this is
equivalent to require that there exists a linear combination of variables
with bubbles that does not possess the bubble feature. See for
instance Cubadda and Hecq (2022) for a recent survey on reduced
rank techniques for common features. We also consider the use of
information criteria as an alternative strategy.

The rest of this chapter is as follows: in Section 6.2 we set up the nota-
tions for multivariate mixed causal and noncausal models. Contrarily
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to the univariate case, two distinct multivariate multiplicative repre-
sentations lead to the same linearized form. They consequently also
have the same likelihood but with different lag-lead polynomial ma-
trices. We advocate to use the VMAR with the lead polynomial first as
the alternative matrix polynomial structure does not allow to discover
the presence of common bubbles even when they are present. We ex-
plain how to implement the likelihood ratio test that we introduce in
this paper. Section 6.3 investigates, using Monte Carlo simulations,
the small sample properties of our strategy for a bivariate and three
dimensional systems both under the null of common bubbles and the
alternative of no rank reductions. Section 6.4 illustrates our approach
on three commodity prices. The presence of common bubbles is re-
jected in every bivariate and three dimensional systems although from
the graphs, series looked rather similar. Section 6.5 concludes.

6.2 Multivariate mixed causal-noncausal models

Recall that a univariate MAR(r, s) model is constructed as follows,

(1− ϕ1L− . . .− ϕrL
r)(1− ψ1L

−1 − . . .− ψsL
−s)yt = et,

where all coefficients are scalars and thus the model is commutative,

(1− ψ1L
−1 − . . .− ψsL

−s)(1− ϕ1L− . . .− ϕrL
r)yt = et.

That is, either of the two representations will yield the same
coefficients. Lr is the lag operator such that Lryt = yt−r and L−s is the
lead operator such that L−syt = yt+s.

Let us now consider Yt, an N dimensional stationary process. We as-
sume for notation simplicity that deterministic elements such as the
intercept or seasonal dummies have been subtracted. Analogously to
the univariate case, a multivariate mixed causal-noncausal model with
r lags and s leads, denoted VMAR(r, s), is defined in its multiplicative
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forms as follows,
Ψ(L−1)Φ(L)Yt = εt, (6.1)

Φ̄(L)Ψ̄(L−1)Yt = ε̄t. (6.2)

where,

Ψ(L−1)Φ(L) = (IN −Ψ1L
−1 − . . .−ΨsL

−s)(IN − Φ1L
1 − . . .− ΦsL

r)

Ψ̄(L−1)Ψ̄(L) = (IN − Ψ̄1L
−1 − . . .− Ψ̄sL

−s)(IN − Ψ̄1L
1 − . . .− Ψ̄sL

r).

To simplify the analyses, εt and ε̄t follow multivariate Student’s
t-distributions. We can consider other distributions than the Student
as long as they are non Gaussian. This is indeed the condition
that allows for the distinction of the causal, noncausal or mixed
specifications. Both models (6.1) and (6.2) are equivalent but contrary
to univariate MAR models, they are two distinct representations of
the same process, given the non commutativity property of the matrix
product. This means that the lag polynomial matrices Φ(L) and Φ̄(L),
though of the same order r, have different values for coefficient
matrices. The same observation applies to the lead polynomials
Ψ(L−1) and Ψ̄(L−1) which are of the same order s. We assume that the
roots of the determinants of each polynomial matrices Ψ(L−1),Φ(L),
Φ̄(L), Ψ̄(L−1) are outside the unit circle to fulfill the stationarity
condition. Furthermore, we will show later that the distribution of
the errors εt and ε̄ have identical degrees of freedom λ but different
scale matrices. We denote them by Σ and Σ̄ respectively, both being
symmetric positive definite matrices.

Let us further denote A(L) and Ā(L) the expanded products1 of the

1This is the restricted linear form that is used in the maximum likelihood estima-
tion. Gourieroux and Jasiak (2017) have proposed an alternative approach based
on roots inside and outside the unit circle of an autoregressive polynomial.
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lag and lead polynomials in the two models with

Ψ(L−1)Φ(L) ≡ A(L) =
r∑

j=−s

AjL
j → A(L)Yt = εt,

Φ̄(L)Ψ̄(L−1) ≡ Ā(L) =

r∑
j=−s

ĀjL
j → Ā(L)Yt = ε̄t.

The general forms of the expansion of the lead and lag polynomials for
each representation are

A(L) ≡
r∑

j=−s

AjL
j =

I +

min
{r,s}∑
i=1

ΨiΦi −
r∑

i=1

Φi −
∑

∀{l,m}
s.t.

l−k=i

ΨlΦm

Li −
s∑

j=1

Ψj −
∑

∀{l,m}
s.t.

m−l=j

ΨlΦm

L−j ,

Ā(L) ≡
r∑

j=−s

ĀjL
j =

I +

min
{r,s}∑
i=1

Φ̄iΨ̄i −
r∑

i=1

Φ̄i −
∑

∀{l,m}
s.t.

m−l=i

Φ̄mΨ̄l

Li −
s∑

j=1

Ψ̄j −
∑

∀{l,m}
s.t.

m−l=j

Φ̄mΨ̄l

L−j ,

(6.3)

with 1 ≤ l ≤ s and 1 ≤ m ≤ r. This shows that both multiplicative
representations yield the exact same additive form,

B(L)︸ ︷︷ ︸
A−1

0 A(L)
=

Ā−1
0 Ā(L)

Yt = ηt︸︷︷︸
A−1

0 εt
=

Ā−1
0 ε̄t

, (6.4)
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where ηt follows a multivariate Student-t distribution with degrees of
freedom λ – analogously to εt and ε̄t from representations (6.1) and
(6.2) – and with a scale matrix Ω = A−1

0 Σ(A−1
0 )

′
= Ā−1

0 Σ̄(Ā−1
0 )

′
. The

lag polynomial in (6.4) is the following,

B(L) = I −
r∑

i=1

BiL
i −

s∑
j=1

B−jL
−j . (6.5)

The example of derivations of the coefficients of a VMAR(2,2) is given
in Section 6.2.1.

Contrary to the univariate case, with commutative multiplicative form
and therefore a unique solution, a multivariate VMAR(r, s) processes
has two distinct representations. The multivariate process can be esti-
mated with either of the multiplicative representations (6.1) and (6.2).
While the coefficient matrices will differ, both representations will cor-
respond to the same expanded form of the model (6.4). This makes
however the interpretation of the lag and lead coefficient matrices in
the multiplicative forms more intricate. Lanne and Saikkonen (2013)
advocate for the use of one or the other representation depending on
the analysis performed; one representation might be easier to employ
for certain inquiries.

6.2.1 Common bubbles in VMAR(r,s)

Now that we have set up the notations of the unrestricted multivariate
mixed model we consider additional restrictions coming from com-
monalities in the lead polynomial matrix. Indeed it is the lead com-
ponent that induces some non-linearities similar to the bubble pattern
(Gouriéroux and Zakoı̈an, 2013).Although the focus in this chapter is
on common bubbles, our approach can be easily extended the inves-
tigation to commonalities in the causal part or in both the lag and the
lead components.
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Definition 1. The N dimensional process Yt displays common bubbles (here-
after CB) if there exists a matrix δ of dimension N × k, with 0 < k < N ,
such that, δ′B−j = 0 for j = 1, . . . , s, where the coefficient matrix B−j is a
matrix of the expanded lag polynomial (6.5). This implies that the coefficient
matrices B−j can be decomposed as δ⊥β′

j where δ⊥ is the N×(N−k) orthog-
onal complement of δ′ such that δ′δ⊥ = 0 and β′

j is a matrix with dimension
(N − k)×N .

Let us start from the example r = s = 2. The coefficient matrices of the
leads in the additive representation (6.4) with reduced rank restrictions
are

B−1 = A−1
0 (Ψ1 −Ψ2Φ1) B−2 = A−1

0 Ψ2

= Ā−1
0 (Ψ̄1 − Φ̄1Ψ̄2) = Ā−1

0 Ψ̄2

= δ⊥β
′
1, = δ⊥β

′
2,

where the matrices A0 and Ā0 have been derived from the expanded
lag polynomials (6.3) with

A0 = (IN +Ψ1Φ1 +Ψ2Φ2)

Ā0 = (IN + Φ̄1Ψ̄1 + Φ̄2Ψ̄2).

Hence, the matrix δ′ of dimension k × N , with 0 < k < N annihilates
the forward looking dynamics

δ′B−1 = δ′B−2 = 0.

This implies that, for the second lead coefficients,

δ′B−2 = δ′A−1
0 Ψ2 = δ′Ā−1

0 Ψ̄2 = 0.

Since δ′A−1
0 cannot be equal to zero, it implies that δ′A−1

0 = γ′ (resp.
δ′Ā−1

0 = γ̄′) , where γ (resp. γ̄) is some N × k dimensional matrix
and thus γ′Ψ2 = 0 (resp. γ̄′Ψ̄2 = 0). Hence, both Ψ2 and Ψ̄2 must
have rank N − k, but potentially different left null spaces (see also
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Cubadda, Hecq, and Telg, 2019).

For the first lead coefficient of representation (6.1),

δ′B−1 = δ′A−1
0 (Ψ1 −Ψ2Φ1)

= γ′(Ψ1 −Ψ2Φ1)

= γ′Ψ1 = 0

which implies that Ψ1 and Ψ2 must have the same left null space. For
the alternative representation in (6.2),

δ′B−1 = δ′Ā−1
0 (Ψ̄1 − Φ̄1Ψ̄2)

= γ̄′(Ψ̄1 − Φ̄1Ψ̄2) = 0

which implies that γ̄′Ψ̄1 = γ̄′Φ̄1Ψ̄2 and that Ψ̄1 might not necessarily
even be a reduced-rank matrix.

Since Ψ1 and Ψ2 of representation (6.1) must have the same left null
space and keeping in mind that δ′A−1

0 = γ′ we have,

δ′ = γ′A0 = γ′(IN +Ψ1Φ1 +Ψ2Φ2) = γ′,

which shows that Ψ1 and Ψ2 have the same left null space as B−1 and
B−2.

For representation (6.2), only the second lead coefficient matrix must
have reduced rank. The lead coefficients of the two representations in
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the presence of CB are the following,

Ψ1 = A0δ⊥(β
′
1 + β′

2Φ1) = (IN +Ψ1Φ1 +Ψ2Φ2)δ⊥(β
′
1 + β′

2Φ1),

Ψ2 = A0δ⊥β
′
2 = (IN +Ψ1Φ1 +Ψ2Φ2)δ⊥β

′
2,

Ψ̄1 = Ā0δ⊥β
′
1 + Φ̄1Ā0δ⊥β

′
2

= (IN + Φ̄1Ψ̄1 + Φ̄2Ψ̄2)δ⊥β
′
1 + Φ̄1(IN + Φ̄1Ψ̄1 + Φ̄2Ψ̄2)δ⊥β

′
2,

Ψ̄2 = Ā0δ⊥β
′
2 = (IN + Φ̄1Ψ̄1 + Φ̄2Ψ̄2)δ⊥β

′
2.

While it is clear that Ψ1, Ψ2, B−1 and B−2, having the same left null
space, satisfies the condition for the presence of a CB, we can see that
pre-multiplying Ψ̄1 and Ψ̄2 by δ′ will not annihilate the dynamics.
This due the matrix multiplication structure of their components, as
revealed by the right-hand sides of the equations. For instance, from
the equation of Ψ̄2,δ′(IN + Φ̄1Ψ̄1 + Φ̄2Ψ̄2) would have to simplify to δ′

to annihilate the dynamics, however, this would require restrictions
on the lag coefficients.

Overall, it is easy to see that the same conclusion applies for any
VMAR(r,s). In the presence of CB, all lead matrices of representation
(6.1) must have the same left null space. Hence, for the investigation
of CB this representation is the most appropriate and straightforward
to allow for tests.

6.2.2 Testing for common bubbles

In an N−dimensional VMAR(r, s), our definition of common bubbles
implies that there exists a full-rank N×k matrix δ, with 0 < k < N that
annihilates the noncausal dynamics of the multivariate process (6.4),
i.e. δ′B−j = 0 for all j = 1, . . . , s. It therefore entails that δ′Yt is a purely
causal k-dimensional process. We showed above that in the presence of
CB all lead matrices estimated from the multiplicative representation
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(6.1) must have the same left null space as the coefficients B−j . They
can thus be decomposed as

Ψj = δ⊥Γ
′
j , with j = 1, . . . , s, (6.6)

with δ⊥ the aforementioned N × (N − k) matrix such that δ′δ⊥ = 0
and Γ′

j a (N − k)×N full-rank matrix.

We suggest a likelihood ratio test comparing the likelihood value of
the unrestricted model (6.1) with the likelihood value of the restricted
model

(IN − δ⊥Γ
′
1L

−1− · · · − δ⊥Γ
′
sL

−s)(IN −Φ1L− · · · −ΦrL
r)Yt = εt, (6.7)

where the coefficient matrices are as defined in (6.6). Since δ⊥ has di-
mension N × (N − k) with 0 < k < N , there are N − 1 possible
reduced-rank model to consider, for all possible k. Furthermore, the
matrix δ′ is normalized, such that δ′ = [Ik, δ

∗] and thus only involves
k× (N − k) free parameters in δ∗. Hence, the test statistic based on the
log-likelihood values,

LRk = −2[ln(L(k)
0 )− ln(L̂)], (6.8)

follows, under the null of CB, a χ2
ρ distribution, with ρ = k2−Nk(1−s),

against the alternative of a full rank.

An alternative is to employ information criteria as a selection method
between the restricted and unrestricted specifications,

BICk = K ln(T )− 2 ln(L̂), (6.9)

AICk = 2K − 2 ln(L̂), (6.10)

with K the number of coefficients estimated in the lag and lead
matrices of the model – for the unrestricted model, Ku = N2(r + s)
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and for the restricted models, Krk = Ku − (k2 −Nk(1− s)) = Ku − ρ.

Alternatively, one can test the null hypothesis that the lead coefficient
matrices have rank 0 < (N − k) < N against the alternative that they
do have commonalities, however that they have a larger rank (N−k) <
(N − l) < N . In such case, the difference in the number of estimated
coefficients ρ = N(1 − s)(k − l) + l2 − k2 is smaller than against the
alternative of full rank.

6.3 Monte Carlo analysis
We investigate using Monte Carlo simulations the performance of
our strategies to detect common bubbles in bivariate and trivariate
VMAR(1,1) models. We consider two sample sizes (T = 500 and
1000) and two different degrees of freedom of the error term with
very leptokurtic distributions, namely λ = 3 and 1.5, to respectively
consider a finite and infinite variance case. We employ lead coefficient
matrices with and without reduced rank to analyse the detection of
the correct model under the null of common bubbles and under the
alternative of no such co-movements. The coefficients employed in
the bivariate settings are displayed in Table 6.1.

Results, based on 3 000 replications for each combination of
parameters, are reported in Table 6.4.2 All entries are the frequency of
correctly detected model. That is, under the null of a CB, we report
the proportion of correctly detected CB, and under the alternative of
no CB, we report the proportion of correctly rejected CB. We hence
perform the test H0 : rank(Ψ) = 1 against the alternative that the
rank is 2. The LR tests are performed at a 95% confidence level. The
information criteria detect a CB when the IC of the restricted model is

2Estimating multivariate causal-noncausal models using maximum likelihood
presents high sensitivity to starting values. We do not investigate this matter here
and therefore employ true values as starting values in the estimations.
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Table 6.1: Monte Carlo parameters for bivariate VMAR(1,1)

Φ =

[
0.5 0.1
0.2 0.3

]
Σ =

[
4 0.5
0.5 1

]
T = {500, 1 000}

λ = {1.5, 3}

Ψ =



[
0.3 0.25

0.6 0.5

]
=

[
1

2

] [
0.3 0.25

]
(H0 : CB)

[
0.1 0.4

0.6 0.5

]
(H1 : no CB)

lower than the one of the unrestricted model.

We can notice that the frequency of Type I errors of the LR test
increases when the variance of the errors becomes infinite. It however
does not significantly decrease when the sample size gets larger.
With finite variance (λ = 3) the LR test has an appropriate size of
around 5.5% and it increases to around 8.6% when the degrees of
freedom of the errors distribution reach 1.5. Under the alternative, the
LR test has a power of at least 99.9% across all parameters combi-
nations implying that it almost never detects a CB when there are none.

Regarding the model selection using information criteria, results show
that BIC outperforms AIC. Under the null of a CB, BIC selects the
correct model specification in 98.9% of the cases with finite variance
and a sample size of 500. The frequency increases to 99.3% when
the sample size increases to 1 000. AIC on the other hand selects the

178



Table 6.2: MC results for N=2
λ = 3

T=500 T=1000
DGP LR test BIC AIC LR test BIC AIC
With CB (rank 1) 0.946 0.989 0.838 0.944 0.993 0.834
Without CB (rank 2) 0.999 0.994 1.000 1.000 1.000 1.000

λ = 1.5
T=500 T=1000

DGP LR test BIC AIC LR test BIC AIC
With CB (rank 1) 0.913 0.968 0.779 0.914 0.977 0.783
Without CB (rank 2) 0.999 0.999 0.999 1.000 1.000 1.000

Based on 3000 iterations. All results are the frequencies of correctly detected models.
The LR test is performed at a 95% confidence level. For the IC, the favoured model is
the one with the lowest IC value. The ranks refer to the rank of the lead coefficient in
the DGP.

correct model in only 83.8% of the cases and does not increase with
the sample size. The frequency of correctly selected model decreases
for both when in the infinite variance case, but more drastically for
AIC, which decreases to around 78%. BIC still selects the correct
model for 96.8% of the cases with a sample size T = 500, and the
frequency increases to 97.7% for T = 1000. Under the alternative of
no CB however, both IC correctly select the unrestricted specification
in more than 99.4% across all parameters combinations.

We now turn to the trivariate case. Now, in the presence of a CB,
the rank of the lead coefficient matrix can be either 1 or 2. We thus
consider the two possible CB structures. The parameters of the data
generating processes are displayed in Table 6.4.

We evaluate our approach with 1 500 replications with each of the
parameters combinations. Under the null of a CB we test the correct
CB specification against the alternative of the unrestricted full rank
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Table 6.3: Monte Carlo parameters for trivariate VMAR(1,1)

Φ =

0.5 0.1 0.2
0.2 0.3 0.1
0.1 0.4 0.6

 Σ =

 2 0.5 0.5
0.5 1 0.5
0.5 0.5 4


T = {500, 1 000}

λ = {1.5, 3}

Ψ =



0.3 0.1 0.1

0.2 0.3 0.4

0.7 0.35 0.4

 =

1 0

0 1

2 0.5

[
0.3 0.1 0.1

0.2 0.3 0.4

]
(H0 : 1 CB feature)

 0.15 0.25 0.4

0.3 0.5 0.8

0.075 0.125 0.2

 =

 1

2

0.5

[
0.15 0.25 0.4

]
(H0 : 2 CB features)

0.3 0.2 0.1

0.2 0.5 0.4

0.7 0.125 0.2

 (H1 : no CB feature)

model. Under the alternative of no CB we test for each of the CB
specifications.3 Table 6.4 reports the frequencies of correctly detected
models either with the LR test or with model selection using the
information criteria. Analogously to the bivariate case, the LR tests
are performed at a 95% confidence level and the information criteria
detect a CB when the IC of the restricted model is lower than the one
of the unrestricted model.

We can notice that the size of the LR test when the true rank of the

3Results for other tests, such as 1 vs 2 when the true rank is 2 for instance, are avail-
able upon requests.
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Table 6.4: MC results for N=3
λ = 3

T=500 T=1000
rank(Ψ) Rank test LR BIC AIC LR BIC AIC

2 2 vs 3 0.944 0.984 0.817 0.951 0.992 0.843

1 1 vs 3 0.919 1.000 0.871 0.933 1.000 0.883

3
2 vs 3 0.695 0.481 0.855 0.932 0.802 0.970
1 vs 3 1.000 1.000 1.000 1.000 1.000 1.000

λ = 1.5
T=500 T=1000

rank(Ψ) Rank test LR BIC AIC LR BIC AIC
2 2 vs 3 0.915 0.972 0.775 0.907 0.978 0.776

1 1 vs 3 0.857 0.998 0.774 0.860 0.999 0.783

3
2 vs 3 0.997 0.994 0.999 1.000 1.000 1.000
1 vs 3 1.000 1.000 1.000 1.000 1.000 1.000

Based on 1 500 iterations. All results are the frequencies of correctly detected models.
The LR test is performed at a 95% confidence level. For the IC, the favoured model is
the one with the lowest IC value. The ranks refer to the rank of the lead coefficient.
rank(Ψ) is the rank of the lead coefficient matrix in the DGP.

lead coefficient matrix is 2 is similar to the bivariate case. With a finite
variance errors distribution the size of the LR test is around 5% and
it increases to around 9% when the variance is infinite (λ = 1.5). We
can see that the size of the test decreases in the more restrictive CB
specification, when the rank of the matrix is 1. For the finite variance
cases the size decreases to 91.9% when T = 500 and to 93.3% when
T = 1000. The correctly detected model frequency decreases further
to 86% in the infinite variance case. Under the alternative of no CB,
with finite variance and a sample size of T = 500, the LR test wrongly
detects a bubble (2 vs 3) in 30.5% of the cases, however this frequency
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decreases to 6.8% when the sample size increases to 1 000. Hence,
it seems that with a smaller sample size and the finite variance of
the errors distribution, estimating 8 coefficients in the lead matrix
instead of 9 in the unrestricted model still provide a good enough fit
to not be rejected by the test. The power of the test for all other model
specification is above 99.7%.4

When it comes to model selection using information criteria, BIC
outperforms AIC in each of the settings to detect common bubbles.
BIC correctly select a model with CB in more than 97.2% of the cases
across all model specifications and the frequencies increase with
the sample size and the amount of restricted coefficients. Indeed,
it correctly selects a restricted model with a coefficient matrix of
rank 1 in at least 99.8% of the cases. Whereas AIC selects the correct
restricted model in less than 88.3% and the frequency decreases with
the sample size, the variance of the errors and when the rank of the
restricted matrix is closer to full rank. Hence for the infinite variance
case with a sample size T = 500, its frequency of correctly selected
CB model is around 77.5% for each of the CB specification. Under
the alternative of no CB, we observe the same pattern as for the LR
test. In the finite variance case, both information criteria over select a
restricted model with a matrix of rank 2. For a sample size of 500, BIC
selects the restricted model in 51.9% of the cases, though it decreases
to 19.8% when the sample size increases to 1 000. AIC on the other
hand only selects the restricted model in 14.5% with T = 500 and it
even decreases to 3% with T = 1000. For all other model specification
both IC select the correct model in at least 99.4% of the cases.

Overall, the size of the LR test seems to converge to 5% in the finite

4Something to take into account is that under the null of no CB, in the estimations of
the restricted models with coefficient matrix of rank 2 or 1, the likelihood function
might not have reached the global maximum due to the starting values issue. This
could imply an overestimation of the frequencies displayed in the 2 vs 3 and 1 vs 3
when the true rank is 3.
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variance cases when the sample size increases. In the infinite variance
cases, the size is around 5 percentage points lower and seems to be less
affected by the sample size. The power of the test is above 93% in all
model specifications except with λ = 3 and T = 500, with a restricted
model that has only 1 coefficient less to estimate than the unrestricted
model (2 vs 3). For the model selection using information criteria, BIC
overall outperforms AIC in correctly detecting a CB, but also tends to
detect a CB more often than AIC when there is none in the 2 vs 3 case
with λ = 3.5

6.4 Common bubbles in commodity indices?
We illustrate our strategies to test for common bubbles in mixed
causal-noncausal processes on three commodity price indices: food
and beverage, industrial inputs6 and fuel (energy)7. The sample of
362 data points ranges from January 1992 to January 2022.8 We can
see from graphs (a) of Figures 6.1 and 6.2, which respectively shows
the series in levels and logs, that the indices seem to follow similar
trends. Long-lasting increases and crashes often happen at the same
time. This could potentially suggest the presence of common bubbles
between the series. Following the work of Hecq and Voisin (2022), we
detrend all series using the Hodrick-Prescott filter (hereafter HP filter).
Although this approach to get stationary time series has been strongly
criticized, in particular for the investigation of business cycles, Hecq
and Voisin (2022) show that it is a convenient strategy to preserve the
bubble features. They also show in a Monte Carlo simulation that this
is the filter that preserves the best the identification of the MAR(r, s)

5Note that Hannan-Quin information criterion HQC = 2Kln(ln(T )) − 2 ln(L̂) per-
forms exactly in between BIC and AIC both under the null and under the alterna-
tive. We thus omit it to save space but results are available upon request.

6Includes agricultural raw materials which includes timber, cotton, wool, rubber and
hides.

7Includes crude oil, natural gas, coal and propane.
8All the data is retrieved from the IMF database. They are price indices with base

year 2016.
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model. Giancaterini, Hecq, and Morana (2022) reinforce the same
conclusion using analytical arguments.

Detrended series are displayed on graphs (b) of the two Figures. It can
indeed be seen that the dynamics inherent to mixed causal-noncausal
processes mentioned above are preserved. The crashes occurring
during the financial crisis of 2007 and the COVID-19 pandemic in
2020, while being of different magnitude, happened at the same time
on all three series. Furthermore, long lasting increases such as the one
before the financial crash, the recovery around 2009 or after 2020 are
also present in all three index prices.

We first analyze the series individually. We estimate pseudo causal
autoregressive models to identify the order of autocorrelation in each
of the detrended series (both in levels and logs). All models that we
identify using BIC end up to be AR(2) processes. The normality of
the errors is rejected for all series: values of the Jarque-Bera statistics
range between 48 and 253 for the 6 series. The next step is to identify
MAR(r, s) models for all r and s subject to the constraint p = r + s = 2,
namely MAR(2,0), MAR(1,1) or MAR(0,2). Based on the maximum
likelihood estimator with Student’s t-distributed error term, the best
fitting model for all six series is a MAR(1,1) model.

The estimated models are shown in Table 6.5.9 For comparison pur-
poses with the trivariate case shown later, we display both the coeffi-
cients estimated from the multiplicative from

(1− ϕL)(1− ψL−1)yt = εt, with εt ∼ t(λ), (6.11)

but also the coefficients b1 and b2 of the expanded form obtained after

9We use different starting values in the estimation to account for the bimodality of
the coefficients (see Bec, Nielsen, and Saı̈di, 2020a, for more details).
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Figure 6.1: Price indices in levels

estimations,

yt =
ϕ

1 + ϕψ
yt−1 +

ψ

1 + ϕψ
yt+1 + ε∗t

= b1yt−1 + b2yt+1 + ε∗t .

(6.12)
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(a) Indices in logs
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Figure 6.2: Price indices in logs

It emerges that “food and beverage” as well as “industrial inputs” are
both mostly forward looking with lead coefficients close to 0.85 and
lag coefficients around 0.4. On the opposite, the “fuel index” appears
more backward looking with coefficients inverted. Except for the level
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of industrial inputs, all models have error terms with finite variance,
and as expected, one obtains lower variance for the logs of the series.
The similar dynamics between food and beverages and industrial
inputs could indicate commonalities. The same conclusions can be
drawn from the rescaled expanded coefficients.

Table 6.5: Estimated coefficients on univariate MAR(1,1) models

Variable
Estimated coefficients

Multiplicative Expanded
ϕ ψ λ b1 b2

Food and Beverage 0.38 0.85 3.70 0.29 0.64
log(Food and Beverage) 0.34 0.86 5.47 0.26 0.67

Industrial inputs 0.43 0.87 1.66 0.31 0.63
log(Industrial inputs) 0.42 0.89 4.62 0.31 0.65

Fuel (energy) 0.87 0.44 2.20 0.63 0.32
log(Fuel) 0.83 0.48 4.95 0.59 0.34

The coefficients in the multiplicative form are the estimated coefficients from
equation (6.11). The expanded coefficients are the ones obtained after expanding
the multiplicative from like in (6.12).

For the multivariate investigations, we analyze both bivariate and
trivariate systems. Similarly to the univariate estimation, the strategy
consists in first estimating the pseudo lag order p using a standard
VAR(p) for the six bivariate combinations (three in levels and three in
logs) and the two trivariate models. Using BIC, all VARs are identified
as VAR(2). There are starting values issues when estimating VMARs
by maximum likelihood, meaning that we often reach local maxima.
To avoid this, we used a large range of starting values to estimate
VMAR(1,1) with multivariate Student’s t-distributed errors and we
keep the estimated model with the highest likelihood value.10

10We fixed the starting values for the correlation matrix Σ and the degrees of freedom
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The estimated models are shown below in Table 6.6. We employ rep-
resentation (6.1) for the estimation but the coefficients displayed are
those of the additive form (6.4), which are independent of the repre-
sentation used for the estimations in the following form,

Yt = B1Yt−1 +B−1Yt+1 + ηt,

where ηt follows a multivariate Student’s t-distribution with λ degrees
of freedom and correlation matrix Ω.

Comparing to the expanded coefficients b1 and b2 of the univariate
models in 6.5, the directions and magnitudes of the dynamics have
been preserved in the multivariate models estimations. From the
off-diagonal coefficients of the bivariate models, we notice that ‘Food’
is impacting both ‘Indus’ and ‘Fuel’ with the lag and the lead, with
coefficients magnitude between 0.11 and 0.47 for the levels. However
in the other direction, the magnitude of the coefficients does not
exceed 0.05 for the lag of ‘Fuel’ on ‘Food’. ‘Fuel’ slightly impacts
‘Indus’ with coefficients of magnitude around 0.1. These dynamics
can also be observed in the trivariate model.

To perform the common bubble tests we estimated VMAR models
with restrictions on the lead coefficients matrix as shown in (6.7).11

In the trivariate settings the LR test and the information criteria
compares the unrestricted model where the lead matrix has full rank
with both CB specifications, namely imposing rank 2 or rank 1 to the
lead coefficient matrix.

λ and performed 100 MLEs based on random lead and lag coefficient matrices
fulfilling stationary conditions.

11We also used 100 combinations of starting values to make sure we obtain the best
fitting models.
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Table 6.6: Estimated coefficients on the multivariate VMAR(1,1) models
B1 B−1 Ω λ

Food and Indus[
0.28 0.01
0.26 0.27

] [
0.65 −0.02
−0.11 0.65

] [
1.32 0.16
0.16 3.35

]
2.49

Food and Fuel[
0.35 0.05
0.47 0.52

] [
0.55 −0.04
−0.40 0.40

] [
1.42 0.87
0.87 12.90

]
3.01

Indus and Fuel[
0.29 0.01
−0.11 0.47

] [
0.63 0.03
0.09 0.48

] [
2.22 1.50
1.50 7.17

]
1.67

Food, Indus and Fuel0.27 0.01 0.03
0.27 0.25 0.02
0.30 −0.10 0.56

  0.64 −0.02 −0.02
−0.16 0.66 −0.01
−0.27 0.12 0.37

 1.34 0.12 0.55
0.12 3.29 2.20
0.55 2.20 10.02

 2.28

B1 B−1 103Ω λ

Food and Indus[
0.25 0.01
0.22 0.24

] [
0.69 −0.03
−0.12 0.70

] [
0.27 0.03
0.03 0.46

]
6.30

Food and Fuel[
0.25 0.02
0.16 0.38

] [
0.67 −0.02
−0.14 0.55

] [
0.25 0.06
0.06 1.21

]
5.23

Indus and Fuel[
0.26 0.04
−0.09 0.56

] [
0.67 −0.01
0.09 0.37

] [
0.42 0.24
0.24 1.19

]
4.77

Food, Indus and Fuel 0.88 −0.17 −0.02
−0.04 0.27 0.07
−0.04 0.06 0.58

 0.21 0.15 0.00
0.13 0.76 −0.08
0.02 0.05 0.33

 0.32 0.02 0.07
0.02 0.51 0.26
0.07 0.26 1.35

 6.15
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The results are shown in Table 6.7. The LR column displays the LR
test statistic and the IC columns are the difference in the IC values of
the restricted and the unrestricted models.

Table 6.7: Common bubble detection on multivariate combinations of the
variables

Levels
Food Indus Fuel Rank test LR BIC AIC
■ ■ 1 vs 2 25.93 20.04 23.93
■ ■ 1 vs 2 59.96 54.07 57.96

■ ■ 1 vs 2 70.49 64.59 68.49

■ ■ ■
2 vs 3 16.26 10.37 14.26
1 vs 3 88.12 64.55 80.12

Logs
Food Indus Fuel Rank test LR BIC AIC
■ ■ 1 vs 2 16.04 10.15 14.04
■ ■ 1 vs 2 34.36 28.47 32.36

■ ■ 1 vs 2 46.05 40.16 44.05

■ ■ ■
2 vs 3 15.81 9.92 13.81
1 vs 3 75.01 51.44 67.01

LR is the likelihood ratio test statistic. For the bivariate models the critical
value of the LR test at 95% confidence level is 3.41. For the trivariate models,
the critical values are 3.841 and 9.488 for 2 vs 3 and 1 vs 3 respectively. The
column BIC and AIC show the difference between the restricted and unre-
stricted information criteria.

Looking at the LR tests, the null hypothesis of a common bubble in
the bivariate and trivariate models is rejected for all combination
of variables at a confidence level of 95%. All information criteria
also indicate a better fit for the models without commonalities
since all values are positive. Even for the trivariate cases 2
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vs 3, no bubble is detected even though in the simulations
exercise, the test and information criteria over-detected a CB
for such sample size and degrees of freedom. Hence, while the
series seem to follow similar pattern in the locally explosive
episodes throughout the time period, we do not find signifi-
cant indication of commonalities in their forward looking components.

6.5 Conclusion
This chapter proposes methods to investigate whether the bubble
patterns observed in individual series are common to various series.
We detect the non-linear dynamics using the recent mixed causal
and noncausal models. The lead component of the model allows to
capture, for instance, locally explosive episodes in a parsimonious
and strictly stationary setting. We hence employ multivariate mixed
causal-noncausal models and apply restrictions to the lead coefficients
matrices to test for the presence of commonalities in the forward
looking components of the series. We propose a likelihood ratio (LR)
test to test for the presence of a common bubble. In a simulation
study, we investigate the accuracy of the common bubbles detection
using the LR test as well as by model selection using information
criteria. Then, implementing our approach on three commodity prices
we do not find evidence of commonalities despite the similarities
between the series. Our definition of common bubbles requires that all
noncausal matrices span the same left null space. A natural extension
to our approach would be to relax that hypothesis to investigate non
synchronous common bubbles, allowing for some adjustment delays
along the lines of Cubadda and Hecq (2001).
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7
Conclusions and discussion

This thesis explores the modelling and forecasting of time series with
mixed causal-noncausal autoregressive (MAR) models. Those models
employ not only past values of the process but also future values.
They are parsimonious and allow for non-linear dynamics within a
strictly stationary setting. That is, they can capture for instance locally
explosive episodes, which are often observed in commodity prices,
inflation rates, stock prices or cryptocurrencies. While a process
depending on its own future values might seem counter-intuitive,
some variables do have anticipative characteristics and MAR models
offer a large flexibility in modelling stationary series that exhibit
nonlinear dynamics. The model is rather simple and proved to
provide a better fit than purely causal models in many applications.

Coming back to the example given in the introduction of this thesis,
a long lasting increase in various commodity prices will lead to a
persistent increase in inflation. Hence, the more information policy
makers, investors or applied researchers have regarding the potential
downturn of the bubble, the more adequately they can act. From a
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more financial perspective for instance, investing in a stock which
price persistently increases offers great opportunity of profits but also
considerable risks. Understanding the extent to which this bubble
is likely to go on or suddenly drop can help better perceive the
incurred risks. These examples illustrate the importance of not only
being able to model such processes but also to forecast them accurately.

Chapter 2 to 4 focus on univariate MAR models with a unique
lead and unrestricted amount of lags, namely MAR(r,1). Indeed,
a unique lead is sufficient to capture non-linear patterns such as
bubbles. Chapter 2 investigates the existing forecasting methods
of MAR processes and shows that as a series deviates from
central values, its predictive density splits and becomes bimodal,
indicating either a further increase or a drop. The information
provided by the bimodality of the distribution would not be
captured by point forecasts of by purely backward-looking AR models.

MAR models can be employed in various areas of applications and
for distinct purposes, as illustrated by Chapters 3 and 4. Chapter 3,
after investigating a common issue that applied researchers face, that
is the detrending of non-stationary series, employs MAR models to
predict probabilities of crash in oil prices. It analyses the COVID-19
pandemic outbreak, a period in which prices were more volatile and
predicts probabilities of crash of different magnitudes. Chapter 3 on
the other hand proposes the use of the probabilities obtained from
MAR models to construct a short-term credibility index of Central
banks’ inflation targeting system. While during periods of increasing
inflation, the targeting system is logically not credible, the index can
also be used during rather stable period when inflation is close to the
target by providing short-term risks of exiting the tolerance bounds.

Probabilities are sometimes difficult to interpret. For instance, when
forecasting the probabilities of a crash, from which threshold should
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we consider it to be too risky? Chapter 4 suggests the use of receiver
operating characteristic (ROC) curves to help determine the adequate
threshold, which will depend on the aversion of false positives for a
given inquiry. We illustrate their use on the credibility of the Central
bank inflation targeting system, but it can naturally be employed in
other analyses, such as the probabilities of crash mentioned above.

The thesis also investigates different settings of MAR models for
which the literature is still at this date limited. Chapter 5 allows
for more leads and pave the way for further research regarding
theoretical findings of the predictive density. Various commodity
prices in many applications in the literature are identified as MAR
processes with more than one lead, emphasising the importance of
having more theoretical understanding of general MAR models.
The chapter also suggest a new method for forecasting MAR(r, s)
processes which, based on the researcher’s inquiry and the sample
size of the data available, is a suitable alternative to the existing ones.

As illustrated by the oil prices in Chapter 3 or the three commodity
indices in Chapter 6, it is common to observe bubble-like patterns at
the same time on various time series. The detection of commonalities
improves the parsimony of autoregressive multivariate models for
which the number of coefficients increases exponentially with the
number of variables and lags. Chapter 6 therefore investigates the
detection of, what we define as common bubbles, commonalities in
the forward looking component of MAR processes, in a multivariate
setting. While we have not found yet an example of the detection of
such commonalities in practice, we propose a likelihood ratio test
and the use of information criteria, to detect the presence of common
bubbles.

Overall, this thesis covers different frameworks and features of mixed
causal-noncausal models ranging from the forecast of univariate pro-
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cesses to the detection of commonalities in multivariate settings. The
wide range of applications of MAR models demonstrate their versa-
tility and their ability to capture non-linear dynamics that are often
observed in economic time series. While the interest in MAR mod-
els is continually increasing in the literature, these models are still
rather new and there are a lot of features and extensions that have
not yet been explored. Besides the inquiries of Chapter 5 that could
be further investigated, extensions of MAR models could for instance
include more complex dynamic structures. Multivariate MAR mod-
els could also be used in the construction of portfolios. In line with
Chapter 6, different structures of commonalities could be considered,
to construct portfolios in which the bubble patterns observed in the in-
dividual stocks disappear, hedging against the risks that each of them
carries.
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This thesis focuses on one particular type of non-linear dynamics: bub-
bles. They are defined as episodes of persistent increase followed by
a sudden crash. Bubbles are commonly observed in many economic
and financial data. Naturally, they come in different magnitudes, some
have mild impact while others have dramatic global consequences.
Among the most notorious bubbles that have occurred, there are for
instance the tulip mania of the 1630s in the Netherlands, the Japanese
asset price bubble in the late 1980s, the dot-com bubble of the 1990s
or the U.S. housing bubble of the 2000s. The consequential repercus-
sions that bubbles can have accentuate the importance of being able
to model and predict such episodes. Bubbles occur regularly and we
nowadays observe what seem to be the boom phases of bubbles in var-
ious real estate markets across the world for instance as well as surges
in inflation rates all around the world. There is therefore a need for
simple models that can capture such complex patterns. Indeed, the
simpler the model, the easier it is to estimate and the less requirements
and uncertainty are added to the forecasts.

Mixed causal-noncausal autoregressive (MAR) models, that are em-
ployed in this thesis, are simple models that can capture non-linear
dynamics. Within the framework of MAR models, a variable can be
explained by its own past and future values. In their simplest form,
namely with a unique regressor being the future value of the variable,
the model is already able to capture bubbles. Nonetheless, these mod-
els are still rather novel and there is thus room for further research and
developments which could help understand the complex dynamics of
various economic and financial time series.

In the second chapter of this thesis, MAR models are used to predict
the probabilities of crash along a bubble in Nickel prices during the
extreme episode of the 2007 crisis. Density forecasts, from which we
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can derive much more information than from point forecasts, allows
to foresee the potential magnitude of an upcoming crash. We find that
at the top of the bubble in 2007, although predicted probabilities indi-
cated a large probabilities of a crash, it was suggested that the initial
crash would not be larger than 40%, which turned out to be correct.
While we present only one empirical example in this chapter, many
other commodity prices are characterised by the same dynamics, and
the crisis of 2007 generated a bubble in almost all commodity prices.

In the third chapter, oil prices are forecasted during the COVID-19 pan-
demic outbreak. Although we cannot predict the end of COVID-19,
we are able to capture valuable information carried by the past and
current dynamics in the data. For instance, we find that after the ini-
tial impact of the implementations of the numerous worldwide lock-
down, the probabilities of a further decrease in prices were at that point
smaller than before, yet that the magnitude of the decrease would be
larger. Nowadays, the economic situation with the war in Ukraine,
triggering a surge in oil prices and many other commodities stresses
the importance of building and developing models that can capture
the dynamics of these processes. Indeed, commodity prices are at the
core of inflation rates, which are currently surging all around the world
and while wars are difficultly predictable, policy makers could employ
the information derived from MAR models.

In the fourth chapter of this thesis, we investigate the inflation rate of
Brazil, with a focus on a rather stable period. Brazil has undergone
periods of hyperinflation in the past and the credibility of its Central
Bank is therefore of the utmost importance for the population as per-
sistent deviations from the target could trigger a new hyperinflation
episode. We employ the probability forecasts to construct a short-term
credibility index of the central bank over time, consisting of the proba-
bility that the inflation rate meets the target announced by the central
bank. We find that the short-term index, which can be employed as
an early warning of exiting the target bounds, is complementary to the
long-term indices that are based on people’s beliefs over longer pe-
riod of times. Naturally, this index can be constructed for any country
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which central bank applies an inflation targeting approach.

In the fifth chapter we consider metals price index, which presents a
different dynamic structure than nickel or oil prices mentioned above
as it is identified as an MAR(0,2), namely including 2 leads of the vari-
able. This chapter shows that MAR models allows to capture more
complex dynamics with the inclusion of more leads. In this chapter we
propose to combine existing forecasting approaches to limit the draw-
backs of these methods in certain conditions. We offer this as an al-
ternative, especially when the sample size is too small, which is often
the case with quarterly or yearly data sets that are often employed in
macroeconomic analyses for instance.

In the sixth chapter of the thesis we investigate commonalities in the
forward-looking component (defined as common bubbles) within
groups of variables, which paves the way to further research in that
direction. Detecting common bubbles could be used to significantly
decrease the risks incurred by each of the individual component of the
group and drastically limit the consequences of bubble bursts within
investment strategies for instance.

The versatility of MAR models implies that they can be of relevance for
a wide range of practitioners, from policy makers to investors. Over-
all, MAR models offer an adequate and easy-to-implement alternative
to complex models in the presence of various types of non-linear dy-
namics in a time series. The current economic situation stresses the
importance of building and developing models that can help predict
and anticipate potential upcoming bubbles and bursts. This therefore
asserts the relevance of analysing, both theoretically and empirically,
MAR models.
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