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DNA methylation signatures of Alzheimer’s
disease neuropathology in the cortex
are primarily driven by variation in
non-neuronal cell-types

Gemma Shireby1, Emma L. Dempster1, Stefania Policicchio1, Rebecca G. Smith1,
Ehsan Pishva 2, Barry Chioza 1, Jonathan P. Davies1, Joe Burrage1,
Katie Lunnon 1, Dorothea Seiler Vellame 1, Seth Love3, Alan Thomas4,
Keeley Brookes 5, Kevin Morgan 6, Paul Francis 1,7, Eilis Hannon 1 &
Jonathan Mill 1

Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized
by the progressive accumulation of amyloid-beta and neurofibrillary tangles of
tau in the neocortex.WeprofiledDNAmethylation in two regions of the cortex
from631 donors, performing an epigenome-wide association study ofmultiple
measures of AD neuropathology. We meta-analyzed our results with those
fromprevious studies ofDNAmethylation inADcortex (totaln = 2013donors),
identifying 334 cortical differentially methylated positions (DMPs) associated
with AD pathology including methylomic variation at loci not previously
implicated in dementia. We subsequently profiled DNA methylation in NeuN+
(neuronal-enriched), SOX10+ (oligodendrocyte-enriched) and NeuN–/SOX10–
(microglia- and astrocyte-enriched) nuclei, finding that the majority of DMPs
identified in ‘bulk’ cortex tissue reflect DNAmethylation differences occurring
in non-neuronal cells. Our study highlights the power of utilizing multiple
measures of neuropathology to identify epigenetic signatures of AD and the
importance of characterizing disease-associated variation in purified
cell-types.

Alzheimer’s disease (AD) is a chronic and incurable neurodegenerative
disease that is clinically characterized by progressivememory loss and
declining cognition. Although AD is neuropathologically associated
with the accumulation of extracellular amyloid-beta (Aβ) plaques and
the deposit of intracellular neurofibrillary tangles of tau (NFT)1,2, it is
also frequently accompanied by pathological features associated with
other types of dementia3,4. Lewy-body (LB) and TDP-43 pathology, for
example, are often present alongside tau and amyloid pathology in
individuals with AD4. Despite progress in identifying both genetic5–9

and non-genetic risk factors for AD, themolecularmechanisms driving
AD pathology remain elusive.

There is growing recognition of the importance of non-
sequence-based regulatory variation in health and disease. Building
on the hypothesis that epigenomic dysregulation is important in the
etiology and progression of AD neuropathology10, we and others
have identified DNAmethylation differences in several regions of the
brain associated with AD and also other forms of dementia including
Parkinson’s disease (PD)11–19. A recent epigenome-wide association
study (EWAS) meta-analysis, for example, reported >200 differen-
tially methylated positions (DMPs) in the cortex associated with tau
pathology13. There are, however, important limitations to existing
studies of epigenetic variation in AD. First, because the cortex
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comprises a heterogeneous mix of different cell-types—each char-
acterized by a specific epigenetic signature—it is difficult to fully
account for differences in cellular proportions between samples
derived from “bulk” cortex tissue. Furthermore, because the pro-
gression of ADneuropathology is associatedwith changes in both the
number and activation of specific cell-types—for example, AD is
associatedwith both the loss of neurons20,21 and the proliferation and
activation of microglia22,23—studies performed on bulk cortex cannot
identify disease-associated variation occurring within individual
cellular populations. Second, the clinical and neuropathological
heterogeneity among patients with AD, alongside the high level of
comorbidity with other types of dementia, complicates the inter-
pretation of associations between epigenetic variation and pathol-
ogy. Although existing EWAS analyses of AD have largely focused on
a single pathology measure (i.e., Braak NFT staging1,24), the simulta-
neous analysis ofmultiplemeasures of different types of pathology is
likely to facilitate a better understanding of the molecular mechan-
isms involved in disease progression.

In this study we quantified genome-wide patterns of DNA
methylation in the Brains for Dementia Research (BDR) cohort, a
clinically and phenotypically well-characterized study established
with the aim of integrating standardized measures of neuropathol-
ogy with detailed phenotypic and multiomic data25. First, we per-
formed a systematic EWAS of AD neuropathology, profiling DNA
methylation across >800,000 sites in two cortical brain regions
(the dorsolateral prefrontal cortex [DLPFC] and occipital cortex
[OCC]) differentially impacted by AD pathology from ~650 well-
characterized donors. Second, we meta-analyzed our results with
those from previous AD EWAS analyses13, enabling an analysis of AD-
associated differential cortical DNA methylation in tissue from
over 2000 individuals. Third, we characterized genome-wide pat-
terns of DNA methylation in NeuN+ (neuronal-enriched), SOX10+
(oligodendrocyte-enriched), and NeuN–/SOX10– (microglia- and
astrocyte-enriched) nuclei populations from a subset of BDR donors,
exploring the extent to which AD-associated cortical differences in
DNA methylation are driven by changes within specific cell popula-
tions. Our analyses identify neuropathology-associated variation
at multiple novel loci not previously implicated in dementia
and show that AD-associated methylomic variation in the cortex
primarily reflects differences in non-neuronal cell populations. This
study highlights the power of utilizing multiple neuropathology
measures to understand the molecular pathogenesis of AD and the
importance of characterizing disease-associated variation in distinct
cell-types.

Results
An overview of the BDR DNA methylation dataset
After stringent data pre-processing and quality control filtering (see
Methods), the final BDR dataset comprised of DNA methylation
estimates for 800,916 DNA methylation sites profiled in 1221 tissue
samples from two cortical brain regions (DLPFC and OCC) dissected
from 631 donors (53% male, age range = 41–104 years, median age =
84 years, interquartile range [IQR] = 78–90 years, Table 1). Males
were significantly younger at death compared to females (by 2.69
years, P = 2.33E–07), which is consistent with observations from
epidemiological studies26,27. NFT pathology was quantified using
Braak NFT staging1,24 (mean Braak score = 3.72, SD = 1.90, Supple-
mentary Fig. S1 and Table 1). Amyloid pathology was quantified using
both Thal phase2 (mean = 3.09, SD = 1.78) and neuritic plaque density
scored using the CERAD classification method28,29 (mean = 1.69,
SD = 1.28). In addition, donors were also assessed for several
hallmarks of non-ADpathology including bothα-synucleinpathology
using Braak LB staging30 (mean = 1.34, SD = 2.26) and TDP-43 sta-
tus (127 (22%) of 590 tested donors were classified as TDP-43
positive). Ta
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Alzheimer’s disease pathology is associated with altered cell-
type proportions in the dorsolateral prefrontal cortex
The progression of AD pathology is associated with changes in the
abundance of specific cell-types in the cortex; such changes in cell
proportions are a major confounding factor for studies of DNA
methylation and other genomic marks performed on “bulk” cortical
tissue31,32. Although several methods have been developed to derive
cell-type proportion estimates from bulk DNA methylation data for
use as covariates in EWAS31,33–36, these approaches are limited by the
availability of DNAmethylation reference data for specific cortical cell-
types. We therefore used a fluorescence-activated nuclei sorting
(FANS) method recently described by our group37 to develop novel
DNA methylation reference panels from NeuN+ (neuron-enriched),
SOX10+ (oligodendrocyte-enriched), and NeuN–/SOX10– (microglia-
and astrocyte-enriched) nuclei populations isolated from the DLPFC
from a subset of control (low pathology) BDR donors (n = 12, see
Methods and Table 1). DNA methylation profiles were generated from
each purified nuclei population using the Illumina HumanMethylation
EPIC microarray and used in combination with an established
algorithm31 to derive estimates for the proportion of each cell-type for
all individuals included in our bulk cortex BDR datasets (seeMethods).
Of note, derived relative cell proportions were significantly associated
with Braak NFT stage, CERAD score, and Thal phase in the DLPFC but
not the OCC (see Fig. 1 and Supplementary Data 1), likely reflecting

known differences in the progression of neuropathology across the
two brain regions. In the DLPFC, increasing tau pathology was sig-
nificantly associated (Bonferroni P < 0.008 [0.05/6]) with reduced
NeuN+ (neuronal) cell proportion estimates (effect size = −2.74;
P =0.00011), reduced NeuN–/SOX10– (microglial/astrocyte) propor-
tions (effect size = −2.00; P =0.004) and increased SOX10+ (oligo-
dendrocyte) proportions (effect size = 1.60; P =0.00017). This pattern
was mirrored for the two measures of amyloid pathology (Supple-
mentary Fig. S2 and Supplementary Data 1).

Multiple differentially methylated positions were associated
with AD neuropathology in the cortex
We used the detailed neuropathological data available for each BDR
donor to identify cortical DMPs associated with the accumulation of
both tau (measured by Braak NFT stage) and amyloid (measured by
both CERAD score and Thal Phase) pathology. We first conducted
an analysis of combined AD pathology incorporating all three AD
pathology measures in a model including matched DLPFC and OCC
DNA methylation data from individual donors that controlled for age,
sex, derived cellular proportions, experimental batch, and principal
component (PC) 1 (see Methods). We identified 67 DMPs annotated to
45 genes that were associated with the overall burden of core AD
neuropathology at a stringent experiment-wide significance threshold
(P < 9E–08) (Fig. 2a and Supplementary Data 2). Of note, 32 (48%) of
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Fig. 1 | Elevated tau pathology is associated with cell proportion estimates
derived fromDNAmethylation data in the DLPFCbut not the OCC.Using linear
regression models controlling for major covariates (see Methods) we show that
a levels of tau pathology (measured using Braak NFT stage) are significantly asso-
ciated with the proportion of NeuN+ cells (effect size = −2.74, SE =0.705,
P = 1.15E–04), SOX10+ cells (effect size = 1.60, SE = 0.423, P = 1.72E–04) and NeuN–/
SOX10– cells (effect size = −2.00, SE = 0.687, P =0.004) in the DLPFC (N = 597
donors) using cell proportion estimates derived from “bulk”DNAmethylation data.
b In contrast no associations (P >0.008) between levels of tau pathology and cell

proportion estimates derived from “bulk” DNA methylation data were observed in
the OCC (N = 598 donors). Boxplots of the estimated proportion of each cell-type
across Braak NFT stages are shown, where the middle box represents the inter-
quartile range (IQR), the middle line represents the median, and the whisker lines
represent the minimum (quartile 1 –1.5 × IQR) and the maximum (quartile 3 + 1.5 ×
IQR). Tau pathology (Braak NFT stage) is shown on the x-axis split by cell-type and
estimated cell proportions are shown on the y-axis. A similar pattern of results was
found for levels of amyloid pathology as shown in Supplementary Fig. S2.
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Fig. 2 |Differentiallymethylatedpositions (DMPs) in the cortex associatedwith
Alzheimer’s disease neuropathology. a Manhattan plot highlighting significant
cortical DMPs associated with AD neuropathology (Braak NFT stage, CERAD score,
Thal phase) (N = 631 donors). In total 67 DMPs associated with AD neuropathology
were identified using linear regressionmodels controlling formajor covariates (see
Methods) at an experiment-wide significance threshold (P < 9E–08). Genes anno-
tated to significant DMPs are labeled. The x-axis depicts individual chromosomes
1–22 and the y-axis gives the significance level (–log10(P)) for eachDNAmethylation
site tested. The horizontal red line represents the experiment-wide significance
level (P < 9E–08). A complete list of results is given in Supplementary Data 3 and
Manhattan plots showing results from EWAS analyses of individual AD neuro-
pathology measures are given in Supplementary Figs. S3, S6, and S9. The top-
ranked hypomethylated cortical DMP associated with AD neuropathology is

cg06913337 (annotated to ZFPM1). Lower DNA methylation at this site is sig-
nificantly associated with b tau pathology (Braak NFT stage: effect size = −0.656%,
SE = 0.0881%, P = 2.68E–09) and c amyloid pathology (CERAD score: effect size =
−0.937%, SE = 0.162%, P = 6.64E–09). The top-ranked hypermethylated cortical
DMP associated with AD neuropathology is cg18032191 (annotated to TNFRSF1A).
Higher DNAmethylation at this site is significantly associated with d tau pathology
(Braak NFT stage: effect size = 0.322%, SE = 0.0598%, P = 7.20E–08) and e amyloid
pathology (CERAD score: effect size = 0.46%, SE =0.0893%, P = 2.53E–07). Shown
are violin plots depicting DNA methylation values (adjusted for major covariates,
seeMethods) across pathology groups, where the box in themiddle represents the
interquartile range (IQR), the middle line represents the median and the whisker
lines represent the minimum (quartile 1 –1.5 × IQR) and the maximum (quartile 3 +
1.5 × IQR).
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the significant DMPs represent sites that are specific to the Illumina
EPIC array and have not been assessed in previous analyses of AD
cortex that have predominantly used the preceding Illumina 450K
array. The top-ranked cortical DMP associated with AD pathology was
cg06913337, which was significantly hypomethylated with increasing
AD pathology (P = 1.27E–10, Fig. 1b, c). Of note, this site is annotated to
the ZFPM1 gene that encodes a zinc finger protein that has been pre-
viously associated with DLB38 and psychosis in AD39.

Differential methylation was associated with specific tau and
amyloid pathology measures
We next undertook analyses to identify variable DNA methylation
associated with each of the three individual AD pathology measures
(Braak NFT stage, CERAD score, and Thal phase). First, we identified 26
DMPs annotated to 21 genes associated with tau pathology at an
experiment-wide significance threshold (P < 9E–08) (Supplementary
Fig. S3 and Supplementary Data 3). A total of 23 (88%) of these DMPs
overlappedwith sites identified in theADneuropathology analysis. The
average magnitude of effect per Braak NFT stage across these DMPs
was 0.44% (SD=0.17%), with a cumulative mean DNA methylation
change of 2.63% (SD = 1.04%) from Braak stage 0–VI. Of note, 22 (83%)
of the DMPs were significantly hypermethylated with a higher Braak
NFT stage (enrichment P =0.000267) reflecting the enrichment of
hypermethylated loci observed in previous studies of tau pathology13,16.
The top-ranked DMP (cg16021126) is annotated to SERP2, and was
significantly hypermethylated with elevated Braak NFT stage
(P = 7.48E–10, effect size =0.29% per Braak NFT stage, Supplementary
Fig. S4). SERP2 is dysregulated in FTDP-17 (frontotemporal dementia
and Parkinsonism linked to chromosome 17) iPSC-derived neurons40. A
total of 16 (62%) of the 26 tau-associated DMPs identified in the BDR
dataset were tested in a recent meta-analysis of tau pathology per-
formed across sites on the Illumina 450K array13; effect sizes for these
sites were perfectly consistent across all tau-associated DMPs (100%
concordant, binomial sign-test P = 1.53E–05, Supplementary Fig. S5a). It
is notable that the magnitude of DNA methylation difference was
approximately 2.2-fold larger in BDR than in the tau pathology meta-
analysis (mean change per Braak NFT stage =0.20% [SD=0.09%]). Six
(38%) of the 16 overlapping DMPs reached experiment-wide sig-
nificance (P < 9E–08) in the previous meta-analysis and 14 (88%)
reached Bonferroni significance correcting for 16 sites (Bonferroni
P =0.00313). Likewise, of the 220 DMPs identified in the tau pathology
meta-analysis, 208 are includedon the Illumina EPIC array and tested in
the BDR dataset. These were characterized by highly consistent effect
sizes observed across both analyses (100% concordant, binomial sign-
test P = 5.08E–61, see Supplementary Fig. S5b); of note, effect sizes in
the BDR cohort were again larger (average ~1.2-fold larger) than those
reported in the tau pathology meta-analysis.

Second, we identified 14 DMPs annotated to 12 genes associated
with CERAD score (Supplementary Fig. S6 and Supplementary Data 3).
The average magnitude of effect for the significant DMPs per unit of
CERAD score was 0.57% (SD =0.16%), with a cumulative absolutemean
DNA methylation difference of 2.29% (SD =0.63%) from low to high
CERAD score and again an enrichment of hypermethylated sites
(10 (71%) of DMPs showing higher DNA methylation with increasing
pathology). The top-ranked DMP (cg13515047) is annotated to BCAR1,
which encodes a Cas scaffolding protein that acts as a functional
key regulator in the pathogenesis of AD41, and was significantly
hypermethylated with an elevated CERAD score (P = 4.96E–09, effect
size = 0.44%, Supplementary Fig. S7 and Supplementary Data 3).
Finally, we identified two experiment-wide significantDMPs associated
with Thal phase, both hypermethylated with increasing pathology
(Supplementary Fig. S8 and Supplementary Data 3). The top-ranked
DMP (cg11658414, unannotated to any gene) was significantly hyper-
methylated with elevated Thal phase (P = 9.11E–09, effect size = 0.30%,
Supplementary Fig. S9).

It is well established that the neuropathological signatures of AD
are correlated and higher levels of NFTs are associated with elevated
amyloid burden42. As expected, therefore, there was a strong positive
correlation in patterns of differential DNA methylation across DMPs
for the individual neuropathology measures assessed in BDR (see
Supplementary Fig. S10). Effect sizes for the 26 Braak NFT stage
DMPs, for example,were highly concordant (100%, binomial sign-test
P = 1.39E–17 across all analyses) with effect sizes at the same DNA
methylation sites in analyses of the other neuropathological mea-
sures in BDR (Supplementary Fig. S11). In addition, when fitting the
full model controlling for all AD neuropathology measures, no DMPs
remained significant (P > 9E–08) for each specific measure, further
indicating the presence of common effects with consistent differ-
ences in DNA methylation across the different measures of AD
neuropathology.

Effect sizes at DMPs associated with AD pathology are corre-
lated with those from an analysis of Lewy-body and TDP-43
pathology
Because other dementia neuropathologies are frequently present
alongside tau and amyloid pathology in AD we sought to explore
whether DNA methylation at AD-associated DMPs was associated
with Braak LB stage and TDP-43 status, twomeasures of common co-
pathology. The samples included in our study were characterized by
limited amounts of both LB and TDP-43 pathology—the majority of
donors were Braak LB Stage 0 (n = 386, 72%) and TDP-43 negative
(n = 463, 78%)—and we therefore had limited power to identify novel
DMPs associated with either type of pathology. Elevated TDP-43
status was associated with significant hypomethylation at a single
DMP (cg06423355: P = 5.47E–08, effect size = −2.26%). Although this
site is not directly annotated to any gene, it resides ~50 kb from
STK38L that encodes a protein kinase involved in neuronal cell divi-
sion and morphology and has been identified to control axonal
growth in mouse hippocampal neurons43. Overall, effect sizes for the
67 AD pathology DMPs were found to be highly consistent between
analyses of the AD (Braak NFT stage, CERAD score, Thal phase) and
non-AD (Braak LB stage and TDP-43 status) neuropathology mea-
sures (see Supplementary Fig. S12) suggesting consistent effects
across each type of neuropathology or that these effects are driven
by underlyingdisease (i.e., a consequence rather than directly related
to neuropathology).

AD-associated differential DNAmethylation is highly consistent
across DLPFC and OCC
Our initial EWAS model leveraged matched DNA methylation data
from both the DLPFC and OCC for each donor to maximize power to
detect cortical DMPs associated with AD pathology. As expected,
pathology-associated DNA methylation differences were highly con-
sistent between both cortical regions across the 67 DMPs identified
using this cross-cortex analysis model (binomial sign-test P = 6.78E–21,
Supplementary Fig. S13). Given the progressive nature of ADpathology
across different areas of the cortex, however, with more severe
degeneration in the DLPFC compared to OCC1,2,24—as reflected in our
finding of pathology-associated cell proportion changes in the DLPFC
but not the OCC—it is plausible that there are brain region-specific
differences in AD-associated patterns of DNA methylation. Therefore,
we repeated our analysis including an interaction term for the brain
region, identifying no significant region-specific associations with AD
pathology (P > 9E–08). We also performed an EWAS of AD pathology
(including the same three measures of tau and amyloid pathology)
independently in each cortical region (Supplementary Data 4), iden-
tifying 30 significant DMPs in the DLPFC and 8 DMPs in the OCC
(Supplementary Data 5 and 6). Although the larger number of DMPs
identified in the DLPFC is consistent with the more advanced levels of
ADpathology in this brain region compared to theOCC1,2,24, effect sizes
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were strongly concordant across regions (Supplementary Figs. S14 and
S15) with one DMP (cg18100976, annotated to PDLIM2) being identi-
fied in both the DLPFC and OCC. Of note, PDLIM2 encodes a protein
that suppresses anchorage-dependent growth and promotes cell
migration and adhesion, and has been implicated in PD by GWAS44,45.
The consistency of findings between DLPFC and OCC suggests that
variable DNA methylation at the identified DMPs is unlikely to simply
reflect a consequence of neuropathology or neural cell loss.

A meta-analysis of data from over 2000 donors identified over
300 cortical DMPs associated with tau pathology
We combined our BDR tau pathology EWAS results with the summary
statistics from a recent analysis of tau pathology performed by our
group13, performing a cross-cortex inverse variance weighted (IVW)
meta-analysis of the Braak NFT stage including data for 403,763 DNA
methylation sites from 2013 donors derived from seven independent
cohorts (the 6 cohorts included in the Smith et al. meta-analysis13

in addition to the BDR samples described here (see Methods and
Supplementary Data 7). In total, we identified 334 cortical DMPs
(Bonferroni P < 1.24E–07) annotated to 171 genes (Fig. 3 and Supple-
mentary Data 8). The fullmeta-analysis results for all probes tested are
presented in Supplementary Data 9. Of note 140 (42% of the total) of
theseDMPs represented novel associations not previously identified in
the previously published meta-analysis, reflecting the elevated power
achieved by including the additional data from BDR donors. The top-
ranked DMP, which was characterized by increasing DNA methylation
with increased tau pathology (cg07061298: P = 8.06E–18, effect size =
0.32%, Fig. 3a) is annotated to HOXA3; of note, previous studies have
strongly implicated differential DNA methylation across the HOXA
region as being associated with AD pathology13,46,47, and we found that
17 (5%) of the 334 meta-analysis DMPs are annotated to this genomic
region (Supplementary Fig. S16).We also confirmed other previous AD
EWAS associations, including a site annotated to ANK1 (cg05066959;
P = 1.16E–13, effect size = 0.41%) that has been robustly associated with
AD pathology in previous EWAS studies of AD11,15,16 and was char-
acterized by elevated DNA methylation with increased tau pathology
(Fig. 3b). Interestingly, several of the identified DMPs are annotated to
genes that been also been implicated in GWAS analyses of AD
pathology, including cg06784824 (P = 1.71E–11, effect size = 0.21%,
Fig. 3c) annotated to SPI1, a gene hypothesized to regulate AD-
associated genes in primary human microglia7,48. We performed gene
ontology (GO) pathway analysis of the 171 genes annotated to the
significant DMPs in the cross-cortex meta-analysis using methylGSA
(seeMethods) identifying significant enrichment of multiple pathways
including pathways related to immune and inflammatory processes
(see Supplementary Data 10 and Supplementary Fig. S17). Mounting
evidence suggests the immune systemplays a role in the etiologyofAD
and other dementias49; both local and peripheral inflammation is
triggered by the degeneration of tissues (e.g., damaged neurons and
neurites) and the deposition and highly insoluble proteins such as
Aβ and NFTs49. Of particular interest was an enrichment of DMPs
associated with genes involved in metalloproteinase activity pathways
(e.g., “metalloendopeptidase activity” [GO: 0004222, P = 5.09E–08]);
these proteins are important in neuroinflammation and have been
strongly linked to neurodegenerative disease50. Other GO categories
enriched amongst genes annotated to DMPs associated with tau
pathology include pathways implicated in AD including several
related to mitochondrial function (e.g., “mitochondrial transport”
[GO: 0006839, P = 5.09E–08]) and “unfolded protein binding” (GO:
0051082, P = 5.09E–08). We subsequently repeated the meta-analysis
focusing only on DLPFC samples from 1545 individuals from four
independent cohorts (the 3 DLPFC cohorts included in the Smith et al.
meta-analysis13 in addition to the BDR DLPFC samples described
here (see Methods and Supplementary Data 7), identifying 300 sig-
nificant DMPs annotated to 161 genes (Supplementary Fig. S18 and

Supplementary Data 11). The full meta-analysis results for all probes
tested are presented in Supplementary Data 12. There was consider-
able overlap between the results from both meta-analyses with 215
DMPs being significant in both, and the direction of effect being 100%
concordant between the cross-cortexDMPs (P = 2.86E–101) andDLPFC
DMPs (P = 4.91E–91) (Supplementary Fig. S19).

An analysis of purified nuclei populations shows that the
majority of DMPs identified in bulk cortex tissue reflect DNA
methylation differences occurring in non-neuronal cells, with
dramatically increased effect sizes observed in the NeuN–/
SOX10– immunolabeled nuclei population
Although we attempted to control for potential heterogeneity in the
proportion of different cell-types in our analysis of bulk cortex DNA
methylation by using novel reference panels generated on NeuN+
(neuron-enriched), SOX10+ (oligodendrocyte-enriched), and NeuN–/
SOX10– (microglia- and astrocyte-enriched) nuclei populations, our
EWAS approach could not identify AD-associated differences occurring
within specific cell populations. We therefore used our FANS protocol
(see Methods) to profile DNA methylation in purified NeuN+, SOX10+,
and NeuN–/SOX10– nuclei populations - in addition to a “total” nuclei
population reflecting the cellular makeup of bulk cortex—from DLPFC
tissue from a subset of “low” pathology (Braak score ≤II, n = 15) and
“high” pathology (Braak score ≥V, n = 13) donors (Supplementary
Data 13). We also co-stained nuclei with the microglial marker IRF8,
highlighting complete overlap with the NeuN–/SOX10– population. Of
note, a large proportion of NeuN–/SOX10– nuclei were IRF8+ (mean =
42.23%) indicating a relatively strong enrichment ofmicroglia amongst
this double-negative population. Of the DMPs identified in the DLPFC
tau pathology EWASmeta-analysis, we obtained data for 327 sites in the
purified nuclei populations (n = 327DMPs). First, we looked at between-
group effect sizes in the “total” nuclei population finding highly con-
sistent DNA methylation differences to those seen in the large DLPFC
meta-analysis despite the small number of samples, confirming the
validity of our EWAS results (sign-test P= 7.24E–46, 87% concordant
direction of effect). We then examined high vs low Braak score differ-
ences in DNA methylation at the 327 DLPFC DMPs finding a striking
difference in the consistency andmagnitude of effect sizes across each
of the nuclei populations (Fig. 4). Although 67 DMPs (20%) had con-
sistent directions of effects across all nuclei populations (Supplemen-
tary Data 14), the NeuN–/SOX10– population showed the most
consistent between-group differences in DNA methylation (sign-test
P = 1.2E–75, 96% concordant direction of effect) and was also char-
acterized by a dramatic increase in effect sizes compared to those
observed in bulk DLPFC (mean fold-change in effect size compared to
bulk DLPFC= 10.72, Fig. 4). A similar pattern of differential DNA
methylation was also observed in the SOX10+ (oligodendrocyte-enri-
ched) population (sign-test P = 2.15E–10, 67% concordant direction of
effect) again with an elevated effect sizes compared to bulk DLPFC,
albeit to a lesser extent (mean fold-change in effect size compared to
bulk DLPFC= 1.93, Fig. 4). These results suggest that the widespread
cortical DNA methylation differences associated with AD neuropathol-
ogy are primarily manifest in non-neuronal cell-types, although there is
evidence for pathology-associated differences in cortical DNA methy-
lation being specifically driven by variation in neuronal cell-types types
for a subset (n = 27 (8.3%)) of tested DMPs (Supplementary Data 14).

Discussion
We present a systematic analysis of cortical differences in DNA
methylation associated with AD neuropathology. Using tissue and rich
neuropathological data from 631 donors in the BDR cohort, we iden-
tified DMPs associated with levels of tau, amyloid, LB, and TDP-43
pathology across two cortical regions (DLPFC and OCC). We subse-
quently combined our results with those fromprevious studies of DNA
methylation in AD cortex13, performing a meta-analysis incorporating
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results from over 2000 donors and identifying 334 DMPs associated
with AD pathology including many novel loci not previously identified
in AD EWAS. We also characterized DNA methylation in purified
immunolabeled DLPFC nuclei populations isolated from a subset of
BDR donors with low and high AD pathology, exploring the extent to
which pathology-associated DMPs are driven by differential DNA
methylation in specific cell populations. Importantly, we find that the

majority of DMPs identified in bulk cortex tissue reflect DNA methy-
lation differences occurring in non-neuronal cells, with dramatically
increased effect sizes observed in the NeuN–/SOX10– nuclei popula-
tion. Our study highlights the power of utilizing multiple measures of
neuropathology to identify epigenetic signatures of disease and the
importance of characterizing disease-associated variation in purified
cell-types.
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Many of the pathology-associated DMPs identified in this study
are annotated to genes that have previously been implicated in
dementia. This includes multiple DMPs annotated to the HOXA region
which has been previously identified in EWAS analyses of AD
pathology13,46,47. The HOXA cluster is involved in the control of neu-
ronal development, neuronal circuit organization, and the regulation
of post-mitotic neurons51,52, and in addition toADmethylomicvariation
across the HOX region has been associated with other neurodegen-
erative diseases including PD, Huntington’s disease, and C9ORF72-
related dementia53–55. AD pathology-associated DMPs were also anno-
tated tomany immune-related genes (e.g., TNFRSF1A andOSCAR) with
GO pathway analyses finding an enrichment of immune and inflam-
matory pathways. These findings build on existing evidence that
immune dysregulation plays a key role in the etiology of AD and other
dementias49. In addition, differential DNA methylation in the vicinity
of the SPI1 gene was identified in our cortical meta-analysis of
AD pathology. SPI1 has been identified in recent AD GWAS7,56 and
EWAS13 analyses and encodes the transcription factor PU.1, a pioneer
factor for myeloid macrophages and microglial populations that has
been implicated in regulating genes leading to inflammatory response
in AD48,57. This is particularly interesting in the context of our analyses
of sorted nuclei populations which identified that the majority of
methylomic differences associated with AD pathology occur in the
NeuN–/SOX10– population that is enriched for microglia.

The high overlap of DMPs and consistency of differences in DNA
methylation across the different types of neuropathology assessed in
BDR donors suggests that they may reflect some common signatures
of neurodegeneration. This could imply that these differences are a
common consequence of pathology or that they reflect the known
pleiotropy between different types of dementia. For example, SNPs
within theHLA region,MAPT, andAPOE all contribute to increased risk
for FTD, AD, and PD58. In addition, mutations in familial early-onset
AD genes (APP, PSEN1, and PSEN2) are also observed in PD cases
highlighting the pleiotropic effects associated with monogenic forms
of neurodegeneration59. Previous EWAS analyses have also identified
methylomic similarities between different neurodegenerative
diseases60 reporting significant over-representation in pathways rela-
ted to brain function and immune response. The evidence for pleio-
tropy suggests that common pathological mechanisms likely underlie
neurodegenerative disorders. Although neurodegenerative diseases
differ in their neuropathological hallmarks and the specific brain
regions involved, a common feature is theprogressive accumulationof
toxic protein deposits that ultimately lead to neuronal cell death and
brain atrophy61. One key strength of the BDR dataset is that multiple
neuropathology measures have been collected for each individual,
enabling us to identify DMPs robustly associated with overall levels of
AD neuropathology and leveraging greater power than analyses based
on single pathology measures. Of note, although the findings suggest
there are generalmethylomic signatures of neuropathological burden,
we cannot exclude the presence of differential DNA methylation
associated with specific types of neuropathology. Interestingly the

BDR effect sizes are larger than those observed in our recent meta-
analysis of tau pathology13; this could potentially reflect cohort
differences, the reduced heterogeneity in BDR, array platform differ-
ences, or by the fact that association statistics for variants meeting an
experiment-wide threshold tend tobeoverestimated62. In addition, the
consistency in the direction of effect demonstrates how robust the
EWAS results for AD pathology are across studies.

A major strength of our study is our use of FANS to purify
immunolabeled nuclei populations from a subset of donors prior to
DNA methylation profiling. This enabled us to develop a refined cell-
type deconvolution model that better controls for cellular hetero-
geneity in bulk cortex measurements of DNA methylation than pre-
viousmodels that only estimate the proportion of neuronal cells. Even
when controlling for cell-type proportions, the bulk cortex analysis
does not enable the identification of pathology-associated DNA
methylation differences occurring in specific cell-types. We therefore
profiled DNA methylation in FANS-purified nuclei populations from
individuals with high and low AD pathology to explore the extent to
which differences identified in bulk tissue were driven by variation in
specific cell-types. Our analyses showed that most of the DMPs iden-
tified in the bulk cortex reflect variation in non-neuronal cell-types,
with the biggest effect sizes identified in nuclei from NeuN–/SOX10–
cells that we found to be relatively enriched for microglial (IRF8+)
nuclei. These results support recent work highlighting a key role for
microglia in AD63; with the activation of microglia colocalized with
amyloid plaques in the brains of individuals with AD. The larger effect
sizes observed at AD-associated DMPs in the microglial-enriched
population might reflect the elevated reactivity of microglia in AD
compared to other cell-types, presumably driven by cell-type-specific
transcriptional signatures63,64.

There are several limitations that should be considered when
interpreting the results of this study. First, although we attempted to
control for cellular heterogeneity and profiled FANS-purified popula-
tions to compare effect sizes acrossdifferent cell-types, there are some
limitations to this approach—for example, there is still considerable
heterogeneity in each of the purified nuclei populations used to gen-
erate our deconvolution reference panels. The NeuN–/SOX10– frac-
tion, for example, will comprise a mix of glial cell-types65; although co-
staining with the microglial marker IRF8 highlighted that this popula-
tion is relatively enriched for microglial cells (Supplementary Fig. 20)
it will also include astrocytes and other non-neuronal cell-types.
Furthermore, the use of NeuN as a marker to purify neuronal nuclei is
not perfect66. Since neurodegenerative processes are associated with
atrophy of astrocytes65, they are an important cell-type to consider and
future work should aim to further dissect the associations identified in
the NeuN–/SOX10+ nuclei population. In the future, a reference data-
set that includes astrocytes and other cell-types would also be optimal
tomore systematically control for cellular heterogeneity in bulk cortex
DNA methylation data. Despite the relatively small number of purified
nuclei samples profiled in our study, we were able to identify drama-
tically increased effect sizes in specific cell populations, highlighting

Fig. 3 | Differentially methylated positions (DMPs) identified in a cross-cortex
meta-analysis include sites that are annotated to genes previously implicated
in Alzheimer’s disease. a Manhattan plot highlighting significant cortical DMPs
associated with Braak NFT Stage from an EWAS meta-analysis of all available AD
datasets (total N = 2013 individuals). In total 334 DMPs associated with tau
pathology were identified using linear regression models controlling for major
covariates (seeMethods) at an experiment-wide significance threshold (P < 9E–08).
The x-axis depicts individual chromosomes 1–22 and the y-axis gives the sig-
nificance level (–log10(P)) for each DNAmethylation site tested. The horizontal red
line represents the experiment-wide significance threshold (P < 9E–08). Gene
annotations are given for the 50 top-rankedDMPs and a full list of results is given in
Supplementary Data 9. Many of the DMPs associated with tau pathology have been
previously implicated in AD. Elevated tau pathology is associated with

b hypermethylation at cg07061298 (effect size = 0.32%, SE = 0.037%, P = 8.06E–18)
that is annotated to HOXA3 that has been implicated in previous EWAS analyses of
ADpathology, c hypermethylation at cg05066959 (effect size = 0.41%, SE = 0.056%,
P = 1.16E–13) that is annotated to ANK1 that is also strongly implicated in previous
EWAS analyses of AD pathology, and d hypermethylation at cg06784824 (effect
size = 0.21%, SE = 0.032%, P = 1.71E–11) that is annotated to SPI1 that is implicated in
GWAS analyses of AD. The x-axis shows the effect size (% DNA methylation differ-
ence per SD increase in Braak NFT stage), with squares representing effect size and
arms indicating the 95% confidence intervals. Details on each of the cohorts
included in the meta-analysis (AZ1 Arizona 1, AZ2 Arizona 2, BDR Brains for
Dementia Research, LBB1 London 1, LBB2 London 2, MS Mount Sinai, ROSMAP
Religious Orders Study/Memory and Aging Project) are given in Supplemen-
tary Data 7.
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the additional power gained by profiling purified cell populations;
further work in larger numbers of isolated nuclei populations is likely
to yield even more striking evidence for cell-type-specific DNA
methylation differences in AD pathology.

A key limitation of epigenetic studies of disease relates to the issue
of causality; it is not possible to elucidate whether the DMPs identified
in this study play a causal role in driving disease pathogenesis, whether

they represent a direct downstream consequence of neuropathology,
or whether they are induced by certain factors associated with AD
pathology in the BDR cohort. In this regard, it is interesting that AD-
associated differences identified in the OCC—a region of the cortex
relatively protected from tau and amyloid pathology—were highly
consistent with those identified in the DLPFC, which is affected much
earlier in the disease process1,2,24. This consistency across both cortical
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regions suggests that theAD-associated variation identified in this study
does not simply represent a consequence of AD neuropathology. Of
note, however, we cannot exclude the possibility that the differences
identified reflect the influence of other factors related to AD pathology
that were not controlled for in this study, for example, environmental
factors and other exposures such as medication that are themselves
associated with AD pathology.

In summary, utilizing extensive neuropathology data from the
BDR cohort we have performed a comprehensive EWAS of multiple
measures of AD neuropathology across two regions of the cortex. Our
meta-analysis with other AD DNA methylation datasets identified 334
cortical DMPs associated with AD pathology including methylomic
variation at multiple loci not previously implicated in dementia. We
subsequently characterized DNA methylation in purified nuclei
populations finding that themajority of DMPs identified in bulk cortex
tissue reflect DNA methylation differences occurring in non-neuronal
cells, with increased effect sizes observed in SOX10+ and NeuN–/
SOX10– nuclei populations. Our study highlights the power of utilizing
multiple measures of neuropathology to understand epigenetic sig-
natures of disease and the importance of characterizing disease-
associated variation in purified cell-types.

Methods
The Brains for Dementia Research cohort
The BDR cohort was established in 2008 and represents a network of
six dementia research centers across England and Wales (based at
Bristol, Cardiff, King’s College London, Manchester, Oxford, and
Newcastle Universities) and five brain banks (brain donations from
Cardiff are banked at King’sCollege London)25. Briefly, participants >65
years of age were recruited using both national and local press (e.g.,
newspapers, newsletters, leaflets), TV and radio coverage as well as at
memory clinics and support groups. There were no exclusion or
inclusion criteria for individuals with specific diagnoses or those car-
rying genetic variants associated with neurodegenerative diseases; the
cohort includes those with and without dementia and covers the full
range of dementia diagnoses. Participants underwent a series of
longitudinal cognitive andpsychometric assessments and gavewritten
informed consent for the useof tissue samples and clinical information
for research purposes. Ethical approval for the study was granted by
the University of Exeter Medical School Research Ethics Committee
(13/02/009).

Post-mortem neuropathological assessment of BDR brain
donations
Post-mortem brain donations to BDR undergo full neuropathological
dissection, sampling, and characterization by experienced neuro-
pathologists in each of the five network brain banks using a standar-
dized BDR protocol based on the BrainNet Europe initiative67,68. This
protocol was used to generate a description of the regional pathology
within the brain together with standardized scoring. Five variables
representing four neuropathological features were used in the ana-
lyses presented in this paper: (1) Braak NFT stage that captures the
progression of NFT pathology1,24, (2) Thal phase that captures the
regional distribution of Aβ plaques2, (3) CERAD score that quantifies
neuritic plaque density29, (4) Braak LB stage that captures the

progression of α-synuclein throughout the brain30,69, and (5) TDP-43
status—a binary indicator of the TDP-43 inclusions, whichwas assessed
using immunohistochemistry to identify the presence of phosphory-
lated TDP-43 in the amygdala, hippocampus, and adjacent temporal
cortex.Braak NFT stage, Thal phase, CERAD score, and Braak LB stage
were analyzed as continuous variables, utilizing the semi-quantitative
nature of these measures to identify dose-dependent relationships of
increasing neuropathology with variable DNA methylation. TDP-43
status was analyzed as a binary variable.

DNA methylation profiling in bulk cortex tissue
DNAmethylation data were generated on two cortical regions (DLPFC
and OCC) from each BDR donor. DNA was isolated from ~100mg of
tissue using the Qiagen AllPrep DNA/RNA 96 Kit (Qiagen, cat no.80311)
following tissue disruption using BeadBug 1.5mm Zirconium beads
(Sigma Aldrich, cat no. Z763799) in a 96-well Deep Well Plate (Fisher
Scientific, cat no. 12194162) shaking at 2500 rpm for 5min. Genome-
wide DNA methylation was profiled using the Illumina EPIC DNA
methylation array (Illumina Inc.), which interrogates >850,000 DNA
methylation sites across the genome70. After stringent data quality
control (see below) the BDR dataset consisted of DNA methylation
estimates for 800,916 DNA methylation sites profiled in 1221 samples
(631 donors [53%male], 610DLPFC, 611OCC; age range = 41–104 years,
median age = 84 years, mean age = 83.49 years, Table 1).

Fluorescence-activated nuclei sorting of different cell popula-
tions from DLPFC
NeuN+, SOX10+, and NeuN–/SOX10– nuclei populations were isolated
from ~700mg of DLPFC tissue using a method optimized by our
group37. First, nuclei populations were isolated from 12 donors with
low neuropathology (Table 1) to generate reference DNA methylation
profiles for purified nuclei populations for subsequent statistical
deconvolution of brain cell proportions from bulk cortex DNA
methylation data. Second, nuclei populations were isolated from
DLPFC tissue from 15 low pathology (Braak score ≤II) and 13 high
pathology (Braak score ≥V) BDR donors (total N = 28, Table 1 and
Supplementary Data 13) to identify cell-type-specific variable DNA
methylation associated with AD pathology. A full protocol detailing
each step of our nuclei purification protocol is provided at https://
www.protocols.io/view/fluorescence-activated-nuclei-sorting-fans-on-
huma-36wgq4965vk5/v1. Briefly, following tissue homogenization and
nuclei purification using sucrose gradient centrifugation we used a
FACS Aria III cell sorter (BD Biosciences) to simultaneously collect
populations of NeuN+ (neuronal-enriched) (R&D systems, Cat No:
NL2864R, dilution: 1:10) and SOX10+ (oligodendrocyte-enriched)
(Millipore, Cat No: MAB377X, dilution: 1:1000) immunolabeled popu-
lations from bulk DLPFC tissue prior to genomic profiling, with the
double-negative fraction and an aliquot of the “total” nuclei fraction
(analogous to “bulk” cortex) also being collected from each tissue
sample (Supplementary Fig. S20). In parallel, nuclei were also co-
stained for IRF8 (Invitrogen, Cat No: 17-9852-82, dilution: 1:150), a
microglial marker, to verify successful NeuN and SOX10 immunos-
taining and enable us to quantify the proportion ofmicroglial nuclei in
the NeuN–/SOX10– population. Nuclei suspensions were assessed for
the presence of debris by adjusting the gating strategy before

Fig. 4 | Differentiallymethylatedpositions associatedwithADpathology in the
cortex largely reflect DNAmethylation differences in non-neuronal cell-types.
Wecompared effect sizes for the 334overlapping tau-associatedDMPs identified in
our “bulk” cortexmeta-analysiswith those at the same sites in ananalysisofpurified
DLPFC nuclei populations from low (Braak NFT stage 0 to II) and high (Braak NFT
stage >V) tau-pathology donors. Shown is a comparison of effect sizes between the
meta-analysis (bulk, N = 2013 individuals]) and the a total nuclei (bulk) nuclei
fraction (N = 26) (direction of effect = 87% concordant, sign-test P = 7.24E–46);
b NeuN+ (neuron-enriched) nuclei fraction (N = 27) (direction of effect = 60%

concordant, sign-test P = 7.59E–05), c SOX10+ (oligodendrocyte-enriched) nuclei
fraction (N = 28) (direction of effect = 67% concordant, sign-test P = 2.15E–10), and
d double-negative (microglia- and astrocyte-enriched) nuclei population (N = 21)
(direction of effect = 96% concordant, sign-test P = 1.2E–75). The x-axis shows effect
sizes from the bulk cortex meta-analysis and the y-axis shows effect sizes for those
same DMPs in each purified nuclei population. Gray dashed line represents y = x.
e Bar-plots of the mean absolute relative effect sizes in each purified nuclei
population compared to the bulk cortex across the 334 tau-associated DMPs, with
error bars denoting the 95% confidence intervals.
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proceedingwith nuclei capture. For each sorted population, ~200,000
nuclei were collected for extraction of genomic DNA (Supplementary
Data 13). GenomicDNAwas isolated fromeach nuclei populationusing
a standard phenol:chloroform extraction protocol71 and DNA methy-
lation was profiled using the Illumina EPIC array as described above.

DNA methylation data pre-processing and quality control
Raw Illumina EPIC data were processed using thewateRmelon package
as previously described72. Our stringent QC pipeline included the fol-
lowing steps: (1) checking methylated and unmethylated signal inten-
sities and excluding poorly performing samples; (2) assessing the
chemistry of the experiment by calculating a bisulphite conversion
statistic for each sample, excluding samples with a conversion rate
<80%; (3) identifying the fully methylated control sample included on
each plate was in the correct location; (4) multidimensional scaling of
sites on the X and Y chromosomes separately to confirm reported sex;
(5) using the 59 SNP probes present on the Illumina EPIC array to
confirm that matched samples from the same individual (but different
brain regions or nuclei populations) were genetically identical and to
check for sample duplications and mismatches; (6) using the pfilter()
function in wateRmelon to exclude samples with >1% of probes with a
detectionP value > 0.05 andprobeswith >1%of sampleswithdetection
P value >0.05; (8) using PC analysis on data fromeach tissue to exclude
outliers based on any of the first three PCs; and (9) the removal of
cross-hybridizing and SNP probes73. The subsequent normalization of
the DNA methylation data was performed using the dasen() function
with the default options in either wateRmelon or bigmelon72,74. DNA
methylation data generated on the purified nuclei populations were
normalized separately for each cell-type.

Identification of differential DNA methylation associated with
neuropathology
To identify associations between variable DNA methylation and
neuropathology we fitted regressionmodels using the R (version 4.1)
statistical environment75. As DNA methylation data for each donor
was derived from two cortical regions, a mixed effects regression
model was used, implemented with the lme476 and lmerTest77

packages (see supplementary Fig. S21). To identify DNA methylation
sites associated with AD neuropathology we conducted an EWAS in
which DNA methylation at each probe was regressed against the
three measures of tau and amyloid pathology (Braak NFT stage,
CERAD density, and Thal Phase) using mixed effect regression
models where age, sex, experimental batch, PC1 (which accounted
for residual structure in the data) and derived brain cell proportions
were included as fixed effects and individual was included as a ran-
dom effect. Cell proportion estimates were derived from bulk cortex
DNA methylation data using the Houseman method31, implemented
withminfi functions and default parameters, incorporating the novel
reference DNA methylation data generated on three FANS-purified
nuclei populations (NeuN+, SOX10+, and NeuN–/SOX10–) from 12
DLPFC samples (see Supplementary Fig. S20). Briefly, this method
combines the cell-type reference data (generated fromFANS-isolated
nuclei populations) with bulk cortex data and performs quantile
normalization. It then performs an ANOVA to identify sites that are
significantly different (P value <1 × 10–8) between the different cell-
types and selects 100 sites per cell-type (50 hypermethylated and 50
hypomethylated). These sites are then used to derive cellular pro-
portions using quadratic programming, in essence, a least squares
minimization, with the constraint that all the proportions are greater
than or equal to 0 and the sumof the three proportions is less than or
equal to 1. Two of the three estimated proportions (NeuN+ and
NeuN–/SOX10–) were included in the model to eliminate the effects
of multicollinearity. To generate P values, an ANOVA was conducted,
comparing the full model including the three AD neuropathology
measures to a null model in which the threemeasureswere excluded.

We next conducted an EWAS for each of the five neuropathology
measures separately (Braak NFT stage, CERAD score, Thal phase,
Braak LB stage, and TDP-43-status) using the same set of covariates.
In addition, we ran analyses where cell proportions were regressed
against neuropathology in each brain region using linear regression
models, controlling for age and sex. To identify tissue-specific
effects, linear regressionmodelswere run in each brain region for the
three main AD neuropathology measures controlling for age, sex,
experimental batch, PC1, and derived cell proportions. Finally, to
further explore if there was an effect present in one cortical region
and not the other we ran a heterogeneity test, where we included an
interaction between neuropathology and brain region in the mixed
effects models, controlling for age, sex, experimental batch, brain
region, PC1, derived cell proportions and individual. EWAS results
were subsequently processed using the bacon R package78, which
applies a Bayesian method to adjust for inflation in EWAS.

Meta-analysis of variable DNA methylation associated with AD
pathology
Cross-cortex and DLPFC-specificmeta-analyses of the Braak NFT stage
were conducted incorporating the BDR with cohort-level summary
statistics from a recent meta-analysis published by Smith et al.13; this
paper includes detail on each of the individual cohorts included in the
overall meta-analysis and information about each cohort is also pro-
vided in Supplementary Data 7. We first reran the Braak NFT stage
EWAS in the BDR cohort excluding a small number (N = 14) samples
that overlappedwith samples included in the LBB1 cohort described in
the Smith et almeta-analysis13. In the cross-cortexmeta-analysis, a total
of 2939 samples (from 2013 donors) were included (Supplementary
Data 7). In the DLPFC meta-analysis, a total of 1,545 individuals were
included (Supplementary Data 7). An IVW method was used that
summarizes effect sizes from multiple independent studies by calcu-
lating the weighted mean of the effect sizes using the inverse of the
variance of each study as weights. The EWAS results from each cohort
were processed using the bacon R package78. Ameta-analysis was then
performed using the metagen function in the R package meta79, using
the effect sizes and standard errors from each individual cohort to
calculate weighted pooled estimates and test for significance. Probes
were limited to those present in at least two of the cohorts (cross-
cortex n = 403,763 DNA methylation probes; DLPFC n = 402,412) and
theP valuewasBonferroni corrected to control for this number of sites
tested (cross-cortex P < 0.05/403,763 = 1.24E–07; DLPFC P < 0.05/
402,412 = 1.24E–07). P values are from two-sided tests and significant
DMPs were taken from a fixed effects model. Pathway analyses were
subsequently performed on the significant DMPs using themethylglm
function within the methylGSA package developed by Ren and Kuan80

using the default parameters.

Regression against AD in FANS sorted nuclei populations
To determine whether associations identified in the bulk cortex are
primarily driven by alterations in specific cell-types we used data gen-
erated on purified nuclei populations from individuals with high or low
AD pathology. Briefly, we conducted an analysis of DNA methylation
differences for significant sites from the bulk cortex meta-analyses
comparing high and low pathology (defined as Braak high ≥V [N = 13];
Braak low ≤ II [N = 15]) (Braak score), which was modeled as a binary
variable, in the four FANS sorted nuclei populations (total nuclei [ana-
logous to “bulk” cortex], NeuN+, SOX10+, NeuN–/SOX10– separately.
Linear regression models were used, whereby the significant DNA
methylation sites identified in the cross-cortex and DLPFC meta-
analysis were regressed against high/ low pathology status controlling
for age, sex, and batch (brain bank). The results were then compared to
the meta-analysis results where a binomial test (sign test) was used
to statistically evaluate consistency in direction of effect across the
analyses.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting this study are available within the article, Supple-
mentary information, or are publicly available. The BDR DNA methyla-
tion data have been deposited in the Dementias Platform UK (DPUK)
data portal (https://portal.dementiasplatform.uk/CohortDirectory/
Item?fingerPrintID=BDR) and the Gene Expression Omnibus (GEO) at
accession number GSE197305.

Code availability
Analysis scripts used in this manuscript are available on GitHub
(https://github.com/gemmashireby/BDR_neuropathology_EWAS)81.
Our detailed FANS protocol for the isolation of purified nuclei popu-
lations is available onprotocols.io (https://doi.org/10.17504/protocols.
io.bmh2k38e).
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