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Preface 

Drug side effects play an important role in drug safety. Research on drug adverse 

effects helps to unveil cellular disturbances under treatment as well as support 

drug discovery and development. High throughput technologies have been well 

established and considered as affordable approaches in biomedical research, 

especially for drug side effect investigations. These modern technologies can 

systematically capture the cells’ epigenetic, transcriptomic, proteomic, and 

metabolomics alterations. Thus, they provide quantitative and multi-dimensional 

omics data and offer hypothesis-free observations. They are powerful approaches 

to recognize new drug-related targets and mechanisms on the molecular levels.  

High throughput or omics technologies have been known for their extensive 

data generation and, consequently, expanded the possibility of drug side effects 

research. However, it is a genuine challenge to distil meaningful information from 

the massive omics dataset. Different omics data types also require particular data 

processing, filtering, and analysis that are not standardized. These aspects are the 

hurdles of omics data analyses and interpretation. In this thesis, we explore and 

demonstrate different approaches to inspect various omics data types derived 

from human microtissues exposed to different drugs. The purpose of this thesis is 

to not only contribute to drug side effect research but also partially tackle the 

omics analysis obstacle. 

Keywords 

Drug side effects, high throughput technologies, omics, toxicogenomics, DNA 

methylation, MeDIP-seq, transcriptomic, RNA sequencing, long non-coding RNA 

(lncRNA), proteomics, anthracycline, doxorubicin, epirubicin, idarubicin, 

rifampicin, cardiotoxicity, hepatotoxicity. 
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ANT  anthracycline 

circRNA circular RNAs 

DE  differentially expressed 

DMR  differentially methylated region 

DOX  doxorubicin 

EPI  epirubicin 
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 | General introduction 
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Nhan Nguyen, Danyel Jennen, Jos Kleinjans. “Omics technologies to understand 
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Drug side effects 

Drug safety plays an important role in medical care as well as in drug 

development. The main focus of drug safety relates to the occurrence of adverse 

drug events, which are defined as injuries resulting from any drug-related 

intervention. In the United States, annual adverse drug events cause 2 million 

hospital stays in inpatient settings and over 3.5 million physician office visits in 

outpatient settings [1]. Parts of these events are preventable such as medication 

errors, overdoses, and allergic reactions [2]. Nevertheless, other adverse drug 

events, namely adverse drug reactions or drug side effects, are caused by 

underlying drug-induced mechanisms. Preventing those drug side effects in 

health care is essential not only for the clinical outcome but also for the economic 

impact [3]. Understanding drug adverse effects is also beneficial to drug screening 

and drug development in the pharmaceutical industry. In particular, drug toxicity 

has been responsible for the attrition of around 30% of drug candidates and 

contributed to the high cost and time-consuming process of drug discovery [4,5]. 

Thus, fundamental research on drug side effects is needed for disclosing undesired 

events and exploring their mechanisms.  

With the exponential proliferation of the drug market, researchers demand 

feasible and effective methods to inquire about drug toxicity. Next to a wide range 

of animal-based models, toxicologists increasingly use in vitro cell systems 

exposed to different drug doses and measure targeted endpoints such as 

cytotoxicity, mitochondrial damage, oxidative stress, and apoptosis [4]. While this 

targeted approach could directly link the drug toxicity to individual elements of 

phenotype and suggest useful biomarkers for follow-up clinical investigations, it 

is time-consuming and poses difficulty in explaining causality at molecular levels. 

Additionally, a single biomarker or endpoint is unlikely to portray the complete 

adverse effects of a drug [6]. Therefore, new and more global methods are desired 

to overcome these obstacles.  

Over the last decades, multiple high throughput technologies (HTPs) have 

emerged and shown their capability of providing a broader molecular detection in 

a single observation at acceptable prices and time (Figure 1-1). These HTPs dissolve 

the aforementioned obstacles in drug toxicity studies by recognizing multiple 

drug-induced alterations inside cells without prior knowledge. In this chapter, we 

discuss the availability of these cutting-edge technologies, and how they are 

utilized in drug side effect research. We have also foreseen the HTPs’ prospects 
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and their obstructions and briefly explain the aim of this thesis related to this 

topic. 

 

Figure 1-1: High throughput technologies (HTPs) in drug side effects studies 
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High throughput technologies 

Although there are various technologies to detect biological molecules, only 

technologies that can generate an extensive amount of data in a short time are 

considered as HTPs. Current HTPs can measure different biological molecules, 

from DNA, RNA, and protein to metabolites (Figure 1-1). They can be categorized 

into three branches, comprising next-generation sequencing (NGS), mass 

spectrometry (MS), and nuclear magnetic resonance (NMR). NGS, also called high 

throughput sequencing, can be applied for DNA and RNA sequencing as well as 

NGS-based epigenetic profiling. MS is commonly used in protein identification, 

while both MS and NMR can be used for metabolites depending on the particular 

research purpose. Since HTPs can capture multiple biomolecules in one 

observation, they provide a high-dimensional output. The output data on each 

molecular level is named with the suffix “-omics”, such as transcriptomics and 

proteomics (Figure 1-1). This suffix also refers to a field of study that analyzes the 

large-scale data of a particular molecule [7]. Generally, HTPs or omics approaches 

illustrate the cellular molecular behaviours as a whole, guarantee a better 

understanding of the biological complexity, and serve as a system-wide approach 

to research on the adverse effects of drugs.  

Epigenetic modifications: DNA methylation 

Epigenetic modifications imply the heritable phenotype without altering DNA 

sequences that can affect gene expression. Investigations on this subject have 

become a general trend in pharmacology [8]. Although there is a wide variety of 

epigenetic alterations such as modifications of histone and other tudor domain 

proteins, the majority of drug research has focused on DNA methylation 

processes, in which methyl groups are added to or subtracted from cytosines in 

DNA (5-methylcytosine, i.e. 5mC). Changing 5mC levels can influence the 

functional state of genome regions by monitoring the gene expression or 

alternative splicing [9]. These epigenetic alterations can be caused by drugs and 

may persist even after the treatment. For instance, differences in DNA 

methylation sites can contribute to liver injury caused by rifampicin, a well-known 

antibacterial drug [10]. Another study in rats treated with doxorubicin illustrated 

the association of epigenetic dynamics with cardiac mitochondrial functions that 

can last a long time and affect the transcriptome and metabolome [11]. A study in 

human hepatocytes exposed to valproic acid, a common worldwide antiepileptic 

drug, identified methylation biomarkers not only in nuclear DNA but also in 

mitochondrial DNA [12]. Together with 5mC, researchers have discovered 5-
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Hydroxymethylcytosine (5hmC), an epigenetic modification, which also happens 

in cytosines and plays some roles in gene expression regulation [13]. 

The DNA methylation-detecting technologies are classified into 3 main 

method groups: affinity enrichment-based methods, restriction enzymes-based 

methods, and bisulfite conversion-based methods [9,13]. The affinity enrichment-

based methods group uses either antibodies (methylated DNA 

immunoprecipitation, MeDIP-seq) or proteins (methylated-CpG domain-binding 

proteins, MBD-Seq) to compile the methylated genomic regions for sequencing 

[13]. By contrast, the restriction enzyme-based methods identify 5mC in selected 

sequences by using restriction enzymes to cleave the recognition sequence at the 

site of DNA methylation. In the bisulfite conversion-based methods, DNA is 

denatured and subjected to bisulfite treatment. Thus, the unmodified cytosine is 

converted to uracil, while methylated cytosine remains unchanged and is 

detectable [9]. Recently, novel DNA methylation-detected methods have also 

been developed, including bisulfite conversion-based and capture-based methods 

or third-generation sequencing [9,13]. However, most of these methods are 

capable of detecting 5mC but could not differentiate between 5mC and 5hmC 

cases due to their similar structures. To specifically detect 5hmC, either altered 

enzymes or another oxidative transformation is required in the DNA preparation 

procedure [13,14].  

Overall, this wide range of methods offers diverse possibilities for DNA 

methylation investigation in drug side effects research. The DNA methylation 

method, per se, has particular application due to its DNA input requirement, 

sensitivity, and specificity. In a large-scale approach, the whole-genome 

methylation profiling using MeDIP-seq or MBD-Seq can provide a comprehensive 

and unbiased view of the epigenome and discover new epigenetic biomarkers. On 

the contrary, other approaches, such as targeted bisulfite conversion, can evaluate 

the DNA methylation within specific DNA regions of interest and confirm 

particular mechanisms [15]. Together with potential applications, epigenetic 

research also requires intensive infrastructure as well as deep bioinformatics 

knowledge and skills to analyze the data. Furthermore, epigenetics research needs 

to standardize both experimental and computational procedures for enabling 

reliable comparisons between experiments, especially among different 

laboratories [9].  
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Transcriptome 

The term transcriptome refers to the total RNA from a single cell or a population 

of cells at a particular condition. The transcriptome studies highly focus on 

differentially expressed genes and alternative splicing under disease and 

treatment conditions [16]. The premier subject in transcriptomic research is 

mRNA, in which the expression of mRNA can serve as a proxy to the relevant 

protein [17]. Nevertheless, besides mRNA, the RNA population also includes 

noncoding RNAs (ncRNA), which are not translated into protein and have a 

variety of important biological functions. For instance, the long noncoding RNAs 

(> 200 nucleotides) promote chromatin remodelling, regulate transcription and 

mRNA turnover, also monitor translation and post-translational modification [18]. 

MicroRNAs (miRNAs) are other well-known ncRNAs (approximate 22 

nucleotides) that can cause mRNA degradation, translational repression, and gene 

silencing [19]. Furthermore, circular RNAs (circRNAs), a new class of ncRNA with 

diverse molecular functions, have conjointly gained acceptance in the genomics 

research community [20]. The high-profile function of circRNAs is to form miRNA 

sponges for regulating miRNA activities; this has been employed in therapeutic 

treatments but has not received vital attention in drug side effects research [21]. 

Thus, aside from traditional mRNAs, all these ncRNAs are also interesting targets 

in studying drug adverse effects. 

RNA sequencing (RNA-seq) leverages the applications of NGS and provides a 

broad dynamic range and sensitivity to detect and quantify RNA in biological 

samples. There are different RNA-seq techniques from whole transcriptome 

sequencing to targeted RNA-seq. While total RNA or whole transcriptome 

sequencing can examine both coding and non-coding RNAs simultaneously, the 

mRNA sequencing applies poly(A) selection to sequence all protein-coding genes 

expression. Instead of the regular RNA-seq, the small RNA-seq has been 

developed to quantify microRNA (miRNA) due to the transcript length concern. 

While these foregoing RNA-seq techniques cover the global transcriptome in a 

biological sample with hypothesis-free experimental designs, targeted RNA 

sequencing focuses on specific genes of interest at a lower cost [22]. All these 

technologies have been based on the short-read sequencing concept, in which 

fragments under 200 nucleotides are selected for sequencing. This helps to 

provide high-throughput and robust data across platforms but also limits the 

transcript isoforms’ detecting ability. To tackle this limitation, researchers have 

proposed a long-read sequencing concept without fragment size selection to 

enhance the capacity of capturing individual transcripts [23], even though the 
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current long-read technologies, such as PacBio and ONT platforms, have lower 

sensitivity and specificity, as well as higher error rates compared to short-read 

platforms. Overall, all these RNA-seq innovations and technologies have 

undoubtedly contributed to transcriptome-wide analysis in adverse drug effect 

research. 

RNA sequencing significantly elevates the capacity to understand drug toxic 

mechanisms and has a positive impact on drug discovery and development. This 

HTP yields quantitative information about gene expression features including the 

presence/absence and quantification of a transcript, as well as the alternative 

splicing related to protein isoforms based on different drug doses and time 

exposures. It has shown numerous advantages in discovering new biomarkers, 

recognizing drugs-target genes, and identifying pharmaceutical mechanisms 

compared to other technologies [16] The application of RNA sequencing gained 

even mover benefits from recent bioinformatics developments including 

algorithm analysis and high-performance computing [24] with suggestive 

standardized preprocessing pipelines [25]. However, the downstream analysis to 

detect differential expression genes is still controversial, which gives some 

flexibility in research but also can lead to transparency issues. To tackle this issue, 

the R-ODAF has recently been released and aims to suggest a more rigorous 

transcriptomic data analysis framework [26].  

Proteome 

Proteomics focuses on quantifying protein levels in the cell, which is the terminal 

result of the gene expression control and directly relates to functional biological 

processes. For instance, a whole-cell proteomic study can reveal the oxaliplatin 

mechanisms of action, in which oxaliplatin triggers the DNA damage responses 

and nucleolar and ribosomal stress [27]. A global proteomic analysis in mice under 

rifampicin treatments convincingly determined the change of the proteome and 

characterized the related hepatotoxicity mechanistic pathways [28]. Thus, 

proteomic profiling can capture the cellular response to drugs and help to predict 

the side effects of drugs [29]. 

Different protein identification techniques may be utilized in drug side effects 

research. Western blotting and ELISA are traditional techniques that can detect 

protein expression by using specific antibodies to bind to the targeted proteins. 

However, these techniques are confined by prior assumptions about the protein 

characteristics and the availability of specific antibodies, and can only detect a few 

proteins in a single experiment [30]. Mass spectrometry (MS) is an advanced 
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proteomic technique and has been elected in recent proteomic studies due to its 

protein-detecting ability [31]. MS methods can be divided into global and targeted 

proteomics. Global proteomics attempts to quantify and identify all the proteins 

in a given sample. Thus, researchers can measure the difference in the proteome 

between samples without hypotheses [32]. On the other hand, targeted 

proteomics limits the number of detected proteins and optimizes the methods to 

obtain the highest sensitivity [33]. Furthermore, the MS analysis procedures can 

also be divided into the peptide-based approach and protein-based approach. The 

peptide-based approach is the older method and a bottom-up strategy, which 

analyzes the MS of peptides, resulting from the enzymatic digestion of proteins, 

to identify proteins. The protein-based approach is a recently developed method 

based on a top-down strategy by analyzing the entire proteins [33]. Thus, different 

MS methods and MS analysis procedures can be selected in the interest of 

particular research purposes. 

Although MS methods provide high-throughput proteomics data and become 

a potential tool for pharmacology, it has several limitations. To date, none of the 

currently available proteomics techniques is able to detect all proteins within the 

cells. This limits the usage of proteomics compared to transcriptomics, which 

indeed captures all transcripts inside the cell. Additionally, proteomics techniques 

require comparatively large-sized samples and have difficulties with detecting low 

abundant proteins.  The proteomics pipeline analysis is also not user-friendly and 

considerably differs among laboratories, which can generate a transparency 

problem. All these constraints restrict the application of proteomics, although, 

from the traditional point of view, the knowledge about protein is easier 

transposable from in vitro to clinical applications compared to transcriptome and 

epigenomics. 

Metabolome 

In recent years, toxicologists have been interested in the metabolome, the 

comprehensive set of small-molecule metabolites inside the cell [34,35]. While 

drug-induced changes in DNA methylation, transcriptome, and proteome, can 

only depict the potential outcomes, metabolites are the end products of all these 

cellular processes. Understanding the metabolome provides a direct correlation 

between drug influences and cellular responses [36]. Cohort studies have 

described the changing endogenous metabolites under pulmonary tuberculosis 

treatments, such as isoniazid and rifampicin, and enlightened unknown toxicity 

mechanisms of these medicines [37]. Researchers have eventually utilized the 

metabolome to predict the mode of action of new antimicrobial compounds [38]. 
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Thus, by recognizing changes in metabolome under drug exposure, researchers 

can discover potential drug adverse effects, identify toxicity-related biomarkers, 

and predict drug toxicity. 

There are different technologies to detect metabolites in biological samples. 

The two well-known technologies are mass spectrometry (MS) and nuclear 

magnetic resonance (NMR) spectroscopy. They can be used in combination with 

other hyphenated platforms such as gas-chromatography mass spectrometry (GC-

MS), high-performance liquid chromatography (HPLC), ultra-performance liquid 

chromatography (UPLC), or the combination of these platforms [34]. MS is a 

technology with high sensitivity and resolution and is able to detect an extensive 

number of metabolites for both qualitative and quantitative analysis. Its limitation 

is requiring separation steps to reduce sample complexity and minimize 

ionization suppression effects. Another downside of MS is the limited coverage of 

MS libraries for peak observation, causing a sectional view of the metabolome. 

The current high-resolution MS analysis focuses mainly on identifying lipids, 

namely lipidomics [39], and bile acids [40]. Contrary to MS, NMR technology can 

be directly used to analyze several classes of metabolites simultaneously and does 

not require complex sample preparation. Thus, NMR can be applied to 

compounds that are difficult to ionize or would need to be derivatized in MS 

analysis. NMR can also be used to study metabolites from biological fluids, such 

as urine, saliva, as well solid tissue samples derived from biopsy or bulk materials; 

and the biological sample does not need to be destructed and can be reused for 

further analysis. Nevertheless, NMR has low sensitivity and does not allow for the 

investigation of a large proportion of metabolites at low abundance as is possible 

with MS [34]. Eventually, each metabolomics technology has its own advantages 

and constraints and is suitable for different study purposes. 

The main advantage of metabolomics is its close association with 

physiological responses.  This helps to expand the knowledge about drug toxicity 

mechanisms and thus supports precision medicine, biomarker discovery, and 

drug development studies. However, the application of metabolomics is still 

restricted due to the limitation of metabolomics technologies with respect to their 

speed, costs, and data quality [41]. Additionally, metabolomics requires some 

standard data analysis procedures and comprehensive metabolites databases for 

capably identifying detected metabolites.  
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Future developments: single-cell and multi-omics approaches 

One aspect of the biological system that also has become an obstacle for drug-

related studies is cellular heterogeneity. Cellular heterogeneity has been widely 

recognized, in which the expression of genes, proteins, metabolites, and 

individual cell activities can vary among cellular populations [42-44]. Researchers 

also noticed the heterogeneous methylation at tissue levels and the links between 

cells’ phenotype and genotype [9]. Thus, measuring cell behavior individually can 

give more accurate information and clarify the link between individual cell 

behavior to functional tissue rather than measuring bulk tissue, which normalizes 

all cellular variations. Single-cell RNA measurement was applied to track the 

transcriptomic landscape of human heart development [42]. The current single-

cell HTPs are not limited to the transcriptome but are also available at the 

methylome, proteome, and metabolome levels [9,43-45]. Single-cell HTPs have 

been used to optimize treatment strategies [46] and to improve the drug discovery 

and development process [47]. The application of single-cell technologies, 

therefore, can extend scientific knowledge and encourage new insight into drug-

induced mechanisms. 

The development of modern HTPs also supported integrative omics analyses. 

While each HTP can provide a comprehensive view of the state of particular 

molecules, biological mechanisms are not limited to particular molecular status 

but are extended by how these molecules interact with each other. The inter-

dependent relationships of cellular molecules contribute to cellular processes 

such as transcriptional regulation, protein-protein interaction, and metabolic 

regulation. Because of this, analyses focusing on a single molecular type cannot 

elucidate the entire biological response to drug treatment [48]. Multi-omics 

approaches, which combine different omics layers, encourage an integrative and 

systems-based approach towards understanding drug-related mechanisms as 

compared to single omics data analyses. For example, researchers have 

incorporated gene expression and methylation patterns to provide a better 

understanding of the drug's long-term side effects [49,50]. The multi-omics 

approach can be named differently such as "multi-omics," "vertical omics," or 

"trans-omics" [48,51], but they all refer to the integration of several omics data to 

constitute a flow of information and help to reveal the complete drug-related 

mechanisms. 

The advancement of multi-omics analyses considers drug-induced 

mechanisms as the integrated response of the whole biological system rather than 

the sum of each –omics regime. These approaches not only uncover biological 
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interactions but also initiate substantial hypotheses across multiple omics layers 

for dedicated empirical validation. In general, multi-omics analyses can be divided 

into two major approaches: using prior knowledge or data-driven approaches [51]. 

The prior knowledge approach relies on the known relationships between 

biological molecules (extrinsic information), such as transcription factor (TF) - 

target regulation, protein-protein interaction, or gene expression regulation by 

miRNAs and circRNA. This approach can draw reliable conclusions but also limits 

itself to established references on interactions. On the contrary, the data-driven 

approach, such as matrix factorization, classification, regression, or deep learning, 

only relies on the omics data themselves (intrinsic information) [52]. This 

approach can suggest potential causality and interactions based on the 

dependencies within and between omics layers data. However, predictions based 

on any approach certainly require experimental validation. To leverage the 

benefits of both approaches, researchers have attempted to establish hybrid 

integration such as composite network methods [52]. While researchers have been 

prompted to assimilate two omics types into their analysis; recent studies have 

endeavored to integrate more omics types to disclose the complex adverse drug 

responses [49,53]. With the accumulation of various omics datasets, the multi-

omics analyses can elevate their power predictions for either refining drug 

treatments or accelerating the drug discovery process [52]. Thus, multi-omics 

approaches are on the cutting-edge and sequentially promoted in adverse drug 

effect investigations.  

Notably, multi-omics analysis is the predominant bottleneck in the field of 

toxicogenomics. A gold standard for multi-omics study design as well as analysis 

methodologies is certainly not yet available. For the study design, the high costs 

of in vitro setting and the availability of precious biopsy samples restrain the 

sampling capacity to obtain all omics layers per replicate generated from one 

sample source. Furthermore, the difference in the response time and the lifespan 

of biomolecules within and between the omics layers also initiate issues: making 

sampling time points complicated as well as accumulating noise signals in the 

integrative process [54]. For the data analysis, multi-omics analysis inherits 

original challenges from single omics analyses plus new challenges of integrating 

multi-omics layers into an identical biological framework. Besides the limit of 

available “gold standard” datasets to serve as unbiased ground truth, the multi-

omics analysis has to face sufficient benchmarks and reproducibility issues [55]. 

While a range of different approaches, as mentioned in the previous paragraph, is 

available for multi-omics analysis, particular computational methods have mainly 

been developed for a very specific case and can only operate on certain criteria. 
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No multi-omics approach has been able to provide informative molecular 

interpretation combined with time and dose-response relationship as well as 

support reproducible research [54]. Compared to these challenges in multi-omics 

analysis, the obstacle of single-cell omics has been partly resolved by the advanced 

technologies for measurements as well as adjusted the ongoing data analysis 

approaches of bulk cells for single-cell data interpretation. Researchers have 

attempted to combine single-cell omics with multi-omics analysis to gain 

advances in both single-cell resolutions and a systematic understanding of cellular 

events [56]. Thus, the development of multi-omics data analysis could leverage 

the single-cell multi-omics approach and augment the exploration of toxicology.  

Multi-omics approaches should be a focus in future toxicogenomics/toxicology 

analyses. 
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Aims and outline of the thesis 

Understanding drug side effects research is essential for drug safety, as well as 

drug development and discovery. As explained in this introduction, HTPs have 

been well established in biomedical research, especially for drug adverse effect 

investigations; however, this demands compatible bioinformatics analyses. Thus, 

the flourishing of effective omics data analyses could support the progress in this 

research field. 

This thesis thus focuses on omics data analyses and explores different data 

analysis approaches as well as research angles to interpret omics data. We did data 

analyses among different omics data layers from epigenomics (MeDIP-seq) and 

transcriptomics (RNA-seq) to proteomics (MS). To respond to the need of 

developing multi-omics analysis approaches, as argued above, we did not limit the 

analysis scale to a single omics layer, but also pursued cross-omics interpretation 

as a multi-omics approach. These bioinformatics analyses can serve as 

introductory and accessible workflows to interpret omics data to understand 

biological mechanisms and direct further research. Besides investigating new 

omics data analyses, in this thesis, we also demonstrated how we utilized these 

approaches in particular drug side effects (anthracycline, rifampicin) as case 

studies.  

Dataset 

As discussed in previous sections, there are not many available datasets consisting 

of multiple omics data types. In this thesis, we fortunately had access to a 

comprehensive dataset, which comprised different omics data types derived from 

the same samples. The dataset was acquired from the Hepatic and Cardiac 

Toxicity Systems (HeCaToS) modeling project that was funded by the European 

Union Seventh Framework Programme (FP7/2007-2013) with grant number ID: 

602156. 

The HeCaToS project (https://cordis.europa.eu/project/id/602156) aimed at 

developing integrative in silico models for predicting human heart and liver 

toxicity. This project used advanced in vitro 3D liver and heart human 

microtissues. The human cardiac microtissues (3D InSightTM Human Cardiac 

Microtissues from InSphero) contained 4000 iPS-derived human cardiomyocytes 

from a female Caucasian donor and 1000 cardiac fibroblasts from a male Caucasian 

donor. The human cardiac microtissues were cultured in 3D InsightTM Human 

Cardiac Microtisues Maintenance Medium (InSphero) [57]. The human 3D 

https://cordis.europa.eu/project/id/602156
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hepatic microtissue model comprised of 1000 primary human hepatocytes mixed 

from 5 males and 5 females donor (7-59 years old) and 1000 primary human 

Kupffer cells from a Caucasian 27-year-old with unreported gender. The 

microtissues were cultured in 3D InsightTM Human Liver Microtisues 

Maintenance Medium - AF (InSphero) [58].  

According to the experimental design, the microtissues were separately 

exposed to 20 targeted drugs, at 2 dose administrations (therapeutic and toxic) in 

14 days. The therapeutic dose reflected the clinical dose and the toxic dose was the 

IC20 value based on the ATP production (cell viability) previously determined 

after 7 days of exposure [59]. The dose treatment regimes reflected the specific 

drug interstitial concentrations over time based on the dose administration that 

was calculated by reverse physiologically based pharmacokinetic (PBPK) 

modeling (Table S 1-1, Table S 1-2) [60]. For the functional evaluation, the ATP 

content in microtissues was measured during toxic treatment. Along with the drug 

exposure, the biomolecules of microtissues were measured by HTPs to generate 

epigenomics, transcriptomics, and proteomics data. In parallel, biopsies were 

obtained from patients with cardiomyopathies and liver injuries due to drug side 

effects. The biopsies’ molecular status was also measured by similar HTPs. The 

HeCaToS dataset is deposited in the BioStudies platform with identified accession 

numbers (http://www.ebi.ac.uk/biostudies). This thesis focused on analyzing 

omics data derived from cardiac and hepatic microtissues exposed to 

anthracyclines (ANTs) and rifampicin (RIF), respectively. 

Outline of the thesis 

We have presented the background information and the general aims in this 

current chapter - chapter 1.  

In chapter 2, we explored the epigenetic modifications related to drug-

induced side effects, in this case, EPI-induced cardiotoxicity. We first established 

a workflow to analyze the methylation data in chapter 2.1, then in chapter 2.2, 

we applied this workflow to the MeDIP-seq data deriving from cardiac 

microtissues exposed to EPI. 

In chapter 3, we investigated how drugs, in particular the ANT family that are 

well-known anti-tumor and cardiotoxic agents, can impact the transcriptome and 

proteome and lead to adverse side effects. In chapter 3.1, we analyzed the 

transcriptome of microtissues exposed to ANTs and specifically focused on 

lncRNAs, a newly emerged biomarker type that appeared in recent research. In 

chapter 3.2, we analyzed the proteome of the same microtissues exposed to ANT. 

http://www.ebi.ac.uk/biostudies
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In this chapter 3, we not only detected some candidate lncRNAs and proteins as 

potential targets for further ANT-induced side effect investigation in the in vitro 

experiment but also checked these genes and protein expression in biopsies 

samples obtained from ANT-treated and control patients. 

In chapter 4, we focused on biological interaction and cross-omics analysis. 

Omics data analysis can result in an extensive list of genes or proteins, which form 

difficulties in perceiving TF-target relations. In chapter 4.1, we developed 

Regomics, a tool for downstream omics data analysis, to retrieve potentially 

transcription factors (TFs) that regulated the given genes/proteins. In chapter 

4.2, we analyzed the epigenomics, transcriptomics, and proteomics from hepatic 

samples exposed to RIF, a drug with hepatotoxicity side effects. We also deployed 

the Regomics tool to determine TF– target relations possibly related to RIF side 

effects. 

Chapter 5 is the general discussion while we compiled and recapped remarks 

on all of the preceding analysis research. In this chapter, we also criticize the data 

used and established workflows, as well as discuss the further research direction. 

The impact of this thesis work is discussed in the Impact paragraph. 

The thesis is concluded by the Addendum, in which all the thanks are given 

to people who support me during my PhD (Acknowledgments), as well as all my 

professional information (Curriculum vitae and List of publications) 
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Supplementary Materials 

Supplementary tables 

Table S 1-1: The anthracycline concentration profile in the microtissue testing 
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Doxorubicin Epirubicin Idarubicin 

Thera-
peutic 

Toxic 
Thera-
peutic 

Toxic 
Thera-
peutic 

Toxic 

T2 0 – 2 2 0.062 0.211 0.602 0.221 0.9 0.005 0.087 

T8 2 – 8 6 0.006 0.016 0.046 0.013 0.051 0.001 0.023 

T24 8 – 24 16 0.002 0.008 0.024 0.004 0.018 0.001 0.01 

  24 – 26 2 0.063 0.217 0.62 0.224 0.912 0.006 0.106 

  26 – 32 6 0.007 0.022 0.063 0.015 0.061 0.002 0.037 

  32 - 48 16 0.004 0.013 0.038 0.006 0.025 0.002 0.016 

  48 – 50 2 0.064 0.221 0.631 0.225 0.917 0.006 0.115 

  50 – 56 6 0.008 0.026 0.073 0.016 0.066 0.003 0.046 

T72 56 – 72 16 0.004 0.016 0.046 0.007 0.029 0.002 0.02 

  72 – 144 72 0.013 0.039 0.111 0.028 0.116 0.003 0.038 

  144 – 146 2 0.065 0.227 0.649 0.226 0.923 0.007 0.123 

  146 – 152 6 0.009 0.031 0.09 0.018 0.072 0.003 0.053 

T168 152 – 168 16 0.005 0.021 0.06 0.008 0.034 0.002 0.023 

  168 – 170 2 0.065 0.228 0.65 0.227 0.924 0.007 0.124 

  170 – 176 6 0.01 0.032 0.091 0.018 0.072 0.003 0.053 

  176 – 192 16 0.006 0.021 0.061 0.008 0.034 0.002 0.023 

  192 – 194 2 0.065 0.228 0.651 0.227 0.924 0.007 0.124 

  194 – 200 6 0.01 0.032 0.092 0.018 0.072 0.003 0.053 

  200 – 216 16 0.006 0.022 0.062 0.008 0.034 0.002 0.023 

  216 – 218 2 0.065 0.228 0.652 0.227 0.924 0.007 0.124 

  218 – 224 6 0.01 0.032 0.092 0.018 0.073 0.003 0.053 

T240 224 – 240 16 0.006 0.022 0.062 0.008 0.034 0.002 0.023 

  240 – 312 72 0.014 0.042 0.119 0.029 0.118 0.003 0.039 

  312 – 314 2 0.065 0.229 0.653 0.227 0.925 0.007 0.124 

  314 – 320 6 0.01 0.033 0.093 0.018 0.073 0.003 0.053 

T336 320 – 336 16 0.006 0.022 0.063 0.008 0.034 0.002 0.024 
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Table S 1-2: The rifampicin concentration profile in the microtissue testing 

Sampling 
time point 

Time range 
(hours) 

Incubation 
time (hours) 

Control 
with 
0.1 % 
DMSO 

Respective concentration 
[uM] 

RIF 
therapeutic 

RIF 
toxic 

T0 0 h 0 h 0.1% 0.000 0.000 

T2 0 - 2 h 2 h 0.1% 1.886 55.527 

T8 2 - 8 h 6 h 0.1% 0.890 29.768 

T24 8 - 24 h 16 h 0.1% 0.213 9.747 

 24 - 26 h 2 h 0.1% 1.965 60.102 

 26 - 32 h 6 h 0.1% 0.954 33.543 

 32 - 48 h 16 h 0.1% 0.247 12.100 

 48 - 50 h 2 h 0.1% 1.987 61.711 

 50 - 56 h 6 h 0.1% 0.975 35.017 

T72 56 - 72 h 16 h 0.1% 0.265 13.277 

 72 - 144 h 72 h 0.1% 0.615 41.651 

 144 - 146 h 2 h 0.1% 2.044 65.094 

 146 - 152 h 6 h 0.1% 1.034 38.427 

T168 152 - 168 h 16 h 0.1% 0.321 16.567 

 168 - 170 h 2 h 0.1% 2.057 65.841 

 170 - 176 h 6 h 0.1% 1.047 39.189 

 176 - 192 h 16 h 0.1% 0.333 17.322 

 192 - 194 h 2 h 0.1% 2.069 66.571 

 194 - 200 h 6 h 0.1% 1.059 39.934 

 200 - 216 h 16 h 0.1% 0.345 18.059 

 216 - 218 h 2 h 0.1% 2.081 67.286 

 218 - 224 h 6 h 0.1% 1.072 40.664 

T240 224 - 240 h 16 h 0.1% 0.357 18.781 

 240 - 312 h 72 h 0.1% 0.701 - 

 312 - 314 h 2 h 0.1% 2.124 - 

 314 - 320 h 6 h 0.1% 1.115 - 

T336 320 - 336 h 16 h 0.1% 0.399 - 

Notes: RIF, rifampicin; -, not applicable. 
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Introduction 

Epigenetic modifications are heritable alterations that can influence the 

functional state of genome regions without changing the DNA sequence. One of 

the major epigenetic modifications is DNA methylation, in which a methyl group 

is added to the fifth carbon position of the cytosine base [1]. The DNA methylation 

status is regulated by both methylation and demethylation processes. This 

epigenetic modification plays an essential role in different biological activities 

based on where it is located in genomic regions. DNA methylation in intergenic 

regions can repress the expression of potentially harmful genetic elements, while 

DNA methylation in CpG islands can diminish transcription factor biding, and 

recruit repressive methyl-binding protein, resulting in gene silencing [2]. In gene 

regions, DNA methylation at the first exon can lead to gene silencing [2], whereas 

DNA methylations in other gene regions can also be signals for RNA splicing 

regulators [3]. Alterations in DNA methylation status can then lead to changes in 

gene and protein expressions. Studies have determined the relationship between 

human DNA methylation alterations and external factors such as environmental 

exposure, nutritional status, and disease [1,4]. Recent research also shows that 

DNA methylation can be a useful tool to understand a drug’s mode of action and 

adverse outcome pathway [5]. Therefore, studying DNA methylation could 

provide an added value to cellular mechanisms, especially for drug-induced 

mechanisms investigation.  

Among different DNA methylation detection approaches as mentioned in 

chapter 1 [6], methylated DNA immunoprecipitation-sequencing (MeDIP-seq) is 

a cost-effective technology, which requires low DNA input while providing 

adequate accuracy, genome coverage, and resolution [7]. MeDIP-seq uses a 

specific antibody to immunoprecipitate methylated DNA, and then evaluates the 

obtained fractions by high-throughput sequencing. Thus, MeDIP-seq can estimate 

the relative enrichment of methylated DNA across the majority of the genome 

(>95%). This genome coverage of the MeDIP-seq is higher compared to other 

methods such as the reduced representation bisulfite (RRBS) or the whole-

genome bisulfite (WGBS) protocol which both have approximately a 75% coverage 

[8]. Thus, although MeDIP-seq can only determine the regional changes in DNA 

methylation, it is an effective tool to establish pioneer information about the 

genome-wide methylation status under specific conditions. 

In this chapter, we focused on developing a bioinformatics workflow to 

analyze MeDID-seq data (chapter 2-1) and then utilized this workflow to interpret 
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the MeDIP-seq data from cardiac microtissues exposed to epirubicin (EPI) in 

chapter 2-2.  
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Experimental design and dataset 

The human cardiac microtissues (3D InSightTM Human Cardiac Microtissues 

from InSphero) were exposed to either a clinically therapeutic or a toxic (IC20) 

dose. Every weekday, the sample medium was renewed 3 times corresponding to 

the cardiac drug interstitial concentration profile at 2, 8, and 24 hours calculated 

by the physiologically based pharmacokinetic (PBPK) modeling. EPI was dissolved 

in 0.1% DMSO before utilization, thus control samples were also exposed to 

similar DMSO concentrations over time (Table S 1-1, ) [9]. 

The DNA and RNA were collected from microtissues in triplicates at 2, 8, 24, 

72, 168, 240, and 336 hours of exposure. After DNA extraction, the methylated 

DNA fragments were isolated by anti-5-methylcytosine antibody and then paired-

end sequenced (MeDIP-seq) with 50 bp read length [10]. After RNA extraction, the 

total RNA in each sample was isolated using Qiagen AllPrep DNA/RNA/miRNA 

Universal Kit (Cat #80224). Ribosomal RNAs were depleted by using the Illumina 

RiboZero Gold kit (Cat #MRZG12324), and then samples were prepared by the 

Lexogen SENSE total RNA library preparation kit (Cat #009.96). The RNA quality 

and quantity of the samples were checked by the Agilent 420 TapeStation and the 

QubitTM before they were sequenced by an HiSeq2000 with 100bp paired-end 

reads [11].  
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Chapter 2.1: Establishing a MeDIP-seq analysis workflow 

Objectives of the study 

The outcome of the MeDIP-seq method is sequenced reads derived from 

methylated DNA regions. This data need to be processed by mapping the reads to 

the reference genome, calculating methylation levels, and identifying 

differentially methylated regions (DMRs) among input samples. To assists the 

MeDIP-seq data analysis, different computational methods have been developed 

such as Batman [12], MEDIPS [13], MeDUSA [14], MeQA [15], and recently QSEA 

[16]. Some of the tools were published quite a long time ago such as Batman was 

launched in 2008 [12], or are currently unavailable such as MeQA [15]. 

Furthermore, among those accessible tools, the most comprehensive pipelines 

end at determining and annotating DMRs between samples [17].  

QSEA is a recent R package that is launched in 2017 as the successor of the 

MEDIPS package to analyze the MeDIP-seq data. QSEA provides a straight MeDIP 

analysis process from quantifying and normalizing MeDIP-seq data to detecting 

and annotating differentially methylated regions between samples [16]. This 

certainly supports the general MeDIP-seq data analysis. However, analyzing 

MeDIP-seq data at the regional level could result in thousands of DMRs, which is 

unmanageable for researchers to extract meaningful information. Some studies 

have upgraded the DNA methylation analysis at the DMR level to the gene level 

by identifying genes that had DMR located in the promoter region [18]. Thus, 

exploring different ways to elucidate the MeDIP-seq data at the gene level could 

elevate the application of DNA methylation analysis. 

In this chapter, we aimed to build a bioinformatics workflow based on the 

recently developed MeDIP-seq analysis method (QSEA) to address the DNA 

methylation at the gene levels. This workflow could aid researchers to detect the 

DMRs from MeDIP-seq data and refine the extensive DMRs list into a shortlist of 

methylated candidate genes. The code is written in R and is publicly available 

(https://github.com/NhanNguyen000/MeDIP). 

Analysis procedure 

The MeDIP-seq paired-end reads were aligned to human reference genome hg38 

using Burrows-Wheeler Alignment tool (BWA) version 0.7.17 [19] and converted 

to .bam files using Samtools version 1.10 [20] in the Linux environment (Figure 

2-1).  

https://github.com/NhanNguyen000/MeDIP
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Figure 2-1: The bioinformatics workflow for MeDIP-seq data analysis. (*) The average 
log2FC of each gene was the average log2 FC from all DMRs assigned to that gene. 

Thereafter, the aligned MeDIP-seq data were processed in R version 3.6.3 [21] 

using the QSEA package and human genome build hg38 with default window size 

(250 bases) excluding sex chromosomes [16]. Copy Number Variations (CNVs) 

were calculated from input and MeDIP reads based on 1 megabase windows. The 

CpG enrichment was estimated using the ‘Blind calibration’ option. The quality of 

the mapped MeDIP-seq data was performed using getOffset() and plotEPmatrix() 

functions. Thereafter, the QSEA package detected DMRs (p-value < 0.01) using 

generalized linear models (GLMs) with pairwise comparisons between EPI-treated 

and control samples (Figure 2-1). 

The DMRs were annotated to genomic regions using the “annotar” package 

[22]. The “annotatr” package provides comprehensive annotations and genomic 

context of DMRs. The average p-value and log2 fold change (log2FC) per gene 

were calculated based on the average of the p-value and log2FC from all DMRs 

assigned to that gene. Thereafter, candidate genes were selected for further 

analysis based on criteria: (i) select the top 5% genes with the highest number of 

DMRs across their gene regions, (ii) select the top 5% genes with the highest 

number of DMRs in their promoter region, and (iii) select genes that had the 

absolute log2FC >= 0.5 (Figure 2-1).  
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Results 

The methylation enrichment efficiency was sufficient in all harvested samples 

(Figure S 2-1). In general, DNA methylation profiles differed between EPI-treated 

and control samples (Figure 2-2). This indicates that EPI treatment could 

significantly alter the DNA methylation in cardiac tissues and MeDIP-seq was able 

to capture these DNA methylation modifications. 

 

 

Figure 2-2: The PCA plots of all EPI-treated and control samples. The numbers are the 
exposure times in hours. 
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The DNA methylation analysis between all EPI-treated and control samples 

unveiled 161,356 unique DMRs corresponding to 19,825 genes. Per gene, the high 

amount of DMRs, especially in the promoter region, suggests a strong influence 

of the EPI treatment on the DNA methylation status of that gene compared to 

control samples. After filtering, 966 genes were in the top 5% of genes that had 

the highest number of DMR regions across gene regions (Figure 2-3A), while 47 

out of these 966 genes had the highest number DMRs in the promoter region 

(Figure 2-3B). We also enhanced the filtering criteria by only selecting genes that 

had absolute average log2FC >= 0.5. Based on all these selection criteria, the 

workflow derived 35 selected genes with strong methylated alterations from the 

enormous number of detected DMRs (Figure 2-4). 

 

 

Figure 2-3: The distribution of genes according to the number of DMRs per gene (A) and 
the number of DMRs in the promoter region per gene (B) after the differentially methylated 
analysis between all EPI-treated samples and control samples. The red area indicates 
selected genes for the next analysis steps. 
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Figure 2-4: The volcano plot of the differential methylated genes in EPI-treated samples 
compared to control. Genes that satisfied all the selection criteria were highlighted in blue 
and red for hypo-methylated and hyper-methylated status respectively. 

Discussion 

In this chapter 2-1, we developed a workflow to detect genes that had strong 

methylation alterations based on the traditional QSEA R package. While several 

tools have been developed to analyze MeDIP-seq data, QSEA is the most recent 

one that offers a straight procedure to inspect MeDIP-seq data [16]. This workflow 

not only obtains DMRs but also filters top candidate genes with strong 

methylation alterations (Figure 2-1). Thereby, it could suggest potential genes for 

further investigation and certainly elevate the application of DNA methylation 

analysis. 
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Furthermore, this chapter 2-1 has demonstrated initial results about the 

change of genome-wide DNA methylation in cardiac microtissues exposed to EPI. 

Hence, the DNA methylation status in cells can also be influenced by disease 

progression and drug treatment as mentioned in previous studies [23,24]. DNA 

methylation can, therefore, serve as a potential approach to understand drug 

mechanisms as well as to discover biomarkers for drug safety and early drug 

screening. The MeDIP-seq data analysis of cardiac microtissues under EPI 

exposure is given in detail in the coming chapter 2-2. 
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Chapter 2.2: Epirubicin alters DNA methylation profiles 

related to cardiotoxicity  

Objectives of the study 

Epirubicin (EPI) is an important anticancer drug that is widely used in multiple 

types of cancer treatments even though its utilization leads to a high risk of heart 

failure [25]. To improve the therapeutic application of EPI, clinicians restricted its 

dose usage, because a very high dose of EPI (around 900 mg/m2) can cause acute 

heart failure circumstances. However, long-term observational studies have 

shown that using EPI also at lower doses can still provoke substantial 

cardiotoxicity [26,27]. Even though researchers have suggested updated signal 

transduction models [28], and studied the side effect of EPI on cardiomyocytes on 

gene expression [29] and protein [30] levels, deeper insights into EPI toxic 

mechanisms are still in demand. Since epigenetic modification can influence the 

functional state of genome regions without changing the DNA sequence, studying 

epigenetic signals could be beneficial to understanding EPI-related toxic 

mechanisms. Research on EPI in gastric cancer demonstrates that the changes in 

DNA methylation can be beneficial to understanding the biological mechanism of 

drug resistance [31].  

In this chapter 2-2, we intently focused on analyzing and interpreting the 

MeDIP-seq data deriving from cardiac microtissues exposed to EPI. While 

researchers usually analyze DNA methylation at the DMRs level [32,33], we would 

like to apply the recent MeDIP-seq analysis workflow as developed in the 

foregoing chapter 2-1 that targets candidate methylated genes. By utilizing this 

bioinformatics workflow, we can identify candidate genes that had strong DNA 

methylation alterations related to the EPI-induced cardiotoxicity mechanism. 

Furthermore, we also examine how changes in DNA methylation of those 

candidate genes affects their expressions on the transcriptome level. The outcome 

of this study could suggest potential genes with epigenetic regulations for EPI-

induced cardiotoxicity research. 

Analysis procedures 

MeDIP-seq data analysis 

We utilized the same MeDIP-seq data analysis workflow mentioned in previous 

chapter 2-1. In this chapter 2-2, we performed the DNA methylation analysis not 

only between all EPI-treated and control samples but also between EPI either 
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therapeutic or toxic-treated samples compared to controls. All the filtering steps 

were used with the default settings from the bioinformatics workflow (Figure 2-1). 

The overlapping genes within different DNA methylation analyses were identified 

using InteractiVenn tools [34]. The Gene Ontology (GO) enrichment analysis on 

differential methylated gene sets was performed by the PANTHER version 14 using 

the GO molecular function annotation dataset, no correction after Fisher's Exact 

test, and default reference for Homo sapiens [35]. 

RNA sequencing data analysis 

After RNA sequencing, the adapter sequences in the paired-end sequenced reads 

were removed by using Trimmomatic version 0.36 [36]. The sample sequencing 

quality was examined by FastQC version 0.11.7 [37], and summarized by MultiQC 

[38] before and after trimming the reads.  Then, the RNA sequencing data were 

mapped to the human genome version GRCh38.p12, Ensembl Archive Release 12 

93 [39] using RSEM version 1.3.1 [40] and Bowtie2 version 2.3.4.1 [41] with the 

paired-end option. All samples had more than 5 million read counts and were used 

for further analysis. Due to the limited amount of microtissues after 336 hours 

exposed to EPI-related toxic dose, only RNA data were available from samples 

treated with toxic dose at 2, 8, 24, 72, 168, and 240 hours of exposure. Thereafter, 

the RNA read counts between EPI-treated and control samples were normalized 

using the “DEseq2” package [42]. 

Results 

DNA methylation analysis 

As mentioned in the previous chapter 2-1, the DNA methylation profiles were 

dissimilar among EPI-treated and control samples (Figure 2-2). The DNA 

methylation analysis unveiled 161,356 unique DMRs corresponding to 19,825 genes 

between all EPI-treated and control samples. After different filtering steps, the 

workflow derived 35 genes with strong methylated alterations from the enormous 

number of detected DMRs (Table 2-1, Figure 2-4). 
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Table 2-1: The numbers of DMRs and selected methylated genes in EPI-treated samples 
compared to control 

Samples compared to controls All  
EPI-treated 
samples 

EPI  
therapeutic-
treated samples 

EPI  
toxic-treated 
samples 

DMRs regions 161,356 169,214 42,226 

Annotated genes 19,825 20,270 11,637 

Top 5% genes with the highest 
number of DMRs across the 
gene regions 

966 987 521 

Top 5% genes with the highest 
number of DMRs in the 
promoter region 

47 46 23 

Genes with average log2FC 
>=0.5 

35 37 19 

Hypo-methylated genes 26 22 18 

Hyper-methylated genes 9 15 1 

Note: DMR, differentially methylated region; EPI, epirubicin. 

We deployed the same DNA methylation analysis procedure to analyze the 

DMRs and corresponding differential methylated genes between EPI-treated and 

control samples per dose. The workflow again distilled the excessive number of 

detected DMRs into a shortlist of strong differentially methylated genes (Table 

2-1, Figure 2-5). Intriguingly, EPI therapeutic-treated samples showed a higher 

number of DMRs regions and gradually a higher number of strong differentially 

methylated genes compared to EPI toxic-treated samples. The DNA methylation 

analysis between therapeutic-treated samples compared to controls indicated 37 

candidates comprising 15 hyper-methylated and 22 hypo-methylated genes. This 

is quite compatible with the outcome of DNA methylation analysis between all 

EPI-treated samples and controls, which had 35 candidates including 9 hyper-

methylated and 26 hypo-methylated genes. However, the DNA methylation 

analysis between EPI toxic-treated samples compared to controls demonstrated 

19 candidates, and only one candidate gene, SPG7, was hyper-methylated (Table 

2-1). The GO gene enrichment analysis demonstrated that the differential 

methylated genes are involved in different functional classes (Table 2-2). While a 

major of these genes were concentrated in the catalytic activity (GO:0003824) and 

binding (GO:0005488) groups, the rest engages in regulator and transporter 

activities. 

Furthermore, we identified the overlapping differentially methylated genes 

within all foregoing DNA methylation analyses. This resulted in 8 common 

candidate genes in both EPI therapeutic and toxic-treated samples compared to 



Nhan Nguyen | Maastricht University (2018-2022) 

 45 

controls. However, one of these genes, ATP11A, was not recognized as a 

differentially methylated candidate gene when we compared the DNA 

methylation profiles between all EPI-treated samples and control (Figure 2-4, 

Table 2-3). Interestingly, while SPG7 was hyper-methylated at the EPI toxic-

treated condition (average log2FC = 0.84) (Table S 2-3), it was hypo-methylated at 

EPI therapeutic-treated condition (average log2FC = -0.69) (Table S 2-2) and at all 

EPI-treated samples compared to controls (average log2FC = -0.68) (Table S 2-1). 

By contrast, while the rest of the candidate genes at the EPI toxic-treated 

conditions were in hypo-methylated status, some of them were in hyper-

methylated status at other conditions. For instance, MAD1L1 was hyper-

methylated if comparing EPI therapeutic-treated or all EPI-treated samples to 

control. On the other hand, NCOR2 was hyper-methylated at the EPI therapeutic-

treated condition but hypo-methylated if comparing all EPI-treated samples or 

EPI toxic-treated samples to control (Table S 2-3). Thus, specific doses and how 

the MeDIP-seq data were processed had influenced the outcome of the DNA 

methylation analysis. 

 

Figure 2-5: Differential methylated comparison between control and either EPI 
therapeutic-treated (A) or toxic-treated samples (B). EPI, epirubicin; log2FC, log2 fold 
change. 
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Table 2-2: GO enrichment analysis for differentially methylated gene set per treatment 
condition compared to control 

Gene Ontology (GO) Enrichment Number of differentially methylated genes 

All EPI-
treated 
samples 

EPI therapeutic-
treated samples 

EPI toxic-
treated 
samples 

Transporter activity (GO:0005215) 3 1 1 

Transcription regulator activity 
(GO:0140110) 

2 2 2 

Catalytic activity (GO:0003824) 13 12 5 

Molecular function regulator 
(GO:0098772) 

1 2 1 

ATP-dependent activity 
(GO:0140657) 

3 3 1 

Molecular adaptor activity 
(GO:0060090) 

2 2 1 

Binding (GO:0005488) 14 10 6 

Cytoskeletal motor activity 
(GO:0003774) 

2 1 - 

Translation regulator activity 
(GO:0045182) 

1 - 1 

Molecular transducer activity 
(GO:0060089) 

1 - - 

Notes: EPI, epirubicin; -, not applicable. 

 

Figure 2-6: The Venn diagram of differential methylated genes resulting from different 
DNA methylation comparisons. This includes all EPI-treated, EPI therapeutic-treated, and 
EPI toxic-treated samples compared to controls. 
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Table 2-3: The differentially methylated genes resulting from three DNA methylation 
analyses compared to control 

Samples compared 
to controls 

All EPI-treated 
samples 

EPI therapeutic-
treated samples EPI toxic-

treated samples 

Overlapping 
differential 
methylated genes 

7 

MAD1L1, PRDM15, NCOR2, SUN1, SPG7, ANKRD11, DENND3 

Other differential 
methylated genes 

28 30 
12 

PIGG, SMG6, 
ADAP1, MCF2L, 
TCF25, OSBPL2, 
EHMT1, KIF1A, 
PPFIA1, HDAC4, 
POLE, HTT, LSP1, 
RNF213, MOK, 
MBTPS1, DYNC1H1, 
SDHA, SPTAN1, 
EIF3B, SNHG14, 
PFKP, POLR2A, 
RGS12, SEPTIN9, 
AGPAT3, ATP9B, 
IGF1R 

ADAP1, ATP11A, 
CCDC57, CHFR, 
CTTN, DNM2, 
DNMT1, DPP9, GET4, 
HDAC4, HDLBP, 
KIF1A, LAMA5, 
MCF2L, NADSYN1, 
NPHP4, PALM, PIGG, 
PKN1, PRKCZ, RGS12, 
RNF213, SEPTIN9, 
SMARCA4, SNHG14, 
SPTAN1, TCF25, 
TNK2, TSC2, ZC3H18 

AGPAT3, 
ANKLE2, ATP11A, 
BRD9, CCDC187, 
EHMT1, EIF3B, 
LINC02188, 
PFKP, POLR2A, 
PPP6R2, SDHA 

From DNA methylation to gene expression 

The MeDIP data and the transcriptome data were harvested from the same 

microtissues exposed to EPI; therefore, we were able to evaluate the influence of 

changing DNA methylation status on the gene expression. The gene expression of 

8 common differential methylated genes in EPI therapeutic and toxic-treated 

conditions is shown in Figure 2-7. The methylation status of some genes, such as 

SUN1, demonstrated a coherent relation with its gene expression on the 

transcriptome level. SUN1 was hypo-methylated with log2FC_avg = -0.66, -0.79, 

and -0.59 for the DNA methylation analysis between all EPI-treated, EPI 

therapeutic-treated, and EPI toxic-treated samples versus control, respectively. 

The expression of SUN1 in almost all EPI-treated samples was higher than its 

expression in corresponding control samples (Figure 2-7). Nevertheless, in some 

genes, the regulation at the DNA methylation level could not entirely be related 

to the gene expression at the transcriptome level. For example, SPG7 was hyper-

methylated in the EPI toxic-treated condition (Table S 2-3) and hypo-methylated 

in EPI therapeutic-treated condition (Table S 2-2); however, on the transcriptome 

level, SPG7 was overexpressed in samples treated with both EPI doses compared 

to its expression in controls (Figure 2-7). Similarly, MAD1L1 and NCOR2 were 
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hyper-methylated during EPI therapeutic treatments (Table S 2-2) and hypo-

methylated at EPI toxic treatments (Table S 2-3) but their gene expressions did 

not clearly reflect this (Figure 2-7). Hence, the change in methylated status could 

explain the expression regulation of certain genes, but not for all affected genes in 

the human genome. 

 

Figure 2-7: The gene expression of overlapped differentially methylated genes between EPI 
therapeutic and toxic-treated conditions. 

We also demonstrated the expression of some differential methylated genes 

that demonstrated distinct expressions on the transcriptome in EPI-treated 

samples from control. For instance, DPP9 was hyper-methylated at the EPI 

therapeutic-treated condition (average log2FC = 0.61, Table S 2-2), and its gene 

expression in EPI-treated samples was mostly lower than that in control samples 

(Figure 2-8A). While SMARCA4, HDAC4, PKN1, and RGS12 were hypo-methylated 

at the EPI therapeutic-treated condition (average log2FC = -0.50, -0.60, -0.72, and 

-0.90 respectively, Table S 2-2), only SMARCA4 and PKN1 were up-regulated on 

the transcriptome level in EPI therapeutic-treated samples compared to control 

across roughly all time of exposure (Figure 2-8A). At the EPI toxic-treat condition, 

SDHA and POLR2A (average log2FC = -0.69 and -1.03 respectively, Table S 2-3) 

were hypo-methylated at the DNA methylation level and consequently showed 

noticeable up-regulated on the transcriptome level (Figure 2-8B). By contrast, 

although AGPAT3 was hypo-methylated at the EPI toxic-treated condition 

compared to control (average log2FC = -0.84, Table S3), AGPAT3 had lower RNA 

expression levels after 24 hours of EPI exposure compared to corresponding 

control samples (Figure 2-8B). 
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Figure 2-8: The gene expression of differentially methylated genes in EPI therapeutic (A) 
and toxic-treated (B) conditions. 

Discussion 

This chapter 2-2 demonstrated the undeniable impact of EPI on the DNA 

methylation profiles as well as the changing of gene expression as the consequence 

of DNA methylation alterations under EPI exposure in in vitro human cardiac 

microtissues. By using the MeDIP-seq analysis workflow developed in chapter 2-

1, we were able to refine the extensive amount of detected DMRs into a shortlist 

of strongly differentially methylated genes. While the same data analysis 

procedure was applied, the outcome in each analysis step was different among 

particular EPI dose conditions (Table 2-1) and resulted in slightly different lists of 

candidate genes (Table 2-3). For example, we detected 35 candidate genes in all 

EPI-treated samples compared to control, while we encountered 37 and 15 

candidate genes between EPI therapeutic and toxic dose-treated conditions 

compared to controls, respectively. Although there were still overlapped genes 

among these DNA methylation analyses (Table 2-3, Figure 2-6), it is clear that 

various sample grouping approaches can generate different outcomes. It also 

shows that dose-dependence can lead to different numbers of DMRs and 

corresponding genes. Besides, the massive change in DNA methylation could also 

be the signal of genomic imprinting interruption. 

The differential methylated genes are involved in different cellular functions 

such as molecular interactions, regulations, and transportations (Table 2-2). In 
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particular, some genes changed their methylation status under EPI treatment, 

which is potentially associated with EPI cardiotoxic adverse effects. For instance, 

SMARCA4 (also known as BRG1) was hypo-methylated and provoked up-

regulation on the transcriptome level in EPI therapeutic-treated samples (Figure 

2-7). This gene has a critical role in regulating heart muscle development and 

disease via the myosin heavy chain switch. SMARCA4 is generally turned off in 

cardiomyocytes; however, it is re-activated under stress and its level is correlated 

with hypertrophic cardiomyopathy severity [43]. Thus, EPI could afflict the 

expression of SMARCA4 via DNA methylation alterations and stimulate cardiac 

dysfunctions. The gene expression of PKN1 was also up-regulated by hypo-

methylation in EPI therapeutic-treated conditions (Figure 2-7). The PKN1 

activation can initiate cardiac hypertrophy and fibrosis-associated gene 

expression and can be involved in heart failure development [44]. RGS12 was hypo-

methylated and up-regulated on the transcriptome level in a part of the samples 

exposed to EPI due to different times of exposure (Figure 2-7). A rodent study has 

demonstrated that RGS12 contributes to angiotensin II-induced hypertrophy, and 

its over-expression has been observed in cardiac hypertrophy and heart failure 

pathology [45]. Another hypo-methylated gene, HDAC4, is known for rapid 

histone methylation regulation in response to elevated cardiac load [46]. On the 

other hand, DPP9 was hyper-methylated and led to a lower gene expression in EPI 

therapeutic-treated samples compared to control (Figure 2-7); the drug-induced 

DPP9 inhibition can impair the CaMKII-PLB and PKC signaling and cause cardiac 

dysfunction [47]. All these genes were differentially methylated and potentially 

related to cardiotoxicity even under EPI therapeutic-treated conditions; this is 

consistent with the observation in cancer survivors who underwent EPI treatment 

have a higher risk of late-onset cardiac disease [26,27]. 

Eight genes were consistently differently methylated across EPI-treated 

samples as well as some genes specifically showed strong methylated alterations 

at the EPI toxic-treated condition (Table 2-3, Figure 2-6, Figure 2-7, Figure 2-8). 

NCOR2 was hyper-methylated in the EPI therapeutic-treated condition but hypo-

methylated in the EPI toxic-treated conditions, respectively. As a nuclear receptor, 

NCOR2 can regulate the expression of other genes and influence the metabolic 

oxidative balance in cardiomyocytes [48]. A study has suggested that the 

differential methylation signature of NCOR2 in CD4+ T cells could be a non-

invasive biomarker to identify pulmonary arterial hypertension patients [49]. 

Furthermore, SDHA, POLR2A, and AGPAT3 genes were hypo-methylated at the 

EPI toxic-treated condition and also play important roles in cardiac dysfunctions. 

While POLR2A has been considered a stable heart failure reference gene across 
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rodents and humans [50], SDHA participates in the tricarboxylic acid cycle and 

mitochondrial respiratory chain. The change of SDHA expression, due to the 

methylation modification at the DNA level (Table S 2-3, Figure 2-7), can impact 

mitochondrial acetyl-CoA homeostasis and energy metabolism which contribute 

to heart failure [51]. AGPAT3 is also an enzyme involved in mitochondrial 

oxidation; thereupon, the change in its expression can consequently affect ATP 

production [52]. Thus, SDHA and AGPAT3 can be potential drivers in the EPI-

induced energy metabolic dysregulation and contribute to heart failure 

development. 

In conclusion, measuring genome-wide DNA methylation profiles could 

provide further insights into the EPI-induced cardiotoxicity. Differential DNA 

methylation alterations could offer a supportive explanation for understanding 

EPI cardiotoxic mechanisms along with transcriptome and proteome study. In this 

chapter 2-2, a handful of genes that had strong EPI-related DNA methylation 

alterations were named as candidates for further investigation. A part of them, 

such as SMARCA4, PKN1, RGS12, DPP9, NCOR2, SDHA, POLR2A, and AGPAT3, 

has disclosed their roles in cardiac dysfunctions as well as potential biomarkers 

for heart failure in different contexts. This is coherent with the well-known EPI 

cardiotoxicity adverse effects. Those genes, together with other detected 

candidate genes, can be candidates for further investigations of EPI-related toxic 

mechanisms.  
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General remarks 

In this chapter, we first established a DNA methylation analysis workflow and 

then employ this workflow to analyze the DNA methylation profile in cardiac 

microtissues exposed to EPI compared to controls. We were able to inspect the 

DNA methylation alterations of several genes, and how changes in DNA 

methylation could affect their gene expression at the transcriptome level in 

relation to EPI-induced cardiotoxicity. 

From the bioinformatics perspective, we established a workflow built on the 

QSEA package to detect genes that had strong methylation alterations. While 

several tools have been developed to analyze MeDIP-seq data, there is still a 

demand for interpreting the differentially methylated status among samples from 

genome regions (DMRs) toward the gene levels. Our bioinformatics workflow 

built on the recent QSEA R package can analyze the DNA methylation profiles not 

only on the DMRs level but also on the gene levels as well as suggest candidate 

genes that have strong DNA methylation alteration between samples. The 

workflow is written in R and publicly available via Github; thereby, this could aid 

researchers with the DNA methylation analysis procedure. 

For the drug side effect, we explored the genome-wide DNA methylation 

alteration under EPI treatment. EPI is a popular chemotherapeutic agent with 

cardiotoxic effects [26]. Although different studies have investigated the impact 

of EPI on cellular mechanisms on the transcriptome and protein levels [29,30], 

there is not much research on EPI-induced epigenetic modifications. By analyzing 

the genome-wide methylation status of human cardiac tissues exposed to EPI, we 

identified candidate genes that had strong DNA methylation alterations related to 

the EPI-induced cardiotoxicity mechanism. According to transcriptome data from 

the same samples, we also examined how changes in DNA methylation of those 

genes affects their gene expressions on the transcriptome level. In some genes, 

their gene expressions were up or down-regulated, which compatibly reflected the 

DNA methylation regulation. Together with other differentially methylated genes, 

these genes can be interesting targets for further investigation in EPI-induced 

toxic mechanisms. Thus, studying epigenetic modification such as DNA 

methylation can help to understand the EPI-related toxic mechanisms in cardiac 

tissue. 

Therefore, DNA methylation can also be a useful tool to reveal drug-induced 

adverse side effects. Studying DNA methylations, as epigenetic signals, can be 

allied with gene and protein expression research in order to produce a multi-
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layered and extensive view of biological mechanisms, in this case, EPI-induced 

mechanisms. This chapter 2 not only establishes a new DNA methylation analysis 

workflow but also provides new insight into the gene expression and regulation at 

DNA methylated level related to EPI-induced cardiotoxicity. 

 



Chapter 2 | DNA methylation 

 
54 

Supplementary Materials 

Data & code accessibility 

The data is deposited in BioStudies (http://www.ebi.ac.uk/biostudies) under 

accession numbers S-HECA433 and S-HECA434 for the MeDIP-seq data and S-

HECA11 for the RNA-seq data. The R code is available on Github 

(https://github.com/NhanNguyen000/MeDIP). 

Supplementary figures 

 

Figure S 2-1: The sample-wise CpG density-dependent enrichment profiles. The average 
enrichment profile of samples is depicted in black, and the fitted sigmoidal function is in 
green. Samples with flat profiles might indicate low enrichment efficiency or poor 

http://www.ebi.ac.uk/biostudies
https://github.com/NhanNguyen000/MeDIP
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agreement with the calibration data. In here, all samples show sufficient enrichment 
profiles 

Supplementary tables 

Table S 2-1: Differentially methylated genes between all EPI-treated and control samples. 

Symbol 
The average of 
log2FC values 

The average of p-
values 

The average of 
adjusted p-values 

PIGG 0.929599 2.30E-08 1.07E-05 

SMG6 0.723932 1.28E-07 4.13E-05 

ADAP1 0.637901 0.000161 0.008325 

MCF2L 0.628397 2.79E-08 1.24E-05 

MAD1L1 0.609735 4.15E-06 0.000586 

TCF25 0.574223 2.92E-06 0.00045 

OSBPL2 0.560973 3.63E-08 1.53E-05 

EHMT1 0.557024 0.000117 0.006664 

KIF1A 0.508996 4.44E-05 0.003327 

PPFIA1 -0.51613 3.63E-07 9.23E-05 

PRDM15 -0.51623 0.000103 0.006067 

HDAC4 -0.54593 0.000119 0.006739 

POLE -0.54641 7.05E-05 0.004642 

HTT -0.57285 6.23E-07 0.000139 

LSP1 -0.58915 0.000108 0.006307 

NCOR2 -0.60021 1.08E-08 5.84E-06 

RNF213 -0.62046 4.39E-08 1.78E-05 

MOK -0.63346 0.000139 0.007539 

MBTPS1 -0.65155 0.000206 0.009931 

SUN1 -0.6618 1.68E-05 0.001648 

SPG7 -0.68089 3.48E-06 0.000513 

DYNC1H1 -0.68341 2.05E-05 0.001904 

SDHA -0.68512 1.75E-05 0.001695 

SPTAN1 -0.70132 0.000115 0.006575 

EIF3B -0.70674 3.67E-05 0.002903 

ANKRD11 -0.72403 3.98E-05 0.003077 

SNHG14 -0.72663 4.81E-06 0.000654 

PFKP -0.7734 6.49E-08 2.42E-05 

POLR2A -0.78209 4.87E-05 0.003559 

RGS12 -0.83223 8.72E-06 0.001017 

DENND3 -0.86963 1.10E-08 5.93E-06 
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SEPTIN9 -0.88978 1.93E-05 0.00182 

AGPAT3 -0.91077 3.19E-09 2.19E-06 

ATP9B -1.23879 1.35E-08 6.99E-06 

IGF1R -1.39002 1.07E-09 8.94E-07 

 

Table S 2-2: Differentially methylated genes between EPI therapeutic-treated and control 
samples. 

Symbol 
The average of 
log2FC values 

The average of p-
values 

The average of adj-p-
values 

PIGG 1.086588 9.42E-11 7.38E-08 

PALM 1.028544 0.000176 0.007639 

ADAP1 0.896716 2.80E-07 5.63E-05 

LAMA5 0.880503 5.24E-06 0.000561 

TSC2 0.800732 8.68E-07 0.000138 

DNM2 0.775342 1.61E-09 8.19E-07 

MCF2L 0.767292 2.26E-11 2.18E-08 

MAD1L1 0.746182 8.77E-06 0.000832 

TCF25 0.684485 1.09E-08 4.01E-06 

NCOR2 0.683063 1.25E-05 0.001087 

GET4 0.677513 5.74E-07 9.98E-05 

PRKCZ 0.650161 4.55E-05 0.002857 

DPP9 0.60892 4.88E-05 0.003008 

KIF1A 0.608094 5.71E-05 0.003375 

SNHG14 0.542938 7.11E-05 0.003971 

SMARCA4 -0.50261 1.38E-05 0.001173 

NPHP4 -0.53957 7.72E-07 0.000126 

DNMT1 -0.56003 0.000146 0.006672 

TNK2 -0.56569 2.30E-05 0.001718 

HDAC4 -0.59993 0.000203 0.008475 

PRDM15 -0.65886 1.20E-05 0.001054 

ANKRD11 -0.66849 1.14E-06 0.000171 

SPG7 -0.68964 2.34E-05 0.001741 

DENND3 -0.70321 1.79E-05 0.001424 

HDLBP -0.70592 1.64E-06 0.000227 

RNF213 -0.71511 1.70E-08 5.78E-06 

PKN1 -0.72406 4.11E-07 7.66E-05 

ZC3H18 -0.72933 8.70E-06 0.000827 
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CTTN -0.74312 3.48E-05 0.002345 

NADSYN1 -0.74643 2.09E-09 1.02E-06 

CHFR -0.74919 0.000224 0.009081 

SUN1 -0.78903 6.66E-06 0.000673 

CCDC57 -0.88915 0.000104 0.005215 

RGS12 -0.8961 4.41E-05 0.002793 

SEPTIN9 -0.90718 6.73E-12 7.74E-09 

ATP11A -0.95157 2.68E-05 0.001927 

SPTAN1 -0.97206 4.34E-06 0.000485 

 

Table S 2-3: Differentially methylated genes between EPI toxic-treated and control 
samples. 

Symbol 
The average of 
log2FC values 

The average of p-
values 

The average of adj-p-
values 

SPG7 0.844868 8.99E-06 0.002849 

EIF3B -0.51764 1.47E-05 0.004017 

BRD9 -0.54008 2.46E-06 0.001116 

ATP11A -0.54375 1.55E-05 0.00417 

SUN1 -0.59181 5.68E-07 0.00037 

SDHA -0.68544 6.08E-06 0.002158 

NCOR2 -0.68822 2.10E-08 2.69E-05 

MAD1L1 -0.72482 1.29E-06 0.000693 

PRDM15 -0.74761 2.44E-06 0.001112 

LINC02188 -0.75217 2.47E-05 0.005765 

CCDC187 -0.77581 7.89E-06 0.0026 

ANKLE2 -0.78812 5.10E-06 0.001901 

AGPAT3 -0.83796 6.87E-06 0.002355 

EHMT1 -0.84411 1.34E-06 0.000712 

PFKP -0.8911 3.23E-07 0.000239 

ANKRD11 -0.90485 2.09E-05 0.005137 

DENND3 -0.99421 7.61E-08 7.70E-05 

POLR2A -1.02903 1.89E-05 0.004781 

PPP6R2 -1.03661 1.20E-11 4.85E-08 
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Introduction 

Anthracyclines (ANTs) are a group of well-known chemotherapeutic agents 

consisting of thousands of analogs; the commonly used analogs are doxorubicin 

(DOX), epirubicin (EPI), and idarubicin (IDA). DOX is an essential drug in the 

treatment of multiple cancer types such as acute lymphoblastic leukemia, 

nephroblastoma, diffuse large B-cell lymphoma, and Hodgkin lymphoma, in both 

children and adults [1,2]. EPI, as a derivative of DOX, has a similar spectrum of 

activity compared to DOX. IDA, a derivative of daunorubicin, has shown more 

potency in antitumor activity, especially, its efficacy in multidrug resistance 

compared to other ANTs [3,4].  

Despite being widely used in cancer treatments, ANTs have been defined as 

cardiotoxic agents. Multiple cohort studies have shown that ANTs exposure dose-

dependently increases the risk of cardiac disorder in cancer survivors [5,6]. To 

reduce the cardiac disorder risks, the maximum cumulative doses of DOX and EPI 

used are recommended to be 450 to 600 mg/m2 or 900 mg/m2, respectively [3,7]. 

While the maximum cumulative dose of IDA for cardiac safety has not been 

defined, patients treated with IDA cumulative doses in a range of 150 to 40s0 

mg/m2 showed a low probability of cardiotoxicity [8]. In a retrospective study on 

acute myeloid leukemia and myelodysplasia patients, the probability of IDA-

related cardiomyopathy was 5% at a cumulative IDA dose of 150 to 290 mg/m2 [9]. 

Even though ANTs can lead to undesirable effects, therapeutic alternatives have 

not been offered in oncology. Hence, understanding ANT adverse mechanisms 

may assist clinical treatments and limit drug side effects.  

Although a range of studies has investigated how ANTs induce heart toxicity, 

the distinct molecular mechanism leading to their adverse cardiac effects remains 

unclear. The conventional paradigm was that reactive oxygen species generated 

by ANTs cause damage to multiple cellular components. However, combinations 

of ANTs with multiple antioxidants have failed to promote cardioprotection [10], 

so ANTs' toxic mechanism has been considered complex and multifactorial [11]. 

Emerging perspectives have suggested that ANTs can modulate growth factor 

receptors (ErbB2 and ErbB4), β2 adrenergic receptor (β2AR), and Toll-like 

receptors (TLR2 and TLR4). Therefore, ANTs may alter particular signaling 

pathways including PI3K, NF-κB, and GATA4 pathways, and then impact cardiac 

immune functions, cardiac contractility, and cardiomyocyte survival [12]. Even 

though recent studies have updated explanations for ANT-induced cardiotoxicity, 

further investigation is still crucial to clarify the ANT cardiotoxic mechanisms. 
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According to known ANT-induced cardiotoxicity paradigms, studies with 

targeted approaches could help to examine and strengthen the prior toxicity 

regime.  However, targeted approaches could not entirely explore all potential 

mechanisms. Recent modern technologies such as RNA-seq or proteomics 

methods can effectively profile the cellular molecules in a single observation. 

These advanced technologies are feasible and efficient screening methods to 

perceive multiple drug-induced alterations inside cells and describe the 

comprehensive adverse effects without prior knowledge. Consequently, diverse 

data analyses are needed to interpret high-dimensional data delivered from these 

high throughput technologies. 

In this chapter 3, we explored different research angles and data analysis 

approaches to analyze transcriptomics and proteomics data from in vitro cardiac 

microtissues exposed to ANTs. We also compared the gene and protein expression 

in human in vitro samples to their expression in the cardiac biopsy samples from 

heart failure patients. 
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Experimental design and dataset 

Human cardiac microtissue samples 

The human cardiac microtissues (3D InSightTM Human Cardiac Microtissues 

from InSphero) were incubated with either a clinically therapeutic dose or a toxic 

dose of ANT analogs (DOX, EPI, IDA) using PBPK-based dose profiles for 2 weeks 

[13] (Table S 1-1). The therapeutic dose was based on the common clinical 

treatment dose, while the toxic dose was the IC20 value based on the ATP 

production (cell viability) previously determined after one week of exposure [14]. 

ANTs were then dissolved in DMSO 0.1% as stock solutions before diluting to the 

particular drug concentrations calculated by the PBPK model [13,15]. Therefore, 

the DMSO concentration in the medium fluctuated, and the control samples were 

exposed to this fluctuating DMSO profile (Table S 1-1). During these 2 weeks of 

exposure, the microtissues were harvested in triplicate after 2, 8, 24, 72, 168, and 

240 hours of ANTs exposure. The microtissues exposed to ANT therapeutic doses 

were also collected in triplicated after 336 hours of exposure. 

Human cardiac biopsy samples 

The cardiac biopsies were collected from heart failure patients. The investigation 

conforms to the principles outlined in the Declaration of Helsinki. The patient 

biopsies collection was approved by the Medical Ethics Committee of Maastricht 

University Medical Center. Informed consent has been obtained from all the 

subjects [14]. The participants consisted of heart failure patients who have no 

cancer history, cancer survivors who underwent chemotherapy with ANTs, and 

cancer survivors who underwent chemotherapy without ANTs (Table S 3-1).  
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Chapter 3.1: Transcriptome analysis of long noncoding 

RNAs reveals their potential roles in anthracycline-induced 

cardiotoxicity 

Objectives of the study 

Investigating transcriptome plays a key role in elucidating the underlying cellular 

mechanisms of action. Alongside the traditional protein-coding genes, long non-

coding RNAs (lncRNAs), which are non-coding RNAs longer than 200 nucleotides, 

have recently gained widespread attention as new players in numerous cellular 

functions such as transcription regulation, mRNA stability, translation regulation, 

and post-translational modifications [16,17]. Several studies have indicated that 

lncRNAs can provide a detailed view of cardiac development and pathology. For 

instance, researchers have emphasized the important function of lncRNAs such as 

H19, MALAT1, and MDNCR at different stages of human cardiac development and 

heart disease [18], which inform the lncRNAs’ abilities to become potential 

biomarkers as well as therapeutic targets in heart diseases [19]. Other studies have 

also conceded the lncRNA expression patterns related to medical treatment. An 

investigation in non-alcoholic fatty liver disease revealed the pharmaceutical 

mechanisms of berberine in both mRNAs and lncRNAs [20]. Another study in Ang 

II-treated cardiac fibroblasts also showed the significantly altered expression of 

lncRNAs, such as NR024118 [21]. Therefore, lncRNAs can involve not only in 

disease pathology but also in the cell responses to drug treatment. 

Several studies have investigated the role of lncRNA in ANTs’ mechanisms. 

There are studies on genome-wide lncRNA profiles in DOX-resistant breast cancer 

cells [22], as well as on lncRNAs related to the pathological response in the DOX 

neoadjuvant chemotherapy in breast cancer [23]. A specific lncRNA, H19, has even 

been highlighted as a major mediator in breast cancer chemoresistance after DOX 

treatment [24]. Although researchers have explored the lncRNA functions in the 

ANT mechanisms of action, few initial studies have focused on the lncRNA 

functions in ANT-induced cardiotoxicity. A study in mice indicated that the up-

regulation of lncRNA FOXC2-AS1 can protect cardiomyocytes from DOX toxicity 

[25]. Another study showed that the down-regulation of the lncRNA cardiac 

hypertrophy-related factor (CHRF) can diminish cardiac dysfunction and injury 

[26]. These studies have advised on the critical role of lncRNAs in ANT-induced 

cardiotoxicity, even though they mostly focus on some targeted lncRNAs and are 
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limited to DOX treatment. Thus, the majority of lncRNAs related to ANT side 

effects still await further investigation.  

In this chapter 3-1, we explored the transcriptomic-wide lncRNA profiles of 

human cardiac in vitro microtissues and biopsies under different ANT treatments. 

This outcome of this study could provide a broad view of lncRNA candidates that 

are influenced by ANT treatments. This study also offers an alternate angle in 

transcriptome analysis that focused on the expression of non-coding genes. This 

could expand and enlarged the advance of the transcriptomic-wide measurement.  

Methods & Analysis procedures 

RNA sequencing 

Total RNA in each sample was isolated using Qiagen AllPrep DNA/RNA/miRNA 

Universal Kit (Cat #80224). Ribosomal RNAs were depleted by using the Illumina 

RiboZero Gold kit (Cat #MRZG12324), and then samples were prepared by the 

Lexogen SENSE total RNA library preparation kit (Cat #009.96). The RNA quality 

and quantity of the samples were checked by the Agilent 420 TapeStation and the 

QubitTM before they were sequenced by an HiSeq2000 with 100bp paired-end 

reads [15].  

The adapter sequences of the paired-end sequenced raw data were removed 

by using Trimmomatic version 0.36 [27]. The sequencing quality of samples was 

examined by FastQC version 0.11.7 [28], and summarized by MultiQC [29] before 

and after trimming the reads. The reads were mapped onto the Ensembl human 

genome reference, version GRCh38.p12, Ensembl Archive Release 93 [30] using 

RSEM version 1.3.1 [31], and Bowtie2 version 2.3.4.1 [32] with the paired-end option. 

After removing 2 samples (DOX_Tox_240_2 and IDA_The_240_3) with a low read 

count (<5 million), 145 in vitro samples were used for transcriptome-wide analysis. 

Further analysis was performed in R version 4.0.2 (released on 2020-06-22) [33] 

with some R visualization packages including the Upset [34], Tidyverse [35], and 

ggplot [36]. The human genome database from the Ensembl Biomart website 

(https://m.ensembl.org/biomart) [30] was used to annotate the gene type, gene 

name, and gene function. 

Differentially expressed genes in the in vitro RNA-seq data 

The raw read counts of all remaining in vitro samples were normalized using the 

DESeq2 R package [37]. The ImpulseDE2 package [38] performed a time-series 

differential expressed gene analysis between the ANT-treated and the control 

samples for 2 weeks. ImpulseDE2 has its internal DEseq2 normalization, thus, the 

https://m.ensembl.org/biomart
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raw gene read counts from RSEM were used as input data. The function 

“runImpulseDE2” was applied to perform case-control analysis using gene read 

count from ANT-treated samples and control samples (p-adj < 0.01). We detected 

genes that were differentially expressed across all the ANT-treated conditions 

compared to control samples. The pathway analysis for these differentially 

expressed genes was performed by using ConsensusPathDB [39] with all detected 

Ensembl gene IDs as the background gene list. A list of lncRNAs, which are related 

to heart diseases, was extracted from LncRNADisease_v2.0 [40] using the queries 

“heart” and “cardi” (searching for “cardio”, and “cardiac”). The functions of the 

lncRNAs related to heart disease were also extracted from the LncTarD database, 

a manually-curated database of experimentally-supported functional lncRNA–

target regulations in human diseases [41], with Ensembl IDs of differential 

expression lncRNAs as input. 

Differentially expressed genes in the biopsies RNA-seq data 

The biopsies (n=31) were divided into 3 batches to run the RNA sequencing (Table 

S 3-1) [14]. The patient characteristics recruited in batch 3 differed from those in 

batch 1 and 2; thus the biopsies in batch 3 were excluded (Figure S 3-1). The biopsy 

samples of batches 1 and 2 (n=19) were used for further analysis, including heart 

failure control patients (n=8), cancer survivors who were treated with ANTs (n=9), 

and cancer survivors who were treated without ANTs (n=2) (Table S 3-1) [14]. The 

read counts of the biopsy samples were normalized and analyzed by using the 

DESeq2 package [37] to identify differentially expressed genes between ANT-

treated patients (n=9) and control subjects (n=8) (p-adj <0.01).  

Based on the metadata, there were 7 matched pairs between heart failure 

control patients and cancer survivors, who were treated with ANTs and developed 

heart failure as a treatment side-effect [14]. The differences in gene expression of 

these pairs’ subjects were used to calculate the log2 fold change values in biopsy 

samples. 

Results 

A general view 

A cluster tree of the in vitro transcriptome profiles demonstrated a clear 

separation between control and ANT-treated samples, in which all controls were 

grouped in one branch of the cluster tree (Figure 3-1A). Among ANT-treated 

conditions, most of the DOX and EPI-treated samples were specifically grouped 

in one sub-branch, whereas the IDA-treated samples were mainly grouped in 
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another sub-branch. By contrast, the transcriptome profiles of the biopsies data 

(n=19) did not demonstrate a clear distinction between the heart failure control 

patients and the heart failure patients who underwent ANT treatments (Figure 

3-1B). 

  

Figure 3-1: A general view of transcriptome profiles of the in vitro and biopsy samples. (A) 
The cluster tree of the in vitro samples’ transcriptome profiles. (B)  The cluster tree of the 
biopsy samples’ transcriptome profiles. The biopsy samples included heart failure patients 
without a cancer history (Control) and heart failure patients who underwent cancer 
treatment with ANT (LateCardiotoxicity_with_ANT) and without ANT 



Nhan Nguyen | Maastricht University (2018-2022) 

 71 

(LateCardiotoxicity). The ending numbers are patient IDs (C) The gene type of expressed 
genes (the average read count across samples > 0, annotated using the Ensembl database) 
in the in vitro samples. (D) Gene types of overlapped differentially expressed genes (545 
genes) across all in vitro ANT-treated conditions compared to control samples. (E) The 
number of differentially expressed genes in each in vitro ANT-treated condition compared 
to control samples. P-adj <0.01. Con_DF2: control samples; DOX: doxorubicin, EPI: 
epirubicin, IDA: idarubicin; The: therapeutic dose, Tox: toxic dose; 002, 008, 024, 072, 168, 
240, 336 are corresponding exposure periods; ANT: anthracycline(s). 

While the human genome contains 58,395 detectable genes, 31,910 genes were 

expressed in the in vitro cardiac tissues under ANT exposure conditions with the 

average read count across samples is larger than 0. According to the Ensembl 

database, these active genes belong to different gene types (Figure 3-1C). Protein-

coding genes, as key components of the cellular mechanisms, contributed to a 

large proportion of genes that were expressed (56.07%). Notably, lncRNA genes, 

which lack the protein-coding ability, accounted for 23.68 % of genes that were 

expressed in both ANT-treated and control samples. The rRNA genes, which is a 

predominant RNA group, were rarely detected as ribo-depleted total RNA library 

preparation was used in this study. 

Differentially expressed (DE) genes 

By using the ImpulseDE2 tool on the in vitro data, DE genes (adjusted p-value < 

0.01) were detected in each ANT-treated condition compared to the control 

condition during the 2 weeks of exposure. In total, 545 genes were consistently 

differentially expressed in all in vitro ANT-treated conditions compared to control. 

Most of these overlapping DE genes were protein-coding genes, while 16 of them 

(2.94%) were lncRNA genes (Figure 3-1D). In particular, each ANT-treated 

condition had over 100 lncRNA genes which were differentially expressed 

compared to the control samples (Figure 3-1E). 

Pathway analysis revealed which cardiac functions the 545 overlapped DE 

genes are involved in. Three of the top 10 over representative pathways are heart 

disease pathways; it emphasizes that the effect of ANT treatment through these 

genes might facilitate cardiotoxicity and heart failure development (Figure 3-2A, 

Table S 3-2). A previous study using the same dataset with another differential 

gene expression analysis tool and other pathway databases also provided a similar 

outcome [14]. Although pathway analysis can capture a part of the ANT toxicity 

mechanism, its expository ability is mainly restricted to protein-coding genes 

(Figure 3-2B). Particularly, the 3 heart disease pathways of the top 10 over 

representative pathways are from the KEGG database and contain only protein-

coding genes (Table S 3-2) [42]. This conventional approach neglects non protein-
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coding genes, especially lncRNAs which were consistently differentially expressed 

between ANT-treated conditions and control (Figure 3-1D).  

 

  

Figure 3-2: Pathway analysis outcomes from overlapped differentially expressed (DE) genes 

in the in vitro anthracycline-treated samples. (A) Top 10 over representative pathways of 
the 545 overlapped DE genes across in vitro ANT-treated conditions; (B) Gene type 
proportions of the overlapped DE genes that popped up in the pathway analysis. 

 

In the biopsies data, 37 DE genes, including 5 lncRNA genes, were detected by 

DESeq2 between ANT-treated patients and control subjects. The pathway analysis 

did not reveal any connection between these 37 DE genes to heart function and 

heart disease (Table S 3-3). Of the 5 DE lncRNA genes in biopsies data, the 

LINC00612 gene might be involved in acute myocardial infarction [43], while the 

AL031280.1 gene was also differentially expressed in IDA-treated samples 

compared to control.  

Differentially expressed lncRNAs 

Sixteen lncRNA genes were consistently differentially expressed in all ANT-

treated conditions while other lncRNAs were only differentially expressed under 

certain ANT-treated conditions (Table 3-1). For example, 6 lncRNAs were 

differentially expressed only in the DOX-treated conditions, while 13 lncRNAs 

were specifically differentially expressed in the EPI-treated conditions. The IDA-

treated conditions had the highest number of drug-specific lncRNAs with 17 DE 

lncRNAs (Table 3-1). For the dose-specific effects, the AL451123.1 lncRNA was 

differentially expressed in all ANT therapeutic-treated samples. The other 2 

lncRNAs, AL133453.1 and BACE1-AS, were differentially expressed in all ANT toxic-

treated samples.  
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Table 3-1: Differentially expressed (DE) lncRNAs in different anthracycline (ANT) 
treatment conditions. 

 DOX-
treated 
condition 

EPI-treated condition IDA-treated condition 

Numbers of 
DE lncRNA 

6 13 17 

LncRNAs AC025259.1, 
AL031985.3, 
FP671120.5, 
AD000090.1, 
HCP5, FTX 

AC055811.1, N4BP2L2-IT2, 
AC078880.4, 
AC009264.1, AL132656.2, 
AC007262.2, LINC02503, 
AL354733.3, XIST, 
AC092828.1, AP000766.1, 
AC125257.1,  AC007114.2 

AC009779.2, AL162311.3, 
AC009133.2, ESRG, 
AC100803.3, AC104794.2, 
OVCH1-AS1, C4B-AS1, 
SNHG22, LINC02108, URB1-
AS1, SNHG16, C4A-AS1, 
KCNQ1OT1, AC093495.1, 
AC018761.2, GABPB1-AS1 

Numbers of 
DE lncRNA 

16 

LncRNAs AC006064.4, AC007009.1, RMRP, LINC00622, SNHG7, AC093866.1, 
SNHG29, H19 , AC132217.1, AC124312.3, LINC01638, AC020909.3, 
AC106791.1, BDNF-AS, AC010680.5, PCAT19 

Notes: DOX, doxorubicin; EPI, epirubicin; IDA, idarubicin. Each treatment condition 
consists of samples treated with corresponding drugs in the therapeutic dose and toxic 
dose. 

The LncTarD and LncRNADisease_v2.0 databases were used to explore the 

association between the DE lncRNAs and heart disease. The LncTarD database 

collects functional lncRNA–target regulations in humans [41], while the 

LncRNADisease_v2.0 is a lncRNAs related diseases database [40]. Through these 

databases, the association of DE lncRNAs with heart disease was detected, 

especially the H19 and FTX genes were mentioned in both databases (Table S 3-4, 

Table S 3-5). Furthermore, other studies also highlighted the potential causal 

relationships between the DE lncRNAs and heart diseases [44-48]. Based on this 

prior knowledge, a network was established to represent the relationship between 

DE lncRNAs and corresponding heart diseases (Figure 3-3). This network 

highlights some key lncRNAs, such as H19 and BDNF-AS, which strongly connect 

to cardiac diseases.  
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Figure 3-4: Log2 fold change (log2FC) gene expression in selected differentially expressed 
(DE) lncRNAs. For each lncRNA, log2FC values over time between ANT-treated and control 
samples in the in vitro data are presented in the line chart, while the distribution of the 
log2FC values between ANT-treated patients and control patients in matched pairs are 
represented in the boxplot. Con_DF2: control samples; DOX: doxorubicin, EPI: epirubicin, 
IDA: idarubicin; The: therapeutic dose, Tox: toxic dose; 002, 008, 024, 072, 168, 240, 336 are 
corresponding exposure periods in hours; ANT: anthracycline. 

Of the 16 DE lncRNAs found in all ANT-treated conditions, some lncRNAs 

showed a remarkable alteration in their expressions (Figure 3-4). SNHG29, 

SNHG7, and RMRP were up-regulated in the in vitro ANT-treated conditions. 

Although these lncRNAs’ expressions were not statistically different between 

patient groups in the biopsies data, the expression of SNHG29 and SNHG7 was 

also up-regulated in the ANT-treated patients compared to the control subjects 

(Figure 3-4). Other lncRNAs that are H19, BDNF-AS, and PCAT19 were down-

regulated in the in vitro ANT-treated conditions, especially, the expression of H19 

showed a clear distinction between ANT-treated conditions after a longer 

exposure time. Similarly, the expressions of H19 and BDNF-AS genes were down-

regulated in the ANT-treated patients (Figure 3-4).  

Other lncRNAs were differentially expressed in specific in vitro ANT-treated 

conditions (Table 3-1). For instance, the lncRNA XIST was prominently down-

regulated in the EPI-treated conditions, whereas the FTX gene was down-

regulated in the DOX-treated conditions. The 2 lncRNAs, SNHG22 and 

KCNQ1OT1, were only significantly up-regulated in the IDA-treated conditions 
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(Figure 3-4). Additionally, MEG3 was significantly down-regulated in the DOX and 

EPI-treated conditions, while MALAT1 was significantly up-regulated in the DOX 

and IDA-treated conditions. NEAT1 is an interesting lncRNA, which increased 

expression in the IDA-treated condition and decreased expression in the EPI-

treated condition, while its expression in the DOX-treated condition was not 

differentially expressed compared to the control samples (Figure 3-4). The 

expressions of these lncRNAs also differed between ANT-treated patients and 

control subjects in the biopsies data (Figure 3-4).  

Discussion 

This chapter 3-1 revealed more insights into the alterations of lncRNAs not only 

during DOX treatment but also during EPI and IDA treatment. We also depict the 

expression of the lncRNA candidates in in vitro samples to their expression in the 

human biopsies. By using the transcriptomic-wide approach, this study provided 

a broad view of lncRNA candidates that were influenced by ANT treatments.  

The in vitro transcriptome profiles of the ANT-treated samples differed from 

those of control samples, especially the transcriptome profiles of ANT-treated 

samples were mainly grouped based on their drug treatment (Figure 3-1A). The 

gene expression profiles of the DOX-treated samples were similar to those of the 

EPI-treated samples, rather than those of the IDA-treated samples. This 

phenomenon is supported by the prior knowledge that EPI, as a derivative from 

DOX, can share a similar mechanism of action with DOX [3]. By contrast, IDA is 

an analog derived from daunorubicin and is more lipophilic than DOX [49]. This 

underlying chemical difference could possibly explain why IDA treatments cause 

different gene expression profiles in cardiac tissue compared to DOX and EPI 

treatments. Hence, the in vitro transcriptome analysis could indicate the subtle 

distinction in mechanism between specific ANTs. However, some of the 

therapeutic-treated samples were grouped with the toxic-treated samples, 

specifically for IDA and DOX treatment (Figure 3-1A).  

In the in vitro experiment, although a part of DE genes were protein-coding 

genes, another part of the DE genes were lncRNA genes (Figure 3-1D-E). While the 

conventional pathway analysis can demonstrate how DE protein-coding genes 

relate to heart disease (Figure 3-2A), it neglects the role of DE lncRNAs in the 

ANT-induced cardiotoxicity, in which no lncRNA gene was recognized on the 

pathway databases (Figure 3-2B). Specifically, 16 lncRNA were consistently 

differentially expressed across all ANT-treated conditions compared to controls 

(Table 3-1); it suggests that the expression of these lncRNAs could be affected by 
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typical ANTs mechanisms. Therefore, claRIFying DE lncRNAs’ functions could 

provide a better understanding of the ANT toxicity mechanism, especially when 

lncRNA genes have recently emerged as potential targets in ANT-related studies 

[22-25]. 

By using lncRNA databases and doing literature research, we inspected the 

functions of not only the 16 overlapping DE lncRNAs but also other lncRNAs, 

which were differentially expressed in particular ANT-treated conditions (Figure 

3-3). Both lncRNA databases manifested the role of H19, one of the 16 overlapping 

DE lncRNAs, in several heart diseases (Table S 3-4, Table S 3-5). H19 was down-

regulated in all in vitro ANT-treated conditions as well as in the ANT-treated 

patients in the biopsy samples (Figure 3-4), possibly due to oxidative stress. This 

phenomenon corresponds with another observation that showed a reduction in 

the H19 level as a response to oxidative stress (H2O2) in C-kit+ cardiac progenitor 

cells [44]. This study also indicated some conserved binding sites of miR-675, a 

miRNA generated from H19, on 3’UTR of USP10; and the H19/miR‐675/USP10 axis 

can suppress both p53 and p21 expression [44]. Furthermore, H19 can suppress the 

activity of miR-22-3p by binding to a miR-22-3p binding site in the KDM3A gene. 

An H19 upregulation can then improve cardiac performance, alleviate cardiac 

fibrosis, and decrease inflammation [45]. These studies have encouraged that H19 

might be a potential biomarker and therapeutic target for ANT-induced 

cardiotoxicity. However, the overexpression of H19 can contribute to the 

chemoresistance of breast cancer cells [24]. This suggests that H19 can be involved 

in the on-target toxicity of ANTs, in which down-regulated H19 produces desired 

treatment response in tumors, but lead to cardiotoxicity in cardiac cells. 

Other overlapping DE lncRNAs are also involved in heart diseases and cellular 

mechanisms. Both H19 and RMRP engage in cardiac hypertrophy and heart failure 

progression [46], while a BDNF-AS downregulation can activate BDNF, VEGF, and 

Akt, and thus rescue hypoxia/reoxygenation-induced damage in cardiomyocyte 

[47] (Figure 3-3). Hence, the BDNF-AS was downregulated both in the in vitro 

experiment and in the ANT-treated patients (Figure 3-4), which suggests the 

recovery intention of cardiac tissue under ANT treatment. Another lncRNA, 

namely SNHG7, has also emerged as a novel regulator for cardiac hypertrophy 

(Figure 3-3). SNHG7 was up-regulated in the in vitro ANT-treated samples as well 

as ANT-treated patients (Figure 3-4), while a study in neonatal rat cardiomyocytes 

revealed that the up-regulation of the SNHG7 genes can stabilize SDAD1 mRNA, 

and then facilitate cardiac hypertrophy [48]. Other lncRNAs, including SNHG29 

and PCAT19, have not been investigated in heart failure contexts, but they are 
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known as potential regulators in cell signaling pathways. SNHG29 acts as a 

competing endogenous RNA, in which it sponges the miR-223-3p to regulate the 

CTNND1 expression. Therefore, SNHG29 can modulate the Wnt/β-catenin 

signaling pathway via the miR-223-3p/CTNND1 axis [50]. PCAT19 also acts as a 

competing endogenous RNA, in which it sponges the miR-182 to regulate the 

PDK4, and consequently modulates the glycolysis and mitochondrial respiration 

in laryngeal cancer cell lines [51]. Additionally, the PCAT19 expression was 

negatively correlated with the p53 expression in non-small cell lung cancer 

patients, and the silencing of PCAT19 elevated the p53 expression level in H1993 

cells [52]. These aforementioned studies have demonstrated the abilities of the 

overlapping DE lncRNAs related to cellular functions and heart disease, as well as 

their potential for ANT-induced cardiotoxicity research. 

Some lncRNAs were only differentially expressed in samples treated with 

particular ANT conditions. The AL451123.1 was differentially expressed in all ANT 

therapeutic-treated samples, whereas the AL133453.1 and BACE1-AS were 

differentially expressed in all ANT toxic-treated samples. The functions of 

AL451123.1 and AL133453.1 are still unclear, whereas BACE1-AS is known as a heart 

failure-related lncRNA [40] (Figure 3-3). The BACE1-AS up-regulation might 

increase the BACE1 level and accumulate β-amyloid, which is BACE1’s product. 

This dysregulation of the BACE1-AS/BACE1/β-amyloid axis could diminish the 

cardiomyocyte viability [53]. Similarly, other lncRNAs were differentially 

expressed in samples treated with particular ANT analogs. Of the 6 lncRNAs 

which were differentially expressed in DOX-treated samples, the FTX could 

inhibit apoptosis and reduce hypertrophy in cardiomyocytes [54,55],  while 

AD000090.1 was proposed to regulate hypoxic responses [56] (Figure 3-3). 

LncRNA XIST was only differentially expressed in EPI-treated samples and could 

promote the progression of cardiac hypertrophy resulting in heart failure disease 

[57] (Figure 3-3). KCNQ1OT1 and SNHG16 were notable lncRNAs, which were 

differentially expressed in IDA-treated samples. Several studies have advocated 

that these 2 lncRNAs may facilitate cardiomyocyte apoptosis and accelerate 

cardiac hypertrophy [58,59]. The lncRNA databases also recommend other heart 

disease-related lncRNAs, which were differentially expressed in particular ANT-

treated conditions, including MALAT1, MEG3, TUG1, GAS5, CASC1S (Figure 3-3, 

Table S 3-4, Table S 3-5). When heart disease-related lncRNAs were atypically 

affected by certain ANT-treated conditions, they could reveal the subtle difference 

in toxic mechanisms of specific ANT analogs. 
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Although the DE lncRNAs in specific in vitro ANT-treated conditions could 

release the mechanism of individual ANT analogs, it is an obstacle to confirm this 

knowledge in clinical application. In this chapter 3-1, the transcriptome profiles of 

the biopsies data (n=19) did not demonstrate a clear distinction between the heart 

failure control patients and the heart failure patient who underwent cancer 

treatments (Figure 3-1B). There were 37 DE genes between the ANT-treated 

patients and control groups; however, there was no clear relation between these 

DE genes and cardiac function. All participants were heart failure patients, so it 

could be that non-significant differences related to heart disease were found 

among them. Furthermore, cancer patients often underwent chemotherapy with 

multi-drug combinations to improve the treatment efficiency [60,61]. Most 

patients involved in this study had been treated with multiple ANT analogs and 

other anti-tumor drugs a long time ago (Table S 3-1). Although it is difficult to 

distinguish the effect of ANT analogs leading to cardiovascular disease in a clinical 

setting, we observed some similar changes in lncRNA expressions between the in 

vivo experiments and human biopsies (Figure 3-3). 

In conclusion, this chapter 3-1 provided new insight into the transcriptome 

alterations related to ANT-induced cardiotoxicity, especially the differential 

expression of lncRNAs. While the conventional pathway analysis might not be 

able to capture the role of these DE lncRNAs in cellular mechanisms, recent 

research has acknowledged the involvement of these lncRNAs in heart disease 

progression (Figure 3-3). H19 seems to be involved in both chemoresistances as 

well as cardiotoxicity, which suggests its participation in the on-target toxicity of 

ANTs. Some lncRNAs, including H19, RMRP, BDNF-AS, and SNHG7, could be 

targets for further research on the typical mechanisms of ANT-induced 

cardiotoxicity, while other lncRNAs could advocate the cardiac responses to 

certain ANT analogs and doses. Although the functions of some lncRNAs have 

been explored, further study is needed to investigate the functionalities of other 

unknown lncRNAs (Table 3-1) related to heart disease. 



Chapter 3 | Transcriptomics and proteomics 

 
80 

Chapter 3.2: Proteomics analysis of anthracycline-induced 

cardiotoxicity from cardiac microtissues to human heart 

biopsies 

Objectives of the study 

The change of the proteome would directly influence cellular function and 

survival. In addition, the protein biomarkers can be transposable to clinic 

applications. Some studies have focused on ANY-induced protein activities. For 

example, the inhibition of membrane-bound calcium-independent phospholipase 

A2 (iPLA2) by ANTs restricts the recuperative capacity of isolated adult rat 

cardiomyocytes [62]. Another study, also performed in rats, demonstrated that the 

upregulation of SIRT1, a member of the Sirtuin protein family, improves cardiac 

function after DOX treatment [63]. A further study has explored the changes in 

protein levels in association with mRNA levels in the mitochondria of rat hearts 

after DOX treatment. It suggests that the alterations from transcript to protein 

level can be early acute markers for cardiac-specific mitochondrial toxicity [64]. 

Thus, the alteration of protein profiles could reveal different aspects of ANTs-

induced heart failure and thereby provide a better understanding of ANTs' 

mechanism of cardiotoxicity. However, researchers so far mainly focused on the 

proteome upon DOX treatment, while little attention has been paid to the protein 

expression induced by other ANTs such as EPI and IDA. 

In this chapter 3-2, we investigated the proteome-wide profiles under ANTs 

treatment including DOX, EPI, and IDA in human cardiac in vitro microtissue as 

well as the proteome profiles of heart failure biopsies from ANTs treated patients. 

Hence, this study accommodates a deeper understanding of ANTs-induced 

cardiotoxicity on the proteomic level and suggests some new proteins as 

prominent targets for ANTs-related heart failure study. 

Methods and analysis procedures 

Sample preparation of in vitro cardiac microtissues 

When the cardiac microtissues were exposed to ANT conditions for 2 weeks, the 

proteome was extracted and measured at 7 time points, from 2 to 336 hours, except 

for samples treated with the toxic dose of IDA. The IDA-treated samples were 

harvested until 168 hours of exposure because of substantial cell death at later time 

points. Furthermore, due to the limited amount of microtissue, the IDA-treated 
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samples after 2 and 24 hours of exposure had only 2 replicates. Thus, the 

proteomics in vitro testing generated 139 samples in total. 

After collection, cardiac microtissues were resuspended in 100 ul lysis buffer 

containing 8M Urea, 1 mM Dithiothreitol, 0.1M Ammonium bicarbonate, pH 7.8. 

After four freeze-thaw cycles, the samples were centRIFuged at 16000xg for 15 min 

at 4° C and protein concentrations were assessed with the QubitTM Protein Assay 

Kit (Invitrogen, Molecular Probes). Protein isolates were then submitted to in-

solution digestion [65] or Filter Aided Sample Preparation (FASP) [66]. Protein 

digestions were stopped by adding formic acid to a final concentration of 1%. The 

peptides were cleaned up using Sep-Pak tC18 cartridges (Waters), according to the 

manufacturer’s instructions, and eluted with 60% CAN and 0.1% formic acid 

(Sigma-Aldrich, USA). 

ATP measurement 

After the microtissue collection, the ATP content in microtissues was measured 

as described in the previous study [67]. In short, the ATP level of the microtissues 

(n=4) was assessed using Promega’s CellTier Glo 3D (Cat #G9683) according to 

the manufacturer’s instructions. The luminescence was evaluated after 30 min 

incubation with the luciferase reagent [67]. 

Sample preparation of human cardiac biopsies 

Cardiac biopsies (n=21) were taken from heart failure patients including patients 

(n=11) who had no cancer history as control subjects, patients (n=8) who had 

cancer and received medications including ANTs, and patients (n=2) who had 

cancer and received medications without ANTs (Figure 1, Table S2). Five biopsies 

(2 ANT-treated patients and 3 control patients) were used in a pilot study to 

establish the sample preparation workflow including the sample collection, 

sample processing, and data measurements. The sample preparation workflow 

was then applied to the remaining biopsies. 

Samples were lysed and digested using a Barocycler NEP2320 (Pressure 

BioSciences) at 33 °C [68]. Briefly, each sample 1 (±0.1) mg was lysed with a buffer 

containing 8M Urea, 0.1M Ammonium bicarbonate, and complete protease 

inhibitor (Roche), in combination with a cycling program of 50 seconds of 

ultrahigh-pressure (45,000 p.s.i.) and 10 seconds of ambient pressure (total of 60 

pressure cycles). Protein reduction and alkylation were performed with 10 mM 

tris(2-carboxyethyl)phosphine and 40mM iodoacetamide, respectively. Protein 

digestions were performed sequentially with Lys-C and trypsin using PCT with a 

cycling scheme of 50 seconds at 20,000 p.s.i. and 10 seconds at ambient pressure. 
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Lys-C digestion was carried out in 6 M urea for 45 cycles, whereas trypsin digestion 

was performed in 1.6 M urea for 90 cycles. Protein digestions were stopped by 

adding tRIFluoroacetic acid (TFA) to a final concentration of 1%. The peptides 

were cleaned up using reverse-phase cartridges Finisterre SPE C18 (Wicom 

International AG) according to the manufacturer’s instructions. 

Mass spectrometry (MS) measurements 

Digested peptides from cardiac microtissues and cardiac biopsies were submitted 

to an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific) coupled to a 

NanoLC-2D HPLC system (Eksigent, Dublin, CA) or EASY-nLC 1000 system 

(Thermo Fisher Scientific, Germany). Samples were loaded onto a self-made 

column (75 μm × 150 mm) packed with reverse-phase C18 material (ReproSil-Pur 

120 C18-AQ, 1.9 μm, Dr. Maisch HPLC GmbH) when coupled with the EASY-nLC 

1000 system and onto an Easy-Spray Column (75 μm × 500 mm) packed with 

reverse-phase C18 material (Silica 100Å, 2 μm) when coupled with the NanoLC-2D 

HPLC system. Peptides are separated with a linear gradient of acetonitrile/water, 

containing 0.1 % formic acid, at a flow rate of 300 nl/min. A gradient from 5 to 30% 

acetonitrile in 60 minutes was used. The mass spectrometer was set to acquire 

full-scan MS spectra (300–1500 m/z) at 120  000 resolution at 200 m/z; the 

precursor automated gain control (AGC) target was set to 400  000. A charge-state 

screening was enabled, and precursors with +2 to +7 charge states and intensities 

>5000 were selected for tandem mass spectrometry (MS/MS). Ions were isolated 

by using the quadrupole mass filter with a 1.6 m/z isolation window. Wide 

quadrupole isolation was used, and the injection time was set to 50 ms. The AGC 

values for MS/MS analysis were set to 5000 and the maximum injection time was 

300 ms. HCD fragmentations were performed at normalized collision energy 

(NCE) of 30%. MS/MS was detected in the ion trap in centroid mode. Precursor 

masses previously selected for MS/MS measurement were excluded from further 

selection for 25 s, and the exclusion window was set at 10 ppm. 

Peptide/Protein quantification and preprocessing data 

Raw MS data were processed using Genedata Expressionist® software v.11.0. In 

short, after noise reduction and normalization, LC-MS peaks were detected and 

their properties calculated (m/z and RT boundaries, m/z and RT center values, 

intensity). Individual peaks were grouped into clusters and MS/MS data 

associated with these clusters were annotated with MS/MS Ions Search (Mascot 

2.6) using Peptide Tolerance: 10.0 ppm, MS/MS Tolerance: 0.50 Da, Max Missed 

Cleavages: 2, and database: Uniprot Swiss-Prot 29062016, Taxonomy Homo 
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sapiens (human). Results are validated by applying a threshold of 5% normalized 

False Discovery Rate (FDR). Protein interference was done based on peptide and 

protein annotations. Redundant proteins were ignored according to the Occam’s 

razor principle, and at least 2 peptides were required for positive protein 

identification (shared peptides were ignored). Protein intensities were computed 

using the Hi3 method. A maximum of the top 3 peptides per protein (based on the 

average intensity across samples) was used in the calculation. If a peptide was 

identified in multiple charges (2+, 3+, 4+) and modification states 

(Carbamidomethyl (C), Deamidated (NQ) or Oxidation (M)), values were 

consolidated into a single peptide intensity. The volume of a peak was computed 

as the area under the intensity curve inside the peak region. The area under the 

intensity curve is subdivided into trapezoids at the data points according to the 

trapezoidal rule. Volume is robust to different scan rates and takes more 

information (data points) into account. The intensities were log2 transformed. 

To normalize the in vitro proteomic data, the log2 transformed values of the 

control samples were shifted to the median of the medians determined by a 

reference group consisting of the proteins found in all these control samples. For 

every ANT treatment and for each time-point, the common protein set between 

the controls and the ANT-treated samples was determined. The median of the 

medians of the (in general 3) normalized control samples was determined using 

this common protein set between the controls and the treatment samples. The 

data from the samples of the ANT treatments were shifted to these medians.  

To normalize the heart biopsies data, the log2 transformed values of each 

sample were shifted to a common median which was determined using only the 

proteins present in all samples. 

Data analysis procedure 

A workflow was applied to investigate the proteomics data from human  in vitro 

cardiac microtissues exposed to ANTs and cardiac biopsies deriving from heart 

failure patients (Figure 3-5). The log2 transformed normalized values were 

standardized to 6 decimal digits. Thereupon, proteins that matched multiple 

UniProt IDs were removed.  

The protein expression patterns in the in vitro and biopsies datasets were 

analyzed separately (Figure 3-5) using the weighted correlation network analysis 

(WGCNA) package for finding modules of highly correlated proteins [69] in R 

(version 3.5.3, released on 11th March 2019). Proteins that had over 50% missing 

values across samples were removed using the default filter of the 
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goodSamplesGenes function in WGCNA. Hierarchical clustering sample trees 

were built from the remaining proteins. Thereafter, clustering protein trees were 

established based on the similarity of protein expression profiles across samples 

using the adjacency function with a signed network. The protein clustering tree of 

the in vitro data (using power =2) had topological overlap measures R2 = 0.64 and 

mean connectivity = 59.6. The protein clustering tree of the human biopsies data 

(using power =5) had similar features with topological overlap measures R2 = 0.73 

and mean connectivity = 56.9. Proteins in the branches of protein clustering trees 

were divided into modules (groups) named by colours using the cutreeDynamic 

function (distM = dissTOM, deepSplit = 3, pamRespectsDendro = FALSE, 

minClusterSize = 30). These modules were merged when the difference between 

their module eigengene profiles was less than 0.25. Per module, proteins with high 

module membership (>=0.8), which demonstrate the strong impact of these 

proteins in the module, were considered as weighted proteins. 

Module eigengene values (the first principal component) and the principal 

component analysis (PCA) were used to define ANT-affected modules. The 

biological interpretation of ANT-affected modules was explored by performing an 

over-represented pathways analysis using ConsensusPathDB with p-value and q-

value <0.01 [39]. Simultaneously, a reference of all proteins associated with a query 

term “heart failure” (572 proteins) in the DisGeNET database, a collection of genes 

and variants associated with human diseases, version 7.0, released on 4th May 

2020 [70], was used to recognize the association of detected proteins to heart 

failure. 
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Figure 3-5: The proteomic data analysis workflow. 

Proteins presented in both in vitro dataset and biopsies dataset were defined. 

The UniProt IDs of proteins, which were weighted proteins in at least one dataset, 

were used to build a protein network using the BisoGenet app with Homo sapiens 

species data, with non-adding connection, and other parameters following the 

default settings [71] in the Cytoscape version 3.7.1 [72]. The protein-protein 

interaction information is based on multiple sources comprised of the DIP, BIND, 

HPRD, MINT, Intact, and BioGrid databases [71]. Proteins, which were weighted 

proteins in both datasets, as well as the hub proteins, which have >= 30 

connections in the protein network, were identified.  
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Results 

In vitro data 

In total, 2497 proteins were detected among 139 cardiac microtissue samples with 

2327 proteins having a unique UniProt ID. After removing proteins with over 50% 

missing values across samples, the remaining 810 proteins were used to construct 

the hierarchical clustering samples tree (Figure 3-6A). The control samples were 

grouped in a separate branch, while samples treated by ANTs were clustered in 

another branch. Among the ANTs samples, IDA-treated samples converged at one 

sub-branch, whilst samples treated with DOX and EPI are in two closely 

connected sub-branches, except for the samples treated with the EPI toxic dose at 

late time points (168, 240, 336 hours exposure). Thus, the proteomic profiles 

demonstrate a clearer separation between the therapeutic and toxic dose 

compared to the transcriptome profile of the same ANT-treated samples. The ATP 

measurement also emphasized that ANT-induced mitochondrial dysfunction was 

dose-dependent, especially after long-time exposure. In particular, with the same 

ANT analog, the toxic-treated samples had lower ATP levels than the therapeutic-

treated samples, except for the IDA-treated samples after 72 hours of exposure 

that under ANTs exposure (Figure 3-7).  
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Figure 3-6: The in vitro cardiac microtissue proteomics data analysis. (A) The hierarchical 
clustering tree is based on the in vitro protein expression values. The control, epirubicin, 
doxorubicin, and idarubicin samples were colored red, blue, green, and purple respectively. 
(B) The module eigengene (ME) values in WGCNA modules. (C) The PCA of the modules 
turquoise, blue, and green. Drugs: DOX: doxorubicin, EPI: epirubicin, IDA: idarubicin. 
Treatment doses: The: therapeutic dose, Tox: toxic dose. Exposure period: 002, 008, 024, 
072, 168, 240, and 336: 2, 8, 24, 72, 168, 240, and 336 hours of exposure, respectively. 
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Figure 3-7: The ATP contents of microtissues in doxorubicin, epirubicin, and idarubicin–
treated samples and controls. 

These 810 proteins were categorized into 6 modules based on their expression 

profiles across ANT-treated conditions. The large modules were the turquoise and 

blue modules, which consisted of 262 and 194 proteins respectively, while other 

modules (brown, yellow, green, and red) consisted of smaller numbers of proteins 

(Table 3-2). In the turquoise and blue modules, their eigengene values (the first 

principle component) demonstrated distinctions in protein expression levels 

between ANT-treated samples and control samples, while this did not happen in 

other modules (Figure 3-6B, Figure S 2-1). However, the PCA plots indicated that 

protein profiles in the green module also showed a separation between ANT-

treated samples and control samples (Figure 3-6C, Figure S 3-3). By using module 

eigengene values and PCA, we identified 3 protein modules (turquoise, green, and 

blue) in which the difference in protein expressions between ANTs and control 

conditions was evident. The high module membership proteins in the in vitro 

protein modules were identified as weighted proteins (Table 3-2).  

Subsequently, the pathway analysis in ConsensusPathDB (p-value<0.01, q-

value <0.01) indicated that the proteins in the turquoise and blue modules are 

mainly involved in translation and protein metabolism pathways. The pathway 

analysis performed on only weighted proteins in the turquoise and blue modules 

showed a similar outcome (Table S 3-7). While the proteins in the green module 

are related to the metabolism pathways, the number of weighted proteins in this 

module was small (3 proteins) and appeared non-overrepresented in any pathway 
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(Table S 3-7). Multiple proteins belonging to these modules are known as heart 

failure-related proteins in the DisGeNET database (Table 3-2).  

Table 3-2: The number of proteins in WGCNA modules in the in vitro dataset. 
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Number of proteins 810 262 194 148 96 80 30 

Number of proteins 
related to heart failure 

101 25 14 12 4 7 0 

Number of the high 
module membership 
proteins 

- 10 8 19 3 3 0 

Number of the high 
module membership 
proteins related to 
heart failure 

- 1 0 3 0 0 0 

Human biopsies data 

In 21 cardiac biopsies from heart failure patients, there were 1639 proteins with a 

unique UniProt ID out of 1669 proteins that were detected. Five biopsies were used 

to establish the sample preparation workflow before this workflow was applied to 

the remaining 16 biopsy samples. Therefore, the first 5 biopsies (2 patients that 

had no cancers and 3 cancer survivors that had received ANT treatments) showed 

large distances to the latter 16 biopsy samples in the hierarchical clustering sample 

tree (Figure S 3-4). The latter 16 biopsy samples, including 8 patients that had no 

cancers as a control group, 6 patients that had undergone cancer treatment 

including ANTs, and 2 patients that had received cancer treatment without ANTs, 

were used for further analysis. After removing proteins with over 50% missing 

expression values across samples, the remaining 1602 proteins were used for 

further analysis. The hierarchical clustering sample tree built from the 16 samples 

could not define patient groups according to their medical history (Figure 3-8A). 

The PCA plot also confirmed that there was no apparent difference between 

cardiac biopsy samples taken from the different patient groups (Figure S 3-5).  
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Figure 3-8: Human cardiac biopsies proteomics data analysis. (A) The hierarchical 
clustering tree is based on the protein expression values in biopsy samples. (B) The module 
eigengene (ME) values in WGCNA modules. Control_patient: heart failure patients with no 
cancer history; Patient_ANTtreatment: heart failure patients that had cancer treatment 
with anthracyclines (ANTs); Patient_nonANTtreatment: heart failure patients that had 
cancer treatment without ANTs; the number at the end of each patient indicates the 
biopsies sample ID. 

The WGCNA analysis divided the 1602 proteins into 8 modules based on their 

expression pattern across the patient groups. Although these modules consisted 

of different protein sets, 6 of them were also named by the same colors as the in 

vitro data analysis. The large modules were the turquoise, blue, and brown 

modules, which consisted of 342, 330, and 320 proteins, respectively, while other 

modules (yellow, green, red, black, and pink) consisted of smaller numbers of 

proteins (Table 3-3). In the turquoise, blue, brown, yellow, and green modules, 

their eigengene values manifested the difference in protein expressions between 

control patients and patients who had undergone cancer treatment including 

ANTs treatment (Figure 3-8B). The PCA plot did not identify additional modules 

that showed differences in protein expression between ANT-treated and control 

groups (Figure S 3-5). Weighted proteins were defined from the high module 

membership proteins in each module (Table 3-3).  
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Table 3-3: The number of proteins in WGCNA modules in the human biopsies dataset. 
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Number of proteins 1602 342 330 320 213 177 135 47 38 

Number of proteins 
related to heart failure 

159 22 22 21 18 9 10 7 2 

Number of the high 
module membership 
proteins 

- 115 95 65 54 53 41 13 5 

Number of the high 
module membership 
proteins related to heart 
failure 

- 11 8 8 4 3 5 1 1 

The pathway analysis indicated that the proteins in these 5 selected modules 

from the biopsies data are related to different cellular mechanisms comprising 

metabolism, mitochondrial function, muscle contraction, and signaling pathways. 

The pathway analysis for only weighted proteins in these modules showed a 

similar outcome (Table S 3-8). According to the DisGeNET database, multiple 

proteins in these selected modules are known as heart failure-related proteins 

(Table 3-3). 

Combining the in vitro and human biopsies data 

Combining proteins used in the in vitro cardiac microtissue and human biopsies 

analysis (810 and 1602 proteins, respectively) resulted in 704 proteins present in 

both datasets. Of these, 242 proteins (34.4%) were weighed in WGCNA modules 

in at least one dataset, and 7 of them were weighted proteins in both datasets 

(Table 3-4). Of the 7 weighted proteins in both datasets, DECR1, SH3BGRL, and 

ATP5F1B have been recognized as heart failure-related proteins [70,73,74]. 

Although the role of ETFB in the late stages of heart failure is not clear yet, a cohort 

study showed that ETFB is strongly associated with chronic ANT-induced 

cardiotoxicity [75]. The remaining proteins, i.e. EEF1D, TIMM13, and PMPCB, are 

involved in transferring aminoacyl-tRNAs, regulating heat-shock response, and 

maintaining mitochondrial functions [76], but their roles in heart disease contexts 

have not been investigated.  
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Figure 3-9: The protein-protein interaction network of proteins detected in both in vitro 
and biopsies datasets, and that were weighted proteins in at least one dataset. Edges 
represent the protein-protein interaction, and nodes represent proteins, 16 orphan nodes 
were removed from the network. (A) The 7 nodes with protein names in bold and showing 
thicker borders were weighted proteins in both in vitro and biopsies datasets. Proteins 
associated with heart failure (detected via DisGeNET), were highlighted in orange. (B) The 
4 hub proteins (> 30 degrees of connection) of the protein-protein interaction network are 
shown as yellow nodes. 

Table 3-4: The high module membership proteins in both in vitro and human biopsies 
datasets. 

 
ANTs – related modules in the in vitro data 

Turquoise Brown Green 

ANTs – related 
modules in the 
biopsies data 

Turquoise - - - 

Blue SH3BGRL (O75368) 
EEF1D (P29692) 

- - 

Brown TIMM13 (Q9Y5L4) ATP5F1B 
(P06576) 
ETFB 
(P38117) 
DECR1 
(Q16698) 

PMPCB 
(O75439) 

Yellow - - - 

Green - - - 

Notes: The protein names were retrieved from UniProt ID. 

The 242 proteins which were weighted proteins in at least one dataset, were 

used to establish a protein-protein interaction network via the BisoGenet app in 

Cytoscape (Figure 3-9). In this network, 28 proteins (11.57%) are known as heart 

failure-related proteins (Figure 3-9A). We identified 4 hub proteins which are 
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nodes with a high degree of connectivity and are key connectors between proteins 

in the network: CAND1, HSPA5, HSPB1, and BAG3 (Figure 3-9B, Figure S 3-6). 

Literally, these hub proteins are essential components in the proteome: CAND1 

contributed to the ubiquitin complexes, HSPA5 and HSPB1 are heat shock proteins 

involved in stress responses, while BAG3 is a co-chaperone for HSP70 and HSC70 

chaperone proteins [76]. The alterations in these hub protein expressions under 

ANT treatment can systematically spread across the protein network, and lead to 

the cascade effect of ANTs. 

Expression of the weighted proteins and the hub proteins 

Of these 7 weighted proteins in both datasets and 4 hub proteins, their expression 

level varied over time across ANT treatment conditions in the in vitro data, as well 

as varied across patient groups in the biopsies data. Of these 11 proteins, 6 proteins 

i.e. ATP5F1B, EEF1D, ETFB, DECR1, HSPA5, and HSPB1, had high expression (log2 

expression > 10) in all samples (Figure S 3-7). The log2 fold change (log2FC) is the 

log ratio of protein expression in ANT treatments compared to the protein 

expression in equivalent control samples. In the in vitro testing, log2FCs of these 

6 proteins were used to manifest the up and down-regulated proteins over time 

under ANT effects after correcting for the correspondent baseline in control 

samples (Figure 3-10A). Regarding the human heart biopsy samples, the log2FC of 

these 6 proteins represents differences between cancer patients who received ANT 

and non-ANT treatment versus non-cancer patients (Figure 3-10B).  
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Figure 3-10: The log2FC expression of selected proteins in the in vitro and human biopsies 
datasets. Protein names and its UniPort IDs: ATP5F1B (P06576), EEF1D (P29692), ETFB 
(P38117), DECR1 (Q16698), HSPA5 (P11021), HSPB1 (P04792). (A) The log2FC value of in vitro 
data resulted from the comparison of protein expression levels in anthracyclines (ANTs) 
samples to control samples per time point. (B) The log2FC value of human biopsies data 
resulted from the protein expression levels in heart failure patients having cancer therapy 
with or without ANTs compared to the heart failure patients with no cancer (control 
group). Patient_ANTtreatment: heart failure patients that had cancer treatment with 
ANTs; Patient_nonANTtreatment: heart failure patients that had cancer treatment without 
ANTs. 
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Generally, the in vitro protein expression in IDA-treated samples differed from 

DOX- and EPI-treated samples, especially for the 4 proteins i.e. ATP5F1B, ETFB, 

EEF1D, DECR1 (Figure 3-10A). The DECR1 and ETFB expression in the IDA-treated 

samples was downregulated at early time points, then increased and were closer 

to their expression in DOX and EPI-treated samples (Figure 3-10A). These 2 

proteins show that the effect of ANT analogs could be diverse in short-term 

treatments, but become more convergent after long-term treatment. The log2FCs 

of ATP5F1B in ANTs-treated samples increased at later time points (from 168 to 

336 hours), despite their fluctuations at earlier time points in the in vitro data 

(Figure 3-10 A). Interestingly, this is in agreement with the higher expression levels 

of ATP5F1B in the heart biopsies taken from patients treated with ANTs compared 

to control patients and patients treated without ANTs (Figure 3-10B). In addition, 

although the log2FCs of EEF1D differed between in vitro ANTs-treated samples, 

their log2FCs were always positive (Figure 3-10A). Similarly, EEF1D was 

overexpressed in the patients treated with ANTs compared to control patients and 

patients treated without ANTs (Figure 3-10 B). For the other 4 proteins (ETFB, 

DECR1, HSPB1, and HSPA5), the in vitro data did not clearly show the same pattern 

as apparent in the human biopsies data (Figure 3-10). 

Discussion 

In this chapter 3-2, we investigated how ANTs alter the protein expressions and 

could influence cellular mechanisms and promote heart failure in human cardiac 

microtissue as well as in human cardiac biopsies from ANTs-treated patients. 

ANTs, as a drug family, can share a common mechanism of toxicity and reshape 

cardiac protein expressions. Furthermore, DOX, EPI, and IDA can have their 

variant adverse effects on cardiac tissue, which could also be captured by the 

protein expression alterations.  

The in vitro samples were grouped according to their protein expression 

profiles in the clustering tree (Figure 3-6A). The DOX and EPI-treated samples 

shared a high similarity in protein expressions not only in the clustering tree but 

also in module eigengene values and PCA plots (Figure 3-6A-C). This confirms the 

prior knowledge that EPI is a derivative of DOX, and shares a similar mechanism 

with DOX, while IDA is an analog derived from daunorubicin, another ANT [3,4]. 

The lipophilic ability could be an underlying factor that leads to the differences in 

protein profiles, in which IDA has higher lipophilicity than its parent molecule, 

daunorubicin [77], while daunorubicin has higher lipophilicity than DOX [78]. 

Interestingly, a rat cardiomyoblast study showed the inverse correlation between 

the lipophilicity of ANT analogs and their toxicity [78]. 
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The in vitro model, as a well-controlled system, seems to be able to capture 

subtle divergences across ANT analogs, the human biopsies could not be grouped 

by the protein profiles in accordance with the patients’ medical history (Figure 

3-8A). Possibly, all participants were heart failure patients, so they shared quite 

similar protein expression profiles. Furthermore, clinical treatments usually 

incorporate different ANT analogs with other drugs such as docetaxel, cytosine 

arabinoside, vincristine, etc., rather than using a single ANT as a monotherapy  

(Table S 3-1). This combined chemotherapy has been recommended because of its 

survival benefit and cost-effectiveness [60,61]. However, it also causes challenges 

for ANT-induced cardiotoxicity studies. Even though patient data is certainly 

complex and reflects multifactor treatments, the combination of in vitro and 

human biopsies data could still assist to project the outcome of an empirical 

experiment to clinical applications.  

The ANT-affected protein groups were acquired according to protein 

expression across samples. In the in vitro data, 3 protein groups (turquoise, green, 

and blue) demonstrated not only how certain ANT analogs but also how different 

doses and time exposure can impact protein expressions (Figure 3-6B-C).  In the 

PCA plots, samples from short-time exposure were grouped together, and samples 

treated with toxic doses and from longer exposures (168, 240, and 336 hours) were 

more dispersed (Figure 3-6C). An early clinical study showed that ANTs possibly 

cause myocardial damage after 24 hours following drug administration; however, 

patients may recover after 72 or 96 hours [79]. Related to this clinical 

phenomenon, the proteome observed in the in vitro ANTs samples at early time 

points could reflect the acute ANTs toxicity, while the proteome observed at later 

time points represented the intermediate and late toxicity. Thus, evaluating the 

proteome after long-term exposure such as 168 hours (1 week) might elucidate 

more relevant aspects of ANT chronic cardiotoxicity. This approach also has been 

proposed in another study that predicts ANT cardiotoxicity in patients before the 

obvious clinical symptoms develop using a serial assessment of the left ventricular 

function in 1-3 weeks after treatment [79,80]. In the biopsies, 5 protein groups 

(turquoise, blue, brown, yellow, and green modules) highlighted the difference in 

the protein expressions between the heart failure patients groups (Figure 3-8B). 

A part of the ANTs-affected proteins was involved in cellular metabolisms in 

both the in vitro and cardiac biopsy samples (Table S 3-7, Table S 3-8). The ANTs-

affected proteins in the in vitro dataset also belonged to the translation pathway 

(Table S 3-7). Research has indicated that DOX alters the transcription process via 

signaling factors such as the transcription factor NF-κB,  the transcription factor 
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GATA4, or through the PI3K-dependent signaling pathway [12]. Furthermore, the 

ANTs-affected proteins in the human biopsies dataset illustrated the impact of the 

ANT treatment on the mitochondrial function, muscle contraction, and signaling 

pathways in the long term (Table S 3-8). While mitochondrial dysfunction has 

been a longitudinal topic in investigating ANT-side effects [81], signaling pathways 

have especially emerged as a new paradigm of ANT-induced cardiotoxicity [12].  

The 704 proteins were detected in both the in vitro and the biopsies datasets, 

and 7 of them were weighted proteins in both datasets (Figure 3-9, Table 3-4). 

These proteins suggest an extrapolation from in vitro outcomes to in vivo, in which 

ANTs demonstrated strong impacts in the 7 overlapping weighted proteins in both 

in vitro and biopsy samples. For instance, ATP5F1B, an ATP synthase subunit beta 

protein that belongs to the ATP synthase complex [76], was up-regulated in both 

in vitro and biopsy samples (Figure 3-10). It suggested compensation of the 

mitochondrial disfunction under ANT treatment. However, the ATP levels still 

decreased in all in vitro ANTs samples after long-term exposure (Figure 3-7). 

EEF1D, another weighted protein, is involved in transferring aminoacyl-tRNAs to 

the ribosome and regulating heat-shock-responsive genes [76]. This protein was 

triggered by ANTs and up-regulated from the beginning of the in vitro ANT 

treatments as well as in the ANTs-treated heart failure patients (Figure 3-10). The 

consistency in ATP5F1B and EEF1D’s expression pattern between the in vitro 

samples and human cardiac biopsies suggests that these two proteins could be 

potential targets to predict ANT-induced cardiotoxicity.  

The other 5 weighted proteins also play important roles in cellular function 

and are associated with heart failure. DECR1, an enzyme in the mitochondrial fatty 

acid beta-oxidation pathway (2,4-dienoyl-CoA reductase), has been known as a 

heart failure-related protein in the DisGeNET database [70]. The promoter of 

weighted protein SH3BGRL contains an NF-κB binding site bounded, thus it can 

be regulated by the Rel/NF-κB family [82]; while the activation of NF-κB can be 

modulated by ANTs [12]. Furthermore, a clinical study showed that SH3BGRL was 

differentially expressed on the transcriptomic level between heart failure biopsies 

of non-ischemic cardiomyopathy patients and non-heart failure biopsies from 

unused cardiac transplant donors [83]. Even though it is unclear how SH3BGRL is 

directly involved in heart failure, SH3BGRL has evolved into a biomarker for 

identifying cardiotoxic agents and for diagnosing heart diseases [73]. The other 

weighted proteins, i.e. ETFB, PMPCB, and TIMM13, are mitochondrial proteins 

(Figure 6) and are mediated by TLR4  and NF-κB activation, which can be 

triggered by ANT [12,84]. ETFB is involved in mitochondrial electron transfer and 
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is strongly associated with chronic anthracycline-induced cardiotoxicity [75]. 

PMPCB (aka β-MPP) belongs to the mitochondria proteases, while TIMM13 is a 

chaperone-like protein; both of them are essential for importing and modulating 

proteins in mitochondria [76,85,86].  

The protein network represents inter-dependence interactions between heart 

failure-related proteins and other proteins (Figure 5). Four hub proteins in the 

network were CAND1, HSPA5, HSPB1, and BAG3 (Figure 5B), which serve as key 

bridges for protein-protein interactions. CAND1 is an important assembly factor 

in SCF E3 ubiquitin ligase complexes [87], which manipulate the turnover and 

function of the sarcomere proteins and the apoptosis signaling pathway in 

cardiomyocytes. The alterations in ubiquitin-proteasome (E3s) are associated with 

cardiac dysfunction [88]. Another hub protein, HSPA5, is a member of the heat 

shock protein family A (Hsp70). This protein maintains protein homeostasis and 

Ca2+ homeostasis in the endoplasmic reticulum, as well as activates the unfolded 

protein response pathway and induces autophagy. HSPA5 is a current target for 

protecting cardiomyocytes because it is an oxidative stress sensor and responder 

and can rescue cardiomyocytes from apoptosis [89]. The HSPA5 level under ANT 

treatment was fluctuated since early time exposures (Figure 3-10), while HSPA5 

was expected to be gradually changed due to its long half-life (over 30 days) [89]. 

This suggests that HSPA5 expression was immediately impacted by ANTs, and 

could not protect cardiomyocytes, which lead to chronic injury of heart tissue. 

Another heat shock protein, i.e. HSPB1, participates in different cell functions 

including stress resistance [76]. HSPB1 was up-regulated in mice cardiomyocytes 

as a response to myocardial infarction and involved in repairing tissue damaged by 

inhibiting NFκB inflammatory signaling [90]. In this study, HSPB1 levels were up-

regulated in all in vitro ANT-treated samples in early time exposure (2-24 hours) 

(Figure 3-10A), which may indicate an acute response to ANT treatment as a stress 

responder. However, after 24 hours, the HSPB1 expression decreased in all ANT-

treated samples (Figure 3-10A). The last hub protein is BAG3, which is a co-

chaperone for HSP70 and HSC70 chaperone proteins and is involved in a wide 

range of different cell functions [76]. BAG3 has been reported to maintain 

cardiomyocyte function during proteotoxic stress and may become a target for 

heart failure therapy in the clinic [91,92]. 

This chapter 3-2 provided a broad picture of protein profiles under ANTs 

exposure as well as a proteomics analysis approach focused on the relevance of 

dedicated in vitro experiments to clinical data. The in vitro cardiac microtissues 

experiment showed a distinction of protein profiles between early and later 
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exposure, which suggests different cellular responses for acute and 

intermediate/chronic ANT toxicity. A part of the proteins shows similar 

expression patterns between the in vitro cardiac microtissues and human biopsies 

under ANT exposure. Some of these proteins belong to traditional ANT-affected 

pathways, while other proteins are involved in signaling pathways such as the NF-

κB signaling pathway, which is a prominent factor in the recent ANT-induced 

cardiotoxicity paradigms. While some detected proteins (SH3BGRL, HSPA5, and 

BAG3) are current cardiotoxicity biomarkers or targets of cardiac therapy, other 

proteins, such as ATP5F1B and EEF1D, could be potential biomarkers for 

cardiotoxicity and may reveal new insights into the proteome alterations caused 

by ANTs in the in vitro human cardiac tissues and translate to the patient 

situation. 
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General remarks 

In chapter 2, we have explored the effects of EPI, a member of the ANT family, on 

DNA methylation status; subsequently, in this chapter 3, we investigated the 

influence of ANTs on transcriptome and proteome to suspect how ANTs affect 

cellular mechanisms and cause heart failure. In particular, we analyzed the 

transcriptomic and proteomic data derived from cardiac microtissues exposed to 

ANTs as well as from human cardiac biopsies collected from ANT-treated patients. 

From the informatics perspective, investigating gene and protein expression 

plays a key role in elucidating the underlying drug mechanisms of action. 

Exploring lncRNAs (chapter 3-1) revealed that several lncRNAs demonstrated their 

potential roles in adverse ANT side effects related to heart disease progression. 

This extends the research boundary from only focusing on the expression of 

protein-coding genes to the expression of non-coding RNA genes. Furthermore, 

by combining the in vitro data and human cardiac biopsies data, we aimed to 

translate the alternation patterns from the in vitro experiments to the observations 

in clinical settings. Especially, the alterations of some candidate lncRNAs and 

proteins’ expression in the in vitro cardiac tissue were also affirmed by similar 

changes in the human biopsies.  

From a toxicology perspective, while ANT is an important chemotherapeutic 

family, its adverse effects can damage cardiomyocytes, cause cardiac dysfunction, 

and lead to heart failure. Although researchers have proposed several ANT-

induced cardiotoxicity paradigms [3,10,12,93,94], full insight into the ANT mode 

of action is still missing; thus, further investigation is still crucial to define the 

ANTs cardiotoxic mechanisms. Especially, ANTs, as a drug family, can share a 

common mechanism of toxicity, but individual ANTs’ analogs such as DOX, EPI, 

and IDA can have their variant adverse effects on cardiac tissue [95]. However, 

most studies have focused on DOX, the first generation of ANTs, whereas there is 

not much research on the second generation of ANTs including EPI and IDA [3]. 

Thus, investigating transcriptome and proteome under different ANT analogs’ 

exposure could elaborate on the diversity in ANT-induced cardiotoxicity.  

In this chapter 3, we analyzed both transcriptomic and proteomic profiles of 

the same in vitro microtissues exposed to DOX, EPI, and IDA. In comparison with 

transcriptome, proteome conveyed a clearer sample separation according to 

analogs and doses at the proteome rather than transcriptome (Figure 3-1, Figure 

3-6). It could be that there are more disruptions in the transcriptome than in the 

proteome. We also attempted to link the in vitro outcome to the human biopsies 
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for both transcriptomic and proteomic analysis, but there is consistently non-vital 

difference in those molecular profiles between ANT-treated patients and control 

subjects. Corresponding to the in vitro transcriptome and proteome-wide analysis, 

several lncRNA and proteins were highlighted as potential biomarkers or targets 

for further ANT-induced mechanisms investigation. We also inspected their 

expression patterns in human biopsies under ANT exposure to pursue the 

transparency of the detected outcome from in vitro experiments to the clinical 

phenomenon.  
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Supplementary Materials 

Data & code accessibility 

The data presented in the study are deposited in the BioStudies repository 

(http://www.ebi.ac.uk/biostudies). The accession number of the RNA-seq data 

from DOX, EPI, and IDA in vitro samples are S-HECA10, S-HECA11, and S-HECA12, 

respectively. The accession number of the RNA-seq data from biopsy samples is 

S-HECA469. The accession number of the proteomics data is S-HECA104 for in 

vitro proteomics data and S-HECA50 for human biopsies proteomics data.  

The code of the data analysis is available on Github for the RNA-seq analysis 

(https://github.com/NhanNguyen000/lncRNA_ANT) and the proteomics 

analysis (https://github.com/NhanNguyen000/Anthracycline_Protein_Analysis). 

Supplementary figures 

 

Figure S 3-1: The transcriptome profile of biopsy samples in batches in the PCA plot 

http://www.ebi.ac.uk/biostudies
https://github.com/NhanNguyen000/lncRNA_ANT
https://github.com/NhanNguyen000/Anthracycline_Protein_Analysis
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Figure S 3-2: Module eigengene (ME) values in all in vitro modules 

Figure S 3-3: PCA plots in all in vitro modules. Please check Figure S2 in the  supplementary 
materials are publicly available at the published proteomics article 
https://doi.org/10.3389/fgene.2021.695625  

https://doi.org/10.3389/fgene.2021.695625


Chapter 3 | Transcriptomics and proteomics 

 
104 

 

Figure S 3-4: Hierarchical clustering tree with all samples in the human cardiac biopsies 
dataset. The samples in the red rectangular belonged to one batch, while the rest of the 
samples belonging to another batch, were considered outliers and were removed for further 
analyses. Control_patient: heart failure patients with no cancer history; 
Patient_ANTtreatment: heart failure patients that had cancer treatment with 
anthracyclines (ANTs); Patient_nonANTtreatment: heart failure patients that had cancer 
treatment without ANTs; the number at the end of each patient indicates the biopsies 
sample ID. 

Figure S 3-5: PCA plot from all proteins in the biopsies dataset and proteins in each biopsies 
module. Please check Figure S4 in the supplementary materials that are publicly available 
in the published proteomics article. https://doi.org/10.3389/fgene.2021.695625  

 

https://doi.org/10.3389/fgene.2021.695625
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Figure S 3-6: Protein network analysis - the number of nodes with their degree of 
connection. Four hub proteins (degree of connection >= 30) were highlighted in black: 
CAND1 (Q86VP6) – 57 connections, HSPA5 (P11021) – 43 connections, HSPB1 (P04792) – 32 
connections, BAG3 (O95817) – 30 connections. 

Figure S 3-7: The log expression of selected proteins in the in vitro and human biopsies 
datasets. Please check Figure S6 in the supplementary materials that are publicly available 
in the published proteomics article. https://doi.org/10.3389/fgene.2021.695625  

Supplementary tables 

Table S 3-1: The demographic and clinical information of the biopsy samples used in the 
transcriptomics and proteomics analysis [14]. This table is adapted from the metadata that 
is publicly available in the published transcriptomics article 
(https://doi.org/10.1016/j.ncrna.2022.01.002, Table S2) and proteomics article 
(https://doi.org/10.3389/fgene.2021.695625, Table S2).  

SID 

M
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R
N
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eq
 b

at
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Type 

S
ex

 

B
M

I 

Therapy 

10188 271 2 Breast cancer F 29 CYC 

686 10201 2 Control F 25 - 

534 10132 2 Control F 27 - 

10201 686 2 Breast cancer F 26 DOX, CYC, EVR, EXE, TXT 

10132 534 2 Breast cancer F 29 EPI, DOC 

https://doi.org/10.3389/fgene.2021.695625
https://doi.org/10.1016/j.ncrna.2022.01.002
https://doi.org/10.3389/fgene.2021.695625
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10130 562 2 Breast cancer F 29 DOX, CYC, RTX, VCR, PDN 

271 10188  - Control F - - 

442 10204  - Control F - - 

10206 397 2 
Chronic 
lymphatic 
leukemia 

M 23 DOX, CYC, VCR, PDN 

10217 407 2 
Adenocarcinoma 
uterus 

F 28 DOX, CYC, 5-FU 

407 10217  - Control F - - 

10204 442 2 Breast cancer F 27 CYC, letrozol 

397 10206 2 Control M 23 - 

523 423 2 Control F 26 - 

10198 334 2 Breast cancer F 30 ANT + hormonal therapy  

562 10130 2 Control F  29 - 

10021 10027 1 Control F 29 - 

614 10059 1 Breast cancer F 23 DOX, CYC, 5-FU 

10059 614 1 Control F 23 - 

10027 10021 1 Breast cancer F 30 DOX, EPI, TAM 

10033 10096 1 Prostate cancer M 35 - (local therapy only) (*) 

10096 10033 1 
Non-Hodgkin 
lymphoma 

M 33 DOX, CYC, RTX, VCR, PDN 

10220 245 3 Breast cancer F 24 TAM 

10239 237 3 Breast cancer F 25 DOX, CYC, DOC, TAM 

10244 729 3 
Hodgkin 
lympohma 

M 25 
extreme radiotherapy 
(mantelveld) 

10247 346 3 Breast cancer F 26 DOX, CYC, DOC, TAM 

10252 150 3 
Hodgkin 
lympohma 

M 27 
DOX, bleomycine, vinblastin, 
dacarbazin 

10284 396 3 Breast cancer F 30 DOX, CYC, 5-FU, TAM 

10285 679 3 Breast cancer F 24 DOX, CYC, DOC 

10315 488 3 
Lymphgenic 
spread 
melanoma 

F 27 
Nivolumab (monoclonal 
antibody) 

237 10239 3 Control F 24 - 

423 523 3 Breast cancer F 25 DOX, EPI 

488 10315 3 Control F 36 - 

617 10312 3 Control F 38 - 

Notes: SID, sample ID; Control, heart failure patients who do not have cancer history; F, 
female; M, male; 5-FU, 5-fluorouracil; ANT, anthracycline; CYC, cyclophosphamide; DOC, 
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docetaxel; DOX, doxorubicin; EPI, epirubicin; EVR, everolimus; EXE, exemestane; PDN, 
prednisone; RTX, rituximab; TAM, tamoxifen; TXT, taxotene; VCR, vincristine; -, not 
applicable or no information; (*) this patient was labeled as control sample in the metadata 
of the HeCaToS project. 

Table S 3-2: The pathway analysis outcome of the differentially expressed (DE) genes in the 
in vitro samples. Please check Table S3 in the supplementary materials that are publicly 
available in the published article https://doi.org/10.1016/j.ncrna.2022.01.002  

Table S 3-3: The pathway analysis outcome of the differentially expressed (DE) genes in the 
biopsy samples. Please check Table S4 in the supplementary materials that are publicly 
available in the published transcriptomics article 
https://doi.org/10.1016/j.ncrna.2022.01.002  

Table S 3-4: The differentially expressed (DE) lncRNAs related to heart disease according 
to the LncTarD database [41].  

Disease  lncRNA Target 
Regulation 
direction 

Expression 
Pattern 

Influenced Function 
Regulatory 
Mechanism 

Acute 
myocardial 
infarction 

H19 SOX8 positive 
Down-
regulation 

cell injury (-); 
PI3K/AKT/mTOR 
signaling pathway (+) 

ceRNA (miR-
139) 

Aortic valve 
disease 

TUG1 RUNX2 positive 
Up-
regulation 

cell differentiation 
(+) 

ceRNA (miR-
204-5p) 

Aortic valve 
disease 

MALAT1 SMAD4 positive 
Up-
regulation 

cell differentiation 
(+) 

ceRNA (miR-
204) 

Aortic valve 
stenosis 

H19 NOTCH1 negative 
Up-
regulation 

biomineral tissue 
development(+) 

transcriptional 
regulation 

Cardiac 
fibrosis 

GAS5 PTEN positive 
Down-
regulation 

cell proliferation (-); 
cell growth (-); 
fibrotic (-) 

ceRNA (miR-21) 

Cardiac 
hypertrophy 

CASC15 TLR4 positive 
Up-
regulation 

cardiac hypertrophy 
(+) 

ceRNA (miR-
432-5p) 

Heart failure FTX BCL2L2 negative 
Down-
regulation 

apoptosis process (+) 
ceRNA (miR-
29b-1-5p) 

Myocardial 
infarction 

XIST PDE4D positive 
Up-
regulation 

apoptosis process (+); 
cell proliferation (-) 

ceRNA (miR-
130a-3p) 

Myocardial 
infarction 

H19 FADD positive 
Up-
regulation 

myocardial necrosis 
(-) 

ceRNA (miR-
103a-3p; miR-
107) 

  

https://doi.org/10.1016/j.ncrna.2022.01.002
https://doi.org/10.1016/j.ncrna.2022.01.002
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Table S 3-5: The differentially expressed (DE) lncRNAs related to heart disease according 
to the LncRNADisease_v2.0 database validated by experimental methods [40]. 

LncRNA Disease Evidence 

H19 

Heart disease qRT-PCR//Western blot 

Cardiac fibroblast proliferation and 
fibrosis 

IHC//MTT assay//qRT-
PCR//Western blot 

Diabetic cardiomyopathies 
Luciferase reporter gene 
assay//qPCR//Western blot 

Cardiomyocyte hypertrophy qPCR 

BACE1-AS Heart failure IHC//RNA ISH 

FTX Cardiomyocyte apoptosis 
Immunoblot//Pull-down 
assay//qRT-PCR 

MEG3 Gastric cardia adenocarcinoma qPCR//qRT-PCR 

Table S 3-6: The list of the differentially expressed (DE) lncRNA in each treatment 
condition in the in vitro samples. Please check Table S7 in the supplementary materials that 
are publicly available in the published article https://doi.org/10.1016/j.ncrna.2022.01.002  

Table S 3-7: The top 10 over-represented pathways of selected modules in the in vitro data 
(p-value<0.01, and q-value <0.01). Please check Table S3 in the supplementary materials 
that are available in the published article. https://doi.org/10.3389/fgene.2021.695625   

Table S 3-8: The top 10 over-represented pathways of selected modules in the human 
biopsies proteomics data (p-value<0.01, and q-value <0.01). Please check Table S4 in the 
supplementary materials that are publicly available in the published transcriptomics 
article. https://doi.org/10.3389/fgene.2021.695625   

https://doi.org/10.1016/j.ncrna.2022.01.002
https://doi.org/10.3389/fgene.2021.695625
https://doi.org/10.3389/fgene.2021.695625
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Introduction 

Focusing on regulatory relationships such as transcriptional factor (TF) – targets 

is a fundamental biological research topic. However, with the advancement of 

sequencing technologies and their increased efficiency, omics technologies can 

provide high-dimensional omics data and result in a long list of differentially 

expressed (DE) genes and proteins. The long list of genes/proteins burdens 

researchers with the information gathering issue, because it is difficult to extract 

and appraise all possible interactions between these genes/proteins. Especially, 

the increase of different databases also provides a wide range of TF-target 

relations. For instance, the hTFtarget - a comprehensive database for regulations 

of human transcription factors and their targets (2020) has a total of 1,319,123 TF-

target relations [1]. The combination of the long list of candidate genes/proteins 

with a wide range of databases leads to difficulty to extract and appraise all 

possible interactions between these genes/proteins. It requires a dedicated tool to 

extract and filter the relative regulations to suggest strong candidate TFs for 

further investigation.  

In this chapter 4, we first developed the RegOmics (Regulatory extraction for 

Omics data) tool to aid researchers with identifying TF - target relations and 

suggesting potential TF candidates in user-uploaded data. Thereafter, we analyzed 

the epigenomics, transcriptomics, and proteomics derived from hepatic 

microtissues exposed to Rifampicin (RIF). We also applied the RegOmics tool to 

obtain and refine the TF-target relations in these omics datasets.  
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Chapter 4.1: RegOmics tool – Regulatory omics 

information 

Objectives of the study 

Several tools are available for detecting TF- target regulations, such as some TF 

prediction tools which exploit DEGs: ChEA3 [2] and  LISA [3]. However, they do 

not include TF-target regulation information for lncRNAs. Some lncRNA 

databases have provided lncRNAs information related to disease [4] or even the 

lncRNA-target relations in humans [5]. Although these lncRNA-target databases 

are mainly straightforward to use, most of them can only provide information for 

each lncRNA but not a group of input genes. Furthermore, few databases or tools 

are not working anymore, such as LncReg, a reference resource for lncRNA-

associated regulatory networks published in 2015 [6], or TF2LncRNA which was 

launched in 2014 to identify common transcription factors for a list of lncRNA 

genes from ChIP-Seq data [7].  

Furthermore, the modern high throughput technologies have supplied high-

dimensional omics data with extensive gene and protein detections. Even after all 

the differential expression analysis and other data filtering, there remains a long 

list of interesting genes/proteins. These cause difficulties in information gathering 

to understand the inter-dependencies between these genes/proteins. Thus, it is a 

necessity for a tool/database that is capable of inquiring the TF-target relations of 

not only protein-coding genes but also lncRNA genes from omics data input.  

In this chapter 4.1, we developed RegOmics (Regulatory extraction for Omics 

data) as a user-friendly tool for identifying TF - target relations and suggesting 

potential TF candidates in user-uploaded data. This tool is able to operate with 

the long list of genes/proteins derived from omic data. RegOmics can identify the 

TF-target relations that existed in the user input data, can rank these TF-target 

relations, and could suggest candidate TFs to researchers. The tool is available as 

a web-based version (https://nhannguyen.shinyapps.io/RegOmics_Rshinyapp/) 

and a source R code on Github (https://github.com/NhanNguyen000/RegOmics). 

Tool features 

The RegOmics tool consists of two working options: R shiny website and R source 

code to run on local computers. R shiny website offers an online and user-friendly 

app interface that allows users to input the gene/protein files, click on the “Run 

tool” button, and see the outcome. Both the R shiny and R source code follow the 

https://nhannguyen.shinyapps.io/RegOmics_Rshinyapp/
https://github.com/NhanNguyen000/RegOmics
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same schematic workflow (Figure 4-1), although the performance of the web-

based version is limited by the size of the input files (<5MB). 

 

Figure 4-1: The RegOmics tool architecture 

For the input files, the genomic annotation uses gene/protein names (HGNC 

Symbol) or Ensemb ID for genes and Uniport for proteins. We established a 

default TF-target reference using different databases, comprising hTFtarget 

database for human TF-target relations [1] and the latest release of the 

LncRNA2Target (version 3.0), which is a comprehensive database for target genes 

of lncRNAs in humans and mice [8]. For the lncRNA reference, we only used the 

TF-target relations acquired from and validated by conventional experiments 

including RT-qPCR, western blot, luciferase reporter assays, immunoprecipitation 

assays, and RNA pull-down assays. Users can also add their own TF-target 

preference by using the RegOmics runs at local computer. 

The RegOmics tool first examines the input files and shows related information 

about their protein/genes, name, and IDs, annotation the IDs to gene/protein 

names (if needed), and the number of proteins/genes in each file. After that, 

according to the TF-target reference, the tool inspects TFs that are in the user 
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upload genes/proteins list. It also provides a downloadable file for the related TF-

target relations that existed in the data (Figure 4-2). 

 

Figure 4-2: The online RegOmics tool. (A) The default page provides general information 
about how to use the tool and the used regulatory databases. Users can upload the 
gene/protein files and click on the run button. The reset button is the end of the 
webpage, user can reset the tool before the next analysis. 
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Furthermore, by tracking the regulatory relationship, we also identify the 

potential TFs that are not named in the uploaded gene/protein list but can 

regulate gene/protein in the uploaded list. For those potential TFs, we rank them 

based on the number of their target genes/proteins that are in the upload list. By 

default, we concentrate on the top 5% of them to only retrieve the potential TFs 

with the most TF-target connections; however, users can adjust this percentage 

selection. We also offer downloadable network and node files (.txt) presenting 

these identified TF-target relations to import in Cytoscape for visualization. 

In conclusion, RegOmics enables researchers to easily find potential TFs from 

a set of genes/proteins of interest. In the R shiny website version, the tool provides 

a user-friendly tool to identify and select potential TF for further study (Figure 4-

2). In addition, users can conveniently browse and retrieve TF-target regulatory 

relationships for interested TFs. In the R source code, we provide additional steps 

for graph illustrations that create networks to visualize the connection between 

selected TFs and targets. Users can also modify the default settings according to 

what they need.  
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Chapter 4.2: TF-target relations related to Rifampicin-

induced hepatotoxicity from DNA methylation to 

transcriptome and proteome 

Objectives of the study 

Rifampicin (RIF) can inhibit bacterial RNA polymerase, without affecting the 

mammalian enzyme, leading to RNA synthesis suppression and bactericidal 

action. This antibiotic is administered orally and metabolized in the liver. It can 

be used to treat different bacterial infections, especially Mycobacterium 

tuberculosis [9]. In particular, the usage of RIF benefits tuberculosis patients by 

shortening the treatment duration [10]. While RIF is still an essential drug for the 

tuberculosis treatment, the emergence of RIF resistance causes a threat to control 

this disease [11]. Several researchers suggested that higher RIF doses could increase 

the cure rates and reduce treatment duration compared to the current benchmark 

[10]. However, RIF is a potential hepatotoxic agent [12]; further research about RIF-

induced hepatotoxicity is needed to understand its adverse effects and whether 

high-dose RIF could be well tolerated in the human liver. 

Although researchers have investigated the side effect of RIF, most studies 

concentrated on clinical markers [13]. Some studies attempted to explore the 

underlying RIF-induced hepatotoxicity mechanisms. For instance, researchers 

recognized that, via activating the hepatocyte PXR receptor, RIF could 

influentially induce some metabolic enzyme pathways such as the cytochrome 

P450 system [12]. Cytochrome P450, consisted of more than 30 related enzymes, 

mainly located on the endoplasmic reticulum membrane of hepatocytes and 

enterocytes. This enzyme group is accountable for drug oxidative metabolisms 

and endogenous substances such as prostaglandins, fatty acids, and steroids [14]. 

RIF also can affect the ABCB1 transporter and P-glycoprotein transport system, 

which can interfere with the membrane transport activities [12,14].  

In recent years, advanced omics technologies have provided a new approach 

to study drug toxicity; however, RIF-induced hepatotoxicity studies are still 

centralized on the metabolite level measured in human fluids [15,16] or on the 

protein level in mice [17]. In this study, we focused on the alteration of DNA 

methylation, transcriptome, and proteome of human hepatic microtissues under 

RIF exposure. Our primary aim is to identify potential targets and reveal 

underlying pathways for the RIF toxic mechanism of action.  
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Experimental design and dataset 

The human hepatic microtissues (3D InSightTM Human Hepatic Microtissues 

from InSphero) were exposed to either a RIF clinically therapeutic or a toxic (IC20) 

dose [18]. Every weekday, the sample medium was renewed 3 times corresponding 

to the hepatic drug interstitial concentration profile at 2, 8, and 24 hours 

calculated by the physiologically based pharmacokinetic (PBPK) modeling. RIF 

was dissolved in 0.1% DMSO, thus control samples were also exposed to similar 

DMSO concentrations (Table S 1-2). During these 2 weeks of exposure, the DNA 

from microtissues were collected in triplicates at 0, 72 and 168 hours of exposure, 

the RNA and protein from microtissue were collected in triplicates at 2, 8, 72, 168, 

and 240 hours of exposure. The RNA and protein from RIF therapeutic-treated 

samples were also harvested after 336 hours of exposure. 

After DNA extraction, the methylated DNA fragments were isolated by anti-

5-methylcytosine antibody and then paired-end sequenced (MeDIP-seq) with 50 

bp read length [19]. The quality assessment demonstrated that the CpG density-

dependent enrichment profiles among samples were sufficient (Figure S 4-1).  

After RNA extraction, the total RNA in each sample was isolated using Qiagen 

AllPrep DNA/RNA/miRNA Universal Kit (Cat #80224). Ribosomal RNAs were 

depleted by using the Illumina RiboZero Gold kit (Cat #MRZG12324), and then 

samples were prepared by the Lexogen SENSE total RNA library preparation kit 

(Cat #009.96). The RNA quality and quantity of the samples were checked by the 

Agilent 420 TapeStation and the QubitTM before they were sequenced by an 

Illumina HiSeq2000 with 100bp paired-end reads [20].  

For the protein extraction, microtissues were resuspended in 100 ul lysis buffer 

containing 8M Urea, 1 mM Dithiothreitol, 0.1M Ammonium bicarbonate, pH 7.8. 

After four freeze-thaw cycles, the samples were centrifuged at 16000xg for 15 min 

at 4° C and protein concentrations were assessed with the QubitTM Protein Assay 

Kit (Invitrogen, Molecular Probes). Protein isolates were then subjected to in-

solution digestion [21] or Filter Aided Sample Preparation (FASP) [22]. Protein 

digestions were stopped by adding formic acid to a final concentration of 1%. The 

peptides were cleaned up using Sep-Pak tC18 cartridges (Waters) according to the 

manufacturer’s instructions and eluted with 60% ACN and 0.1% formic acid 

(Sigma-Aldrich, USA).  
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Analysis procedure 

MeDIP-seq data processing 

The MeDIP-seq paired-end reads were aligned to human reference genome hg38 

using Burrows-Wheeler Alignment tool (BWA) version 1.17 [23] and converted to 

.bam files using Samtools version 1.10 [24] in the Linux environment (Figure 2-1). 

Thereafter, the aligned MeDIP-seq data were processed using the QSEA package 

and human genome build hg38 with default window size (250 bases) excluding sex 

chromosomes [25] according to the description of the MeDIP-seq data analysis 

workflow in chapter 2. The DMRs were detected using generalized linear models 

(GLMs, p-value < 0.01) with pairwise comparisons between RIF-treated and 

control samples (Figure 2-1). 

RNA sequencing data processing 

The sequencing quality of samples was examined by FastQC version 0.11.7 [26], 

and summarized by MultiQC [27]. Thereafter, the reads were mapped onto the 

human transcriptome reference (Homo_sapiens.GRCh38.cdna.all.fa.gz) release 

104, using Salmon version 1.5.2 [28] with the paired-end option. The annotation 

file that converts transcripts to genes was also generated from the used 

transcriptome reference. All samples had sufficient read counts (>25 million) and 

were used for differential expression (DE) analysis between either RIF therapeutic 

or toxic-treated samples compared to controls. We also utilized and adapted the 

R-ODAF to have a rigorous DE analysis, in which we increased the low read counts 

filtering genes (from >1 CPM of 75% of samples in the group to >5 CPM  for all 

samples in the group) [29].  

Proteomic data processing 

The raw MS data were processed using Genedata Expressionist® software v.11.0 and 

annotated to the Uniprot Swiss-Prot 29062016 database with the taxonomy Homo 

sapiens (human). The protein intensities were computed using the Hi3 method. 

The log2 transformed values of the data were normalized using the median of 

median method following the similar pre-processing workflow in chapter 3.2. The 

DE protein analysis was performed in the HeCaToS project [19]. In this particular 

study, we only processed proteins that matched with unique Uniprot ID for 

further analysis. 

Further analysis 

Further analysis was performed in R version 4.0.5 (released on 31st March 2021) 

[30] with the developed RegOmics tool (chapter 4-1) and some R visualization 
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packages including Tidyverse [31], and ggplot [32]. Pathway analysis for DE genes 

and protein was performed using ConsensusPathDB [33] with its default setting 

and background list of genes and proteins. Cytoscape v3.9.1 was used to visualize 

the TF-target relations [34].  

Results 

General view 

At the DNA methylation level, the MeDIP-seq data did not show a clear separation 

between control and RIF-treated samples in the PCA plot (Figure 4-3). However, 

there is a clear separation between RIF-treated samples and controls on the 

transcriptome and proteome level, in which the RIF therapeutic and toxic-treated 

samples were grouped together and distant from control samples (Figure 4-4A-B). 

In the established clustering trees, even though samples were consistently 

gathered together as treatment and control groups in both transcriptome and 

proteome, there were still differences in particular samples grouped by dose and 

time of exposure based on perceived gene and protein expression (Figure 4-4C). 

In particular, the RIF-treated samples on the proteomic layer were clustered into 

2 groups with early time points of exposure (from 2 until 72 hours) and later time 

points of exposure (after 168 hours).  
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Figure 4-3: PCA plot of MeDIP-seq data from hepatic tissues exposed to RIF-treated 
samples and controls. Note: The microtissues had not been exposed to RIF at 0 hours of 
exposure, thus the RIF_000 could be considered as control samples. 
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Figure 4-4: Overview of perceived transcriptome and proteome data from RIF-treated and 
control samples. (A) The PCA plot of RNA-seq data; (B) The PCA plot of proteomics data; 
(C) A comparison between the sample clustering tree between RNA-seq and proteomics 
data. 
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Single omics analyses 

The MeDIP-seq data analysis suggested 13 and 1 differential methylated candidate 

genes under RIF therapeutic and toxic-treated conditions, respectively, compared 

to controls (Figure 4-5).  Intriguingly, the only hypo-methylated gene in the RIF 

toxic-treated condition, LOC101928626, was hyper-methylated in the RIF 

therapeutic-treated condition.  Depending on the annotation databases, this gene 

can be considered as a lncRNA, pseudogene or uncharacterized gene [35]. 

 

Figure 4-5: The volcano plots as the outcome from the MeDIP-seq analysis. Differential 
methylated genes in samples treated with RIF therapeutic dose (A) and toxic dose (B) 
compared to controls. 

On the transcriptome level, the DE analysis with R-ODAF filters resulted in 

4753 and 3514 DE genes for RIF therapeutic-treated and toxic-treated samples, 

respectively, compared to controls. While most of these DE genes are protein-

coding genes, some of them are labeled as both protein-coding and lncRNA genes 

in the Ensemble database, such as 5 DE genes at RIF therapeutic-treated samples, 

i.e. CABIN1, MAPK4, PHF1, SMIM10L1, and SNHG32, and 3 DE genes at RIF toxic-

treated sample, i.e. MAPK4, PHF1, and SNHG32 [35]. The DE genes of each RIF 

treatment condition were used to perform pathway analysis (Figure 4-6A). 

However, even though most of these DE genes are protein-coding genes, a large 

part of them did not appear in the gene list of different pathway databases (53.2% 

and 33.6% of DE genes in RIF therapeutic and toxic-treated conditions, 

respectively).  
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Although the majority of DE genes on the transcriptomic level can produce 

protein products, the proteins of a minor part of these genes (less than 14%) were 

detected on the proteomics level. In particular, only 582 and 471 DE genes on the 

transcriptomic level, for therapeutic and toxic-treated conditions respectively, 

were detected on the proteomic level (Figure 4-6B). Due to the dose and time of 

exposure, the proteomics DE analysis resulted in different DE proteins per RIF 

treatment condition. Only 11 DE proteins (q-value < 0.05) appeared in all RIF-

treated samples compared to control, which are AK1 (P00568), APOA2 (P02652), 

ENO1 (P06733), PSAP (P07602), KRT7 (P08729), PDIA4 (P13667), NME2 (P22392), 

CCT6A (P40227), HSPE1 (P61604), PPIA (P62937), and SELENBP1 (Q13228). The 

protein pathway analysis was performed using these 11 proteins (Figure 4-6C).  

TF-target relations across omics layers 

Among the 3 aforementioned omics data, the transcriptome displayed the most 

comprehensive coverage of biomolecules. Thus, the TF-target relation analysis 

was initially performed on the transcriptomic data before being extended to the 

MeDIP-seq and proteomics data. On the transcriptome level, the default 

RegOmics database (chapter 4-1) revealed TF-target regulations for 90.2% and 

90.7% DE genes of RIF therapeutic and toxic-treated samples compared to 

controls. There are 84 identical TFs among RIF-treated conditions (Figure 4-7). 

While many TFs were influenced by the therapeutic condition, only 6 TFs were 

strongly impacted by the toxic condition, including ARNTL, ATF5, FOXA2, HSF2, 

KAT2B, and NFE2L2.  

 

Figure 4-7: Number of the DE genes and TF-target relations among RIF-treated conditions 
on the transcriptome level. Note: some genes were both TF and targets, so they were 
counted for the number of TF and number of targets separately.  

By conjoining the TF-target relations in transcriptomics with the 

accomplished MeDIP-seq data analysis, we recognized some differential 

methylated genes that were differentially expressed on the transcriptome level 
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and were also involved in multiple regulatory interactions (Figure 4-8). For 

instance, 4 genes, i.e. SMARCA4, MAN1B1, POLE, and KIF1A were hyper-

methylated (Figure 4-3) and differentially expressed on the transcriptome level for 

the RIF therapeutic-treated condition. By contrast, the LOC101928626 gene, which 

was differentially methylated in both RIF-treated conditions, was not differentially 

expressed on the transcriptome level. In particular, SMARCA4 is both a 

transcription factor and target gene; and it was involved in more than 700 possible 

TF-target relations. Especially, SMARCA4 can regulate the MAN1B1 gene (Figure 

4-8). While TFs that regulate KIF1A were not differentially expressed on the 

transcriptome level in RIF-treated samples, some TFs that regulate MAN1B1 and 

POLE were differentially expressed in RIF-treated conditions (Figure 4-8).  

 

Figure 4-8: The TF-target relations of 3 hyper-methylated genes for RIF therapeutic-treated 
samples: SMARCA4, MAN1B1, and POLE. The gene DDX5 is highlighted in red and is related 
to Figure 4-9. 

The TF-target analysis was then expanded from transcriptome to proteome. 

While there were 11 detected DE proteins across all RIF-treated conditions, only 

using these 11 proteins could constrain the TF-target analysis power. Thus, we 

expanded the TF-target analysis to proteins that were detected in at least one RIF-

treated condition and were DE on the transcriptome level. Furthermore, there are 

TFs that can regulate the DE genes or detected proteins but did not appear in the 

DE gene list on the transcriptomic level or were not detected on the proteomic 

level. These TFs were labeled as retrieved TFs (Table 4-1). Although there were 21 

identical retrieved TFs across RIF-treated conditions, there was no overlapping in 

the top 5% retrieved TFs among treatments.  
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Table 4-1: The number of TFs in the transcriptome and proteome under RIF exposure 

Data type Input type Treatment 
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DE genes at 
transcriptome 

RNA-seq 
The 4716 117 575 28 

Tox 3493 90 555 27 

DE genes appeared in 
proteome data 

Protein 
The 582 1 431 22 

Tox 471 1 423 21 

Number of identical TFs across input types and 
treatment conditions 

- 1 21 0 

Notes: The, therapeutic-treated samples; Tox, toxic-treated samples; TF, transcription 
factor; -, not applicable. 

Out of the overlapped 84 TFs in the transcriptome (Figure 4-7), only 1 TF, 

namely DDX5, was detected in the proteomic data (Table 4-1). We used DDX5 as 

a case study for exploring the regulatory relationship in RIF treatment. DDX5  

regulates the 3 hyper-methylated genes at the RIF therapeutic-treated condition 

as mentioned in the DNA methylation analysis (Figure 4-8) as well as were 

involved in other TF-target relations in the transcriptomics and proteomics 

(Figure 4-9). While there is no change in the DNA methylation status of DDX5 

after RIF treatment, on the transcriptome level, DDX5 was differentially expressed 

in both therapeutic and toxic treatment and involved in multiple TF-target 

relations. One target of DDX5 is SMARCA4 that was hyper-methylated at the RIF 

therapeutic-treated condition (Figure 4-8, Table S 4-1). At the RIF therapeutic-

treated condition, SMARCA4 was also hyper-methylated although its methylation 

status did not fulfill all the selected criterial of the MeDIP-seq data analysis (Table 

S 4-2). SMARCA4 was differentially expressed at the transcriptome level in both 

RIF-treated conditions. Furthermore, some genes that are involved in DDX5 

regulations were in the top 5% TFs in the therapeutic treatment, such as HDAC1 

and FOXA1, or in both therapeutic and toxic treatment, such as MAZ, BRD4, and 

HDAC2. Expanding to the proteome, some of these genes were also detected on 

the proteome level (Figure 4-9). 
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Figure 4-9: The TF-target network of DDX5 observed in the RIF-treated sampled. The gene 
SMARCA4 is highlighted in orange. SMARCA4 was differentially expressed (DE) in both 
RIF-treated conditions on the transcriptome level and were differentially methylated in the 
RIF therapeutic-treated condition (Figure 4-8). 

Thus, TF-target analysis highlighted some TF genes that can be the key factors 

to regulate the cellular process under RIF treatment. By exploring different omics 

data derived from the same RIF-treated samples, we identified candidate genes, 

such as DDX5 and SMARCA4, and their regulatory relationships that spread 

through the methylome via the transcriptome to the proteome.  

Discussion 

This chapter 4-2 explored the molecular interruptions in hepatic microtissues due 

to RIF exposure, including DNA methylation modification, transcriptomic, and 

proteomic alterations. We identified not only the potential biomarkers in different 

omics layers but also inspected the interdependences between biomolecules by 

projecting the outcomes of each omics data analysis to the regulatory 

relationships. Some TF-target relations, such as DDX5 - SMARCA4, were evident 

across 3 omics layers. Thus, the cross-omics analysis helped to filter the noises 

from single omics layers and strengthened the possibly important regulations 

under drug treatment. This study not only provided a global view of RIF-induced 
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hepatotoxicity at different omics layers but also prospected candidate genes and 

which regulations these genes could be involved.  

In general, different -omics layers can represent different scales of RIF-

induced effects. For instance, while the transcriptomic and proteomics data could 

clearly portray the difference between RIF-treated samples compared to control 

(Figure 4-4 A-B), the PCA plot of the MeDIP-seq data could not do this (Figure 

4-3). RIF-treated samples were better differentiated from controls on the 

transcriptome and proteome level rather than on the methylome level. Together 

with another urinary metabolomics study [15], it seems that RIF has a clear 

tendency in interrupting the downstream products of the genome such as 

transcriptome, proteome, and perhaps even metabolome. Furthermore, the 

perceived RNA and protein expression derived even from the same samples could 

facilitate different sample grouping according to dose and time of exposure 

differences (Figure 4-4C). This suggests that single omics analyses may only depict 

a part of the biological status and may include some noise signals from that 

particular omics layer. Thus, relying on particular omics layers can obstruct the 

drug adverse effect investigation.  

The MeDIP-seq data analysis revealed 13 hyper-methylated and 1 hypo-

methylated genes under RIF therapeutic and toxic-treated conditions compared 

to controls, respectively (Figure 4-5). Although the LOC101928626 gene, which can 

be labeled as a lncRNA gene [35], was differentially methylated in both RIF 

therapeutic and toxic-treated conditions, there is not much prior knowledge 

about this gene. Similarly, other genes, such as EHMT1, FANCA, KDM4B, MAN1B1, 

and SMARCA4, also have not been deeply studied in the context of hepatotoxicity. 

For instance, the down-regulation of KDM4 levels could contribute to liver fibrosis 

pathology [36]. While EHMT1 seems to be related to non-alcoholic fatty liver 

disease [37], FANCA may be involved in the hepatocyte gene repair pathway [38]. 

MAN1B1 and SMARCA4 were differentially methylated on the DNA methylome 

level and even differential expressed on the transcriptome level. Nevertheless, 

there are not many studies about them and their regulation in hepatotoxicity 

(Figure 4-8), although some studies have focused on the role of SMARCA4 in liver 

cancer [39].  

The transcriptome and proteomics analysis unveiled DE genes and proteins 

that are involved in important cellular pathways such as metabolism and energy 

production (Figure 4-6). A metabolomics study demonstrated that anti-TB drugs 

including RIF might affect the tricarboxylic acid circulation (TCA cycle) pathway 

and the purine metabolic pathway [15]. These 2 pathways also appeared as the top 
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pathways of our proteomics analysis (Figure 4-6C). While the proteomic outcome 

in this study did not reveal any arginine or proline metabolic pathways as they 

were recognized in this previous metabolomics study [15], the outcome of the 

transcriptomic analysis emphasized the amino acid metabolism, the metabolism 

of other cell substances as well as the PPAR signaling pathway and translation 

elongation (Figure 4-6A). A toxicoproteomics study in mice also affirmed that RIF 

can impact the amino acid biosynthesis, ribosome, and PPAR signaling pathway 

[17]. 

Similar to the detected differential methylated genes, there is not much 

knowledge about how the detected DE genes and proteins are related to RIF-

induced hepatotoxicity. Some DE genes could be related to hepatic disease. For 

instance, SNHG32 generated SNORD52 that promotes hepatocellular carcinoma 

tumorigenesis [40]. Some DE proteins are also known to be associated with drug-

induced hepatotoxicity. For example, AK-1 is an NAD+-dependent deacetylases 

inhibitor; using this protein as a treatment could attenuate oxidative stress and 

alleviates carbon tetrachloride-induced hepatotoxicity [41]. ENO1 is a 

multifunctional enzyme and is consistently up-regulated during liver injury under 

geniposide exposure [42]. According to a primary mouse hepatocyte study, PDIA4 

also changed its protein expression level under cyclosporin A exposure [43].  

Pathway analysis can reveal the function of gene or protein groups but does 

not clearly state the relation between these entities. The TF-target analysis could 

fulfil this gap for a better understanding of the biological system. Especially, in the 

transcriptomic data of this study, pathway analysis only covered 53.2% and 33.6% 

of DE genes in RIF therapeutic and toxic-treated conditions, respectively; 

however, the default TF-target database from the RegOmics tool was able to cover 

more than 90% of DE genes for each RIF-treated condition compared to controls. 

By projecting the relations retrieved from transcriptomic data to the outcome of 

the MeDIP-seq and proteomics data analysis, we were able to form and reinforce 

the regulations that appeared in different omics layers. This cross-omics analysis 

helped to refine the important TF-target relations from the massive relations that 

can be influenced by RIF treatment. 

In particular, we disclosed 6 TFs, i.e. ARNTL, ATF5, FOXA2, HSF2, KAT2B, and 

NFE2L2, that are only differentially espressed in the RIF toxic condition. ARNTL 

(aryl-hydrocarbon receptor nuclear translocator-like) is a transcription factor that 

can bind to the promoter of Sirt1, a metabolic mediator. The accumulation of 

ARNTL protein in nucleus enhances the Sirt1 transcription, and then regulates 

endoplasmic reticulum stress, lipogenesis, and hepatic inflammation in 
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nonalcoholic fatty liver disease [44]. Furthermore, ATF5 is a highly abundant liver-

enriched transcription factor [45]. ATF5 participates in cellular differentiation and 

promotes cellular adaptation to stress by activating molecular chaperones, 

proteases, and prosurvival molecules [46]. It also promotes mitochondrial 

function and recovery from mitochondrial stress [47]. Other TFs are also 

associated with different hepatic processes, such as HSF2 can regulate aerobic 

glycolysis by suppressing FBP1 in hepatocellular carcinoma [48]. While NFE2L2 

plays a role in hepatoprotection against lipotoxicity [49], FOXA2 can maintain 

apical MRP2 expression and prevent hyperbilirubinemia in acute liver failure [50]. 

Thus, TF-target analysis revealed candidate TFs that have crucial functions in 

regulatory units for RIF toxic mechanisms. 

Among various TF candidates (Table 4-1), DDX5 also seems to play a central 

role in the RIF-induced interruptions. It can regulate SMARCA4, MAN1B1, and 

POLE that were hyper-methylated under RIF therapeutic treatment (Figure 4-8). 

DDX5 was differentially expressed on the transcriptome level and then was 

detected on the proteome level despite the finite protein detection. Apparently, 

DDX5 can regulate and be regulated by several genes that were DE on 

transcriptome levels under RIF treatment (Figure 4-9). However, there has not yet 

been much investigation on DDX5’s function in hepatotoxicity. Based on previous 

studies, some of DDX5’s targets have different functions in liver cells. For instance, 

CEBPA has specific regulatory functionalities for homeostatic and cell cycle in 

liver regeneration [51]. HDAC, which is histone deacetylase and can plays an 

epigenetic role, might be involved in the carbon tetrachloride-induced 

hepatotoxicity; the increase of HDAC could reduce liver injury [52]. Other genes 

in co-regulated relationship with DDX5, such as JUND and HDAC1, are involved 

in oxidative stress, liver dysfunction, and the hepatocellular carcinoma process 

[53,54]. Other genes, which regulate DDX5, are also known for their critical 

functions in hepatotoxicity. In particular, KLF9, XBP1, SIRT6, and NR1H3 play 

important roles in arsenic trioxide, acetaminophen, and cadmium-induced 

hepatotoxicity, respectively [55-58]. Possibly, due to RIF treatment, DDX5’s 

expression alters on the transcriptome level and triggers other genes; this 

consequently leads to RIF-induced hepatotoxicity. However, a wide range of 

possible TF-target relations without prior knowledge about regulatory pathways 

related to the particular treatment condition can create difficulties to select 

candidate genes/proteins for further investigations.  
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General remarks 

In this chapter, we developed a TF-target detection tool (RegOmics) to extract the 

biological regulations from omics data. We also separately analyze the epigenome, 

transcriptome, and proteome of hepatic microtissues under RIF exposure. 

Thereafter, we employed the RegOmics tool to extract the biological regulations 

related to RIF-induced hepatotoxicity. We were able to inspect the potential 

regulations that were affected by RIF treatment. 

From the bioinformatics perspective, we launched the RegOmics tool for TF-

target extraction from extensive lists of genes and/or proteins. While several tools 

have been developed for TFs or TF-target detection, they focus on either protein-

coding genes or lncRNAs. Besides, some of them are not currently available or 

user-friendly. Our RegOmics tool combines two TF-target databases to cover the 

regulations in both protein-coding and lncRNA genes. This tool has been built on 

R and available as R source code as well as R shiny app. The R shiny app offers a 

user-friendly interface for researchers to inspect the TF-target regulation in their 

data without coding skill requirements.  

For the drug side effects, we explored the genome-wide DNA methylation 

modification as well as the transcriptome-wide and proteome-wide alterations 

under RIF treatment in in vitro human hepatic microtissues. Whereas RIF is 

known for its hepatotoxicity effects, there is little study on the underlying RIF 

toxic mechanism. The chapter 4-2 revealed several changes in DNA methylation, 

gene, and protein expression that seem to be associated with RIF toxic 

mechanism. However, there is insufficient prior knowledge about these genes’ and 

proteins’ function nor about how they could be involved in drug-induced 

hepatotoxicity. While this study suggested potential candidates for further RIF-

induced hepatotoxicity studies, it also portrayed an urgent need for experimental 

validation.  
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Supplementary Materials 

Data & code accessibility 

The data presented in the study are deposited in the BioStudies repository 

(http://www.ebi.ac.uk/biostudies) with the accession numbers: S-HECA421, S-

HECA410, S-HECA411, and S-HECA401 for methylome data; S-HECA157 and S-

HECA158 for transcriptome data; S-HECA131 for proteome data. 

The RegOmics tool is publicly available on R shiny app as a web-based version 

(https://nhannguyen.shinyapps.io/RegOmics/) and on Github as open source 

code (https://github.com/NhanNguyen000/RegOmics).  

The code of the data analysis is publicly available on Github 

(https://github.com/NhanNguyen000/Rifampicin_omics_integration). 

 

http://www.ebi.ac.uk/biostudies
https://nhannguyen.shinyapps.io/RegOmics/
https://github.com/NhanNguyen000/RegOmics
https://github.com/NhanNguyen000/Rifampicin_omics_integration
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Supplementary figures 

 

Figure S 4-1: The sample-wise CpG density-dependent enrichment profiles. The average 
enrichment profile of samples is depicted in black, and the fitted sigmoidal function is in 
green. Samples with flat profiles might indicate low enrichment efficiency or poor 
agreement with the calibration data. In here, all samples show sufficient enrichment 
profiles. 
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Supplementary tables 

Table S 4-1: Differentially methylated genes between RIF therapeutic-treated and control 
samples. 

Symbol 
The average of 
log2FC values 

The average of p-
values 

The average of adj-
p-values 

CROCCP2 0.524027 1.46E-08 0.000111 

DNAH17 0.657212 1.51E-05 0.009017 

EHMT1 1.081145 1.47E-05 0.008888 

FANCA 0.88627 4.01E-07 0.000917 

KANK2 0.830295 4.30E-06 0.004101 

KDM4B 0.832762 6.30E-07 0.00121 

KIF1A 1.002727 1.04E-07 0.000394 

LOC101928626 0.990407 6.40E-06 0.005324 

MAN1B1 0.855219 1.31E-06 0.001949 

MYO9B 0.787109 7.36E-07 0.001331 

POLE 0.701396 2.48E-07 0.000681 

RPS6KA2-AS1 0.747184 3.30E-06 0.003455 

SMARCA4 0.856038 3.70E-09 4.67E-05 

 

Table S 4-2: Differentially methylated genes between RIF toxic-treated and control 
samples. 

Symbol 
The average of 
log2FC values 

The average of p-
values 

The average of adj-
p-values 

LOC101928626 -1.88828 4.86E-11 9.60E-06 

SMARCA4* 0.7260945 1.20E-07 0.002930994 

Note: (*) This differentially methylated gene did not fulfill all the selected criterial of the 
MeDIP-seq data analysis (Figure 2-1). 
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Drug side effects are related to drug safety and thus comprise an important study 

subject in pharmacology. The recently developed high throughput technologies 

(HTPs) provide a wide range of omics data and help to understand the biological 

mechanisms underlying drug side effects. However, the outcome of HTPs as omics 

data demands compatible bioinformatics analyses. The flourishing of effective 

omics data analyses could advance adverse drug effect research. 

The prominence of omics data requires new approaches and efficient data 

analyses that can leverage the outcome of advanced technologies to explore 

cutting‐edge discoveries. This thesis has focused on exploring different data 

analysis approaches as well as research angles to interpret omics data. We 

analyzed individual omics data types from epigenomics (MeDIP-seq, chapter 2), 

transcriptomics (RNA-seq, chapter 3) to proteomics (MS, chapter 3). Furthermore, 

we also not limited our analysis scale to single omics layers, but also pursued 

cross-omics interpretation. Chapter 2 demonstrated some inter-relations in which 

the gene expression could be influenced by DNA methylation alterations. Chapter 

3-1 addressed the importance of both coding and non-coding genes on the 

transcriptional level. It offers a critical perspective on the limitation of only 

studying the proteome (chapter 3-2) or the expression of protein-coding genes at 

the transcriptome. Further, we have emphasized the analysis of the TF-target 

relations in chapter 4 via the RegOmics tool. This approach serves as an alternative 

to various cross-omics analyses using mathematical and statistical methods. Thus, 

all these bioinformatics analyses and tools can serve as introductory and accessible 

workflows to interpret omics data. They can aid researchers to understand 

biological mechanisms and direct further studies.   

Alongside exploring new data analyses, this thesis also demonstrated how we 

utilized these contemporary approaches to analyze omics data in particular drug 

side effects as case studies. We specifically focused on cardiotoxicity and 

hepatotoxicity, which are always the top prevalent drug side effects. In the 

pharmaceutical development process, drug toxicity encountered 31% attrition of 

drug candidates, in particular, cardiotoxicity and hepatotoxicity are the most 

common toxicology attrition issues [1]. These two drug toxicities have also been 

responsible for the 14% and 18% post-marketing withdrawal, respectively [2]. 

Therefore, estimating the cardiotoxic and hepatotoxic potential of drugs always 

plays important role in drug optimization [3] and drug regulation [4]. In this 

thesis, we explored the cardiotoxicity of anthracyclines, including doxorubicin, 

idarubicin, and epirubicin (chapter 2, chapter 3), and the hepatotoxicity of 

rifampicin (chapter 4).   
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As a response to modern drug development and regulatory reformation, this 

thesis distinctively illuminated drug-induced alterations at different molecular 

levels. Recent movements have suggested the importance of understanding 

molecular mechanisms in drug adverse effects research. Consequently, drug 

regulations gradually emphasize the assimilation from molecular interactions 

(cellular level) to organismal physiology (organism level) [4]. In this thesis, we 

observed, detected, and discussed the changes in DNA methylation, gene, and 

protein expression as well as their inter-dependencies under drug exposure. This 

also reflects the shift of adverse drug events research toward systems 

pharmacology. Comprehensive databases, including drug-affected mechanisms as 

system pharmacology networks, could aid the clinical toxicities prediction based 

on the established associations between drug toxicities and drug toxic 

mechanisms [4].  Alongside the rise of omics technologies, new fields of 

pharmaceutical science have been transpired including pharmacometabolomics 

(metabolite levels), pharmacotranscriptomics (gene expression levels), and 

pharmacoprotoemics (protein expression levels) [5]. Hence, the outcome of 

different omics analyses in this thesis not only additionally contributed toward 

pharmacoproteomics and pharmacotranscriptomics, but also posed a debate 

about pharmacoepigenetic (epigenetic modifications) and its importance in drug 

adverse effect investigation. The results in chapters 2 and 4 have stated the 

necessity of assessing the DNA methylation status under drug treatment, in this 

case, ANTs and RIF. Recently, pharmacoepigenetics, which studies the epigenetic 

basis of variation in response to drugs, and pharmacoepigenomics, which is the 

application of pharmacoepigenetics on a genome-wide scale, have been promoted 

as new sub-disciplines in pharmacology [6]. These inexperienced pharmaco-omic 

studies embrace a lot of challenges as well as growth potentials to explore drug 

action and drug side effects. 

To demonstrate omics analyses in this thesis, we used data derived from the 

HeCaToS project. This project generated multi-omics data using different HTPs 

from the same in vitro/in vivo samples that offers a comprehensive and 

synchronized view of the biological system. Besides all HTPs usage, other 

innovations have also been utilized in this project. Physiologically based 

pharmacokinetic (PBPK) modeling can be used to individualize the drug doses 

based on patient‐specific factors [4]. The reverses PBPK modeling used in the 

HeCaToS project attempted to profile the drug concentrations in targeted tissue 

after oral administrations and, subsequently, to offer in vitro settings closed to 

situations in the reality. However, replicating these drug profiles on weekdays for 

2 weeks did not have biological replications and did not fully reflect the 
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therapeutic dose treatment in clinics. In particular, ANTs administration is 

generally by injection or an intravenous infusion. Although the administration 

process can be daily for 2 weeks followed by an off week to permit the body to 

recover and regenerate new cells; this is only one example among numerous time 

and administration sequences used according to the cancer type and its stage [7]. 

Other dose regimes suggest DOX’s dosing once every 1 to 4 weeks [8]. RIF is 

usually taken by oral route, but similar to ANTs, its dose regime can vary. For 

instance, RIF can be used with a single or twice-daily dose(s) for 2-4 days or 

months, according to diseases and patient types [9]. Besides, the controls were 

done on a different date compared to the drug-treated samples which could create 

some batch effects. The HeCaToS project also attempted to employ in vitro/in vivo 

extrapolation by doing in vitro experiments as well as collecting patient biopsies 

to understand the side effect of common drugs. The initial aims is to help to 

benchmark and translate in vitro perturbed mechanisms to in vivo human 

situations, even though we had realized its difficulties after analyzing the data in 

this thesis (chapter 3). 

To explore the hidden aspects of biological systems, we could set up new 

experiments and generate new data but we also can use available data and change 

the bioinformatics analyses. This thesis sought the unfamiliar perspectives of 

omics data analyses. While we still performed the popular approaches such as 

differential expression analysis (per time point and over time course) or co-

expression analysis, we did tackle certain concealed elements. We upgraded the 

differential methylation analysis for the MeDIP-seq data to suggest strong 

candidate genes (chapter 2). In chapter 3, we unveiled the roles of lncRNAs along 

with the predominant focus on protein-coding genes; we also attempted to relate 

the proteome of microtissues in the in vitro setting to the proteome of human 

biopsies.  Being proficient in different single omics approaches serves as a 

fundamental foundation to accomplish cross-omics analyses. After improving 

individual omics analysis, we also experimented to link the outcome, i.e. candidate 

genes/proteins, of each omics analysis with others. Chapter 4 focused on 

regulatory units, i.e. TF-target relations, with their members were nominated as 

potential candidates in individual omics data analysis (MeDIP-seq / RNA-seq / 

proteomics). These selected regulatory units can provide better systematic views 

of drug toxic mechanisms and better hypotheses for experimental testing. The TF-

target analysis was performed by our tool called RegOmics. In fact, the 

shortcomings of the HeCaToS study design can introduce biases in the outcomes 

of the bioinformatics analyses as well as limit the biological interpretations. 

However, the scheme of bioinformatics analyses in this thesis can be widely 
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applied to other circumstances. While the study design and the quality of the data 

can be changed due to the development of technologies, adequate data analysis 

procedures could remain.  

For future research on omic data analysis, we could endeavour different 

approaches to integrative multi-omics data. As mention in chapter 1, there is a 

broad spectrum of diverse methods: from  using prior knowledge to data-driven 

methods or the combination between them [10,11]. Although some methods have 

been popularly used such as interaction network, machine learning, or composite 

network methods, we could consider other bottom-up simulation methods such 

as agent based modeling or game theory. These simulation methods can build 

complex systems based on the information about the actions and interactions of 

entities that are involved in the system. These methods have been applied for 

ecology, cell-cell communation, or kinetic interactions [12-14], but are not offten 

used in omics data analysis. Besides, notwithstanding the archived TF-target 

networks linking 2 omics layers (Figure 4-8, Figure 4-9), further investigation on 

sophisticated data visualization approach for network analysis is still in need for 

highlighting the invovelement of ≥3 omics layers, presenting ranked elements, and 

demonstrating the dose and time of exposure in study design. 

In addition to new data analysis approaches, this thesis also deepens the 

knowledge about ANTs and RIF-induced mechanisms. Despite some limitations, 

the HeCaToS project provides comprehensive multiple-omics data derived from 

the same samples. We produced new insights in cardio- and hepatotoxicity as well 

as identified several potential biomarkers for drug toxicity. Different 

bioinformatics approaches have been invested and tested in this thesis; further 

experimental validation is the key to verifying the competencies of these 

bioinformatics approaches. 
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As aforementioned in chapter 5 – general discussion, this thesis firstly provides a 

brief of omics technologies currently available for drug side effect research and 

then explores different omics analysis approaches as well as the drugs-induced 

molecular alterations inside the cell. Our main aim is to form different data 

analyses, while the main theme of this thesis is seated within the drug side effects 

field because understanding the negative effects of drugs is essential for drug 

safety. Furthermore, exploring the drug toxic mechanism of known drugs could 

support the clinical usage of those drugs as well as aid the drug discovery process 

[1]. 

This thesis focused on the toxic mechanisms of anthracyclines (ANTs), 

including 3 common analogs: doxorubicin (DOX), epirubicin (EPI), and idarubicin 

(IDA), and rifampicin (RIF). ANTs are essential chemotherapeutic agents, but 

their adverse effects can lead to heart failure in cancer survivors. RIF is an 

important antibiotic for tuberculosis but can cause liver injury. Despite their 

adverse effects, these drugs are still popular today [2-4]. Although different 

research had tried to draft the toxic mechanisms of these drugs, their paradigms 

remain incomplete. In this thesis, we detected several potential targets and 

phenomena such as altered DNA methylated genes, altered genes, lncRNAs, and 

proteins’ expression under these drug treatments. All these outcomes can be 

immediately used by risk assessors to evaluate the ANTs-induced cardiotoxicity 

and RIF-induced hepatotoxicity. These potential targets can be candidate 

biomarkers to diagnose the particular drug's side effects and help to understand 

the drug's toxic mechanism. Especially, while many studies mainly focused on the 

proteome and protein-coding genes, this thesis emphasized the other aspects of 

the biological system such as DNA methylation and lncRNAs. Epigenetic 

modifications and lncRNAs have been implicated in cellular processes, and can 

also be useful tools to reveal drug-induced adverse side effects. 

The analysis approaches in this thesis are publicly available, a part of them 

has been published, and can already be used by other researchers to improvise 

and analyze the omics data. The usage of high throughput technologies resulting 

in omics data has been widely accepted in drug toxicity studies. It aids scientists 

to explore cutting-edge discoveries and promotes reforming the toxicity field. 

However, the rational recognition of modern omics technologies requires effective 

and transparent data analysis approaches. This urgent need has appeared not only 

in the academic research community but also among regulatory agencies and in 

the pharmaceutical industry [5]. This thesis portrays different analysis approaches 

for various omics data types and thus enriches the omics analysis toolbox. Our 
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omics analyses have been published and are accessible to a broad range of users. 

This also supports the appreciation of omics data and promotes the transparency 

of omics analysis. Furthermore, it ties to other movements to contribute to the 

use of omics data in drug development and drug regulatory.  

Overall, this thesis discloses several points of interest about both 

bioinformatics and drug adverse effects perspectives. We displayed the substantial 

changes in DNA methylation, transcriptome, and proteome as well as parts of the 

molecular inter-dependences, specifically TF-target relations, beyond the 

limitation of the data and the need for findings validation. The established omics 

analysis approaches could take advance of the modern omics technologies to 

demonstrate the molecular toxic mechanisms and head toward the advanced 

toxicology field. 
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