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A B S T R A C T   

Contemporary psychiatric diagnosis still relies on the subjective symptom report of the patient during a clinical 
interview by a psychiatrist. Given the significant variability in personal reporting and differences in the skill set 
of psychiatrists, it is desirable to have objective diagnostic markers that could help clinicians differentiate pa-
tients from healthy individuals. A few recent studies have reported retinal vascular abnormalities in patients with 
schizophrenia (SCZ) using retinal fundus images. The goal of this study was to use a trained convolution neural 
network (CNN) deep learning algorithm to detect SCZ using retinal fundus images. A total of 327 subjects [139 
patients with Schizophrenia (SCZ) and 188 Healthy volunteers (HV)] were recruited, and retinal images were 
acquired using a fundus camera. The images were preprocessed and fed to a convolution neural network for the 
classification. The model performance was evaluated using the area under the receiver operating characteristic 
curve (AUC). The CNN achieved an accuracy of 95% for classifying SCZ and HV with an AUC of 0.98. Findings 
from the current study suggest the potential utility of deep learning to classify patients with SCZ and assist 
clinicians in clinical settings. Future studies need to examine the utility of the deep learning model with retinal 
vascular images as biomarkers in schizophrenia with larger sample sizes.   

1. Introduction 

Contemporary psychiatric diagnosis still relies on the subjective 
symptom report of the patient during a clinical interview by a psychi-
atrist. Given the significant variability of personal reporting and dif-
ferences in the skill set of psychiatrists, the inter-rater reliability of 
psychiatry diagnosis is poor (Ditton-Phare et al., 2017; Medina et al., 
2019; Santelmann et al., 2016). Hence, it is desirable to have objective 
diagnostic markers that could help clinicians differentiate patients from 
healthy individuals. In addition, biomarkers could also aid in prognos-
tication, selection of patients for treatment trials, and individualized 
treatment regimens (Kraguljac et al., 2021; Scarr et al., 2015). Similar 
attempts have been successful and are of considerable clinical utility in 
other branches of medicine (Jackson and Chester, 2015). Unfortunately, 
such a biomarker is still an unmet need in Psychiatry. 

While neuroimaging measures have been explored as candidate 
biomarkers (Kraguljac et al., 2021), the cost of the procedure, the 
requirement of specialized equipment, and lack of portability prevent 
their application in community settings. Due to the shared embryolog-
ical origin and similar physiological properties, the retina is considered a 
window to the brain and proposed as a biomarker in neuropsychiatric 
conditions, including schizophrenia (Hosak et al., 2018; Silverstein 
et al., 2020). Several studies have reported the predictive utility of 
retinal vascular measures in cardiovascular conditions, stroke, and 
neurodegenerative conditions such as dementia (Dumitrascu et al., 
2018; Ge et al., 2021; Li et al., 2016). In contemporary psychiatry 
practice, a trained psychiatrist clinically interviews the patient and ar-
rives at a diagnosis of schizophrenia. Diagnosing schizophrenia in 
community settings is difficult in the absence of a trained psychiatrist 
leads to delay in the initiation of treatment. As early diagnosis and 
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prompt initiation of treatment is an important predictor of better 
prognosis (Cechnicki et al., 2014), biomarker that could aid the clinician 
in the diagnosis are need of the hour. Given its ease of acquisition, low 
cost, portability and non-invasiveness, retinal vascular imaging is ideal 
for application in community settings (Wilson et al., 2008). 

Interestingly, a few studies have recently reported abnormalities in 
the retinal vasculature in schizophrenia. Using fundus camera, studies 
have reported that schizophrenia patients have increased retinal venular 
caliber, trajectory, tortuosity, and decreased fractal dimension than 
healthy individuals (Appaji et al., 2019c, 2019a, 2019b, 2019d; Meier 
et al., 2013). Recent studies have also suggested a relation between 
retinal vascular caliber, working memory, and brain structure (Appaji 
et al., 2020; Korann et al., 2021). One study further claimed that a 
machine learning approach may be used to distinguish schizophrenia 
patients from healthy individuals (Appaji et al., 2019d). Recently, a few 
studies have examined the retinal vasculature using Optical coherence 
tomography angiography (OCTA). Though differing in the direction-
ality, these studies have reported abnormalities in retinal microvascu-
lature density and enlarged foveal avascular zones (Bannai et al., 2021; 
Koman-Wierdak et al., 2021; Silverstein et al., 2021). 

With advances in computational methods, deep learning analysis is 
being increasingly utilized for biomarker-based disease diagnosis and 
prediction in several psychiatric disorders including schizophrenia 
(Cortes-Briones et al., 2021). Convolution Neural Networks (CNN) are 
deep-learning models that have been implemented in recent years to 
improve classification accuracy and better performance than the con-
ventional machine learning methods. 

CNN is a widely used model for image classification as it offers 
several advantages compared to traditional machine learning. In ma-
chine learning, the features must be manually extracted and fed to the 
neural networks for classification. CNNs automatically extract the 
required features from images and classify them into different groups. 
CNNs are less theoretically biased than the traditional machine learning 
approaches as they require minimal or no feature extraction (Esteva 
et al., 2019). In CNN, it is taught in an end-to-end manner and learns the 
hierarchy of features automatically, which results in better classifica-
tion. In each epoch (iteration), the CNN trains a different set of images 
and tests another set of images. This is advantageous because it increases 
the optimization of the model. One Epoch is when an entire dataset in 
multiple batches is passed forward and backward through the neural 
network (backpropagation). This helps us in the proper tuning of 
weights which reduces error rates and makes the model reliable. How-
ever, the CNN model requires a large number of retinal images to get 
higher accuracy. Data augmentation techniques are used to increase the 
sample size for deep learning. 

Recently, a few studies have examined the utility of deep learning 
analysis using retinal images and reported more than 90% accuracy for 
diabetic retinopathy, retinopathy of prematurity, and optic neuropathy 
(Gulshan et al., 2016; Hood and de Moraes, 2018; Moraru et al., 2020; 
Voets et al., 2019). However, to the best of our knowledge, no study has 
examined deep learning analysis to differentiate schizophrenia patients 
from healthy individuals using retinal vascular images. Hence, this study 
aims at filling this gap and investigating the discriminant accuracy of a 
deep learning model to classify schizophrenia patients and healthy in-
dividuals using retinal vascular images. 

2. Methodology 

2.1. Subjects 

A total of 327 subjects [139 patients with schizophrenia (SCZ) and 
188 healthy volunteers (HV)] were recruited. The patients were 
recruited from the inpatient and outpatient clinical services of the Na-
tional Institute of Mental Health and Neurosciences (NIMHANS), Ben-
galuru, India. The institute ethics committee approved the study and 
informed consent was taken from all study participants. The patients 

with SCZ were in the age range of 18 to 50 years, satisfying the diag-
nostic criteria of schizophrenia according to the international classifi-
cation of diseases (ICD-10) (WHO, 1992). 200 of the 327 subjects were 
also part of our previously published study examining retinal vascular 
caliber (Appaji et al., 2019b). A qualified psychiatrist interviewed the 
patients. Subjects with a history of hypertension, diabetes, cerebrovas-
cular accidents, or history of eye trauma were excluded from the study. 
We also excluded patients with current comorbid axis-I psychiatric 
conditions including substance abuse or dependence. The HV were 
recruited using word of mouth and flyers. In addition to the exclusion 
criteria for SCZ, HV were also excluded if they had a lifetime history of 
any axis-I psychiatric disorders or a history of psychotic disorder in a 
first-degree relative. The equipercentile score of the Brief Psychiatric 
Rating Scale (BPRS) (Leucht et al., 2013; Overall and Gorham, 1962) 
was used for determining the severity of the positive and negative 
symptoms in patients with SCZ. The Olanzapine equivalent for anti-
psychotics was computed using a preestablished technique (Leucht 
et al., 2015). Clinical Global Impression (CGI) (Guy, 1976)was used to 
assess the functioning of SCZ. 

2.2. Retinal image acquisition and processing 

Multiple retinal fundus images were acquired for each study partic-
ipant using a fundus camera (Forus Health Pvt. Ltd., India). The fundus 
camera is a non-mydriatic camera with a 40-degree field of view. The 
procedure for the image acquisition was explained to the study partic-
ipants. After the explanation, they sat in a dimly lit examination room 
for 5 min for dark adaptation, leading to auto dilation of the pupils. A 
trained technician acquired an optic disc-centered color fundus image. 
The chin was rested on the chin rest with the forehead pressed against 
the machine to accommodate the visibility of the eye and retina. The 
fundus camera was zoomed through the infrared guide to acquire the 
images. Multiple images of both eyes were acquired separately by 
flashing a light-emitting diode to illuminate the fundus, and the image 
was stored in the computer for further processing (Darwish et al., 2019). 
The image preprocessing included downsizing (from 2048 × 1536 pixels 
to 224 × 224 pixels) and pixel value normalization between 0 and 1. 

2.3. Deep learning network analysis 

A deep learning convolution neural network (CNN) model learns a 
set of features during training and using optimization, error in a clas-
sification task is further minimized. The model used in the study (Fig. 1) 
consisted of seven 2D convolution layers. During each training iteration, 
an error value is calculated by comparing the network's prediction 
(predicted category) to the ground truth (real category) and the net-
work's parameters (weights and biases) are progressively modified to 
reduce the magnitude of the prediction error. For deep learning analysis, 
the data was divided into a discovery dataset and a confirmatory dataset. 
A CNN optimized for image classification was trained using retinal im-
ages from discovery dataset participants. This dataset contained both 
left and right eye images of 284 study participants (118 SCZ and 166 
HV). As images were acquired multiple times, the dataset cumulatively 
contained 1200 images from these subjects. The input dimension was 
224 × 224. 

The discovery dataset was divided into training, validation, and 
testing subsets. The training set is for adjusting (training) the CNN's 
parameters, the validation dataset is for adjusting the hyper-parameters 
and network design (learning rate, number of layers, etc.), and the test 
set if for assessing the CNN's performance. Both training and validation 
datasets use labeled data in which the diagnostic status of the subject 
(HV or SCZ) is known to the model. On the other hand, the test dataset is 
an independent dataset that is used to assess the performance of the 
model for unseen, new data. The test dataset consists of the unlabeled 
data that is, the diagnostic status of the subject is not known to the 
model. It is important to note that the three subsets are independent and 
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mutually exclusive, that is subjects do not overlap between training, 
validation, and testing subsets. The training subset consisted 70% of the 
total subjects (n = 198; HV = 82 and SCZ = 116), and the validation 
subset consisted of 20% of the total subjects (n = 56; HV = 23 and SCZ =
33). The testing subset consisted of the remaining 10% (n = 30; HV = 13 
and SCZ = 17). While training, the hyperparameters of the deep neural 
network were initiated with random images within the 70% training 
dataset. 

The labels for the dataset were encoded using the one-hot technique 
(Hancock and Khoshgoftaar, 2020). As shown in Fig. 1, the deep 
learning architecture had 7 two-dimensional (2D) CNN layers, with 
max-pooling-based downsampling in each convolution layer. This was 
followed by a flattened layer to convert into a single dimension value 
with a drop out of 50%. Two dense layers were implemented; one with a 
rectified linear unit (ReLU) activation function and another with a sig-
moid function. These are commonly used activation functions in deep 
learning models that return 0 if it receives any negative input but returns 
1 if it receives positive input. We set the learning rate at 0.001, and the 
batch size at 32. RGB reordering was applied, and the final input to the 
proposed model was provided as a 224 × 224 × 3 image. Concerning 
data augmentation, for the training set, we first tailored the images 
according to the annotated cropping frame and then adjusted the size to 
224 × 224 followed by width-shift-range = 0.1, height-shift-range = 0.1, 
shear-range = 0.1, zoom-range = 0.2, random horizontal flips, and 
normalization. For the test set, we adjusted the images that were crop-
ped according to the annotation and then resized them to 224 × 224. 

The model was trained with 20 epochs with a batch size of 32. That 
is, 32 images went to-and-fro through the CNN model in each epoch and 
the whole process was repeated 20 times. In each epoch, the training, 
validation, and testing datasets were randomly chosen and were 
completely independent without any overlap. This process ensured 
cross-validation of the data. Early stopping criteria were used while 
monitoring the validation loss to be at minimum with patience as 3 (i.e it 
checks whether the loss increases for 3 epochs and if it increases the 
training is terminated). The learning rate was set to 0.00001 and we 
used reduced LR on Plateau to reduce the learning rate when a metric 
has stopped improving. We took an average of 20 epochs. The CNN was 
a sequential model (building layer by layer). As shown in Fig. 1, we had 
seven 2D Convolution layers. 2 layers had a filter size of 32, 3 layers had 
a filter size of 64 and the remaining 2 layers had a filter size of 128. The 
filter size was chosen based on the convergence of the model. For all the 
layers, the strides were 2 × 2, pool size was 2 × 2, kernel size was 3 × 3, 
with “same” padding. That is, the layer's outputs had the same spatial 
dimensions as its inputs. A rectified linear unit activation function was 
used. We did not use a dilation factor. We used Adam, an optimization 
algorithm for training deep learning models using stochastic gradient 
descent (Zaheer and Shaziya, 2019). Python 3.7.10 and TensorFlow 2.0, 
an open-source software library for deep learning, were used to train and 
evaluate the proposed model. The entire process was conducted on a 
standard workstation (Alienware with 16GB RAM, 2.60 GHz Intel Core 
i7 10GEN CPU, NVidia GPU RTX 2060, 6GB VRAM). 

The model performance was evaluated for continuous prediction 
using the area under the receiver operating characteristic curve (AUC). 
Areas under AUC were used to determine the binary outcomes of normal 
versus schizophrenia when compared with the expert diagnosis. We 
evaluated how the performance of the deep learning algorithm changed 
in distinguishing patients with SCZ and HV using AUC, i.e., the higher 
the AUC, the higher is the performance. If the area under the AUC and 
accuracy rate significantly dropped, we could infer that the retinal 
image information in that area mainly contributed to identifying SCZ. 

To determine whether the trained deep learning algorithm could 
distinguish patients with SCZ from HV in a real-world setting, we used a 
new data set – the confirmatory dataset. This confirmatory dataset of 43 
study participants (22 HV and 21 SCZ) evaluated the individual subject 
level accuracy of the model and the clinical utility of the deep learning 
model. The second dataset of these 43 subjects was independent of the 
first dataset of 284 participants. The confirmatory dataset would give us 
an idea about the transfer learning potential of the deep learning algo-
rithm to a new dataset. 

2.4. Statistical analysis of demographic variables 

The analyses were performed using Statistical Package for Social 
Sciences (SPSS) version 26. The normality of the data was established 
using the Shapiro-Wilk test. Sex distribution across groups was exam-
ined using a chi-square test, and the age difference was analyzed using a 
student t-test. To control for the potential confounding effect of age, a 
subset of age-matched data was analyzed. 

3. Results 

3.1. Comparison of demographic variables between the groups 

There was a significant difference between the groups in age (HV - 
30.3 ± 7.4 years; SCZ - 32.8 ± 6.1 years; t = 3.3; p < 0.01) and sex 
distribution (HV- 96M, 92F; SCZ – 91M, 48F; χ2 = 6.8;p = 0.01). SCZ 
patients had a mean age at onset of 24.9 ± 5.6 years with 7.9 ± 5.4 years 
of illness. The patients were at different stages of illness with a BPRS 
score of 24.4 ± 9.4. All patients were on treatment with antipsychotics, 
with a mean olanzapine equivalent dose of 16.2 ± 31.2 mg/day. 

3.2. Performance of deep learning algorithm 

Fig. 2 displays the performance of the deep learning CNN model 
graphically for various evaluation parameters. The overall accuracy of 
the deep learning model was found to be 95% for classifying SCZ and HV 
using retinal fundus images (Fig. 2A & B). The model achieved high 
performance in the training dataset (AUC of 0.98, Fig. 2C). The model 
also achieved a high precision of 95.1% (Fig. 2D). The algorithm's 
sensitivity at the high-sensitivity operating point was 95.9%, and the 
specificity at the high-specificity operating point was 90%. Below are 
the overall metrics of the CNN for the discovery dataset; sensitivity – 

Fig. 1. Architecture showing an overview of proposed automated classification using Convolution Neural Network.  
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91.66%, specificity – 95%; positive predictive value – 94.82% and 
negative predictive value – 91.93%. The accuracy of the model after 
data augmentation remained at 93%. 

3.3. Sub-group analysis 

Since age-related differences in retinal vasculature patterns were 
noted in a previous study (Cífková et al., 2021), we conducted a sub- 
group analysis to control its potential confounding effect. In a sub- 
group of age-matched individuals from the discovery dataset [SCZ (n 
= 118)-32.6 ± 6 years; HV(n = 153) - 31 ± 7.1 years], we analyzed the 
accuracy of the deep learning model. The overall accuracy rate of the 
model was found to be 94% for classifying SCZ and HV in this sub-group. 
Future studies may consider matching the groups on age. The relevant 
figures can be found in the supplementary material. 

3.4. Single-subject level prediction 

To examine the performance of the deep learning model at an indi-
vidual subject level and to assess the potential transfer learning to a new 
dataset, we further evaluated the classification performance using a 
separate dataset. This was performed as this resembles the real-life 
clinical scenario wherein the clinician must diagnose individual sub-
jects. At an individual subject level, the accuracy was found to be 
76.74%; that is, out of the 43 images tested, 33 images were classified 
correctly. While 18 of the 22 HV were classified correctly, the accuracy 
was lower for SCZ - 15 out of 21 were classified correctly. The overall 
sensitivity of the model was 71.4%; specificity was 81.8%; positive 
predictive value was 78.94% and negative predictive value was 75%. 

4. Discussion 

To the best of our knowledge, this is the first study to examine the 
utility of a deep learning model to classify schizophrenia patients and 
healthy volunteers using retinal fundus images. While machine learning 

models depend on the input features and may require an apriori hy-
pothesis, the deep learning model automatically extracts features. Re-
sults of the study suggest high accuracy of the model to classify patients 
and healthy individuals at the group level. In addition, reasonable ac-
curacy at the individual subject level indicates the potential of this 
approach for clinical utility in the future. 

Interestingly, the accuracy reached in the current study using the 
retinal vascular images is comparable to previous studies using deep 
learning model and structural or functional MRI data (Li et al., 2020; Oh 
et al., 2020, 2019; Yan et al., 2019; Zeng et al., 2018). The results are 
also better than our previous study examining the machine learning 
model using retinal vascular images (Appaji et al., 2019d). In addition, 
examining the model's utility at an individual subject level closely 
mimics a real-world setting. As a clinician must make a diagnosis at an 
individual subject level, we conducted this analysis in addition to the 
conventional group-level analysis. Traditionally, machine learning ap-
proaches employ a group-level testing to classify patients and healthy 
individuals; however, such an analysis is less likely to be of practical 
clinical utility as the clinician is interested in the accuracy at the single- 
subject level (Arbabshirani et al., 2017). As expected, the accuracy at the 
individual level was lower compared to the level of accuracy achieved 
when a group-level analysis was conducted using a testing dataset. 
While the current accuracy of 76.4% does not meet the necessary clinical 
precision, the reasonable accuracy seen with modest numbers is prom-
ising. It is important to note that the level of accuracy achieved at the 
individual subject level is comparable to the one achieved using MRI 
images (Lei et al., 2020a, 2020b). Moreover, the data-driven approach of 
deep learning model is likely to give better results with higher accuracy 
if the training set includes a greater number of subjects (Esteva et al., 
2019). As shown earlier, combining different imaging modalities pro-
vides higher accuracy than an individual modality (Lei et al., 2020b). 
Future studies may consider combining different modalities, such as 
retinal vascular imaging and MRI, as an integrative biomarker. 

The use of retinal vascular images offers several advantages for its 
utility when compared to other imaging modalities. It is non-invasive, 

Fig. 2. CNN model performance in terms of (A) accuracy (B) loss (C) the area under the receiver operating characteristic curve (AUC) and (D) precision.  
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inexpensive, and less time-consuming than neuroimaging (Patton et al., 
2005). Also, considering the portable nature of the equipment, it is ideal 
for use in community settings. As the images can be acquired with 
minimal training, it is suitable for application in resource-constrained 
settings as well. A few initiatives have also suggested the feasibility of 
the collection of a large number of retinal vascular images (MacGillivray 
et al., 2015). A previous study with a large number of images provided 
accuracy comparable to clinician diagnosis in diabetic retinopathy 
(Gulshan et al., 2016). Whether a similar accuracy can be achieved in 
other psychiatric disorders needs to be examined in future studies with a 
higher number of subjects. 

Our findings need to be interpreted in the context of a few limita-
tions. First, the study has a relatively small sample size. Considering the 
heterogeneity of schizophrenia, a larger sample size is desirable in future 
studies. Second, the groups were not matched on age and sex. While no 
sex difference has been reported in retinal vasculature patterns, age- 
related differences are noted in a previous study (Cífková et al., 
2021). However, the sub-group analysis after matching for age did not 
reveal a significant effect as the model's accuracy was 94% in this sub- 
group. Future studies may consider matching the groups on age. 
Third, we excluded participants with diabetes mellitus, hypertension, 
and other potential confounding medical comorbidities to have a ho-
mogeneous population considering the proof-of-concept nature of the 
study. While excluding participants with these confounders increased 
the specificity of the findings, it might also decrease the generalizability 
of the findings considering the higher prevalence of metabolic disorders 
in schizophrenia (Mitchell et al., 2013). Fourth, we did not measure 
subjects' visual acuity, axial length, or intraocular pressure which could 
confound the findings of the study. In the future, studies need to 
examine the role of these potential confounding conditions. Finally, all 
the patients were on treatment with medications. While there was no 
evidence for a correlation between antipsychotic dose and retinal 
vascular variables in our previous studies (Appaji et al., 2019b, 2019c, 
2019a), future research needs to examine drug-naïve patients to avoid 
the possible confounding effects of antipsychotic medications. 

Our findings could have potential clinical implications. An objective 
marker could aid in the diagnosis and may have considerable applica-
tion in clinical care as well as research. If the study findings are repli-
cated in the future and higher accuracy is achieved at the individual 
subject level, retinal vascular image analysis could serve as a potential 
diagnostic marker for schizophrenia. The advantages of the retinal 
vascular images listed above also suggest its potential utility to aid 
primary care physicians for prompt referral for further evaluation. 
Future studies need to include patients from other psychiatric disorders 
such as bipolar disorder, to examine the specificity and discriminant 
validity of the retinal vascular abnormalities in schizophrenia. Also, 
future studies could include other imaging modalities such as OCT/ 
OCTA/neuroimaging or genomic data along with fundus imaging. As 
schizophrenia is a heterogeneous disorder, a composite multimodal 
marker may have better accuracy in classifying when compared to a 
single marker. On the same lines, while the individual subject-level 
analysis in an independent confirmatory dataset provides important 
insights into the potential transfer learning of the model to new data, it is 
important to remember that the confirmatory dataset was acquired at 
the same center with the same study criteria. The real-world general-
izability would have been better if the data was acquired from a different 
center with different subject characteristics. A multicentric study with 
broad study criteria including a heterogeneous patient population could 
overcome this limitation and may be close to the real-world scenario. 

To conclude, a deep learning model using retinal vascular images 
classified patients with schizophrenia and healthy individuals with high 
accuracy. Though not achieving a similar level of accuracy, individual- 
level classification also showed promise and provides rationale for 
future research. The data-driven nature of the analysis offers potential 
scope for improvement with higher sample sizes. Future studies with 
larger sample sizes and drug-naïve patients can evaluate the utility of 

retinal vascular images as diagnostic biomarkers in schizophrenia. 
Supplementary data to this article can be found online at https://doi. 

org/10.1016/j.schres.2022.01.058. 
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2014. Duration of untreated psychosis (DUP) and the course of schizophrenia in a 
20-year follow-up study. Psychiatry Res. 219, 420–425. https://doi.org/10.1016/J. 
PSYCHRES.2014.05.046. 
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