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Bootstrapping the P300 in diagnostic psychophysiology:

How many iterations are needed?

J. PETER ROSENFELD,a ANNE WARD,a EWOUT H. MEIJER,b AND DENIS YUKHNENKOb

aDepartment of Psychology, Northwestern University, Evanston, Illinois, USA
bFaculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands

Abstract

In psychophysiological research, bootstrapping procedures are often used to classify individual participants. How

many iterations are required for a reliable bootstrap test is not universally agreed upon. To investigate the number of

iterations needed for a stable bootstrap estimate, we reanalyzed P300 data collected in concealed information test

paradigms. We also distinguished between the bootstrap and permutations approaches. We compared results in several

studies using 100 versus 1,000 versus 10,000 iterations in the bootstrap, and we concluded that 100 iterations were

adequate as results from all three iteration numbers correlated highly.

Descriptors: Bootstrapping, P300, Permutations

Several applications of psychophysiology require diagnostic classi-

fication at the individual level. That is, one often wishes to use

physiological responding to distinguish between two or more inde-

pendent conditions within one individual, and use this distinction to

classify an individual as, for example, bipolar versus unipolar, atten-

tion deficit hyperactivity disorder (ADHD) versus normally atten-

tive, schizophrenic versus paranoid, or high risk versus low risk.

One notable example of a field where decisions at the individual

level are crucially important is that of memory detection using the

Concealed Information Test (CIT, also referred to as the Guilty

Knowledge Test; Lykken, 1959). The CIT assumes that a guilty per-

son would possess information that is known only to the police, the

victims, and the person who committed the crime. As such, it aims

to classify testees as guilty, inferred from the presence of intimate

knowledge of crime details, or as innocent, inferred from the

absence of such knowledge. In sum, the CIT detects whether the

suspect knows and recognizes the critical crime-related information.

Since the late 1980s (e.g., Rosenfeld, 2011), recognition in the

CIT has been indexed in one research area by the fact that the

crime-related stimulus item (called the probe; e.g., a 356 Magnum

revolver) evokes in knowledgeable individuals a large P300 com-

ponent of the ERP. On the other hand, other items similar to the

probe, but not the actual murder weapon used (e.g., 32 Colt, 45

automatic, 9 mm Luger, 9 mm Beretta, etc.) do not evoke a P300

as large as that evoked by the crime-related probe. These other

items are typically called irrelevants.

Two variants of the CIT exist. In the two-stimulus protocol

(Rosenfeld, Shue, & Singer, 2007), the suspect views the probe and

irrelevants, one at a time, in a Bernoulli series in one block. He or

she presses the same response button for both probes and irrele-

vants. The classification depends on whether the probe P300 ampli-

tude exceeds the irrelevant P300 amplitude. Alternatively, in the

much better known three-stimulus protocol (Farwell & Donchin,

1991; Rosenfeld, 2011), a special third irrelevant stimulus is occa-

sionally presented, requiring a unique button press different from

the one pressed in response to probe or irrelevant. This special

irrelevant is called a target stimulus and is used to hold attention,

as well as sometimes for analytic reasons. The statistical question

to be answered is then whether the probe stimulus resembles more

the target (recognition inferred) or resembles more the irrelevant

(no recognition inferred).

Distinguishing between probe and irrelevant P300 waveforms is

not restricted to concealed information testing. In a variety of other

clinical diagnostic situations, the same form of diagnostic question

is posed within one test patient/client: Is the rare target P300 larger

than the frequent nontarget P300? The answer typically helps

decide how to classify the patient—as having some disorder (e.g.,

attention deficit disorder [ADD], dementia, Alzheimer’s, schizo-

phrenia) or not (Polich, 2004). Note that probes and irrelevants can

be thought of as special (forensic) cases of more general target and

nontarget stimuli in the standard oddball paradigm (Donchin,

1981). That is, both probes and targets are usually relatively rare,

occurring in 10% to 30% of the trials, and meaningful—whereas

nontargets and irrelevants are usually both frequent (occurring in

70% to 90% of the trials) and of neutral meaning.

We also note that bootstrapping may be used with psychophysi-

ological variables other than P300 (e.g., heart rate variability, blood

pressure, EEG measures [alpha asymmetry, beta-theta ratio, etc.],

and so on; Wasserman & Bockenholt, 1989).

We are grateful to Ulf Bockenholt of Kellogg School of Management,
Northwestern University, Evanston, IL, for valuable consultation.
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Groups Versus Individuals

In nondiagnostic P300 studies, in which one compares the effect of

an independent variable such as acoustic loudness on P300 ampli-

tude, one might have a high loudness group and a low loudness

group, and then compare the averaged ERPs of the low and high

loudness across subjects in a between-subjects t test. In this case,

the basic unit of comparison is the individual, relatively noise-free

average of multiple single sweeps, separately averaged for the high

and low conditions. Signal averaging of scalp-recorded ERPs is

customary since single sweeps are noisy. In the diagnostic situa-

tion, however, in which ERPs are compared within one subject, if

one ran the usual t test on the effect of two conditions on the two

condition means, one would have to use single-sweep ERP values;

that is, the basic unit of comparison is the (noisy) single sweep, and

the t test results are typically insensitive (Rosenfeld, Angell,

Johnson, & Qian, 1991). One way to obtain actual multiple average

ERPs (which are far less noisy than single sweeps) from one sub-

ject would be to repeat the study at least 20 times. This would yield

several averages (each of n 5 20) for one subject, but the effects of

habituation over repeated studies would be fatal. Moreover, in the

case of the P300 CIT, the multiple repetitions would likely make

the irrelevant stimuli familiar and increasingly relevant through

repetition, so that they would become difficult to distinguish from

the probe.

Multiple solutions to this dilemma of comparison of probe and

irrelevant averages within an individual exist. One is the bootstrap

method (Efron, 1979), introduced into psychophysiology by Karis,

Fabiani, and Donchin (1984). It was later adapted by Farwell and

Donchin (1991), Rosenfeld, Sweet, Chuang, Ellwanger, and Song

(1996), and Ellwanger, Rosenfeld, Sweet, and Bhatt (1996) for the

problem of discriminating knowledgeable and not-knowledgeable

individuals in a P300-based CIT. Rather than unrealistically repeat-

ing a study within an individual, these researchers repeated random

selection (with replacement) of single-sweep data subsets, each of

which was averaged into a bootstrapped average ERP for both the

probe and irrelevant categories (resampling without replacement

substituted for replication). Because of the bootstrapping without

replacement process, it is unlikely that any bootstrapped average

will be exactly the same as any other, or be exactly the same as the

actual sample average based on all the original single sweeps.

Rosenfeld’s lab (Rosenfeld, 2011; Rosenfeld, Hu, Labkovsky,

Meixner, & Winograd, 2013) simply generated a set of n11

resampled (with replacement) from the original sample set of n1

probe sweeps, averaged to yield one bootstrapped average probe

ERP, and likewise from the original sample set of n2 irrelevant sin-

gle sweeps, to yield one bootstrapped average irrelevant ERP. The

computed P300 difference2 between each pair of probe and irrele-

vant bootstrapped averages was placed in a distribution of probe-

minus-irrelevant differences (P 2 I), the process repeated multiple

times, and a decision of knowledgeable was based on the finding

that 90% or more of these bootstrapped P 2 I P300 differences

was> 0. Of course, one could choose another criterion (e.g., 85%

or 95%). These methods have been verified empirically: They were

used to determine knowledgeability based on experimentally

manipulated knowledgeable and not-knowledgeable groups.

Twenty-two knowledgeable groups (including 10 using counter-

measures) were reviewed by Rosenfeld et al., (2013), and the mean

area under the ROC curve (AUC) using also 22 not-knowledgeable

groups was .931.

A second method that can compare probe and irrelevant aver-

ages within an individual is Fisher’s permutation test (Efron & Tib-

shirani, 1994, p. 205), which is related to but not identical to the

bootstrap. These two resampling methods have been a source of

confusion. Here is a typical situation in which either bootstrapping

or permutations methods may be applied: One has two sample sets

of single-sweep ERPs, which in our research are (1) probe (say

n 5 30), and (2) irrelevant (say n 5 150) ERPs, from one subject

who may be from either of two groups of subjects: K (knowledge-

able of crime details) and N (not knowledgeable). The K group

members have seen and know the probe item. The average recog-

nized (rare and meaningful) probe P300 from the K group should

exceed the averaged irrelevant P300. To members of the N group,

the probe item is meaningless and is just another irrelevant, so that

there should be no difference between the average probe and irrele-

vant P300s. The task is to determine if the given single subject is K

or N. That determination depends on deciding within the individual

if there is an improbably large difference (e.g., p< .05 or .1)

between his probe and irrelevant P300s. Standard t tests cannot be

used here as they are insensitive (see Rosenfeld, 2011; Rosenfeld

& Donchin, 2015).

As outlined above, the bootstrapping method resamples—but

with replacement of the selection after each selection—the original

set of 30 probe sweeps 30 times. Again, each resampling will rarely

yield the original set of probe sweeps due to sampling with replace-

ment. Then, for each set of these 30 resampled single sweeps, an

average bootstrapped ERP is computed, and the average P300 val-

ue over 30 bootstrapped, randomly selected single sweeps is deter-

mined; where P300 is defined, for example, as the largest 100-ms

segment average in a window running from 400–800 ms poststimu-

lus. The same is done with the set of 150 irrelevant single sweeps

to yield an average irrelevant P300, also based on 30 resamplings

(from the original 150 single sweeps). Now, a P 2 I value is deter-

mined for this pair of first bootstrapped probe and irrelevant values.

The process is repeated—in our hands—100 times, so that we now

have a distribution of 100 P 2 I differences. Typically, we then

determine if 90% (or 85% or 95% or whatever criterion percentage

is chosen) of these differences are> zero. If so, the subject is clas-

sified K; if not, then N. As noted by Efron and Tibshirani (1994, p.

5), the term bootstrap seems most apt for this algorithm, since one

is repeatedly generating average P300s, and then averaging these

into a grand average by resampling the bootstrapped single sweep

set; one in effect pulls up the grand average by its boot straps—the

individual resampling averages. (See Figure 1 for a bootstrapping

flow chart.)

In comparison, here is what the typical permutations method

does with the original sets of probe and irrelevant single sweeps

(there are anomalous other permutations methods as described

below). First, it creates a combined data set distribution: It takes

the 30 probe and 150 irrelevant single sweeps and shuffles them

together (as one might shuffle 30 royal playing cards—Kings,

Queens, Jacks—together with 150 number cards numbered 1–10)

into a single pooled set of 180 sweeps (“cards”). Now one “cuts the

cards” by randomly selecting a set of 30 sweeps (cards) for one

new subsample from the pooled distribution. The 150 single

sweeps (cards) remaining in the pooled distribution become a

1. n1 was the number of sweeps in the originally collected sample of
probe single sweeps, and n2 was the same for original irrelevant sweeps,
multiplied by a fraction that would bring n2 to be equal to n1 6 1.

2. We note that, although P300 is usually thought of as the peak—
one data point—of a positive wave between 300 and 800 ms poststimu-
lus, in the Rosenfeld lab, we find that it improves the S/N ratio to com-
pute the mean amplitude of the most positive 100-ms segment in the
300–800 ms “look window.”

Bootstrapping P300 in diagnostic psychophysiology 367
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second subsample from the pooled distribution. One now has two

data sets whose expected mean difference value is zero, since they

are samples from the same population distribution. The means of

these two data sets are computed, and the average difference (prob-

ably small but not exactly equal to zero) found. This process is also

repeated some large number of times, and one obtains a distribution

of iterated null differences with mean 5 zero. Next, the actually

obtained individual average difference from the original sets of

probe and irrelevant P300s is tested to see if it is within the top

(5% or 10%) tail of the null distribution. If it is, the subject is

deemed to be in the K group, if not, then the N group. (See Figure

2 for a permutations method flow chart.)

As Zoumpoulaki, Alsufyani, and Bowman (2015) demonstrat-

ed, if one uses this permutation method to estimate the maximum

(peak) value of a single data point, one gets something systemati-

cally different from what one gets by using a bootstrap algorithm.

This fact clearly indicates that the permutation method is quite dis-

tinct from the bootstrap method. Efron and Tibshirani (1994, p.

207) nevertheless noted that “the permutation algorithm is quite

similar to the bootstrap algorithm . . . The main difference is that

sampling is carried out without replacement, rather than with

replacement.” However, this could be unintentionally misleading,

because in Fisher’s permutation test, only one sample pair (of equal

number, unlike what we described above) can be randomly selected

from the combined distribution for each iteration, which determines

the remaining second sample. But with each new iteration, the

combined distribution is reconstituted (i.e., all data are replaced pri-

or to the next sample drawing). In any case, our previous simula-

tion (Rosenfeld & Donchin, 2015) demonstrated rather clearly that

if one bootstraps or permutes mean values of 100-ms long ERP

segments (as opposed to single peak maxima), both resampling

techniques (bootstrapping and permutations) agreed about 98% of

the time in thousands of repeated simulations.

An alternative permutations method, directed toward hypothesis

testing on a group of subjects, was presented by Blair and Karniski

(1993). It is critical to point out here that Blair and Karniski were

dealing with an entirely different research question than the one rel-

evant in CIT research described above. Blair and Karniski aimed to

determine if there are differences in ERP amplitude—and where

they are temporally located—to two kinds of stimuli between two

grand-averaged waveforms (each consisting of the average of 15

individual averages). Obviously, this is not an intraindividual diag-

nostic problem. It is analogous to a repeated measures t test.

In their first example, a set of data values (say, mean P300 val-

ues) is tabulated for three subjects in two conditions: probe versus

irrelevant presentations:

Subject Probe Irrelevant
1 8 5
2 4 3
3 6 4

A repeated measures t test is now computed, yielding t 5 3.46.

Assuming the null hypothesis, the values of probes and irrelevant

P300s for each subject are interchangeable, so that there are 23 5 8

variations of the above table. One can now calculate the probability

(one-tailed) of obtaining t 5 3.46 under a true null hypothesis. It is

1/8 5 .125; (two-tailed: 2/8 5 .25). The value .125 becomes the

one-tailed null rejection criterion. Note the results are in terms of

exact probabilities since all permutations are used. Note again that

this test is not a within-individual test, but an alternative within-

groups t test based on all existing actual data. To apply this method

to the intraindividual case, the three rows above would have to be

conceptualized as obtained from one subject, and this would

involve resampling from a single individual. Indeed, even in their

second example, a larger group test case, Blair and Karniski (1993)

consider a data set involving 15 subjects, noting that 32,768 permu-

tations are required if one requires an exact probability test based

on all permutations of all existing data. But they then show that, by

using a randomly reselected set of, say, 10,000 permutations, the

test results are quite similar to the exact case. Thus, in the common-

ly utilized Fisher permutations test applied to the individual case,

as outlined above and in Figure 2, one does indeed combine all

actual probe and irrelevant P300 values, then divides this null dis-

tribution into two fractions (pseudoprobe and pseudoirrelevant sub-

distributions), computes the mean difference—and, by repeating

this process, generates a difference distribution of null mean differ-

ences. One then examines where the actually obtained true probe-

irrelevant difference sits. If it is beyond the criterion value (e.g.,

.01, .05, .1, etc.), the no-difference hypothesis is rejected. Thus,

with both bootstrapping and, as it is commonly used, permutations,

all the data are repeatedly resampled, and the statistical test out-

come becomes more stable as the number of iterations increases.

Number of Iterations

The number of iterations used to calculate the statistical outcome

has varied between studies. In this article, we test how many

Figure 1. Flow chart showing the basic structure of the bootstrap. Main

outputs: MNDF 5 bootstrap-estimated probe-irrelevant difference;

Hits 5 number of times a bootstrapped probe average exceeds a boot-

strapped average irrelevant average; B 5 experimenter-defined number

of bootstrap iterations. Input is a set of originally collected probe

sweeps and an originally collected set of irrelevant sweeps. BPrP3(n) is

the bootstrapped probe P300 for the nth iteration. BIrP3(n) is the boot-

strapped irrelevant P300 for the nth iteration.

368 J.P. Rosenfeld et al.
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iterations are needed for reliably classifying individuals in the

P300-based CIT situation. Because bootstrapping has been mostly

used in diagnostic psychophysiology based on P300, this is the

method we study here so as to determine adequate numbers of iter-

ations. Critically, in determining how many iterations/resamplings

one must use in either permutations or bootstrap methods, one

must primarily consider the signal/noise (S/N) ratio for the compo-

nent of interest, since the smaller its S/N ratio (as with effect size)

the larger must be the sample examined. Our probe to irrelevant

ratios are usually about 14% to 86% (1 to 7); that is, our oddballs

are rare, meaning there will be large probe P300s. But this is hardly

true for many other (smaller) ERPs (such as N200, the old-new late

positivity, N400, and so forth), whose stimulus ratios are usually

50% to 50%.

In recent years, there has also been some confusion about the

proper number of iterations, which we denote as B. For example,

DiNocera and Ferlazzo (2000) used the bootstrapping and permuta-

tions terms, in effect, interchangeably, and dealt with a question

that somewhat resembles the CIT bootstrapping question posed

here. These authors provided their participants with a list of 160

words, and then presented those 160 words, alternated with 160

new words. The question was whether or not the authors, based on

ERPs, could accurately diagnose—within each single subject—

whether the subject had previously seen a word on a list or not.

One thousand (1,000) resamplings were used so as to offer a diag-

nosis with the permutations (not bootstrap) method. Importantly,

these authors started out with 160 trials in each condition, consider-

ably more than typically used in CIT research.

For another example, authors such as Blair and Karniski (1993)

recommended 10,000 iterations for the permutation test they

described (which again, importantly, was directed to groups, not

individuals). This value of 10,000 was actually recommended (by

an action editor for Psychophysiology) to one of us (JPR) as proper

for our P300-based CIT work. In contrast, we and others (e.g.,

Farwell & Donchin, 1991; Meijer, Smulders, Merckelbach, &

Wolf, 2007) use only 100 iterations. Given the modern laptop’s

processing speed, there is little cost to running 10,000 and more

iterations. We are more concerned with reestablishing the validity

of the dozens of previous papers that have used 100 iterations. One

size (number of iterations) does not fit all, and we would argue that

10,000 are not needed in our type of P300 bootstrap analyses

(though it probably doesn’t hurt to use such a large number). This

will be illustrated in formal comparisons with real data sets below.

We felt it important here to make two points that many people do

not appear to appreciate. They are that (1) bootstrapping is not the

same thing as permutations (in either its typical or anomalous

forms), and (2) the number of resamplings/iterations required for a

particular research question depends on the nature of that question,

and this number is best found out at the onset of the research by

comparing various numbers of iterations in their pilot subjects—as

we do now in previously collected data sets. One of us (AW) had

four data sets in immediately accessible files.

We note that a highly rigorous treatment of these issues is avail-

able (e.g., Andrews & Buchinsky, 2000). It is probably too techni-

cal for the typical reader of psychophysiology journals, which is

why we provide here a more intuitive approach. Additionally,

Figure 2. Flow chart showing the basic structure of the Fisher’s permutation test (Efron & Tibshirani, 1994) method. One major output is whether or

not the single test subject is knowledgeable versus not knowledgeable. Input is a set of originally collected probe sweeps and an originally collected

set of irrelevant sweeps.

Bootstrapping P300 in diagnostic psychophysiology 369
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although we will be speaking about distinguishing between probe

and irrelevant P300 waveforms in guilty knowledge suspects, in a

variety of other clinical diagnostic situations (Polich, 2004), the

same form of diagnostic question is posed within one test patient/cli-

ent: Is the rare target P300 larger than the frequent nontarget P300?

The answer typically helps decide how to classify the patient—as

having some disorder (e.g., ADHD, dementia, Alzheimer’s, schizo-

phrenia, and so on) or not. Note that probes and irrelevants can be

thought of as special (forensic) cases of more general target and non-

target stimuli in the standard oddball paradigm (Donchin, 1981).

Illustrative Data Sets

Experiment 1

Experiment 1 (presently in review), n 5 52, is a study of possible sup-

pression of P300 evoked by semantic stimuli in suppression and non-

suppression groups. A detailed description of the suppression

manipulation is found in Hu, Bergstr€om, Bodenhausen, & Rosenfeld

(2015), where a knowledgeable group whose participants performed

a mock crime, but were instructed to suppress their episodic probe

memories, was compared to a simply knowledgeable (guilty of a

mock crime) group. The same manipulation was used in the study of

semantic probe memory suppression that we reanalyze here in this

(Experiment 1) study. There were no differences in this study between

suppression versus no-suppression groups in amplitude or latency, so

they were pooled for the present reanalysis. In the original study, we

used 100 iterations in each subject to determine if the probe

P300> irrelevant P300. For the present study, mean numbers of boot-

strapped iterations (within each of 52 subjects) in which bootstrapped

probe P300 exceeded irrelevant P300 (P> I) in 100 versus 1,000 ver-

sus10,000 iterations are shown in Table 1 (Study 1). Also shown are

average P 2 I P300 differences (in uV) estimated by the bootstraps.

The two correlation matrices among the three possible pairs (for each

of the two variables) of correlation coefficients are also shown in

Table 1. Clearly, one sees that 100, 1,000, and 10,000 iterations pro-

duce similar results, such that the intercorrelations of results are high.

Experiment 2

Experiment 2 (submitted 2016), n 5 29, is a new study of possible

suppression of P300 evoked by episodic memory stimuli in suppres-

sion and nonsuppression groups. Again, there were no differences

between groups in amplitude or latency, so they were pooled. The

results in Table 1 are presented the same way as for Experiment 1.

Again, one sees that 100, 1,000, and 10,000 iterations produce simi-

lar results, such that the intercorrelations of results are high.

Table 1. Comparison of Bootstrapping Results for Different Numbers of Iterations

Study 1, n 5 52

P> I% 10^2 P> I% 10^3 P> I% 10^4 PIDF10^2 PIDF10^3 PIDF10^4

95.7 95.7 95.6 10.2 uV 9.8 uV 10.2 uV
P> I correl

VR

matrix PIDF correl matrix
R10^2 R10^3 R10^2 R10^3

R10^2 R10^2
R10^3 .987 R10^3 .927
R10^4 .988 .998 R10^4 .998 .930

Study 2, n 5 29
P> I% 10^2 P> I% 10^3 P> I% 10^4 PIDF10^2 PIDF10^3 PIDF10^4
93.8 91.8 91.9 6.32 uV 6.24 uV 6.24 uV

P> I correl
VR

matrix PIDF correl matrix
R10^2 R10^3 R10^2 R10^3

R10^2 R10^2
R10^3 .935 R10^3 .995
R10^4 .951 .994 R10^4 .996 .999

Study 3a, n 5 8
P> I% 10^2 P> I% 10^3 P> I% 10^4 PIDF10^2 PIDF10^3 PIDF10^4
88.0 88.4 88.1 4.59 uV 4.71 uV 4.68 uV

P> I correl
VR

matrix PIDF correl matrix
R10^2 R10^3 R10^2 R10^3

R10^2 R10^2
R10^3 .995 R10^3 .997
R10^4 .992 .998 R10^4 .998 .999

Study 3b, n 5 8
P> I% 10^2 P> I% 10^3 P> I% 10^4 PIDF10^2 PIDF10^3 PIDF10^4
99.0 98.9 98.9 9.38 uV 9.34 uV 9.29 uV

P> I correl
VR

matrix PIDF correl matrix
R10^2 R10^3 R10^2 R10^3

R10^2 R10^2
R10^3 .919 R10^3 .998
R10^4 .944 .996 R10^4 .999 .999

Note. Comparisons of iteration numbers (100 5 10^2 vs. 1,000 5 10^3 vs. 10,000) used in four studies with numbers of subjects shown. Also shown
for each study are the cross correlation matrices (e.g., at intersections of R10^2 with R10^3 is the Pearson correlation of numbers based on 100 vs.
1,000 iterations). P> I% 5 percent of iterations in which the probe was greater than the irrelevant at a given iteration number test. PIDF 5 average
P 2 I P300 difference estimated by the bootstrap.
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Experiment 3a and 3b

These were from a pilot study (from a laboratory course with AW

as instructor) for Rosenfeld, Ward, Frigo, Drapekin, and Labkovsky

(2015), with n 5 8 in each of two conditions, with auditory (3a) ver-

sus visual (3b) probe stimuli, respectively. Results are reported in

Table 1 the same way as for Experiment 1 and 2. Again, one sees

that 100, 1,000, and 10,000 iterations produce similar results, such

that the intercorrelations of results are high.

Experiment 4

Data are from Experiment 1 of Meijer et al. (2007). Twenty-four

participants were presented with six pictures of faces. Two of these

were familiar (brother or sister and best friend), two were not. One

of the familiar pictures served as a target stimulus (i.e., participants

were instructed to press one of two buttons upon presentation of

this face). The other button was pressed upon presentation of all

other faces including the other recognized face (probe). Results are

shown in Table 2 (Study 1). In addition to the probe-irrelevant dif-

ference, we also compared the correlation of probe and target with

that of probe and irrelevant (Farwell & Donchin, 1991). BSCOR

refers to the number of iterations in which the probe-target correla-

tion exceeded the probe-irrelevant correlation. That is, in the previ-

ous discussion, for each iteration, each bootstrapped average probe

ERP and each bootstrapped average irrelevant ERP had P300

amplitudes computed, and then the P 2 I P300 amplitude differ-

ence was placed into a distribution of differences. It was required

Table 2. Comparison of Bootstrapping Results for Different Numbers of Iterations

Study 1, n 5 24

P> I% 10^2 P> I% 10^3 P> I% 10^4 PIDF10^2 PIDF10^3 PIDF10^4

98.5 98.5 98.5 8.2 uV 8.2 uV 8.2 uV
P> I correl

VR

matrix PIDF correl matrix
R10^2 R10^3 R10^2 R10^3

R10^2 R10^2
R10^3 .999 R10^3 .999
R10^4 .999 1.000 R10^4 .999 1.000

BSCOR% 10^2 BSCOR% 10^3 BSCOR% 10^4
97.2 97.4 97.5

BSCOR correl matrix
R10^2 R10^3

R10^2
R10^3 .942
R10^4 0.951 0.996

Study 2, n 5 24
P> I% 10^2 P> I% 10^3 P> I% 10^4 PIDF10^2 PIDF10^3 PIDF10^4
70.9 70.4 70.6 1.6 uV 1.5 uV 1.5 uV

P> I correl
VR

matrix PIDF correl matrix
R10^2 R10^3 R10^2 R10^3

R10^2 R10^2
R10^3 .993 R10^3 .997
R10^4 .995 .999 R10^4 .998 1.000

BSCOR% 10^2 BSCOR% 10^3 BSCOR% 10^4
24.9 26.1 25.9

BSCOR correl matrix
R10^2 R10^3

R10^2
R10^3 .993
R10^4 .994 .999

Chapter 5, n 5 30
P> I% 10^2 P> I% 10^3 P> I% 10^4 PIDF10^2 PIDF10^3 PIDF10^4
91.9 92.4 92.4 4.5 uV 4.5 uV 4.6 uV

P> I correl
VR

matrix PIDF correl matrix
R10^2 R10^3 R10^2 R10^3

R10^2 R10^2
R10^3 .998 R10^3 .998
R10^4 .997 1.000 R10^4 .998 1.000

BSCOR% 10^2 BSCOR% 10^3 BSCOR% 10^4
82.3 83.4 83.3

BSCOR correl matrix
R10^2 R10^3

R10^2
R10^3 .991
R10^4 .993 .999

Note. Comparisons of iteration numbers (100 5 10^2 vs. 1,000 5 10^3 vs. 10,000 5 10^4) used in three studies that also included target stimuli.
P> I% and PIDF are the same as in Table 1. BSCOR 5 number of iterations in which the probe-target correlation exceeded probe-irrelevant
correlation.
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that 90% or more of these differences were greater than zero for a

knowledgeable decision. In the BSCOR computation, the P300 eli-

cited by a third stimulus, the target, as described above, becomes

important. As noted before, targets are rare irrelevant stimuli to

which a unique button press is required. They are rare (p< .2, usu-

ally) and meaningful due to their unique response requirement.

Therefore, they too should evoke P300 that can be used as a tem-

plate or benchmark P300 (but see Rosenfeld, 2011). Thus, knowl-

edgeable individuals should show P300s to probes and targets, but

not-knowledgeable people should show P300s only to targets.

Thus, one expects the probe-target cross-correlation (Rpt) over

most of the entire sweep to exceed that of the probe-irrelevant

cross-correlation (Rpi) for knowledgeable persons, but the reverse

relation for not-knowledgeable persons. The bootstrap test based

on this approach computes these two cross-correlations on each

iteration of bootstrapped ERPs, and the knowledgeability criterion

is that Rpt must exceed Rpi on 90% of the iterations.

Experiment 5

Data are from Experiment 2 of Meijer et al. (2007). Design was

similar but familiar pictures represented teachers of courses the

participants had completed. Results are given in Table 2 (Study 2).

Experiment 6

Data from Chapter 5 of Meijer (2008). Thirty participants commit-

ted a mock crime, and then completed a P300-based CIT with

questions relating to the mock crime details. Results are presented

in Table 2 (Chapter 5).

Results and Discussion

It is evident from these tables that values obtained in all data sets do

not appreciably differ among bootstrap tests with 100 versus 1,000

versus 10,000 iterations, and that, indeed, the tables of correlations

show high values, all exceeding 0.9. To validate these impressions,

we did statistical group hypothesis tests on data from Experiment 1

only, which had the largest number of subjects. The independent

variable was iteration number (100 vs. 1,000 vs. 10,000) regarding

either numbers of P> I% outcomes or estimated probe-irrelevant

difference (DF) based on those iteration numbers. A 1 3 3 repeated

measures analysis of variance (ANOVA) with iteration number as

independent variable yielded F(2,102) 5 .05, p> .94 for P> I%.

The scaled JZS Bayes factor favoring the null hypothesis was a

strong 6.45. A follow-up paired t test testing P> I% effect of itera-

tion number in 100 versus 10,000 iterations (suggested by the above

introductory material) yielded t(51) 5 .233, p> .81. The scaled JZS

Bayes factor favoring the null hypothesis was also 6.45.

The same two tests were applied to the estimated difference (in

uV) between P and I bootstrapped P300s. The ANOVA yielded

F(2,102) 5 1.89, p> .15. The scaled JZS Bayes factor favoring the

null hypothesis was 2.71. The paired t test comparing 100 versus

10,000 iterations yielded t(51) 5 .704, p> .48. The scaled JZS

Bayes factor favoring the null hypothesis was also 2.71.

In sum, across all seven of our datasets, 100 iterations seem suffi-

ciently stable, and adding more iterations added relatively little infor-

mation. This leads us to conclude that in typical P300-based CIT

research—where the goal is to classify knowledgeable and not-

knowledgeable participants, based on probe-minus-irrelevant P300

differences—one does not require more than 100 bootstrap iterations.
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