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GLOBOCAN 2018 showed that around 18.1 million cancer cases are diagnosed 

every year globally [5]. The total estimated new cancer cases globally rose to 19.3 million 

and 10 million cancer deaths in 2020. This increment in new cancer cases in the small 

span of two years is around 1.2 million globally, which is alarming [6]. Out of 19.3 million 

around 9.5 (49.2%), million new cases are from Asia and 1.32 (6.83%) million new cases 

are from India alone. Globally and in India breast cancer is the most common cancer 

for both sexes together (Globally: 11.71%; India: 13.5%) and in the female population 

(Globally: 24.5%; India: 26.3%) [6]. Lung cancer is the most common cancer in males 

globally (Globally: 14.3%) and Lip oral cavity cancer is most common in India (16.2%) 

[6]. In this thesis, I have reviewed the role of the prediction model in cervical cancer. 

Cancer treatment & Role of imaging: 

Treatment of cancer is not straightforward; it is a complex and long process [7-

9]. The cancer treatment process starts with the diagnosis of disease and in some cases 

never ends while the patient is alive. The process of cancer treatment and the role of 

imaging is summarized in figure 1.  

   
Figure-1: Various stages of cancer treatment process: Diagnosis of disease -> staging of 

disease -> treatment -> treatment monitoring -> follow-up 

Although pathology is the confirmatory diagnosis of cancer, imaging plays a significant 

role in the diagnosis of cancer [7-9]. Simple imaging modalities like an x-ray to complex 

modalities like sonography, computed tomography (CT), single-photon emission 

tomography (SPECT), positron emission tomography (PET) and magnetic resonance 

imaging (MRI) are used for the diagnosis of cancer [7-15]. These modalities are used for 

the localization and characterization of the disease. For instance, a chest x-ray is often 
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performed for the initial identification and localization of lung cancer. Mammography 

x-ray is performed for diagnosis of breast cancer. Ultrasound is widely used for 

(additional) diagnosis of breast cancer, prostate cancer and gynecological cancers [1-12]. 

MRI and CT are helpful in the diagnosis of head and neck cancer and bone and soft 

tissue and brain tumours [12-15]. PET/CT is widely used for the diagnosis of lymphomas 

and many other malignant conditions [16-18]. Often in parallel with diagnosis, imaging 

is being used to stage disease. This complex process includes consideration of the 

primary tumour, nodal metastasis and distance metastasis. Based on imaging and 

pathology findings the tumour (T), nodal (N) and distance metastasis (M) i.e. the TNM 

staging is performed which results in a final overall stage of the disease which to a large 

extent determines the treatment [7-9], which typically requires a multidisciplinary 

approach with surgery, radiotherapy or chemotherapy or a combination of these often 

considered the best treatment[5-9]. In diagnosis, staging and treatments of cancers, the 

role of imaging is extensive [7-24]. 

Treatment monitoring and follow-up are performed to assess the efficacy of the 
treatment and related side effects of the treatment. Monitoring of patients is performed 
by checking the vitals of the patients, blood parameters and changes in imaging 
parameters. Most imaging parameters are used to monitor the regression or progression 
of disease during and after treatment [5-24]. 

Post-treatment follow-up is performed to identify the general status of the patient post-
treatment, condition of the disease and recurrence or progression of the disease. 
Various blood parameters are used to check the general condition and progression of 
the disease. Imaging parameters are used to identify the disease condition i.e., stable 
disease, local recurrence, nodal and distant metastasis [7-9]. 

Many times during follow-up we encounter the recurrence of the disease. Treatment 
may be warranted in case of recurrence of the disease. In this scenario restaging of 
disease is performed based on imaging and pathological finding and subsequently 
suitable treatment is offered [5-9].  

Imaging plays a significant role in the management of cancer. Imaging is one of the 
important diagnostic modalities which indicates the onset of cancer, and recurrence 
during the follow-up. 

Various types of imaging can be used for the management of cancer i.e., X-ray, 
Ultrasound, computed tomography (CT), magnetic resonance imaging (MRI) single-
photon emission tomography (SPECT) and positron emission tomography (PET) [5-24]. 
X-ray and ultrasound studies are commonly performed during the diagnosis and follow-
up of various malignancies. CT, MRI, PET and SPECT are performed during staging, 
restaging and follow-ups [10-24]. Multi-modality imaging like PET/CT, SPECT/CT and 
PET/MRI is considered more and more in cancer management. In this thesis, I have 
reviewed the role of artificial intelligence in imaging. 
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Quantitative Imaging: 

Image findings can be categorized into qualitative and quantitative parameters 

that are helpful in diagnosis and cancer management. Qualitative parameters are 

subject to interpreter variability whereas quantitative parameters are independent of 

interpreter variability [27]. In current care, imaging data is often analyzed qualitatively 

and semi-quantitatively to diagnose and stage the pathological condition. With visual 

perception and semi-quantitative data, only limited information is extracted from the 

image.  

But information stored in medical images may not amenable to the visual interpretation 

by expert human eyes. This information can be extracted using mathematical and 

statistical formulas as various quantitative parameters which may be helpful in disease 

stratification and prognostication in cancer [25]. Quantitative imaging is the conversion 

of images into quantitative features that may be associated with important outcomes 

such as tumour response to the treatment in cancer management [26].  

Conventional quantitative parameters like the difference in Hounsfield unit (HU) 

tumour size measurement in CT, the difference in standardized uptake value (SUV) 

value or uptake value in PET and difference in proton density, diffusion coefficient and 

spectral peak in MRI have demonstrated the capabilities to differentiate between the 

responders and non-responders in cancer therapies [26-28].   

For example, response evaluation criteria in solid tumours (RECIST) [29, 30] is used to 

assess the treatment response on CT and similarly, Positron Emission Tomography 

Response Criteria in Solid Tumours (PERCIST) [31, 32] is used to assess the treatment 

response on PET. RECIST assesses the response of treatment based on size regression 

or tumour which amounts to an anatomical response whereas PERCIST is based on the 

change in SUV which is considered as a physiological response [31, 33-35].  

Radiomics moves beyond these conventional parameters and applies quantitative 

imaging in a much broader context, e.g., by extracting many more features from the 

image. This has shown the potential to access the treatment response and outcomes in 

initial studies [36]. Radiomics, in other words, is a process to extract high throughput 

quantitative parameters from medical images to unearth various pathological 

conditions [36-40] that are associated with outcomes.  

Radiomic features extracted from medical images can be classified as shape-based 

features, first-order features, higher-order features, textural features, LOG features and 

Wavelet features [37-41]. The entire radiomic process involves image extraction, tumour 

segmentation, pre-processing of images i.e., conversion of images in the required 

format, voxel normalization, image masking, filtering of image, image transformation, 

radiomic extraction involves extraction of radiomic features from original, filtered and 

transformed images [40, 41]. This process leads to data explosion which can be managed 

by employing feature selection or reduction methods. Finally extracted/selected 
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features are used for radiomic prediction model development. In this thesis, I reviewed 

the literature to find the role of radiomics in precision oncology. 

Artificial Intelligence and big data 

AI can be defined as the process to develop intelligent machines which can 

replace or outperform the natural intelligence of human beings [42]. Machine learning 

(ML) and Big Data are two main components of AI. Big Data can be defined by 5V i.e.; 

Volume: the data in large volume, Variety: data from various sources, Velocity: data 

grows very fast, Veracity: quality and integrity of data, and Value: the richness of data 

[43]. ML is the method by which a machine learns from past events or data without 

being explicitly programmed for that. There are three main types of ML methods known 

as (i) supervised learning; (ii) unsupervised learning and (iii) semi-supervised [44]. Deep 

learning is a subtype of machine learning in which the algorithm learns a composition 

of features that are represented in a hierarchy of structures in the data. Complex 

representations of data are expressed in terms of simpler representation of data in deep 

learning [45]. There are various deep learning algorithms that propose an end-to-end 

approach to predict outcomes by learning simple features in a hierarchical manner as 

components of complex features. 

There are various kinds of AI algorithms e.g., Linear regression, Logistic regression, K-

Nearest Neighbour (KNN), Random Forest (RF), Support Vector Machine (SVM), 

Bayesian Network (BN), and deep learning algorithms such as Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), Artificial Neural Networks 

(ANN). [44-50]. Typically selecting the “right” algorithm depends on the task at hand. 

In this thesis, I have discussed the various algorithms used in the development of 

prediction models in oncology. 

Precision oncology 

Cancer treatment has advanced significantly over the last several decades in 

terms of technical developments in diagnostic and therapeutic equipment, 

development of various new drugs and newer and more precise surgical techniques. 

Often clinicians decide the treatment meticulously considering all factors i.e., histology 

of the tumour, stage of the disease and general condition of the patients [54, 55]. Despite 

tremendous development in cancer treatment and expertise, treatment success has lots 

of variabilities and on several occasions, these treatments fail miserably [56. This led to 

the evolution of personalized medicine in oncology [57]. Personalized oncology works 

on the principle of identification of subgroups of patients in particular disease types and 

uses specific treatment to the subgroups [57, 58].  Many biomarkers and gene mutations 

have been investigated to identify the subgroups of the patients in various cancers and 

targeted drugs for those subgroups [58-59]. In recent years several imaging biomarkers 
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are also being investigated for identification of such subgroups and predict the outcome 

of the treatment. 

Limitations of Radiomics 

An inherent problem of repeatability and reproducibility exists with radiomics 

which is caused due to the difference in the scanner from different vendors, different 

acquisition protocols and intra scanner variations. In our earlier repeatability and 

reproducibility study, we found that only 10% of CT radiomic features had good 

repeatability and reproducibility in clinical cohort and phantom [87]. Traverso A. et al. 

in a systematic literature review have also concluded that there are stability issues with 

the majority of radiomic features [88]. To harmonize radiomic extraction tools, features 

and imaging standards several initiatives are started by various agencies, like The 

Quantitative Imaging Network (QIN) [89], the Quantitative Imaging Biomarkers 

Alliance (QIBA) [95], and Quantitative Imaging in Cancer: Connecting Cellular 

Processes with Therapy (QuIC-ConCePT) [90]. These agencies are working 

continuously to standardize imaging and imaging biomarkers. The Image Biomarker 

Standardization Initiative (IBSI) is another consortium that works towards the 

harmonization of radiomic features across the globe by minimizing the deviation in 

imaging and standardizing the radiomic extraction process [91, 92]. QIN is an initiative 

to harmonize the imaging parameters and hardware across the vendor. QIB has initiated 

the scanning of phantoms to trace the standard differences between the equipment. The 

main objective of such a phantom study is to find the errors related to data collection 

and establish the procedures to harmonize the performance of imaging equipment 

among different makes and models with the goal to reduce the bias and variance across 

the equipment. QIN initiative can be an important step towards stratifying patients 

through accurate measurements of imaging biomarkers [90]. The radiomics quality 

score (RQS) is another such initiative proposed by Lambin et al. to address the issues 

related to radiomic study reporting [37]. Most of these initiatives will assist in advancing 

the standardization process of imaging biomarkers.  

As repeatability and reproducibility of radi0mic features are questionable there is a 

requirement for detailed investigation of radiomic features for their repeatability and 

reproducibility. In this thesis, I have performed a detailed study on the repeatability and 

reproducibility of radiomic features and presented the most robust features for further 

evaluation. 

 

AI infrastructure development using the FAIR data concept 

A prerequisite for the implementation of AI in hospitals is the transformation of 

the different data elements (DICOM, radiomic features, and clinical data, diagnostic, 

pathology, genetic) in a FAIR format (Findable, Accessible, Interoperable, and 
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Reusable). Data should be organized and archived as such; it should be findable, 

accessible, interoperable, and reusable for both humans and machines. Hence, the data 

should be anonymized and assigned with global and persistent identifiers. Furthermore, 

the accessibility aspect includes a standardized protocol (authorization and 

identification) so that the authorized users can easily access the data.  The connection 

of the different data concepts with domain ontologies enables the interoperability 

between the different researchers interested in using the data, while the reusability is 

succeeded with the inclusion of rich documentation to support data interpretation for 

the different users. These data principles are the guidelines to improve the quality of 

data holdings and focus on enhancing the automation to find the data and reuse it. 

Oncology treatment produces a huge amount of data that satisfies all 5Vs of big data. 

But those data are either stored in various files in the medical record section of the 

hospital or in the form of free text or tables in hospital HIS which are not amenable to 

machine learning. Harvesting and transforming those data in machine-understandable 

form is a challenging task for a data scientist. There is a need to develop an automated 

system to transform and store these medical records in a format amenable to machine 

learning. In this thesis, we have tried to develop an automated system to transform 

medical records in a machine-readable format and store them in a form amenable to 

local and distributed machine learning adhering to the FAIR data principle. We have 

also developed the pyradiomics based GUI software for radiomic extraction. 

Radiomics and Precision oncology 

Various studies have been performed to demonstrate the utility of radiomics in 

cancer management [59]. Radiomics based studies have witnessed a rapid growth in the 

last decade; several studies have been published that show the potential of radiomics in 

the diagnosis and treatment of cancer. Many radiomics based AI decision support 

systems have been developed in oncology and reported in the literature. In the last few 

years new aspects of radiomics such as delta radiomics are being researched [60]. Delta 

radiomics comprises extraction and comparison of quantitative features from sequential 

scans acquired over the course of treatment, which provides information on the efficacy 

of treatment [60, 61]. The utility of radiomic based prediction modelling has been tested 

widely in the diagnosis and treatment of all varieties of solid tumours. Literature is 

suggestive of the utilization of radiomic features as quantitative biomarkers for several 

oncological conditions like; Brain Tumours, Head-and-neck cancer, Breast cancer, Lung 

cancer, Colorectal cancer, Prostate cancer, Gastrointestinal (GI), Liver cancer and 

Cervical cancer [61-87].  

As radiomics features have been identified as a potential digital marker in precision 

oncology, the next goal should be to identify the robust radiomic features as a potential 

digital biomarker.  In this thesis, I have also evaluated the role of robust radiomic 

features in the prediction of outcomes in cervical and lung cancer.  
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Aim and outline of the thesis 

Given the above challenges, it is the central hypothesis of this thesis that 

radiomics can be combined with other data sources and by artificial intelligence 

applications to predict outcomes in oncology and that these predictions are clinically 

relevant. It is the aim of the thesis to investigate the robustness to radiomic features and 

the role of those features and artificial intelligence in the prediction of clinical endpoints 

in oncology in Indian scenarios. The secondary aim of this thesis was to develop an 

automated system for data harvesting, transformation and storage to perform artificial 

intelligence-based research in oncology in an Indian scenario.     

 

This thesis contains six sections described in Table-1. Each section of this thesis 

addresses the issues related to radiomic implementation in precision oncology.  

Table 1: Summary of the topics and characteristics of the studies presented in each 

chapter of this thesis.  

 

Section Chapter Learning 
Objective 

Title 

Introduction 
Chapter 1 Introduction of 

thesis 
Introduction and Outline of 
Thesis 

Current status Chapter 2 

Review of 
literature  Emerging role of artificial 

intelligence in Imaging  

 

Chapter 3 

 

Systematic Review and 
Meta-analysis of Prediction 
Models used in cervical 
cancer 

 

Chapter 4 

 

Radiomics: A Quantitative 
Imaging Biomarker in 
Precision Oncology  

Stability Study Chapter 5 Stability study of 
Imaging 
biomarker 

Repeatability and 
reproducibility study of 

https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2et92p0
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2et92p0
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2et92p0
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.3whwml4
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.3whwml4
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.3whwml4
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.3whwml4
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.ihv636
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radiomic features on a 
phantom and human cohort 

Infrastructure 
development for 
Machine learning 

Chapter 6 

 

 

Chapter 7 

Infrastructure 
development for 
Radiomic 
Extraction 

Infrastructure 
development for 
Machine 
learning 

Development and validation 
of GUI radiomics feature 
extractor software 
(PyRadGUI) using 
PyRadiomic package 

Implementation of Big 
Imaging Data Pipeline 
Adhering to FAIR Data 
Principles for Distributed 
Machine Learning in 
Oncology   

Machine learning Chapter 8 Machine 
learning example 

 Radiomics Signature: A 
Potential Imaging Biomarker 
for the Prediction of Overall 
Survival in cervical cancer: 
An India experience  

Discussion Chapter 9 Discussion of 
thesis  

Discussion 

 

 

  

https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2dlolyb
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2dlolyb
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2dlolyb
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2dlolyb
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2dlolyb
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2dlolyb
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2iq8gzs
https://docs.google.com/document/d/1NvhoqBB79vp6mAFlVytM5iA-YpdStrN5HTZO4TAMnuI/edit#heading=h.2iq8gzs
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Abstract  

The role of artificial intelligence is increasing in all branches of medicine. The emerging 

role of artificial intelligence applications in nuclear medicine is going to improve the 

nuclear medicine clinical workflow in the coming years. Initial research outcomes are 

suggestive of increasing role of artificial intelligence in nuclear medicine workflow, 

particularly where selective automation tasks are of concern. Artificial intelligence-

assisted planning, dosimetry and procedure execution appear to be areas for rapid and 

significant development. The role of artificial intelligence in more directly imaging-

related tasks, such as dose optimization, image corrections and image reconstruction, 

have been particularly strong points of artificial intelligence research in nuclear 

medicine. Natural Language Processing (NLP)-based text processing  
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Introduction 

Artificial intelligence applied to clinical workflows and personalized cancer care has 

attracted immense attention in recent years [1–3]. The strong appeal of artificial 

intelligence is due in large part to its potential for significantly speeding up mundane 

clinical tasks through selective automation. In various domains of cancer care, artificial 

intelligence tools have shown potential to assist with automated diagnosis, 

segmentations of normal organs and tumor volumes, complex image transformation 

and interpretation, automated processing of textural reports, as well as other tasks that 

were previously thought to be the exclusive preserve of human experts. The other strong 

appeal of artificial intelligence is its potential to ‘mine’ for diagnostic or prognostic 

patterns (i.e., a ‘signature’) among a very large number of potential variables in order to 

make a reliable prediction of outcome.  

In the scope of this article, artificial intelligence shall be defined as a scientific study of 

mathematical processes (i.e., algorithms) that are able to approximate a tightly confined 

aspect of human cognitive actions, without requiring constant and continuous control 

by a human operator. The mark of artificial intelligence is therefore computer 

applications that appear to demonstrate some degree of autonomy, adaptability and 

agnosticism towards the completion of a narrowly-defined function. Machine learning 

is a subfield of study in artificial intelligence involving training of mathematical and 

statistical algorithms, in order to generate the desired output when provided with a 

given set of inputs. It does so by being exposed to an extremely large number of repeated 

training episodes whereby the machine is conceptually ‘penalized’ for every incorrect 

output and ‘rewarded’ for every acceptable output. This dependency on a large number 

of training instances necessarily makes this type of artificial intelligence exceptionally 

sensitive to the volume, variety, velocity and veracity of the data on which it has to train 

on; these four V’s are immediately recognizable as the signature hallmarks of ‘big data’ 

[4,5] (Fig. 1).  
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Figure 1: Interdependency of Artificial intelligence (AI), Machine Learning (ML) and Big 
data  
 

Diagnostic and interventional nuclear medicine departments routinely generate huge 

amounts of data in the form of medical images, text reports and interventional data. 

With current generation of hybrid scanners such as PET/computed tomography 

(PET/CT), PET/MRI and single-photon emission tomography (SPECT)/CT scanners, 

every patient encounter could generate several gigabytes of data in the form of images 

[6]. These images are interpreted by an imaging expert and textual data are also 

generated in the form of diagnostic reports. A significant amount of intervention data 

is also generated in nuclear medicine every day in the form of clinical reports and 

predosimetry/postdosimetry calculations. Recently, several mathematical algorithms 

have been developed to extract a vast number of quantitative tumor metrics from 

medical images in the form of ‘radiomic features’ [7]. Nuclear medicine data generation 

is therefore vast, fast, diversified and also highly variable in interpretation, due to 

human expert subjectivity and variety of scanners from several vendors. Hence, nuclear 

medicine data clearly qualifies as big data, that satisfies all of the so-called ‘4 V’s’ [8]. 

With particular attention to the big imaging data that is found in nuclear medicine, a 

subfield of machine learning, known as deep learning, has become an extremely 

powerful artificial intelligence tool for image processing and image analysis. Deep 

learning algorithms learn composition of data that is represented in a hierarchy of 

structures of simpler features as a representation of the complex data [5,9]. Deep 

learning neural networks exploit a vast number of extremely simple computational 
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units, called artificial neurons, which are organized in deep stacks of interconnecting 

layers [9–11]. Specific deep learning architectures known as convolutional neural 

networks (CNNs) have been shown to be extremely adaptable to general image-based 

tasks such as segmentation, object detection and object classification [9–11]. 

Radiomics 

Radiomics refers to the automated extraction and analysis of quantitative features of an 

image, such as a PET or a CT, in order to recognize potentially useful diagnostic or 

prognostic signatures [7]. Therefore, radiomics draws very heavily from technology in 

both machine learning and deep learning domains, to derive statistical prediction 

models from ultra-high dimensionality data using regression, decision trees, principal 

components analysis and ever increasing in recent years, deep learning. The radiomics 

hypothesis posits that medical images are not simply pictures for qualitative 

interpretation [7], but can be directly converted into minable data that could be used 

for personalized cancer care [12]. A typical radiomics analysis cycle is schematically 

summarized in Fig. 2. This involves the extraction of the region of interest on the image, 

preprocessing (such as digital image filters and resampling, among others), feature 

extraction and finally model development with validation [13]. 

 
Figure 4: figure describes radiomic process for radiomic feature extraction and feature 
selection 
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Natural Language Processing 

Natural Language Processing (NLP) employs machine learning and deep learning tools 

to aid in the extraction of structured data from natural language sources, such as 

recorded speech or written text reports or both. There are various well-established 

applications of NLP in diagnostic and clinical text processing in nuclear medicine such 

as report classification, report interpretation, sentiment analysis and text generation, 

etc. [14]. The NLP workflow consists of various steps and is summarized in Fig. 3. The 

text is first preprocessed by various processes like segmentation in which the text is 

segmented for sections and sentences. Then certain preposition and conjunction words 

are removed (stop-word removal). The remaining words are tokenized and normalized 

by linking to the root word (tokenization and word normalization). The text is then 

analyzed for grammar and part of speech (syntactic analysis). This is then subject to 

named entity recognition, concept recognition and relation extraction using relevant 

ontologies (semantic analysis). Relevant concepts maybe checked for negation using 

negation detection algorithms. Text features are then extracted and vectorized. The 

extracted features are used in model development. Models maybe rule-based, machine 

learning-based or a hybrid of both. The models are developed for defined outcomes and 

require annotated corpus for training in case of supervised learning. The trained model 

then undergoes validation with internal data as well as external data. These models 

maybe developed and applied for the classification of problems, as a part of decision 

support systems, treatment outcome deduction, summarization or text/report 

generation.
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Figure 5: Natural Language processing workflow  
 

Applications of artificial intelligence in nuclear medicine 

Emergence of big data in cancer care  

Over the past several years, continuous efforts have been expended to improve quality 

of patient care and accelerate the pace of cancer research through the ever-increasing 

use of artificial intelligence and medical big data informatics [15]. Large volumes of 

routine (standard of care) data related to cancer diagnosis, treatment planning and 

outcomes are stored as either structured or unstructured form within the confines of 

the hospital or clinic in the form of medical records [16]. The conversion of such highly 

granular patient’s data into electronic formats has opened up a plethora of opportunities 

for the cancer research community. However, realization of clinical and societal value 

from routine medical big data comes with attendant risks. First and foremost, patient 

confidentiality must be protected at all times [17,18]. Anonymization, pseudonymization 
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and binding legal data-sharing contracts all go some way towards protecting 

confidentiality, and increasingly ‘privacy-by-design’ paradigms such as distributed 

learning and federated machine learning [19–21] are being used, where a diverse range 

of artificial intelligence algorithms can be successfully trained without exposing private 

individuals’ identifiable information outside of the data providers’ respective 

communications network firewalls [22–24]. Second, data quality and provenance issues 

due to missing data, inexact measurements and undocumented deviations from clinical 

protocol can lead to serious biases, lack of generalizability and potential patient harm, 

when developing artificial intelligence models on such data [25]. Last but not least, big 

data is plagued by interoperability issues such as different formatting standards, 

idiosyncratic data coding, language barriers and ambiguity in clinical meaning, thus 

limiting the utilization of this data. The growing impetus behind adherence to Findable-

Accessible-Interoperable-Reusable data stewardship standards [26] are beginning to 

address such problems, thus gradually rendering more big data useable by automated 

artificial intelligence algorithms.  

Potential benefits of applied artificial intelligence in nuclear medicine:  

Several retrospective and prospective studies describe different approaches that could 

support earlier diagnosis and more accurate prognosis of cancer [27–29]. Various 

aspects of the clinical problem have been examined utilizing genomics, proteomics, 

radiomics and pathomics signatures [30,31]. These studies identify the potential as well 

as the limitations of these signatures for the prediction of cancer outcome. The vast 

majorities of these publications make use of one or more artificial intelligence 

algorithms, and further integrate data from heterogeneous sources for generating a 

prediction. The application of artificial intelligence to quantitative medical imaging has 

shown promising results in cancer diagnosis, prognosis of disease and treatment 

outcome prediction. In the following sections, we will discuss the role of artificial 

intelligence in several parts of the nuclear medicine clinical workflow. The key area of 

artificial intelligence implementation in nuclear medicine may be grouped into the 

planning of procedure, execution of procedure, image reconstruction, image 

interpretation, report generation and implementation of clinical decision support 

system. These potential domains of application in nuclear medicine are summarized in 

Fig. 4 and are discussed in detail in the review. 
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Figure 4:  Role of AI in medical imaging and diagnostic workflow 
 

Planning of nuclear medicine procedure: 

Nuclear medicine procedures are associated with radiation exposure to the patient and 

are quite expensive. These procedures require patient specific-preparation (such as 

fasting prior to scan, cessation of insulin if diabetic, etc.) which has been challenging 

and required highly skilled human resources to juggle a large number of these 

requirements [32]. Diagnostic and therapeutic dosimetry planning requires imaging at 

multiple time points, image processing and mathematical calculations, all of which are 

technically demanding and widely seen as a challenging clinical task for nuclear 

medicine professionals [33]. Artificial intelligence algorithms can play a significant role 

in optimizing patient scheduling, procedure selection, patient pre-scan preparation and 

preimaging/treatment dosimetry planning. Ansart et al. [34] showed that artificial 

intelligence-based screening of patients led to an increased number of recruitments as 

well as reducing the number of expensive PET scans in a clinical trial. Massachusetts 

General Hospital developed a prediction model using multivariate logistic regression to 

predict the show or no-show of patient for PET/CT scan [35]. Shi et al. [36] have shown 

that a trained artificial neural network can reduce the individual radiation dosimetry 

prediction error by between factor 4 and factor 10, in comparison with population-based 

dosimetry approach in Lu-177-based dosimetry assessment of tumor and various organs. 

Xie et al. [37] have utilized 3D deep convolutional network algorithm for automated 

segmentation of normal organ and fetus with Dice similarity coefficient between 0.92 

and 0.98, which resulted in less than 1% difference in the radiation dose calculation for 

normal organ and fetus for various radiopharmaceuticals by conventional and artificial 

intelligence-based segmentation model. 
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Optimization of nuclear medicine procedure: 

Modern generation scanners have started implementing various artificial intelligence 

approaches [38] that assist with optimization of image quality, scan time and radiation 

exposure during diagnostic nuclear medicine procedures. During therapeutic 

procedures, artificial intelligence-based automation can assist with pre-therapeutic and 

post-therapeutic dosimetry by using artificial intelligence-assisted organ and tumor 

segmentation, and prediction of either organ and/or tumor dose using single-point 

imaging, etc. [39,40]. Utilization of artificial intelligence in individualized dose 

assessment can assist a nuclear medicine physician to implement pre-therapeutic and 

post-therapeutic personalized dosimetry-based assessment, which is currently not done 

because the process is very lengthy, cumbersome and requires high expertise to perform 

the task. During PET and SPECT examinations, we often require additional imaging or 

delayed imaging. For example, if a patient is scheduled for a PET scan but there is a 

lingering suspicion of brain metastasis, he/she may require an extended study that 

includes scans of the brain. This is currently a decision taken on the spot by a doctor or 

technologist, and image sets of such scenarios are available in the nuclear medicine 

department. These image sets can be used to train a deep learning artificial intelligence 

model to assist in decision making by predicting or scoring the likelihood of a brain 

metastasis actually being present. In modern multidetector CT scanners, the tube 

current, and hence patient exposure, is being modulated in real time, to minimize 

investigational radiation dose, but this is not patient-specific because the minimum and 

maximum tube currents are pre-defined such that the scanner modulates between the 

specified values [41]. The disadvantage of this is the dose delivered can only be known 

after the completion of the scan. An artificial intelligence-assisted system may allow us 

to perform real-time and patient-specific modulation of the tube current value to obtain 

the best image quality while optimally reducing radiation exposure to the patient [42]. 

The amount of radioisotope administered to a patient is currently calculated based on 

body weight, and there is ample margin for empirical (subjective) judgment. This could 

potentially lead to excess radiation (more than what is needed for the clinical purpose) 

or else to excessive noise and suboptimal image quality at lower radiation dose. An 

artificial intelligence-based radioisotope dosing system can be trained with the help of 

patient demographic data which can suggest the patient-specific required activity in a 

much more precise manner. This will reduce unnecessary radiation burden to the 

patient or avoid having to re-do suboptimal scans due to insufficient dose of activity 

administered. 

Image reconstruction: 

Nuclear medicine departments have been dealing with the balancing act between 

radiation doses, longer imaging times, low count density in images, low signal-to-noise 

ratio, high partial volume effect and low spatial resolution since its inception [43]. 

Advancements in instrumentation technology and reconstruction technology have 
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addressed these concerns to some degree, in multidetector helical CT and high field-

strength MRI [44]. Image reconstruction in nuclear medicine imaging is still unable to 

catch up to its other radiological imaging counterparts. Nuclear medicine imaging 

involves various computationally intensive steps including attenuation correction, 

scatter correction, noise correction and partial volume correction. Reconstruction 

algorithms in use today range from filtered back projection to newer techniques such 

as 3D Ordered Subset Expectation Maximization, row-action maximum likelihood 

algorithm, often in combination with advanced signal processing techniques like partial 

volume correction and time-of-flight (TOF) correction [45]. These techniques have 

substantially improved image quality in nuclear medicine without necessarily leading 

to higher dose in the patient. Recent literature demonstrates a paradigm shift in image 

reconstruction in nuclear medicine imaging from analytic predetermined approaches 

towards a more adaptable, heuristic and potentially more patient-specific approach. 

Several researchers have examined artificial intelligence-based attenuation correction, 

scatter correction in PET and SPECT image reconstruction and extensive research is 

being performed to improve image quality of low count PET scan [46–50]. Hong et al. 

[46] used a CNN to enhance the image resolution of PET scans. Xiang et al. [47] have 

shown promising results with deep learning to improve the image quality with low dose 

and reduced scan time reconstruction during PET imaging. Wang et al. [48] 

demonstrated the utility of 3D deep convolutional network to predict high-dose PET 

scan using low administered activity. Kim et al. [49] used a de-noising deep learning 

network with local linear fitting to improve image quality of PET in an iterative 

reconstruction algorithm. Shiri et al. [50] demonstrated the utility of a deep learning 

residual network to synthetically generate a fulldose myocardial SPECT image from low-

dose SPECT data as well as he also demonstrated the utility of artificial intelligence in 

prediction of full-time acquisition SPECT image from half time acquisition SPECT 

imaging data. Multimodality fusion imaging with hybrid scanners has proven to be a 

significant breakthrough in medical imaging; modalities such as combined-PET/CT 

have now been established as the modality of choice for cancer imaging [51]. Combined-

PET/MRI is another hybrid medical scanner that is rapidly growing its importance in 

cancer imaging, but it needed to overcome the challenges related to MRI-based 

attenuation correction in PET for accurate PET imaging and quantification [52]. This 

can be achieved in number of ways, including the use of deep learning to synthetically 

generate a radiation attenuation map (in effect, a synthetic CT) directly from MRI. 

Several analytical techniques have been tested to improve PET attenuation correction 

in PET/ MRI scanners [52]. However, recent literature points towards a growing role of 

artificial intelligence [53–57] with a particularly active line of study in image corrections. 

Arabi et al. [53] have further shown the feasibility of deep learning to estimate the 

attenuation correction based solely on TOF PET emission data. Arabi et al. [54] also 

estimated the attenuation and scatter corrections simultaneously in a multi-tracer 

neuroimaging study. Shiri et al. [55], in a similar kind of study, used deep learning to 
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estimate the joint scatter and attenuation correction in PET image. Hwang et al. used a 

deep learning neural network to apply a Maximum Likelihood reconstruction of 

Attenuation and Activity algorithm to jointly generate activity and attenuation maps 

using emission data [56]. Liu et al. [57] in another study have used the deep learning 

technique to generate the attenuation map for PET reconstruction using MRI images. 

Image interpretation and report generation:  

Image interpretation and reporting of scan are amongst the most important tasks in 

clinical nuclear medicine as it is in radiology. The entire process involves various steps 

as image reading, extraction of quantitative data, comparison of a scan with earlier scans 

(quantitatively and qualitatively), then reporting on the findings with (in general) a 

clinical interpretation of the significance of the findings. The potential of artificial 

intelligence here lies in the valuable time saving of nuclear medicine physicians by 

automatic execution of more mundane jobs in the preparation of the report. Like 

reading the patient’s history from the electronic medical record, the consolidation of 

the history in the report, quantitative data extraction and comparison often consumes 

lots of time and leads to reduced output from an expert nuclear medicine physician or 

radiologist [58–60]. Artificial intelligence tools may be utilized to reduce this burden so 

that the expert can do more meaningful tasks like interpretation of finding, providing 

expert opinion and contributing to multimodality treatment groups [58–60].  

NLP is an evolving technology that can assist with nuclear medicine report processing 

in many ways. Several studies have shown the use of NLP in text processing in radiology. 

Pons et al. [14], in their systematic review of literature of NLP in radiology reporting, 

have identified the potential use of NLP in diagnostic surveillance, cohort building for 

epidemiologic studies, query-based case retrieval, and quality assessment of radiology 

practice and clinical support services with level of evidence. These same clinical needs 

exist in nuclear medicine. Pinto et al. [61], in their narrative review, have also 

emphasized the potential importance of artificial intelligence in processing radiology 

reporting requirements as well as the importance of enforcing structured reporting to 

increase the use of artificial intelligence for radiology data-mining. 

 

Clinical decision support system Nuclear medicine imaging plays an important role in 

personalized medicine. A theranostics concept is being used in radionuclide therapy to 

predict the efficacy of radionuclide therapy [62]. Various parameters like standardized 

uptake value (SUV), total lesion glycolysis (TLG) and PET Response Criteria in Solid 

Tumors (PERCIST), etc. have been utilized for disease outcome prognostication [63–

65]. Mahadevaiah et al. [66] described the use of artificial intelligence in decision 

support systems in oncology, but very similar concepts will also hold for nuclear 

medicine. The potential role of artificial intelligence is being explored by several 

researchers working on the development of various kinds of prediction models for 
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outcome predictions in oncology, such as overall survival (OS), progression-free survival 

(PFS), loco-regional recurrence, distant metastasis, treatment outcome, toxicity and 

treatment selection. These studies utilize a range of qualitative, semiquantitative (SUV, 

TLG and PERCIST) and radiomics features extracted from nuclear medicine images [67–

74].  

Radiomic features derived from nuclear medicine images have been proposed as a 

potential digital imaging phenotype for disease-specific personalized predictions of 

individual outcomes [13]. Sanduleanu et al. [67] used a univariate Cox model to show 

that [F-18]-HX4 PET/CT hypoxia uptake was able to prognose OS and local PFS in head 

and neck cancer patient treated by chemotherapy [Spearman’s correlation coefficient 

(ρS )=0.77] (P<0.001). In a multicenter study, Betancur et al. [68] showed that a CNN 

model trained using polar maps of myocardial perfusion imaging (MPI) from SPECT 

scanners outperformed the human expert diagnosis [area under the curve (AUC): 0.81 

vs. 0.78] for detecting obstructive myocardial disease. In an extended study, Betancur 

et al. also developed a prediction model combining clinical information and MPI data 

to predict the 3-year probability of major cardiac events. They demonstrated that the 

machine learning technique outperformed clinical decision-making by medical experts 

(AUC: 0.81 vs. 0.65) for predicting major cardiac events in a cohort of 2619 consecutive 

patients [69]. A similar study by Rios et al. [70] also suggested an improvement of 

radiomics biomarkers over conventional risk factors (AUC: 0.793 vs. 0.698) when 

predicting major adverse cardiac events. Shiri et al. [71] used a combination of radiomics 

with genomic sequencing to predict presence of epidermal growth factor receptor 

(AUC: 0.82) and V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) (AUC: 

0.83) mutations from images of non-small cell lung cancer (NSCLC) patients. Kidd et al. 

[72] developed an FDG PET-based nomogram (SUVmaximum value and lymph node 

status) to predict recurrence-free survival (C-stat: 0.741), disease-specific survival (C-

stat: 0.739) and OS (C-stat: 0.658) for locally advanced cervical cancer. However, some 

studies have also reported the poor validation performance of radiomic-based 

prognostic models. Foley et al. [73] performed an external validation of a prognostic 

model for esophageal cancer using quantitative PET features and radiomic features but 

found that these features were unable to discriminate between patient groups with 

different OS in an independent external validation cohort. van Timmeren et al. [74] also 

performed a multicenter radiomic-based study for treatment response assessment in 

NSCLC patients; they were able to demonstrate significance of FDG-PET/CT radiomic 

model in their individual-institution cohort but failed to reproduce this with a 

multicenter study.  
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Summary of review 

The emergence of artificial intelligence applications in nuclear medicine appears to be 

on the verge of contributing significantly throughout the clinical workflow atomization. 

Initial research suggests an increasing role of artificial intelligence in nuclear medicine 

imaging, particularly where selective automation of tasks are concerned. Artificial 

intelligence-assisted planning, dosimetry and procedure execution appear to be areas 

for rapid and significant development. The role of artificial intelligence in more directly 

imaging-related tasks, such as dose optimization, image corrections and image 

reconstruction, have been particularly strong points of artificial intelligence research in 

nuclear medicine. A further aspect of artificial intelligence research and 

implementation in nuclear medicine will be disease characterization, prognostication 

and potentially treatment outcome prediction. The new study of radiomics has been 

especially active in this field, leading towards the potential for identifying image-based 

digital signatures of oncological disease that can inform clinical decision-making, and 

therefore a stepping stone towards individualized cancer care. Artificial intelligence-

assisted image interpretation based on deep learning neural networks have the potential 

to open up a new horizon in quantitative nuclear medicine, and could become a 

powerful future tool in the hands of nuclear medicine physicians and radiologists. 

Lastly, an aspect of artificial intelligence that still needs to develop strongly and could 

be of immense utility in nuclear medicine is domain-specific NLP. Complex NLP tools 

may help to automate the report generation and clinical interpretation tasks, and likely 

enrich the clinical interpretation with the aid of quantitative features from radiomics 

and deep learning analysis. As a counterpoint to the promising potential future of 

artificial intelligence in nuclear medicine, one needs to be cognizant of the potential 

challenges and barriers to widespread artificial intelligence adoption in nuclear 

medicine clinics. Data, in vast quantities and with large dimensional variety, are the raw 

material for developing and testing artificial intelligence applications for nuclear 

medicine. While some data may be found in great abundance (e.g., PET and SPECT 

images), other types of data may be dispersed across other clinical departments (e.g. 

chemotherapy treatment details, or radiotherapy delineations, or long-term clinical 

follow-up) or have become disconnected completely from the radioisotope imaging due 

to suboptimal data management procedures. It is not simply the image data that needs 

to be curated and maintained with a view to long-term data sustainability, but it is also 

the metadata about the investigation that needs to be captured. For example, imaging 

settings, equipment and scanner software are likely to change rapidly over a short 

period of time, and we know that differences among vendors’ equipment and variation 

in imaging parameters are a major concern that directly limits the wider applicability of 

radiomics models [75] and also of deep learning-based image analysis models [76]. A 

second major barrier to artificial intelligence applicability in nuclear medicine is one of 

clinical acceptability. This acceptability has two distinct dimensions; clinical 
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acceptability and psychological acceptability. The former requires a detailed and 

practical process of selecting, commissioning and validating an artificial intelligence 

tool with realistic and as locally-specific clinical conditions as reasonably possible [66]. 

This necessarily entails staff training, ongoing quality assurance and careful integration 

of emerging artificial intelligence tools into the clinical environment with oversight for 

safety and ethical usage. The latter degree of acceptability is much harder to quantify 

and define; however, it relates directly to another major topic of research in artificial 

intelligence, that is, the degree of ‘explainability’ (or lack thereof) in an artificial 

intelligence-based decision support system [77]. While a clinician can readily and 

eloquently supply a rationale for his/her clinical decisions to a qualified peer, to a 

presiding judge or to an inquiring patient, certain types of artificial intelligence are still 

lacking in this fundamental rationalizing power of an ‘explanation’. For instance, why 

exactly does an imaging-related signature lead an artificial intelligence-based system to 

recommend a particular course of action or to suggest a particularly unpleasant 

prognosis? The risk for the clinician is, either to act upon or else to over-ride such 

recommendations from an artificial intelligence system (particularly in a question of 

diagnosis, prognosis or treatment selection). Either of these feels potentially 

psychologically unsafe in the absence of suitable explanation or justification from an 

artificial intelligence-based system, leading to deep mistrust or lack of application of 

artificial intelligence-based nuclear medicine tools. 
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Conclusion 

The role of artificial intelligence is increasing in prominence in the clinical nuclear 

medicine workflow, starting from patient preparation to the development of decision 

support system in medicine. There appears to be ample evidence of development and 

advancement of artificial intelligence addressing nuclear medicine needs. This is 

pointing to an ever-increasing role of artificial intelligence in nuclear medicine. In the 

coming years, the computer science, informatics and clinical specialist fields need to 

collaborate closely to address some major hurdles related to the long-term sustainability 

of high-quality data (including imaging metadata) and clinical barriers to the adoption 

of artificial intelligence. 
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Chapter 3: Systematic Review and Meta-analysis of 

Prediction Models used in cervical cancer 
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Abstract  

Background: Cervical cancer is one of the most common cancers in women with an 

incidence of around 6.5 percent of all the cancer in women worldwide. Early detection 

and adequate treatment according to staging improve the life expectancy of the patient. 

Outcome prediction models might aid treatment decisions, but a systematic review on 

prediction models for cervical cancer patients is not available. 

Design: We performed a systematic review for prediction models in cervical cancer 

following PRISMA guidelines. Key features that were used for model training and 

validation, the endpoints were extracted from the article and data were analyzed. 

Selected articles were grouped based on prediction endpoints i.e. Group1: Overall 

survival, Group2: progression-free survival; Group3: recurrence or distant metastasis; 

Group4: treatment response; Group5: toxicity or quality of life. We developed scoring 

system to evaluate the manuscript. As per our criteria manuscript scored more than 50% 

were considered significant. A meta-analysis was performed for all the groups 

separately.  

Results: The first line of search selected 1358 articles and finally 39 articles were selected 

as eligible for inclusion in review. As per our assessment criteria 33articles were found 

to be significant and 6 were less significant. The intra-group pooled correlation 

coefficient for Group1, Group2, Group3, Group4, and Group5 were 0.76 [0.72, 0.79], 0.80 

[0.73, 0.86], 0.87 [0.83, 0.90], 0.85 [0.77, 0.90], 0.88 [0.85, 0.90] respectively. All the 

models found to be good (prediction accuracy [c-index/AUC/R2] >0.6) in endpoint 

prediction.   

Conclusions: Prediction models of cervical cancer toxicity, local or distant recurrence 

and survival prediction show promising results with reasonable prediction accuracy [c-

index/AUC/R2>0.6]. These models should also be validated on external data and 

evaluated in prospective clinical studies.  

Keywords: Systematic review, cervical cancer, prediction models, Radiomics  
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Introduction 

As per GLOBOCAN2020, cervical cancer is the 4th most common cancer and contributes 

around 6.5% of all malignancies in women worldwide.1 The role of Human 

papillomavirus (HPV) infection is a well-known cause of cervical cancer in women.1-5 

The newer technologies, awareness, and screening have reduced the growth of cervical 

cancer in the last decade.1 The Catalan Institute of Oncology (ICO) / the International 

Agency for Research on Cancer (IARC) Information Centre on HPV-related cancers 

states that 2,784 million women aged 15 years and above are at risk of developing cancer 

worldwide.1 Every year 604,127 are diagnosed and 341,831 die from the disease 

worldwide.1 

Current research in cervical cancer focuses on two major issues; 1) cervical cancer 

screening for early detection of disease and 2) personalized treatment to increase overall 

survival (OS), progression-free survival (PFS), quality of life(QOL), and reduce the 

toxicity and loc-regional recurrence (LRR).6,7 Practically, the therapeutic choice in the 

treatment of cervical cancer depends on many factors: the tumor size, parametrial 

involvement, the spread of the tumor into the blood or lymph vessels (lymphovascular 

space invasion), deep cervical stromal invasion.8-13 According to the International 

Federation of Gynecology and Obstetrics (FIGO) guidelines, the best-known standard 

of care for early-stage cervical cancer (up to stage IB) is surgical resection. Neo-adjuvant 

external beam radiotherapy (with concomitant chemotherapy) followed by 

intracavitary brachytherapy boost irradiation is required for locally advanced disease 

(stage IB3 and above). For metastatic disease (stage IVB), clinical management is 

unclear but often palliative care is offered consisting of either radiotherapy, 

chemotherapy, or a combination.8 As per the American Society of Cancer, 5-year relative 

survival rates in cervical cancer are 99%, 56%, 17%, and 66% for localized, regional, 

distant disease and across all the stages respectively .13 

With the growing technologies and medical informatics in the last few decades, a large 

volume of cancer treatment data has been generated and stored in (un)structured 

electronic formats worldwide.15,16 This helped machine learning in oncology, gradually 

taking the forefront in cancer treatment and management due to the insightful and 

actionable information they can provide on a patient’s treatment and outcome .17-24 

These generated insights could help caregivers select the appropriate treatment for a 

patient or modify their treatment options to improve the outcome. This is very 

important particularly for high-risk patients responding very poorly to standard 

treatment protocols. 

One of the sources for machine learning in oncology is imaging data. Routine clinical 

images particularly Positron Emission Tomography/Computed Tomography (PET/CT) 

and Magnetic Resonance Imaging (MRI) are used for diagnosis, pre-treatment staging, 

intervention planning, and subsequent follow-up examination and have in recent years 
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led into a machine learning gold mine .9-13, 17-19 Machine learning technologies such as 

computer-aided diagnosis (CAD) and auto-contouring have been explored by 

researchers to assist in the interpretation of medical images and diagnosis.20-25 Also, in 

personalized medicine, where patients are grouped into sub-populations based on their 

disease susceptibility or treatment response, machine learning technologies can identify 

a patient’s specific tumor information within the pixels of the medical image which can 

be extracted using radiomic and deep learning technique for an optimal therapeutic 

intervention. 

 

Machine learning methods have the potential to automate the treatment process, 

improve the quality of care provided to patients and optimize treatment outcomes in 

cervical cancer. The application of machine learning methods to medical images and 

omics data has been discussed extensively in the literature .11, 12, 17-18 

Several predictive models have been developed, tested and utilized in the last decade in 

the screening and treatment of cervical cancer for different outcomes of interest .20-28 In 

our study we perform a systematic review of articles on prediction models used in 

cervical cancer. Specifically, the evaluation of accuracy of prediction is the primary and 

a technological assessment of the development of prediction models is the secondary 

objective of this review.  
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Methods 

Prospective protocol registration  

A prospective review protocol has not been registered for this study. 

Eligibility criteria 

For this review, we sought original research articles relating to (1) gynecological 

malignancies of the cervix of all FIGO stages and all histology groups; (2) prognostic or 

predictive pre-treatment computer modeling of treatment outcomes i.e. overall survival 

(OS) (5 or more year) disease-free survival (DFS) (2 or more year), distance metastasis 

(DM), local-regional recurrence (LRR), treatment-related toxicities and quality of life ; 

3) full-text available, and published solely in the English language; 4) Articles published 

between January 2010 to June 2020; 

Exclusion criteria: 

Additionally, we discarded articles based on the following exclusion criteria 1) study 

does not address human clinical subjects (phantom, in vitro, or animal studies); 2) study 

does not develop and test an outcome prognosis and prediction model; 3) study only 

predicts a screening outcome of cervical cancer, or 4) study that only uses gene 

sequencing data for prediction model development 

Information Source and Search Method 

We searched for eligible publications in one electronic database (PubMed). The base 

strategy was a high-sensitive search for diagnostic and prognostic models, using a 

combination of the broad Haynes29 and Ingui30 filters, with the additional modification 

proposed by Geersing31, all combined with the “AND” logical operator. 

A PubMed search[(“Cc”) OR (“Ccx”) OR (“Cancer of the cervix”) OR (“Cervix cancer”) 

OR (“cervix Tumors”)] AND [(“Risk Model”) OR (“Risk assessment model”) OR (“Risk 

prediction model”) OR (“Assessment tool”) OR (“Prediction score”)] retrieved (19,146) 

articles. A second PubMed search with modified keywords [ (“Cancer of the cervix”) OR 

(“Cervix cancer”) OR (“cervix Tumors”)] AND [(“Risk prediction model”) OR 

(“Prediction model”)] reduced the number of retrieved articles to (11,346 results). 

Finally, a PubMed search with limited keywords(("Cervix cancer"[All Fields] OR 

"Cervical cancer"[All Fields]) OR "Cancer Cervix"[All Fields]) AND (("Prediction 

model"[All Fields] OR "Prognostic model"[All Fields] OR "radiomic model"[All Fields] 

OR "radiomics model"[All Fields] OR "risk prediction"[All Fields] OR "risk prediction 

model"[All Fields] OR "Prediction"[All Fields] OR "Risk assessment"[All Fields] OR 

"nomogram"[All Fields] OR "nomograms"[All Fields])) reduced the number to 1358 

articles.  

Study selection 
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1354 abstracts selected in the final search were stored in tabular format and reviewed 

independently by the first and second authors (AKJ and SM) and the two senior authors 

(VR and LW). Finally, 39 articles were selected based on the aforementioned criteria. 

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

flowchart shows the selection of articles for this review (Figure 1). 32 The full manuscripts 

of the selected article were downloaded from a university library or other sources.  

 
Figure 1: Meta-Analyses (PRISMA) workflow to select articles for review 
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Data extraction  

Data extraction included the study type, sample size, characteristics of the patient 

cohort, FIGO staging, histology, treatment provided, features used, feature selection 

methods used, prediction endpoints, prediction model used, and performance 

assessment of the prediction model i.e., internal or external validation. 

Data Analysis:  

The included studies were grouped by clinical endpoint used to build the model. Studies 

were classified into five groups based on prediction endpoint, Group1: overall/disease-

specific survival, Group2: disease/progression-free survival; Group3: recurrence 

(local/nodal) or distant metastasis; Group4: treatment response; Group5: treatment-

related toxicity or quality of life. Model performance was evaluated in their respective 

groups based on their performance in that group. 

Evaluation of methodological quality of reviewed studies 

We systematically evaluated the studies in this review based on the following criteria: 

1) sample size and event rate 2) disease stage 3) histology stage 4) mention of treatment 

5) feature used in study 6) feature selection method used 7) prediction model used 8) 

statistical tests used to evaluate the performance of prediction model 9) internal or 

external validation and 10) single or multi canter study. Data were extracted in tabular 

form under these heading for qualitative analysis. 

Prediction Model Quality Score (PMQS): 

Transparent Reporting of studies on prediction models for Individual Prognosis Or 

Diagnosis (TRIPOD) guideline is used for extracting the relevant information and 

calculating summary scores to determine adherence of scientific articles on primary 

prediction model reports33.  This is an exhaustive tool that assesses the overall reporting 

of the prediction model development and validation. Whereas Radiomic quality score 

(RQS) is a guideline and scoring system to evaluate the radiomic based prediction model 

development, validation, and reporting34. In this study, we have reviewed the scientific 

literature on the prediction model and quality of prediction model used in cervical 

cancer. As TRIPOD evaluates the overall adherence of prediction model development 

and reporting and RQS only evaluate radiomic based prediction model, none of the 

existing scoring systems is suitable to evaluate the quality of prediction modeling 

studies only based on the development and validation of the prediction model hence 

here we propose a scoring system to evaluate the study based on development and 

validation prediction mode. A scoring system was developed and discussed among all 

the authors as mentioned in table 2. Articles with score >50% are considered as 

significant and score < 50% less significant. 
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Meta analysis of model performance: 

We also performed a Meta-analysis using “metafor package” in R 4.1.0 open-source 

software.35A Meta-analysis was performed using a Random-Effects Model for specific 

prediction endpoints i.e., Overall survival (OS), Progression-free survival (PFS), 

Recurrence/Distant metastasis, Treatment response, and Toxicity/Quality of life as a 

separate analysis. The prediction score of a prediction model (AUC/C-index) in a 

validation set was considered for Meta-analysis and the AUC/C-index was pooled on the 

logit scale and the standard errors of the logit transformed AUC/C-Index were derived. 

Subsequently, the AUC/C-index was summarized using the inverse variance method 

random-effects model, estimated with restricted maximum likelihood and Knapp and 

Hartung adjustment to generate 95% CIs. The statistical heterogeneity was explored by 

estimating I^2 statistics.35An AUC/C-index higher than 0.6 was considered as a good 

prediction capability. The forest plots for each prediction endpoints were generated 

separately.  

  

Results 

Selection of studies 

Out of the 39 selected articles36-74 in this study, 25 studies had overall survival 

(OS)/Disease-specific survival (DSS) as an outcome, 10 studies had midterm disease-

free survival (DSF) or progression-free survival (PFS) as an outcome, 11studies had 

recurrence or metastasis as the outcome, 3 studies had treatment response as an 

outcome, 2 studies had toxicity as the outcome and 1 study has the quality of life (QOL) 

as an outcome (table) (supplementary table 1). 

Sample size: 

All articles in this review were retrospective studies with a sample size ranging from 42 

to 4200 (table 1). 
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Lee WK et. 
al.36/2020 

270  Age, TS, stage, 
SSCCA, and 
HPV Nodal 
SUVmax, 
primary tumor 
SUVmax,  

No No LACC 
/IIB and 
≥IIB/SC
C,AC,A
SC 

RT, and  
CT 

2-year 
DFS, 5-
year 
OS and  

NOR
M-
mCo
x 

2-year DFS: 
AUC; 0.75 
(95% CI, 0.69–
0.81)  
5-year OS: 
AUC; 0.78 
(95% CI, 0.71–
0.85)  

Paik ES et. 
al.37/2020 

1,441 Age, BMI, TS, 
SSCCA, Hb, and 
platelet level, 
FIGO Stage, 
Histology, LVSI, 
Invasion depth, 
LNM, PMI, 
Resection 
margin 

No No ESCC/ 
IB –
IIA/SCC
, AC 

CCRT 2 years 
and 5 
year 
DFS  
and OS 

mCP
HM 

AUC at 2 and 5 
years were 
0.799/0.723 for 
DFS, and 
0.844/0.806 
for OS 

Tian X et. 
al.38/2020 

277  TD, LNM, FIGO 
Stage 
Radiomic 
feature: 
(glcm_correlati
on, 
LLH_glcm_entr
opy, 
HLL_glrlm_GL
N, 
LHH_glcm_ID
MN, 
glcm_homogen
eity, 
“HHL_glrlm_SR
HGLE 

No Ye
s 
(2-
ce
ntr
e) 

LACC 
/IB2, 
IIA2, 
IIB-
III/SCC 

NACT 
followe
d by 
SY/RT 

Respon
se of 
chemo
therap
y 

RF   Raadiomic 
model: AUC: 
0.816 (95% CI, 
0.690-0.942),  
Combined 
model: AUC  
0.821 (95% CI, 
0.697-0.946)  

Fang M et. 
al.39/2020 

120  Age, Pregnancy 
Num, 
Parturition 
Num, Abortion 
Num, First age 
of sexual 
intercourse, 
Family history 
of cancer 

No No LACC / 
IB2-
IIB/NA 

CCRT Treatm
ent 
respon
se 

RF AUC of  0.798 
(95% CI: 0.678-
0.917)  
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three habitat 
signatures from 
sagittal T2 
image, axial T1 
enhanced-MRI 
image, and ADC 
image 
(X_GLRLM_LR
HGLE, 
X_GLRLM_RP 
XLL_GLRLM_S
RLGLE, 
X_GLRLM_LRH
GLE, 
X_GLRLM_LRE, 
X_GLRLM_SRL
GLE, 
X_GLCM_varia
nce, 
XLL_GLRLM_R
LN 
XHH_GLRLM_
RP, 
Surface_area, 
XLL_H_skewne
ss, 
X_GLCM_dissi
milarity, 
X_GLCM_homo
geneity) 

Dong T et. 
al.40/2020 

226 Five radiomic 
features:  
wavelet-
LHH_firstorder
_Mean,  
original_glszm 
_GrayLevelVari
ance,   
log-sigma-3-0-
mm-
3D_firstorder_S
kewness, 
original_gldm_
Small 
DependenceHig
hGrayLevelEmp

No Ye
s 
(2-
ce
ntr
e) 

ESCC 
/IA-
IIB/NA 

SY Lymph 
Node 
Status 

LRM, 
SVM, 
DNN 

Internal 
Validation: 
AUC of 0.99 
and AC of 
97.16%  
External 
Validation: 
AUC = 0.90 
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hasis, or 
iginal_glcm_Joi
ntAverage 
Two 
clinicopathologi
cal features: 
tumor 
histology, and 
grade 

Fang J et. 
al.41/2020 

248  Age, histology, 
grade, HPV, 
SSCCA, LNM,  
LVI, 
W_HH_FO_ME
D, O_S_FLT, 
W_HL_FO_MI
N, 
W_HL_GLCM_
SUMENTR,  
W_LH_GLDM_
LDHGLE, 
W_LH_GLSZM
_SALGLE, 
W_HL_GLCM_
AUTOCOR, 
W_LH_GLDM_
LRLGLE, 
T2_W_LH_GLS
ZM_SZNU,T2_
O_GLRLM_LRL
GLE,T2_LG5_G
LRLM_LRLGLE, 
T2_O_FO_10PE
R,T2_O_GLRL
M_LGLRE, 
T2_LG5_FO_SK
EW, 
T2_LG5_GLSZ
MO_SZNUN, 
T2_LG4_FO_M
AX   
 

No Ye
s 
(2-
ce
ntr
e) 

ESCC / 
IB-IIA/ 
SCC,AC
,ASC, 
SMCC 

SY 3 year 
DFS 

NOR
M-
mCo
x 

Radiomics 
features: 
DFS (C-index, 
0.753; 95% CI: 
0.696-0.805)  
Clinicopatholo
gical features: 
DFS (C-index, 
0.632; 95% CI: 
0.567-0.700).  
Combined 
model : 
DFS (C-index, 
0.714; 95%CI: 
0.642-0.784) 

Wang T et. 
al.42/2019 

137 Age, grade, 
Radiomics 
feature 
mean(SD) 

No No ESCC;/I
B-
IIA/NA 

SY with 
PLN 
dissecti
on 
surgery 

PLNM  MLR  Radiomics 
nomograms  
C-index: 
0.922(95% CI, 
0.825–1)  
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extracted from 
T2WI and DWI  

Clinical 
nomograms  
C-index: 
0.799(95% CI, 
0.599-0.998) 

Wang W 
et. 
al.43/2019 

 833  histology, 
FIGOstage, 
LNM, number 
and diameter of 
PLNM 

Yes No Cervical 
cancer 
/I-IV/ 
SCC,AC
,ASC, 
others 

DRT or 
CCRT 

3- and 
5-year 
OS, 
DFS, 
LC, 
DMF 

NOR
M-
mCO
X 

C-Index of 0.73 
for predicting 
OS, 0.71 for 
DFS, 0.73 for 
LC and 0.67 for 
DMF.  

Shen WC 
et. 
al.44/2019 

142  18F-FDG 
PET/CT 

No No  LACC/ 
IB1-
IIIB/SC
C,AD 

SY LRR, 
DM  
  

Deep 
learn
ing 
mode
l 

Local 
recurrence: 
AC=0.89 
Distant 
metastasis : 
AC= 0.87  

Zhang S et. 
al.45/2019 

1252  Age, Race, 
Pathological 
type, Metastasis 
numbers 
radiotherapy, 
and 
chemotherapy 

No No MCC/I-
IV/ 
SCC,AC 

RT and 
CT 

1- and 
3-year 
OS 

NOR
M-
mCO
X 

1 year OS C-
index=0.779,  
3 year OS C-
index=0.787 

Obrzut B 
et. 
al.46/2019 

102  Age, BMI, HS, 
POCD, FIGO 
stage, histologic 
type, grade, TS, 
LNM, NLND, 
NPLN, LNR, 
LVSI, SMS, PMI, 
deep SI, PORT, 
ST, MBL, PIOC, 
POC 
 

No No ESCC/I
A2-IIB2 
/ 
SCC,AC 

SY 10 year 
OS 

PNN,  
MLR 

AUC  ROC= 
0.809 

Yang J et. 
al.47/2019 

389
9  

Age, Marital 
status, Race, 
Histology 
Grade, FIGO, 
Tumour size, 
Lymph node 
density (LND) 

No No Cervical 
cancer / 
I-IV/ 
SCC,AC
,ASC, 
others 

RT/CT 
/CCRT 
 

3- and 
5-year 
OS and 
DSS 

NOR
M-
mCo
x 

OS: 
Nomogram 
3-year, AUC = 
0.673  
5-year, AUC = 
0.675 
DSS:Nomogra
m 
3-year, AUC = 
0.693 
5-year, AUC = 
0.693 
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Lucia F et. 
al.48/2019 

190  ADC 
EntropyGLCM, 
PET 
GLNUGLRLM, 
Tumor size 
FIGO, Nodal 
stage, Volume  

No Ye
s 
(3-
ce
ntr
e 
2- 
co
un
tri
es) 

LACC/I
A2-IV-
B/ 
SCC,AC
,ASC,  
CCC 

CT and 
RT 

2-year 
DFS 
and 
LRC 

mCP
HM 

DFS model: 
AC= 90% (95% 
CI [79-98%]) 
LRC model: 
AC= 98% (95% 
CI [90-99%])  
in the French 
cohort  
AC= 96% (95% 
CI [80-99%]) 
in the 
Canadian 
cohort.  

Matsuo K 
et. 
al.49/2019 

768  Age, BMI, Race, 
Blood urea, 
nitrogen,  
Creatinine, 
Albumin, 
Bicarbonate, 
Hemoglobin, 
stage, 
Histology, 
Treatment 

Yes No cervical 
cancer / 
I-IV/ 
SCC,AC
,ASC, 
others 

CT and 
RT 

PFS 
and OS 

Deep
-
learn
ing 
mode
l 
CPH  

PFS: C-Index 
0.795 ±0.066 
OS: C-Index 
0.616 ±0.041 

Sun C et. 
al.50/2019 

275  Age, 
FIGOStage, 
GLSZM-LGLZE 
on T1WI, 
NGTDM_busyn
ess of T2WI, and 
NGTDM_compl
exity feature in 
the 
peritumoural 
zone of T2WI 

No No LACC/I
B2-
IIIB/NA 
 

NACT Clinica
l 
respon
se to 
neoadj
uvant 
chemo
therap
y 

SVM AUC 0.999 

Wang C et. 
al.51/2018 

8202  Age, race, 
marital status,  
grade, FIGO 
stage, histology, 
TS and LODDS 

No No cervical 
cancer / 
I-IV/ 
SCC,AC
,ASC, 
others 

SY, 
CCRT, 
CT and 
RT, BT 

3year 
and 5 
year 
OS 

NOR
M-
mCo
x 

5 year OS  
BSCCI =0.786 
(95% CI, 0.764 
to 0.808)  

Marchetti 
C et. 
al.52/2018 

245 TS, grade, and 
PMI  

Yes No LACC/I
B2-IIIB/ 
SCC,AC
,ASC 
 

NACT 
and SY 

5-year 
OS 
rates 
and 
the 2-
year 

NOR
M-
mCo
x 

5-year OS of 
85%  
2-year PFS of 
98% 
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PFS 
rates 

Altazi AB 
et. 
al.53/2018 

80 Radiomics 
features: 
Difference 
Entropy and 
2nd order mean 
SUV Max and 
SUV peak, 
andTumor Vol. 
and Surface 
Area 

No No Cervical 
cancer 
/I to 
IV/SCC 

RT DM 
and 
LRR 

MLR LRR:(AUC: 
0.89 95%CI: 
0.78–1.00)  
DM: (AUC: 
0.82. 95%CI: 
0.69–0.94). 

 Chen J et. 
al.54/2018 

42 dose geometric 
parameters 
(DGPs),  dose 
volume 
parameters 
(DVPs), 
Radiomics 
features 

Yes No Cervical 
cancer 

RT and 
BT 

Rectu
m 
toxicit
y 

SVM AUC=0.91 
(95% CI : 0.87–
0.93) 

Zhen X et. 
al.55/2017 

42 Dose 
distribution in 
rectum 
Computer 
vision 43 
Radiomics  
texture features 
from the RSDM 
were used 

Yes No Cervical 
cancer/ 
I to 
IV/SCC 

RT and 
BT 

Rectu
m 
toxicit
y 

Pre-
train
ed 
CNN 
(VGG
-16) 

 AUC: 0.89 

 Rose P G 
et. 
al.56/2017 

2,04
2 

Histology, 
Race/ethnicity, 
performance 
status, TS, FIGO 
Stage, Grade, 
PLN, Treatment 

No No Cervical 
cancer/ 
I to IV/ 
SCC, 
AC, 
ASC 

RT and 
BT 

2-year 
PFS, 5-
year 
OS,  

NOR
M-
mCo
x 

The 2-year PFS  
BCCI of 0.62.  
5-year OS  
BCCI of 0.64. 

Zheng RR 
et. 
al.67/2017 

795 BMI, albumin, 
platelet, 
leukocyte, 
tumor 
differentiation, 
and status of 
PLN 

No No ESCC/ 
IA1-
IIA/SCC 
and 
non-
SCC 

SY 3- and 
5-year 
OS 

NOR
M-
mCo
x 

C-index 0.74 
(95% CI, 0.68-
0.80). 

ReuzéS et. 
al.58/2017 

118 PET radiomic 
features (LGZE, 
HGZE, 
Entropy), and 

No No Cervical 
cancer/ 
I - 
IV/SCC, 

CCRT 
followe
d by BT 

Local 
tumor 
recurre
nce 

MLR AUC = 0.86 
(95% C.I.: 
0.75-0.97) 
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SUVmean, 
SUVmax, 
SUVpeak,  TLG, 
MV 
 

AC, 
ASC 

Lucia F et. 
al.59/2017 

102 Radiomic 
features PET 
(GLNUGLRLM-
QE) and 4 
from MRI 
(Inverse 
varianceGLCM-
QF and 
EntropyGLCM-
QF 
in ADC maps 
from DWI, 
RLVARGLRLM-
QL in CE-MRI 
and 
LZLGEGLSZM-
QF in T2) 

Yes No Cervical 
cancer/ 
I – IV/ 
SCC, 
AC, 
ASC 

RT and 
BT  

3years 
LRC 
and 
DFS 

NOR
M-
mCo
x 

3-year LRC 
AUC= 0.94 
3-year DFS 
AUC = 0.95  

Obrzut B 
et. 
al.60/2017 

102 Age, BMI, HS, 
POCD, FIGO 
stage, histologic 
type, grade, TS, 
LNM, NLND, 
NPLN, LNR, 
LVSI, SMS, PMI, 
deep SI, PORT, 
ST, MBL, PIOC, 
POC 
 

No No ESCC/I
A2-
IIB2/SC
C and 
non-
SCC 

SY and 
pelvic 
lympha
denecto
my, 
Some of 
the 
patients 
receive
d 
adjuvan
t RT 
and BT 

5-year 
OS 

Six 
Mod
els: 
PNN, 
MLP,  
GEP, 
SVM,  
RBF
NN  
and 
k–
Mean
s 
meth
od 

AUC ROC= 
0.818  and p < 
0.001 

Shim SH et. 
al.61/2016 

245  TS on MRI and 
PALNM on 
PET/CT 

No No Cervical 
cancer/ 
I to IV/ 
SCC, 
AC, 
ASC  

RT, BT, 
CT 

PALN
M 

MLR BSCCI =0.886 
(95% CI, 0.825-
0.947) 

Kong TW 
et. 
al.62/2016 

298 DBTV and 
DCSR on MRI, 
serum SCC-Ag, 
MPS 

No No ESCC/  
IB1 ,IB2/ 
SCC, 

SY PMI NOR
M-
mCo
x 

C index: 0.940 
(95% CI, 
0.908-0.967)  
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AC, 
ASC 

Zhou H et. 
al.63/2015 

1,563 LNM, LVSI, SI, 
PMI, TD, 
histology 

Yes No ESCC/ 
IA-
IIB/SCC
, non-
SCC 

SY 5-year 
OS 

NOR
M-
mCo
x 

The C-index : 
0.71 (95% CI, 
0.65 to 0.77), 

Kim DY et. 
al.64/2014 

493 Age, TS on MRI,  
LNM on 
PET/CT 

No No ESCC/ 
IA-IIB/ 
SCC, 
AC, 
ASC, 
SMCC 

SY and 
pelvic/p
ara-
aortic 
lympha
denecto
my 

LNM NOR
M-
mLR 

C-index : 0.825 
(95% CI, 0.736-
0.895).  

Kumar S et. 
al.65/2014 

198 Education, 
Marital Status, 
Menopausal 
Status, Parity, 
Abdominal 
Mass, 
Staging(FIGO), 
Cell Type, 
Treatment 
Modality 

No No Cervical 
cancer; 
I to IV; 
SCC, AC 

SY, and 
CCRT  

predict
ing 
post 
treatm
ent HR 
QoL  

Predi
Qt-
Cx,  
(SVM 
(Line
ar); 
SVM 
(RBF
); 
MLR; 
ANN 

AUC: 0.866 
(0.85-0.90) 

Je HU et. 
al.66/2014 

1069 Histology, 
PLNM, depth of 
SI,  PMI 

No No ESCC/ 
IA-IIA/ 
SCC, 
others 

SY 
followe
d by 
adjuvan
t RT 

5 years 
DMFS 

NOR
M-
mCo
x 

C index: 0.71 
(95% CI. 0.655-
0.768)  
Externally 
validated  
c-index: 0.65 

Shim SH et. 
al.67/2013 

209 Histology, TS on 
MRI and 
PALNM on MRI 

No No Cervical 
cancer/ 
I – 
IV/SCC, 
AC, 
ASC 

RT, BT, 
CT 

3year 
and 
5year 
OS 

NOR
M-
mCo
x 

BACC I= 0.69 
(95% CI, 0.62-
0.81) 

Lee HJ et. 
al.68 /2013 

1702 Age, no of  PLN, 
LVI , CCRT, PMI 

Yes Ye
s 
(10
-
ce
ntr
e) 

ESCC/ 
IA, IB, 
IIA/SCC 
and 
others 

CCRT  3 year 
and 5-
year 
OS 

NOR
M-
mCo
x 

CI index: 0.69 

Kang S et. 
al.69/2012 

549 Histology 
SSCCA,  

Yes Ye
s 

Cervical 
cancer/ 
I to IV/ 

CCRT, 
with or 
without 

DM NOR
M-

BACCI: 0.73 
(95% CI, 0.65 
to 0.81) 
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PLNM on PET 
PALNM on PET 

(3-
ce
ntr
e) 

SCC, 
AC, 
ASC 

extende
d-field 
radiatio
n 

mCo
x 

Kidd EA et. 
al.70/2012 

234 cervix tumor 
SUVmax , 
PTTV, PLNS, 
FIGO 

No No Cervical 
cancer/ 
I - 
IV/SCC, 
AC, 
ASC 

DRT or 
CCRT 

3 year 
RFS, 
DSS 
and OS 

NOR
M-
mCo
x 

Validation set  
CI index (PET 
nomograms) :  
RFS : 
0.740±0.011, 
DSS: 
0.739±0.153, 
OS: 
0.658±0.105  
CI index (FIGO 
nomograms):  
RFS : 
0.605±0.086, 
DSS: 
0.600±0.132, 
OS: 
0.559±0.152  

Polterauer
S et. 
al.71/2012 

528 The FIGO stage, 
TS, age, 
histology, LNR, 
and PMI  

Yes Ye
s 
(2-
ce
ntr
e) 

Cervical 
cancer/ 
I to 
IV/SCC, 
AC/ASC 

SYor 
trachele
ctomy 
plus 
systema
tic 
pelvic 
and/or 
paraaor
tic 
Lympha
denecto
my. or 
CTRT 

5 year-
OS 

NOR
M-
mCo
x 

BSCCI: 0.723 
(CI , 0.701 -
0.743) 

Seo Y et. 
al.72/2011 

549 Age, 
hemoglobin 
level before RT, 
FIGO stage, 
MTD, LN status, 
and RT dose at 
Point A  

Yes No Cervical 
cancer/ 
I - IV/ 
SCC, 
AC, 
ASC 

RT 5-year 
OS 

NOR
M-
mCo
x 

BSCCI: 0.67 

Biewenga P 
et. 
al.73/2011 

710 PMI,TD, AC, 
ASC, LNM, DI, 
and LVSI  
 

Yes No ESCC; 
IA2-IIA; 
SCC 
and 
others 

SY 5-year 
DSS 

NOR
M-
mCo
x 

AUC= 0.85 
(95% CI, 0.79-
0.92). 
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Tseng JY et. 
al.74/2010 

251 Age, SSCCA, TS, 
PMI, HDN, B/RI 
and LNM 

Yes No Cervical 
cancer;/
I – IV/ 
SCC, 
and 
others 

CCRT 5 year 
OS 

NOR
M-
mCo
x 

C-Indux: 0.69 

AC=adenocarcinoma ; ASC= adenosquamous cell carcinoma ; EORTC= The European Organisation for 
Research and Treatment of Cancer; PLNM= Pelvic lymph node  metastasis; PALNM= Pearaaiortic lymph 
node  metastasis; LC= local control; LRC= locoregional control; DM=distant metastases; DI=depth of 
invasion ; LRR=local-regional recurrent disease; PMI= Parametrial infiltration; SI=stromal invasion, TD= 
tumor diameter, TV= tumor volume; TS=tumor size; LNM= lymph node metastasis;  LRC=loco-regional 
control; DBTV=diameter-based tumor volume;  DCSR=disruption of the cervical stromal ring; 
DMFS=distant metastasis-free survival; MRI= magnetic resonance imaging; PET/CT= positron emission 
tomography/computed tomography; SCC-Ag= squamous cell carcinoma antigen level; MPS=menopausal 
status; LVI=Lymphovascular invasion; B/RI=bladder/rectum invasion; HDT= hydronephrosis; SSCCA= 
serum squamous cell carcinoma antigen; PTTV=PET tumor volume; PLNS= PET LN status; HS=hormonal 
status; POCD=presence of concomitant diseases; NLND=number of lymph nodes dissected; 
NPLN=number of positive lymph nodes, LNR= lymph node ratio (ratio of positive to totally removed 
lymph nodes); LVSI=lymph-vascular space invasion; SMS=surgical margins status; PORT=postoperative 
radiotherapy; ST=surgery time; MBL=median blood lost; PIOC=presence of intraoperative complications; 
POC=presence of postoperative complication; GLSZM-LGLZE= low grey-level zone emphasis of the grey-
level size zone matrix; NGTDM_busyness = neighborhood greytonedifferencematrix 
(NGTDM)_busyness;  HGRE= High Graylevel Run Emphasis; LGZE=Low Gray-level Zone Emphasis; MV= 
Metabolic volume; W_HH_FO_MED = CET1w_wavelet-HH_firstorder_Media; O_S_FLT = 
CET1w_original_shape_Flatness; W_HL_FO_MIN =  CET1w_wavelet-HL_firstorder_Minimum; 
W_HL_GLCM_SUMENTR = CET1w_wavelet-HL_glcm_SumEntropy, W_LH_GLDM_LDHGLE= 
CET1w_wavelet-LH_gldm_LargeDependenceHighGrayLevelEmphasis; W_LH_GLSZM_SALGLE= 
CET1w_wavelet-LH_glszm_SmallAreaLowGrayLevelEmphasis; W_HL_GLCM_AUTOCOR= 
CET1w_wavelet-HL_glcm_Autocorrelation,  CET1w_wavelet-LL_glcm_Imc2, CET1w_log-sigma-4-0-mm-
3D_firstorder_90Percentile; W_LH_GLDM_LRLGLE = CET1w_wavelet-
LH_gldm_SmallDependenceLowGrayLevelEmphasis; T2_W_LH_GLSZM_SZNU = T2w_wavelet-
LH_glszm_SizeZoneNonUniformity;  T2_O_GLRLM_LRLGLE = 
T2w_original_glrlm_LongRunLowGrayLevelEmphasis;T2_LG5_GLRLM_LRLGLE = T2w_log-sigma-5-0-
mm-3D_glrlm_LongRunLowGrayLevelEmphasis; T2_O_FO_10PER= 
T2w_original_firstorder_10Percentile;  T2_O_GLRLM_LGLRE = 
T2w_original_glrlm_LowGrayLevelRunEmphasis; T2_LG5_FO_SKEW = T2w_log-sigma-5-0-mm-
3D_firstorder_Skewness; T2_LG5_GLSZMO_SZNUN = T2w_log-sigma-5-0-
mm3D_glszm_SizeZoneNonUniformityNormalized; T2_LG4_FO_MAX =T2w_log-sigma-4-0-mm-
3D_firstorder_Maximum;CCRT= Concurrent chemotherapy ; ESCC= Early-stage cervical cancer; LACC 
:=Locally advanced cervical cancer;  SCC = squamous cell carcinoma; AC = adenocarcinoma; ASC = 
adenosquamous cell carcinoma; MCC=Metastatic cervical cancer; SMCC= small cell carcinoma; 
CCC=Clear cell carcinoma; NACT=neoadjuvant chemotherapy ; CCRT=Concurrent chemo-radiation; 
RT=Radiotherapy; DRT= Definitive radiotherapy ; BT= brachytherapy ; CT=chemotherapy; SY= surgery; 
OS: Over All survival; PFS: Progression Free Survival; DSS: Disease Specific Survival;  MLR: Multivariate 
Logistic regression;  SVM: Support vector machine; PNN : Probable Neural Network; ANN: Artificial 
Neural Network; DNN : Deep Neural Network; MLP: Multilayer Perceptron; GEP: Gene Expression 
Programming; RBFNN: Radial basis function networks; mCPHM: multivariate Cox Proportional Hazard 
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Table 1: List of papers selected in this review and important parameters extracted from 

the manuscripts 

Disease: 

Nineteen studies included early-stage cervical cancer (ESCC)/Locally advanced cervical 

cancer (LACC) i.e., FIGO Stage IA-IIIB, and others included all stages i.e., FIGO stage I-

IV (table 1). 

Feature selection: 

The studies selected for this review have used clinical, pathology, imaging (like tumor 

related imaging finding, tumor size, SUV on PET image) or radiomics features, or a 

combination of these to develop the prediction model. In seven studies the feature 

selection process was not mentioned and in the rest of the studies feature selection was 

performed using univariate logistic regression, univariate Cox regression, SVM-RFE, 

LASSO, SBS, LOOCV and other techniques details provided in Supplementary table 2.  

Prediction algorithm used:   

Several prediction algorithms were used by various authors and all of the algorithms 

showed good prediction (AUC/C-index>0.6) in the validation set.  The commonly used 

algorithms were multivariate logistic regression (MLR), multivariate Cox proportional 

hazard model (Cox-mPH), Random Forest (RF), Support Vector Machines (SVM), 

Convoluted Neural Network (CNN) VGG-16, Probabilistic neural network (PNN), 

Artificial neural network (ANN), multilayer perceptron network (MLP), gene expression 

programming classifier (GEP), radial basis function neural network (RBFNN) (table 1).   

Logistic Regression:  

Seven studies included in this review have used MLR as a prediction algorithm. Six 

studies have predicted recurrence or DM except Kumar S et.al.65 who has predicted 

QOL. Dong T et.al.40, Obrzut B et.al.46, and Kumar S et.al.65 have compared MLR with 

SVM, PNN, or ANN.  

Probabilistic neural network (PNN): 

Obrzut B. et.al.60selected twenty-three demographic, tumor-related, and preoperative 

parameters to train a PNN, MLP, GEP, SVM, RBFNN, and k–Means method for 

predicting 5-year overall survival. PNN outperformed all the models. 

Convolutional neural network (CNN) 

Model; NORM-mLR: Nomogram Multivariate Logistic Regression; NORM-mCox: Nomogram 
Multivariate Cox Model 
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Zhen X. et.al.55 used a pre-trained VGG-1675 CNN with transfer learning technique to 

predict toxicity in rectal toxicity. Given the very small sample size (42 patients) in their 

study with a relatively small number of toxicity cases, an adaptive synthetic sampling 

approach (ADASYN) (He et.al. 2008)76was used to generate synthetic minority toxicity 

data to balance the training cohort. In this study VGG-16 model outperformed a 

radionics based multivariate regression model.  

 

Support Vector Machine (SVM) 

In five studies SVM algorithm was used. Chen J. et.al.54 has developed an SVM model to 

predict rectal toxicity by using dose geometric parameters (DGPs), dose-volume 

parameters (DVPs) and Radiomics features.  

Decision support: 

22 studies included in this review have represented their models as a nomogram for 

predicting various endpoints. Twenty have used multivariate Cox proportional hazard 

regression and other two have used multivariate logistic regression as their predictive 

algorithm. All the prediction models have shown good results (c-index/AUC/R2> 0.6) in 

predicting endpoints.  

Methodological assessment: 

The majority of studies have used feature selection or elimination techniques to reduce 

the redundancy and dimensionality of the data. In 6 studies the feature selection 

technique has not been described properly. 12 studies have used radiomic features along 

with clinicopathological features in different prediction algorithms, and the majority of 

them have shown the superiority of radiomic features over clinicopathological features 

alone. The complete synthesis with score has been shown in table 2 and shown in figure 

2. As per our scoring criterion, 33 articles were considered as significant and 6 were 

considered as less significant. Thirteen studies have demonstrated a better association 

of radiomics features with prediction endpoints when compared with conventional 

image/clinic-pathological features.  
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Lee WK et. al.36 2020 3 1 1 1 3 0 0 1 2 3  1 16 

Paik ES et. al.37 2020 5 1 1 1 3 0 0 2 2 2 4 21 

Tian X et. al.38 2020 3 1 1 1 3 0 2 2 2 3 1 19 

Fang M et. al.39 2020 2 1 0 1 3 0 0 2 2 3  1 15 

Dong T et. al.40 2020 3 1 0 1 3 0 2 2 3 3 4 22 

Fang J et. al.41 2020 3 1 1 1 3 0 2 2 2 3 1 19 

Wang T et. al.42 2019 2 1 0 1 3  0 0 1 2 3 1 14 

Wang W et. al.43 2019  4 1 1 1 2 1 2 1 2 2 1 18 

Shen WC et. al.44 2019 2 1  1 1 3 0 0 0 2 2 1 13 

Zhang S et. al.45 2019 5 1 1 1 3 0 0 1 2 2 4 20 

Obrzut B et. al.46 2019 2 1  1 1 2 0 0 0 3 2 1 13 

Yang J et. al.47 2019 5 1 1 1 2 0 0 1 2 2 4 19 

Lucia F et. al.48 2019 2 1 1 1 2  0 2 1 2 3 4 19 

Matsuo K et. al.49 2019 4 1 1 1 2 1 0 0 3 3 1 17 

Sun C et. al.50 2019 3  1 0 1 2 0 0 1 2 2 1 13 

Wang C et. al.51 2018 5 1 1 1 2 0 0 1 2 3  4 20 

Marchetti C et. al.52 2018 3 1 1 1 2 1 0 2 2 2 1 16 

Altazi AB et. al.53 2018 1 1 1 1 2 0 0 2 2 3 1 14 

 Chen J et. al.54 2018 1   1 2 1 0 1 2 3 1 12 

Zhen X et. al.55 2017 1 1 1 1 3 1 0 0 2 2 1 13 

 Rose P G et. al.56 2017 5 1 1 1 2 0 0 2 2 2 2 18 

Zheng RR et. al.57 2017 4 1 1 1 2 0 0 1 2 3 1 16 

ReuzéS et. al.58 2017 2 1 1 1 2 0 0 1 2 3 1 14 

Lucia F et. al.59 2017 2 1 1 1  2 1 0 1 2 2 4 17 

Obrzut B et. al.60 2017 2 1 1 1  2 0 0 0 3 2 1 13 

Shim SH et. al.61 2016 3 1  1  1 1 0 0 1  2 3 2 15 

Kong TW et. al.62 2016 3 1  1 1 2 0 0 2 2 3 1 16 

Zhou H et. al.63 2015 5 1 1 1 2 1 0 1 2 3 1 18 

Kim DY et. al.64 2014 3 1 1 1 2 0 0 1 2 3  4 18 

Kumar S et. al.65 2014 2 1 1 1 3 0 0 0 3 3 1 15 

Je HU et. al.66 2014 5 1 1 1 2 0 0 1 2 3 4 20 

Shim SH et. al.67 2013 3 1 1 1 2 0 0 1 2 3 1 15 

Lee HJ et. al.68 2013 5 1 1 1 2 1 2 1 2 1 1 18 

Kang S et. al.69 2012 4 1 1 1 2 1 2 1 2 3 4 22 

Kidd EA et. al.70 2012 3 1 1  1 2 0 0 0 2 3 1 14 

PolterauerS et. al.71 2012 4 1 1 1 2  1 2 1 2 3 2 20 

Seo Y et. al.72 2011 4 1 1 1 2  1 0 1 2 2 2 17 
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Table 2: Overall performance score of all the included manuscripts in this review 

 

 

Biewenga P et. al.73 2011 4 1 1 1 2 1 0 1 2 3 1 17 

Tseng JY et. al.74 2010 3 1 1 1 2 1 0 1 2 2 1 15 

Scoring system used:  Maximumpossible score= 
27 

  

 
Sample size (SS) 
SS<=100 =1 
100<SS<=200 =2 
200<SS<=500 =3 
500<SS<=1000 =4 
SS>1000 =5 
Disease Stage 
(Mentioned): 
No=0 
Yes=1 
Histology Stage 
(Mentioned): 
No=0 
Yes=1 
Treatment (Mentioned):  
No=0 
Yes=1 
 

 
Feature Used 
Only clinical =1 
Only pathological =1 
Only imaging=1 
Only radiomics=1 
Event rate reported 
YES=1 
No=0 
Multi-center study 
Yes=2 (two centre), 3(three 
and more centre), 4 (three 
and more centre with 
different country) 
No=0 
Feature selection 
Technique 
Not described =0 
Only one method used =1 
Multiple method used=2  

 
Prediction 
Algorithm  
One algorithm one 
model =1 
One algorithm 
based multiple 
models = 2 
Multiple 
algorithms 
multiple models=3 
Model 
Assessment 
Only validation 
accuracy is 
reported without 
confidence interval 
=1 
Validation 
accuracy with 
confidence 
interval=2 
Train and 
validation accuracy 
with confidence 
interval=3 
 

 
Model 
Validation: 
Train-test 
model 
validation=1 
Bootstrap 
validation/cros
s validation=2 
External 
validation=4 
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Figure 2: Synthesis score of studies reviewed 

Meta Analysis:  

The Meta-analysis in all the groups was performed using Random-Effects Model and 

the result has been shown in table 3. Pooled statistics in all five groups i.e., OS, PFS, 

Recurrence/DM, Treatment response, and Toxicity/QOL found to be significant in our 
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review. The heterogeneity was very high in all the groups except Toxicity /QOL. The 

pooled correlation coefficient was found to be significant in all the groups; the p-value 

was <0.0001. Forest plots of Meta-analysis for all the groups are shown in figure 3. 

 k tau^2 I^2 Pooled statistics  p-value 

Group 1 
Overall 
survival (OS) 

25 0.0401 (SE = 0.0123) 97.87% 0.76 [95%CI: 0.72, 0.79] <0.0001 

Group 2 
Progression-
free survival 
(PFS) 

10 0.0919(SE = 0.00449) 98.12% 0.80 [95%CI: 0.73, 
0.86]  

<0.0001 

Group 3 
Recurrence or 
Distant 
metastasis 

11 0.0519 (SE = 0.0264) 91.38% 0.87 [95%CI: 0.83, 
0.90] 

<0.0001 

Group 4 
Treatment 
response 

3 0.0352 (SE = 0.0404) 88.02% 0.85 [95%CI: 0.77, 0.90] <0.0001 

Group 5 
Toxicity or 
Quality of life 

3 0.0002 (SE = 0.0155) 1.04% 0.88 [95%CI: 0.85, 
0.90] 

<0.0001 

Table 3: Result of Meta analysis in all the groups i.e., Overall survival, Progression-free 

survival, Recurrence or Distant metastasis, Treatment response, and Toxicity or Quality 

of life 

 

 
Figure 3a: Forest plots of Meta analysis of model predicting overall survival  
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Figure 3b: Forest plots of Meta analysis of model predicting progression free survival  

 
Figure 3c: Forest plots of Meta analysis of model predicting Distance metastasis 

/recurrence  
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Figure 3d: Forest plots of Meta analysis of model predicting Treatment response  

 
Figure 3e: Forest plots of Meta analysis of model predicting Toxicity/QOL  
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Discussion 

Artificial intelligence and more specifically machine learning use advanced 

mathematical and computer algorithms to unearth underlying relations between 

features and the outcome variable77-83. The application of such algorithms in medicine 

holds promise to predict and improve an individual patient's response based on the 

available data. Hence, various researchers are working to utilize machine learning for 

personalized medicine to improve the detection of disease, selection of treatment, and 

treatment outcome77,78. The ultimate goal of artificial intelligence is to provide decision 

support for personalized treatment. Articles included in this review have used 

clinicopathological, radiological, and radionics features to develop a prediction model 

for various endpoints using different prediction algorithms. 

Prediction model quality score (PMQS): Our proposed scoring system 

comprehensively evaluates all the aspects of prediction model development and 

validation. Our scoring system is based on 11 parameters and a 27-point scale. We have 

prioritized technical issues related to prediction model development. Out of eleven 

parameters, 4 parameters are related to the reporting of the findings i.e., disease stage, 

histology, treatment, and event rate have lesser score either 0 or 1. But more important 

parameters i.e., Sample size (Score: 1-5) Feature Used (Score: 1-3), multi-center study 

(Score: 0-4), Feature selection Technique (Score: 0-2), Prediction Algorithm (Score: 1-

3), Model Assessment (Score: 1-3), Model Validation (Score: 1-4) have been assigned a 

wide range of score. According to our scoring system, 33 articles were significant 

(score≥50%) and 6 were less significant (score<50%). The overall score of PMQS is 

suggestive of the significance of the prediction model in cervical cancer. Details of our 

proposed scoring system PMQS are discussed below. 

Sample size is a very important factor in the development of a prediction model. A 

model trained on a very small sample size often fails to demonstrate the underlying 

variability and diversity of the data which makes it difficult to validate the prediction 

model and often these models fail in the validation phase especially externally. Hence, 

we have provided a wider range of scores (1-5) for sample size. But few studies in this 

review have used advanced algorithms to circumvent the problem related to small 

sample size. Zhen X. et al.55have used CNN VGG-16 model to predict rectal toxicity in 

the sample size of 42 patients. In this study, they have used a pre-trainedVGG-16 

network and applied the trained parameters to a new classification task in a process 

called transfer learning75, 76to overcome the small sample size issue. They have 

demonstrated the success of those advanced techniques, which may be beneficial for 

future studies in this domain.  

Besides sample size, another very important factor is event distribution (rate) in the 

cohort and has been included in the scoring system. A majority of studies have not 

described the distribution of events in their study population except a few. He H et.al. 
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where they have described the highly imbalanced nature of their data. This study 

employed an adaptive synthetic sampling approach (ADASYN)76 to generate synthetic 

minority toxicity data to balance the training data set. Two toxicity studies were 

included in our review, we have found the results encouraging. However, the reliability 

of these sophisticated algorithms like transfer learning and ADASYN can only be tested 

well in external or prospective validation.  

The survival of the patient suffering from cervical cancer largely depends upon the type 

of tumor, stage of the disease as well as the treatment offered to them. These 

parameters have also been included in the PMQS. The majority of the included articles 

in this review have included patients of all histological types and stages. Also, they were 

able to demonstrate good predictability of several features both in univariate and 

multivariate analysis. However, none of the studies have tried to compare a model 

trained and validated across the FIGO stages to evaluate the robustness of the model 

across the various FIGO stages. For example; if a model is trained and validated in a 

cohort of FIGO stage I and II patients (early stage), whether that model can predict the 

outcome of patients with FIGO stage IV (advance stage) and vice versa. Whether the 

variables which have good predictive value for the patient cohort with FIGO stage I and 

II (early stage) have similar predictive value for the patient cohort with FIGO stage IV 

(advance stage) and vice versa. These are important questions to answer in future 

studies. The generalizability of models across the FIGO stages needs to be tested 

carefully. 

The success of any model heavily depends on the features used to generate the 

prediction hence the selection of relevant clinical, diagnostic or radiomics features will 

have a huge impact on the outcome of the prediction model. A wide range of scores (1-

3) has been assigned in PMQC considering the importance of inclusion of relevant 

features from various sources (Clinical, Pathological, radiomics, diagnostic). The initial 

inclusion of features among which best features are selected/extracted should be 

decided based on the evidence of merit of the feature. None of the papers have properly 

explained the inclusion of features at the initial stage. For example, Altazi AB et. al.53 

have extracted 72 radiomics features and Zhen X. et. al.55 extracted 43 radiomics features 

to select the most relevant features but the reason for extraction of only 72 or 43 features 

respectively was not explained. We feel that the inclusion criteria for the features should 

be evidence-based, i.e., based on previous studies and or clinical experience. In the 

majority of the publications, very few features/variables are used to develop the 

prediction model and none of the studies included in our review found treatment 

variables as important features to be considered for model development. 

Feature selection technique is the second most challenging task in prediction model 

development. Various feature selection techniques like univariate and multivariate 

analysis, etc. have been extensively explained in the literature 53, 57. Studies included in 

this review have also applied feature selection methods wisely to eliminate less 
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important features and overcome issues related to overfitting and multi-co-linearity. 

Univariate logistic regression has been used by several authors to select the most 

important features for the development of multivariate models. Hence a wide range of 

scores (0-2) is assigned to feature selection in PMQC.  

Besides selecting the most informative features, one also has to select an appropriate 

prediction algorithm to build a model. The development and validation of a single 

model based on a single prediction algorithm are often disadvantageous because a 

particular model may not be suitable for a particular prediction task .83 Whereas the 

advantage of developing multiple prediction models for evaluation to select the best 

model is to increase the probability to correctly identify the best model that performs 

sufficiently well for a prediction task with the particular predicate.83Various algorithms 

are used for the best model selection for a prediction task. Westphal M et.al. have 

described the benefit of evaluation of multiple prediction models for the selection of 

bestthe  model for the prediction task. The inclusion of multiple prediction models 

during the development process has been included in the PMQC and a wider range of 

scores has been assigned (1-3). Very few studies included in this review have tested 

multiple prediction algorithms and compared them to select the best model to predict 

the endpoint.  

Model validation is one of the most important aspects of prediction model 

development. Mainly validation of prediction model is performed on internal data 

(internal validation) or along with external data (external validation). Various validation 

techniques like train-test validation, cross-validation, bootstrap validation, and nested 

cross-validation are used. Considering the importance of validation step wide range of 

scores (1-4) has been assigned in PMQC. 

Multicenter studies are important for the generalizability of the prediction model. It is 

assumed that the prediction model developed on a single-centre study will have more 

chance to fail in external validation in comparison of multicenter studies. PMQC 

includes it as an important parameter and assigns a wide range of scores (0-4). 

Meta-Analysis Systematically reviewing the predictive performance of one or more 

prediction models is crucial to examine a model’s predictive ability across different 

study populations, settings, or locations. Quantitative synthesis of prediction model 

studies helps to better understand their potential generalizability and can be achieved 

by applying meta-analysis methods. The included studies in this review are typically 

differing in design, execution, and thus case-mix, variation between their results are 

unlikely to occur by chance only. For this reason, the meta-analysis should usually allow 

for (rather than ignore) the presence of heterogeneity and aim to produce a summary 

result (with its 95% confidence interval) that quantifies the average performance across 

studies. This can be achieved by implementing a random rather than a fixed-effects 

meta-analysis model. In our Meta-analysis, we found that pooled statistics for all 



69 | 
 

prediction endpoints is significantly high with a narrow 95% CI value which signifies 

the role of the prediction model in cervical cancer. However, high values of 

heterogeneity signify a lack of uniformity in the prediction model development and 

validation. In our study, except for toxicity/QOL heterogeneity is found to be very high 

because of various factors i.e., sample size, variability in features and prediction 

algorithms. Overall, the Meta-analysis of the review indicates the utility of these models 

in the prediction of various endpoints in cervical cancer. 

This review has a few limitations like (1) non-inclusion of the paper published before 

2010, (2)Meta-analysis was performed pooling to prediction endpoints but not for the 

type of prediction algorithm (3) all the studies included in this review are retrospective 

studies. This review has only included published literature hence positive result 

publication bias cannot be ruled out. 

 

Conclusion:  

Undoubtedly prediction models are going to help cancer management in future. Our 

review shows an increasing trend in the use of prediction models in cervical cancer 

research. The majority of studies included in this review were found to be significant on 

PMQS evaluation criteria. The Meta-analysis and overall quality score on PMQS 

together are also suggestive of the significant role of the prediction model in cervical 

cancer. 

Key issues for the future will be to train and validate a model with a large amount of 

data, external validation, validation in prospective clinical trials, integration of these 

models into the electronic health record, and a more careful evaluation of models, 

particularly with respect to their effects on clinical outcomes. 

Abbreviations:  

ICO : InstitutCatalàd' Oncologia 

IARC: International Agency for Research on Cancer  

CONTEXT SUMMARY 

Key objective 

Cervical cancer is one of the most common cancers in women worldwide. This 

systematic review and Meta-analysis examined the significance of prediction models for 

the prediction of various clinical endpoints in cervical cancer. We have reviewed 39 

articles on prediction modelling and cervical cancer and, to our knowledge; this is the 

first study of this kind in cervical cancer to date. 

Knowledge Generated 
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The synthesis score pooled statistics of our analyses demonstrated there is strong 

evidence of the utility of the prediction model to predict various endpoints in cervical 

cancer.  

Relevance 

Based on our PMQS the highest-scoring prediction model may be validated 

prospectively and used in clinical decision making may improve patient care in cervical 

cancer management.  
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Abstract  

Cancer treatment is heading towards precision medicine driven by genetic and 

biochemical markers. Various genetic and biochemical markers are utilized to render 

personalized treatment in cancer. In the last decade, non-invasive imaging biomarkers 

have also been developed to assist personalized decision support systems in oncology. 

High throughput quantitative imaging biomarkers i.e., radiomics is being researched to 

develop a specific digital phenotype of tumor in cancer.  Radiomics is a process to 

extract high throughput data from medical images by using advanced mathematical and 

statistical algorithms. The Radiomics process involves various steps i.e. image 

generation, segmentation of the region of interest (e.g. a tumor), image preprocessing, 

radiomic feature extraction, feature analysis and selection and prediction model 

development. The radiomics process explores the heterogeneity, irregularity and size 

parameters of the tumor to calculate thousands of advanced features. Our study 

investigates the role of radiomics in prediction medicine. Radiomics research has 

witnessed rapid growth in the last decade with several studies published that show the 

potential of radiomics in the diagnosis and treatment of cancer. Several radiomics based 

prediction models have been developed and reported in the literature to predict various 

prediction endpoints i.e., overall survival, progression-free survival and recurrence in 

brain tumors, head and neck cancer, lung cancer and several other cancer types. 

Radiomics based digital phenotype markers have shown promising results in diagnosis 

and treatment in oncology. In the coming years, radiomics is going to play a significant 

role in precision oncology. 
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Introduction 

Cancer is caused by genetic mutations leading to uncontrolled growth of tissue and cells 

of growing tissue can leave the tissue colony and metastasize in other parts of the body 

[1]. Conventionally, cancer is treated by surgery, chemotherapy, radiotherapy or 

combinations of these options [2]. Often the selection of treatment options depends 

upon the type of tumor, stage of the disease and general condition of the patient [2]. 

Although clinicians consider these factors to decide the course of treatment, on several 

occasions these treatments fail [3]. This led to the evolution of personalized medicine 

in oncology [4]. Personalized oncology works on the principle of identification of 

subgroups of patients in particular disease types [4-5].   Many biomarkers and gene 

mutations have been investigated to identify the subgroups of the patients in various 

cancers and targeted drugs for those subgroups [5-6]. For example, by sequencing and 

in situ hybridization (ISH) techniques a patient subgroup with epidermal growth factor 

receptor (EGFR) mutation can be identified in Non-Small Cell Lung Cancer (NSCLC) 

patients. These high-risk patients do not respond well to conventional treatment 

options but show good response with targeted therapies like Erlotinib, Gefitinib, 

Afatinib and similar drugs [6-9]. Precision oncology has the potential to personalize the 

screening, risk stratifications, treatment selection and response assessment [4-5]. 

Although most approaches towards precision oncology are centred on biomarkers and 

genetic mutation assessments [7], artificial intelligence (AI) driven technologies are also 

being explored to improve the accuracy of precision oncology [10, 12]. This technology-

driven approach has also been tested in various fields in precision oncology i.e. 

screening, risk stratifications, treatment selection and response assessment [10, 12]. AI-

based precision oncology has achieved success as witnessed in published literature in 

the last few years. Various imaging biomarkers are being developed and tested for their 

utility in precision oncology [13-15]. Those imaging biomarkers are of two types’ i.e. 

qualitative (ex. spiculated margin of tumor, vascularity of tumor, position of tumor and 

contrast enhancement of the tumor etc.) and quantitative (Hounsfield unit (HU) in 

computed tomography (CT), standardized uptake value (SUV) and total lesion 

glycolysis (TLG) in positron emission tomography (PET)) [16]. In the last few years 

another kind of imaging biomarker, i.e., radiomic features are extracted from the 

medical images and being tested in precision oncology [16, 17]. The aim of this study is 

to review the radiomic process and its role in precision oncology and the secondary aim 

of this study was to investigate the growth of radiomics research in the last two decades.  

Radiomics:  

Radiomics as a word was first used by Lambin et al in 2012 to describe the quantification 

of medical imaging data [17]. Radiomics is a process to extract high throughput data 

from medical images like CT, PET, MRI or SPECT by using advanced mathematical and 

statistical analysis of images [16, 17]. The Radiomics process explores the heterogeneity, 
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irregularity and size parameters of the tumor to calculate thousands of advanced 

features [16-18]. There are mainly two types of radiomics i.e. handcrafted radiomics and 

deep learning-based radiomics. Here in this manuscript mainly we will discuss the first 

form of radiomics i.e. hand crafted radiomics and we will address these by the term 

radiomics itself [19].  

 

Radiomics Process: 

The Radiomics process involves various steps i.e. image generation, segmentation of the 

region of interest (e.g. a tumor), image preprocessing, radiomic feature extraction, 

feature analysis and selection and prediction model development [16-18]. The stepwise 

radiomic process is shown in Figure 1.  

 

Figure 1: Radiomic process for radiomic feature extraction and feature selection 

Image generation: Medical equipment like computed tomography (CT), Positron 

emission tomography (PET), magnetic resonance imaging (MRI) and single-photon 

emission tomography (SPECT) are used to image the patient and three-dimensional 

images are generated by sophisticated reconstruction techniques. These images are 

archived in the image repository i.e., picture archiving communication system (PACS) 

for future utilization.  

Segmentation: The images are transferred to the workstations and the region of 

interest (ROI) is delineated surrounding the tumor, to extract radiomic features from 

that part of the image. The ROI is generated by medical experts or physicists and 

typically stored as DICOM RTstructure or Segmentation.  

Preprocessing of image: Image preprocessing involves various steps performed on 

images and the ROI. As an example, the following steps are typically performed before 

radiomic extraction from the medical images [20]. 

Interpolation: Medical images are reconstructed and represented in three-

dimensional matrices with one unit of the matrix called a voxel. Often voxels are not 



83 | 
 

isotropic and to extract textural radiomic features, the voxels are often re-sampled or 

interpolated into isotropic voxels.   

Re-segmentation of the original ROI defined by an expert or by automated 

segmentation is utilized to generate a morphological mask and intensity mask. The 

morphological mask is the original mask. The intensity mask is re-segmented, which 

contains selected voxel inside or outside the morphological mask.  

ROI extraction: Many features do not require voxels outside the ROI; hence the image 

volume is extracted for the image based on the ROI of the intensity mask.  

Intensity discretization: Medical images contain noise and often quantization of 

image intensities is performed to suppress the noise inside the ROI to calculate the 

texture features. Two approaches are used for intensity discretization i.e. (1) fixed 

number of bins, and (2) fixed bin width.  

Radiomic feature extraction: Automatic extraction of radiomic features is performed 

in this step. Up to multiple thousands of radiomic features are generated in this step 

which is further processed in the radiomic analysis step. 

Radiomic analysis and feature selection: While sometimes 1000+ features are 

extracted from medical images; these are not all useful for phenotyping a particular 

disease or for the development of an outcome prediction. Many features are redundant 

and many have no association with the particular disease or outcome. Various statistical 

tests can be performed for feature reduction [21]. Hierarchical clustering, Spearman 

correlation, Pearson correlation paired t-test are performed to eliminate the 

redundancy of the feature; forward, backward feature selection, Least Absolute 

Shrinkage and Selection Operator (LASSO) or recursive feature elimination (RFE) 

techniques are used to reduce the dimensionality of the features. Finally, the most 

appropriate features are selected for disease prognostication or prediction model 

development for various endpoints like overall survival, recurrence, treatment selection 

or prediction of treatment outcomes.  

Prediction model development: Finally, the prediction model is developed and 

validated by using the selected features. These features may also be combined with 

clinical features to develop prediction models. Various machine algorithms have been 

used to develop a prediction model depending upon the need i.e., regression algorithms, 

Linear and Logistic regression, K-Nearest Neighbor (KNN), decision trees algorithms, 

i.e., Random Forest (RF), Support Vector Machine (SVM), Bayesian Network (BN), and 

deep learning algorithms, i.e., Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), Artificial Neural Networks (ANN). [22-24] 

Radiomic features can be categorized into various groups [18]. Feature groups and the 

typical number of features extracted using Pyradiomics software [25] are shown in table 

1.  
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Type of 

Feature 

Feature descriptions No. of 

Features 

Shape-based 

Features 

Shape features are the descriptors of the three-dimensional 

size and shape of the ROI and are independent from the grey 

level intensity distribution. These features are only calculated 

on the original image and mask. 

13 

First Order 

statistics 

First-order statistics describe the distribution of voxel 

intensities within the ROI region of the image. 

17 

GLRLM Gray Level Run Length Matrix (GLRLM) assesses the 

distribution of discretized grey levels in an image or in a stack 

of images assesses run lengths. 

16 

GLCM Gray Level Co-Occurrence Matrix(GLCM) expresses how 

combinations of discretized intensities of neighbouring 

voxels in a 3D volume, are distributed along with one of the 

image directions. 

22 

GLSZM Gray Level Size Zone Matrix (GLSZM) counts the number of 

groups/zones of linked voxels with identical discretized grey 

levels. 

16 

NGTDM Neighboring Gray Tone Difference Matrix (NGTDM) contains 

the sum of grey level differences of voxels with discretized 

grey level and the average discretized grey level of 

neighbouring voxels within a Chebyshev distance δ. 

5 

GLDM Gray Level Dependence Matrix (GLCM) quantifies grey level 

dependencies in an image in terms of the number of 

connected voxels within distance δ that are dependent on the 

central voxel. 

14 

LoG Features A Laplacian of Gaussian (LoG) filter is applied to the original 

image and one set of derived images is generated for each 

sigma value specified. Usually, 1-5 sigma values are used, we 

use 3 sigma values 1, 2, 3 and three sets of derived images are 

produced. Subsequently, radiomic features are extracted from 

these image sets. 

270 

Wavelet 

Features 

Wavelet transformation of image is performed using the 

three-dimensional wavelet decomposition and 8 sets of 

720 
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images are generated from the original image set. Radiomic 

features are extracted for transformed image sets. 

Table 1: Radiomic features can be extracted by using PyRadiomics software 

 

Deep learning Radiomics workflow: Recently, an alternative to handcrafted radiomic 

workflow, a deep learning-based radiomics workflow [26-28] has emerged. A deep 

learning-based radiomics workflow extract features from medical images without 

predefined formulas. Images may be used with or without an ROI for this deep radiomic 

workflow. Usually, it is a two or three-step process. Step (1) Image data acquisition (2) 

Segmentation (may or may not be given) (3) development and validation of deep neural 

networks model. It is not possible in deep learning radiomics to describe features 

mathematically.  

Radiomics and precision oncology: Radiomics has witnessed rapid growth in the last 

decade with several studies published that show the potential of radiomics in the 

diagnosis and treatment of cancer. Many radiomics based AI decision support systems 

have been developed in oncology and reported in the literature. Figure 2 shows the 

process of precision oncology leveraging radiomic and artificial intelligence.  

 

Figure 2: Mechanism to deliver personalized medicine leveraging the machine learning 

and artificial intelligence to decode digital signature of individual patient 

In the last few years a new aspect of radiomics i.e., Delta Radiomics is being researched 

[29]. Delta radiomics comprises extraction and comparison of quantitative features 

from sequential scans acquired over the course of treatment, which provides 

information on the efficacy of treatment.  
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Methods 

This study is approved by the institutional ethics committee (IEC) as a retrospective 

study. In this study, we have performed literature surveys to find the emerging trend of 

radiomics based publications in oncology. Our search criteria are optimized to search 

only those articles, which mention radiomics or related terms like texture analysis in 

their title. We further extended our search and added year of publication as a criterion 

to find the total number of publications available on radiomics on PubMed and year-

wise distribution of those publications. Furthermore, we added disease and segregated 

articles based on disease type. To understand the trend of imaging modality used for 

radiomic study we further included keywords like CT or PET or MRI along with search 

criteria in all fields. The details of search criteria adopted in this study are mentioned in 

tables 2 and 3.   

Modality Search Criteria  

Radiomics  "Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomic" [Title] OR 

"Radiomics" [Title] AND 2000/01/01: 2021/12/31[dp] 

Computed 

Tomography 

"Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker"[Title] OR "Radiomics"[Title] OR 

"Radiomic" [Title] AND ("CT"[ALL] OR "Computed 

Tomography"[ALL]) AND 2000/01/01: 2021/12/31[dp]  

Positron Emission 

Tomography 

"Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR 

"Radiomic" [Title] AND ("PET" [ALL] OR "Positron" [ALL]) 

AND 2000/01/01: 2021/12/31[dp] 

Magnetic 

Resonance Imaging 

"Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR 

"Radiomic" [Title] AND ("MRI" [ALL] OR "magnetic" [ALL]) 

AND 2000/01/01: 2021/12/31[dp] 

Positron Emission 

Tomography and 

Computed 

Tomography 

"Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR 

"Radiomic" [Title] AND ("PET" [ALL] OR "Positron" [ALL]) 

AND ("CT"[ALL] OR "Computed Tomography"[ALL]) AND 

2000/01/01: 2021/12/31[dp] 

Positron Emission 

Tomography and 

"Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR 

"Radiomic" [Title] AND ("MRI" [ALL] OR "magnetic" [ALL]) 
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Magnetic 

Resonance Imaging 

AND ("PET" [ALL] OR "Positron" [ALL]) AND 2000/01/01: 

2021/12/31[dp] 

Magnetic 

Resonance Imaging 

and Computed 

Tomography 

"Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR 

"Radiomic" [Title] AND ("MRI" [ALL] OR "magnetic" [ALL]) 

AND ("CT"[ALL] OR "Computed Tomography"[ALL]) AND 

2000/01/01: 2021/12/31[dp] 

Positron Emission 

Tomography and 

Computed 

Tomography and 

Magnetic 

Resonance Imaging 

"Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR 

"Radiomic" [Title] AND ("MRI" [ALL] OR "magnetic" [ALL]) 

AND ("PET" [ALL] OR "Positron" [ALL]) AND ("CT"[ALL] OR 

"Computed Tomography"[ALL]) AND 2000/01/01: 

2021/12/31[dp] 

Radiomic Stability "Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomic" [Title] OR 

"Radiomics" [Title] AND ("repeatability" [Title] OR 

"reproducibility" [Title] OR "stability" [Title]) AND 2000/01/01: 

2021/12/31[dp] 

  

Table 2: the table shows the term and search criteria used to select a study based on the 

above-mentioned criteria.   

 

Disease site Search Criteria  

Brain Tumor "Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR "Radiomic" 

[Title] AND ("Brain" [Title] OR "GBM" [Title] OR "glioblastoma" 

[Title] OR "glial" [Title]) AND 2000/01/01: 2021/12/31[dp] 

Head & Neck 

cancer  

"Texture analysis"[title] or "textural analysis"[title] or "imaging 

biomarker" [title] or "radiomics" [title] OR "Radiomic" [Title] and 

("head- and-neck" [title] or "neck" [title] or "head" [title]) and 

2000/01/01: 2021/12/31[dp]  

Lung Cancer "Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR "Radiomic" 

[Title] AND ("lung" [Title] OR "nsclc" [Title] OR "sclc" [Title]) AND 

2000/01/01 : 2021/12/31[dp] 
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Breast Cancer "Texture analysis"[title] or "textural analysis"[title] or "imaging 

biomarker" [title] or "radiomics" [title] OR "Radiomic" [Title] and 

"Breast" [title] and 2000/01/01: 2021/12/31[dp] 

Gastrointestinal 

Cancer  

"Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR "Radiomic" 

[Title] AND ("Gastrointestinal" [Title] OR "intestine" [Title] OR 

"intestinal" [Title] OR "Liver" [Title] OR "HCC" [Title] OR " 

hepatocellular" [Title] OR "pancreatic" [Title] OR "pancreas" 

[Title]) AND 2000/01/01: 2021/12/31[dp] 

Cervical Cancer "Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR "Radiomic" 

[Title] AND ("Cervical" [Title] OR "Cervix" [Title]) AND 2000/01/01: 

2021/12/31[dp] 

Prostate cancer "Texture Analysis"[Title] OR "Textural Analysis"[Title] OR 

"Imaging Biomarker" [Title] OR "Radiomics" [Title] OR "Radiomic" 

[Title] AND ("Prostate" [Title] OR "Prostatic" [Title]) AND 

2000/01/01: 2021/12/31[dp] 

Colorectal 

cancer 

"Texture analysis"[title] or "textural analysis"[title] or "imaging 

biomarker" [title] or "radiomics" [title] OR "Radiomic" [Title] and 

("Colorectal" [title] or "rectal" [title] or "Colon" [title]) and 

2000/01/01: 2021/12/31[dp] 

Table 3: the table shows the term and search criteria used to select radiomic studies 

published on various cancer types.   
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Results 

We found in total 5243 articles published on radiomics since the year 2000 and satisfied 

our search criteria. Out of the total articles published on radiomics, 624, 2234 and 2110 

articles had mention of PET, CT and MRI respectively (table 4). The detailed 

distribution of the publications year wise in all categories are shown in table (table 4). 

There were 123 studies published on radioiomic stability study. Maximum 549 articles 

were published on lung cancer alone followed by 533 articles on GI cancer. 
 

Publications on radiomics  

Year 2021 2020 2019 2018 2017 2016 2015 Total 

Total  1549 1277 798 535 298 175 132 5243 

CT 733 592 343 236 132 70 38 2234 

PET 169 151 105 71 43 31 14 624 

MRI 645 527 345 205 108 74 43 2110 

CT-PET 142 118 82 46 33 26 5 475 

PET-MR 42 33 21 17 9 6 2 135 

CT-MRI 91 58 42 15 11 8 2 234 

CT-MRI-PET 32 19 16 7 6 3 0 85 

Stability 47 25 29 9 4 5 0 123 

Brain Tumor 80 74 45 36 24 14 8 307 

Head & Neck Cancer 26 31 30 12 11 4 2 122 

Lung Cancer 155 157 78 71 39 20 10 549 

Breast Cancer 110 93 58 31 25 11 13 369 

GI Cancer 182 156 85 51 17 10 11 533 

Cervical Cancer 38 29 15 12 5 2 0 104 

Prostate Cancer 57 42 38 20 8 10 3 251 

Colorectal Cancer 82 69 39 22 10 11 9 187 

 

Table 4: Table shows the total and year wise publications on radiomics in oncology 

The percentage of radiomic articles published on CT and MRI are almost the same 45% 

and 42% respectively (figure 4A). Radiomics articles published on lung and GI cancers 

contribute approximately 20% of total publications on radiomics (Table 4B). 

The publication trend on Radiomic has shown very steep growth in the last decade 

(figure 4A). The trend shows that the yearly publications have increased many folds in 
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the last five years (figure 4B). A similar growth trend has been witnessed in all imaging 

types (figure 4A, B) and all types of cancers (figure 5A, B). In our study, we found 85 

articles that have utilized all three imaging modalities for radiomic study (figure 4C). 

Figure 4D shows the year wise publication of radiomic articles on the stability of 

radiomic features. 

 

Figure 3: Publications on Radiomics: A) Imaging the modality-based distribution of 

articles b) Disease wise distribution of articles  
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Figure 4: Figure shows (A) the trend of publications on PET, CT and MRI radiomics in 

oncology over the last two decades, (B) of publications on PET, CT and MRI radiomics 

in oncology since 2015. (C) Vann diagram shows the PET, CT and MRI imaging modality 

used for radiomic studies (D) shows the trend of published radiomic stability issues 

since 2015. 

 

 

Figure 5: Figure shows (A) the trend of the number of publications on radiomics in 

various cancer types over the last two decades, the (B) trend of the number of 

publications on radiomics in various cancer types since 2015 
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Discussion 

The utility of radiomic based prediction modelling has been tested widely in the 

diagnosis and treatment of all varieties of solid tumors. Several studies have been 

performed to differentiate high grade and low-grade gliomas and to develop various 

radiomic markers for treatment selection [26, 27]. Several studies have shown the 

association of radiomic features extracted from PET or MRI with survival in glioma [30-

39]. Radiomics is widely used in the diagnosis and treatment of head-and-neck cancer 

[40]. A radiomic signature from PET, MRI and CT has been found to have a significant 

role in the prediction of stage of tumor, HPV status, hypoxia status and gene expression 

[41-51]. Studies have shown the role of radiomics in the characterization of sentinel 

lymph node metastasis in breast cancer non-invasively [52]. The role of radiomics has 

also been demonstrated by various researchers in breast cancer for response evaluation 

such as disease-free survival (DFS) [53-57]. The role of radiomics has been widely 

explored in lung cancer management [58]. Various studies have been performed to 

differentiate between benign and malignant tumor, pathology types (i.e., 

adenocarcinoma or squamous cell carcinoma), EGFR mutation status and various TMM 

stages [59-65]. Literature published in the last decade also suggests an increasing role 

of radiomic features in the prediction of OS, PFS, DFS, LRR, treatment response, toxicity 

and quality of life [66-72]. Radiomic features have been explored for the management 

of colorectal cancer. Various studies have demonstrated the role of radiomic features in 

the detection of lymph node metastasis, prediction of KRAS/NRAS/ BRAF mutation [73, 

74]. The role of radiomic features has also been investigated for treatment selection, 

treatment modification and DFS prediction [75-78]. Radiomics has been investigated in 

prostate cancer management and radiomic features extracted from MRI and PET have 

shown promising results. Several studies have shown the utility of radiomic features in 

the differentiation between benign and malignant tumor, the aggressiveness of tumors 

and the Gleason Score [79-82]. Many researchers have also shown the utility of radiomic 

features extracted from MRI and PET to predict biochemical recurrence, PFS and OS 

[83-85]. GI and liver cancer is another area where the role of radiomics has been 

investigated in disease management. The role of radiomics has been successfully 

demonstrated in microvascular invasion detection of liver cancer and differentiation in 

various kinds of GI malignancies, histology type and TNM staging in GI cancer [86-92]. 

Various studies have demonstrated the role of radiomic features in the detection of 

lymph node metastasis, OS, PSF and toxicity prediction in cervical cancer [93-96]. 

Our study shows an increasing trend of radiomics in oncology in the last decade. The 

last five years witnessed the tremendous growth of radiomic studies in oncology. In all 

major disease types, the growth of radiomic studies has been witnessed. Several articles 

have been published on radiomic stability problems that show that the researchers have 

identified stability as a major issue in radiomic implementation. 
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Implementation or radiomics based workflow in the clinic: The future of 

radiomics lies in the clinical application and implementation of radiomics. A self-

learning model may be developed and implemented in the clinic for participation in the 

decision support system. There will be requirements for a super-specialized model to 

address the specific clinical questions. As suggested by Lambin et al, the image archival 

system i.e., PACS has to be modified to Picture archiving and radiomics knowledge 

systems (PARKS) to store radiomic signatures [16]. The future implementation of the 

radiomic process may look like Figure 6. 

 

 

Figure 6: Clinical workflow of radiomics: Patient Arrival→   Patient examination → Test 

Prescription → Lab Test + Radiology Scan → Radiomic analysis (Self-learning Prediction 

model) → Decision support based on radiomic Analysis → Treatment prescription → 

follow-up data collection and entry     

 

Limitations of Radiomic implementation: The main problem of Radiomics is its 

limited repeatability and reproducibility which is thought to be mainly caused by the 

difference in scanners from different vendors, different acquisition protocols and intra 

scanner variations. In our earlier repeatability and reproducibility study, we found that 
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only 10% of CT radiomic features had good repeatability and reproducibility in a clinical 

cohort and in phantoms [97]. Traverso et al. in a systematic literature review have also 

concluded that there are stability issues with the majority of radiomic features [98]. In 

order to harmonize radiomic extraction tools, features and imaging standards, several 

initiatives are started by various agencies, like The Quantitative Imaging Network (QIN) 

[99], the Quantitative Imaging Biomarkers Alliance (QIBA) [100], and Quantitative 

Imaging in Cancer: Connecting Cellular Processes with Therapy (QuIC-ConCePT) [101]. 

These initiatives are working to standardize imaging and imaging biomarkers. The 

Image Biomarker Standardization Initiative (IBSI) is another consortium that works 

towards the harmonization of radiomic features across the globe by minimizing the 

deviation in imaging and standardizing the radiomic extraction process [102, 103].  The 

radiomics quality score (RQS) is another such initiative proposed by Lambin et al. to 

address the issues related to radiomic study reporting [16]. Most of these initiatives will 

assist in advancing the standardization process of imaging biomarkers and are thus 

expected to address the repeatability and reproducibility challenges currently present 

in Radiomics. 
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Conclusions 

Literature review is suggestive of the increasing role of radiomics in precision oncology. 

Publications on radiomics have increased many folds in the last 5 years. Initiatives like 

QIN, QIBA, QuIC-ConCePT, IBSI and RQS will be able to address repeatability and 

reproducibility of radiomic features. We envision that radiomics is going to play a 

pivotal role in phenotyping the cancer and guide cancer management to provide more 

precise treatments to patients in a true clinical environment soon. 
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Supplementary material: 

 

We use open source pyRadiomics software for radiomic extraction. The radiomic 

features described below is based on pyRadiomic descriptions [1].   

Following are the feature groups:  

A. First Order Features  

B. Shape Features (3D) 

C. Gray Level Co-occurrence Matrix (GLCM) Features 

D. Gray Level Size Zone Matrix (GLSZM) Features 

E. Gray Level Run Length Matrix (GLRLM) Features 

F. Neighbouring Gray Tone Difference Matrix (NGTDM) Features 

G. Gray Level Dependence Matrix (GLDM) Features 

H. Wavelet features  

I. Laplacian of Gaussian (LoG) Features 

 

 

 

 

 

A. First Order Features:  

It is the distribution of voxel intensities in the image within the Region of interest (ROI).  

Let: 

X be a set of Np voxels included in the ROI 

 Ng is the number of non-zero bins, equally spaced from 0 with a width defined in 

the bin Width parameter. 

P(i) be the first order histogram with Ng discrete intensity levels,  

p(i) = P(i)/Np  (the normalized first order histogram) 

1. Energy 
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𝐸𝑛𝑒𝑟𝑔𝑦 = ∑(𝑋(𝑖)+𝑐)2

𝑁𝑝

𝑖=1

 

Here, c is optional value, defined by voxel Array Shift, which shifts the intensities to 

prevent negative values in X.  

2. Total Energy 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑉𝑣𝑜𝑥𝑒𝑙 ∑(𝑋(𝑖)+𝑐)2

𝑁𝑝

𝑖=1

 

3. Entropy 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ 𝑝(𝑖)

𝑁𝑝

𝑖=1

𝑙𝑜𝑔2(𝑝(𝑖) + 𝜖) 

Here, ϵ is an arbitrarily small positive number (≈2.2×10−16). 

4. Minimum 

Minimum = min(X) 

The minimum gray level intensity within the ROI 

5. 10th percentile 

The 10th percentile of X 

6. 90th percentile 

The 90th percentile of X 

7. Maximum 

Maximum = max(X) 

The maximum gray level intensity within the ROI 

8. Mean 

𝑀𝑒𝑎𝑛 =
1

𝑁𝑝
∑ 𝑋(𝑖)

𝑁𝑝

𝑖=1

 

The average gray level intensity within the ROI 

9. Median 

The median gray level intensity within the ROI 

10. Interquartile Range 
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Interquartile range=P75−P25 

Here, P25 and P75 are the 25th and 75th percentile of the image array, respectively. 

11. Range 

Range = max(X) − min(X) 

12. Mean Absolute Deviation (MAD) 

𝑀𝐴𝐷 =
1

𝑁𝑝
∑ |𝑋(𝑖) − 𝑋|

𝑁𝑝

𝑖=1

 

13. Robust Mean Absolute Deviation (rMAD) 

𝑟𝑀𝐴𝐷 =
1

𝑁𝑝
∑ |𝑋10−90(𝑖) − 𝑋10−90|

𝑁𝑝

𝑖=1

 

14. Root Mean Squared (RMS) 

𝑅𝑀𝑆 = √
1

𝑁𝑝
∑(𝑋(𝑖)+𝑐)2

𝑁𝑝

𝑖=1

 

15. Standard Deviation 

𝑆𝐷 = √
1

𝑁𝑝
∑(𝑋(𝑖) −  𝑋)2 

𝑁𝑝

𝑖=1

 

16. Skewness 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
µ3

𝜎3
 

=

1
𝑁𝑝

∑ (𝑋(𝑖) − 𝑋 )3
𝑁𝑝

𝑖=1

 (√
1

𝑁𝑝
∑ (𝑋(𝑖) −  𝑋)2 

𝑁𝑝

𝑖=1
)

3 

17. Kurtosis 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
µ4

𝜎4
 

=

1
𝑁𝑝

∑ (𝑋(𝑖) − 𝑋 )4
𝑁𝑝

𝑖=1

 (
1

𝑁𝑝
∑ (𝑋(𝑖) − 𝑋 )2

𝑁𝑝

𝑖=1
)

4 

18. Variance 
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𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁𝑝
∑(𝑋(𝑖) −  𝑋)2 

𝑁𝑝

𝑖=1

 

19. Uniformity 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = ∑ 𝑝(𝑖)2 

𝑁𝑝

𝑖=1

 

 

B. Shape Features (3D) 

Shape based features include the descriptors of the three-dimensional size and shape of 

the ROI. These features of this group are independent from the gray level intensity 

distribution in the ROI. Hence these features air only calculated on the original image 

and ROI. 

Let: 

Vf represent the number of volume elements included in the mesh 

Nv represent the number of voxels included in the ROI 

Nf represent the number of faces (triangles) defining the Mesh. 

20. Mesh Volume 

(𝑉𝑖) =
𝑂𝑎𝑖   . (𝑂𝑏𝑖  ×  𝑂𝑐𝑖)

6
− − − −(1) 

 

𝑀𝑒𝑠ℎ 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑉) = ∑ 𝑉𝑖  − − − − − (2) 

𝑉𝑓

𝑖=1

 

21. Voxel Volume 

𝑉𝑣𝑜𝑥𝑒𝑙 = ∑ 𝑉𝑘  

𝑁𝑣

𝑘=1

 

22. Surface Area 

 

    𝐴𝑖 =
1

2
|𝑎𝑖𝑏𝑖   ×  𝑎𝑖𝑐𝑖| − − − −(1) 
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𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 (A) = ∑  𝐴𝑖  − − − −(2) 

𝑁𝑓

𝑖=1

 

Where,  

aibi and aici are edges of the ith triangle in the mesh, formed by vertices ai, bi and ci. 

23. Surface Area to Volume ratio 

𝑺𝒖𝒓𝒇𝒂𝒄𝒆 𝑨𝒓𝒆𝒂 𝒕𝒐 𝑽𝒐𝒍𝒖𝒎𝒆 𝒓𝒂𝒕𝒊𝒐 =
𝑨

𝑽
 

24. Sphericity 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
√36π V23

A
 

25. Compactness 1 

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 1 =
𝑉

√𝜋 𝐴3
 

26. Compactness 2 

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 2 = 36𝜋
𝑉2

𝐴3
 

 

27. Spherical Disproportion 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
𝐴

4𝜋𝑅2
=

𝐴

√36𝜋 𝑉23  

28. Major Axis Length 

𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 = 4√λmajor 

29. Minor Axis Length 

𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 = 4√λminor 

30. Least Axis Length 

𝑙𝑒𝑎𝑠𝑡 𝑎𝑥𝑖𝑠 = 4√λleast 

31. Elongation 

𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 = √
λminor

λmajor
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32. Flatness 

𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠 = √
λleast

λmajor
 

 

C. Gray Level Co-occurrence Matrix (GLCM) Features 

A GLCM of size Ng×Ng is defined as P(i,j|δ,θ) describes the second-order joint 

probability function where (i,j)th element represents the number of times the 

combination of intensity levels i and j occur in two pixels in the image separated by a 

distance of δ pixels along angle θ. Here Ng is the number of desecrate grey level intensity 

in the matrix. The co-occurrence features are calculated in 13 directions in 3 dimensions 

(3D) and each 3D GLCM feature is then calculated as mean of features calculated in all 

13 directions.    

Let: 

• ϵ be an arbitrarily small positive number (≈2.2×10−16) 

• P(i,j) be the co-occurence matrix for an arbitrary δ and θ 

• p(i,j) be the normalized co-occurence matrix and equal to 
P(i,j)

∑P(i,j)
 

• Ng be the number of discrete intensity levels in the image 

• 𝐩𝐱(𝐢) = ∑ P(i, j)
Ng
j=1   be the marginal row probabilities 

• 𝒑𝒚(𝒋) = ∑ P(i, j)
Ng
i=1  be the marginal column probabilities 

• μx be the mean gray level intensity of px and defined μx = ∑ px(i)i
Ng
i=1  

• μy be the mean gray level intensity of py and defined μy = ∑ px(j)j
Ng
j=1  

• σx be the standard deviation of px 

• σy be the standard deviation of py 

• 𝒑𝒙+𝒚(𝒌) = ∑  
Ng
i=1 ∑ p(i, j)

Ng
j=1  where i + j = k, and k=2,3,…,2Ng 

•  𝒑𝒙−𝒚(𝒌) = ∑  
Ng
i=1 ∑ p(i, j)

Ng
j=1  where |i−j|=k, and k=0,1,…,Ng−1 

• 𝑯𝑿 = − ∑  
Ng
i=1  px(i) log2( px(i) + ϵ))     be the entropy of px 

• 𝑯𝒀 = − ∑  
Ng
j=1  py(j) log2( py(j) + ϵ))     be the entropy of py 

• 𝑯𝑿𝒀 = − ∑  
Ng
i=1 ∑  

Ng
j=1  p(i, j) log2( py(i, j) + ϵ))     be the entropy of p(i, j) 
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• 𝑯𝑿𝒀𝟏 = − ∑  
Ng
i=1 ∑  

Ng
j=1  p(i, j) log2( px(i)py( j) + ϵ))  

• 𝑯𝑿𝒀𝟐 = − ∑  
Ng
i=1 ∑  

Ng
j=1 px(i) py(j) log2( px(i)py( j) + ϵ))  

33. Autocorrelation 

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

34. Joint Average 

𝑗𝑜𝑖𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

35. Cluster Prominence 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 = ∑ ∑(𝑖 + 𝑗 − µ𝑥 − µ𝑦)4𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

36. Cluster Shade 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑒 = ∑ ∑(𝑖 + 𝑗 − µ𝑥 − µ𝑦)3𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

37. Cluster Tendency 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 = ∑ ∑(𝑖 + 𝑗 − µ𝑥 − µ𝑦)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

38. Contrast 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑(𝑖 − 𝑗)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 

39. Correlation 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
− µ𝑥µ𝑦

𝜎𝑥(𝑖)𝜎𝑦(𝑗)
 

40. Difference Average 
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𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝑘𝑝𝑥−𝑦(𝑘)

𝑁𝑔−1

𝑘=1

 

41. Difference Entropy 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑝𝑥−𝑦(𝑘)

𝑁𝑔−1

𝑘=1

  log2( px−y(k) + ϵ) 

42. Difference Variance 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ (𝑘 − 𝐷𝐴)2𝑝𝑥−𝑦(𝑘)

𝑁𝑔−1

𝑘=1

  

43. Joint Energy 

𝑗𝑜𝑖𝑛𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 = ∑ ∑(𝑝(𝑖, 𝑗))2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

44. Joint Entropy 

𝑗𝑜𝑖𝑛𝑡 𝑒𝑛𝑡𝑟𝑝𝑜𝑦 = ∑ ∑ 𝑝(𝑖, 𝑗) log2(p(i, j) + ϵ)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

45. Informational Measure of Correlation (IMC) 1 

𝐼𝑀𝐶1 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max (𝐻𝑋, 𝐻𝑌)
 

46. Informational Measure of Correlation (IMC) 2 

𝐼𝑀𝐶2 = √1 − 𝑒−2(𝐻𝑋𝑌2−𝐻𝑋𝑌) 

47. Inverse Difference Moment (IDM) 

𝐼𝑀𝐷 = ∑
𝑝𝑥−𝑦(𝑘)

1 + 𝑘2

𝑁𝑔−1

𝑘=1

 

48. Maximal Correlation Coefficient (MCC) 

𝑀𝐶𝐶 = √second largest eigenvalue of Q 

𝑄(𝑖, 𝑗) = ∑
 𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)

𝑁𝑔−1

𝑘=1

 

49. Inverse Difference Moment Normalized (IDMN) 
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𝐼𝐷𝑀𝑁 = ∑
 𝑝𝑥−𝑦(𝑘)

1 + (
𝑘2

𝑁𝑔
2)

𝑁𝑔−1

𝑘=1

 

50. Inverse Difference (ID) 

𝐼𝐷 = ∑
 𝑝𝑥−𝑦(𝑘)

1 + 𝑘

𝑁𝑔−1

𝑘=1

 

51. Inverse Difference Normalized (IDN) 

𝐼𝐷𝑁 = ∑
 𝑝𝑥−𝑦(𝑘)

1 +
𝑘

𝑁𝑔

𝑁𝑔−1

𝑘=1

 

52. Inverse Variance 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑
 𝑝𝑥−𝑦(𝑘)

𝑘2

𝑁𝑔−1

𝑘=1

 

53. Maximum Probability 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max (𝑝(𝑖, 𝑗)) 

54. Sum Average 

𝑠𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝑝𝑥+𝑦(𝑘)𝑘

𝑁𝑔−1

𝑘=2

 

55. Sum Entropy 

𝑠𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑝𝑥+𝑦(𝑘) log2(𝑝𝑥+𝑦(𝑘) + ϵ)

𝑁𝑔−1

𝑘=2

 

56. Sum of Squares 

𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 = ∑ ∑(𝑖 − µ𝑥)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

D. Gray Level Size Zone Matrix (GLSZM) Features 

A GLSZM  P(i,j) is the quantification of gray level zones in an image i.e., the number of 

connected voxels that share the same gray level intensity in the image, the (i,j)th 

element equals the number of zones with intensity level i and size j appear in image. A 

connected voxels can be defined as the voxel with the distance is 1 according to the 
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infinity norm in all 26 connections in 3D image. The GLSZM is rotation independent, 

with only one matrix calculated for all directions in the ROI. 

Let: 

Ng be the number of discreet intensity values in the image 

Ns be the number of discreet zone sizes in the image 

Np be the number of voxels in the image 

Nz be the number of zones in the ROI, which is equal to  ∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1
  and 1≤Nz≤Np 

P(i,j) be the size zone matrix 

p(i,j) be the normalized size zone matrix, defined as  𝑝(𝑖, 𝑗) =
𝑃(𝑖,𝑗)

𝑁𝑧
  

57. Small Area Emphasis (SAE) 

𝑆𝐴𝐸 =

∑ ∑
𝑃(𝑖, 𝑗)

𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

58. Large Area Emphasis (LAE) 

𝐿𝐴𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗)𝑗2𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

59. Gray Level Non-Uniformity (GLN) 

𝐺𝐿𝑁 =
∑   (∑ 𝑃(𝑖, 𝑗)𝑁𝑠

𝑗=1 )
2𝑁𝑔

𝑖=1

𝑁𝑧
 

60. Gray Level Non-Uniformity Normalized (GLNN) 

𝐺𝐿𝑁𝑁 =
∑   (∑ 𝑃(𝑖, 𝑗)𝑁𝑠

𝑗=1 )
2𝑁𝑔

𝑖=1

𝑁𝑧
2  

61. Size-Zone Non-Uniformity (SZN) 

 

𝑆𝑍𝑁 =
∑   (∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
)

2
𝑁𝑠
𝑗=1

𝑁𝑧
 

62. Size-Zone Non-Uniformity Normalized (SZNN) 

𝑆𝑍𝑁𝑁 =
∑   (∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
)

2
𝑁𝑠
𝑗=1

𝑁𝑧
2  



115 | 
 

63. Zone Percentage (ZP) 

𝑍𝑃 =
𝑁𝑧

𝑁𝑝
 

64. Gray Level Variance (GLV) 

𝐺𝐿𝑉 = ∑ ∑ 𝑝(𝑖, 𝑗)(𝑖 − µ)2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

Here  

µ = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

65. Zone Variance (ZV) 

𝑍𝑉 = ∑ ∑ 𝑝(𝑖, 𝑗)(𝑗 − µ)2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

Here  

µ = ∑ ∑ 𝑝(𝑖, 𝑗)𝑗

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

 

66. Zone Entropy (ZE) 

𝑍𝐸 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔2(𝑝(𝑖, 𝑗) + ϵ)

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

Here, ϵ is an arbitrarily small positive number (≈2.2×10−16). 

67. Low Gray Level Zone Emphasis (LGLZE) 

𝐿𝐺𝐿𝑍𝐸 =
∑ ∑  

𝑃(𝑖, 𝑗)
𝑖2

𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

68. High Gray Level Zone Emphasis (HGLZE) 

𝐻𝐺𝐿𝑍𝐸 =
∑ ∑  𝑃(𝑖, 𝑗)𝑖2𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

69. Small Area Low Gray Level Emphasis (SALGLE) 
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𝑆𝐴𝐿𝐺𝐿𝐸 =

∑ ∑  
𝑃(𝑖, 𝑗)

𝑖2𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

70. Small Area High Gray Level Emphasis (SAHGLE) 

𝑆𝐴𝐻𝐺𝐿𝐸 =

∑ ∑  
𝑃(𝑖, 𝑗)𝑖2

𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

71. Large Area Low Gray Level Emphasis (LALGLE) 

𝐿𝐴𝐿𝐺𝐿𝐸 =
∑ ∑  

𝑃(𝑖, 𝑗)𝑗2

𝑖2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

72. Large Area High Gray Level Emphasis (LAHGLE) 

𝐿𝐴𝐻𝐺𝐿𝐸 =
∑ ∑  𝑃(𝑖, 𝑗)𝑖2𝑗2𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

E. Gray Level Run Length Matrix (GLRLM) Features 

A GLRLM, P(i,j|θ) quantifies gray level runs, which are defined as the length in number 

of pixels, of consecutive pixels that have the same gray level value, the (i,j)th element 

describes the number of runs with gray level i and length j occur in the image (ROI) 

along angle θ. The gray level run length feature is calculated for each 13 direction in 3D 

image and 3D GLRLM feature is then calculated as mean of features calculated in all 13 

directions.    

Let: 

Ng be the number of discreet intensity values in the image 

Nr be the number of discreet run lengths in the image 

Np be the number of voxels in the image 

Nr(θ) be the number of runs in the image along angle θ, which is equal to 

∑Ngi=1∑Nrj=1P(i,j|θ) and 1≤Nr(θ)≤Np 

P(i,j|θ) be the run length matrix for an arbitrary direction θ 

p(i,j|θ) be the normalized run length matrix, defined as p(i,j|θ)=P(i,j|θ)Nr(θ) 

73. Short Run Emphasis (SRE) 

𝑆𝑅𝐸 =

∑ ∑
𝑃(𝑖, 𝑗|Ɵ)

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(Ɵ)
 

74. Long Run Emphasis (LRE) 
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𝐿𝑅𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗|Ɵ)𝑗2𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(Ɵ)
 

75. Gray Level Non-Uniformity (GLN) 

𝐺𝐿𝑁 =
∑ (∑ 𝑃(𝑖, 𝑗|Ɵ)

𝑁𝑟
𝑗=1 )

2𝑁𝑔

𝑖=1

𝑁𝑟(Ɵ)
 

76. Gray Level Non-Uniformity Normalized (GLNN) 

𝐺𝐿𝑁𝑁 =
∑ (∑ 𝑃(𝑖, 𝑗|Ɵ)

𝑁𝑟
𝑗=1 )

2𝑁𝑔

𝑖=1

𝑁𝑟(Ɵ)2
 

77. Run Length Non-Uniformity (RLN) 

𝑅𝐿𝑁 =
∑ (∑ 𝑃(𝑖, 𝑗|Ɵ)

𝑁𝑔

𝑖=1
)

2
𝑁𝑟
𝑗=1

𝑁𝑟(Ɵ)
 

78. Run Length Non-Uniformity Normalized (RLNN) 

𝑅𝐿𝑁𝑁 =
∑ (∑ 𝑃(𝑖, 𝑗|Ɵ)

𝑁𝑔

𝑖=1
)

2
𝑁𝑟
𝑗=1

𝑁𝑟(Ɵ)2
 

79. Run Percentage (RP) 

𝑅𝑃 =
𝑁𝑟(Ɵ)

𝑁𝑃
 

80. Gray Level Variance (GLV) 

𝐺𝐿𝑉 = ∑ ∑ 𝑃(𝑖, 𝑗|Ɵ)(𝑗 − µ)2
𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1
 

Where, 

µ = ∑ ∑ 𝑃(𝑖, 𝑗|Ɵ)𝑗
𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1
 

 

81. Run Entropy (RE) 

𝑅𝐸 = ∑ ∑ 𝑃(𝑖, 𝑗|Ɵ)𝑙𝑜𝑔2  (𝑃(𝑖, 𝑗|Ɵ) + 𝜖)
𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1
 

Here, 𝜖 is an arbitrarily small positive number (≈2.2×10−16). 

82. Low Gray Level Run Emphasis (LGLRE) 



118 | 
 

𝐿𝐺𝐿𝑅𝐸 =
∑ ∑

𝑃(𝑖, 𝑗|Ɵ)
𝑖2

𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(Ɵ)
 

83. High Gray Level Run Emphasis (HGLRE) 

𝐻𝐺𝐿𝑅𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗|Ɵ)𝑖2𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(Ɵ)
 

84. Short Run Low Gray Level Emphasis (SRLGLE) 

𝑆𝑅𝐿𝐺𝐿𝐸 =

∑ ∑
𝑃(𝑖, 𝑗|Ɵ)

𝑖2𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(Ɵ)
 

85. Short Run High Gray Level Emphasis (SRHGLE) 

𝑆𝑅𝐻𝐺𝐿𝐸 =

∑ ∑
𝑃(𝑖, 𝑗|Ɵ)𝑖2

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(Ɵ)
 

86. Long Run Low Gray Level Emphasis (LRLGLE) 

𝐿𝑅𝐿𝐺𝐿𝐸 =
∑ ∑

𝑃(𝑖, 𝑗|Ɵ)𝑗2

𝑖2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(Ɵ)
 

87. Long Run High Gray Level Emphasis (LRHGLE) 

𝐿𝑅𝐻𝐺𝐿𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗|Ɵ)𝑖2𝑗2𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(Ɵ)
 

 

F. Neighbouring Gray Tone Difference Matrix (NGTDM) Features 

A NGTDM quantifies the difference between a gray value and the average gray value of 

its neighbours within distance δ. The sum of absolute differences for gray level i is stored 

in the matrix. Let Xgl be a set of segmented voxels and xgl(jx,jy,jz)∈ Xgl be the gray level 

of a voxel at position (jx, jy, jz), then the average gray level of the neighbourhood is: 

Ā𝑖 = Ā (jx, jy,  jx) =
1

𝑊
 ∑ ∑ ∑ 𝑋𝑔𝑙

δ

kz=−δ

δ

ky=−δ

δ

kx=−δ
 (𝑗𝑥 + 𝑘𝑥  , 𝑗𝑦 + 𝑘𝑦  , 𝑗𝑧 + 𝑘𝑧) 

 

Where, (kx, ky, kz) ≠ (0, 0, 0) and  xgl (jx+kx,  jy+ky,  jz+kz) ∈ Xgl 

Let: 

ni be the number of voxels in Xgl with gray level i 
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      Nv,p be the total number of voxels in Xgl and equal to ∑ni (i.e. the number of voxels 

with a valid region; at least 1 neighbor). Nv,p≤Np, where Np is the total number of voxels 

in the ROI. 

pi be the gray level probability and equal to ni/Nv 

𝑠𝑖 = {
∑ |𝑖 − Āi|       𝑓𝑜𝑟 𝑛𝑖 ≠ 0

𝑛𝑖

               0        𝑓𝑜𝑟 𝑛𝑖 ≠ 0
} be the sum of absolute differences for gray level 𝑖 

 

Ng be the number of discreet gray levels 

Ng,p be the number of gray levels where pi≠0 

Where  pi ≠ 0,  pj ≠ 0 

88. Coarseness 

𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =
1

∑ 𝑝𝑖𝑠𝑖
𝑁𝑔

𝑖=1

 

89. Contrast  

𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 = (
1

𝑁𝑔,𝑝(𝑁𝑔,𝑝 − 1)
∑ ∑ 𝑝𝑖

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
𝑝𝑗(𝑖 − 𝑗)2) (

1

𝑁𝑣,𝑝
 ∑ 𝑠𝑖

𝑁𝑔

𝑖=1
) 

 

90. Busyness 

  

𝐵𝑢𝑠𝑦𝑛𝑒𝑠𝑠 =
1

𝑁𝑣,𝑝
 ∑ ∑ |𝑖 − 𝑗|

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝑝𝑖𝑠𝑖 + 𝑝𝑗𝑠𝑗

 𝑝𝑖+ 𝑝𝑗
 

 

91. Complexity  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
∑ 𝑝𝑖𝑠𝑖

𝑁𝑔

𝑖=1

∑ ∑  |𝑖𝑝𝑖− 𝑗𝑝𝑗|
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

92. Strength   

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
∑ ∑ ( 𝑝𝑖 +   𝑝𝑗)(𝑖 − 𝑗)2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

∑  𝑠𝑖
𝑁𝑔

𝑖=1

 

G. Gray Level Dependence Matrix (GLDM) Features 
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A GLDM, quantifies gray level dependencies in an image and is defined as the number 

of connected voxels within distance δ that are dependent on the center voxel. In an 

GLDM, P(i,j) a neighbouring voxel with gray level j is considered dependent on center 

voxel with gray level i if |i−j|≤ α . The (i,j)th element in GLDM, P(i,j) describes the 

number of times a voxel with gray level i with j dependent voxels in its neighbourhood 

appears in image within the ROI. 

Let: 

Ng be the number of discreet intensity values in the image 

Nd be the number of discreet dependency sizes in the image 

Nz be the number of dependency zones in the image, which is equal to  ∑ ∑  𝑃(𝑖, 𝑗)
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
 

P(i,j) be the dependence matrix 

p(i,j) be the normalized dependence matrix, defined as p(i,j) = P(i,j) / Nz 

93. Small Dependence Emphasis (SDE) 

𝑆𝐷𝐸 =
∑ ∑   

𝑃(𝑖, 𝑗)
𝑖2

𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

94. Large Dependence Emphasis (LDE) 

𝐿𝐷𝐸 =
∑ ∑   𝑃(𝑖, 𝑗)𝑖2𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

95. Gray Level Non-Uniformity (GLN)  

𝐺𝐿𝑁 =
∑  (∑   𝑃(𝑖, 𝑗)𝑁𝑑

𝑗=1 )
2𝑁𝑔

𝑖=1

𝑁𝑧
 

96. Dependence Non-Uniformity (DN)  

𝐷𝑁 =
∑  (∑   𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
)

2
𝑁𝑑
𝑗=1

𝑁𝑧
 

97. Dependence Non-Uniformity Normalized (DNN) 

𝐷𝑁𝑁 =
∑  (∑   𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
)

2
𝑁𝑑
𝑗=1

𝑁𝑧
2  

98. Gray Level Variance (GLV)  

𝐺𝐿𝑉 = ∑ ∑  𝑝(𝑖, 𝑗)(𝑖 − µ)2𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
  , Where, µ = ∑ ∑ 𝑖𝑝(𝑖, 𝑗)

𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
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99. Dependence Variance (DV)  

𝐷𝑉 = ∑ ∑  𝑝(𝑖, 𝑗)(𝑗 − µ)2𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
  , Where, µ = ∑ ∑ 𝑗𝑝(𝑖, 𝑗)

𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
 

100. Dependence Entropy (DE)  

𝐷𝐸 = − ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1
𝑙𝑜𝑔2(𝑝(𝑖, 𝑗) + 𝜖) 

101. Low Gray Level Emphasis (LGLE)  

𝐿𝐺𝐿𝐸 =
∑ ∑   

𝑃(𝑖, 𝑗)
𝑖2

𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

102. High Gray Level Emphasis (HGLE)  

𝐻𝐺𝐿𝐸 =
∑ ∑   𝑃(𝑖, 𝑗)𝑖2𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

103. Small Dependence Low Gray Level Emphasis (SDLGLE)   

𝑆𝐷𝐿𝐺𝐿𝐸 =

∑ ∑   
𝑃(𝑖, 𝑗)

𝑖2𝑗2
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

104. Large Dependence Low Gray Level Emphasis (LDLGLE) 

𝐿𝐷𝐿𝐺𝐿𝐸 =
∑ ∑   

𝑃(𝑖, 𝑗)𝑗2

𝑖2
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

105. Large Dependence High Gray Level Emphasis (LDHGLE) 

𝐿𝐷𝐻𝐺𝐿𝐸 =
∑ ∑   𝑃(𝑖, 𝑗)𝑖2𝑗2𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

 

Wavelet features:  

Wavelet features can be extracted from wavelet transformed images. A discrete, one-

level and undecimated three dimensional wavelet transform is applied to each three 

dimensional medical mages (CT, PET, MRI, SPECT etc.), which decomposes the original 

image into 8 decompositions. The resultant decomposed images based of application of 

a combination of a low-pass and a high-pass filters functions in three dimension can be 

labeled as XLLL, XLLH, XLHL, XLHH,  XHLL, XHLH, XHHL, and XHHH. For example, XLHH is 



122 | 
 

filtering of image with a low-pass filter along x-direction, a high-pass filter along y-

direction and a high-pass filter along z-direction and is constructed as: 

𝑋𝐿𝐻𝐻(𝑖, 𝑗, 𝑘)  = ∑ ∑ ∑ 𝐿(𝑝)𝐻(𝑞)𝐻(𝑟)

𝑁𝐻

𝑟=1

𝑁𝐻

𝑞=1

𝑁𝐿

𝑝=1

𝑋(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑘 + 𝑟) 

Where, 

 NL is the length of filter L  

 NH is the length of filter H 

X is the original 3D image 

The other decompositions can be constructed similarly by applying their respective 

ordering of low or high-pass filtering in x, y and z-direction. The schematic 

representation of Wavelet decomposition of the image is shown in Supplementary 

Figure 1.  

 

Supplementary Figure 1: Figure shows the schematic representation of eight Wavelet 

decomposition applied on image for radiomic extraction.  

Laplacian of Gaussian (LoG) Features:  

Laplacian filters are derivative filters edge detection filter used to find areas of rapid 

change of intensity in images. Since Laplacian filters are very sensitive to noise, it is 
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common to smooth the image using smoothing filters like a Gaussian filter before 

applying the Laplacian on the images. This two-step process of filtering the image is 

called the Laplacian of Gaussian (LoG) operation. Following equation can be the 

combined express of LoG filter.  

𝐿𝑜𝐺(𝑖, 𝑗) =
1

𝜋𝜎4
[1 −

𝑖2 + 𝑗2

2𝜎2
] 𝑒

− 
𝑖2+𝑗2

2𝜎2  

We usually use three LOG filter using σ value 1, 2, and 3 and generate 3 sets of LoG 

images and we extract all the above described features from these images except shape 

based features.   

 

The pyRadiomic feature equivalence in Image biomarker standardisation initiative 

(IBSI) and IBSI feature code is given in supplementary table 1 [1,2].  

 

no

. 

pyRadiomics features IBSI radiomic features 

class feature name class index feature name 

1 

F
ir

st
 O

rd
er

 

10Percentile 

 

QG58 10th intensity percentile 

2 
90Percentile 

8DW

T 90th intensity percentile 

3 Energy N8CA Intensity-based energy 

4 InterquartileRange SAL0 Intensity interquartile range 

5 Kurtosis IPH6 Intensity Kurtosis 

6 Maximum 84IY Maximum intensity 

7 
MeanAbsoluteDeviation 4FUA 

Intensity-based mean absolute 

deviation 

8 Mean Q4LE Mean intensity 

9 Median Y12H Median intensity 

10 Minimum 1GSF Minimum intensity 

11 Range 20JQ Intensity range 

12 
RobustMeanAbsoluteDeviat

ion 1128 

Intensity-based robust mean 

absolute deviation 
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13 
RootMeanSquared 

5ZW

Q Root mean square intensity 

14 Skewness KE2A Intensity Skewness 

15 
TotalEnergy   

not present in IBSI feature 

definitions 

16 Variance ECT3 Intensity variance 

17 
Entropy 

Inte

nsit

y 

hist

ogra

m  

TLU2 

Discretised intensity entropy/ 

Intensity Histogram Entropy 

18 

Uniformity BJ5W Discretised intensity uniformity 

1 

S
h

ap
e 

F
ea

tu
re

s 
(3

D
) 

MeshVolume 
M

o
rp

h
o

lo
g

ic
al

 f
ea

tu
re

s 
RNU0 Volume (mesh) 

2 VoxelVolume YEKZ Volume (voxel counting) 

3 SurfaceArea C0JK Surface area (mesh) 

4 SurfaceVolumeRatio 2PR5 Surface to volume ratio  

5 Compactness1  SKGS Compactness 1 

6 Compactness2  BQWJ Compactness 2 

7 SphericalDisproportion KRCK Spherical disproportion  

8 Sphericity QCFX Sphericity  

9 Maximum3DDiameter L0JK Maximum 3D diameter  

10 MajorAxisLength  TDIC Major axis length 

11 MinorAxisLength  P9VJ Minor axis length 

12 LeastAxisLength  7J51 Least axis length 

13 Elongation  Q3CK Elongation 

14 Flatness  N17B Flatness 

1 

G
L

C
M

 

Autocorrelation 

G
L

C
M

 

QWB

0 Autocorrelation 

2 ClusterProminence AE86 Cluster Prominence 

3 ClusterShade 7NFM Cluster Shade 
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4 
ClusterTendency 

DG8

W Cluster Tendency 

5 Contrast ACUI Contrast 

6 Correlation NI2N Correlation 

7 DifferenceAverage TF7R Difference Average 

8 DifferenceEntropy NTRS Difference Entropy 

9 DifferenceVariance D3YU Difference Variance 

10 Inverse Difference(ID) IB1Z Inverse Difference 

11 
Inverse Difference Moment 

(IDM) WF0Z Inverse difference moment 

12 
Inverse Difference Moment 

Normalized (IDMN) 1QCO 

Normalised Inverse difference 

moment 

13 
Inverse Difference 

Normalized (IDN) NDRX Normalised Inverse Difference 

14 
Informational Measure of 

Correlation (IMC) 1 R8DG Information Correlation 1 

15 
Informational Measure of 

Correlation (IMC) 2 JN9H Information Correlation 2 

16 InverseVariance E8JP Inverse Variance 

17 JointAverage 60VM Joint Average 

18 JointEnergy 8ZQL Angular Second Moment 

19 JointEntropy TU9B Joint Entropy 

20 
Maximal Correlation 

Coefficient (MCC)   

not present in IBSI feature 

definitions 

21 MaximumProbability GYBY Joint Maximum 

22 SumAverage ZGXS Sum Average 

23 SumEntropy P6QZ Sum Entropy 

24 SumSquares UR99 Joint Variance 

1 

G
L

S

Z
M

 GrayLevelNonUniformity 

G
L

S

Z
M

 JNSA Grey Level Non-Uniformity 
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2 
GrayLevelNonUniformityN

ormalized Y1RO 

Normalised Grey Level Non-

Uniformity 

3 GrayLevelVariance BYLV Grey Level Variance 

4 
HighGrayLevelZoneEmphas

is 5GN9 High Grey Level Zone Emphasis 

5 LargeAreaEmphasis 48P8 Large Zone Emphasis 

6 
LargeAreaHighGrayLevelE

mphasis J17V 

Large Zone High Grey Level 

Emphasis 

7 
LargeAreaLowGrayLevelEm

phasis YH51 

Large Zone Low Grey Level 

Emphasis 

8 
LowGrayLevelZoneEmphasi

s XMSY Low Grey Level Zone Emphasis 

9 SizeZoneNonUniformity 4JP3 Zone size Non-Uniformity 

10 
SizeZoneNonUniformityNo

rmalized VB3A 

Normalised Zone Size Non-

Uniformity 

11 SmallAreaEmphasis 5QRC Small Zone Emphasis 

12 
SmallAreaHighGrayLevelE

mphasis HW1V 

Small Zone High Grey Level 

Emphasis 

13 
SmallAreaLowGrayLevelEm

phasis 5RAI 

Small Zone Low Grey Level 

Emphasis 

14 ZoneEntropy GU8N Zone Size Entropy 

15 ZonePercentage P3OP Zone Percentage 

16 ZoneVariance 3NSA Zone Size Variance 

1 

G
L

R
L

M
 

GrayLevelNonUniformity 

G
L

R
L

M
 

R5YN Grey Level Non-uniformity 

2 
GrayLevelNonUniformityN

ormalized OVBL 

Normalised Grey Level Non-

Uniformity 

3 GrayLevelVariance 8CE5 Grey Level Variance 

4 
HighGrayLevelRunEmphasi

s G3QZ High Grey Level Run Emphasis 

5 LongRunEmphasis W4KF Long Run Emphasis 



127 | 
 

6 
LongRunHighGrayLevelEm

phasis 3KUM 

Long Run High Grey Level 

Emphasis 

7 
LongRunLowGrayLevelEmp

hasis IVPO 

Long Run Low Grey Level 

Emphasis 

8 LowGrayLevelRunEmphasis V3SW Low Grey Level Run Emphasis 

9 RunEntropy HJ9O Run Entropy 

10 RunLengthNonUniformity W92Y Run Length Non-Uniformity 

11 
RunLengthNonUniformity

Normalized IC23 

Normalised Run Length Non-

Uniformity 

12 RunPercentage 9ZK5 Run Percentage 

13 RunVariance SXLW Run Length Variance 

14 ShortRunEmphasis 22OV Short Run Emphasis 

15 
ShortRunHighGrayLevelEm

phasis GD3A 

Short Run High Grey Level 

Emphasis 

16 
ShortRunLowGrayLevelEm

phasis HTZT 

Short Run Low Grey Level 

Emphasis 

1 

N
G

T
D

M
 

Busyness 

N
G

T
D

M
 

NQ30 Busyness 

2 Coarseness QCDE Coarseness 

3 Complexity HDEZ Complexity 

4 Contrast 65HE Contrast 

5 Strength 1X9X Strength 

1 

G
L

D
M

 

DependenceEntropy 

N
G

L
D

M
 

FCBV Dependence Count Entropy 

2 
DependenceNonUniformity Z87G 

Dependence Count Non-

Uniformity 

3 
DependenceNonUniformity

Normalized OKJI 

Normalised Dependence Count 

Non-Uniformity 

4 DependenceVariance DNX2 Dependence Count Variance 

5 GrayLevelNonUniformity FP8K Grey Level Non-Uniformity 

6 GrayLevelVariance 1PFV Grey Level Variance 
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7 
HighGrayLevelEmphasis OAE7 

High Grey Level Count 

Emphasis 

8 
LargeDependenceEmphasis 

IMO

Q High Dependence Emphasis 

9 
LargeDependenceHighGray

LevelEmphasis 

9QM

G 

High Dependence High Grey 

Level Emphasis 

10 
LargeDependenceLowGrayL

evelEmphasis NBZI 

High Dependence Low Grey 

Level Emphasis 

11 
LowGrayLevelEmphasis TL9H 

Low Grey Level Count 

Emphasis 

12 SmallDependenceEmphasis SODN Low Dependence Emphasis 

13 
SmallDependenceHighGray

LevelEmphasis JA6D 

Low Dependence High Grey 

Level Emphasis 

14 
SmallDependenceLowGrayL

evelEmphasis EQ3F 

Low Dependence Low Grey 

Level Emphasis 

GLCM= Gray Level Co-occurrence Matrix, GLDM: Gray Level Dependence Matrix, NGLDM: 

Neighboring Grey Level Dependence Matrix, GLRLM: Gray Level Run Length Matrix, 

GLSZM: Gray Level Size Zone Matrix, NGTDM: Neighborhood Gray Tone Difference Matrix 

 

Supplementary Table 1:  The list of 93 radiomics features with the IBSI standardization 

feature names.  

References:  

[1] Radiomic Features, https://pyradiomics.readthedocs.io/en/latest/features.html last 

accessed on 30-07-2021 

[2] Zwanenburg, A., Leger, S., Vallières, M., and Löck, S. (2016). Image biomarker 

standardisation initiative - feature definitions. In eprint arXiv:1612.07003 

 

 

   

https://pyradiomics.readthedocs.io/en/latest/features.html%20last%20accessed%20on%2030-07-2021
https://pyradiomics.readthedocs.io/en/latest/features.html%20last%20accessed%20on%2030-07-2021
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Chapter 5: Repeatability and reproducibility study of 

radiomic features on a phantom and human cohort 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from Jha, A.K., Mithun, S., Jaiswar, V. et al. Repeatability and reproducibility 

study of radiomic features on a phantom and human cohort. Sci Rep 11, 2055 (2021). 

https://doi.org/10.1038/s41598-021-81526-8 
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Abstract  

The repeatability and reproducibility of radiomic features extracted from CT scans need 

to be investigated to evaluate the temporal stability of imaging features with respect to 

a controlled scenario (test–retest), as well as their dependence on acquisition 

parameters such as slice thickness, or tube current. Only robust and stable features 

should be used in prognostication/prediction models to improve generalizability across 

multiple institutions. In this study, we investigated the repeatability and reproducibility 

of radiomic features with respect to three different scanners, variable slice thickness, 

tube current, and use of intravenous (IV) contrast medium, combining phantom studies 

and human subjects with non-small cell lung cancer. In all, half of the radiomic features 

showed good repeatability (ICC > 0.9) independent of scanner model. Within 

acquisition protocols, changes in slice thickness was associated with poorer 

reproducibility compared to the use of IV contrast. Broad feature classes exhibit 

different behaviors, with only few features appearing to be the most stable. 108 features 

presented both good repeatability and reproducibility in all the experiments, most of 

them being wavelet and Laplacian of Gaussian features.  
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Introduction 

Copy (and adapt if necessary) from paper Medical images are routinely used for cancer 

staging, treatment planning and evaluation. Radiological findings are mainly evaluated 

in a qualitative or semi-qualitative fashion guided predominantly by visual inspection1. 

However, human interpretation of images is open to subjectivity and potentially misses 

some of the quantitative and objective information that could otherwise be retrieved 

from patients’ scans through computer-assisted methods2. 

The field of “radiomics” aims to address the above-mentioned issues by objectively 
quantifying visual information in the images as a vast set of numerical metrics known 
as “features”. Radiomics hypothesizes that a certain subset of features, analyzed with 
the aid of machine learning algorithms due to high dimensionality, may have some 
predictive/prognostic value. Such subsets of features denote a “signature”, i.e. a digital 
image phenotype of the target disease, which opens the way towards personalized 
treatment in oncology3. 

One of the most challenging problems for translating radiomic studies into clinical 
decision support systems is to evaluate the robustness of radiomic-based models and 
hence their potential generalizability across multiple datasets from different 
institutions4. Different institutions commonly acquire scans with different settings (e.g., 
scanner manufacturers, slice thickness, signal-to-noise ratio) according to largely self-
defined imaging protocols, which add unwanted variation in the resulting radiomic 
features that are not related to the disease phenotype. A feature that is useful on one 
dataset may therefore lose its value on another dataset, since the feature may be 
sensitive to different methods of acquisition5. 

When discussing robustness of radiomic studies two concepts need to be considered: 
“repeatability” and “reproducibility”. Repeatability refers to features that remain the 
same when imaged multiple times in the same subject, be that a human or a suitable 
phantom, using the same image acquisition methods. Reproducibility refers to features 
that remain the same when extracted using different equipment, different software, 
different image acquisition settings, or different operators (e.g. other clinics), be that in 
the same subject or in different subjects6. Repeatability and reproducibility concerns 
have been raised as major source of uncertainties in radiomic models7. 

Most of the studies that investigated the reproducibility of radiomic features with 
respect to different image acquisition settings, demonstrate a strong dependence of 
radiomic features on such settings. Texture features appear to be more vulnerable to 
reproducibility/repeatability issues. There is a strong connection between 
reproducibility/repeatability and prognostic values8. In a study about time series 
classification, the investigators concluded that poorly reproducible/repeatable features 
were usually accompanied by poor discriminative performances9. 

https://www.nature.com/articles/s41598-021-81526-8#ref-CR1
https://www.nature.com/articles/s41598-021-81526-8#ref-CR2
https://www.nature.com/articles/s41598-021-81526-8#ref-CR3
https://www.nature.com/articles/s41598-021-81526-8#ref-CR4
https://www.nature.com/articles/s41598-021-81526-8#ref-CR5
https://www.nature.com/articles/s41598-021-81526-8#ref-CR6
https://www.nature.com/articles/s41598-021-81526-8#ref-CR7
https://www.nature.com/articles/s41598-021-81526-8#ref-CR8
https://www.nature.com/articles/s41598-021-81526-8#ref-CR9


132 | 
 

Recent publications have also investigated the presence of correlations between 
radiomic features and tumor volume9,10. The latter has been shown to be one of the most 
generalizable features. Therefore, there is the need to investigate if the most 
reproducible features were also strongly correlated with tumor volume. 

Several studies have investigated the repeatability/ reproducibility of radiomic features 
on phantom as well as well as clinical cohort6,7,8,9,10,11,12,13,14,15,16,17. Few publications have 
also investigated the disease specific dependency of radiomic feature repeatability/ 
reproducibility and presented the results. These studies have either performed 
repeatability or reproducibility study alone; or performed repeatability and 
reproducibility study only on phantoms13,14 or clinical15,16 cohorts, which (1) limits the 
possibility to isolate a subset of features that are both repeatable and reproducible, and 
(2) does not allow comparing differences in the results because of using only phantom 
or human data. There remains a need to evaluate reproducibility and repeatability of 
radiomic features, not only on phantoms datasets, but also on human cohorts in the 
same study. The risk is that phantom studies do not have sufficiently high complexity 
and heterogeneity within the synthetic “tumors” to be a fair test of feature robustness. 
In our study, stable feature refers to both repeatable and reproducible features at the 
same time. With our study, we provide an extension to currently available literature by 
performing a comprehensive evaluation of the reproducibility and repeatability of 1080 
radiomic features considering not only different groups of features, but also features 
extracted using digital filtering both with phantoms and human data. In this study, we 
also investigated how the correlations between radiomic features and tumor volume 
impact the reproducibility and repeatability results. 
  

  

https://www.nature.com/articles/s41598-021-81526-8#ref-CR9
https://www.nature.com/articles/s41598-021-81526-8#ref-CR10
https://www.nature.com/articles/s41598-021-81526-8#ref-CR6
https://www.nature.com/articles/s41598-021-81526-8#ref-CR7
https://www.nature.com/articles/s41598-021-81526-8#ref-CR8
https://www.nature.com/articles/s41598-021-81526-8#ref-CR9
https://www.nature.com/articles/s41598-021-81526-8#ref-CR10
https://www.nature.com/articles/s41598-021-81526-8#ref-CR11
https://www.nature.com/articles/s41598-021-81526-8#ref-CR12
https://www.nature.com/articles/s41598-021-81526-8#ref-CR13
https://www.nature.com/articles/s41598-021-81526-8#ref-CR14
https://www.nature.com/articles/s41598-021-81526-8#ref-CR15
https://www.nature.com/articles/s41598-021-81526-8#ref-CR16
https://www.nature.com/articles/s41598-021-81526-8#ref-CR17
https://www.nature.com/articles/s41598-021-81526-8#ref-CR13
https://www.nature.com/articles/s41598-021-81526-8#ref-CR14
https://www.nature.com/articles/s41598-021-81526-8#ref-CR15
https://www.nature.com/articles/s41598-021-81526-8#ref-CR16
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Methods 

This study was approved by the hospital Institutional Ethics Committee (Institutional 

Ethics Committee-I, Tata Memorial Centre [IEC, TMC], Mumbai, India) as a 

retrospective study, with waivers of informed consent from involved patients as per IEC 

policy of our hospital by the same Ethics Committee. All methods were carried out in 

accordance with relevant guidelines and regulations. This study comprises PET/CT 

images from a polymer phantom as well as from a clinical cohort. Our study has focused 

only on CT radiomic features stability. PET images were used to delineate the tumor 

(using SUV threshold of 40%) and this delineation was transferred to the corresponding 

CT images included in this study. 

Phantom 

The National Electrical Manufacturers Association (NEMA) Image Quality (IQ)PET/CT 

phantom (Data Spectrum Inc., NJ, USA) was used for this study22. The external 

dimensions of the phantom are 241 mm × 305 mm × 241 mm with interior length of 

180 mm and volume of 9.7L. It has six fillable spheres and one central cylinder. The 

largest insert with a diameter of 37 mm was used for radiomic feature analysis study. 

The phantom was filled with distilled water containing 18F-FDG. The concentration of 

18F-FDG was adjusted until a target to background signal ratio of 4:1 was created 

between the active sphere and water background. 

Clinical cohort 

Patients with non-small cell lung cancer (NSCLC) (n = 104) who underwent pre-

treatment PET/CT scans in our department were included in this study. There were 85 

males and 19 females. The median age was 66 (36–90) and 53 (35–72) years respectively 

for males and females. The median tumor volume was 92 (14–486) cm3 for men and 86 

(22–432) cm3 for women. Population demographics and clinical information are 

provided in Supplementary table S2. 

RIDER: The Reference Image Database to Evaluate Therapy Response (RIDER) data 

base was used in this study to perform repeatability study. All the 32 patients DICOM 

data (i.e. Images and RTSTRUCTs) of the RIDER data set were included in this study23. 

Scanners 

Three different scanners were used in the study. Two scanners were from the same 

manufacturer (Philips Medical, Eindhoven, The Netherlands) but different models, and 

the last scanner was from another manufacturer (General Electric Medical System, 

Milwaukee, USA). For simplicity of reading we will refer to the scanners as follows: 

scanner 1 is the Philips Gemini TF16 PET/CT, scanner 2 is the Gemini TF64 PET/CT, and 

scanner 3 is the General Electric Discovery NM 670 pro SPECT/CT. 

https://www.nature.com/articles/s41598-021-81526-8#ref-CR22
https://www.nature.com/articles/s41598-021-81526-8#MOESM2
https://www.nature.com/articles/s41598-021-81526-8#ref-CR23
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Scanning protocols 

NEMA IQ phantom 

The NEMA IQ phantom was scanned twice, 30 min apart (‘coffee break’) without 

repositioning, one the same scanner and within the same conditions. This procedure 

was performed for all the three scanners and considering six different acquisition 

protocols. They had the same tube voltage (120 kV for all three scanners), pitch (0.46 

for scanner 1 and 2 and 2.5 for Scanner 3) and reconstruction kernel based on filtered 

back projection for scanner 1, 2 and adaptive statistical iterative reconstruction (ASiR) 

(40% ASiR setting and a noise index of 13.75) for scanner 3, but different tube currents 

(ranging from 100 to 300 mA) slice thicknesses (ranging from 2 to 5 mm for scanner 1& 

2 and 2.5 to 5 for scanner 3). These protocols are listed in Table 2. 

Table 2 Overview of the scanning protocols used to acquire images with the IQ 

phantom. 

Protocol 
name 

Tube 
current 
(mA) 

Reconstruction slice 
thickness (mm) 
[voxel size (cubic 
millimeter)] 
(scanner 1&2) 

Reconstruction slice thickness 
(mm) 
[voxel size (cubic millimeter)] 
(scanner 3) 

Protocol 1 100 2 [0.86 × 0.86 × 2] 2.5 [0.9653 × 0.9653 × 2.5] 

Protocol 2 100 5 [0.86 × 0.86 × 5] 5 [0.9653 × 0.9653 × 5] 

Protocol 3 200 2 [0.86 × 0.86 × 2] 2.5 [0.9653 × 0.9653 × 2.5] 

Protocol 4 200 5 [0.86 × 0.86 × 5] 5 [0.9653 × 0.9653 × 5] 

Protocol 5 300 2 [0.86 × 0.86 × 2] 2.5 [0.9653 × 0.9653 × 2.5] 

Protocol 6 300 5 [0.86 × 0.86 × 5] 5 [0.9653 × 0.9653 × 5] 

Six scanning protocols, with same tube voltage (120 kV), pitch (Scanner 1&2: 0.46; 
Scanner 3: 2.5), and reconstruction kernel, but different tube currents and slice 
thicknesses were investigated. The phantom was scanned twice on scanners 1–2–3 
without repositioning in a 30-min test–retest scenario. The total number of scans 
acquired with the IQ phantom is 6 protocols × 3 scanners × 2 (test–retest) = 36 scans. 

Clinical cohort 

Patients were scanned using three different clinical protocols on the Philips Gemini 

TF64 PET/CT (previously referred to as scanner 2). The three protocols had the same 

tube voltage (120 kV), pitch (0.46) and reconstruction kernel, but different slice 

thicknesses, tube current and presence or absence of an intravenous contrast medium, 

namely, one whole body contrast CT with 2 mm slice thickness (referred as WBCECT2), 

one whole body contrast CT with 5 mm slice thickness (referred as BLDCT5), and one 

non contrast thoracic CT with 2 mm slice thickness (referred as NCCTT2). Modulated 

tube current (between 100 and 200 mA) as per dose care automated system was used for 

BLDCT5 and WBCECT2. The protocols are listed in Table 3. 

https://www.nature.com/articles/s41598-021-81526-8#Tab2
https://www.nature.com/articles/s41598-021-81526-8#Tab3
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Table 3 Overview of the clinical protocols. Images were acquired on the Philips 

Gemini TF64 PET/CT (previously referred to as scanner 2) with three different 

protocols. 

Clinical 
protocol 
name 

Slice 
thickness 
(mm) 

Intravenous 
contrast medium 

Tube current (mA) Voxel size 
(cubic 
millimeters) 

BLDCT5 5 Yes—nonionic 
contrast 

Modulated auto-mA 
(100–200) 

1.17 × 1.17 × 5 

WBCECT2 2 Yes—nonionic 
contrast 

Modulated auto-mA 
(100–200) 

1.17 × 1.17 × 2 

NCCTT2 2 NO Fixed mA 300 0.87 × 0.87 × 2 

 

RIDER 

The RIDER data set comprises of 32 NSCLC patient’s test–retest CT imaging performed 

with a time lag of 15 min and two sets of delineations (RTSTRUCT) (i.e. tumor 

delineated by manual and automatic methods). Imaging parameters of RIDER database 

is summarized in Table 4. Radiomic extraction and statistical analysis was performed as 

per the study protocol. 

Table 4 The imaging protocol of the RIDER data set. 

Parameters Rider data set 

Manufacturer GE healthcare 

Acquisition type Helical 

Tube voltage 120 kVp 

Tube current Range 165–549 mAs 

Slice thickness 1.25 mm 

Pixels 512 × 512 

Voxel size (cubic millimeter) 0.66 × 0.66 × 1.25 

 

Study design 

In this study we investigated both reproducibility and repeatability of radiomic features. 

The repeatability of radiomic features was evaluated using the test retest scans acquired 

with the IQ phantom on three different scanners and for all the 6 protocols listed in 

Table 2 and on the publicly available clinical cohort RIDER data set. The reproducibility 

of radiomic features with respect to different acquisition protocols but within the same 

scanner (intra-scanner variability) was evaluated comparing radiomic feature values 

using the test scans acquired with the IQ phantom across the 6 different protocols. This 

analysis was repeated for all the three scanners. The reproducibility of radiomic features 

with respect to different scanner models was evaluated comparing radiomic feature 

values extracted from the test scans acquired with the IQ phantom for each protocols 

on the three different scanners (inter-scanner variability). The reproducibility of 

radiomic features with respect to presence/absence of intravenous contrast medium 

https://www.nature.com/articles/s41598-021-81526-8#Tab4
https://www.nature.com/articles/s41598-021-81526-8#Tab2
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and slice thickness in clinical data was investigated comparing radiomic features using 

the images acquired with the NSCLC patients (clinical study). Figure 5 summarizes the 

overall study design. 

 

Figure 5: In this study we investigated both reproducibility and repeatability of 

radiomic features. The repeatability of radiomic features was evaluated using the test 

retest scans acquired with the IQ phantom on three different scanners and with 6 

protocols and online available RIDER data set. The reproducibility of radiomic features 

with respect to different acquisition protocols but within the same scanner (intra-

scanner variability) was evaluated comparing radiomic feature values using the test–

retest scans acquired with the IQ phantom across the 6 different protocols. A clinical 

cohort of NSCLC patients was used to investigate the reproducibility of radiomic 

features with respect to 3 different clinical acquisition protocols, with a focus on the 

impact of slice thickness and IV contrast medium. 

https://www.nature.com/articles/s41598-021-81526-8#Fig5
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Results 

Copy (and adapt if necessary) from paper Phantom—repeatability 

The percentage of radiomic features presenting good repeatability (ICC ≥ 0.9) were 58% 

(624/1080) for scanner1 (Philips Gemini TF16), 43% (464/1080) for scanner2 (Philips 

Gemini TF64), 61% (661/1080) for scanner3 (GE Discovery NM 570) and 45% (488/1080) 

for the three scanners overall. Results are shown in Fig. 1 for each feature category. 

 

Figure 1: Repeatability analysis using repeated phantom scans for all the different 

radiomic feature classes. The median ICC values for all the 6 protocols is reported, 

separately for scanner1, scanner2, scanner3 and the union of the three. Repeatability 

analysis on RIDER (clinical cohort) was also performed. Three different levels of 

repeatability are defined: good (ICC ≥ 0.9), medium (0.75 < ICC < 0.9), and poor 

(ICC ≤ 0.75) (FO = First Order Feature; TF = Textural Feature; LOG = Total LoG Feature; 

WF = Total Wavelet Feature; LOG-FO = LoG First Order Feature; LOG-TF = LoG 

Textural Feature; WF-FO = Wavelet First Order Feature; WF-TF = Wavelet Textural 

Feature). 

RIDER (clinical cohort)—repeatability 

The percentage of radiomic features presenting good, moderate, and poor repeatability 

were 82% (888/1080), 15% (164/1080), and 3% (28/1080) respectively for the RIDER 

clinical cohort. The results per feature categories are shown in Fig. 1. 

https://www.nature.com/articles/s41598-021-81526-8#Fig1
https://www.nature.com/articles/s41598-021-81526-8#Fig1
https://www.nature.com/articles/s41598-021-81526-8/figures/1
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Phantom—reproducibility—intra and inter scanner variability 

For the intra-scanner study, 30% (322/1080), 31% (332/1080) and 39% (426/1080) features 

presented good, moderate, and poor reproducibility (Fig. 2A) for all the scanners. For 

the inter-CT scanner study, 14% (154/1080), 19% (204/1080) and 67% (722/1080) features 

presented good, moderate, and poor reproducibility respectively (Fig. 2B) for all the 6 

protocols. Reproducibility of the features individually for the six protocols are shown in 

the Supplementary material S1. 

 

Figure 2: Results of the reproducibility experiments: (A) intra-scanner experiment 

using the phantom. By taking the median of all ICCs computed on the three scanners; 

(B) inter-scanner experiment using the phantom across all three scanners; (C) stability 

of radiomic features with respect to three different clinical protocols in the clinical 

study; (D) impact of IV (intravenous) contrast medium presence (WBCECT2)/ absence 

(NCCTT2) and difference in current (WBCECT2:Auto mA = 100–200; NCCTT2: fixed 

mA = 300 ) in the clinical study, and E) impact of slice thickness (2 vs 5 mm) in the 

human study. Three different levels of reproducibility are defined: good (ICC ≥ 0.9), 

medium (0.75 < ICC < 0.9), and poor (ICC ≤ 0.75). 

Clinical cohort—reproducibility 

Among the features tested, 19% (199/1080) good, 29% (315/1080), moderate and 52% 

(556/1080) had poor, reproducibility when comparing the 3 different imaging protocols 

on the Gemini TF16 scanner (Fig. 2C). 

When comparing IV contrast (WBCECT2) versus non-contrast (NCCTT2) protocols, 

45% (483/1080) of the features had poor, 41% (442/1080) moderate, and 14% (155/1080) 

good reproducibility (Fig. 2D). When comparing slice thickness, using the BLDCT5 

https://www.nature.com/articles/s41598-021-81526-8#Fig2
https://www.nature.com/articles/s41598-021-81526-8#Fig2
https://www.nature.com/articles/s41598-021-81526-8#MOESM1
https://www.nature.com/articles/s41598-021-81526-8#Fig2
https://www.nature.com/articles/s41598-021-81526-8#Fig2
https://www.nature.com/articles/s41598-021-81526-8/figures/2
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protocol (slice thickness = 5 mm) versus the WBCECT2 protocol (slice 

thickness = 2 mm), 37% (398/1080) of the features had poor, 17% (179/1080) moderate, 

and 47% (503/1080) good reproducibility (Fig. 2E). 

Volume correlations 

In the clinical cohort, 7% (73/1080), 5% (57/1080) and 88% (950/1080) of the radiomic 

features had good (ρ ≥ 0.9), moderate (0.75 < ρ < 0.9) and poor (ρ ≤ 0.75) correlation 

with the GTV. 

Overall summary 

Median ICC was calculated for all the reproducibility studies performed using the 

phantom and clinical cohorts. A total of 22.5% (243/1080) features had good 

reproducibility (ICC > 0.9) in clinical cohort. When the median of ICC was calculated 

for repeatability study performed with phantom and clinical cohorts (RIDER); 46.1% 

(498/1080) of features had good repeatability (ICC > 0.9). For repeatability study on 

phantom and clinical cohort together 55% (599/1080) features had good stability 

(ICC > 0.9) (Fig. 3A). For reproducibility study on phantom and clinical cohort together 

15% (164/1080) features had good stability (ICC > 0.9) (Fig. 3B). For repeatability and 

reproducibility study together on clinical cohort 18% (189/1080) features had good 

stability (Fig. 3C). For all the experiments, 13% (138/1080) of the features presented both 

high (median ICC > 0.9) repeatability and high reproducibility (Fig. 3D). Tumor volume 

was again confirmed to be the most repeatable and reproducible feature with a median 

ICC of 0.99. When considering volume collinearity, 21% of these stable features 

presented strong Spearman correlations (ρ > 0.9). If we removed the features with 

strong correlations with GTV, then the final number of repeatable and reproducible 

features was 108: 59 WF (Wavelet) (8% of total WF), 46 LOG (Laplacian of Gaussian) 

(17% of total LOG), and 3 TA (Texture Analysis) (3% of total TA) features (Table 1). 

Overall, TA had the largest median ICC (0.933 ± 0.024) followed by LOG (0.923 ± 0.017) 

and WF (0.917 ± 0.014) features (p < 0.05). The topmost robust feature per feature types 

were: GLRLM-Non-Uniformity (LOG-2 mm kernel); LLH-GLCM-JointEnergy (WF) and 

Gray Level Dependence Matrix (GLDM) Non-Uniformity (TA). 

https://www.nature.com/articles/s41598-021-81526-8#Fig2
https://www.nature.com/articles/s41598-021-81526-8#Fig3
https://www.nature.com/articles/s41598-021-81526-8#Fig3
https://www.nature.com/articles/s41598-021-81526-8#Fig3
https://www.nature.com/articles/s41598-021-81526-8#Fig3
https://www.nature.com/articles/s41598-021-81526-8#Tab1
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Figure 3: Common features in various studies showing good stability (ICC > 0.9): (A) 

Venn diagram shows the overlap of repeatability (RIDER) study and Phantom 

repeatability study. (B) Venn diagram shows the overlap of Phantom reproducibility 

study and reproducibility study in clinical cohort. (C) Venn diagram shows the overlap 

of repeatability (RIDER) study and reproducibility study in clinical cohort. (D) Overall 

summary of all the experiments. The Venn diagram shows the overlap of the 

repeatability experiment (phantom + clinical [RIDER] data) with the reproducibility 

experiments (phantom + clinical data). 

 

Table 1 Overall summary of the 108 most repeatable and reproducible features 

for all the experiments and presenting correlations with tumour volume ρ < 0.9. 

Overall summary TOP 108 features: 46 LOG, 59 WF, 3 TA 

Median ICC and STD per categories 

TA (0.933 ± 0.024) 

LOG (0.923 ± 0.017) 

WF (0.917 ± 0.014) 

Feature name Categ
ory 

Media
n ICC 

Feature name Catego
ry 

Median 
ICC 

RANK 1–50 

wavelet-
LLH_glcm_JointEnerg
y 

WF 0.9822 log-sigma-2-0-mm-
3D_glrlm_ShortRunEm
phasis 

LOG 0.9295 

https://www.nature.com/articles/s41598-021-81526-8/figures/3
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log-sigma-2-0-mm-
3D_glrlm_RunLength
NonUniformity 

LOG 0.9766 wavelet-
LLH_glrlm_ShortRunE
mphasis 

WF 0.9293 

log-sigma-3-0-mm-
3D_glrlm_RunLength
NonUniformity 

LOG 0.9724 log-sigma-2-0-mm-
3D_glrlm_RunLengthN
onUniformityNormalize
d 

LOG 0.9284 

original_gldm_Depen
denceNonUniformity 

TA 0.9571 log-sigma-2-0-mm-
3D_firstorder_Entropy 

LOG 0.9284 

wavelet-
LLH_glcm_Idm 

WF 0.9542 wavelet-
LHL_firstorder_10Perce
ntile 

WF 0.928 

log-sigma-3-0-mm-
3D_firstorder_10Perce
ntile 

LOG 0.9484 log-sigma-1-0-mm-
3D_gldm_LargeDepend
enceEmphasis 

LOG 0.9274 

log-sigma-3-0-mm-
3D_glrlm_RunPercent
age 

LOG 0.9475 wavelet-
LHL_firstorder_Interqu
artileRange 

WF 0.927 

wavelet-LLH_glcm_Id WF 0.9474 wavelet-
LHL_firstorder_MeanA
bsoluteDeviation 

WF 0.9258 

wavelet-
LLH_glcm_SumEntro
py 

WF 0.9424 log-sigma-1-0-mm-
3D_glrlm_ShortRunEm
phasis 

LOG 0.9257 

log-sigma-3-0-mm-
3D_firstorder_Mean 

LOG 0.9409 wavelet-
LHL_firstorder_Robust
MeanAbsoluteDeviation 

WF 0.9255 

log-sigma-3-0-mm-
3D_firstorder_Median 

LOG 0.9386 wavelet-
LHL_glcm_Imc2 

WF 0.9252 

log-sigma-2-0-mm-
3D_glrlm_LongRunE
mphasis 

LOG 0.9379 wavelet-LHL_glcm_Idn WF 0.9227 

log-sigma-2-0-mm-
3D_gldm_LargeDepen
denceEmphasis 

LOG 0.9374 wavelet-
LHL_glszm_SizeZoneN
onUniformity 

WF 0.9222 

log-sigma-2-0-mm-
3D_firstorder_10Perce
ntile 

LOG 0.9372 log-sigma-3-0-mm-
3D_firstorder_MeanAbs
oluteDeviation 

LOG 0.9219 

wavelet-
LLH_glrlm_GrayLevel
NonUniformityNorma
lized 

WF 0.9367 wavelet-
LHL_glszm_ZonePercen
tage 

WF 0.9216 

log-sigma-2-0-mm-
3D_glrlm_RunVarianc
e 

LOG 0.9364 log-sigma-2-0-mm-
3D_firstorder_Kurtosis 

LOG 0.9213 
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log-sigma-2-0-mm-
3D_glrlm_RunPercent
age 

LOG 0.9361 wavelet-
LHL_gldm_SmallDepen
denceEmphasis 

WF 0.9209 

log-sigma-3-0-mm-
3D_glrlm_RunLength
NonUniformityNorma
lized 

LOG 0.9352 log-sigma-2-0-mm-
3D_glcm_SumEntropy 

LOG 0.92 

original_glrlm_RunLe
ngthNonUniformity 

TA 0.9333 log-sigma-2-0-mm-
3D_firstorder_RobustM
eanAbsoluteDeviation 

LOG 0.9198 

log-sigma-3-0-mm-
3D_gldm_Dependence
Variance 

LOG 0.9326 log-sigma-3-0-mm-
3D_firstorder_Kurtosis 

LOG 0.9196 

wavelet-
LLH_glrlm_RunLengt
hNonUniformityNorm
alized 

WF 0.9322 wavelet-
LHL_ngtdm_Contrast 

WF 0.9188 

log-sigma-3-0-mm-
3D_glrlm_ShortRunE
mphasis 

LOG 0.9317 wavelet-
LHL_ngtdm_Strength 

WF 0.9182 

log-sigma-3-0-mm-
3D_firstorder_RootMe
anSquared 

LOG 0.9314 wavelet-
HLL_firstorder_10Perce
ntile 

WF 0.9174 

wavelet-
LLH_glrlm_RunPerce
ntage 

WF 0.9304 wavelet-
HLL_firstorder_Entropy 

WF 0.9169 

log-sigma-2-0-mm-
3D_firstorder_Mean 

LOG 0.9297 wavelet-
HLL_firstorder_Interqu
artileRange 

WF 0.9169 

RANK 51–100 

wavelet-
HLL_firstorder_Mean
AbsoluteDeviation 

WF 0.9168 wavelet-
HLL_gldm_LargeDepen
denceEmphasis 

WF 0.9089 

wavelet-
HLL_firstorder_Robus
tMeanAbsoluteDeviati
on 

WF 0.9167 wavelet-
HLL_gldm_SmallDepen
denceEmphasis 

WF 0.9089 

log-sigma-2-0-mm-
3D_glcm_JointEntropy 

LOG 0.9163 original_gldm_SmallDe
pendenceEmphasis 

TA 0.9084 

wavelet-
HLL_firstorder_Unifor
mity 

WF 0.9162 log-sigma-2-0-mm-
3D_glcm_JointEnergy 

LOG 0.9082 

wavelet-
HLL_glcm_Difference
Average 

WF 0.9157 wavelet-
HLL_ngtdm_Contrast 

WF 0.9074 

wavelet-
HLL_glcm_Difference
Entropy 

WF 0.9154 wavelet-
HHL_glrlm_RunPercent
age 

WF 0.9073 
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log-sigma-3-0-mm-
3D_firstorder_Varianc
e 

LOG 0.9153 wavelet-
HHL_gldm_LargeDepe
ndenceEmphasis 

WF 0.9069 

log-sigma-2-0-mm-
3D_firstorder_RootMe
anSquared 

LOG 0.9142 log-sigma-3-0-mm-
3D_firstorder_RobustM
eanAbsoluteDeviation 

LOG 0.9059 

log-sigma-2-0-mm-
3D_firstorder_Unifor
mity 

LOG 0.9139 wavelet-
LLL_firstorder_Entropy 

WF 0.9056 

log-sigma-2-0-mm-
3D_glcm_Id 

LOG 0.9138 log-sigma-1-0-mm-
3D_firstorder_RobustM
eanAbsoluteDeviation 

LOG 0.9055 

log-sigma-2-0-mm-
3D_glcm_Idm 

LOG 0.9137 wavelet-
LLL_firstorder_RootMe
anSquared 

WF 0.9051 

wavelet-
HLL_glcm_JointEntro
py 

WF 0.9134 wavelet-
LLL_glcm_Contrast 

WF 0.9051 

wavelet-
HLL_glcm_Idm 

WF 0.9132 wavelet-
LLL_glcm_DifferenceAv
erage 

WF 0.9044 

wavelet-
HLL_glcm_Idmn 

WF 0.9131 log-sigma-3-0-mm-
3D_firstorder_Interquar
tileRange 

LOG 0.9042 

wavelet-HLL_glcm_Id WF 0.9131 log-sigma-2-0-mm-
3D_glrlm_GrayLevelNo
nUniformityNormalized 

LOG 0.9039 

wavelet-
HLL_glcm_Idn 

WF 0.913 log-sigma-2-0-mm-
3D_glcm_DifferenceAve
rage 

LOG 0.9039 

wavelet-
HLL_glcm_Maximum
Probability 

WF 0.9123 wavelet-
LLL_glcm_DifferenceEn
tropy 

WF 0.9037 

log-sigma-2-0-mm-
3D_firstorder_MeanA
bsoluteDeviation 

LOG 0.912 wavelet-
LLL_glcm_JointEntropy 

WF 0.9036 

wavelet-
HLL_glcm_SumEntro
py 

WF 0.9119 log-sigma-2-0-mm-
3D_glcm_DifferenceEnt
ropy 

LOG 0.9036 
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log-sigma-1-0-mm-
3D_glrlm_RunPercent
age 

LOG 0.9115 log-sigma-1-0-mm-
3D_glcm_Id 

LOG 0.9035 

wavelet-
HLL_glrlm_GrayLevel
NonUniformityNorma
lized 

WF 0.9114 wavelet-LLL_glcm_Idm WF 0.9032 

wavelet-
HLL_glrlm_RunLengt
hNonUniformityNorm
alized 

WF 0.9112 log-sigma-1-0-mm-
3D_glrlm_RunLengthN
onUniformityNormalize
d 

LOG 0.9031 

log-sigma-2-0-mm-
3D_firstorder_Interqu
artileRange 

LOG 0.911 wavelet-LLL_glcm_Id WF 0.9031 

wavelet-
HLL_glrlm_RunPerce
ntage 

WF 0.9109 log-sigma-1-0-mm-
3D_firstorder_Interquar
tileRange 

LOG 0.9026 

wavelet-
HLL_glrlm_RunVarian
ce 

WF 0.9107 wavelet-LLL_glcm_Idn WF 0.9025 

wavelet-
HLL_glrlm_ShortRun
Emphasis 

WF 0.9105 log-sigma-1-0-mm-
3D_firstorder_10Percent
ile 

LOG 0.9015 

wavelet-
HLL_glszm_LargeArea
Emphasis 

WF 0.9098 wavelet-
LLL_gldm_Dependence
NonUniformity 

WF 0.9009 

wavelet-
HLL_glszm_ZonePerc
entage 

WF 0.9098 wavelet-
LLL_gldm_Dependence
NonUniformityNormali
zed 

WF 0.9005 

wavelet-
HLL_glszm_ZoneVari
ance 

WF 0.9092 wavelet-
LLL_gldm_SmallDepen
denceEmphasis 

WF 0.9001 

 

The features are ordered by decreasing median ICC values (computed on all the 
experiments). Most reproducible and repeatable features per categories were: GLRLM-
Non-Uniformity (LOG-2 mm kernel); LLH-GLCM-JointEnergy (WF) and Gray Level 
Dependence Matrix (GLDM) Non-Uniformity (TA). 
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It is interesting to notice how the top 50 repeatable features presented strong inter 

Spearman correlations, with Wavelet and Laplacian of Gaussian features being strongly 

clustered together (heatmap on Fig. 4). Overall, the number of features with good 

repeatability was found to be significantly larger than the number of reproducible 

features. Reproducibility experiments using phantom data (IntraCT experiment) led to 

more features being found reproducible compared to experiments performed using the 

clinical cohort (30% vs 19% of features with ICC ≥ 0.9, p < 0.05). Around 57% (138/243) 

of the robust features overlapped with features from repeatability and reproducibility 

study. The remaining 67 features being 36% Wavelet and 74% Laplacian of Gaussian 

were reproducible, but not repeatable. 

 

Figure 4: Heatmap showing Spearman correlations between the top 50 repeatable 

features. 

  

https://www.nature.com/articles/s41598-021-81526-8#Fig4
https://www.nature.com/articles/s41598-021-81526-8/figures/4
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Discussion 

Copy (and adapt if necessary) from paper In this study, we investigated: (A) radiomic 

feature repeatability in a test–retest scenario using a NEMA IQ phantom; (B) radiomic 

feature reproducibility with respect to different tube currents, slice thickness as well as 

dependencies to different scanner models using an image quality phantom, and (C) 

radiomic feature reproducibility in a clinical cohort comparing three different 

acquisition protocols as well as the impact of slice thickness and the presence of IV 

contrast medium. We isolated a list of repeatable and reproducible features for all the 

experiments. Furthermore, we computed the correlations between radiomic features 

and tumor volume with the aim of investigating if the most repeatable and reproducible 

features also presented strong correlations. In fact, tumor volume was found to be the 

most robust feature and we wanted to assess if this could be a reason for a feature to 

present high reproducibility and repeatability. As shown in the results, only a relatively 

small percentage of radiomic features (around 13% of the total) presented both good 

repeatability and reproducibility across all the experiments. However, differences were 

found between repeatability and reproducibility. The number of features with good 

repeatability was larger than the number of reproducible features in the phantom 

experiment. Unfortunately, because we did not have any test–retest clinical data it was 

not possible to draw the same conclusion. Nevertheless, to obtain a fair comparison, we 

used the publicly available dataset RIDER to investigate the repeatability of radiomic 

features in NSCLC patients. The Venn Diagram in Fig. 3D shows that most of the 

repeatable and reproducible features in human data overlap with features from the 

phantom studies. This clearly shows that features computed on phantom are a superset 

of features computed on real human data. Our experiments also showed that there are 

some features extracted from human data that are robust but do not overlap with 

phantom results. Two main reasons could be associated with this: (A) statistical 

fluctuations because of the large number of computed features; (B) differences in the 

dynamic range of the features between phantom and human data. Point (B) is strictly 

related to the fact that the image quality phantom with spherical homogenous inserts 

are still not advanced enough to replicate tumor complexity seen in patients’ data. 

Therefore, our study should be improved by including several types of imaging 

phantoms or considering new types of plugs that can better mimic tumor heterogeneity. 

In the last years, attention has been devoted to produce more realistic inserts by using 

3D printing techniques18,19. The above-mentioned hypothesis seem to be confirmed by 

the fact that the features that did not overlap were only wavelet and Laplacian of 

Gaussian features, which might indicate that some real tumors’ texture patterns are still 

difficult to be reproduced with imaging phantoms. 

We found large variation of radiomic feature in repeatability study even within a short 

time gap of 30 min “coffee-break”. Overall, less than 50% of features had a good 

repeatability (ICC > 0.9) using phantom scans, in agreement with previously published 

https://www.nature.com/articles/s41598-021-81526-8#Fig3
https://www.nature.com/articles/s41598-021-81526-8#ref-CR18
https://www.nature.com/articles/s41598-021-81526-8#ref-CR19
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literature19,20,21. When considering time-series analysis of radiomic features (e.g. for 

monitoring treatment response), temporal stability of radiomic features becomes 

imperative to be investigated. As mentioned in the introduction section, poor 

repeatability seems to be associated with poor prognostic/predictive power, while the 

reverse might not be equally true9. Therefore, our results can be taken by other 

radiomic studies to reduce the dimensionality of computed features by excluding poorly 

repeatable features. 

When considering radiomic reproducibility, the presence or absence of IV contrast 

medium had a stronger impact than differences in slice thickness in the human study: 

14% (155/1080) versus 47% (503/1080) (p < 0.05) of features with good reproducibility. 

From the overall summary section in the results, it emerges that the different feature 

categories are sensitive with different degrees to reproducibility and repeatability. Our 

results are in line with the previous literature. The usage of image filtering could 

enhance the quality of the images even when acquired with different protocols and thus 

improve reproducibility. It is important to point out that this study did not investigate 

the robustness of shape metrics, since the contours were co-registered from PET to CT 

images and the same contour was used for all sets of CT series. However, shape metrics 

have been shown to be strongly affected by inter-observer variability in tumor 

delineations and this aspect was not investigated in this study. 

We investigated how correlations between tumor volume and radiomic features could 

impact the repeatability and reproducibility. In line with other studies, not only tumor 

volume was the most repeatable and reproducible feature (median ICC = 0.99), but 

most of the top reproducible features showed strong Spearman correlations (ρ > 0.9) 

with tumor volume. This opens the debate whether their robustness could be an effect 

of an underlying “volume effect”. However, more investigation is needed to isolate and 

further explain this effect. Therefore, in Table 1 we proposed the final list of most 

repeatable and reproducible features with lower correlations with tumor volume. 

Finally, the list provided in Table 1 represents a starting point to isolate repeatable and 

robust features, but this is not enough to conclude about their prognostic predictive 

performance. Furthermore, as shown in Fig. 4, most of these features present strong 

intercorrelations and might produce redundant information if all are injected into a 

classifier for radiomic-based models. The results presented in this study needs to be 

validated in additional multi-institutional studies and considering additional 

parameters that can affect features’ reproducibility and repeatability. First, in our 

analysis we only considered two different scanner manufacturers. We did not 

investigate the role of other acquisition parameters such as reconstruction kernels or 

tube voltage. These results are intended to be shared within the radiomic community 

for confirmation. 

 

https://www.nature.com/articles/s41598-021-81526-8#ref-CR19
https://www.nature.com/articles/s41598-021-81526-8#ref-CR20
https://www.nature.com/articles/s41598-021-81526-8#ref-CR21
https://www.nature.com/articles/s41598-021-81526-8#ref-CR9
https://www.nature.com/articles/s41598-021-81526-8#Tab1
https://www.nature.com/articles/s41598-021-81526-8#Tab1
https://www.nature.com/articles/s41598-021-81526-8#Fig4
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Chapter 6: Development and validation of GUI 

radiomics feature extractor software (PyRadGUI) 

using PyRadiomic package  
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validation of GUI radiomics feature extractor software (PyRadGUI) using PyRadiomic 
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Abstract  

Radiomics is the method of extracting high throughput mathematical features from 

medical images. These features have potential to uncover disease characteristics 

inappreciable to a trained human eye. There are several open source and licenced tools 

to extract radiomic features such as pyradiomics, LIFEx, TexRAD and RaCat. Although 

pyradiomics is a widely used radiomics package by researchers, this software is not very 

user friendly and can be run using command line. We have developed and validated the 

GUI tool, PyRadGUI  to make the radiomics software easy to operate. This software 

adheres to IBSI radiomic feature definition and implements the radiomic pipeline to in 

batch processing to extract radiomic features from multiple patient’s data and stores it 

in comma separated value (csv). We validated PyRadGUI software with the existing 

pyradiomic pipeline.  

Keywords— Graphical User Interface (GUI), machine learning, radiomics, pyradiomics, 

plastimatch, 3DSlicer 
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Introduction 

As per the World health organization (WHO), cancer is the second leading cause of 

death worldwide. Globally one out of six deaths are caused by cancer alone which 

amounts to 9.6 million deaths in 2018.1,2 Treatment of cancer has always remained a 

challenging task for the oncology community. Although earlier diagnosis and treatment 

is often associated with better outcome of treatment, at the same time selection of 

appropriate patients for appropriate treatment has been found to be important.3 

Considering the complexity of this disease and treatment, oncology is gradually moving 

towards personalized medicine.4 A pathological test is considered a confirmatory test 

for cancer. Imaging tests like Computed Tomography (CT)/Positron Emission 

Tomography (PET)/Magnetic Resonance Imaging (MRI) also play an important role in 

diagnosis, treatment planning and follow-up of disease.5 In last several years, the role of 

imaging and various advanced tests like immunohistochemistry (IHC), polymerase 

chain reaction (PCR) and gene sequencing have been increasing gradually in 

personalizing the treatment. Similarly, the role of artificial intelligence (AI) and 

radiomics has also witnessed a surge in oncology research over the last few years. 

Radiomics has been identified as an area of research to develop imaging biomarkers for 

personalized treatment of cancer.6-8 Radiomics is a method to extract high throughput 

data from medical images. These features have the potential to uncover disease 

characteristics that are not appreciated by an expert radiologist or imaging personnel 

through visual interpretation.9 As radiomic features are extracted directly from medical 

images it provides a non-invasive method for tumor characterization as demonstrated 

by various researchers in the past.6-8 Researchers have shown the role of radiomics as a 

clinical predictor helping in advanced cancer care as personalized medicine in cancer.10 

Apart from its role in precision diagnoses and characterization of tumor, the role of 

radiomics has also been demonstrated in treatment planning.11 

Several open-source and licensed software packages for radiomic extraction, like RaCaT, 

LifeX, IBEX, CaPTK or CGITA, Pyradiomics, TexRad have been developed and used in 

many published research.12–17 The main challenge with these software packages are the 

complexity in radiomic extraction and lack of standardized feature extraction from 

these software. In order to standardize the radiomic extraction and feature definition, 

the image biomarker standardization initiative (IBSI) has provided mathematical 

feature definitions and phantom data sets with corresponding feature values.18,19 

Although this initiative is widely known, only few radiomic software have standardized 

the entire radiomic pipeline for feature extraction. Furthermore, the majority of these 

radiomic extractors have operability issues and not all defined features are extracted as 

defined by IBSI. Pyradiomics is a widely used open source radiomics package and 

adheres to the IBSI standards, but it is not user friendly. For instance, Pyradiomics is 

run on command prompt and customization is technically demanding. Hence, use of 



154 | 
 

this software is cumbersome and technically demanding for clinical doctors or 

scientists. 

In order to make pyradiomics software more user friendly with the correct feature 

implementation of all features defined by the IBSI standard, we developed a graphic 

user interface (GUI) Radiomics extraction tool, PyRadGUI, that is easy to use and does 

not require any programming skills. 
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Methods 

This work is part of Big Imaging data approach for Oncology in a Netherlands India 

Collaboration (BIONIC) and “personal health Train for radiation oncology in India and 

the Netherlands' ' (TRAIN) project is approved by IEC of hospital as retrospective study. 

This software (PyRadGUI) is developed using Python open-source software on Windows 

systems. 

Software Development 

PyRadGUI front end was developed by using open-source software Python 3.6.520 and 

Python tk8.621 module was used for development of the GUI. Open source Plastimatch 

package 1.8.022 was used for DICOM to NRRD conversion of imaging data .and radiomic 

package in python; Pyradiomics 3.023, 24 was used for radiomic feature extraction. This 

software accesses DICOM image and ROI from a specific folder on the computer. First 

it converts the image and ROI in NRRD format using Plastimatch 1.8.0, subsequently it 

extracts radiomic features from the image and finally stores the output in comma 

separated values (csv) format in an output folder on the computer. The details of 

software are described below (figure 1). 

To start the program, we run python3 GUI_batch_radiomics.py in the command line or 

terminal. 

GUI, shown in figure 2, has been divided in two parts, i.e., left and right container. The 

left container contains 3 tabs which are used for customization and radiomic extraction 

and the right container displays the process and error if any. Once the GUI starts, the 

user must do the following before starting the radiomic extraction. 
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Figure 1. The batch process of radiomics features extraction from our tool. User has 

to select the input folder containing the DICOM Image and RT structure files. We can 

select the output folder and also customize the feature extraction process by changing 

values in the ‘.yaml’ file. 

 

1) Click on INPUT FOLDER BUTTON to provide path to input image folder containing 

multiple patients Image and RT structure files in DICOM format; 2) Click on OUTPUT 

FOLDER BUTTON to provide path to output folder; 3) Click on CUSTOMIZATION 

BUTTON to customize radiomic extraction. 

After starting the program, the user must select an input folder containing multiple 

patient Image and RT structure files in DICOM format. Next, the user must select an 

output folder and then change the feature extraction settings from the settings tab. 

Steps involved in customization settings:  

 1. Selection of Image type (Original, Laplace of Gaussian, Wavelet): To extract features 

on the original image, we can select Image type as original. If feature extraction has to 

be done on the transformed image, then we can select either LoG (Laplace of Gaussian) 

or Wavelet or both.  

2. Selection of feature types: We have to specify the type of features we want to extract. 

The default includes all 1093 features from all image types.  

3. Bin width selection: In the customization window one can select bin width as per the 

user requirement and default bin width is 25. We have used 25 bin-width for CT and 

MRI and 0.5 bin width for PET radiomic extraction.  

4. Sigma value for LoG features: In the customization window one can select sigma value 

for LoG features. We have selected default 1-, 2-, and 3-mm sigma values for radiomic 

feature extraction.  

5. Selection of Resampled pixel spacing: In the customization window one can select 

pixel spacing as desired by the user for radiomic extraction. We have used the default 

2×2×2 cubic mm pixel spacing. 
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Figure 2. A) shows main GUI of radiomic extraction module console. B) is the 

customization window displayed on clicking on the customization button on the 

console. 

 

After the settings have been customised, radiomics extraction can be started by clicking 

on the radiomics extraction button. The batch extraction starts by loading the DICOM 

folder and calls plastimatch. Plastimatch takes the reference CT folder and converts the 

input DICOM to NRRD (nearly raw raster data) format. It converts image to image.nrrd 

and Mask to mask.nrrd. Pyradiomics takes the converted nrrd image, nrrd mask and the 

settings specified by the user and then extracts the radiomics features and writes the 

output in csv format in the selected output folder. In this output csv file columns 

represent radiomic features and rows represent individual patients. First column of the 

file is the patient identification number. This csv file can be used for various analyses. 

Status of running of the process, success, failures and error report are displayed in the 

right container in GUI and processing reports are stored in the output folder as log files.  

System requirements:  
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We have developed and tested our software on two computer systems (Machines) using 

various software packages. The details of system information and software packages are 

shown in table 1. 

  Machine 1 Machine 2 

Processor intel i7 10th generation, 3.6 GHz intel Xeon E3-1220, 3.0 GHz 

Operating system Windows 10, 64 bits Windows server 2008 R2, 64 bits 

RAM 8 GB 8 GB 

Software packages Plastimatch 1.8.0 

Pyradiomics 3.0 

Python 3.6.5 

Python tkinter 8.6 

Plastimatch 1.8.0 

Pyradiomics 3.0 

Python 3.6.5 

Python tkinter 8.6 

Table 1: computer configuration and packages used for this study 

Patient cohort:  

In total 50 non-small cell lung carcinomas (NSCLC) patient’s PET/CT data with 

delineation and 20 chondrosarcoma patient’s MRI data with delineation who were 

imaged between 2014 to 2017 used for validation and performance testing of this 

software. Patient’s demographic data is shown in table 2. 100 NSLC patients' images 

were used for testing the batch processing. 

Disease Gender Total no. Median 

Age 

Image Type 

NSCLC Male 84 66 CT and PET Whole body 

  Female 16 53 CT and PET Whole body 

Chondrosarco

ma 

Male 17 46 MRI regional 

  Female 3 42 MRI regional 

Table 2: Demographic data of patient used in this study 

Software Validation:  

Software validation was performed by comparing Radiomic feature value extracted 

using PyRadGUI Workflow (PrGW) and the two reference workflows i.e.,Reference 

Workflow1(RW1) (3DSlicer +Pyradiomics) and Workflow2 (RW2) (Plastimatch 

+Pyradiomics). Same version of the Pyradiomic package and Plastimatch was used for 

all the workflows. 10 patients CT imaging data, 5 Patients PET imaging data and 5 
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Patients MRI imaging data were used for the comparison. PyRadGUI validation 

algorithm workflows are shown in figure 3. 

Reference Workflow1 (RW1): Individual patients DICOM image and ROI were loaded in 

3D slicer 3.0. First appropriateness of tumor delineation was checked by an experienced 

imaging physicist (15years experience). Image and ROI was converted in NRRD format 

and image saved as image.nrrd and ROI as label.nrrd in the patient's image folder. Again, 

NRRD image and label were loaded in 3D Slicer and appropriateness on tumor 

delineation was checked by the same physicist. Subsequently the radiomic feature was 

extracted and saved in CSV format using pyradiomic package on command prompt. 

Same process was repeated for all 20 patients’ data. 

Reference Workflow2 (RW2): DICOM image and RTStructure was converted in NRRD 

format using Plastimatch 1.8.0 and stored similarly as it is done in Workflow1. 

Subsequently radiomic features were extracted and stored in csv format similarly as it 

is done in workflow1. The algorithm used for manual extraction of radiomic features is 

shown in figure 3. All the patient’s radiomic feature data was arranged similarly as it was 

arranged in automated extraction of radiomic feature data as described in automatic 

extraction section. 

 

 

 

Figure 3. Figure shows the PyRadGUI workflow (PrGW) validation using PyRadiomic 

Reference Workflow1(RW1) and Reference Workflow2 (RW2) for radiomic extraction. 
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Statistical analysis:  

Our PyRadGUI workflow was compared with manual Reference Workflow1 and 

Reference Workflow2 as shown in figure 3. Inter class correlation (ICC) was calculated 

for all 1093 radiomic features to compare PyRadGUI workflow and Reference Workflow1 

using python code. As we were expecting the same result in PyRadGUI Workflow and 

Reference Workflow2, we used the EXACT function of Microsoft Excel 2007 software to 

compare both the data sets. The EXACT function compares two strings for all the 

characters if all the characters are the same in both the strings it gives true as output 

otherwise false. 

Performance testing of software: 

Performance of the software was tested for the batch processing on two machines 

mentioned in table 1. CT and PET DICOM data was used in the batches of 10, 20, 50 and 

MRI DICOM data was used in the batches of 10, and 20 The total time required for 

individual batch processing was recorded.  

  

  



161 | 
 

Results 

We successfully installed the software on two computers mentioned in table 1. We 

successfully ran the software (GUI) several times on both the systems. Software tabs are 

successfully able to assign input and output folders on the computer. Software is also 

successfully able to assign values through the customization button on both the 

computers. We were able to perform batch processing of up to 100 patients CT data on 

both the computers. 

1.1.   Software validation: 

The ICC value for the comparison of PrGW and RW1 was ICC =0.978(range: 0.9612-1.0) 

across all the modality. The ICC value for the comparison of PrGW and RW1 is shown 

in table 3. All the values (for 1093 radiomic features) in the validation steps for CT, PET 

and MRI features for PrGW and RW2 were TRUE it shows that we were able to extract 

same values for all the features for the same data across all the modalities by using this 

software as confirmed by the manual process.  

  ICC value (Mean±SD) 

  CT 

(1093 features) 

[10patient] 

PET 

(1093 features) 

[5patient] 

MRI 

(1093 features) 

 [5patient] 

 

Comparison: 

 PrGW vs. RW1 

0.983±0.0613 0.72±0.31 0.84±0.23 

PrGW vs. RW2 0.983±0.0613 0.72±0.31 0.84±0.23 

Table 3: table shows ICC value between PrGW and RW1 for CT, PET and MRI radiomic 

feature extraction 

Performance testing of software: 

On both the machines the batch processing performance was found to be satisfactory. 

The details of run time are shown in table 4. The tool was tested with different 

modalities images. 
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Modality Compute

r system 

Runtime for 10 

patients 

Runtime for 20 

patients 

Runtime for 50 

patients 

    Total 

time 

(min) 

Total 

time for 

one 

patient’

s data 

(sec) 

Total 

time 

(min) 

Total 

time for 

one 

patient’

s data 

(sec) 

 

Total 

time 

(min) 

Total 

time for 

one 

patient’s 

data (sec) 

CT Machine 1 13.3 81.2 17.4 53.4 62.0 75.2 

Machine 2 08.0 58.0 11.4 30.7 35.3 31.5 

PT Machine 1 24.0 180 63.4 190.2 150.3 180.3 

Machine 2 17.0 102.1 53.0 159.0 93.9 112.7 

MRI Machine 1 12.3 75.8 19.5 94.2   

Machine 2 01.1 7.7 02.3 7.6   

Table 4: Shows processing time required by both Machines for batch processing of 

radiomic extraction 
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Discussion 

Several licenced and open-source software are available for radiomic extraction, which 

have capability to extract radiomic features from two- or three-dimensional medical 

images.25-29 Shi Z. et.al have developed Ontology-guided radiomics analysis workflow 

(O-RAW) using Pyradiomics package and SITK Python package, which is also able to 

extract radiomics feature from DICOM image and RTSTRUCT in batch processing and 

store it in resource description framework (RDF) triple store.30 Another radiomic 

extraction software TexRAD has been used by many researchers is a GUI based system. 

TexRAD is a licensed package but unable to do the batch processing.26 This software has 

capabilities to display and review the image and delineate tumor manually but another 

drawback of this software is its inability to use existing delineation (RTStructure).31-32 

The RaCaT is radiomic software implemented the IBSI defined feature but not available 

as GUI tool as well as unable to perform batch processing. The PyRadGUI software is a 

GUI based tool and it can implement batch processing of DICOM image and RT 

structure for radiomic extraction. As this software is an extension of the pyradiomic 

package it inherently implements IBSI feature definition. It can extract radiomic 

features from hundreds of patient's images and RTStructure in batch processing mode 

and store the result in csv format. Although we have not compared the delineation 

converted to NRRD using Plastimatch and 3D Slicer, radiomic feature values 

comparison show excellent agreement (ICC=0.998±0.012) between two methods. As our 

results show, this software calculates radiomics features accurately and reliably. 

Radiomic extraction from PET and CT images take much longer time compared to MRI 

images, as PET and CT have whole body images [contains more data] and MRI has 

regional images [contains less data]. We have used Pyradiomics, an open-source 

software for radiomic extraction in our research infrastructure because this 

infrastructure can easily be replicated in other research centres. This software works as 

a plug-in and has no dependencies on pyradiomic package version, it can be upgraded 

as and when new pyradiomic package is available. Customization is the unique feature 

of this software, which provides flexibility to the user to customize the parameters in 

‘yaml’ file of the pyradiomics package. The ability of our software to customize and 

extract 1093 radiomic features from medical images in batch processing enables faster 

processing of radiomic extraction and storage of feature values in csv format. During 

the customization user can also select a specific group of features to be extracted. The 

advantage of this software is its GUI and GUI based customization of extraction, which 

allows performing the entire task from the GUI console by clicking the available buttons 

on the console. The csv format in which this software stores data where each column 

represents radiomic features and rows represent individual patient’s data makes it easier 

to be utilized for machine learning. It can also be concatenated with clinical data if 

required. Log files can be used for identifying any error that occurs during the 

processing. Error log of the individual patient’s data is stored which can allow us to 
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identify the specific data with error and we may take corrective action afterward. In our 

existing project we have also developed artificial intelligence (AI) infrastructure for AI 

based research in oncology and PyRadGUI is also an integral part of it. The PyRadGUI 

can be implemented as standalone as well as part of AI infrastructure for radiomic based 

research.  The portability and easy installation of this software will encourage the 

radiomic community to use this software and this software can be a valuable addition 

to radiomic based research infrastructure. 

There are also few limitations of this software like it is unable to display the image before 

or during the procedure. It requires DICOM image as well as RTStructure for radiomic 

processing. Future work will be to test this software on Linux operating system, add a 

statistical and prediction analytics module and image segmentation and display module 

to this tool. 
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Conclusion 

We successfully implemented and validated, PyRadGUI, a GUI based easy to use 

Radiomic extraction software. This software can easily be implemented on Windows 

systems. The extracted features using this software are meeting the IBSI standards. We 

have found this software to perform batch processing of up-to 100 patients and extract 

radiomic features and store it in ready to use csv format for machine learning. A 

documentation including the description of how to install and use this software can be 

found on GitHub. (https://github.com/Bionic-TMH/PyRadGUI) 
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Chapter 7: Implementation of Big Imaging Data 

Pipeline Adhering to FAIR Principles for Federated 

Machine Learning in Oncology 
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Abstract  

Cancer is a fatal disease and one of the leading causes of death worldwide. The cure rate 

in cancer treatment remains low; hence cancer treatment is gradually shifting towards 

personalized treatment. AI and radiomics have been recognized as one of the potential 

areas of research in personalized medicine in oncology. Several researchers have 

identified the capabilities of AI and radiomics to characterize the phenotype and 

thereby predict the outcome of treatment in oncology. Although AI and radiomics have 

shown promising initial results in diagnosis and treatment in oncology, these 

technologies are also facing challenges of standardization and scalability. In the last few 

years, researchers have been trying to develop a research infrastructure for federated 

machine learning that increases the usability of Big Data for clinical research. These 

research infrastructures are based on the Findable, Accessible, Interoperable and 

Reusable (i.e., FAIR) data principles. The India-Dutch “Big Imaging data approach for 

Oncology in a Netherlands India Collaboration” (BIONIC) is a jointly funded initiative 

by the Dutch Research Council (NWO) and the Indian Ministry of Electronics and 

Information Technology (MeitY), aiming to introduce radiomic-based research into 

clinical environments using federated machine learning on geographically dispersed 

collections of FAIR data. This paper described a prototype end-to-end research 

infrastructure implemented through the BIONIC partnership into a leading cancer care 

public hospital in India. 
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Introduction 

Cancer is a fatal disease and is the second leading cause of deaths worldwide. According 

to GLOBOCAN, cancer accounted for about 10 million deaths in 2020 [1]. Cancer 

treatment is complex and requires multidisciplinary collaboration [2]. Gradually, the 

paradigm in cancer treatment is shifting towards more personalized medicine [3]. While 

the personalized approach is gaining ground in oncology, artificial intelligence (AI) is 

also being applied to support personalized treatment [4]. 

There is a vast spectrum of treatment-related data i.e., imaging, pathology, biochemical 

measurements and blood tests, genetics and clinical observation, being generated every 

day during cancer treatment and recorded in electronic format. The data are stored in 

various parts of a hospital information system (HIS) [5]. Medical imaging such as 

computed tomography (CT), positron emission tomography (PET), magnetic resonance 

imaging (MRI), and single-photon emission tomography (SPECT) play an integral role 

in cancer diagnosis and treatment [6]. These constitute the majority proportion by 

volume in a typical HIS. Medical images are stored in specialized high-throughput 

storage devices known as Picture Archival and Communication Systems (PACS) [7]. 

Imaging features, along with a wide spectrum of histological and clinical features, have 

been explored as prognostic indicators to predict the future outcomes of cancer 

treatment. “Radiomics” is a major research development in recent years that attempts 

to define a digital “fingerprint” of cancer [8]. Radiomics involves high-throughput 

mathematical extraction of structured quantitative data (i.e., features) from qualitative 

clinical imaging [9]. A radiomics signature, meaning a set of single features carrying 

either prognostic or predictive value, can augment conventional visual interpretation 

by human experts, and reveal deeper insights into structure, behaviour, and therapeutic 

response of cancer [10-14]. However, the vast volume of features extracted by radiomics 

can also be unwieldy to manage.  

The implementation of AI research in oncology touches upon many problems; these 

include: a) data retrieval from a HIS and syntactic standardization of data, b) 

standardization of radiomics extraction, c) incorporation of radiomics models into 

clinical practice, d) maintaining persistent and inter-operable descriptions of the data, 

and e) archival of data in such a way that is findable and accessible to future researchers. 

Some of the aforementioned issues can be ameliorated by following FAIR data 

principles. Kalendralis et al. [15] have shown how semantic ontologies can be used to 

apply syntactic standards to, and provide descriptive metadata about feature extraction 

methods on top of, existing medical data but without editing the original source data 

itself. Semantic Web standards based on the Resource Descriptor Framework (RDF) can 

be used to store data with persistent unique identifiers, in such a way that is completely 

agnostic to the underlying database schema in the original data source [16]. This 
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therefore allows powerful query, filter and joining commands in the SPARQL language 

that can link disparate data sources together. 

Above and beyond the FAIR principles, scientific collaboration can be encouraged at 

the health systems and institutions level by homogenizing data collection in clinical 

routine procedures and allowing multi-institutional sharing of data [15]. 

However, actual sharing of patient-level data requires additional contractual procedures 

associated with data ownership, control, access, permitted usage and protection of 

patient confidentiality. Such legal needs vary immensely between jurisdictions, for 

example, The Netherlands and India [18]. The need to share individual patient data may 

be side-stepped via a privacy-preserving distributed learning approach using federated 

(decentralized) datasets for statistical modelling [19]. Researchers have demonstrated 

the feasibility of federated learning over a variety of open and non-open-source 

infrastructures, showing that models can be trained on large datasets, are equivalent to 

results on centralized data and can support radiomics model training and validation [19-

24]. The RDF-based FAIR data representation forms the basis of distributed learning 

systems that were able to operate with multi-site geographically-dispersed data sources 

[25-28]. 

In this work, we explain how a Big Imaging Data processing pipeline has been 

implemented in Tata Memorial Hospital (TMH) in Mumbai, India, with the support of 

BIONIC partners. We discuss how FAIR has been used as a guiding principle, such that 

data is available for internal research as well as for privacy-preserving federated machine 

learning. While the solutions presented needed to be intrinsically adapted to TMH, the 

intention is to demonstrate how similar technologies could be implemented in other 

hospitals that make private data available for federated learning studies. 
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Methods 

Overall organization of the implementation 

The overall implementation scheme of the pipeline is shown in Figure 1. This pipeline 

serves as the template for preparing data in a FAIR manner, using RDF and ontologies 

in the data aggregation/integration layer. Prior to this, we show how clinical, imaging, 

and text report data need to be individually extracted from different sections of the HIS 

using data stream-specific workflows, and how standardization and meta-data need to 

be applied within each of these stream-specific workflows. 

 

 
 

Figure 1: Schematic diagram providing overview of the BIONIC big imaging data 

processing pipeline. 

 

Datasets 

Health IT infrastructure comprises multiple software applications that are required to 

manage day-to-day clinical activities. The clinical data, non-image diagnostic data, 

radiologist reports and radiological images are stored in the HIS as sub-systems; a 

clinical information system (CIS), diagnostic information system (DIS), radiological 

information system (RIS), and PACS, respectively. Table 1 shows the types of data within 

each of the aforementioned subsystems. Imaging data and its associated metadata are 

stored in a PACS using the industry-standard Digital Imaging and Communications in 

Medicine (DICOM) format.   

 

Patient Consent 

For retrospective non-experimental studies, the institutional policy was to apply for a 

consent waiver through the Institutional Ethics Committee (IEC). The IEC reviews the 

research study and gives approval (including any necessary usage conditions) for private 

data of hospital subjects to be harvested from the HIS. 
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Information Systems Nature of Data 

Clinical Information 
Systems (CIS) 

Demographic data, treatment data and follow-up data including clinical 
baseline factors such as TNM stage, pleural effusion etc. 

Diagnostic Information 
Systems (DIS) 

Pathology report, Immunohistochemistry (IHC) Report and Blood 
Report that are based on the blood and tissue samples 

Radiological information 
systems (RIS) 

Radiology Report and Nuclear Medicine report that includes Imaging 
related diagnostic findings  like malignancy, non-malignancy, disease 
progression 

Table 1: Health IT systems and attributes 

Data Extraction  

In-house scripts were developed at TMH in Python programming language to customize 

and control the data extraction from the HIS subsystems. The data extraction is covered 

in two major modules – A) non-imaging data for the CIS, RIS and DIS streams (see 

Figure 2), and B) imaging data from the PACS (see Figure 3). 

A. Non-image data 
The non-image data extraction workflow shown in Figure 2 from CIS, DIS and RIS 

requires detailed understanding of the internal schema in each system. Our procedure 

also includes checking authorization to access the data elements (in accordance with 

the IEC approval). The customizable parts refer to mapping of the data elements to 

specific locations in the HIS and extraction routines to retrieve values from the HIS. 

The data harvested from the HIS will rarely be complete in all aspects. There is generally 

a high prevalence of “missing values”. The customization also covers how missing values 

are handled. For instance, the missing values can be initially filled in as ‘NA’ text strings. 

Next specific filtering rules set by the clinical user for a given study can be applied, such 

as:  

a. If 20% or more of values in the data field is missing, then the data field may be omitted. 
b. Or if 20% of the data fields for a given subject is missing, the subject may be 

omitted. 
c. Or if a value is missing in a strictly mandatory data field, such as “gender” or “survival 

status”, then the subject may be omitted. 
These filtering steps are performed to ensure a reasonably high degree of data 

completeness coming from the harvesting process, without entirely relying on complete 

case analysis. Additional filters, imputation and exclusion rules can be manually added 

into the workflow if required. Lastly, Protected Health Information (PHI) is obscured 

by using a lookup key file to replace identifiable information (supplementary material). 

The result of extraction of non-image data is a de-identified plain text file in comma-

separated value (CSV) format. 
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Figure 2: Overview of the non-image data extraction module. 

 

B. Imaging data 

The image data extraction workflow is shown in Figure 3. Individual subjects imaging 

studies comprising of CT, MRI and/or PET need to be manually “pushed” from the PACS 

or retrieved using one of the integrated image management workstations provided by a 

vendor, e.g. Philips Intellispace Discovery (research-only build; Philips Medical System, 

Eindhoven, The Netherlands) or Advantage 4.6 (General Electric, Waukesha WI, USA. 

The native format for medical images was retained as DICOM.  

For BIONIC data preparation, we were specifically interested in the image data and the 

region-of-interest annotation file “RTSTRUCT”. The RTSTRUCT files were generated in 

the vendor workstations using radiological annotation tools. The Philips Intellispace 

Discovery platform permits the option to connect with other tools, such as a radiomics 

extraction tool or a deep-learning automated segmentation algorithm. As before, PHI is 

obscured using the same lookup key file as for the non-imaging data.  
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Figure 3: Overview of the image data extraction module. 

 

We implemented a radiomics feature extractor in Python language based on ORAW 

[29] but we used the Plastimatchv1.9.0 [30] library to convert a gross tumor volume 

(GTV) region of interest from each RTSTRUCT file into a binary mask. The image and 

corresponding binary mask were passed to Pyradiomics v2.1.2 [31-33] to compute 1093 

features. Features consisted of 13 shape, 17 intensity-histogram and 73 textural features. 

Intensity-histogram and textural features were re-computed after applying Laplacian of 

Gaussian (LoG) filters with three widths (total 270 features) and wavelet decomposition 

filters at 8 levels (total 720 features). Details about the features and filters are available 

on the online Pyradiomics documentation. Parameters of radiomics extraction were 

controlled via configuration (.yml) files for each of Plastimatch and Pyradiomics. The 

radiomics features were saved as CSV format (figure 4). 

 

 
Radiomics Feature Extractor 

Image Derived Features 

Image data Extract From PACS 

Image Data Preparation 
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Figure 4: Radiomics extraction pipeline  

 

Data Aggregation 

The above steps have defined how clinical features and radiomics features have been 

separately extracted de-identified and then pre-processed as individual CSV objects. 

The intermediate step of saving these CSV objects allows additional quality assurance 

and inspection of the data for any errors or inconsistencies that had escaped 

interception, particularly for the clinical factors. At the moment, this is being done 

manually by domain experts and researchers but we leave the option open for future 

automation (see Discussion later). The CSV format made it amenable to be copied into 

SPSS or other data management tools for additional cleaning and filling of missing 

values (where possible). 
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Data integration, standardization and inter-operability are performed using an 

ontology-guided semantic mapping procedure. Figure 5 indicates the ontologies that 

are applied to the individual data streams; the Radiation Oncology Ontology (ROO) [34, 

35] and the National Cancer Institute Thesaurus (NCIT) [36] for clinical and treatment-

related features, an open-source DICOM ontology [37] for DICOM imaging metadata 

and the Radiomics Ontology (RO) [38, 39] for the radiomics features that follow the 

Image Biomarker Standardization Initiative recommendations [40, 41]. 

Each of the CSV objects were converted to RDF format using an in-house Python script 

using the rdflib 5.0.0 [42] library with different target ontologies as defined above. The 

DICOM headers were extracted directly into RDF (without passing through an 

intermediate CSV) via a plug-in provided on Philips Intellispace Discovery. 

 
 

Figure 5: Illustrated that the clinical, DICOM metadata and radiomics data are converted 

to RDF format and integrated as linked data in a local SPARQL repository. 

 

The final destination of the generated RDF data was an Apache Jena Fuseki server [43] 

installed as a SPARQL endpoint inside the hospital IT firewall. The SPARQL query 

language is then used to access the RDF triples that are archived in the SPARQL 

endpoint [44]. The RDF triples are maintained in a persistent online graph database 

through a TDB triple store client application [45], which also supplies a user interface 

through which remote query of RDF data is possible using a SPARQL v1.1 compliant 

engine called ARQ [46]. SPARQL queries are entered in ARQ to retrieve the data from 

the RDF store [46]. 
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Results 

Given a large number of Python scripts, management of the data pipelines can 

potentially become cumbersome. In collaboration with BIONIC partner C-DAC, a 

prototype workflow management system has been developed that integrated some of 

the scripting work behind a graphical web interface (dashboard). This was done to try 

to reduce the level of technical complexity for a typical clinically-minded researcher. 

Figure 6 provides a cursory overview of the functionality implemented to date in the 

prototype BIONIC dashboard at TMH. This includes views for managing data, for task 

logging and for script execution status reports. The dashboard provides interfaces to the 

user to inspect clinical and image derived features directly from CSV files or DICOM 

folders. Backend subroutines can call on internal scripts where needed to extract 

radiomics features and export the data directly into RDF for immediate querying using 

a built-in SPARQL interface. We hasten to add that such work is still a developmental 

prototype at the present time; however more functionality and scripting integration are 

planned in future. 

 

 
 

Figure 6: Home screen of a prototype web-based dashboard for the BIONIC project. 

 

Figure 7 shows the user-friendly SPARQL query web interface that allows filtering and 

joining operations on RDF data residing in the local RDF data endpoint. As an example, 

that illustrates the power of SPARQL queries to retrieve and join data from disparate 

sources, we provide an example in Textbox S1 in the Supplementary Materials. In this 

demonstration query, we retrieved patients’ age and biological sex from the clinical 

RDF, then linked it with two radiomics features in the Radiomics RDF. The join was 

achieved via the patients’ ID and patients’ CT scan identifier stored in the DICOM 
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metadata RDF. The result of such a query is shown in Figure S1 also in the supplemental 

material. 

 

 
Figure 7: Close up view of the SPARQL querying interface, where a researcher may enter 

filtering and linking queries to locate data in the RDF database. 
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Discussion 

The purpose of this paper is to describe a medical imaging data processing pipeline 

linking clinical features, imaging metadata and extracted radiomics features. The goal 

of the BIONIC collaboration is to help get data ready for federated machine learning 

and multi-centre collaboration at large scale, but without forcing anyone to share 

identifiable data. The lynchpin of this work is thus to integrate disparate sources of data 

in such a way that is agnostic to the internal schema of the databases, language, local 

coding, etc. Semantic ontologies and mapping scripts were central to linking hospital 

data together, guided by the FAIR management principles. 

Though the procedures presented here need to be specifically adapted to TMH, our 

intention was to demonstrate how similar procedures might be implemented in other 

hospitals that can make vast amounts of private data more efficiently interoperable and 

re-usable in research. 

Patients’ demographics or clinical details were reasonably directly findable on the local 

HIS. We designed the data extraction module to be customizable to harvest project-

dependent data from separate subsystems within the HIS; assuming appropriate 

regulatory permissions have been given. This level of automation could search 

thousands of patients’ data fields within minutes. At the present time, quality assurance 

and searching for missing values still unavoidably needs expert human intervention, 

however the utilization of such automated data collection procedures had already 

significantly reduced time and effort in finding relevant data. 

Several licensed and open-source software have been made widely available for 

radiomic extraction [9, 47-50], but close integration with clinical data pipelines has not 

been previously demonstrated in detail. This work demonstrates that is indeed feasible, 

with simple connector scripts, to integrate such radiomics software as “plug and play” 

modules into an imaging research workflow that can consume clinical real-world 

images close to its source.    

While it is widely accepted that AI models require vast amounts of data for training, it 

has not been so well established as to how model training can be integrated with on-

the-ground clinical record keeping systems such as the HIS and its multiple subsystems 

[51]. Interoperability of the data and richly descriptive metadata will become ever more 

critical, since AI research still faces significant challenges in independent validation; AI 

models developed in one setting with one set of data seem rarely able to inter-operate 

smoothly with data from an independent setting, and hence AI model performance is 

generally degraded during independent external validation [52-54]. The 

recommendation to pool data together or share data to centralized repositories does 

not adequately acknowledge the administrative and legal barriers that stand in the way 

with regards to sharing individual-level data. This is the foundation of our interest in 

rendering data in such a way as to be more inter-operable in federated machine learning 

projects. 
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However, there remain some major challenges that we have not yet addressed in the 

present work. First, there exists extreme heterogeneity in HIS schema and design, such 

that the low-level extraction scripts that interface with the HIS and its components are 

expected to be very difficult to clone from one hospital to another; in this scenario, one 

size certainly does not fit all. Great effort has been expended in TMH in order to 

customize the data harvesting procedures to the systems and schema that are available 

locally. It is likely such adaptation efforts need to be repeated in every hospital, unless 

vendors of HIS and related electronic systems step in with some universally and strictly 

applied standards. Clinical medical imaging already has the global DICOM standard, 

which aids significantly with information retrieval and sharing. While HIS vendors are 

certainly investing in query and data retrieval tools that are compliant with FHIR and 

HL7, progress and adoption remains slow. 

Secondly, even assuming that data can be rapidly harvested from the HIS, it remains a 

major effort to impose syntactic and semantic interoperability on the data, so that it can 

be universally understood by any person and, more importantly, by any machine 

algorithm. In this work, we have used the power of semantic ontologies to harmonize 

terminology and attach metadata to data, such that these “unique identifiers” can be 

used to construct filtering and linking queries over heterogeneous data sources. This 

design task remains highly time consuming and requires high levels of expertise, as well 

as knowledge of the clinical domain. With rapid development of the Natural Language 

Processing (NLP) domain within AI and machine learning, it is expected that emerging 

NLP technologies can eventually be deployed to task of the semantic labelling of data. 

This is related to another limitation of the present work that remains to be addressed 

in detail; much of clinical and diagnostic data exists as natural free-flowing human 

language texts (so-called “free text”). Such narrative descriptions of disease - its 

diagnosis, development and outcome – is recognized as a rich source of potentially 

clinically actionable information, but we have presently placed the major part of our 

initial efforts on structured information encoded into specific data fields in the HIS. We 

acknowledge therefore that our work is not yet complete, and better utilization of 

unstructured free-text information must be achieved in the near future by exploiting 

NLP. 

With regard to FAIR principles, we need to consider how close we have managed to 

come to the FAIR principles, while also recognizing gaps in implementation that need 

to be closed in future [55]. 

In terms of findability, we have successfully transitioned from highly localized data 

retrieval from the HIS into an RDF database with persistent unique identifiers based on 

public domain ontologies, including identifiers for richly descriptive metadata for 

images and radiomics features. However, due to the privacy sensitive nature of the data, 

patient data and metadata of such detailed nature cannot be placed online, even in de-

identified form. In its place, we have not yet developed an institutional protocol to make 

our data repository findable without betraying confidentiality. 
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With regards to accessibility, we have discussed our aforementioned strategy favoring 

privacy-preserving federated learning. Our present vision is that data accessibility 

matters need to be defined within formal research collaborations, each with focused 

clinical questions and contractual legal arrangements pertaining to use of real-world 

patient data. 

In the matters pertaining to inter-operability and re-usability, we propose that our data 

integration with RDF already applies a high degree of general understandability to the 

data, which in turn allows us to re-use patient data garnered from routine encounters 

and provision of standard care. At this time, specifications of lexica and ontologies used, 

as well as conditions of using the data, are all governed within a formal multi-party 

collaboration structure. 

Finally, the aforementioned medical imaging data pipeline was intended to make data 

FAIR for internal clinical research, in addition to being the necessary preparatory steps 

to making data FAIR for federated international collaboration. To this end, we felt the 

development of a prototype dashboard for management, process monitoring, and 

linked data queries, and presenting this through a user-friendly internal browser-based 

interface, is an important step towards usability and clinical deployment. Whereas web-

based database SPARQL query is also possible for authorized collaborators using web-

based query tools.  

Several state-of-the-art ETL and research data warehouse are described in literature, 

which are designed for customized extraction, ontological mapping and the automated 

generation of SQL statements [56-59]. These data warehouses also allow the storage of 

heterogeneous medical data as ours but unlike uses relational structured database. The 

ETL tools of these data warehouse extract data from structured table of HIS, 

transforming them to a given target structure with the help of ontology and finally load 

the source system contents into a research data warehouse. Whereas our ETL module 

is able to extract data from EHR without knowing the relational database structure and 

table directly through web access and free text data mining provides more scalability to 

the module. Ontology mapped triples allows SPARQL query independent of local 

terminology. 
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Conclusion 

We implemented a medical imaging data processing pipeline linking clinical factors, 

imaging metadata and extracted radiomics features. This was done for a comprehensive 

cancer hospital in India (TMH) as a demonstration of the BIONIC Indo-Dutch research 

collaboration. Data integration across HIS subsystems was guided by the FAIR data 

principles; specifically we relied on domain semantic ontologies for terminology 

standardization, knowledge representation and internal data linkage. We harvested and 

then stored clinical data, DICOM imaging metadata and extracted radiomics features 

as an RDF repository. A browser-based dashboard was also provided to facilitate usage 

and future deployment as a possible clinical research environment. This local RDF-

based system is synergistic with, and readily connected to, a multi-centre federated 

machine learning infrastructure. 
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Supplementary Materials 
Concept mapping with ontology 

We have manually created semantic relationships between medical concepts with target 

ontology concept/id. The mapping of the source concept of our data was performed 

with the ontology connects of the target ontology. Supplementary table 1 shows the 

example of mapping of clinical and radiomic concepts with target ontology concept.  

 

Local concept  Ontology concept Ontology ID  

Patient Patient ncit:#C16960  

patient id patient id ncit:C164337 

gender  gender  roo: P100018  

age  age  roo: P100042  

scan  scan  roo: P100284  

small cell lung carcinoma  

(SCLC)  

small cell lung carcinoma  

(SCLC)  

roo: P100021  

non small cell lung 

carcinoma  (NSCLC)  

non small cell lung 

carcinoma  (NSCLC)  

ncit:C2926  

mesh volume  mesh volume  ro: RNU0  

 

Supplementary table 1: table shows the mapping of local concept with ontology concept 

  

 
Supplementary figure S1: Overview of the mapping based on ROO/NCIT/RO id to the 

local concept.  
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Anonimization of patient personal information  

We have followed the HIPAA Privacy Rule to deidentify protected health 

information (PHI).  Following patient identifiers were deidentified using manual 

methods. Deidentification of imaging data was performed on image processing 

workstations.   

Patient identifiers: Patient Name, Patient number, Address, Telephone/Mobile 

numbers, Email addresses, Social security numbers, Medical record numbers, Biometric 

identifiers, Health plan beneficiary numbers, Full-face photographs and any 

comparable images, Account numbers 

 Textbox S1. Example of a SPARQL query linking clinical factors (age and biological sex) 

with radiomics features (intensity histogram feature 10th percentile and shape feature 

mesh volume). 

prefix ns1: http://www.radiomics.org/RO/ 
prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# 
prefix rdfs: http://www.w3.org/2000/01/rdf-schema# 
prefix xml: http://www.w3.org/XML/1998/namespace 
prefix xsd: http://www.w3.org/2001/XMLSchema# 
PREFIX ncit: http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl# 
prefix roo: http://www.cancerdata.org/roo/ 
 
select ?patient_id ?rad_feature1 ?value1 ?rad_feature2 ?value2 ?age ?sex   
where 
{ 
?patient_idrdf:type ncit:C16960; # patient id is anncit type person 
roo:P100000 ?ac1. # Linking patient’s age  
?ac1 roo:P100042 ?age. 
?patient_id roo:P100018 ?sex1. # Linking patient’s sex 
?sex1 roo:local_value ?sex. 
?patient_id roo:100284 ?scan.  # Linking patient’s scan 
?scanrdf:type ncit:C17999; 
ns1:0310 ?imageVolume. 

 
?imageVolumerdf:type ns1:0271;  # Linking radiomics image volume 
ns1:0298 ?imageSpace. 
?imageSpacerdf:type ns1:0225;  
ns1:0296 ?rad_feature1. 
 
?rad_feature1ns1:010191 ?value1.  #Retrieving associated feature value 
?rad_feature1rdf:type ns1:GPMT. # Selecting feature set from class id “GPMT” i.e. 
“firstorder_10Percentile” 
filter( regex(str(?rad_feature1), "wavelet-LHH_firstorder_10Percentile" ))  # Filtering 
by the radiomics feature by name. 

http://www.radiomics.org/RO/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/XMLSchema
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl
http://www.cancerdata.org/roo/
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?rad_feature2ns1:010191 ?value2.#Retrieving associated feature value 
?rad_feature2 rdf:type ns1:RNU0.#Selecting feature from class id “RNU0” i.e. “mesh 
volume” 
filter( regex(str(?patient_id), "BW" ))      # Filtering by presence of text in case 
number 
} 
 
limit 5#arbitrarily fivesubjects purely as a demonstration in this example 

 

 

 
Supplementary Figure S2. Example output of a data integration query based on the 

SPARQL language, on the internal RDF data storage (“endpoint”), illustrating the 

returned output from the graphical user query interface of the search command given 

in Textbox S1. 
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Chapter 8: Radiomics Signature: A Potential Imaging 

Biomarker for the Prediction of Overall Survival in 

cervical cancer 
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Abstract 

Background: The role of artificial intelligence and radiomics in prediction model 
development in cancer has been increasing every passing day. Cervical cancer is the 4th 
most common cancer in women worldwide contributing 6.5% of all cancer types. The 
treatment outcome of cervical cancer patients varies and individualized prediction of 
disease outcome is of paramount importance.   
Purpose: Purpose of this study is to develop and validate the digital signature for 5-years 
overall survival prediction in cervical cancer using robust CT radiomic and clinical 
features. 
Materials and Methods: Pretreatment clinical features and CT radiomic features of 68 
patients, who were treated with chemoradiation therapy in our hospital were used in 
this study. Radiomic features were extracted using an in-house developed python script 
and pyradiomic package.  Clinical features were selected by the recursive feature 
elimination technique. Whereas radiomic feature selection was performed using a 
multi-step process i.e., step-1: only robust radiomic features were selected based on our 
previous study, step-2: a hierarchical clustering was performed to eliminate feature 
redundancy, and as final step-3: recursive feature elimination was performed to select 
the best features for prediction model development. Four machine algorithms i.e., 
Logistic regression (LR), Random Forest (RF), Support vector classifier (SVC), and 
Gradient boosting classifier (GBC) were used to develop 24 models (six models using 
each algorithm) using clinical, radiomic and combined features.   Models were 
compared based on the prediction score in the internal validation.    
Results: The average prediction accuracy was found to be 0.65±0.05, 0.72±0.09, 
0.77±0.05 for clinical, radiomic, and combined models respectively. The average 
prediction accuracy was found to be 0.69±0.07, 0.79±0.07, 0.71±0.09, 0.72±0.06 for LR, 
RF, SVC and GBC models respectively. 
Conclusion: Our study shows the strong correlation between robust radiomic 
signature and 5-year overall survival in cervical cancer patients.  
 
Key words: cervices, cervical cancer, FIGO, prediction model, radiomics, deep learning 
 

  



193 | 
 

Introduction 

Cancer is one of the fatal diseases and considered as the second most lethal disease 

across the world [1]. As per Global Cancer Statistics 2020 (GLOBOCAN 2020), cervical 

cancer is 4th commonest cancer worldwide, 6th commonest cancer in developed 

countries and 2nd commonest cancer in developing countries in female population [2, 

3].  The cervical cancer related mortality rate among women varies across the globe and 

there is a distinct difference in developed and developing countries [2-4]. Breast and 

cervical cancer are the leading causes of cancer death in 103 and 42 countries, whereas 

lung cancer is leading causes of cancer death in 28 countries [1-4]. In developing 

countries, cervical cancer is the second leading cause of cancer related death, whereas 

in developed countries it is the sixth leading cause [1-7]. Cervical cancer management 

has been approached at two fronts i.e. prevention or early detection of cervical cancer 

by implementing screening programs and treatment of cervical cancer using evidence 

based medicine [8-14].  The incidence of cervical cancer in developed countries has 

reduced to half between 1972 to 2018 [8-10]. The reason for reduced incidence and 

mortality rate due to cervical cancer in developed countries can be attributed to 

effective implementation of cervical cancer screening and HPV vaccination programs.  

Due to availability of several new technologies or advancement in existing technology 

like CT, PET/CT, ultrasound and MRI has led to early diagnosis and better staging of 

the disease leading to improvement in overall survival and quality of life index [11-14].  

The staging of cervical cancer is very complex and technology demanding. The staging 

system developed by the International Federation of Obstetrics and Gynecology 

(Fédération Internationale de Gynecologie et d'Obstetrique, or FIGO) is used for 

cervical cancer. Bhatla N. et.al. has published the recently revised FIGO staging of 

carcinoma of the cervix uteri to differentiate the various stages and substages of the 

disease [15]. Improvement in diagnostic accuracy due to the implementation of newer 

technologies like PET/CT, MRI, transvaginal ultrasound has improved cervical cancer 

staging and treatment in the last few years.   As conventional treatment has a very low 

response rate of around 20 to 30 percent that proves; one size fits for all principle usually 

doesn’t work in cancer management [15-17]. In the last few years, diagnostic modalities 

like immunohistochemistry (IHC), genetic profiling, tumor marker studies have 

established the fact that there are variations in disease in the same disease in different 

patients [18]. Hence, cancer treatment is gradually shifting towards personalized 

treatment or tailored treatment and replacing conventional treatment [19].  With the 

growing use of various computer-aided technologies in oncology in the last decade, the 

utilization of these technologies has taken the forefront in cancer management 

worldwide [20]. These technologies are being utilized for diagnosis, treatment planning, 

interim evaluation, and follow-up of the disease. In the last few years as the effort is 

being taken to provide personalized treatment to the patients, the ability of these 

technologies is being tested to predict treatment outcome, toxicity profile, and 
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treatment selection for patients. Utilization of available technologies like machine 

learning, radiomics, genomics, etc. for enabling the personalized treatment, especially 

those at high risk and are responding very poorly to standard treatment protocols, is of 

great interest for the clinicians [20]. Such a technological-driven system has shown 

promising results in the selection or modification of treatment plans, to improve the 

treatment outcome [ref needed]. Major types of ML techniques include Decision Tree 

(DT), Support Vector Machine (SVM), Artificial Neural Networks (ANN), Naïve 

Bayesian Classifier (BC), Bayesian Network (BN), K-Nearest Neighbor (KNN) and 

Random Forest (RF) have been used for nearly three decades in cancer detection [21-

25]. In cancer prediction modeling, the main three predictive tasks are the prediction of 

cancer susceptibility, the prediction of cancer recurrence/ metastasis, and the 

prediction of survival. Several such technology-driven prediction models have been 

developed, tested, and utilized in the last decade in screening programs and the 

treatment of cervical cancer [26-39]. However, several prediction models have been 

developed using clinical and radiomics features predicting survival outcomes but the 

stability of radiomic features has been questioned by many researchers.  In our earlier 

study, we have performed a detailed stability study of CT radiomic features and found 

around 100 robust radiomic features. In this study, we have tried to find the prediction 

capability of robust radiomic features with and without clinical features in predicting 5-

year overall survival. This study is also the first of this kind from India. 
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Methods 

Patient demographics:  

The study was approved by the institutional ethics committee as a retrospective study 

with a waiver of consent. In total 68 patients were included in this study and had ages 

ranging 25–86 years (median: 50 years), at the time of diagnosis. All patients were 

diagnosed with cervical cancer between 2005 and 2009 and treated with definitive 

chemoradiotherapy or concomitant chemo and radiation therapy were included in this 

study. External beam radiation therapy (EBRT) dose range between 43.2 and 60.4 Gy 

(median=50Gy) was considered as radiotherapy procedures. Disease staging was 

performed according to the International Federation of Gynecology and Obstetrics 

(FIGO) classification. The numbers of patients in various FIGO stages in this cohort of 

patients are provided in table 1. The majority of the patients (85%) had squamous cell 

carcinoma and only a few patients (15%) had other histology. From diagnosis to the last 

follow-up, the meantime was 72 months. In our study, we have aimed to establish the 

correlation between radiomics/clinical features and overall survival. The initial 

characteristics of the study population are given in table 2.  

Characteristics Patients 

Sample size 68 

Age 56 (Range: 45-72) 

Sex  

Male  0 

Female 68/68(100%) 

Tumor type  

Cervix cancer 69/69 (100%) 

FIGO stages  

Stage 3 20 

Stage 4 48 

Pelvic Node  

Yes 42 

No 26 

Retroperitoneal Node  

Yes 58 

No 10 

Surgery   

Yes 15 

No 53 

Table 1: Demographic details of the study population. 

20 clinical pathological and radiological features were extracted from electronic health 

records as approved by the hospital ethics committee. Pretreatment PET/CT scans were 
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also downloaded from the PACS for radiomic extraction. 1093 CT radiomics features 

were extracted from the CT series of PET/CT scans.   

PET/CT imaging procedure  

All of the baseline PET/CT scans were performed using Gemini TF16 or Gemini TF64 

PET/CT scanners (Philips Medical Systems, Netherlands). F-18 FDG 

radiopharmaceutical was administered to the patient as per institutional protocol i.e. 4-

5MBq/kg body weight after 6hrs of fasting. Scans were performed between 60 min to 

100min after administration of the radiopharmaceutical.  

Contrast-enhanced CT scans were performed after the injection of 60 to 80 ml of non-

ionic contrast using the protocol mentioned in supplementary table 1. CT images were 

reconstructed using the Filtered back project (FBP) reconstruction algorithm.  

 

Radiomic extraction: 

DICOM images of PET/CT scan were downloaded on Philips Intellispace Discovery 

(research-only build; Philips Medical System, Eindhoven, The Netherlands) from PACS. 

The tumor was contoured using 3D contouring software installed on Intellispace 

Discovery by a 15year experienced medical physicist and checked & approved by a 30 

year experienced nuclear medicine physician. The contours were saved as RTStructure 

by the name of GTV. Subsequently, the image and GTV were transferred to the research 

computer for radiomic extraction.  

Images and GTV were converted into NRRD format using Plastmatch software [41]. 

Thereafter following pre-processing steps were applied using an in-house developed 

python script and the Pyradiomics package [42] for radiomic extraction.  Resampling: 

Images were resampled using a 2 x 2 x 2 mm cube isotropic voxel. Filtering and 

transformation of image:  From original images three sets of filtered images were 

produced applying Laplacian of Gaussian (LoG) filters with 1, 2, and 3mm sigma values.  

We also generated 8 sets of wavelet transformed images using eight combinations of 

high pass and low pass wavelet filters [42-44].  

A total of 1093 radiomic features were extracted from 12 sets of images (1set original 

images, 3 sets LoG images, 8 sets of Wavelet Images) and corresponding GTVs [42]. 

Prediction algorithm used: 

The commonly used machine learning algorithms for classification problems i.e., 

Logistic regression (LR), Random Forest classifier (RF), Gradient boosting classifier 

(GBC), and Support vector classifier (SVC) were used for prediction model 

development. 

Feature selection:  

The multi-step process was adopted for feature selection in this study. The following 

subsections describe the various methods adopted for feature selection. The steps 

utilized for feature selection are summarized in figure 1. 

Clinical features selection: 
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Considering the completeness of data 13 clinical features were selected for further 

processing. Spearman correlation test was performed to find correlating features and 

reduce the redundancy among the features. The association of clinical features with 

outcome i.e., 5years overall survival (OS) was carried out using a t-test. Finally, recursive 

feature elimination (RFE) methods using logistic regression (RFE-LR) and random 

forest (RFE-RF) were applied to select two sets of features for prediction model 

development.    

Radiomic Feature selection:  

We opted for a two-steps process to select the best radiomic features for OS prediction 

out of 1093 radiomic features extracted from CT images.  In the first step of feature 

selection, we included 121 stable radiomic features for the next step of feature selection 

based on our earlier radiomic stability study [53]. In the second step of feature selection, 

we performed a Spearman correlation test to identify redundant features followed by 

recursive feature elimination (RFE) methods using logistic regression (RFE-LR) and 

random forest (RFE-RF) were applied to select two sets of features for the prediction 

model development.    

Combined (Clinical + Radiomic) features selection: 

The top 7 clinical features and top 15 radiomic features which were identified in clinical 

and radiomic feature selection steps were used to select the best features for the 

combined model. Recursive features selection (RFE) methods using logistic regression 

(RFE-LR) and random forest (RFE-RF) were applied to select two sets of features for 

prediction model development.   

Features selected using random forest model were used to develop models using 

random forest (RF) Support vector classifier (SVC) and Gradient Boosting and feature 

selected using logistic regression (LR) was used to develop logistic regression model.  

Nested Cross-Validation:  

Nested cross-validation was performed on the entire dataset using 7 outer and 6 inner 

loops were used for tuning the hyperparameters of the models [54]. Finally, a random 

train-test split (in 7:3 ratio) of data was performed and a prediction model was 

developed and validated. 

Data balancing  

After the train-test split, the training dataset was used to develop the prediction models 

with and without balancing the train data set for survival outcomes. Data balancing was 

performed by using minority oversampling. Validation was performed using the test 

data set without balancing the data.   

Model development: 

A total of 24 prediction models were developed using the aforementioned four 

prediction algorithms, three data sets with and without balancing the train data sets 

(table 1, figure 1). 
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ML algorithm  Feature used Train data 

balancing  

Prediction 

Model  

Random Forest Clinical With RF-Clinical-B 

Clinical Without RF-Clinical 

Radiomics With RF-Radiomics-B 

Radiomics Without RF-Radiomics 

Clinical + Radiomics With RF-Combined-B  

Clinical + Radiomics Without RF-Combined 

Gradient Boosting Clinical With GB-Clinical-B 

Clinical Without GB-Clinical 

Radiomics With GB-Radiomics-B 

Radiomics Without GB-Radiomics 

Clinical + Radiomics With GB-Combined-B  

Clinical + Radiomics Without GB-Combined 

Support Vector Classifier Clinical With SV-Clinical-B 

Clinical Without SV-Clinical 

Radiomics With SV-Radiomics-B 

Radiomics Without SV-Radiomics 

Clinical + Radiomics With SV-Combined-B  

Clinical + Radiomics Without SV-Combined 

Logistic Regression Clinical With LR-Clinical-B 

Clinical Without LR-Clinical 

Radiomics With LR-Radiomics-B 

Radiomics Without LR-Radiomics 

Clinical + Radiomics With LR-Combined-B  

Clinical + Radiomics Without LR-Combined 

 

Table: 1: the table shows the prediction models developed in various combination 
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Figure 1: the figure shows our algorithm to develop 24 prediction models using various 

combinations. In the model’s name “-B” indicates the model developed using balanced 

train data set.   

 

Model evaluation and selection 

All the developed models were evaluated by plotting the area under the receiver 

operator curve (AUC) to graphically represent the association between the features and 

the outcome i.e., 5-year overall survival in validation set. The best model was selected 

based on the performance score of each model in the validation set.  

Statistical analysis 

Statistical analyses were performed using R (v3.5.2, the R foundation for statistical 

computing, Vienna, Austria) or Python 3.2 software. Prediction model development and 

validation of model were performed using python 3.2 software. 
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Results 

Given In total 68 patients were selected for this study who fulfilled the criteria of 

completeness of data sets. The details of data collection are provided in figure 2.   

 
Figure 2: figure shows process of data collection and prediction model development 

 

Feature selection 

Clinical:  

In total 13 clinical and radiological features were used for this study. The Spearman 

correlation test shows no strong correlation among the features. The maximum value 

of R2 was found to be 0.17 between age and retroperitoneal node. Spearman correlations 

among the features are shown in figure 2.  Recursive feature elimination (RFE) was 

performed using logistic regression and random forest algorithms. Total 5 clinical 

features were found significant for each algorithm independently (table 3) (figure 4).  
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Figure 3: Figure shows the spearman correlation among the clinical features 

 

Radiomics:  

121 stable radiomics features based on our earlier study were included in this study [53]. 

Spearman correlation shows distinct 10 clusters (figure 3).  Recursive feature elimination 

(RFE) was performed using logistic regression and random forest algorithms. In total 3 

and 4 radiomic features were found to be significant for logistic regression and random 

forest algorithms respectively (table 3) (figure 4).  
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Figure 4: Figure shows the spearman correlation among the radiomic features showing 

clusters of features with positive and negative correlations 

 

Combined (Clinical + Radiomics): 

Among clinical and radiomic features selected independently, the most significant 

mixed features were selected using recursive feature elimination with logistic regression 

and random forest algorithms. Total 5 clinical+radiomics features were found 

significant for each of the algorithms separately (table 3) (figure 4).  
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Figure 5: figure shows feature importance in various combinations of algorithms and 

features. First row shows feature importance using random forest algorithm for clinical, 

radiomic and combined (clinical+radiomics) features; second row shows feature 

importance using logistic regression algorithm for clinical, radiomic and combined 

(clinical+radiomics) features. 

(Abbreviations: OSFL=  Original_shape_Flatness; WLNC: = 

Wavelet_LHL_ngtdm_Contrast; WLGI = Wavelet_LLL_glcm_Idn;OSM2DDR = 

Original_shape_Maximum2DDiameterRow; L3M3DFO10P = Log-sigma-3-0-mm-

3D_firstorder_10percentile; L2M3DGRP= Log-sigma-2-0-mm-
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3D_glrlm_RunPercentage; L2M3DGLFE = Log-sigma-2-0-mm-

3D_glrlm_LongRunEmphasis) 

Feature 

selection 

technique 

Feature type Number 

of 

features 

selected 

Accuracy 

with selected 

features 

Kappa value 

Recursive 

Feature 

Elimination 

with Logistic 

regression 

Clinical 5 0.69 0.31 

Radiomics 3 0.64 0.17 

Clinical + Radiomics 5 0.68 0.26 

Recursive 

Feature 

Elimination 

with Random 

Forest 

Clinical 5 0.68 0.32 

Radiomics 4 0.72 0.38 

Clinical + Radiomics 5 0.77 0.46 

Table 3: Table shows the number of features selected, accuracy and Kappa value for 

various combination of data sets using multivariate recursive feature elimination with 

logistic regression and random forest.  

 

Model development and validation: 

Four algorithms i.e., Logistic regression (LR), Random Forest (RF), Support vector 

classifier (SVC) and gradient boost classifier (GBC) were used for prediction model 

development. total 24 prediction models using four prediction algorithms for clinical, 

radiomics and combined features. 

Nested cross validation: nested cross validation performed for all the prediction 

algorithms for tuning there hyperparameters. The prediction algorithms along with best 

hyperparameters and validation scores are shown in table 4. 
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A
lg

o
ri

th
m

s 
 

Features Hyper parameters Accuracy in 

nested cross 

validation 

L
o

g
is

ti
c 

re
g

re
ss

io
n

 

Clinical {c: ‘10’, penalty: ‘12’, solver: ‘newton-cg’} 0.66(±0.17) 

Radiomics {c: ‘10’, penalty: ‘12’, solver: ‘liblinear’} 0.68(±0.09) 

Clinical + 

Radiomics 

{c: ‘100’, penalty: ‘12’, solver: ‘newton-cg’} 0.66(±0.06) 

R
an

d
o

m
 f

o
re

st
 

Clinical {bootstrap: ‘true’, criterion: ‘gini’, 

max_depth: ‘10’, 'min_samples_leaf': 

2,n_estimators: ‘80’} 

0.66(±0.15) 

Radiomics {'bootstrap': True, 'criterion': 'gini', 

'max_depth': 25, 

 'min_samples_leaf': 2, 'n_estimators': 40} 

0.79(±0.09) 

Clinical + 

Radiomics 

{bootstrap: ‘true’, criterion: ‘gini’, 

max_depth: ‘10’, 'min_samples_leaf': 

2,n_estimators: ‘80’} 

0.75(±0.07) 

S
u

p
p

o
rt

 
ve

ct
o

r 

cl
as

si
fi

er
  

Clinical {c:’1’, gamma:’1’, kernel:’linear’} 0.72(±0.11) 

Radiomics {c:’0.1’, gamma:’0.001’, kernel:’rbf’} 0.74(±0.08) 

Clinical + 

Radiomics 

{c:’100’, gamma:’0.001’, kernel:’rbf’} 0.67(±0.16) 

G
ra

d
ie

n
t 

b
o

o
st

 

cl
as

si
fi

er
 

Clinical {learning_rate: ‘0.1’, max_depth: ‘7’, 

n_estimators: ‘60’} 

0.75(±0.12) 

Radiomics {'learning_rate': 0.1, 'max_depth': 7, 

'n_estimators': 80} 

0.75(±0.13) 

Clinical + 

Radiomics 

{learning_rate: ‘1’, max_depth: ‘3’, 

n_estimators: ‘10’} 

0.75(±0.09) 

 

Table 4: This table shows the selected hyperparameters and nested cross validation 

scores of various models 

All 24 models showed good prediction capability of 5year overall survival. The average 

accuracy and AUC in validation sets across all the 24-prediction models were found to 

be 0.73(±0.07) and 0.60(±0.11) respectively.   
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Logistic regression modeling: 

The average accuracy and AUC for logistic regression models across six models 

developed with various combinations were found to be 0.69(±0.07) and 0.60(±0.05) 

respectively. The detailed validation scores are shown in table 5. Area under the receiver 

operator curves (AUC) of all the logistic regression models are shown in figure 5. 

Radiomics [accuracy: 0.76 (LR-Radiomics-B); 0.71 (LR-Radiomics)] or combined 

prediction [accuracy: 0.71 (LR-Combined-B); 0.76 (LR-Combined)] model models had 

better prediction capabilities in comparison of clinical models [accuracy: 0.61 (LR-

Clinical-B); 0.61 (LR-Clinical)] developed with logistic regression algorithm.  

 
Figure 6: AUC curves of all the Logistic models are shown in this figure 

 

Random forest modeling: 

The average accuracy and AUC for random forest models were found to be 0.79±0.07 

and 0.73±0.07 respectively.  The detailed validation scores are shown in table 5. Area 

under the receiver operator curves (AUC) of all the Random Forest models is shown in 

figure 6.  Radiomics [accuracy: 0.86 (RF-Radiomics-B); 0.81 (RF-Radiomics)] or 

combined prediction [accuracy: 0.81 (RF-Combined-B); 0.81 (RF-Combined)] model 
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models had better prediction capabilities in comparison of clinical models [accuracy: 

0.67 (RF-Clinical-B); 0.76 (RF-Clinical)] developed with random forest algorithm. 

 
Figure 7: AUC curves of all the random forest models are shown in this figure 

 

Support vector classifier (SVC) model:  

The average accuracy and AUC for support vector models were found to be 0.71±0.08 

and 0.69±0.18 respectively.  The detailed validation scores are shown in table 5. Area 

under the receiver operator curves (AUC) of all the support vector classifier models is 

shown in figure 7. Radiomics [accuracy: 0.76 (SV-Radiomics-B); 0.71 (SV-Radiomics)] or 

combined prediction [accuracy: 0.76 (SV-Combined-B); 0.81 (SV-Combined)]  model 

models had better prediction capabilities in comparison of clinical models [accuracy: 

0.62 (SV-Clinical-B); 0.62 (SV-Clinical)] developed with support vector classifier 

algorithm. 



208 | 
 

 
Figure 8: AUC curves of all the SVC models are shown in this figure 

 

Gradient boosting classifier (GBC) model:  

The average accuracy and AUC for gradient boosting models were found to be 0.72±0.06 

and 0.73±0.05 respectively.  The detailed validation scores are shown in table 5. Area 

under the receiver operator curves (AUC) of all the Gradient busting classifier models 

are shown in figure 8. Radiomics [accuracy: 0.76 (GB-Radiomics-B); 0.76 (GB-

Radiomics)] or combined prediction [accuracy: 0.76 (GB-Combined-B); 0.76 (GB-

Combined)] model models had better prediction capabilities in comparison of clinical 

models [accuracy: 0.67 (GB-Clinical-B); 0.62 (GB-Clinical)] developed with gradient 

boosting algorithm. 



209 | 
 

 
Figure 9: AUC curves of all the GBC models are shown in this figure  

 

Feature 

Selection 

Function 

ML 

algorithm 

Prediction 

model 

Accuracy  Precision Recall F1- Score AUC 

Logistic 

Regression 

Logistic 

Regression 

LR-Clinical-B 0.61 0.63 0.62 0.62 0.65 

LR-Clinical 0.61 0.63 0.62 0.6 0.65 

LR-Radiomics-B 0.76 0.83 0.76 0.78 0.60 

LR-Radiomics 0.71 0.77 0.71 0.73 0.62 

LR-Combined-B  0.71 0.77 0.71 0.73 0.56 

LR-Combined 0.76 0.78 0.76 0.77 0.51 

Random 

Forest 

Random 

Forest 

RF-Clinical-B 0.67 0.7 0.67 0.67 0.65 

RF-Clinical 0.76 0.77 0.76 0.76 0.71 

RF-Radiomics-B 0.86 0.86 0.86 0.85 0.82 

RF-Radiomics 0.81 0.81 0.81 0.81 0.81 

RF-Combined-B  0.81 0.81 0.81 0.81 0.70 

RF-Combined 0.81 0.78 0.81 0.78 0.71 
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Support 

Vector 

Classifier 

SV-Clinical-B 0.62 0.38 0.62 0.47 0.39 

SV-Clinical 0.62 0.38 0.62 0.47 0.59 

SV-Radiomics-B 0.76 0.76 0.76 0.76 0.70 

SV-Radiomics 0.71 0.74 0.71 0.69 0.83 

SV-Combined-B  0.76 0.83 0.76 0.78 0.82 

SV-Combined 0.81 0.85 0.81 0.82 0.82 

Gradient 

Boosting 

GB-Clinical-B 0.67 0.66 0.67 0.66 0.68 

GB-Clinical 0.62 0.6 0.62 0.61 0.68 

GB-Radiomics-B 0.76 0.83 0.76 0.78 0.74 

GB-Radiomics 0.76 0.83 0.76 0.78 0.82 

GB-Combined-B  0.76 0.78 0.76 0.77 0.74 

GB-Combined 0.76 0.74 0.76 0.75 0.72 

 

Table 5: table shows accuracy, PPV, NPV, F1-score and AUC of all the models 

Model Selection:  

RF-Radiomics-B model had best prediction accuracy (C-index=0.86; AUC= 0.82) among 

all 24 models developed (figure 10). The average prediction accuracy (C-index) for 

clinical, radiomic, and combined models were found to be 0.65±0.05, 0.72±0.09, 

0.77±0.05 respectively. The average prediction accuracy (C-index) for logistic 

regression, random forest, support vector classifier, and gradient boosting classifier 

models were found to be 0.69±0.07, 0.79±0.07, 0.71±0.09, 0.72±0.06 respectively. 
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Figure 10: The figure shows (from inner circle to outer cycle) the algorithm used for 

feature election -> prediction algorithm -> prediction models -> corresponding 

prediction accuracy in the validation set. 
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Discussion 

Our study shows the significance of radiomic features in generating statistical machine 

learning models for disease outcomes like 5year overall survival prediction in cervical 

cancer. With this study, we were able to identify the gap in the data archival system in 

our hospital related to medical image archives as well as other clinical data points as 

described in the result section. With this study, we were able to determine the most 

effective radiomic feature and their combination for the prediction of disease outcomes. 

A rigorous method of feature selection by applying various techniques has helped in this 

study to select the most efficient features which can become a digital signature for the 

stated disease outcome. We tested various prediction algorithms with radiomics and 

clinical features separately and in combination. In multivariate analysis with random 

forest, radiomic features were found to be better associated with disease outcome in our 

cohort. Our result was consistent with various other studies performed on cervical 

cancer outcome prediction. If we consider our study with other studies performed in 

this field our study design had similarities with others except, we tested several 

prediction algorithms to select best fits to our cohort. Our finding is consistent with 

other studies similar studies performed earlier [12, 14, 15, 26-39, 57-66]. Clinical features 

like age, presence or absence of retroperitoneal node, and peritoneal node FIGO stage 

at the time of diagnosis were also found to be prognostic markers in our study which 

was consistent with the published literature [12, 14, 15, 26-33, 57-60].  In univariate and 

multivariate analysis clinical features i.e., Age, FIGO stage, absence and presence of 

retroperitoneal node and peritoneal node, imaging features i.e., SUV MTV found an 

association with 5year overall survival, which was consistent with other published 

literature [12, 14, 29, 33, 34, 57, 61, 66]. Similarly in univariate and multivariate studies, 

radiomic features showed a significant association with 5year OS which is also 

consistent with published literature [28, 29, 34, 66]. As we had selected only stable 

radiomic features based on our earlier study [53] that shows the repeatable and 

reproducible radiomic features also show excellent prognostic and predictive value in 

cervical cancer. The effort of the radiomic community should be to identify the robust 

features and find out the predictive capabilities of those stable features in various 

disease groups for various prediction endpoints. Among various prediction models 

tested in our study, RF-Radiomics-B random forest model showed the best accuracy in 

nested cross-validation as well as the train-test final model outperforming all the 

prediction models used in our study.  Whereas LR-Clinical-B and LR-Clinical the logistic 

regression models show the lowest accuracy in predicting overall survival in this study. 

When we compared the performance score of prediction models with radiomic, clinical 

and combined models, again random forest and gradient boosting models were at the 

top. 

The average accuracy of clinical models with all the four prediction algorithms was less 

than that of radiomics and combined models which is similar to previously published 
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work [26-30]. The radiomic and combined model performance across all four prediction 

algorithms were found to be more or less similar. Our study also confirms the 

superiority of radiomic features over clinical features in predating overall survival in 

cervical cancer. Comparing the prediction algorithms, the random forest-based 

prediction models had better accuracy in comparison to the other three which affirms 

the findings of earlier published literature in cervical cancer [26, 27]. We did not find 

much difference between the models developed using with or without balanced train 

sets maybe because of event rate in our study was adequately balanced and did not 

require data balancing as an additional step. The radiomic community has been 

concerned about the stability of radiomic features. The radiomic community is skeptical 

about stable radiomic features' ability to predict outcomes [67]. This is probably the first 

study published on cancer prediction modeling using stable radiomic features 

independently or in combination with clinical features. In our study, we were able to 

show that radiomic features can be used for 5-year overall prediction in cervical cancer. 

This was also the first prediction modeling study to be conducted on cervical cancer 

patients in India. Other researchers in India will be motivated to conduct prediction 

modeling studies for evolving digital signatures of disease outcomes based on our study. 

Study type: single-center, small sample size, and no external or prospective validation 

are some of the limitations of this study. The future will involve repeating this study at 

our hospital with larger sample size, as well as initiating multicentric studies to develop 

a universally accepted model. It is the ultimate objective of this research to validate this 

model using prospective clinical trials and then implement decision support systems in 

clinics based on a validated predictive model with retrospective and prospective data.  
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Conclusion:  
We have demonstrated in our study that robust radiomic features are predictive of 

overall survival for cervical cancer patients. According to this study, random forest 

prediction algorithms can predict better than other algorithms. The model's predictive 

ability is slightly improved by using data balancing. Although radiomic features are 

superior to clinical features in terms of prediction abilities, they are most effective when 

combined with clinical features. Overall, this study suggests the importance of 

radiomics and artificial intelligence in implementing decision support systems in the 

management of cervical cancer.  
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Chapter 9: Discussion 

9.1 Executive summary 
In this thesis, we have investigated the role of imaging biomarkers (i.e., radiomics) in 

precision oncology by identifying and tackling the key issues that are limiting the 

implementation of radiomics based prediction models in the clinic. Four main issues 

have been identified: (a) lack of robustness of radiomic features related to imaging 

equipment, image acquisition and reconstruction protocols; (b) lack of standardization 

in radiomic extraction related to radiomic software; (c) lack of infrastructure for AI 

implementation in hospitals for radiomics implementation (d) lack of the adequate 

number of studies on robust radiomic features for disease prognostication using 

prediction modelling. The above issues were addressed in a systematic manner as stated 

below. Initially, we reviewed the role of artificial intelligence in imaging, which is 

described in Chapter 2, where we identified the state of artificial intelligence in imaging 

research and its translation into routine clinical use. We identified several areas of 

research like patient scheduling, natural language processing, image processing and 

imaging biomarker development where artificial intelligence is used. Radiomic research 

is identified as one of the major areas of research in imaging. In Chapter 3 we have 

reviewed the existing literature investigating the role of artificial intelligence in cervical 

cancer. In this chapter, we have analyzed various aspects of prediction modelling used 

in cervical cancer to predict clinical endpoints. We have performed an audit of the 

studies based on a meta-analysis and a 27-point PMQS (Prediction Model Quality Score) 

scale. The two main issues we identified were a lack of feature selection details and 

details of model development and selection. Our review concludes that there is an 

increasing trend of the use of prediction models in cervical cancer research. The meta-

analysis and overall quality score on PMQS together suggest a significant role for 

prediction models in cervical cancer. Key issues for the future will be to train and 

validate models with a large amount of data, external validation, validation on 

prospective clinical trials and integration of these models into the electronic health 

record, and a more careful evaluation of models, particularly with respect to their effects 

on clinical outcomes. Chapter 4 describes the role of quantitative imaging biomarkers 

i.e. radiomics in precision oncology. We observed that radiomics based prediction 

models show promising results in various types of cancer research however their clinical 

implementation has not been widely reported owing to various aforementioned factors. 

In Chapter 5 we have presented our study investigating repeatability and 

reproducibility of 1093 CT radiomic features associated with a) imaging equipment, b) 

test-retest, c) change in acquisition and reconstruction parameters, and d) presence or 

absence of contrast medium, using clinical cohort and phantom imaging. From this 

study, it emerges that different feature categories are sensitive to different degrees of 

reproducibility and repeatability. We identified 110 robust radiomic features which were 

later subjected to prediction modelling studies. In Chapter 6 we have presented the 
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development of GUI based radiomics extractor. In Chapter 7 we have presented the 

building blocks of an IT framework to perform centralized and federated machine 

learning. We have addressed three major issues i.e., data harvesting and processing, 

radiomic extraction, ontology-based RDF conversion and a data server for federated 

machine learning. We have developed the data harvesting and processing pipeline i.e., 

ETL (Extract, Transform, Load) tool and a GUI based radiomic extraction pipeline which 

is easy to implement and provides stability in radiomic extraction.   

We have configured a data server repository in our hospital adhering to FAIR principles 

to store data for centralized and distributed machine learning. We have also 

implemented the pipelines for data conversion in RDF format using an ontology. On 

our data server, we were able to achieve complete integration of clinical and radiomic 

data in the form of RDF graphs. The ontology-based RDF provides flexibility for the 

universal query of our data repository server. Chapters 8 demonstrate the predictive 

capabilities of radiomic features with or without clinical features. In chapter 8 we 

performed a prediction modelling study in cervical cancer using clinical and radiomics 

data and tested various prediction algorithms using various combinations and 

demonstrated the association of robust radiomic features with the endpoint (i.e., overall 

survival) and its ability to predict the clinical outcome with and without the clinical 

features.             

9.2 Limitations of this work  
There are several limitations to this work. We have focused on radiomics in CT images 

only. The main reasons behind this are A) CT was the first imaging modality 

investigated in radiomic studies, so we explored the same, and B) CT images have a 

higher resolution than PET images, which makes CT images more appropriate for 

quantifying textures. In our study, we neither investigated the robustness of PET and 

MRI radiomic features nor developed a prediction model using PET or MRI. Although, 

in the review of literature in chapter 4, we have analyzed the evidence of the role of 

radiomic features across imaging modalities and found significant evidence of the role 

of CT as well as PET and MRI radiomic features in precision oncology. Therefore, it 

remains open to debate whether the results available in this work can be extended to 

imaging modalities like PET or MRI.  

Another limitation is that in the study of repeatability and reproducibility, a uniform 

phantom was used instead of a texture phantom. Texture phantom would have been a 

better option for this study. Also, in this thesis, we did not check the impact of a change 

of preprocessing parameters on the stability of radiomic features. Future work on the 

reproducibility of radiomics should focus on relevant phantoms and investigating all 

permutations of acquisition and reconstruction protocols to achieve a better 

understanding on how these affect radiomics. For PET and MRI similar studies should 

be conducted. 

In this thesis, we limited our study to handcrafted radiomics whereas deep learning 

radiomics remain unexplored. Deep learning radiomics is a topic of many ongoing 
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research projects and both its reproducibility and its value compared to “classical” 

radiomics remains to be seen.  

Although we were able to establish a FAIR principle-based AI infrastructure for 

centralized and distributed machine learning, our study was limited only to the 

development and validation of the infrastructure and not its real-world implementation 

which will be the topic of future work. We were able to demonstrate the importance of 

robust radiomic features in developing cancer prediction models in our thesis. But our 

study is limited to only one disease type (Cervical cancer), single outcome (overall 

survival), small sample size, single-centre study and retrospective study. Also, as said, 

the results of this thesis cannot be directly extrapolated to other imaging modalities. 

However, the framework proposed in chapters 5 to 8 can be extrapolated across other 

imaging modalities, cancer types and outcomes.     

9.3 Directions for future research 
In many ways, this thesis contributed to the implementation of imaging biomarkers in 

precision oncology. It has summarized the current status of radiomic based research in 

medical imaging and oncology; identify the key issues creating obstacles in translating 

AI-powered prediction models into decision support systems in oncology. We were also 

able to present our methodology to tackle a few key issues like stability of radiomic 

features, AI infrastructure requirement, data privacy and portability. We were in a 

position to demonstrate our strong belief in the critical role of radiomics in precision 

oncology. Although we were able to address several key issues faced by radiomic based 

prediction analytics in oncology, there are still several possibilities of future work in this 

field. The radiomic stability research needs to be further extended to various 

permutations and combinations in CT radiomics study as well as to other imaging 

modalities. As GTV (gross tumor volume) is one of the confounding factors in radiomic 

feature extraction, a detailed volume dependent radiomic stability study needs to be 

performed.  

Furthermore, there is a requirement of development of an AI-driven ETL tool for 

extraction and management of meaningful data from hospital information systems. 

There is tremendous scope for research in prediction model development based on large 

datasets of multicentric retrospective and prospective studies. In spite of the fact that 

our hospital and hospitals using hospital information systems (HIS)/Electronic medical 

records (EMR) and picture archiving and communication systems (PACS) have treated 

a large number of cancer patients over the last 15 years, a disparity exists between the 

treatment of the patients and the available data on HIS/EMR or PACS. In the wake of 

this study, we felt the need for improved IT infrastructure to capture and archive patient 

data. We found in chapter 8 of our study that only 5 % of patients treated in our hospital 

between 2005 and 2009 had pretreatment imaging data stored on the hospital's PACS. 

As we investigated, it was found that the majority of patients had their imaging done 

outside the hospital and therefore, they weren't stored on the hospital's PACS. 

Following this revelation, we began archiving all imaging data of patients, regardless of 
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whether the imaging was done in or out of the hospital. The government and all 

stakeholders in the health care system need to establish strict guidelines for the 

archiving of treatment-related data in an electronic system. Furthermore, we 

recommend that the medical association create the standard operating procedure to 

standardize data archiving and imaging protocols across hospitals. Using this method, 

we can support the implementation of artificial intelligence in the Indian healthcare 

system.          

Prediction model development based on deep learning radiomics may also be the major 

area of research in the future. Through deep learning algorithms, it is possible to 

improve low dose scans to full dose scan quality to reduce radiation exposure to patients 

undergoing CT and Nuclear Medicine studies. Moreover, deep learning can also be 

employed to convert images between different domains. An attenuation correction can 

be performed on PET/MRI images by means of this technique. A synthetic CT can be 

generated from MRI images and the same synthetic CT can also be used for CT planning 

which may improve the radiotherapy workflow. Also, AI-based image reporting using 

CNNs and RNNs may help physicians interpret medical images such as PET scans, CTs, 

ultrasounds, SPECT scans and MRIs. 

Finally, utilization of our FAIR compliant AI infrastructure for distributed machine 

learning may be another area of research in future.  

 

9.4 Research impact and utilization summary  
9.4.1 Socio-cultural impact  

The major challenge for precision oncology is to provide tailored personalized 

treatment to patients to improve the outcome of the treatment and reduce the 

associated risk of toxicity and relapse. The implementation of decision support systems 

in clinics will bring a benefit to clinicians and also to patients. The role of radiomics 

research is evident in precision oncology but currently it is facing several issues. These 

issues are strongly impacting the possibility to translate research prototypes as decision 

support systems in the clinic. Through our work we propose an AI-driven technique for 

automated image analysis and extraction of radiomic features and prediction of the 

outcome based on the information stored in radiomic features. Since very few studies 

have been performed in AI in oncology in our part of the world, this work will inspire 

more and more researchers in the field to perform similar kinds of studies. Our 

proposed AI infrastructure will be helpful for the research community in this country. 

Our initiative has already attracted researchers to explore AI based research in oncology 

in India. In our next project, we have been able to add a research partner in India and 

implemented our proposed AI infrastructure. Gradually the acceptance of AI-based 

research in oncology will grow the culture of using AI-based decision support systems 

in oncology. 
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9.4.2 Economic Impact  

Cancer therapy is gradually evolving from conventional treatment to personalized 

treatment. In the last few years, treatment options have increased drastically. Besides 

the utilization of conventional surgery, radiotherapy, and chemotherapy, newer 

treatment options like robotic surgery, image-guided radiotherapy, proton therapy and 

targeted immunotherapy or molecular therapy have opened up new horizons for 

patients. These treatments offer better efficacy and fewer complications and toxicity. A 

physician’s decision to select the best treatment is driven by clinical judgment based on 

various parameters derived from diagnostic tests which are often subjected to the 

clinical acumen and expertise of the treating physician. Sometimes a decision becomes 

very difficult for the doctors and patients if there is a lack of strong evidence or 

differential costs involved. Several biomarkers have been developed helping in the 

decision, however, there are certain issues with the use of biomarkers:  a) biomarkers 

are only helpful to guide the decision making for targeted therapies and do not have 

much benefits in decision making to select conventional treatment like surgery, 

radiotherapy and chemotherapy and b) biomarker testing is expensive and time-

consuming. Imaging biomarker-based decision support systems presented in this thesis 

may be a game-changer in this scenario because of multiple reasons: a) imaging 

biomarkers can be derived from images already performed so no additional cost is 

involved, b) imaging biomarkers can be developed based on retrospective data and 

applied prospectively so evidence building can  be achieved quicker and with much less 

cost, c) imaging biomarkers can be developed for conventional as well as targeted 

treatments d) imaging biomarker parameters can be obtained instantaneously with no 

delay in treatment  

9.4.3 Technological impact  

Although technical development was not the main aim of this thesis, it addresses three 

major technical issues related to the implementation of AI in oncology. We developed 

a GUI consisting of a) a data harvesting pipeline (ETL module), b) a GUI based radiomics 

extraction pipeline, c) a pipeline for RDF conversion of clinical, radiomic and DICOM 

data, and d) an RDF data server adhering to FAIR data principles for distributed and 

centralized machine learning. Philips as a corporate partner of the project has deployed 

Intellispace Discovery (research-only build; Philips Medical System, Eindhoven, The 

Netherlands) for research and development for the BIONIC project. We are using this 

system for various activities like image visualization and manual and automatic 

contouring of the GTV. The pipelines developed in this thesis can be integrated into 

Intellispace discovery for research or clinical uses. Intellispace discovery will thus be 

able to provide an automated solution for radiomic feature extraction and conversion 

of data into RDF format by integrating pipelines developed in this thesis with existing 

DL based auto contouring.  
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Summary 

Cancer is the second most fatal disease worldwide. Management of cancer is a complex 

process consisting of diagnosis and staging of the disease and planning and execution 

of treatment followed by post-treatment follow up. The conventional method of 

treatment often fails in many patients due to the variability of the disease process 

amongst a heterogeneous patient population. In the past few years, various biomarkers 

have been developed to identify the subtype of disease which leads to developing 

personalized treatment in oncology i.e., precision oncology. Medical imaging plays a 

key role in cancer management at various stages. Imaging modalities are used in 

diagnosis, staging, planning of treatment and follow up of disease. It is also used in the 

restaging of disease in case of progression or recurrence. The information stored in 

medical images is analysed by imaging experts either by qualitatively using visual 

interpretation or by semi-quantitative methods, which allows sub-optimal use of 

information stored in medical images. The huge amount of informative quantitative 

data stored in medical images remains unexplored. After intended use, these medical 

images are stored in the archival system (PACS) of the hospital. In the last decade, the 

medical images archived in hospital PACS have been identified for quantitative analysis 

and development of imaging biomarkers. The quantitative analysis of medical images 

(radiomics) has led to the data explosion which is the source of BIG data in oncology. 

Artificial intelligence (AI) algorithms like machine learning (ML) and deep learning 

(DL) have been applied to imaging Big data to develop decision support systems in 

precision oncology. Several imaging biomarkers (radiomic features) have been 

identified as digital phenotypes of the disease. Nevertheless, several radiomic features 

have shown potential to predict various endpoints in oncology, but the translation of 

these radiomics based prediction models as decision support systems (DSS) in the clinic 

will require addressing several key issues. The radiomic community needs to address 

the key issues related to the implementation of radiomics based DSS: (a) robustness of 

radiomic features, (b) development and implementation of AI infrastructure in 

hospitals, (c) multicentre and prospective radiomics studies, (d) creating awareness and 

faith among doctors and patients. Through this work, we have tried to address most of 

these issues to facilitate the implementation of radiomics based DSS in clinical practice. 
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