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Chapter 1: 

General Introduction



Introduction
In the current age of big data, several technologies are helping generate more and more data for the

advancement of science. The extraction of data from the cell is highly relevant, as bodily changes are in

the end cell changes, especially in the case of toxicology. Therefore, technologies such as transcriptomics

and proteomics are very informative on the changes that a cell suffers due to toxicity. The sheer size of

that data is manually impossible to analyze, but the computational improvements have not only improved

produce that data but eased its analysis too. This data abundance also favors machine learning algorithms,

which benefit from an increasing number of data observations. Those algorithms can find trends in the

data,  build  models  that  predict  them when these are  missing,  or  even classify what  is  generally  too

complex to understand.

Sequencing RNA

RNA sequencing (RNA-seq) is a high-throughput sequencing technology that allows the identification

and quantification of RNA in a cell  or tissue. More than a decade old, this technique has become a

mainstream and cheap manner to analyze cells under different conditions at a subcellular dimension. The

method consists  of  3  main steps:  library preparation,  sequencing,  and data  analysis (bioinformatics).

Library  preparation  consists  of  the  combination  of  all  input  items  (library)  required  for  sequencing.

Illumina will be used as an example, being one of the most popular sequencing technologies. First, total

RNA is extracted. To improve its sensitivity, mRNA (messenger RNA) enrichment or rRNA (ribosomal

RNA) depletion are performed. Afterward,  this  RNA is fragmented,  as the sequencing technology is

limited in the number of bases it  can sequence. It  is later retrotranscribed to cDNA (complementary

DNA), a much more stable molecule that can be amplified in a polymerase chain reaction (PCR). The

following step is the ligation to sequencing adaptors, which will allow the fragments to be amplified,

identified,  and  sequenced.  Once  the  cDNA  material  has  been  amplified  by  PCR,  and  both  library

concentration  and  fragment  lengths  have  been  verified  (quality  control),  the  library  preparation  is

complete. These PCR-amplified cDNA fragments can be sequenced by detecting and signaling each of

the present nucleotides. The way the cDNA is sequenced depends on the technology used. The three more

popular technologies are Illumina, Pacific Biosciences, and Oxford Nanopore.

In the  Illumina workflow, the cDNA molecules are fastened to a flow cell floor, where sequencing is

performed by synthesis of the complementary strand of each of those fragments. The PCR is performed in

this case through bridge amplification, where the fragment is bound from both ends to the floor, while the

reverse  strand  is  being  produced.  The  resulting  reverse  fragment  will  also  be  replicated,  leading  to
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multiple copies of both forward and reverse sequences of the same fragment (clonal amplification). After

that, all reverse fragments will be washed out, for the sequencing signal of that cluster of fragments to be

equal across all copies. For the sequencing step, a reverse strand will again be synthesized, but this time

using fluorescent nucleotides, which when they successfully pair to one of the fragments, a particular

fluorescence will  be emitted.  Combining all  fluorescent  signals (50-500 base pairs)  results  in  a read

sequence. In the simplest case scenario, each amplified fragment is sequenced once from one of its ends

(single-end sequencing). That same fragment may be sequenced from both ends (paired-end sequencing),

providing a higher coverage of the sequence.

The Pacific Biosciences workflow adds sequencing adaptors that circularize the cDNA fragments. These

fragments  are  added to  a  sequencing  chip,  which  contains  as  many nanowells  as  fragments  will  be

sequenced. At the bottom of such nanowells, an immobile polymerase will synthesize a new strand using

fluorescent nucleotides (as in Illumina), which will be detected and generate a read (< 50kb).

For the Oxford Nanopore library preparation, molecules (aside from the adapter sequence ligation) are

attached to a motor protein. When added to the flow cell, the motor protein will dock to a nanopore

(embedded  into  an  electrically  resistant  membrane)  and  will  move  a  strand  of  the  cDNA molecule

through the pore. The passing of an ionic current through the nanopore will be disrupted differently based

on the nucleotide going through the pore.  This disruption will  be measured in a  signal  trace,  which

generates reads between 1-10kb.

Different technologies are characterized by different sequencing read lengths. Although the older and

most used transcriptomics technologies are short-read sequencing, they have some limitations. Transcripts

expressed from the same or homologous genes tend to present different isoform sequences. Because such

transcripts share a pronounced proportion of the sequence, the genome mapping of the reads generated

from them (identifying the genomic locus of the original transcript) becomes complex.

The most common objective behind RNA-seq is differential expression analysis. Such analysis aims to

identify transcripts or genes that are differentially expressed across different conditions in a statistically

significant manner. To do so, the analysis starts with the sequencing results in some form of preliminary

data, which needs to be pre-processed. The obtained sequenced fragments need to be linked/mapped to

their gene of origin. After all fragments have been located in the genome/transcriptome, a quantification

informs about the number of amplified transcripts per gene. These raw quantities, though, are not directly

comparable across samples due to several factors (such as the total number of fragments per sample),

which  leads  to  the  need  for  normalization  methods.  Having the  data  pre-processed  and  normalized,

statistical  methods  are  applied  to  evaluate  how significant  the  expression  level  differences  between
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conditions  are.  Frequently,  the  significant  results  are  not  taken directly  at  face value using  standard

thresholds (p < 0.05). Due to the high number of genes (~20000) and transcripts, the expected number of

false positives under such a threshold is substantially high (1000). Therefore, multiple testing correction,

such as the Benjamini–Hochberg one (or False Discovery Rate- FDR), are applied to the probability

values.

The relevance of the RNA changes is generally not related to the intrinsic function of those RNAs, but the

effect that those changes have when some of those RNAs (messenger RNAs) are translated to proteins.

Protein level changes are important at a cellular level because the function to which those are associated

will be affected, be it from an excessive generation of their products to a complete lack thereof. The use

of transcriptomics as a proxy for the study of proteins, though, is limited 1. This is partially due to the

complex nature of post-transcriptional regulation. Post-transcriptional regulation refers to systems and

conditions that enhance or inhibit the translation of transcripts. Examples of this regulation are diverse:

from the structure itself of the transcript (%GC content and poly(A) tail), protein regulatory elements

(RNA-binding proteins), the efficiency of translation (number of ribosomes simultaneously bound per

transcript), or even other transcripts (such as microRNAs).

MicroRNA

Even  though  messenger  RNAs  have  a  key  function  as  intermediaries  for  protein  synthesis,  most

transcribed RNAs do not code for proteins. Around ∼95% of the total expressed RNA consists of non-

coding RNAs (ncRNA) essential for translation (ribosomal RNA and transfer RNA) 2.  Other ncRNAs

types, instead, inhibit that process: microRNAs3. MicroRNAs (miRNAs) are a class of non-coding RNAs

of around 22 nucleotides in length. Their main repressive mechanism in mammals relies on their seed

region, which is located between the second and seventh nucleotides. This region presents a sequence

complementarity specific to one or more protein-coding RNAs (generally in their 3’ UTR). Even though

this complementarity is per se highly probable to exist by chance due to the short seed sequence, a high

number of the miRNA targets are conserved: they are more frequently found than expected by chance. In

addition, miRNAs tend to have several simultaneous targets (> 400 conserved targets per miRNA family).

Although the repressive effect by a single miRNA seed is relatively weak, targets that contain conserved

sites tend to present on average 4-5 of them for the same or different miRNAs, which leads to cumulative

repression. Even so, conservative sites are less frequent than non-conservative ones. MiRNAs do not

exert their function in a stand-alone form and require specific processing steps after transcription. The

first  maturation step occurs  in  the  nucleus,  where  the  pri-miRNA contains  at  least  one hairpin loop

structure.  Drosha,  an  RNA-cutting  enzyme,  will  separate  the  hairpin  structure  from  the  rest  of  the
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transcript, leading to the pre-miRNA stage. After its nuclear export into the cytoplasm, RNase Dicer cuts

away the loop connecting both strands of the pre-miRNA, getting a miRNA duplex as a product. Even

though both strands can be functional, generally only one will be incorporated into the RNA-induced

silencing complex (RISC). In it, a protein from the Argonaute family (Ago2) will bind the miRNA, the

latter functioning as a guide to find the complementary target. The Argonaute protein will then also bind

the target RNA, which will lead to translation inhibition. There are several suggested mechanisms for

how this inhibition may occur. One of them is deadenylation of the target (via a deadenylase complex),

leading to the 3’ polyA end shortening (mRNA destabilization4). This shortening will eventually cause a

5’ Cap loss, which enables the 5 to 3’ mRNA decay. Thus, miRNA differential expression might affect

mRNA  target  levels.  In  addition,  translational  repression  mechanisms  (decreased  rate  of  mRNA

translation into proteins within cells) have also been described, such as Cap-40S initiation inhibition, 60S

ribosomal unit joining inhibition, elongation inhibition, and ribosome drop-off. Some studies suggest that

the influence on translational efficiency is rather secondary, except for early embryonic states. In that

stage,  a  high  correlation  exists  between  translational  efficiency  and  poly(A)  tail  length,  thus  the

shortening of the 3’ end does affect their translational process5. Other mechanisms, although also leading

to a lower protein output, do not affect translation directly. Examples of these are co-translational nascent

protein degradation and sequestration in P-bodies.

In a less common mechanism, some miRNAs exhibit a nearly perfect complementarity of their whole

sequence to their target,  where the latter is  cleaved (primary mechanism in plants).  This mechanism

presents a high resemblance with silencing RNAs (siRNAs). Some evidence suggests that this miRNA

cleavage mechanism might be responsible for the cleavage performed in experimental siRNA treatments,

as species with defective Argonaute function present minimal response in such experiments6.

MiRNA  post-transcriptional  regulation  is  important  both  biologically  (development,  differentiation,

cancer, and disease) and analytically. At the biological level, drastic changes in the expression or function

of this RNA type can lead to unforeseen consequences to the transcripts it regulates. At a sequencing

analysis level, RNA-Seq interpretation does not consider this regulation, thus opening the possibility of

false conclusions due to the miRNA function. An extra layer of complexity is added when taking into

account factors that regulate miRNAs themselves. Alongside typical transcript turnover, another novel

non-coding transcript might be able to decrease miRNA’s inhibitory potential: circular RNAs.

Circular RNA

Messenger RNAs require some maturation steps before their translation: splicing (eliminate introns and

join exons together), 5’ cap addition, and 3’ polyadenylation. Some transcripts mature using alternative
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splicing mechanisms, which lead to a different structure: circular RNAs (circRNAs). CircRNAs are a

result of back-splicing, a splicing event where both 5` and 3` ends join together, thus forming a back-

spliced junction, which leads to a circular structure7.  These transcripts present neither 5’ capping nor

polyadenylation,  thus  alternative  library  preparations,  such  as  ribo-depletion,  are  necessary  for  their

identification.  The  circRNA  sequence  depends  strictly  on  the  alternative  splicing  event,  where  the

resulting transcript may contain one or several exons, and sometimes even retained introns as well.

The most general hypothesized trigger for circularization is based on the introns flanking the circRNA

sequence. The relatively long flanking introns have enriched ALU repeats that can base-pair to each

other, leading to the circularization (Figure 1: Circularization event).

To regulate such circularization, all examples found so far involve RNA-binding proteins (RBP). It has

been hypothesized that ADAR proteins (which are RBPs) are involved, as they can mutate the flanking

introns8, weakening and ultimately decreasing the probability of the intron duplex to occur9,10. Another

mechanism  found  involves  Quaking  (QKI),  which  is  also  an  RBP,  but  in  this  case,  it  favors

circularization. It does so when two proteins bind to flanking QKI-binding sites in the linear transcript,

and  their  later  dimerization  gets  both  ends  of  the  future  BSJ  in  close  contact.  In  the  case  of  the

Drosophila muscleblind (mbl) gene11, the linear transcripts code for the MBL proteins (also an RBP),

which in turn stimulate the circularization of its linear transcripts when binding to their specific sites, thus

impeding their translation in an autoregulatory or negative feedback system.

As a relatively new discovered type of transcript, several functions have been hypothesized, which are

generally related to (post-)transcriptional regulation. Even so, very few examples are known so far that

Figure 1: Circularization event
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provide evidence of those functions, which could be classified on whether they induce or inhibit either

transcription or translation.

In the group of inhibition, as mentioned before, the formation (in the case of MBL, via protein-binding)

of circular RNAs can act as a competing regulator of the linear transcript expression. As generally all of

them are transcribed from genes that contain linear isoforms, this effect seems likely. In addition, the

ability to function as an RBP sponge could have alternative molecular consequences. Evidence of such a

sponging effect is not so straightforward: even though some RBPs have shown a higher cluster density in

circRNAs12, their computational analysis seems to show a lower RBP-binding density13.

In the inducement function class, a few circular RNAs have been proven to be able to compete as targets

for miRNA binding. Some even present copies of the same sequence complementary to a miRNA seed

target, allowing a single circular transcript to bind more than one miRNA. When that occurs, circRNAs

are said to function as miRNA sponges, adding a new layer of complexity to the post-transcriptional

regulation of miRNAs. Again, whether this function is the primordial one is still unclear, as circRNAs are

also expressed in organisms that lack miRNA-like repression pathways. In addition, the computational

search  of  circRNAs with  enriched  seed  sites  (compared  to  linear  ones)  delivered  limited  additional

examples  of  that  function12,13.  Interestingly,  although  circRNAs  have  been,  since  their  discovery,

considered a subtype of non-coding RNAs, new evidence via ribosome profiling suggests that they could

possess cap-independent protein-coding capabilities14,15. It was found that some of them, as some RNA

viruses, presented IRES (internal ribosome entry site) activity, which allows eIF3 recruitment (and, thus,

translation)  independently  of  the  5’-cap  modification16.  This  characteristic  could  imply  that  these

transcripts could be used as a medium-term source of translation/proteins, as they are more stable (and

therefore have a longer half-life) than their linear counterparts; which in turn could help mitigate the

current transcriptomics-proteomics gap. Additionally, some circRNAs17 can regulate their own parental

genes’ regulation.  A subgroup of circRNAs, named exon-intron circRNAs, is  located at  the nucleus,

where they promote the expression of  their  parental  genes  by interacting with the  U1 small  nuclear

ribonucleoprotein18.  Thus,  the  ability  to  bind  with  RBPs  might  have  both  transcriptional  and  post-

transcriptional  functions.  CircRNAs,  therefore,  might  have  a  role  in  pre-  and  post-transcriptional

regulation,  and  because  these  RNAs  can  be  analyzed  via  RNA-Seq,  their  influence  on  the  protein

expression level can also be studied.
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Proteomics

Proteomics refers to the large-scale study of the “proteome”, i.e., the set of all proteins present in a cell,

including  their  expression  level,  modifications,  and  interactions.  The  study  of  the  proteome  can  be

considered more complex than the study of the genome, as the proteome is a consequence of several

complex  regulatory  networks:  starting  with  the  genome  itself,  followed  by  the  intermediary

transcriptome, in addition to the post-translational regulation, localization, and possible modifications.

Often, instead of proteomics, transcriptomics is used as a proxy to evaluate the molecular changes that

could elucidate the phenotypical effects seen at larger systems (on a cellular or tissue level). As already

mentioned,  RNA levels  do  not  accurately  represent  either  the  expression  or  activity  levels  of  their

corresponding proteins, thus the need for proteomics for a more direct approach to the analysis of possible

molecular changes19.

Out of all the different techniques used in proteomics, the most popular one is mass spectrometry (MS),

from which other techniques also are derived. Mass spectrometry measures the mass-to-charge ratio of

ions. In proteomics, mass spectrometry can be used based on two different methods: top-down or bottom-

up proteomics. Top-down proteomics starts with a step of separation and quantitation of the proteins in

the sample, followed by MS for identification20. In bottom-up proteomics, the sample proteins are instead

first enzymatically digested, and then the product peptides are used as input for MS identification21. Top-

down proteomics is usually used for the identification of a small subset of proteins, while bottom-up has

generally a larger sensitivity. In MS, the input peptides are ionized, which can then be split based on their

mass-to-charge ratio (m/z). This leads to a mass spectrum, which can be used to identify and quantify

proteins. Even so, some technological limitations still exist.

Even though several  MS methods  have  been  improving  through the  years,  both  reproducibility  and

repeatability are low across both the same and different MS technologies 22. Reproducibility, understood

as the similarity of results obtained from different technologies, tends to be lower than repeatability,

defined as the similarity of results obtained from the same technology, whose wide range comprises from

30-60%22.  Current proteomics does not generally identify (in a large-scale quantitative manner) post-

translational modifications, such as phosphorylation and ubiquitination, which inform of their activity

status or their near-future degradation. In addition to that, its sensitivity is greatly limited 23, as the mass

spectrometer  generally  quantifies  around  2  to  3  thousand  proteins  (10-15%),  far  from  the  20,386

manually annotated proteins in humans24. Related to sensitivity, dynamic range, referring to the log scale

between the most and least abundant proteins, is also one of the metrics aimed to be improved, since the

highly expressed proteins tend to completely overwhelm the spectrum to the expense of the low expressed

peptides.  
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In summary, proteomics is one of the technologies that most closely can represent the cell’s environment,

but the technology itself is limited by its sensitivity. This combination of advantages and disadvantages is

curiously  the  opposite  of  the  ones  found  in  transcriptomics,  where  the  technology  allows  for  high

sensitivity while only giving a proxy of the potential protein levels. In addition, considering all the post-

transcriptional regulation networks that exist between the two, the ability to take all these considerations

simultaneously  is  manually  unpractical.  Therefore,  the  use  of  computational  tools  is  a  must  at  the

aforementioned level of analysis. Among the wide range of bioinformatics approaches, the selection of

machine learning algorithms (ML) was preferred due to three main characteristics.  First,  certain ML

models portray exceptional regression capabilities, crucial for the imputation performed in Chapter 4. In

addition, a selection of ML models is also capable of classification tasks as exceptionally performed in

Chapter  5.  The  third  characteristic  is  that  most  of  these  models  permit  the  evaluation  of  the  most

informative variables/features for the task at hand, which in turn inform the researcher to which degree

each feature is related to the desired outcome (as performed in Chapters 4 and 5).

Machine learning

Machine learning involves all algorithms that learn or adapt based on the input data25. Two of the main

groups in which these algorithms can be categorized are supervised and unsupervised. The difference

between  the  two  groups  relies  on  whether  a  target  observation  is  present  (supervised26)  or  absent

(unsupervised), and therefore their aim changes too: prediction (i.e., whether a compound is toxic) versus

grouping (i.e.,  grouping samples  by  similarity).  Thus,  supervised models  aim to achieve  the  highest

accuracy or lowest residual values (difference between observed and predicted values).

Supervised machine learning algorithms can also be categorized into two groups based on the nature of

the target value: classification and regression. Classification models predict discrete target values (ill or

healthy,  dog  breeds,  etc.),  while  regression  ones  predict  continuous  values  (height,  salary,  etc.).

Supervised algorithms “learn” from the data by trying to minimize the residual size or error. Building a

model to minimize the error in a limited dataset, though, has its limitations. The resulting accuracy can

only be attributed to the specific dataset the model has been trained in, usually called the training dataset.

One of the simplest ways to evaluate the accuracy of a model for unseen data is to split the available data

into two differing-size datasets (holdout method). The bigger one, which normally consists of around 75

to 80% of the data, is the one used to train the models (training dataset). The complementary small subset

is the one used to test the accuracy of the model for unseen data, thus named testing dataset. The model

might be tweaked by changing its hyperparameters (parameters that control the learning process) to try to

optimize the accuracy of the testing dataset. Again, to avoid bias with such a testing dataset, the dataset
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might be subsetted into a third group, the validation set. The latter is used to evaluate the model once the

hyperparameters have been optimally set. In this splitting data strategy, there is an inherent potential bias

based on which subset is selected as the testing dataset, even when chosen randomly.

For  this  reason,  a  more  sophisticated  method  is  normally  used:  k-fold  cross-validation27.  In  cross-

validation, the dataset is also split into k folds, where  k is the number of folds (subsets) the dataset is

divided into. The model is trained using all but one folds (k – 1) and tested on the remaining one (out-of-

bag fold). The difference between the previous method and cross-validation is that in the latter, such

training and testing are performed with all possible combinations: in each iteration of the loop, one of the

k folds will be used as the testing dataset, giving a specific error or metric value. This results in a list of

errors/values as large as the number of folds (k errors). Finally, this list is averaged to get a final accuracy

metric.  Cross-validation,  therefore,  avoids  a  possible  bias  of  a  specific  testing dataset  by  generating

several of them, which gives a more accurate representation of how the model will predict with new input

data (unless all the original input data is somehow biased).

Several  types  of  models  exist  for  the  prediction  based  on  data  learning.  Although  the  number  of

algorithms  keeps  increasing  at  a  fast  rate,  some  of  the  most  popular  algorithm  groups  existing  in

supervised learning can be described based on their prediction strategy:

 Regression analysis: statistical methods that try to find the relationship between an independent

variable (target to be predicted) and one or more dependent variables (features or variables). The

most common one is linear regression28, in which the optimal solution is found using ordinary

least squares. Different subtypes exist based on the nature of such relationship: linear (where the

relationship  between the  dependent  and  independent  variables  is  fit  with  a  line),  polynomial

(based  on  a  polynomial  relationship  of  any  degree),  or  logistic  regression29 (used  to  predict

categorical data).

 Support-vector machines (SVM): as a set of methods used commonly for classification (but

also for regression), they are defined as a non-probabilistic binary linear classifier 30. Thus, these

methods search to define the optimal line that separates two different classes by maximizing the

margin (maximizing the distance between the line and the closest data point from each class).

When the separation between two classes is non-linear, SVMs use the kernel trick, in which the

data points are transformed to a higher dimension (feature space), where that classification may

be performed by the use of a plane (or hyperplane, if the dimensions are above 3).

 Decision trees: models that apply decisions on each observation, whose final decision leads to

the target value. Each of the decisions (based on the features) are the so-called “branches”, while
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each of the final predictions (after all the previous decisions) are named “leaves” 31. Depending on

their target, decision tree models are either classification trees or regression trees. These methods

are  very  popular  due  to  their  simplicity  and  interpretability  (the  user  can  straightforwardly

visualize how the model reaches a prediction).  They are though limited by their  tendency to

overfit (improve training data metrics at the cost of testing data metrics). Advanced versions such

as random forests can correct for that, at the cost of their original interpretability.

 Bayesian networks: probabilistic models graphed via a directed acyclic graph (DAG)32. These

models use the probability of random variables, while also taking into account the dependencies

and combinations  between those probabilities,  to  predict  the  probability  of  an outcome.  The

outcome with the highest probability is the one predicted to be true. The relationships between

the different random variables are graphed using DAGs. In such graphs, the relationship between

two vertices (variables) and a single edge (arrow) is understood as the vertex as the end of the

edge  presents  a  probability  conditioned  on  the  existence  of  the  other  vertex,  and  such  a

relationship is unidirectional.

 Artificial neural networks: groups of models inspired by the biological neurological system, in

which neurons are connected via dendrites33. In these models, there are at least three layers of

neurons or vertices: input, hidden, and output layers. The input neurons contain the input features

of the dataset. Each of those observations, before reaching the hidden layer(s), is transformed by

the weights and biases. These values are then used in the hidden layer, where a value is extracted

based on an activation function chosen beforehand (such as the softplus, rectified linear unit, or

sigmoid functions). Again, these values are affected by additional weights before getting to the

output layer. In the output layer, the values from the hidden layers are summed together (and

corrected  by  a  final  bias).  Adding additional  hidden layers  allows fitting  data  to  even more

complicated non-linear relationships between inputs and outputs.

 K-nearest  neighbors  (k-NN):  in  this  type  of  model,  which  was  originally  designed  for

classification, a prediction is made based on how similar the unknown data to predict is to the

known training data. Different methods exist to evaluate the neighborhood of a data point, and

some do so by clustering, such as Principal Component Analysis or hierarchical clustering. K

refers to the number of nearest neighbors to the predicted data point.  Those k neighbors are

differently classified, and the most popular class in that k-sized population is the one predicted.

Regression  is  also  possible,  where  the  prediction  results  from  the  average  of  the  k-nearest

neighbors values34.
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Aims and outline of the thesis

The aim of this thesis is twofold. First, we want to understand the changes that are a consequence of toxic

treatments in the human organism at the molecular level. Namely, the elements of the post-transcriptional

regulation responsible for the differences between the transcriptome and proteome at a specific point in

time and tissue.  Second,  and  in  close  relationship  to  the  first  aim,  we  want  to  further  advance  the

development of data analysis tools that will allow us, and more generally, the experts responsible for risk

assessment, to evaluate the effects of any treatment at the molecular level using high-throughput methods

such as transcriptomics and proteomics.

Circular RNAs (circRNAs) have recently been shown to be deregulated in different disease scenarios.

However, in toxicological conditions, these have still not been well studied. In Chapter 2, the expression

profiles of several circRNAs affected after cardiotoxicant treatments were analyzed. Was proceeded with

an  additional  validation  on  12  differentially  expressed  circRNAs,  and two were  selected  for  further

investigation: circCDYL and circGNAS. CircCDYL levels were diminished after anthracycline treatment,

which putatively results in de-repression of particular sponged miRNAs. Therefore, the proteins encoded

by these miRNA-aimed mRNAs might  be lowered.  CircGNAS showed a significant  cumulative rise

across  time  after  being  treated  with  Amiodarone,  which  was  experimentally  validated.  For  both

circRNAs, the expression profile of their potential  sponged miRNAs and their corresponding mRNA

targets were also analyzed. In conclusion, the presence of a regulatory axis involving circCDYL/miR-

145-5p/TJP1 was discovered in cardiac cells upon anthracycline treatment, in addition to the validation of

the upregulation of circGNAS due to a toxic dose of Amiodarone in different biological replicates, thus

indicating the reproducibility of circRNA studies through the use of iPSC-derived cardiomyocytes.

Transcriptomics is at the moment frequently applied as an analytical apparatus to examine the extent of

cell  expression  alterations  between  two  phenotypes  or  between  different  conditions.  Nevertheless,  a

substantial section of the significant changes detected in transcriptomics at the gene level is typically not

reliably  identified  at  the  protein  level  by  proteomics.  This  weak  correlation  between  the  measured

transcriptome  and  proteome  is  perhaps  largely  due  to  post-transcriptional  regulation,  among  which

miRNA and circRNA have been suggested to play an important role. Hence, since both miRNA and

circRNA are also measured by transcriptomics, a model was proposed to be built in Chapter 3. It takes

factors  related  to  the  post-transcriptional  regulation into  account  to  estimate,  for  each transcript,  the

fraction of transcripts that would be available for translation. Using a dataset of cells exposed to diverse

compounds, the model was evaluated to observe how and whether it was able to improve the correlation

between the assessed transcriptome and proteome expression level. The results showed that the model
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improved the correlation for a subgroup of genes, possibly due to the regulation of several miRNAs

across the genome.

Proteins  are  often  deemed  the  main  biological  component  in  charge  of  the  different  functions  and

structures of a cell. Nevertheless, proteomics, the global study of all proteins which is frequently executed

by mass spectrometry, is restricted by its stochastic sampling and can only measure a limited number of

proteins per sample. Transcriptomics, which permits an extensive analysis of all expressed transcripts, is

regularly  used  as  a  surrogate.  However,  the  transcript  quantity  does  not  present  a  high  degree  of

correlation  with  the  subsequent  protein  quantity,  notably  due  to  the  existence  of  several  post-

transcriptional regulatory mechanisms. In Chapter 4 is hypothesized that the absent protein values in

proteomics could be calculated using machine learning regression techniques,  trained with numerous

variables extracted from transcriptomics, including previously identified translational regulatory elements

such  as  microRNAs and circular  RNAs,  among others.  After  taking  into  account  different  machine

learning  algorithms  applied  to  two  different  splitting  approaches,  the  random  forest  algorithm  was

reported to be able to predict proteins in new samples out of several omics data with good accuracy. 

In  next-generation  transcriptomics,  differential  expression  analysis  is  established  as  one  of  the  main

approaches  to  assess  the  outcomes  of  two biological  conditions  on  the  gene  expression  of  different

biological samples. Nevertheless, the current statistical roadmaps offer very mild standardized filters for

the selection of differentially expressed genes, leading to a substantial number of false positives. Authors

typically incorporate their specific arbitrary thresholds, often reliant on their criteria and prospects of the

quantity  of  differently  expressed  genes  to  be  attained.  This  leads  to  the  inclusion  of  statistically

significant  genes  with  expression  profiles  that,  if  individually  examined,  would  not  be  considered

biologically  relevant  to  study further.  In Chapter 5,  we focused on developing AutoRel,  a  machine

learning model that incorporates not only the most conventional statistical assessments but also all the

complexities  that  distinguish  biologically  relevant  changes  based  on  manual  examinations.  AutoRel,

which categorizes each evaluated gene into “relevant”, “irrelevant” or “dubious”, informed of the most

crucial  variables  for  the  selection  of  relevant  genes.  The  value  of  the  number  of  replicates  on  the

performance  of  the  model  was  assessed,  through  the  use  of  simulated  datasets  and  the  biological

interpretation of the chosen genes.  

In  Chapter 6, a general discussion of chapters 2 to 5 is presented. First, the discussion begins with a

reflection on the dataset used for all chapters, HeCaToS, including its weaknesses and potential improved

designs. Following the order of the chapters, the discussion continues with Chapter 2, focusing on the

new quantification method used and suggestions for future validation experiments. It continues with the

difficulties  of  formulating  the  complexity  of  post-transcriptional  regulation  found  in  Chapter  3.  It
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connects  with  one  of  its  alternatives,  the  use  of  machine learning,  which led  to  the  work  and later

publication of Chapter 4. The latter Chapter is also discussed, including its limitations regarding the use

of very stable conditions. The use of machine learning in Chapter 4 goes hand in hand with Chapter 5,

where  there  is  an  assessment  of  alternative  methods  to  generate  the  training  datasets.  The  General

Discussion ends with a short conclusion paragraph summarizing the work performed.

Lastly, an impact paragraph describes the potential future uses of the work presented in this manuscript.
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1. Abstract

Circular RNAs (circRNAs) have recently been shown to be deregulated in different disease scenarios.

However, in toxicological conditions, these have still not been well studied. In this study, we analyzed the

expression  profiles  of  several  circRNAs affected  after  cardiotoxicant  treatments.  We proceeded with

additional  validation  on  12  differentially  expressed  circRNAs,  and  we  selected  two  for  further

investigation: circCDYL and circGNAS. CircCDYL levels were decreased after anthracycline treatment,

which hypothetically results in de-repression of specific sponged miRNAs. Consequently, the proteins

encoded  by  these  miRNA  targeted  mRNAs  might  be  reduced.  CircGNAS  presented  a  significant

cumulative increase across time after being treated with Amiodarone, which we were able to validate

experimentally. For both circRNAs, we also analyzed the expression profile of their potential sponged

miRNAs and their corresponding mRNA targets. In summary, we discovered the presence of a regulatory

axis involving circCDYL/miR-145-5p/TJP1 in cardiac cells upon anthracycline treatment, in addition to

validating  the  upregulation  of  circGNAS due  to  a  toxic  dose  of  Amiodarone  in  different  biological

replicates,  thus  demonstrating  the  reproducibility  of  circRNA  studies  by  using  iPSC-derived

cardiomyocytes. 

2. Introduction

Circular  RNAs  (circRNAs)  are  a  subtype  of  non-coding  RNA with  a  circular  structure,  created  by

covalent binding of the 3′  and 5′ ends of the RNA molecule1. Although circRNAs were firstly discovered

in other species several decades ago, their existence and potential functions in humans have been only
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recently explored2.  Around 140,000 potential circular  RNAs have been predicted in human cells  and

deposited in  databases such as circBase3, though many of them tend to be tissue-specific4. Interestingly,

circRNAs are hypothesized to be stable due to their closed structure, protecting them from exonuclease

activity. Although circRNA functions are still poorly understood, one of the most studied functions is

their ability to act as miRNA sponges. MiRNAs are another class of non-coding RNAs characterized by a

small sequence length (~22 base pairs), whose main function is to bind to messenger RNAs (mRNAs) via

base pair complementarity, decreasing the translation efficiency of the latter. In this context, miRNA

sponging refers to the capability of some circRNAs to present one or more miRNA binding site, thus

sequestering  (a.k.a.  “sponging”)  those  miRNAs,  alleviating  the  translational  inhibition  of  the  coding

RNAs. 

Recently, a limited number of research articles have been published concerning circular RNAs in the

context of cardiac toxic reactions. Although some focus on how these are regulated by RNA-binding

proteins5,  most  are  focused  on  their  miRNA  sponging  capabilities6-8.  The  upregulation6,8 or

downregulation7,9 of an individual or multiple circRNAs have been hypothesized to be related to the toxic

effects of cardiotoxicant  compounds. To this effect,  these studies tended to focus on the relationship

between the expression of the circRNAs, expression of the miRNAs, and potential toxic effects. Even so,

some additional variables are considered to be primordial to understand the regulatory functions of these

circRNAs, such as the expression of the gene of origin of these circRNAs and the effect at the proteomics

level result of the combination of the different molecular factors. 

For the detection or identification of circular RNAs in the RNA-Sequencing data, bioinformatics tools

such as  CIRI-AS10 and FUCHS11 identify  back-spliced  junctions  (BSJs),  allowing the closure  of  the

circular structure, which are characteristic of these transcripts. CircExplorer212, while including changes

to further discover circularized transcripts in both known and de novo assembled annotations, also relies

on the discovery of BSJs. Two main issues arise from such methodologies: first, the number of circular

RNAs found relies on the number of reads that span the BSJ, and because a read spanning a BSJ is a

relatively rare event, the probability to find them is highly dependent on the sequencing depth of the

experiment. Second, the de novo identification of these BSJs and their corresponding circular RNAs leads

to either random identification names or naming based on genome location, which in turn also relies on

the specific genome version used. This complicates the association of these transcripts with their circular

RNA databases.

To study the potential role of circular RNAs in eliciting cardiotoxicity, RNA-Sequencing (RNA-Seq),

Small  RNA Sequencing,  and  mass  spectrometry  were  performed  on  induced Pluripotent  Stem Cell-

derived cardiac  cells  after  exposure  to  several  known cardiotoxicants.  We were able  to  identify and
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quantify circular  RNAs with a transcriptome annotation file derived from the Ensembl and circBase

databases. After the quantification, a list of circRNAs that were differentially expressed after treatment

was obtained for each comparison. Among these, we investigated two specific circRNAs in the lab. First,

circCDYL, whose main “sponged” miRNAs were found to be differentially expressed. Following the

post-transcriptional network, a fraction of the genes targeted by these miRNAs were also transcriptionally

and significantly affected. TJP1, a protein coded by one of the latter genes, showed a time-dependent

increase  for  TJP1  at  the  protein  level.  Lastly,  we  studied  circGNAS,  for  which  we  were  able  to

experimentally validate its significant increase, and we analyzed the related miRNAs, coding transcript

targets, and proteomics. 

3. Methods

3.1. Samples

The  analyzed  data  consists  of  3D  microtissues  containing  stem-cell-derived  cardiomyocytes  and

fibroblasts  in  a  4:1  ratio  from  InSphero.  These  microtissues  were  exposed  to  eight  compounds:

Fluorouracil  (5FU),  Amiodarone  (AMI),  Celecoxib  (CEL),  Docetaxel  (DOC),  Mitoxantrone  (MXT),

Paclitaxel (PTX), Doxorubicin (DOX), and Epirubicin (EPI), plus a fluctuating DMSO control (DF2).

The dosing profile was established via the use of the physiologically based pharmacokinetic (PBPK)

modeling  software  PK-Sim,  to  simulate  exposure  levels  under  physiological  conditions13.  For  each

compound, there were 2 doses: Therapeutic and Toxic. The exposures were done in triplicates, and the

data extraction was performed at 8-time points: 0, 2, 8, 24, 72, 168*, 240*, and 336* hours; resulting in

24 data points per dose (except for Doxorubicin and Epirubicin, which did not include a 0h timepoint). *

The marked time points  were  not  available  for  all  compounds,  as  some of  them were  so  toxic  that

insufficient biological material remained.

3.2. RNA Sequencing (RNA-Seq)

Total RNA from the exposed microtissues was isolated using the Qiagen AllPrep Universal Kit  (Cat

#80224). Ribo-depletion was achieved by using the Illumina RiboZero Gold kit (Cat #MRZG12324), and

the libraries were prepared using the Lexogen SENSE total RNA kit (Cat #009.96). All libraries were

then sequenced on an Illumina HiSeq 2000 at 100 bp paired-end at an average sequencing depth of 21

million reads (after Salmon quantification). The adaptors were removed through Trimmomatic version

0.332.  We  used  the  following  parameters:  paired-end,  ILLUMINACLIP:  TruSeq3-PE.fa:2:30:10,

LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:36, HEADCROP:12. 
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3.3. (non-)coding RNA quantification and analysis

3.3.1. CircRNA prediction with CIRI2

We used CIRI214 to predict and quantify potential circular RNAs in our sequencing data. Only circular

RNAs with at least 2 reads mapping to the back-splice junction (BSJ) were quantified. The total reads for

each circular RNA were obtained by adding both BSJ reads and non-BSJ reads.

3.3.1.1 Differential Expression Analysis with data quantified with CIRI2

Samples that presented a relatively low sequencing depth (less or equal to 25% of the average, ~5 million

mapped reads) in comparison with their in-group levels were excluded. We used as a control group for all

comparisons  both  the  fluctuating  DMSO samples  and  the  timepoint  0h  samples  available  (on  each

compound  experiment).  The  differential  expression  analysis  was  performed  by  DESeq2  (version

‘1.24.0’)15. We considered circular RNAs with a p. adjusted value < 0.05 significant.

3.3.2. CircRNA quantification with Salmon & circBase

The genome version used for all the transcriptomics analyses was the Genome Reference Consortium

Human Build 38 (GRCh38.p12). For the circRNA quantification, we used as a reference transcriptome

the hg19 circRNAs putative spliced sequence from circBase (Jul 2017 update)3.

We combined  the  transcriptomic  libraries  for  both  coding  (all  cDNA) and  non-coding  (all  ncRNA)

transcripts from Ensembl (release 92, April 2018 Ensembl Archive)16 with the library for mature circRNA

sequences from circBase into a single library, which we set  as the global  transcriptome reference to

Salmon17. We then used Salmon to quantify the RNA-Seq data. 

3.3.2.1 Differential Expression Analysis with data quantified with Salmon

We also utilized DeSeq2 as mentioned in 3.3.1.1. Afterward, we filtered the results according to several

thresholds. First, we required a p. adjusted value < 0.01 to filter by significance. Second, the median of all

samples needed to be non-zero, thus requiring that at least half of all samples expressed such molecule.

Third, the first quantile of both control & treatment groups also needed to be non-zero, which requires

that at least 75% of the samples in each group present an expression. Fourth, for a group to be considered

significantly over-expressed against another, its first quantile needed to be higher than the third quantile

of the other group, thus requiring that at least 75% of the first group expression must be higher than the

75% of the other. The previously mentioned filters were inspired by the R-ODAF workflow18. Finally, the

difference between the 1/7 (14%) quantile and 6/7 (86%) quantile of the control group had to be smaller

than its median, therefore filtering out molecules that are highly sensitive to batch effects.
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After grouping all the filtered results for all comparisons, we ranked the circular RNAs based on their

median expression in decreasing order, and subset the first 100 (the top 100 expressed). The changes were

then examined manually, selecting those that expressed both a very significant differential expression

and/or a potential time-dependent increase or decrease. That examination resulted in a sub-selection of 10

circular  RNAs  (circBase  IDs):  hsa_circ_0010791,  hsa_circ_0026129,  hsa_circ_0034356,

hsa_circ_0055922,  hsa_circ_0060999,  hsa_circ_0076194,  hsa_circ_0078905,  hsa_circ_0090448,

hsa_circ_0090904, and hsa_circ_0102325. On top of those 10, we also added two circular RNAs known

to  be  expressed  in  iPSC-derived  cardiomyocytes  for  further  validation:  circCDYL  (differentially

expressed in CIRI2 quantification) and circSMARCA519.

3.4. Small RNA Sequencing and Quantification

Starting from the same total RNA isolated for the ribo-depleted libraries, an aliquot was size selected and

ligated using the TruSeq Small RNA Library Prep Kit (Illumina®). After sequencing on the HiSeq 2500

at an average of 3.6 million reads per sample (after quantification), we quantified the resulting data using

miRge2  (last  change:  05/06/2018)3.  miRge2  used  the  MiRBase  database  as  the  reference  library

(miRBase v22), IsomiRs were not considered for this analysis. 

For miRNA data, we also used DeSeq2 as mentioned in 3.3.1.1. We also evaluated as significant those

circular RNAs with a p. adjusted value < 0.05.

3.5. MiRNA-gene interactions

To identify which genes were targeted by miRNAs, we decided to source such information from the

TargetScan predicted targets (version 7.1)20,21. We evaluated the importance of the inhibition based on the

‘Cumulative weighted context++ score’, which is the value used by default to sort those targets.

3.6. MiRNA-circRNA table

For the prediction of miRNA-circRNA interactions,  we used miRanda (version 3.3a,  strict  condition

activated)22 between  human  miRNA  sequences  from  miRBase  (version  22)23 and  human  circRNA

sequences from circBase (Jul 2017 update)3. This led to 21 million possible interactions between all the

molecules, of which around 10 million were unique between both RNA types. 

3.7. Experimental validation (qPCR)

3.7.1. Cell culture

Induced  Pluripotent  Stem Cells  (iPSCs,  CARIM001A)  were  maintained  on  Geltrex  (Gibco,  Thermo

Fisher Scientific) coated 6-well tissue culture plates containing 2 ml of E8 Flex culture (Gibco, Thermo
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Fisher  Scientific)  media.  Geltrex  was  diluted  at  1:100  using  DMEM:F12  (Gibco,  Thermo  Fisher

Scientific).  Plates were incubated with 5% CO2 at 37⁰C and cells  were passaged when they reached

approximately 70% confluency or when spontaneous differentiation was observed in the center of the

colonies. For passaging, cells were washed once with magnesium/calcium-free Dulbecco’s phosphate-

buffered saline (DBPS, Gibco, Thermo Fisher Scientific) and subsequently treated with 50 mM EDTA

diluted in magnesium/calcium-free DPBS and incubated at 5% CO2 at 37⁰C until colony edges started to

lift. To remove and break up colonies into smaller clumps, iPSCs were washed off the plate using 1 ml of

RT E8 Flex containing 10 µM of Y-27632 ROCK inhibitor. iPSCs were subsequently plated on GelTrex-

coated 6-well tissue culture plates and maintained in 1.5 ml of E8 Flex media supplemented with 10 µM

of Y-27632 for the first 24h to aid cell adhesion and survival. After 24h the media was changed to 2 ml of

E8 Flex media.

SV40 immortalized human cardiomyocytes (ABMGood) were cultured in RPMI-1640 (Gibco, thermo

Fisher  Scientific)  supplemented with 10% FBS (supplier) and grown on applied extracellular  matrix

(ABMGood) diluted 1:10 in 20 mM acetic acid. Cells were passaged when reaching approximately 90%

confluency. To passage, cells were washed once with DBPS and subsequently incubated with 40 µl/cm2

accutase (Corning) for 5 minutes 5% CO2 at 37⁰C. 

3.7.2. Cardiomyocyte differentiation

Generation of cardiomyocytes from iPSCs was performed based on a protocol adapted from the one

published by Lian et al24. When iPSCs reached approximately 70% confluence, cells were dissociated in

RT E8 Flex supplemented with 10 µM of Y-27632. Cell clumps were plated on Geltrex-coated 12-well

tissue culture plates and maintained in 1 ml of E8 Flex media supplemented with 10 µM of Y-27632 for

the first 24h at a density of 140,000 cells per well. After 24h the cell culture media was changed for 1.5

ml of E8 Flex media. Once cells reached approximately 70 percent confluence (usually after 3 days), the

culture media was changed for 1.5 ml of RPMI-1640 + GlutaMAX (Gibco, Thermo Fisher Scientific),

supplemented with B27 minus insulin  (Gibco,  Thermo Fisher Scientific)  and 10 µM of  CHIR99021

(Tocris Bioscience) for 24h. After 24h of exposure, the media was changed to RPMI-1640 + GlutaMAX

supplemented with B27 minus insulin (differentiation day 0). On the third day after initial exposure to

CHIR99021, a combined media was prepared by collecting 50% of media from each well of the 12-well

tissue culture plate and adding 50% of fresh RPMI-1640 + GlutaMAX supplemented with B27 minus

insulin. IWP2 (Tocris Bioscience) was added to a final concentration of 5 µM. Left-over media was

aspirated from the cells and the combined media was added. 5 days after initial exposure to CHIR99021,

the combined media was removed and replaced with fresh RPMI-1640 + GlutaMAX supplemented with

B27 minus insulin. On day 7, the media was replaced with fresh RPMI-1640 + GlutaMAX supplemented
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with B27 plus insulin (Gibco, Thermo Fisher Scientific) and replaced every two days. On Day 14 a

cardiomyocyte selection medium was prepared by adding L-(+)-Lactic acid (Santa Cruz Biotechnology)

to RPMI-1640 without glucose (Gibco, Thermo Fisher Scientific) to a final concentration of 4 mM, and 2

ml were added to the cardiomyocytes after washing twice with magnesium/calcium-free DBPS. After

three days the media was replaced with fresh RPMI-1640 + GlutaMAX supplemented with B27 plus

insulin and replaced every two days until cardiomyocytes were used in experiments.

3.7.3. Validation of Amiodarone Toxic dose effect on circGNAS

Cardiomyocytes were washed three times with RT magnesium/calcium-free DPBS before 1 ml per well

of pre-warmed TrypLe (Gibco, Thermo-Fisher Scientific) supplemented with 0.5 U/ml Liberase (Roche)

and incubated at 5% CO2 at 37⁰C for 5 minutes. Cell clumps were dissociated by repetitive pipetting

followed by another 5 minutes of incubation at 5% CO2 at 37⁰C. Cell clumps were again dissociated by

repetitive pipetting and pelleted at 250 x g for 2.5 minutes. The supernatant was discarded and the pellet

was redissolved in fresh RPMI-1640 + GlutaMAX supplemented with B27 plus insulin supplemented

with  10  µM  of  Y-27632.  Cells  were  seeded  on  Geltrex-coated  48-well  tissue  culture  plates  and

maintained in 1 ml of E8 Flex media supplemented with 10 µM of Y-27632 for the first 24h at a density

of 300.000 cells per well. Cells were left over the weekend before Amiodarone treatment commenced.

Amiodarone  hydrochloride  was  aseptically  dissolved  to  a  stock  concentration  of  10  mM in  DMSO

(Sigma-Aldrich)  and  stored  at  –20  ⁰C  until  needed.  Amiodarone  dilutions  were  prepared  using  pre-

warmed RPMI-1640 + GlutaMAX supplemented with B27 plus insulin and cells were washed once with

RT PBS before 500 µL of amiodarone-containing medium was added to the cells.

3.7.4. RNA extraction and cDNA synthesis

After 24h of exposure, the culture medium was discarded and 500 µL of Qiazol (Qiagen) was added to

each well to lyse the cells. RNA extraction was carried out according to the manufacturer's protocol and

RNA  yield  and  quality  were  assessed  using  a  Nanodrop  1000  spectrophotometer  (Thermo-Fisher

Scientific).  cDNA  was  synthesized  using  the  iScript  cDNA  Synthesis  Kit  (Bio-Rad  Laboratories)

according to the manufacturer's protocol. 

3.7.5. CircRNA primer design

cDNA FASTA sequences were extracted for circRNAs of interest and primers were designed such that

the BSJ (back-spliced junction) would be amplified. This was done so by designing a primer at each end

of the sequence, and each of them was directed to the end closest to them. In this manner, only transcripts

that contain a BSJ between the start and the end of that sequence will be amplified. Primer sequences can
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be found in supplementary table 1. The samples used for validation by qPCR were not the ones used for

the bioinformatics analysis.

3.7.6. SYBR Green RT-qPCR Validation

Real-time quantitative PCR (RT-qPCR) reactions were run in triplicates using the CFX Connect Real-

Time PCR Detection System (Bio-Rad laboratories)  and data  were collected with the  Bio-Rad CFX

manager software (v3.1, Bio-Rad laboratories). cDNA amplification was measured using the IQ Sybr

Green Supermix kit (Bio-Rad laboratories) and the abovementioned custom-designed probes. Expression

levels were calculated using the 2(-Delta Delta C(T)) method with β-Actin as endogenous control.

3.8. CIRI2 quantification results of validated circRNAs

To investigate whether the validated circRNAs were also quantified by CIRI2, we retrieved the

spliced  sequence  from  circBase  for  each  validated  circRNA.  Moreover,  we  used  BLASTN

(Nucleotide-Nucleotide  BLAST  2.12.0+)25 to  search  the  location  of  those  sequences  in  our

genome FASTA file. To filter across possible homolog sequences in different chromosomes, we

only retrieved those coordinates that matched the chromosome where the circRNA locus was

present (according to circBase). We pooled together all CIRI2 quantification results, searching

for predicted circRNAs located in the same loci. In that regard, only predicted circRNAs that

matched the chromosome number, circRNA start (locus of the first nucleotide), circRNA end

(locus  of  the  last  nucleotide),  and  strand  with  the  BLASTN  results  were  considered  both

experimentally validated and quantified by CIRI2.

3.9. Additional differential expression analyses

As performed with the miRNA data, we utilized the DESeq2 pipeline with a threshold of p.

adjusted value < 0.05 to analyze the potential differential expression of both genes and (linear)

transcripts. 

3.10. Proteomics analysis

Protein samples were isolated and diluted to a concentration below 0.2M. Subsequently, they

were  subject  to  digestion  by  trypsin  and  then  cleaned  up  with  the  usage  of  Sep-Pak  tC18

cartridges (Waters) according to the manufacturer’s instructions. The samples were then dried

using a vacuum centrifuge and quantified by the usage of an Orbitrap Fusion mass spectrometer

(Thermo Fisher Scientific), coupled to a NanoLC-2D HPLC system (Eksigent). The raw MS data

processing was performed with Genedata Expressionist software (v.11.0). Noise-reduction and
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normalization were applied to the LC-MS peaks, whose properties were later collected (m/z and

RT boundaries, m/z and RT center values, intensity). The annotation of the individual MS/MS

spectra  was  obtained  using  Mascot  2.6.  The  peak  clusters  were  grouped  using  protein

interference  (peptide  and  protein  annotations),  and  the  protein  intensities  obtainment  was

performed with the Hi3 method. Proteomics data were normalized using a modified median of

medians approach26. 

4. Results

To  assess  the  putative  effect  of  toxicants  on  circRNAs  expression,  we  quantified  relevant

elements  to  the  circRNA  post-transcriptional  regulation  (circRNAs,  linear  RNAs  at  both

transcript and gene levels, microRNAs, and proteins) in both therapeutic and toxic doses of eight

compounds (5FU, AMI, CEL, DOC, DOX, EPI, MXT & PTX) across 7 timepoints (2, 8, 24, 72,

168, 240, and 336h) using omics technologies.

To categorize circRNAs in our ribo-depleted data, we used two different methodologies. First,

we predicted  in silico the presence of circRNAs using CIRI2, which predicts  and quantifies

circular RNAs from the transcriptomics input data based on their back-spliced junction (BSJ).

Alternatively, we mapped and quantified all sequenced reads from the ribo-depleted libraries on

circRNA sequences extracted from circBase (remapping). We thus describe below the results

found in both.

4.1. Differentially expressed circular RNAs

4.1.1. In silico prediction and quantification of circRNAs using CIRI2

We  performed  a  circRNA  in  silico  prediction  on  all  treatment  samples  and  assessed  their

differential  expression  using  as  controls  all  timepoint  0h  samples  added  to  control  DMSO

samples. Depending on the treatment, this analysis detected between 11 to ~16 thousand unique

circRNAs  (Table  1).  As  expected,  the  number  of  constitutive  circRNAs  (circular  RNAs

quantified in all  samples in the comparison) was very low. The number (and proportion) of

Differentially  Expressed  CircRNAs (DECs)  was  the  highest  in  the  anthracycline  treatments

(Doxorubicin  and  Epirubicin).  Even  so,  the  percentage  of  samples  where  the  DECs  were

detected was on average between 22 and 10% across all treatments, which was substantially low

considering that most DECs were downregulated (higher expression in control samples). In other
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words, the majority of differentially expressed circRNAs were not detected in either treatment or

control groups for most of the samples.

Table 1: Summary of the CIRI2 and DESeq2 results. ‘N quantified circRNA’ refers to the number of unique circRNAs that were

detected by CIRI2 in any sample involved in the comparison between that treatment and the control. ‘N quantified constitutive

circRNAs’ refers to the number of unique circRNAs that were detected by CIRI2 in all samples involved in the comparison

between that treatment and the control. ‘N DECs’ refers to the number of Differentially Expressed CircRNAs (DECs) in the

specific treatment when compared to the control samples (p. adjusted value < 0.05). ‘% DECs’ refers to the percentage of DECs

taking the ‘N quantified circRNA’ as the total/denominator. ‘Avg % samples a DEC is quantified’ refers to the percentage of

samples that detect a circRNA on average when it is differentially expressed (i.e., if the comparison in Epi_The spanned a total

of 100 samples, and we analyzed the quantification values for an average DEC, only 18 samples out of the 100 would detect that

circular RNA). 

Treatment N 
quantified 
circRNA 

N 
quantified 
constitutive 
circRNAs 

N DECs % DECs Avg % samples a 
DEC is quantified 

Epi_The 13356 1 1135 8.50% 18.37% 
Dox_The 11480 1 892 7.77% 19.71% 
Dox_Tox 11201 1 764 6.82% 22.04% 
Epi_Tox 11713 2 559 4.77% 21.23% 

CEL_The 11002 7 391 3.55% 15.61% 
MXT_Tox 11553 6 377 3.26% 13.81% 
PTX_Tox 11359 6 351 3.09% 14.67% 
CEL_Tox 11243 6 303 2.70% 14.10% 
PTX_The 11609 8 294 2.53% 12.66% 

MXT_The 12256 8 277 2.26% 13.29% 
DOC_The 11916 7 248 2.08% 13.94% 
DOC_Tox 13595 8 212 1.56% 12.58% 
5FU_Tox 14532 10 173 1.19% 10.07% 
AMI_The 13596 6 160 1.18% 13.12% 
5FU_The 13950 9 150 1.08% 11.01% 
AMI_Tox 15695 10 138 0.88% 10.18% 

 
To further investigate this high inconsistency in DEC quantification, we pooled the quantification of all

the samples and analyzed the overlap in circRNA detection across all samples. The consequent results

(Figure 1) showed that 59% of all  detected circRNAs (median = 1) were only quantified in a single

sample,  90%  were  quantified  in  8  samples  or  less,  and  only  one  circRNA  (circRMRP,  or

hsa_circ_0001853) was quantified in all 309 samples. 
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4.1.1.1 circCDYL (hsa_circ_0008285)

Across the differential expression results, we searched for some of the most recently studied circRNAs.

Among them, we found circCDYL differentially expressed in 3 anthracycline treatments: the therapeutic

(Figure 1) and toxic dose of Doxorubicin, and the therapeutic dose of Epirubicin. All three treatments

showed  strong  down-regulation  of  circCDYL  expression  (log2  fold  change  <  -2.5).  The  sequence

predicted by CIRI2 for circCDYL matched perfectly to hsa_circ_000828527 from circBase. 

Figure  1:  circCDYL  (circRNA_ID:  6:4891713|4892379)  quantification  for  the  Control  versus  the  therapeutic  dose  of

Doxorubicin (p.adj. < 0.001) comparison. Each dark grey bar represents a control sample, while each pink bar represents a

treated  sample.  The  quantification  shown  was  the  result  of  the  normalization  performed  by  the  DESeq2  pipeline.  The

‘circRNA_ID’ is the identification given by CIRI2 based on the genome location.  The names in the X-axis refer to the sample

names: the first term indicates the treated compound, the second term refers to the dose used, the third term refers to the time-

point (in hours), and the fourth term signals the triplicate number. 

To confirm that the change shown was not due to a down-regulation at the gene level, we quantified

(using the remapping strategy in 3.3.2) the expression of the linear CDYL mRNA transcripts. The results

(Figure 2) showed no down-regulation for any of the 3 treatments. Instead, the therapeutic dose treatment

of both Doxorubicin and Epirubicin presented a significant up-regulation of the linear transcripts. This

suggests that the reduced circCDYL levels we observed upon doxorubicin treatment were not due to

transcriptional repression of the CDYL gene.
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Figure  2: CDYL (ENSG00000153046) quantification by Salmon (circBase) for the Control versus the therapeutic dose of

Doxorubicin (p.adj. < 0.01) comparison. Each dark grey bar represents a control sample, while each pink bar represents a

treated sample. The quantification shown was the result of the normalization performed by the DESeq2 pipeline. 

4.1.2. Exhaustive quantification using Salmon & circBase

Since  in  silico prediction  is  solely  based  on  the  detection  of  BSJ  sequences,  which  is  substantially

dependent  on  coverage,  we  decided  to  re-quantify  all  transcripts  by  remapping  against  a  common

reference made of all linear transcripts (both protein and non-coding) and all circRNAs obtained from

circBase. The detection range was between 39 and 57 thousand unique quantified circRNAs across all

treatments (Table 2). As expected, the number of constitutive circRNAs was higher (576 on average)

compared to  the  in-silico prediction (6 on average).  The number  (and proportion) of  DECs was the

highest in the anthracycline treatments (Doxorubicin and Epirubicin), similarly to what was observed in

Table 1. Even so, the percentage of DECs is higher (12.23% on average) than the one in silico prediction

(3.33% on average).  This  might  be due  to  the  higher  percentage  of  samples  where  the  DECs were

detected (29.07% on average compared to 14.77% on average in CIRI2), where the increased sensitivity

might help elucidate the possible changes when comparing the treatment and control groups.

13

Gray: Control

Light Pink: Treatment

312

313

314
315

316

317

318

319

320

321

322

323

324

325

326

327



Table  2: Summary of the Salmon + circBase and DESeq2 results. ‘N quantified circRNA’ refers to the number of unique

circRNAs that were detected by Salmon in any sample involved in the comparison between that treatment and the control. ‘N

quantified constitutive circRNAs’ refers to the number of unique circRNAs that were detected by Salmon in all samples involved

in the comparison between that treatment and the control. ‘N DECs’ refers to the number of Differentially Expressed CircRNAs

(DECs) in a specific treatment when compared to the control samples (p.  adjusted value < 0.05). ‘% DECs’ refers to the

percentage of DECs taking the ‘N quantified circRNA’ as the total/denominator. ‘Avg % samples a DEC is quantified’ refers to

the percentage of samples where a DEC is detected on average.

Treatment N 
quantified 
circRNA 

N 
quantified 
constitutive 
circRNA 

N DECs % DECs Avg % samples a 
DEC is quantified 

Epi_Tox 39690 94 12438 31.34% 24.62% 
Dox_Tox 39323 109 10479 26.65% 36.63% 
Dox_The 39645 121 9489 23.93% 35.41% 
Epi_The 41529 166 9454 22.76% 35.07% 

PTX_Tox 43729 575 6949 15.89% 23.66% 
CEL_The 41140 632 4910 11.93% 25.53% 

MXT_Tox 43278 713 4662 10.77% 21.59% 
DOC_The 39091 683 3207 8.20% 21.04% 
AMI_The 40121 645 2615 6.52% 26.41% 
5FU_Tox 44673 819 2745 6.14% 27.83% 
PTX_The 57661 746 3542 6.14% 33.22% 

DOC_Tox 46112 813 2666 5.78% 30.26% 
MXT_The 53610 745 2993 5.58% 28.53% 

CEL_Tox 54307 725 2689 4.95% 31.02% 
AMI_Tox 46755 791 2244 4.80% 24.99% 
5FU_The 45670 839 1920 4.20% 39.33% 

 
To further investigate the increased sensitivity found in this method, we pooled the quantification of all

the samples and analyzed the overlap in circRNA detection across all samples. The resulting data showed

that only 8% of all detected circRNAs were quantified in a single sample, 50% (median) were quantified

in 17 samples, and 9 circRNAs were quantified in all samples. 

4.1.3. Selection of circRNAs for experimental validation

We selected for experimental validation 10 DECs across all different treatments based on expression,

differential  expression,  and  time  effect:  hsa_circ_0010791  (circCDC42),  hsa_circ_0026129

(circTUBA1A),  hsa_circ_0034356  (circACTC1),  hsa_circ_0055922  (circFHL2),  hsa_circ_0060999

(circGNAS),  hsa_circ_0076194  (circCDKN1A),  hsa_circ_0078905  (intergenic  circRNA),

hsa_circ_0090448  (circTIMP1),  hsa_circ_0090904  (circMSN),  and  hsa_circ_0102325  (circHIF1A).

hsa_circ_0008285 (circCDYL) and  hsa_circ_0001445 (circSMARCA5)  have  been  shown to  increase

14

328

329
330
331
332
333
334

335

336

337

338

339

340

341

342

343

344

345

346



their expression after cardiac differentiation19 and were thus added for the experimental  validation as

positive controls.

4.1.3.1 circGNAS (hsa_circ_0060999)

CircGNAS was an example of a highly expressed circRNA with a significant differential expression and

time-effect accumulation when treated with a toxic dose of amiodarone. As seen in Figure 5, the circRNA

expression increased significantly to levels not found in control conditions. Moreover, the increase was

cumulative until 168 hours. At 240 hours (10 days), the expression appeared to return to control levels. 

Figure  3: circGNAS (hsa_circ_0060999) quantification for the Control versus the toxic dose of Amiodarone comparison

(p.adj. < 0.001). Each dark grey bar represents a control sample, each light grey bar represents a control sample differentiated

in the same conditions as the treatment, and each pink bar represents a treated sample. The quantification shown was the result

of the normalization performed by the DESeq2 pipeline. The names in the X-axis refer to the sample names: the first term

indicates the treated compound, the second term refers to the dose used, the third term refers to the time-point (in hours), and the

fourth term signals the triplicate number. 

As  performed  for  circCDYL,  we  quantified  and  analyzed  the  expression  of  the  linear  transcripts

originated from the GNAS (Guanine Nucleotide binding protein, Alpha Stimulating activity polypeptide)

gene to investigate whether the incremental expression shown was due to an up-regulation at the gene

level.  The results (Figure 4) showed no significant  change for the analyzed treatment (toxic dose of

Amiodarone). 
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Figure  4:  GNAS  (ENSG00000087460)  quantification  by  Salmon  (circBase)  for  the  Control  versus  the  toxic  dose  of

Amiodarone (p.adj. > 0.05) comparison. Each dark grey bar represents a control sample, each light grey bar represents a

control sample differentiated in the same conditions as the treatment, and each pink bar represents a treated sample. The

quantification shown was the result of the normalization performed by the DESeq2 pipeline. 

4.2. qPCR validation

4.2.1. circRNA existence validation

To investigate whether the predicted circRNAs exist and are expressed in cardiomyocytes, two batches of

cardiomyocytes were derived from iPSCs and checked for expression of our circRNAs of interest. As

previously mentioned, circCDYL and circSMARCA5 have already been shown to be expressed in iPSC-

derived cardiomyocytes and were therefore included in these experiments as controls. Furthermore, to

investigate whether our circRNAs of interest are cardiomyocyte-enriched, their expression was compared

to the initial iPSCs level.

The results confirmed the expression of three (out of 12) circRNAs existed in myocardial cells after iPSC

differentiation (Figure 5A and  Figure 5B): circGNAS, circCDYL and circSMARCA5. Aside from the

existence  of  circCDYL  and  circSMARCA5,  our  results  also  confirmed  previous  results  that  both

circRNA expressions increased along with cardiac differentiation. In addition, we also observed a novel

relationship between circGNAS expression and cardiac differentiation. The six transcripts (circTUBA1A,

circTIMP1, circHIF1A, circFHL2, circACTC1, and hsa_circ_0078905) that are labelled in both Figures

(Figure 5A and  Figure 5B) were also quantified, but the results in gel showed several bands, thus the
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quantification values were a result of several circRNA molecules, which most probably were isoforms of

the ones we were studying. In the case of circCDC42, the expression was only detected for the second

batch (Figure 5B). CircCDKN1A and circMSN were not validated through qPCR. 

In  addition,  we  also  observed  a  novel  relationship  between  circGNAS  expression  and  cardiac

differentiation.  For  six  other  circRNAs of  interest  (circTUBA1A,  circTIMP1,  circHIF1A,  circFHL2,

circACTC1, and hsa_circ_0078905) multiple PCR products were formed. this is possibly caused by other

circular isoforms but we were not able to rule out aspecific amplification and were therefore excluded

from further analysis.  Furthermore, circCDC42 was only detected in the second batch of iPSC-CMs.

CircCDKN1A and circMSN were not validated though qPCR.
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Figure  5:  Relative  expression of  circRNAs by  qPCR.  A: 9  circRNAs amplified  in  the  first  batch.  B:  10  circRNAs (9  +

circCDC42) amplified in the second batch. In the vertical axis, Relative FC refers to the relative fold change of expression. In

the horizontal axis, each couple of bars is identified by their circular RNA name based on their gene of origin. For the last

circRNA,  we used the  circBase ID due to  its  intergenic  nature.  ‘CM’ stands for  CardioMyocytes  and ‘iPSC’  for  induced

Pluripotent Stem Cells.

Taking  into  account  the  nine  circRNAs  (and  potential  isoforms)  we  experimentally  quantified,  we

evaluated which circRNAs were detected in at least one sample by each of the two methodologies used.

This required the cross-reference between gene loci (CIRI2) and circBase IDs (remapping), that is, we
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transformed the circRNA names from one methodology to another. We observed that only two circRNAs

(circHIF1A and circCDYL) were identified by CIRI2, while all nine validated circRNAs were detected

by the remapping strategy. 

4.2.2. Validation of Amiodarone effect on circGNAS

Figure  6: Relative expression of circGNAS upon treatment with three different doses of Amiodarone. Cmax concentration

represents the therapeutically active average plasma maximum concentration values derived from recommended therapeutic

doses upon a single-dose administration.

After  observing  differential  circGNAS  expression  in  our  transcriptomics  analysis  upon  amiodarone

treatment, experimental validation was carried out. To investigate a possible dynamic dose-response link

between circGNAS expression and amiodarone exposure, iPSC-derived cardiomyocytes were exposed to

three different Cmax-based concentrations of amiodarone for 24 hours (Figure 6). Cmax concentration

represents  the  therapeutically  active  average  plasma  maximum  concentration  values  derived  from

recommended  therapeutic  doses  upon  a  single-dose  administration.  In  the  case  of  amiodarone,  the

selected concentration (0.807 µM) was obtained from a study carried out  by Wink et al28.  The three

different concentrations of amiodarone were selected at 1, 5, and 10 times Cmax (0.807, 4.035, and 8.07

µM  respectively).  After  24  hours  of  exposure  to  amiodarone,  iPSC-derived  cardiomyocytes  were

harvested for RNA and circGNAS expression was quantified using RT-qPCR (Figure 6).  CircGNAS

showed a dose-dependent increase expression upon Amiodarone exposure. 
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4.3. Investigation of the putative function of circRNAs

Next, we wanted to study the ability of circCDYL and circGNAS to act as miRNA sponges. Having

access  to  different  omics  datasets  obtained  from  the  exact  same  samples,  allowed  us  to  robustly

investigate the effect of circRNAs on miRNA expression levels and expression of miRNA-target mRNAs

themselves as well as their encoded proteins.

First,  we  investigated  which  miRNAs  could  potentially  bind  to  these  circRNAs  and  whether  their

expression was also affected by the compounds. In addition, we examined the potential mRNA targets of

these miRNAs and their expression changes. Finally, we examined potential changes at the proteomics

level as a consequence of post-transcriptional dysregulation.

4.4. CircCDYL

 

Figure 7: Graphical summary of the expression changes in the post-transcriptional regulation network of circCDYL after the

exposure to a therapeutic dose of Doxorubicin. The red arrows pointing down represent a significant expression decrease of

that molecule. The green arrows pointing up represent a significant expression increase of that molecule. The black line arrows

represent the binding and/or translational inhibition of miRNAs to their targets. The black bent arrow represents the translation

of a transcript to a protein. The red dashed line arrow pointing down represents a non-significant decrease in the expression of a

molecule. A red line arrow inside an XY plot represents a time-dependent decrease in the abundance of a molecule.

4.4.1. MiRNAs associated with circCDYL

Due to circCDYL being a previously studied circular RNA, we selected miRNAs that had been 

previously hypothesized to target this circRNA. The selected miRNAs were: hsa-miR-190a-3p29, hsa-
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miR-185-5p30, hsa-miR-4793-5p31, hsa-miR-150-5p32, hsa-miR-892a33 , hsa-miR-328-3p33, hsa-miR-92b-

3p34, hsa-miR-145-5p35, and hsa-miR-1180-3p36.

First, we calculated the average expression for each of the miRNAs across the 3 treatments of interest

(therapeutic and toxic dose of Doxorubicin, and therapeutic dose of Epirubicin) to filter out miRNAs with

low expression, as their influence on their target’s translation would be minimal. As a result, we excluded

5 miRNAs (Figure 8) with minimal (less than one normalized read) or no expression on average: hsa-

miR-185-5p, hsa-miR-190a-3p, hsa-miR-150-5p, hsa-miR-892a, and hsa-miR-4793-5p. Therefore, only

the expression of the remaining 4 miRNAs (hsa-miR-92b-3p, hsa-miR-145-5p, hsa-miR-328-3p, and hsa-

miR-1180-3p) was analyzed.

Figure 8: Bar plot of the average quantified expression of miRNAs associated with circCDYL. The normalization and resulting

values were obtained as a result of using the DESeq2 pipeline.

For each miRNA, we obtained the p. adjusted value, while also plotting the normalized expression of all

samples involved in the comparison. Hsa-miR-92b-3p (Figure 9A) was the only miRNA that showed a

significant decrease as a function of time after exposure to doxorubicin at a therapeutic dose. For the

other three miRNAs (Figure 9B,  Figure 9C, and  Figure 9D), the therapeutic dose of Doxorubicin and

Epirubicin always presented a significant up-regulation, while upon the toxic dose of Doxorubicin, only
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hsa-miR-328-3p was significantly up-regulated in a time-dependent manner (Figure 9C). Interestingly

enough, the latter miRNA also showed a time-dependent increase in expression for all three treatments

(Supplementary Results).  
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Figure  9: Normalized read counts of four miRNAs by miRge2 for the Control versus the therapeutic dose of Doxorubicin

comparison.  A: hsa-miR-92b-3p (p.adj. < 0.01).  B: hsa-miR-145-5p (p.adj. < 0.05).  C: hsa-miR-328-3p (p.adj. < 0.001).  D:

hsa-miR-1180-3p (p.adj. < 0.001).  Each dark grey bar represents a control sample, while each pink bar represents a treated

sample. The quantification shown was the result of the normalization performed by the DESeq2 pipeline. The title of the plot

shows the miRNA ID next to the treatment name. 
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4.4.2. Target transcript expression 

We investigated which targets were associated in earlier studies with the previously mentioned expressed

miRNAs. We excluded the targets of hsa-miR-92b-3p, as it was found to be able to degrade circCDYL,

and thus the relationship between both entities could not be classified as the classical “miRNA sponging”.

The differential  expression  analysis  of  the  target  genes  (Table  3)  showed that  all  were  significantly

downregulated for the therapeutic dose of Epirubicin (Figure 10A and Figure 10B), while only YAP1 was

significantly downregulated in all 3 treatments (Figure 10D). 

Table 3: Overall statistics of known circRNA-regulated genes. P. adjusted values in bold are significant (p. adj. value < 0.05).
1: Paralog TJP1 gene (ENSG00000104067). 2: Paralog TJP1 gene (ENSG00000277401). 3: Weighted average of both TJP1 gene

paralogs (weights were derived from the sum of the three mean expressions for each paralog). L2FC: Log2 Fold Change.

Gene

Name

Mean 

expression

(Dox_The

)

Mean 

expression

(Dox_Tox)

Mean 

expression

(Epi_The)

P. adj. 

value 

(L2FC) 

[Dox_The

]

P. adj. 

value 

(L2FC) 

[Dox_Tox]

P. adj. 

value 

(L2FC) 

[Epi_The]

TJP11 666 689 695 2.24x10-1 (-

0.81)

4.53x10-1 (-

0.55)

6.86x10-3 

(-1.38)

TJP12 722 731 770 4.72x10-2 (-

1.48)

2.06x10-2 (-

1.39)

4.36x10-4 

(-2.12)

TJP13 695 711 734 1.32x10-1 (-

1.16)

2.28x10-1 (-

0.99)

3.52x10-3 

(-1.76)

HIF1AN 171 151 156 6.02x10-1 (-

0.50)

9.23x10-2 (-

1.44)

3.04x10-3 

(-2.36)

YAP1 3331 3511 4020 1.36x10-10 

(-1.36)

3.79x10-3 (-

0.90)

1.97x10-6 

(-0.74)

By sponging miR-145-5p, circCDYL was suggested to have a regulatory effect on the expression of TJP1

in  a  circCDYL/miR-145-5p/TJP1  axis35.  From  the  three  treatments,  only  the  samples  exposed  to  a

therapeutic  dose  of  Epirubicin  showed  significant  downregulation  of  TJP1  gene  expression  in  both

paralogs (Table 3, Figure 10A and 9B). The other two treatments, though significantly downregulated in

the second paralog (ENSG00000277401), were not significant when taking the weighted average effect of

both treatments (Table 3). 
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Figure 10: Gene expression levels after exposure to anthracycline compounds. A&B: TJP1 gene expression for both paralogs

after exposure to the therapeutic dose of Epirubicin. Taking the weighted average (Table 3, TJP13) for both paralog genes (1:

ENSG00000104067 and 2: ENSG00000277401), only the therapeutic dose of Epirubicin was significantly downregulated for

TJP1.  C:  HIF1AN gene expression after  exposure to  the therapeutic  dose  of  Doxorubicin (p.adj.  > 0.05).  D:  YAP1 gene

expression after exposure to the therapeutic dose of Doxorubicin (p.adj. < 0.001). Each dark grey bar represents a control

sample, while each pink bar represents a treated sample. The quantification shown was the result of the normalization performed

by the DESeq2 pipeline. 
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CircCDYL  was  suggested  to  interact  with  mRNAs  encoding  hypoxia-inducible  factor  asparagine

hydroxylase (HIF1AN) by acting as the sponge of miR-328-3p33. Even though HIF1AN gene expression

was not statistically significantly affected by the Doxorubicin treatments (Table 3), we observed a clear

down-regulation in all treatments (Figure 10C). The “mild” gene down-regulation, in addition to the up-

regulation of miR-328-3p, and down-regulation of circCDYL might result in decreased translation of the

target.

CircCDYL was also suggested to be able to absorb miR-1180, thus alleviating the repression of miR-

1180 on YAP36. The gene expression of YAP was significantly downregulated for all 3 treatments (Table

3,  Figure  10D).  Thus,  the  accumulated  effects  of  the  downregulation  of  circCDYL (Figure  1),  the

upregulation  of  miR-1180  for  most  treatments  (Figure  9D),  and  the  downregulation  of  the  gene

expression (Figure 10D) should have had a significant effect on YAP protein expression.

4.4.3. Proteomics analysis

Translational inhibition is one of the primary functions of miRNAs, thus we expected to observe the

potential post-transcriptional regulation effects at the protein level. Consequently, we analyzed the protein

products of the gene targets mentioned above. 
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Figure 11: Proteomics levels of TJP1 (UniProt ID: Q07157). A: After exposure to the therapeutic dose of Doxorubicin. B: After

exposure to the therapeutic dose of Epirubicin.

TJP1 was proposed to be targeted by miR-145-5p, the latter has also been hypothesized to be regulated by

circCDYL, leading to a circCDYLßmiR-145-5pàTJP1 regulation. So far, we found that at the gene level,

only  the  therapeutic  dose  of  Epirubicin  showed  a  significant  downregulation.  When  analyzing  the
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proteomics  expression  of  TJP1-coded  proteins,  a  clear  time-dependent  decrease  was  detected  in  the

therapeutic dose of Doxorubicin (Figure 11A), where no significant decrease was found on average for

the target gene expression. In the other 2 anthracycline treatments (Doxorubicin toxic dose and Epirubicin

therapeutic dose), the protein expression was seldom detected, and only a decrease between 8 and 168h

timepoints was identified (Figure 11B).

Due  to  the  stochastic  properties  and  limited  sensitivity  of  mass  spectrometry,  no  other  target-coded

protein was quantified. In proteomics, this is especially the case for less abundant proteins, which was the

expected case for the analyzed proteins if their translation was inhibited.

4.5. CircGNAS

Figure 12: Graphical summary of the expression changes in the post-transcriptional regulation network of circGNAS after

Amiodarone treatment with a toxic dose. The red arrows pointing down represent a significant expression decrease of that

molecule. The green arrows pointing up represent a significant expression increase of that molecule. The black line arrows

represent the binding and/or translational inhibition of miRNAs to their targets. A green line arrow inside an XY plot represents

a time-dependent increase in the abundance of a molecule.

4.5.1. MiRNAs associated with circGNAS

No research has been published regarding circGNAS so far. Thus, we used miRanda to find miRNAs that

could potentially be sponged by circGNAS. Out of the ~ 140 potential miRNAs to bind circGNAS, four

of them were the most expressed and presented the highest expression consistency across all samples.

Three of them (hsa-miR-218-5p, hsa-miR-125a-3p, and hsa-miR-155-5p) showed differential expression,
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one increasing and two decreasing respectively (Table 4). The remaining miRNA (hsa-miR-34a-5p) did

not present differential expression, even though it did present a time-dependent decrease.

Table 4: Overall statistics of expressed miRNAs that were potentially regulated by circGNAS . P. adjusted values in bold are

significant (p. adj. value < 0.05). These statistical results were obtained from DESeq2.

miRNA Name Mean expression 

(AMI_Tox)

Log2

FoldChange

(AMI_Tox)

P. adj. value 

(AMI_Tox)

hsa-miR-218-5p 688 1.25 1.16x10-17

hsa-miR-125a-

3p

44 -0.87 3.86x10-8

hsa-miR-155-5p 187 -1.26 8.13x10-4

hsa-miR-34a-5p 132 0.19 1.42x10-1

Hsa-miR-218-5p  expression  showed  a  significant  up-regulation  after  exposure  to  the  toxic  dose  of

Amiodarone (Figure 13). In addition, a clear time increase was perceived.
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Figure  13:  Normalized  counts  through  quantification  by  miRge2 for  the  Control  versus  the  toxic  dose  of  Amiodarone

comparison.  A: hsa-miR-218-5p (p.adj. < 0.001).  B: hsa-miR-125a-3p (p.adj. < 0.001).  C: hsa-miR-155-5p (p.adj. < 0.001).

Each dark grey bar represents a control sample, each light grey bar represents a control sample differentiated in the same

conditions as the treatment, and each pink bar represents a treated sample. The quantification shown was the result of the

normalization performed by the DESeq2 pipeline. The title of the plot shows the miRNA ID next to the treatment name. 

Hsa-miR-125a-3p also presented a significant differential expression, but as a down-regulation (Figure

13B). For this miRNA, we also observed a time-dependency, where the expression gradually decreased

over time.

For hsa-miR-155-5p, even though it was significantly down-regulated according to the p. adjusted value, 

analyzing the values we observed that this significance was mainly due to three triplicate samples with 

outlier expressions (Figure 13C). In addition, we also observed (as in hsa-miR-125a-3p) a negative 

cumulative effect across time.

4.5.2. Target transcript and protein expression

To assess which targets might be specifically regulated by circGNAS, we assembled all the potential

targets of the aforementioned four miRNAs based on TargetScan (7.1) data. The target overlap across the

four miRNAs can be visualized in the Venn Diagram (Figure 14). Eight transcripts were targeted by all 4

of the miRNAs selected. 
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Figure 14: Venn Diagram of the four miRNA targets.

Out  of  those  eight  transcripts,  only  three  of  them  were  sufficiently  expressed:  SAMD12-202

(ENST00000409003), PURB-201 (ENST00000395699), and PDE3A-201 (ENST00000359062). Two out

of the three did significantly differ from the overall control expression: PDE3A-201 (p.adj. < 0.001) and

PURB-201 (p. adj. < 0.05). Even so, we observed that the exposure expression of both transcripts was not

significantly different from the control technical replicates (AMI_TOX_000_1 and AMI_TOX_000_2).

In addition, we were able to note a tendency to slightly increase over time (Figure 15) for the three of

them, although the timeframe where this increase occurred varied between them.
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Figure 15: PDE3A-201 (ENST00000359062) expression in control and toxic dose of Amiodarone treatment samples (p. adj.

value < 0.001) 

We also analyzed the proteomics values  of all  8 proteins  coded by those 4 transcripts.  None of the

proteins were detected in enough samples to be statistically analyzed. 

5. Discussion

We  wanted  to  evaluate  whether  the  expression  of  any  circular  RNAs  was  affected  by  different

cardiotoxicants in an in vitro iPSC-derived cardiomyocyte model. We were able to identify and validate

the  existence of  several  circular  RNAs that  showed differential  expression  after  different  compound

treatments. For circCDYL, we were able to detect a significant decrease in expression in response to

several anthracycline treatments. In addition, most miRNAs hypothesized to be sponged by this circRNA

were also found to be over-expressed, thus stimulating post-transcriptional regulation of their targets. The

targets’ mRNA expression was either not affected or significantly decreased, and one of the proteins

(TJP1) coded by such target was identified to be decreased across time where no significant decrease was

found for the gene expression; thus, potentially linking the decrease to the studied post-transcriptional

regulation. Interestingly, the regulatory axis involving circCDYL/miR-145-5p/TJP1 that we discovered in

anthracycline  treated  cardiac  cells,  has  previously  been  identified  in  Wilms'  Tumor  (cancer  of  the

kidneys35).  A  decrease  in  the  abundance  of  TJP1 may be  inducive  to  an  impairment  of  the  atrium-
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ventricle  electrical  conduction,  as  the  knockout  of  other  tight  junction  proteins  such  as  CAR

(Coxsackievirus-adenovirus receptor) are hypothesized to present cross talk effects with gap junctions37.

For  circGNAS,  a  significant  increase  in  expression  was  found  after  exposure  to  a  toxic  dose  of

Amiodarone. Additionally, these results were successfully reproduced using a different iPSC line and

cardiomyocytes derived from that iPSC-line, showing the robustness of iPSC-derived cardiomyocytes for

studying circRNAs.  Several  potential  microRNAs were  investigated  as  potential  sponged candidates,

either showing differential expression or not. To understand what potential synergetic effect could be

derived from such different behaviors, we analyzed the targets of the microRNAs overlapping across each

other. Although the targets that were expressed did not show any differential expression (as miRNAs do

not generally degrade mRNAs directly), we found a mild increasing tendency across time for some of

them. Unfortunately, none of the abundances of the proteins coded by those targets was quantified by

proteomics due to its limited sensitivity. 

To quantify circular RNAs, we used CIRI2. CIRI2, a classical circRNA quantification tool, searches for

at least two reads spanning the back-spliced junctions to quantify such circular RNA. We realized that the

resulting quantification was very inconsistent: most of the quantified circRNAs were only detected in a

single sample, while only a single circular RNA was quantified in all samples. The repercussions were

also seen in the statistical results, as most differentially expressed circular RNAs presented missing values

for several of the samples, making them less reliable. To increase the sensitivity, we developed a novel

strategy. We extracted mature circular RNA sequences from circBase and included them in a classical

transcriptome comprising linear mRNAs and used this as a reference for Salmon. The quantification

results showed a substantial sensitivity increase (compared to CIRI2), where only a minority of circular

RNAs (8%) were quantified in a single sample, though the number of constitutively expressed circRNAs

was minimally increased (1 versus 9 circRNAs respectively). The sensitivity increase was probably due to

the sacrifice of CIRI2’s specificity, as Salmon (circBase) does not require the presence of reads that span

the back-spliced junctions. 

Interestingly  enough,  substantial  experimental  evidence  validated  the  existence  of  circular  RNAs

quantified by the remapping strategy. This was surprising considering the stochastic quantification of

circRNAs from CIRI2, and the hypothesis by some researchers that circRNAs are mostly a product of

erroneous splicing. Even more interestingly, most of the circRNAs experimentally validated were not

found  in  our  CIRI2  results,  certainly  for  having  a  lack  of  sample  coverage  preventing  a  consistent

identification  of  back-spliced  junctions.  Even  so,  we  recognized  that  using  exhaustive  mapping  for

circRNA quantification had its limitations. For this strategy, quantifying a linear RNA and a circular one

with the same exon sequence was equivalent, since the circRNA sequences extracted from circBase were
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in the traditional 5` to 3` FASTA format and did not span the back-spliced junction as a continuous

sequence.

Hence, for a consistent quantification with tools such as CIRI2, a high sequencing depth is required to

increase the chance of sequencing reads that span the required back-spliced junction. Pooling together the

sequencing reads of all samples might help to increase the chance of identifying existing circular RNAs.

Even so, the quantification at the sample level will still be limited, as the  in silico predictions will be

derived independently from each sample.

Further research should investigate the biological impact of the validated circular RNAs. This could be

accomplished  either  by  overexpressing  such  circRNA (as  is  the  case  for  circGNAS)  or  selectively

repressing their expression (as we see in circCDYL). One of the main aims would be to analyze the

regulatory potency of those circRNAs in relation to the translation of the targets involved. In addition,

one could then further elucidate whether such an effect might be one of the main drivers of the cascade

leading to the toxicity exerted by the compound.

In conclusion, we have identified, quantified, and validated several circular RNAs whose expression has

significantly  differed  after  being  exposed  to  certain  cardiotoxicants,  in  particular  circCDYL  and

circGNAS. In addition, we analyzed the differential expression of potentially sponged miRNAs, their

correspondent  targets,  and the proteins coded by those targets,  finding for some of them a potential

additive effect in different post-transcriptional regulatory events. These circRNAs might help understand

the toxic effects/consequences those compounds induce at the molecular level.

6. Supplementary data

6.1. QPCR Primer Sequences

circBase ID Gene of origin 5'-3' 3'-5'

hsa_circ_0008285 circCDYL

ACAGGCTTAGCTGTTAAC

GGGA

GTCATAGCCTTTCCACCG

AACC

hsa_circ_0010791 CDC42 CCCACCTTCCCAAACCTA CCCAACAAGCAAGAAAG
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AT GAG

hsa_circ_0026129 TUBA1A

CAGACCCAAGCTGTCCAT

TT

CTCCAGCTTGGACTTCTT

GC

hsa_circ_0034356 ACTC1

GCCCTGGATTTTGAGAAT

GA

ATGGACAGGGTCAGTTG

GAG

hsa_circ_0055922 FHL2

CGAGTAAGGCACACCCA

AAT

GACTCCTGGCTTTTCAGC

AAC

hsa_circ_0060999 circGNAS

AAAACAGCAGCAGCAAA

CAA

CAGCCATCTGTTGTTCCA

GA

hsa_circ_0076194 CDKN1A

CAGGGACCACACCCTGT

ACT

GTTCTGACATGGCGCTTA

CA

hsa_circ_0078905 None

CCCCTCACACACTTGGTT

TT

TACCTGCCCCAGACTGAC

TT

hsa_circ_0090448 TIMP1

TGTTCCCACTCCCATCTT

TC

GCTATCAGCCACAGCAAC

AA

hsa_circ_0090904 MSN

TTTGGAGGGGTTTATGCT

CA

TGGATCATGTCATTGGCA

GT

hsa_circ_0102325 HIF1A

CCAAACAGAGCAGGAAA

AGG

GGTGAGGGGAGCATTAC

ATC

hsa_circ_0001445

circSMARCA

5

CCAAGATGGGCGAAAGT

TCAC

AGATTCTGATCCACAAGC

CTCC

None Β-Actin ATGGATGACGATATCGCT

ATGAGGTAGTCTGTCAGG

T

6.2. Sanger Primer Sequences

circBase ID

Gene of

origin Sequence
Directi

on

37

659

660



hsa_circ_0008

285 circCDYL

CAGGAAACAGCTATGACCGTCATAGCCTTTCCAC

CGAACC 3’-5’

hsa_circ_0060

999 circGNAS

TGTAAAACGACGGCCAGTAAAACAGCAGCAGCA

AACAA 5’-3’

hsa_circ_0001

445

circSMARC

A5

TGTAAAACGACGGCCAGTCCAAACAGAGCAGGA

AAAGG 5’-3’
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Abstract

Transcriptomics  is  nowadays  frequently  used  as  an  analytical  tool  to  study  the  extent  of  cell

expression changes between two phenotypes or between different conditions. However, an important

portion  of  the  significant  changes  observed  in  transcriptomics  at  the  gene  level  is  usually  not

consistently detected at the protein level by proteomics. This poor correlation between the measured

transcriptome and proteome is probably mainly due to post-transcriptional regulation, among which

miRNA and circRNA have been proposed to play an important role. Therefore, since both miRNA

and circRNA are  also quantified  by transcriptomics,  we  proposed to  build a  model  taking those

factors into account to estimate, for each transcript, the fraction of transcripts that would be available

for translation. Using a dataset of cells exposed to diverse compounds, we evaluated how our model

was able to improve the correlation between the assessed transcriptome and proteome expression

levels.   The results show that the model improved the correlation for a subset of genes, probably due

to the regulation of different miRNAs across the genome.

Introduction

The central dogma of molecular biology states a straightforward flow of information: for a gene to

transmit the information it contains, its DNA needs to be transcribed to RNA to produce the desired

protein.  Each  of  these  biological  pools  of  molecules  has  its  field  of  study  for  both  their

characterization  and  quantification,  which  are  commonly  known  as  omics.  Transcriptomics,  for

example, refers to the large-scale study of transcripts, and the same applies to proteomics (proteins) or

metabolomics (metabolites).
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Proteins,  being the functional  molecules  of  the  cell,  are  of high interest  to  be analyzed,  as they

accurately  represent  the  phenotypic  changes  of  the  studied  cell  or  tissue.  Unfortunately,  the

technology’ sensitivity and reproducibility behind proteomics, namely mass spectrometry, is currently

still  limited,  especially  when the aim is  to  get  an exhaustive protein expression analysis.  This is

mainly due to the mass spectrometer only being able to measure a fraction of the eluted peptides,

hence giving as an output a slight portion of the entire population of proteins1–3. To circumvent this

issue, an alternative strategy often used is the expression analysis of their precursors: the transcripts.

Transcriptomics is indeed usually performed as the surrogate to analyze different disease states or cell

conditions. Even so, the fact that transcripts are indeed the cause and origin of proteins is not reflected

by a high correlation between both omics4–8. This is rather unsurprising, due to the multiplicity and

complexity of the factors playing a role  in  post-transcriptional  regulation,  in addition to intrinsic

variable characteristics of both molecules (such as half-life9), and some of those regulatory factors are

even transcripts themselves.

One such factor is microRNAs (miRNAs), whose effect on the expression levels of proteins, although

mild,  has  been  characterized  for  more  than  a  decade10,11.  MiRNAs  are  short  non-coding  RNA

sequences playing a role in translation regulation12. They contain the so-called “seed” region13, a short

sequence with perfect Watson-Crick complementarity with their target (primarily to their 3’ UTR

region). The binding between the two molecules impairs the translation of the target14. Due to the

short  length of  the  seed  region,  a  single  miRNA often  targets  several  transcripts,  and numerous

miRNAs can target a single transcript. This inhibitory relationship may differ depending on the level

of expression of the  miRNA and its  target  molecules,  the number of regions in  a single mRNA

complementary to the miRNA present, and the combinatorial effect of several miRNAs targeting the

same transcript. Taking into account these parameters is necessary to have a better comprehension of

the mechanisms behind post-transcriptional regulation.

Another  element  to  be  considered  in  post-transcription  regulation  is  circular  RNAs  (circRNAs).

CircRNAs are transcripts that possess a circular structure due to the covalent binding of their 5’ and 3’

ends15,16, hence obtaining a circular structure that bestows them resistance to exonuclease activity17.

One of their recently discovered functions is described as ‘miRNA sponges’18. This refers to their

ability to contain several copies of short sequences that are complementary to the miRNAs’ seed

region. Consequently, they also play a role in the regulation of translation machinery by competing

against  other  transcripts  for  miRNA  binding19.  The  number  of  miRNAs  captured  by  circRNAs

influence the number of transcripts available for translation.

CircRNAs  are  not  the  only  targets  competing  for  miRNA,  as  other  (long)  non-coding  RNAs

(ncRNAs) can also present a seed target for some particular miRNAs20. This collection of coding and
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non-coding transcripts can be conceptualized as a single group of targets for a shared miRNA, which

led them to be generally called competing endogenous RNAs (ceRNAs)21.

Thus, in the current age of sequencing, accurately associating transcriptomics to the actual phenotype

of the cell is a major challenge. Currently, many publications base their biological interpretation on

the differentially expressed genes in two groups of samples as transcriptomics is more sensitive and

allows the assessment of almost all possible RNA molecules in a single experiment. In this context,

we wondered if it would be possible to integrate all available transcriptomics information into a model

able to estimate the level of translation of any expressed coding transcript, namely, the fraction of

translatable  transcripts  (TrT).  This  value,  computed  for  each  protein-coding  transcript,  is  an

estimation of the number of transcripts that are free to be translated after taking into account the

aforementioned post-transcriptional regulation. 

To design and assess the model, we used an in vitro dataset obtained from human cardiac microtissues

exposed to a range of compounds at different doses, which were analyzed with proteomics, RNA-Seq

(ribo-depleted  libraries),  and  miRNA-Seq  methods.  From  the  RNA  sequencing  data,  we  first

identified  and  quantified  different  transcript  biotypes:  protein-coding,  non-coding,  miRNA,  and

circRNAs.  The  proposed  model  was  then  applied  to  generate  the  TrT  score  from  all  possible

interactions between those molecules. In this manuscript, we analyze the possible benefits of such an

approach compared to the state-of-the-art methods for gene expression analysis.

Methods

Samples

The  analyzed  data  consists  of  3D  microtissues  containing  stem-cell-derived  cardiomyocytes  and

fibroblasts in a 4:1 ratio obtained from InSphero. These microtissues were exposed to 8 compounds:

Fluorouracil (5FU), Amiodarone (AMI), Celecoxib (CEL), Docetaxel (DOC), Doxorubicin (DOX),

Epirubicin  (EPI),  Mitoxantrone  (MXT),  and  Paclitaxel  (PTX),  in  addition  to  a  control  group

(Untreated/UNTR).  The  dosing  profile  was  established  via  the  use  of  the  physiologically  based

pharmacokinetic (PBPK) modeling software PK-Sim, to simulate exposure levels under physiological

conditions22. For each compound, 2 doses were applied: Therapeutic and Toxic. The exposures were

done in triplicates, and the data extraction was performed at 7 time-points: 2, 8, 24, 72, 168, 240, and

336 hours; resulting in 21 data-points per dose. Four samples were excluded due to low sequencing

depth:  three  samples  for  having  too  low  miRNA  sequencing  depth
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(CEL_Tox_002_3/MXT_Tox_002_3/PTX_Tox_002_3; toxic dose, time-point 2h, 3rd triplicate) and

one for its RNA-Seq low read count (UNTR_002_3).

RNA Sequencing (RNA-Seq)

Total RNA from the exposed microtissues was isolated using the Qiagen AllPrep Universal Kit (Cat

#80224). Ribo-depletion was achieved by using the Illumina RiboZero Gold kit (Cat #MRZG12324),

and the libraries were prepared using the Lexogen SENSE total RNA kit (Cat #009.96). All libraries

were then sequenced on an Illumina HiSeq 2000 at 100 bp paired-end at an average coverage range

between 20 and 30 million reads. The adaptors were removed through Trimmomatic version 0.33 23.

We  used  the  following  parameters:  paired-end,  ILLUMINACLIP:  TruSeq3-PE.fa:2:30:10,

LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:36, HEADCROP:12. 

Proteomics

Proteins were isolated and diluted to a concentration below 0.2M. The peptides were digested by

trypsin,  and  peptides  were  cleaned-up  using  Sep-Pak  tC18  cartridges  (Waters)  according  to  the

manufacturer’s instructions. A vacuum centrifuge was used to dry the peptides, before measuring

them on an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific), which was coupled to a

NanoLC-2D HPLC system (Eksigent). To process the raw MS data, Genedata Expressionist software

(v.11.0) was used. The noise in the LC-MS peaks was reduced and normalized, and afterward, their

properties were obtained (m/z and RT boundaries, m/z and RT center values, intensity). To annotate

the individual MS/MS spectra, Mascot 2.6 was used. To group peak clusters, protein interference was

used (based on peptide and protein annotations), and, using the Hi3 method, protein intensities were

computed. 

miRNA analysis

Starting from the same total RNA isolated for the ribo-depleted libraries, an aliquot was size selected

and ligated using the TruSeq Small  RNA Library Prep Kit (Illumina®). After  sequencing on the

HiSeq 2000 at 3.6 million reads per sample (after quantification), we quantified the resulting data

using miRge2 (last change: 05/06/2018)24. miRge2 used the MirBase database as the reference library

(miRBase v22), bowtie-1.1.125 as the mapper, miRge2/sp as the miRge library, human as the species

selected, and illumina for the adapter to be removed. The output results were in gff format. Isomirs

were not considered for this analysis. 
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(non-)coding RNA analysis

The genome version used for all the transcriptomics analyses was the Genome Reference Consortium

Human  Build  38  (GRCh38.p12).  For  the  identification  of  circRNAs,  we  performed  a  de  novo

prediction from our dataset. For this, we concatenated all RNA-Seq forward data (R1) across all 240

Cardiac samples into a single FASTQ file. Afterward, this file was inputted to two recent circRNA

prediction software:   circExplorer226 and CIRI227.  For  circExplorer2,  we first  used BWA version

0.7.1728 to  index the genome and align  (minimum score  to  output:  19)  the  reads  to  the  indexed

genome. Afterward, we used circExplorer2 to parse the aligned reads and annotate the circRNAs. For

CIRI2, we also required the aligning step via BWA, and then the annotation step through its internal

algorithm (-S (single-end), -U 3 -B 13, to set mapping quality thresholds of a junction read and help

control False Discovery Rate (FDR)). We then extracted the overlap of identified molecules between

both  outputs  for  decreasing  the  amount  of  false-positive  predictions.  The  circRNA  IDs  were

comprised  of  the  chromosomal  and  strand  locus  of  the  predicted  molecules.  Based  on  this

information,  we  extracted  their  genetic  sequence  using  BEDTools29,  obtaining  a  final  circRNA

transcriptome library.

We  downloaded  the  transcriptomes  for  both  coding  (all  cDNA)  and  non-coding  (all  ncRNA)

transcripts from Ensembl (release 96)30. We combined these 2 libraries with our predicted circRNAs

library into a single library, which we set as the global transcriptome reference for Salmon31, with

which we quantified the RNA-Seq data. Salmon output contained both the number of reads and TPM

(Transcript per Million) values for each transcript, the latter of which was used for the analysis. The

benefit of using TPM values, instead of raw counts, relies on the inherent normalization performed for

both sequencing depth and transcript length. If raw reads would have been used instead, the variability

across samples and compounds would have made it impossible to optimize the model consistently.

Moreover, since our model computes interactions between molecules of different sizes, using read

counts would have greatly biased the output. 

CircRNA predictors selection

We selected CIRI2 and circExplorer2 out of 4 possible predictors, which also included find_circ18 and

circRNA_finder32. The parameters for find_circ were set as default, and the samtools version was 1.3.

For circRNA_finder, it involved 2 steps: running STAR (-c --runThreadN 4 --chimSegmentMin 20 --

chimScoreMin  1  --alignIntronMax  500000  --outFilterMismatchNmax  4  --

alignTranscriptsPerReadNmax  100000  --twopassMode  Basic  --outSAMtype  BAM

SortedByCoordinate  --chimOutType  SeparateSAMold  --outFilterMultimapNmax  2)  and  the  post-

processing  script  (--minLen  100).  We  formatted  all  the  output  equally  so  that  we  were  able  to

compare them across tools.
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Interaction tables

To evaluate all possible bindings between the molecules, a table containing all possible interactions

between  miRNAs  and  any  putative  competing  ceRNAs  was  generated,  each  row representing  a

unique interaction. For miRNA, both identifiers (IDs) and sequences were sourced from miRBase33.

For all transcripts (both coding and non-coding), we extracted the Ensembl transcript IDs through

biomaRt34. We obtained the sequences corresponding to these IDs through SAMtools35, which were

searched in the genome FASTA file by using the chromosomal coordinates of the transcripts. For

mRNAs, we used only the 3’ UTR region. To establish the microRNA target interactions (or MTIs),

we used miRanda (version 3.3a)36 with the -strict parameter to force strict 5' seed pairing. We set the

score threshold to 140.0 (corresponding to a full 7 base pair seed with no mismatch). We also used –

noenergy, disabling the thermodynamics performance.

Translatable Transcripts (TrT) formulation

We designed a formula (Formula 1) that aimed to estimate the fraction of translatable transcripts

based on a basic principle: the number of translatable transcripts is equal to the difference between the

total  expression  of  a  given  protein-coding  transcript  and  its  inhibited  molecules.  The  number  of

inhibited transcripts depends on the number of miRNAs and the probability that these will bind to the

target transcript. The probability of a target being targeted by miRNA depends on how abundant the

target is in proportion to the number of all the possible targets. For all data analyses, we used R37,38 as

the main programming language.

Formula 1: TrT formula

TrT = Translatable Transcripts, TPM = Transcripts Per Million, RPM = Reads Per Million, Seeds =

the number of seeds present in a specific transcript targeted by a specific miRNA, N = number of

miRNAs targeting the transcript,  M = number of  targets for a specific miRNA i,  miRNAfactor is  a

scaling factor, set to 0.1 (TrT model design).    

TrT example

For example, consider a protein-coding transcript expressed at 100 TPM targeted by two miRNAs,

expressed at 132.5 and 227.5 Reads Per Million (RPM) respectively. Each of them has a single seed

or sequence region presented by the target that they can bind to. The first miRNA can also interact
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with a single circRNA, expressed at 2 TPM on 3 perfect seed regions, while the second miRNA can

bind to an ncRNA with a TPM value of 30 (Equation b). 

Those miRNAs can bind to any of the aforementioned ceRNAs (other mRNA targets, circRNAs, or

ncRNAs). To know how many miRNAs will bind to each of them, we need to know the probability of

each interaction. In our study, we hypothesized that the probability that a miRNA will  bind to a

molecule is directly proportional to how abundant that molecule is in relation to all possible targets

(0.94 and 0.77 in this example,  Equation c). Consequently, we estimate that 300 of these miRNA

molecules will bind to the target. This number is multiplied by the miRNA factor (Equation d), and

we subtract  it  from the original  TPM value of our target,  which will  be  the  expected TrT value

(Equation e).

Correlation between Transcriptomics and Proteomics

To perform correlation analysis between our transcriptomics and proteomics dataset,  we used the

untreated samples of the first 4 time-points (2, 8, 24, and 72 hours) for transcriptomics, and all the

normalized (Proteomics) time-points for proteomics (2, 8, 24, 72, 168, 240, and 336 hours).

To be able to correlate protein and transcript expressions, we merged protein-coding transcripts by

their protein product, and we grouped all values per time-point while maintaining the same order to

perform a Pearson correlation at the time-point level. For 168h, we omitted the first triplicate due to a

significant batch effect, correlating only the other 2 triplicates with the other 2 triplicates of all other

Equation a: Entire TrT formula

Equation b: Calculating the fraction of the transcript of choice as a target for the miRNA

Equation c: Calculating how many miRNAs will target the transcript of choice

Equation d: Downsizing the miRNA expression to be comparable to transcriptomics

Equation e: Calculating how many transcripts will be able to be translated

 Box 1: TrT example
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time-points.  We  did  the  same  with  the  RNA-Seq  sample  of  UNTR_002_3,  because  of  the  low

sequencing depth, as mentioned before. The graphical displays were generated thanks to the ‘corrplot’

package39.

Differential Expression Analysis

Proteomics

To obtain differentially expressed proteins (DEPs), we followed the steps performed by Selevsek et al

(2020). Briefly, we first log-2 transformed all the proteomic expression values. We then calculated the

median for each control sample. Afterward, we calculated the median of all the medians (MoM) and

shifted the control samples so that they all shared this median. For every treatment/dose combination,

we determined the set of proteins common in both control and treatment samples. This set of proteins

was used to determine the MoM on the normalized control samples. We then shifted the distribution

of the data by matching their median values to this MoM. Finally, we performed paired t-tests to

evaluate the significance between doses, considering as significant (or DEPs) the ones for which the

p-values were lower than 0.05.

Transcriptomics

As we aim at  evaluating the TrT fraction of the  coding transcripts,  Salmon mapping output  was

filtered  out  for  non-coding  transcripts.  All  remaining  coding  transcript  expression  values  were

summed based on their gene of origin. While usually, differential expression analyses are performed

via a dedicated sequencing analysis pipeline on raw read count using a pipeline specific for negative

binomial distribution (such as DESeq2 or EdgeR), this approach could not be applied here. Indeed, in

our case, the values to be compared (TPM and TrT) did not allow such pipelines, either because the

input was expected to be un-normalized40 and/or because other normalization steps were performed

instead41.  We  then  log-2  transformed  both  TPM  and  TrT  values,  which,  like  proteomics,  also

presented originally a negative binomial distribution. We performed t-tests between therapeutic and

toxic doses.  Due to  the  high percentage of significant  observations and multiple testing,  we also

applied an FDR/BH p-adjustment. We identified a differentially expressed gene (or DEG) as a gene

with a p-adjusted value lower than 0.05

Biological Interpretation with GOrilla

Using as input the lists of genes ranked by increasing p-adjusted value (for each comparison and

compound), we ran a gene ontology enrichment analysis with GOrilla42 using the ‘Single ranked list

of genes’ mode. We studied the GO terms of interest and analyzed some of their genes’ expression

(both in TPM and TrT). We also explored how the MTIs (using the miRTarBase43 list) related to such
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genes (with at least weak evidence of having a regulatory effect) were expressed in comparison to

what TPM and TrT were representing.

Sensitivity, Specificity, and Accuracy

A prediction is  normally evaluated by contrasting it  to  the  reality it  is  trying to model.  Such an

evaluation focuses on different aspects of the predictor: how many of the positives that have been

predicted are real positives (sensitivity), how many of the predicted negatives are indeed negative

(specificity);  and how many cases are correct out of all  cases, independently of whether they are

positive or negative (accuracy), making use of binary classification terms. In our case, proteomics was

considered  the  true  condition,  while  transcriptomics  was  the  predicted  condition.  True  or  false

referred  then  to  the  correct  or  incorrect  representation  of  proteomics  by  transcriptomics,  while

positive or negative referred to the presence or absence of differential expression, respectively. For

example, if both proteomics and transcriptomics showed differential expression in the same manner,

such gene was considered a true positive. If transcriptomics did not present a differential expression

while  proteomics  did,  it  was  considered  a  false  negative.  Once  these  terms  were  defined,  the

calculation  of  such evaluators  was  performed according  to  the  standard statistical  measures  of  a

binary classification test performance.

Results

Test dataset for TrT model assessment

To develop a TrT model, we used a dataset as input derived from a 3D cardiomyocyte culture, from

which both transcriptomics (ribo-depleted and small RNA libraries) and proteomics (LC-MS) data

were generated. The cell cultures were composed of 8 individual compound treatments, in addition to

an untreated control. For every compound, 3 replicates were measured in 7 time-points (2, 8, 24, 72,

168,  240,  and  336  hours)  for  every  dose  (therapeutic  and  toxic),  resulting  in  42  samples  per

compound. This dataset, of a total of 240 samples, presented the added value to have been generated

by the same technician, and all proteomics and transcriptomics samples were generated from the same

run, thus reducing an important source of bias. The three different technologies (RNA-Seq, miRNA-

seq,  and  proteomics)  were  quantified  based  on  state-of-the-art  procedures  (Methods).  While  our

RNA-Seq data  analysis  quantified  the  protein-coding  and  non-coding  transcripts  available  in  the

Ensembl database, circular RNA identification required additional steps such as de novo prediction. 

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278



CircRNA predictors selection

CircRNA prediction programs are known for generating a high level of false positives44. To identify

the circular RNAs in this transcriptomics dataset, we decided to use an overlapping approach between

several tools. For this, we considered the following four tools: CIRI227, find_circ18, circRNA_finder32,

and CIRCexplorer226. When determining the optimal overlap, we interpreted the amount of uniquely

predicted identities by a tool as an indicator of the false-positive ratio. We could observe that most of

the circRNAs were only predicted by circRNA_finder, which suggested this algorithm has the highest

rate of false positives. The other 3 tools showed similar false-positive ratios, so to compare them we

focused on the overlap that maximized the number of identified molecules: circExplorer2 and CIRI2.

The list  of  predicted  circRNA molecules  was then  added to  the  reference transcriptome used to

quantify all expressed RNA molecules from the ribo-depleted libraries. 

Figure 1: Venn Diagram between 4 circRNA prediction tools output

General Expression Analysis

Such transcriptome was structured in  the  following manner:  126831 of  the  identifiers were non-

coding  RNA  (57.37%),  85108  were  protein-coding  RNAs  (38.50%),  and  9138  were  circRNAs

(4.13%) (Figure 2A).

In control conditions, for RNA-Seq, we detected 92969 transcripts expressed in at least 1 sample > 0

reads, with 4815 (5%) of them present in all 240 samples. In microRNA sequencing (miRNA-seq),

out  of  the  1348  quantified  molecules  in  any  sample,  only  55  miRNAs  (4%)  were  detected

constitutively. In proteomics, there were 1392 proteins quantified, of which 362 (26%) were detected

in all samples. As expected, proteomics, having one order of magnitude less quantified molecules

(both  in  Total  and  Constitutively)  than  RNA-Seq  (Figure  2B),  was  the  limiting  factor  when

comparing both. Also, when comparing proteomics and miRNA-seq, although they have similar total
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quantification numbers, the difference in their constitutively quantified shows that the former has a

higher proportion of highly expressed molecules, while miRNA-seq displays a broader representation

of all molecules (in addition to its more volatile/temporary function). 

Figure 2: Quantification results across different omics. A: Percentage of each biotype present in the Transcriptomics

library. B: Number of quantified molecules in the Control condition. Total Quantified refers to the number of molecules that

have been at least once quantified by such technology. Constitutively Quantified refers to the number of molecules that have

been quantified in all samples by such technology.

TrT model design

With  all  individual  RNA  molecules  from  the  transcriptome  characterized  and  quantified,  we

investigated the possibility to develop a model to predict the expected translatable fraction (TrT) of

any  given  coding  transcript.  For  this,  we  hypothesized  that  taking  into  account  as  many  post-

B

A

304

305

306

307

308

309
310

311

312

313

314

315

316

317



transcriptional  regulation factors as possible would be fundamental. Therefore, we conceptualized a

model  based  on  several  key  features  of  the  various  biological  factors  available.  First,  miRNAs

decreased a transcript’s chance of being translated. An increase in miRNA expression (controlling for

all other conditions) would then decrease the number of mRNAs available for translation45. Second,

the probability that  a miRNA transcript interaction (MTI) occurred is directly proportional to the

expression level of a target in proportion to the expression level of all possible targets. Lastly, both

coding  and  non-coding  RNAs  (including  circRNAs)  that  were  able  to  interact  with  a  miRNA

inhibiting the coding transcript of interest could work as ceRNA: the higher the expression of a single

target, the lower the inhibition for the rest of the targets46–48. In other words, we assumed that a given

miRNA would be equally distributed among all its possible targets (taking into account the number of

individual  seeds),  and  only  the  fraction available  to  interact  with  our  gene of  interest  should be

considered to have an inhibiting effect. 

The central concept behind this model was that the number of transcripts to be translated was the

difference between the total amount of transcripts (in TPM) and the ones that would not be translated

due to miRNA inhibition. The number of transcripts that would be inhibited was then based on two

main factors: the level of expression of each miRNA that had the mRNA as a target (RPMi), and the

probability that each miRNA would interact with the target. We hypothesized that the probability that

a miRNA would bind to a target was proportional to how prevalent that target was compared to all

possible targets. A target did not always equal a single molecule (a circRNA could present several

seed regions/targets). For this reason, we represented a target by its total amount of seed regions for a

specific MTI (transcript expression level times its number of seed regions).

Because miRNA libraries present a smaller density than ribo-depleted RNA libraries, the raw number

of reads generated for the miRNAs was in general  higher than the quantification levels  of  other

transcripts.  This  difference  did  not  allow us  to  subtract  one  from another  directly,  and  miRNA

expression should be scaled to a comparable level of the coding RNA transcripts. To know which

value should be given for this scaling factor, we first analyzed which factors would be optimal for

TrT, that is, in which miRNA had enough power to show a difference between TrT and TPM, but not

so  powerful  that  it  reduced  all  expression  values  to  zero.  We  searched  such  optimal  value  by

evaluating a range of values between 0 and 1 (0 leading to no miRNA effect at all, and 1 leading to no

scaling), and selected the values in which TrT maximized the correction benefit in comparison to

TPM (taking proteomics as a reference). The optimal range we observed was between 0.1 and 0.27.

Besides, initial  investigation of a newly developed sequencing method named Combo-Seq, which

allows sequencing both transcripts and miRNAs altogether in a single library preparation, showed us

that  the  proportion  observed  of  miRNA  represented  around  10%  of  all  transcripts  sequenced.
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Consequently,  we  decided  to  set  the  miRNA  factor  to  ‘0.1’  (Translatable  Transcripts  (TrT)

formulation)

Correlation between Transcriptomics (TPM/TrT) and Proteomics

Having our method described and finished, we applied our method to all the aforementioned data.

Afterward, we aimed to compare it with the state-of-the-art TPM to investigate in which manner TrT

could be an improvement. Initially, we wanted to confirm the initial issue (transcriptomics does not

accurately represent the proteome), and compare such results with TrT. For that purpose, using the

untreated samples, we performed a correlation analysis between proteomics and TPM, followed by its

analogous analysis between proteomics and TrT.

The  correlation  analysis  confirmed  the  low  correlation  between  Transcriptomics  (TPM)  and

proteomics values (Figure 3A), the average correlation of which was 0.39 (± 0.06 SD). There was no

specific  time  interval  between  both  omics  that  presented  an  improved  correlation.  For  example,

independently  of  the  time  difference  between  both  omics,  24h  samples  (be  it  proteomics  or

transcriptomics) showed the highest correlations. Simultaneously, 2h proteomics and transcriptomics

samples presented some of the lowest correlations. Even so, the correlation values were not randomly

distributed, but substantially influenced by which proteomics time-point they were related to. As an

example,  time-point  24h presented the highest  values regardless of the transcriptomics time-point

(avg.: 0.46), while time-point 2 hours presented the lowest (avg.: 0.26). To a lower extent, a similar

effect was observed for the transcriptomics time-points. When evaluating TrT at the same level, we

saw a similar low correlation with proteomics (Figure 3B), confirming the fact that a representative

portion of transcripts (80%) presented equal values between TPM and TrT, due to not presenting any

predicted inhibition by any miRNA expressed in our dataset. 
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Figure 3: Correlation analysis between Transcriptomics and proteomics. A: TPM vs Proteomics.  B: TrT vs Proteomics.

TPM: Transcripts Per Million. TrT: Translatable Transcripts. Timepoint samples are compared across each other (from 2

to 336 hours). The darker and bigger a circle is, the higher the absolute value of correlation it represents. Blue stands for

positive correlation, red for negative correlation.

Differential Expression Analysis

The  high  similarity  between  both  correlation  analyses  was  not  surprising,  as  we  predicted  and

formulated for miRNA to have generally a small regulatory effect. Even so, we hypothesized that for

a portion of the transcripts regulated by miRNA, TrT would be a better proxy for proteomics. To

verify this, we ran our formula through all our data. Later, we investigated in which cases traditional

transcriptomics was falsely reporting as a proxy by taking proteomics as a reference. The analysis

involved the identification of differentially expressed molecules across doses. Two possible scenarios

unfolded: there could be a change in transcriptomics not reflected in proteomics, and vice versa: a

change in proteomics that was not reflected in transcriptomics. For example, in fluorouracil’s (5-FU)

exposure, 5.48% of genes presented a change in transcriptomics and not in proteomics, while 4.02%

of them did not present a change while proteomics did. Therefore, we focused on the genes for which

TrT could correct such cases.  

The myosin heavy chain 9 (MYH9) gene was one of them. We could observe a significant increase

(p.value < 0.05) (Figure 4A) of the protein at a Toxic dose of 5-FU, while for TPM it was not (p.value

> 0.05) (Figure 4B). TrT, on the contrary, did reflect a significant increase (p. adjusted < 0.05) (Figure

4C).
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Figure 4: MYH9 expression values for therapeutic and toxic doses of 5-FU. A: Proteomics expression values. B: TPM and

TrT expression values: Gray: TPM, Black: TrT. C: Boxplots of the expression values for proteomics, TPM, and TrT. TPM:

Transcripts Per Million. TrT: Translatable Transcripts.

We could also find examples of the opposite. Such was the case for TGFBI (transforming growth

factor beta-induced). In this case, proteomics did not show any significant change across doses of

Docetaxel (Figure 5A), but TPM was significantly increased (p.adjusted < 0.05) in the toxic dose

(Figure 5B). TrT, though, was consistent with proteomics, not showing any significant difference

between doses (p.value > 0.05) (Figure 5C).  
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Figure 5: Expression values of TGFBI. A: Proteomics expression values. B: TPM and TrT expression values: Gray: TPM,

Black: TrT. C: Boxplots of the expression values for Proteomics, TPM, and TrT. TPM: Transcripts Per Million. TrT:

Translatable Transcripts.

Biological Interpretation (GOrilla)

After  observing the  effects  TrT could have,  we investigated  whether  those could  also  affect  the

biological interpretation. Specifically, we focused on comparing the enriched gene ontology sets (GO-

sets) of both TPM and TrT via GOrilla. The results showed that the number of GO terms was always

higher in TPM than in TrT (Figure 6). Such a decrease in GO terms for TrT, though, was not related

to a lower number of DEGs from that quantifier. When analyzing the commonalities and differences

between TPM and TrT across compounds, we observed 2 different behaviors (Figure 6). For some
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compounds (5FU, AMI, EPI & MXT), the number of TrT GO terms shared with TPM was either

greater or equal to the exclusive ones, while most of the TPM terms were exclusive. On the other

compounds, the GO terms shared between them were rather the minority for both sets. 

Figure 6: Number of exclusive GO terms for each quantifier (TPM & TRT) and the ones included in both (BOTH).

TPM: Transcripts Per Million.  TrT:  Translatable Transcripts.  5FU: Fluorouracil.  AMI:  Amiodarone.  CEL: Celecoxib.

DOC: Docetaxel. DOX: Doxorubicin. EPI: Epirubicin. MXT: Mitoxantrone. PTX: Paclitaxel.

An example of how the misclassification of a DEG may affect  the biological  interpretation of  a

comparison (with enough genes being misclassified) was the Cardiac-Specific Homeo Box (NKX2-5)

gene. According to TPM, the expression of this gene was significantly higher in the UNTR samples

when compared to its corresponding samples in the therapeutic dose in 5FU, AMI, and DOC, leading

to the enrichment of the Cardiac Muscle Tissue Morphogenesis GO set  (of genes).  TrT,  though,

showed no difference between both scenarios (Figure 7A). This meant that the miRNA regulation was

predicted  to  be  stronger  in  the  control  samples  than  the  treatment  ones,  to  the  point  where  the

difference between both conditions was not significant. To contrast that prediction, we searched for

all 18 MTIs with either weak or strong evidence of their inhibitory regulation. We observed that the

expression of all those miRNAs in the Control samples was greater or equal to the therapeutic ones,

confirming the TrT prediction (Figure 7B).
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Figure 7: NKX2-5 gene: Expression and Regulation between Untreated (UNTR) and Therapeutic (The) samples treated

with Fluorouracil (5FU). A. TPM (left) and TrT (right) expression represented in boxplots. B. Examples of the expression

in Reads Per Million (RPM) of miRNAs that regulate the NKX2-5 gene.

Sensitivity, Specificity, and Accuracy results in TPM and TRT

So far, we saw that, at least in some cases, TrT could be a better proxy for proteomics than TPM, and

that  the biological interpretation was simplified when TrT was applied. Afterward,  we wanted to

assess the global accuracy of TrT and TPM by comparing it to proteomics. 

We  calculated  the  accuracy  of  both  transcriptomics  values  for  all  compounds  in  3  different

comparisons: therapeutic versus toxic doses, untreated control versus therapeutic dose, and untreated

control versus toxic dose. To evaluate the differential expression of the last 2 comparisons, we used

the same methodology as the one used for therapeutic versus toxic doses.
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Figure 8: Difference in Sensitivity, Specificity, and Accuracy when changing the quantifier from TPM to TrT, each

comparison encompassing 8 compounds:  Fluorouracil (5FU), Amiodarone (AMI), Celecoxib (CEL), Docetaxel (DOC),

Doxorubicin (DOX), Epirubicin (EPI), Mitoxantrone (MXT), and Paclitaxel (PTX). A: Therapeutic versus Toxic doses. B:

Untreated versus Therapeutic dose. C: Untreated versus Toxic dose.

We observed an ambiguous effect of TrT in relation to TPM in all 3 comparisons from a global

perspective (Figure 8). Individually, though, we observed a compound effect reflected on different

accuracy differences for each of the 8 compounds, which could be categorized into 3 groups when

analyzing the accuracy differences for each compound. Most of them showed ambiguous results, in

which both improvement  and decrease in  accuracy happened.  EPI,  instead,  showed a continuous

improvement across all comparisons. The last group, contrarily (CEL & MXT), showed a continuous

decline across all comparisons. 

Discussion

The correlation between transcriptomics and proteomics has always tended to be low. This is true

both in previous and in the current study, proving transcriptomics as a poor proxy of the phenotypical

changes of the cell. Trying to predict the regulatory effect of miRNA (TrT) to improve such proxy

(TPM) proved beneficial for a portion of the gene set. This is unsurprising, knowing that not all genes

are regulated by miRNAs, and only a small portion of proteins are quantified through the proteomics

pipeline.  TrT also showed a simplified biological interpretation of the changes across conditions,

although its results compared to TPM varied compound-wise. 
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We did not only take miRNAs into account, though. Other ncRNAs, such as circRNAs (although

recent studies have observed some of them as coding), were also quantified. Due to the novelty of

circRNAs, in contrast with other OMICs, there was no golden standard database to refer to when

seeking their specific IDs nor the way they should be quantified, among other reasons, because the

existing databases were seldom updated18,49 nor online50.

One of the most recent recommendations44 in these circumstances was the combined use of at least 2

different circRNA identification software tools. The reason behind this procedure was based on the

flawed accuracy of these programs due to their inherent biases. Fortunately, even if this bias differed

for every tool, it had been shown that the convergence between the 2 tools offered a much lower

proportion of false positives in contrast to their original population of predictions44. 

We decided to pool all  samples so that we had the maximum sequencing depth available for the

identification process. Otherwise, selecting a random sample would lead to an under-representation of

some circRNA molecules, which would not be identified as such, even if they would be in the rest of

the samples.

The argumentation behind the selection of CIRI2 and circExplorer2 was twofold. First, their accuracy

outcomes in previous reviews portrayed them to be some of the best predictors currently available.

Secondly, our comparison of several predictors revealed that both output a substantial proportion of

molecules that were also outputted by other predictors (low false-positive rate), without sacrificing

sensitivity. This was not the case for circRNA_finder32, which found several times more molecules

than  the  other  predictors  with  a  very  low overlap  (~7%).  find_circ18,  although  having  a  similar

proportion of overlap as circExplorer2 and CIRI2, did not present such a good accuracy in previous

studies.

The model we applied considered several factors in post-transcriptional regulation. We built it by

trying  to  reach  an  equilibrium  at  the  complexity  level:  enough  complexity  to  maximize  the

representation of the molecular reality of the cell, but without including so many variables that would

have made the model  either  unbuildable  or  unfeasible  to  run in  practical  terms.  Our  model  also

reflected how little is  still  known about post-transcriptional regulation, and recent  discoveries are

constantly being made public around it42,51. 

This  is  especially  the  case  with  miRNA  regulation,  where  the  complementarity  and  regulatory

strength seem to not  only be dependent  on the seed region but  other loci  such as  the 3’  end of

miRNAs42. These new observations are currently being incorporated into the interaction predictive

tools, making probably in the future the more classical tools obsolete. 
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The genes exemplified as good proxies for proteomics are indeed regulated by miRNAs. MYH9 is a

non-muscle myosin chain IIA gene which plays a major role in early mammalian development, while

in the adult heart is only expressed in the non-myocyte cells52.  Several miRNAs have been either

positively or negatively associated with the gene’s expression53. For TGFBI, miRNA regulation has

also been shown, to the point of even being related to chemoresistance54.

Our model was based on miRNA regulation on a 1-on-1 basis: if a miRNA can bind a transcript (after

taking into account the endogenous competition), the latter will not be able to be translated. Other

recent models prefer to focus on the targeting efficacy (as a function of the affinity between the two

molecules)  while  ignoring  the  ceRNAs51.  We  acknowledge  that  both  models  lack  each  other’s

strengths, and a combination of the two would have been optimal.

In addition to that, there could have been other important factors that could have been taken into

account.  One  example  could  be  the  translation  ratio,  i.e.,  the  number  of  proteins  translated  per

transcript, which depends on the number of ribosomes that may bind to it, and its half-life. Indeed,

half-lives, both of the transcript and the protein, make it difficult to transient from one OMICs to

another: the increase in proteomics might be by an increase in transcriptomics with a short half-life

that cannot be seen, or a long half-life of proteins may delay the decrease in their abundance due to a

decrease in translational output.

Proteomics, although being the technology used as a reference to represent the phenotypical changes

in the cell, is quite limited in achieving so. This is especially the case due to its lack of sensitivity,

where generally only around 1000-3000 proteins are quantified, making the analysis of the proteome

quite challenging. In addition to that, the output scale of such quantifications can be quite dramatic

when the technology or machinery involved changes. 

Our next steps would include trying to breach the gap between both OMICs by, not only including

important parameters that can improve the proteomics prediction, but also changing the algorithms

involved in the model, namely, using a supervised quantitative machine learning model. That way, the

use of new parameters is easier to both implement and evaluate. This is especially relevant for the

imputation  of  proteomics  data,  prone  to  missing  values  due  to  the  stochastic  nature  of  mass

spectrometry. Our work concerning this strategy can be found in our published article57.

We created a formula to model post-transcriptional regulation and its effects on protein expression.

We assessed its behavior in both general and specific cases. As expected, due to the variability of each

gene’s regulation,  the formula benefited only a subset of  genes.  We portrayed the importance of

reaching a more accurate description of the cellular  changes,  and how far  we still  are from that
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objective. Therefore, we must not simply continue with the most popular technology, but try to reach

a better approach to the current era of big data.

Supplementary data

Supplementary data can be found in the online preprint version of this manuscript58.
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ABSTRACT

Proteins are often considered the main biological element  in charge of the different functions and

structures of a cell. However, proteomics, the global study of all expressed proteins, often performed

by mass spectrometry, is limited by its stochastic sampling and can only quantify a limited amount of

protein per sample. Transcriptomics, which allows an exhaustive analysis of all expressed transcripts, is

often used as a surrogate. However, the transcript level does not present a high level of correlation with

the corresponding protein level, notably due to the existence of several post-transcriptional regulatory

mechanisms. In this publication, we hypothesize that the missing protein values in proteomics could be

predicted  using  machine  learning  regression  methods,  trained  with  many  features  extracted  from

transcriptomics, including known translational regulatory elements such as microRNAs and circular

RNAs.  After  considering  different  machine  learning  algorithms  applied  on  two  different  splitting

strategies, we report that random forest can predict proteins in new samples out of transcriptomics data

with  good accuracy. The proposed pre-processing  and model  building  scripts  can  be  accessed  on

GitHub: https://github.com/jochotecoa/ml_proteomics
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1 INTRODUCTION

For a cell to react and adapt to any variation of its environment, including for instance the exposure to a

foreign compound, a cascade of events leading ultimately to the production of proteins occurs. For that

purpose, the cell usually initiates the transcription of its genes (such as transcription factor), and the

resulting transcripts containing an open reading frame are translated into proteins. Even though such a

schematic view of molecular biology appears straightforward, each of those steps is controlled and

affected by a myriad of factors. This complexity led to the development of advanced technologies,

named  “omics”,  allowing  to  deeply  study  a  particular  class  of  biological  entity:  transcriptomics

(characterization and quantification of transcripts), proteomics (proteins), metabolomics (metabolites),

etc.

Among those different classes of molecules, proteins are particularly relevant, as their expression level

and activity  inform profoundly about  how the  cell  is  functioning and reacting to  its  environment,

especially when those changes may pose a risk to the integrity and functionality of the whole system,

either due to a disease or an infection. To analyze the expression of proteins in different conditions,

proteomics (mass spectrometry or MS) is usually applied. Unfortunately, its sensitivity is limited1-3, and

thus only a small subset of proteins (with the highest abundance) can be studied at a time. In addition,

the stochastic sampling generates missing identifications across samples, particularly for proteins with

an abundance close to the detection limit;  even though workflows such as DIA (Data-Independent

Acquisition)-MS workflow can increase reproducibility.  New technologies are not exempt of these

limitations: the latest single-cell proteomics strategies (such as SCoPE22) and newest experimental and

computational workflows3 only obtain ~1000 proteins per cell on average (not including their own

limitations4), even though their dynamic range allows for the quantification of 3000 distinct proteins.

Proteins are mainly translated from messenger RNAs (mRNAs), which are much easier to analyze.

Indeed,  while  having  a  shorter  half-life  than  proteins,  mRNA  transcriptomics  has  become

overwhelming  sensitive  and  cost-efficient  over  the  years  with  the  invention  of  next-generation

sequencing. For these reasons, RNA-Sequencing techniques are usually preferred to statistically study

cell  changes  at  the  molecular  level.  However,  a  given  mRNA  is  not  an  excellent  proxy  of  its

corresponding  protein  expression  level,  which  is  reflected  in  a  very  low  correlation  between

transcriptomics and proteomics technologies5-9. While the reasons behind this gap can be multiple, the

main factors can be categorized into post-transcriptional regulation. By different mechanisms in such

regulation, the cell controls the final level of translation of each mRNA into proteins. These factors can
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be either determined by the molecules themselves (such as the transcript’s or protein’s half-life10) or by

the interaction with external elements.

MicroRNAs  (miRNAs),  short  non-coding  transcripts  of  around  22  nucleotides  of  length,  play  an

important role in post-transcriptional regulation. They can act as inhibitors of translation11,12 by base-

pairing their seed region13 (nucleotide 2 to 8) to the target mRNA, usually in their 3` UTR region.

While often considered mild individually, the interaction of multiple miRNAs (either the same miRNA

or  different  miRNAs)  on  the  same  3’UTR  target  can  have  a  significant  effect  on  protein  level

expression  14,15.  Considering  the  relatively  short  length  of  the  seed  region,  miRNAs can target  an

average of 200 different targets. Even so, miRNAs are not the only transcripts regulating translation.

Another newly discovered category of RNAs, named circular RNAs (circRNAs), are characterized by

their circular form, which is generated by the binding of their 5 and 3` end during splicing (back-

splicing)16,17, forming the so-called back-spliced junction. Due to this particular structure, they are not

easily degraded due to the absence of transcript extremities, rendering them immune to exonuclease

activity18.  Several  functions  have  been proposed for  these  circRNAs,  including regulating  miRNA

activities. It has been demonstrated that circRNAs, which can contain repetitions, could present the

same target regions present in miRNA targets, and sometimes several times per molecule. This leads to

a target competition19, where circRNAs bind most miRNAs, which gave to circRNAs the function of

‘miRNA sponges’20. The post-transcriptional regulation complexity starts to unfold once one realizes

that each transcript can be inhibited by several miRNAs, and at the same time, each of those miRNAs

can be “sponged” by one or more circRNAs.

The final expression level of a protein results thus from the integration inside the cell of many factors

related to transcripts: the level of expression of mRNAs, the number of possible seeds with miRNAs,

the expression level of miRNAs, and the expression level (and “sponging” capacity) of circRNAs able

to capture these miRNAs. Many other features could also play a role in this final protein expression

level. For instance, the GC content of an mRNA has been observed to interfere with the mRNA half-

life21, and thus the total number of proteins formed from a single mRNA. All these RNA elements or

characteristics  just  mentioned could be  identified and quantified by transcriptomics  with RNA-Se-

quencing. Since the protein expression level is the most important factor for biological interpretation,

and considering the limited sensitivity and stochastic sampling of proteomics in addition to the very

low correlation of the mRNA/protein expression level, we considered the possibility of obtaining pre-

dicted protein expression levels from the integration of as many possible features available from sev-
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eral OMICs data. Although we recognized that methods such as match-between-runs (MBR)22, DART-

ID23, and IceR24 have already been developed (and their limitations25), including a deep learning ap-

proach to extrapolate proteomics values from transcriptomics values26, none utilized a complex multi-

omics strategy to approach in a novel manner the limitations of proteomics.

The amount and complexity of the data render impossible the task of manually integrating all these

parameters. Even when inputting such data digitally, it is not straightforward to visualize which is the

optimal manner to predict proteomics values. This problem is characteristic of the current big data era,

which in  turn,  has  led to  the rise  of  algorithms that  use straightforward optimization strategies  to

rapidly process thousands or millions of observations. Some of those can be categorized as machine

learning (ML), which consists of a set of computer algorithms built to automatically improve their pre-

diction with increasing volumes of data27. Specifically, the algorithms focused on predicting are part of

the supervised learning algorithms, as they require a training phase in which they are exposed to the

value to be predicted (target) in conjunction with other variables associated with it (features). Two ma-

jor classes of machine learning algorithms exist: when predicting categories or labels (qualitative val-

ues), algorithms will perform a classification; while when what is predicted are quantitative values,

algorithms will perform a regression. The improvement in the accuracy of these models can be evalu-

ated based on how similar the predictions are to the actual observations. The accuracy is only relevant

to evaluate with new data (testing dataset), and not with the data used to train the model (training

dataset), in order to avoid the generation of a biased model due to overfitting.

In this manuscript, we hypothesized that using machine learning algorithms would allow us to estimate

the expression level of the protein not detected by proteomics out of all available data. For the omics

data, we made use of an in vitro dataset obtained from primary human hepatocytes microtissues which

includes 3 omics datasets obtained from the exact same samples batch: RNA-Seq (ribo-depleted li-

braries), miRNA-Seq (small RNA libraries), and proteomics (mass spectrometry). Both mRNA and

circRNAs quantification were extracted from the RNA-Seq data. We thus assessed the accuracy of di-

verse machine learning predictive models based on different algorithms and data-splitting strategies

with the ultimate goal to predict protein expression value from transcriptomics and other mRNA fea-

tures. 

5

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113



2 METHODS

2.1 DATASET & FEATURES

The description  of  the  biological  samples  used,  in  addition  to  the  proteomics  and transcriptomics

protocols followed to obtain protein and RNA expression values, can be found in the Supplementary

Methods.

Proteomics  expression  values  were  set  as  the  target  to  be  predicted.  We  set  as  features  protein

properties with nominal values extracted from UniProt that might affect their half-life. The features

were  the  following:  protein  length  (Length),  mass  (Mass),  quantity  of  each  amino  acid  (Aa_X),

organism (Organism), location on which the original gene was encoded (Gene.encoded.by), and the

database version of the protein sequence (Version..sequence.). From those, we also derived additional

features:  linear  density  (mass  divided by length)  and proportion of  each amino acid based on the

protein’s length (Aa_X_prop). Finally, we added some irrelevant features (protein sequence version) as

negative controls to inform us of the model reliability (based on the importance these features would be

given by those models). Concerning protein stability, we included all nine features extracted from the

supplementary table: R1-R7, PSI, and SD.

The expression values (in TPM) of protein-related transcripts were added as a feature. Furthermore, we

also added diverse transcript properties: strand, transcript length, percentage gene GC content, CDS

length, UTR length (or non-CDS length), and proportion of UTR length (UTR length divided by the

transcript length). MiRNA expression was also added as a feature, linking it to the transcript targets

they could potentially regulate. For this, we used the miRDB’s MiRNA Target Interaction (MTI) score

in two features in the ML algorithm:  one feature with only miRNAs that presented a high probability

of targeting such target (`stringent`, score >= 80), and another considering all possible regulations,

independently  of  their  score  (`all`).  CircRNA  expression  as  a  feature  (‘circ’)  was  linked  to  the

proteomics values based on the miRNA sponging effect of the former. We only utilized the expression

of those circRNAs that presented more than 7 targeting sites with a specific miRNA. We also added the

sponging effect of circRNAs as the feature ‘circ_score’.

Transcripts were named based on their Ensembl ID, while proteins were labeled with UniProt IDs. A

single UniProt protein could be associated with more than one ENST transcript, potentially with very

different features (expression level, transcript length, etc.).  Therefore, we needed to summarize the

value  from all  linked transcripts  in  a  single  feature.  As there  was  no  clear  advantage  to  select  a
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particular summary method over another, we created a feature for each of those different methods:

mean, median, minimum, maximum, sum, and standard deviation. This approach was not only applied

to features associated with transcripts coupled to proteins (and their log2-transformed values) but also

to the ones associated with miRNAs and circRNAs (and their log2-transformed values as well). Indeed,

this problem was also applicable to those molecules (to even a greater extent) when linking them to a

single  proteomics  value:  each  transcript  can  be  inhibited  by  several  miRNAs  and  each  of  those

miRNAs can be sponged by several circRNAs. We also extended this strategy to those features that

presented a  multiplicity  of  values  for  a  single  observation,  such as  the  protein  stability  data.  The

combination of all discussed variables led to a total of 196 features. 

2.2 PRE-PROCESSING

For both the pre-processing of the data and the construction of the machine learning models, we used 

the R library ‘caret’28. 

2.2.1 Creating dummy variables

Since categorical data (such as gender) cannot be inputted directly into a model, they needed to be

transformed into dummy variables. Dummy variables are binary features that indicate the presence (1)

or absence (0) of a categorical value. In our data, the dummy variables created were related to strand

information (positive (+) or negative (-) strand) and protein version sequence (presence or absence of

versions 1 to 7).

2.2.2 Identifying (Near) Zero-Variance and Correlated Predictors

To identify variables with no variance (Zero-Variance or ZV) or insignificant variance (Near Zero-

Variance), we used the function ‘nzv’ (frequency ratio > 95/5, percentage unique < 10%) described in 

‘caret’29. We then discarded those predictors from the dataset. To identify correlated variables 

(correlation > 0.75), we used the function ‘findCorrelation’ also from the ‘caret’ package. We 

discarded the identified correlated predictors from the dataset. The correlation plot was designed using 

the ‘corrplot’ package.

2.2.3 Centering and Scaling

Centering refers to the data transformation where the means of all features are set to a specific value

(i.e., 0) while scaling refers to the transformation where the standard deviation is also set to a constant

value (i.e., 1). These data transformations avoid a feature importance bias due to value size or scale. No
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imputation was performed, but instead, all observations with any missing value were removed from the

dataset.

2.2.4 Data splitting and algorithms used

The data split between the training dataset (80% of the whole dataset) and the testing dataset (20% of

the whole dataset) was performed based on 2 different strategies: sample names and protein names. For

each algorithm used, we performed recursive feature elimination using the ‘rfe’ function with (10-fold)

cross-validation  (CV)  resampling  and the  training  dataset.  After  recursive  feature  elimination,  the

model with the optimal subset size of variables for each algorithm was selected to predict the testing

dataset. As validation, we also used ‘rfe’ (10-fold cross-validation) for the whole dataset. To split the

dataset accordingly,  we first  generated the 10 folds using the ‘groupKFold’ function based on the

indicated categories (samples and proteins). These folds were used as input in the ‘folds’ parameter in

the ‘rfeControl’ function.

The algorithms tested were: Boosted Tree (‘bstTree’),  Random Forest (‘rf’), Bagged Model (‘bag’),

Boosted Tree (‘blackboost’), Lasso and Elastic-Net Regularized Generalized Linear Model (‘glmnet’),

k-Nearest  Neighbors (‘kknn’),  Cubist  (‘cubist’),  and Linear Regression (‘lm’).  All  algorithms were

used via ‘caret’, and thus, the default parameters used by ‘caret’ were utilized.

2.2.5 Performance based on GO terms

We selected the cardiac dataset, and subselected one sample as testing dataset, while the model training

was proceeded with the rest of samples using the 10 features shown in the results. After the training, we

predicted the testing dataset with the resulting random forest model, and combined the predictions with

the testing observations. We then extracted the GO terms associated for each protein in the testing

dataset, which we also combined with the observations and predictions. We discarded GO terms that

were categorized in less than 10 proteins. We evaluated the R2 metrics for each of the groups of pro-

teins associated to each GO term. We ranked the GO term groups from best to worst performing based

on R2. All the code used can be located in the following script on GitHub: ‘script/go_terms_analysis/

rsquared_on_different_go_terms.R’.

2.2.6 Imputation: a potential use of the random forest model

We also selected the cardiac dataset, but in this case including all proteomics missing values. We subs-

elected all Untreated (UNTR) samples. The training dataset only contained observations with quanti-

fied proteomics values, and the 10 features mentioned in the results. We used the random forest algo-

rithm for the training of the model. We then predicted the missing proteomics values using the newly
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trained model. We combined the results with the observed data, and sampled proteins with different

proportions of missing data. All code run can be found in the following script on GitHub: ‘script/impu-

tation/imputing cardiac values.R’.

3 RESULTS

To assess the ability of the regression ML algorithm to estimate the level of proteins, we produced a

dataset that presented the added value of having transcriptomics (both ribo-depleted and small RNA

libraries) and proteomics (LC/MS), all generated from the exact same sample batches to maximize the

interpretability of the interactions. This dataset was composed of a total of 115  in vitro samples (61

cardiac and 54 hepatic). The processing of all these samples (Methods) characterized an amount of ex-

pressed biological entities summarized in  Table 1.  The total number of expressed biological entities

was 48 266 and 48 715 for the hepatic and cardiac tissues respectively.

Table 1: Summary table of all quantified biological entities. Total refers to all possible entities to be 

identified. Expressed (N) refers to the number of entities that were quantified in at least 1 sample. Con-

stitutive (N) refers to the number of entities that were quantified in all samples. Expressed (%) and 

Constitutive (%) refer to the percentage of (constitutively) expressed entities based on the total number

of entities. Constitutive (% Expressed) refers to the percentage of constitutively expressed entities 

based on the number of expressed entities.

Tissue Total Ex-

pressed

(N)

Constitu-

tive (N)

Ex-

pressed

(%)

Constitutive

(%)

Constitutive

(% Expressed)

Proteomics Hepatic 1806 1806 283 100.00% 15.67% 15.67%

Proteomics Cardiac 2217 2217 247 100.00% 11.14% 11.14%

Linear

transcripts

Hepatic 211939 135655 894 64.01% 0.42% 0.66%

Linear

transcripts

Cardiac 211939 136860 933 64.58% 0.44% 0.68%

MicroR-

NAs

Hepatic 2744 1561 280 56.89% 10.20% 17.94%
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MicroR-

NAs

Cardiac 2744 1510 250 55.03% 9.11% 16.56%

Circular-

ized tran-

scripts

Hepatic 140317 95106 151 67.78% 0.11% 0.16%

Circular-

ized tran-

scripts

Cardiac 140317 100416 156 71.56% 0.11% 0.16%

To assess the possibility to predict protein expression levels for all genes using ML algorithm, we

needed to assemble a list of features, either parametric or categorical. From all the table 1 data, we ex-

tracted 12 features focused on the expression level of linear transcripts, 24 features on miRNA expres-

sion, and 12 features on circular RNA expression. We added 36 features on transcript characteristics

(strand, transcript length, etc.), 48 features on protein characteristics (Protein Mass, Protein Length,

etc.), 12 features on MTI (miRNA target interaction) scores, a feature on RNA-Sequencing depth, 6

features on circular scores (number of miRNA binding site per circular RNA), 12 features on circular

RNA expression, and 45 features on protein stability. This led to a total of 196 features on the raw

dataset. Even so, some of those features might be deemed irrelevant due to their multiplicity and inher-

ent structure. Those features might affect machine learning processes, depending on the algorithms’

inherent functionality, by decreasing their accuracy30. To avoid their inclusion, we applied several pre-

processing filters that removed non-informative features, which are described below.

3.1 ZERO- AND NEAR ZERO-VARIANCE VARIABLES

Some predictors can have a  unique value for  all  observations (Species:  Human),  which can make

models  unstable  or  decrease  their  fitness.  Those  features  can  be  named  as  Zero-Variance  (ZV)

variables, and they are generally removed. Similarly,  Near Zero-Variance (NZV) variables refer to

features that present a value in an overwhelming majority of observations (i.e.,  genes coded in the

nucleic genome vs genes coded in the mitochondrial DNA (Table 2)). These features are generally not

helpful in a cost/benefit ratio, as the underrepresented values might have an artificially bigger impact,

and these values may not even appear in the subpopulations generated by sub-sampling strategies,

generating a ZV variable. 
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Table  2: Examples of Zero- and Near Zero-Variance variables. The ‘Organism’ variable contains a

single unique value (‘Human’), thus this value has no predicting value. The ‘Gene encoded by’ vari-

able contains 2 possible values, of which ‘Nucleus’ represents more than 99% of all observations.

Even though this variable does indeed have more than a single value, the frequency of its values ren-

ders it non-informative.

Protein ID Organism Gene encoded by

A – Sample 1 Human Nucleus

B – Sample 1 Human Nucleus

C – Sample 1 Human Nucleus

D – Sample 2 Human Nucleus

E – Sample 2 Human Nucleus

F – Sample 2 Human Nucleus

G – Sample 3 Human Mitochondrion

Due to both ZV and NZV filters, 44 features were removed from the dataset. Only a few were labeled

as ZV, examples of which were ‘circ_min’ (minimum circular expression) and its log2 transformed

version ‘circ_min_log2’.  Some categories of variables were frequently labeled as NZV: almost  all

features related to miRNA scores;  all  maximum, median,  and minimum miRNA expressions (non-

transformed, log2-transformed, stringent,  and all  scores);  some related to circular scores and some

related to circular expression (Supplementary Table 1).

Table 3: Examples of ZV and NZV features with their respective frequency ratios and unique percent-

ages. The metrics for all NZ features were identical, as they only reported a single value (Inf: Infinite).

For NZV values, they all presented a frequency ratio above 19 (95/5) and a percentage unique below

10.

Feature name freqRatio percentUnique zeroVar nzv

circ_min Inf 0.004 TRUE TRUE

circ_min_log2 Inf 0.004 TRUE TRUE

Organism Inf 0.004 TRUE TRUE
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strand_sd 839.433 0.008 FALSE TRUE

transcript_length_sd 140.014 3.494 FALSE TRUE

percentage_gene_gc_content_sd 515.167 0.107 FALSE TRUE

cds_length_sd 64.757 2.098 FALSE TRUE

noncds_length_sd 112.344 3.427 FALSE TRUE

proportion_noncds_length_sd 336.033 3.693 FALSE TRUE

Gene.encoded.by 1198.048 0.008 FALSE TRUE

3.2 IDENTIFICATION OF CORRELATED VARIABLES 

Having correlated predictors is generally uninformative and sometimes detrimental to build models.

For  this  reason,  we  removed  features  that  presented  a  correlation  above  0.75.  For  each  pair  of

correlated  features,  the  feature  labeled  as  ‘highly  correlated’  was  the  one  that  presented  a  higher

correlation with the rest of the variables. Having the target inside the dataset would imply that the

features that showed a higher correlation with the target would get removed. To avoid this, we removed

the target from the dataset before filtering the highly correlated variables. In total, 93 features were

removed due to high correlation (Supplementary Table 2). As expected, the abundances of most amino

acids were highly correlated to each other, and to the protein mass and length. The same results were

not  true  for  the  proportion  of  each  amino  acid,  as  they  more  accurately  represent  their  presence

independently of the protein’s size. More surprisingly, among all non-filtered features, we observed all

possible grouping systems (minimum, mean, median, maximum, standard deviation, and sum of the

values they represented),  with no clear predominance for any of them, and thus none appeared to

present a tendency to be the most informative (i.e., the one with the lowest overall correlation with all

features).
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Figure 1: Correlation plot between kept features (horizontal axis) and filtered features (vertical axis).

The scale unit on the right side of the figure indicates the correlation values between the features

shown based on a range of colors: from dark red (extreme negative correlation) to dark blue (extreme

positive correlation), where lighter colors represent a lower absolute correlation value. 
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3.3 SPLITTING STRATEGIES

In both hepatic and cardiac datasets, the observations were part of two distinct groups: proteins and

samples. Having a random split of our data to form both training and testing datasets would not have

enabled us to elucidate the actual accuracy of the model. In a random splitting strategy, the training

dataset was highly probable to include most proteins and samples in their observations, rendering the

data split futile. Instead, we split (and trained) our models separately in two manners: splitting by sam-

ple and splitting by protein (Figure 2). This strategy was applied in the hepatic dataset for both training

and testing, and in the cardiac dataset for validation.
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Figure 2: Splitting strategies. For all splitting strategies, 80% of the data is used to train the models

(training dataset), while the other 20% is used for testing the trained models (testing dataset).  A. Ran-

dom splitting strategy, where the algorithm is trained and tested with observations from all proteins

and samples. B. Sample-splitting strategy: the trained models are tested with 20% of the samples. C.

Protein-splitting strategy: the trained models are tested with 20% of the proteins.
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3.4 MODEL TRAINING AND TESTING USING HEPATIC SAMPLE-SPLIT DATA

When splitting by sample, 80% of hepatic samples were used as the training dataset, while the other

20% was used as the training dataset. For every algorithm, the training dataset was inputted through

RFE (cross-validated with 10-fold). Out of all models trained with different subsets of features, the one

with the best accuracy was used for the testing step (Figure 3). In terms of root-mean-square error

(RMSE, Figure 3A), both k-Nearest Neighbors (‘kknn’) and Random Forest (‘rf’) showed the highest

accuracies (~ 1.25), the latter having a bigger deviation between training and testing RMSE values. To

evaluate these results in a more standard and informative manner, we also analyzed the R squared met-

rics (Figure 3B). In this figure, we observed that rf and kknn also showed the best performance (R2

close to 0.7), showing rf better performance in this case. 
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Figure 3: Accuracy results when splitting by sample. A: The blue bar refers to the RMSE value (left 

vertical axis) after training the model with 80% of the samples, and the orange bar refers to the RMSE 

value after testing the model with the other 20% of the samples. The gray line refers to the percentual 

change of RMSE (right vertical axis) between training and testing. B: The blue bar refers to the R2 

value (left vertical axis) after training the model with 80% of the samples, and the orange bar refers to 
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the R2 value after testing the model with the other 20% of the samples. The gray line refers to the per-

centual change of R2 (right vertical axis) between training and testing.

After  validating the  aforementioned results  by using RFE (10-fold  cross-validation)  for  the  whole

dataset (Supplementary Figures 1 and 2), we selected random forest (‘rf’) as the best performing model

when  splitting  by  sample.  The  optimal  subset  size  of  features  was  51  features,  but  after  close

examination of the RFE results (Supplementary Figure 3), we determined that subset sizes above 10

features had a minimal impact on RMSE. The 10 features were selected based on the ranking of feature

importance reported by the RFE analysis (Figure 4).

Aa_D_prop

Aa_M_prop

mirna_sum_stringent

mirna_mean_stringent_log2

mirna_mean_stringent

TPM_value_mean_log2

linear_density

circ_mean_log2

circ_mean

circ_sum

0 5 10 15 20 25 30 35 40 45 50

Overall Feature Importance

Figure 4: Top 10 features based on Overall importance by RFE when using the rf algorithm. These

values represent how important (on average) each feature is to the model, and thus which are the main

features used by the model to predict new proteomics values.
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3.5 MODEL TRAINING AND TESTING USING HEPATIC PROTEIN-SPLIT DATA

Similar to the splitting by sample strategy, a fifth of all proteins were split to be used as the testing

dataset, while the other 4 fifths were used as the training dataset. RFE (10-fold CV) was also performed

with similar optimal results as in the training dataset of the sample-splitting strategy (Figure 5). In this

case, the best RMSEs in the testing dataset include ‘bstTree’ and ‘rf’ (≈2), which almost doubled the

error shown when splitting by sample (Figure 5A). To understand how relevant this error increase was,

we also evaluated the R-squared values of those values (Figure 5B). We observed that a systematic gap

existed between the training and testing steps, leading to minimal R-squared values (R2 = 0.15 for rf).

20

324

325

326

327

328

329

330

331



 

 

 

Figure 5: Accuracy results when splitting by protein. A: The blue bar refers to the RMSE value (left

vertical axis) after training the model with 80% of the proteins, and the orange bar refers to the RMSE

value after testing the model with the other 20% of the proteins. The gray line refers to the percentual

change of RMSE (right vertical axis) between training and testing. B: The blue bar refers to the R2

value (left vertical axis) after training the model with 80% of the proteins, and the orange bar refers to
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the R2 value after testing the model with the other 20% of the proteins. The gray line refers to the per-

centual change of R2 (right vertical axis) between training and testing.

For all the results shown above (Figures 3 and 4), we also validated the results using RFE with the

whole dataset (no training-testing split), where the folds or splits in the cross-validation step (10-fold)

contained exclusively a set of proteins (Supplementary Figures 4 and 5).

3.6 RANDOM FOREST MODEL VALIDATION WITH A CARDIAC SAMPLE-SPLIT DATA

Random forest being the best performing model, we decided to validate its accuracy to predict new

samples using a cardiac dataset, which was built in the same manner as the hepatic one. The validation

included using the same algorithm (rf) with the same top 10 features (Figure 4), and training and vali -

dating it with the cardiac data (27602 observations). The resampling was performed via Cross-Valida-

tion (10-fold). Using the cardiac data and the specified model, we validated that the accuracy remained

robust across different cell types (RMSE = 1.04, R2 = 0.75; Supplementary Figure 6).

The only remarkable difference was the feature importance ranking given by the RFE in the hepatic

data (Figure 4) compared to the feature importance ranking given by the model itself with the cardiac

data (Figure 6). In the latter, linear_density is given the utmost importance, and the importance of the

three RNA subtypes relate to how close they are to the protein level: mRNA level, followed by miRNA

levels, and finally circRNA levels.
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Figure 6: Feature Overall Importance for the rf algorithm when trained in Cardiac data. These values

represent how important (on average) each feature is to the model, and thus which are the main fea-

tures used by the model to predict new proteomics values.

 

Therefore, the RMSE and R-squared metrics for both cardiac and hepatic models showed that building

a random forest model using the aforementioned features allowed to predict with high accuracy full

proteomics’ samples. Comparing the testing results between sample- and protein-splitting, we observed

that the high accuracy was especially due to the prediction of proteins that have already been trained

on. Observing the feature importance ranking (Figure 6), we could observe that different biological

entities presented a different relevance to the model’s accuracy, thus missing some variables will have

a minimal effect on the decided outcome.

3.7 PERFORMANCE BASED ON GO TERMS

Even though we obtained good substantial results for the prediction of proteomics values at a sample level, these

results were an overall representation of all proteomics values, and thus did not inform which protein groups 
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would be better or worse predicted by our model. For this reason, we decided to stratify the predictions based on 

GO terms, and then evaluate their R2 metrics when compared to their counterpart observations. The overall met-

ric for the testing data/sample in this experiment was R2 ~ 0.82. What we observed (Figure 7) is that there were 

considerable differences in R2 depending on the GO term the proteins were associated to. While the 6 best-per-

forming GO terms (inflammatory response, magnesium ion binding, mitochondrial nucleoid, unfolded protein 

binding, ATPase, and negative regulation of cell growth) had near perfect results (R2 > 0.9), the worst perform-

ing ones (ligase activity, polysomal ribosome, small ribosomal unit, stress fiber, cell migration, and proteasome 

complex) showed metrics half the performance shown in the overall results (R2 ≤ 0.4). 

Figure 7: R2 results categorized in GO terms. The X axis represents the R2 values, while the bar labels represent the GO terms. Only the 6

best and 6 worst GO terms are depicted.

3.8 IMPUTATION: A POTENTIAL USE OF THE RANDOM FOREST MODEL

As the model showed a promising accuracy for predicting whole replicate samples, we hypothesized that the 

model could also be used for imputation of missing values for proteins that were at least present in one of the 

samples of the training data. To showcase a possible example, we trained a random forest model with all the 

Untreated samples (UNTR) and the corresponding 10 features. The example (Table 4) showed that the pro-

teomics values imputed fitted the range of quantification observed in the quantified values of the same protein, 

while differing from each other from sample to sample. We also observed that in these samples, values tend to 

be missing simoultaneously for samples taken at the same time.
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Table 4: Imputation of Proteomics Cardiac samples. Every row is identified with a UniProt ID, and represents a protein quantified in at 

least one of the untreated samples of the cardiac dataset. Each column represents each Untreated (UNTR) sample from the cardiac 

dataset. On the column names, the first number represents the hour at which the sample was taken (2h, 8h, etc.), while the second identi-

fies the replicate number (002_1 was the first replicate sample taken after 2 hours). The proteins (rows) are sorted by proportion of 

missing data in a increasing order. Values with a dark green background were quantified by proteomics. Values with a light green back-

ground were imputed/predicted by the random forest model. 

002_1 002_2 008_1 008_2 008_3 024_1 024_2 024_3 072_1 072_2 072_3 168_3 240_1 240_2 336_1 336_2 336_3
P22695 15.70 16.09 14.58 14.23 13.91 14.15 14.26 13.83 13.83 13.95 13.89 14.90 14.72 14.35 16.75 16.83 16.94
P51553 12.41 11.03 13.87 13.99 13.76 14.70 14.67 14.82 13.55 13.64 13.34 13.26 13.28 13.45 14.37 14.15 14.27
P62910 15.52 14.49 14.78 14.45 14.68 14.75 14.87 15.04 13.76 13.98 13.67 14.61 15.52 13.81 14.57 14.85 14.49
Q15185 14.43 13.89 14.39 14.28 14.16 14.01 13.99 14.14 14.33 14.17 14.04 11.92 13.48 13.70 13.79 13.95 13.99
P45974 14.66 14.51 11.04 11.26 11.43 13.29 13.24 12.74 14.10 13.16 13.73 13.85 13.07 12.82 13.38 13.65 14.04
P16070 12.72 12.89 13.47 13.55 13.79 13.45 13.22 13.21 13.25 13.44 13.31 12.65 12.92 13.17 12.96 13.28 12.97
P54136 10.93 10.78 11.86 11.91 11.76 12.43 12.57 12.18 13.21 13.13 13.26 12.56 13.23 12.06 11.39 9.76 11.81
O43681 13.08 13.37 13.37 13.77 13.48 13.40 13.31 13.29 12.63 13.06 12.06 12.04 11.83 12.10 11.84 12.14 12.01
P50440 13.22 12.88 13.02 13.05 13.45 12.35 12.45 13.93 14.03 11.90 13.19 13.17 13.16 13.09 13.19 13.18 13.27
P47897 12.93 12.56 13.03 12.90 12.79 12.62 12.62 12.62 12.62 12.62 12.62 12.62 12.62 12.62 12.07 12.29 12.53
Q14141 14.81 14.44 13.49 14.06 13.70 13.48 14.25 13.89 13.83 13.74 14.10 13.41 14.06 14.49 14.17 13.63 13.73
P40763 12.12 11.82 12.29 11.98 11.54 11.47 11.53 11.50 11.13 11.88 12.03 12.18 11.63 11.65 12.24 11.40 11.37
P04844 12.23 14.51 13.74 13.74 13.78 14.13 13.63 13.77 13.94 13.92 13.71 13.75 13.88 13.89 14.02 13.66 14.42
Q9Y6E2 11.52 11.90 12.53 12.32 12.10 12.37 12.22 12.18 12.57 11.89 11.71 12.21 11.04 10.25 12.02 12.17 12.10
P13796 10.98 11.25 11.55 11.37 11.30 11.32 10.97 11.24 10.97 11.25 10.82 11.26 11.25 11.27 11.95 9.84 9.83
Q96KP4 12.09 10.96 11.82 11.97 11.88 11.82 12.05 12.11 11.94 12.51 11.89 12.23 11.95 12.46 12.41 12.55 12.53
Q96RQ3 13.00 12.79 12.98 12.79 12.59 12.98 12.93 12.86 12.59 12.79 12.79 12.24 12.59 12.80 12.93 12.59 12.86

4 DISCUSSION

We wanted to build a machine learning model that tightened the gap between transcriptomics and

proteomics, using the former as a predictor of the latter.  The results indicate that a random forest

model, by using only 10 features, can predict with good accuracy (R2 = 0.74) proteomics values from

samples in similar circumstances to the ones where it has been trained on. However, predicting protein

expression by training the model on other proteins was highly inefficient (R2 = 0.15).

Interestingly, 7 out of the 10 features used by the model were related to RNA expression (Fisher's

Exact Test for Count Data, p-value = 0.0027). Out of these 7, the most important (as expected) was

mRNA expression, which is directly linked to translation, and thus, to protein expression. Followed in

feature importance came 3 features related to miRNA expression, which is known to inhibit translation

to a vast number of coding transcripts. The least important features related to the 3 RNA subtypes

referred  to  circular  RNA expression.  Circular  RNAs have been hypothesized  to  work  as  miRNA

sponges, and so even though they are involved in post-transcriptional regulation, they have a more

indirect effect. It is postulated that most circular RNAs are by-products of faulty splicing31, and thus
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their regulation might just be mainly due to the regulation of their host gene. Even so, their consistent

expression would still allow them to have an impact on post-transcriptional regulation.

Linear density (mass of a protein divided by its length) and the proportions of both Aspartic Acid and

Methionine were the most important features for the final random forest model. One hypothesis to

explain such model behavior was that these three features (and especially linear density) helped to

categorize observations protein-wise: an observation with similar values across the three top features

could be likely categorized as a similar protein, and thus, also presenting a close expression value. This

already made the  model  highly accurate  when trained and tested  with similar  samples.  The other

features (related to the current transcript expression level) might have helped to succinctly tune the

protein expression already observed in similar proteins during the training step. Another hypothesis,

only  relevant  to  linear  density,  was linked to  the  proteomics  technology itself:  linear  density  was

directly linked to protein mass, which is used (along with charge) to identify and quantify protein in

mass spectrometry; hence, its relevance as a feature. In addition, having linear density as one of the

main features underlines the importance of the training data for our model. A random forest model can

only predict values learned beforehand, thus we hypothesize that linear density helps the model to find

the most similar protein when predicting. Thus, the use of this model should be to predict proteins that

are already quantified in  some of  the samples,  limiting the effect  of  potential  false  positives,  and

therefore also limiting the potential  false  biological significances created by false  positives due to

differences that only occur at the transcriptional level.

The observed divergence between the feature importance ranking in RFE and the validation model may

be due to how RFE evaluates features while using cross-validation. At the beginning of the process,

RFE built 10 different training-testing combinations (based on the 10 folds), and, based on the initial

ranking of all the features in each of those combinations, features were removed from least to most

important. Each feature was ranked based on the average of all the rankings performed during the

feature elimination. In the validation model, instead, the feature importance ranking represented the

concrete importance of each variable for that specific model and algorithm. 

Considering the relatively high accuracy of the random forest model to impute protein expression from

a  reduced  subset  of  features,  we  see  an  application  of  this  proposed  strategy  to  contribute  to

compensating for the lack of depth of proteomics. Indeed, since proteomics only allows the analysis of

a subset of proteins per sample,  with usually only a  partial  overlap between samples (even at  the
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replicate level), our model would be able to predict and fill those values, increasing the strength of the

statistical analysis of such proteins across treatments. 

However, as shown in the GO-term-performance results, the metrics are not uniform for all categories

of proteins, and this should be taken into consideration when performing analysis with a specific focus

on  a  certain  protein  category.  This  difference  may  be  the  result  of  three  different  causes:  1/  the

correlation of protein abundance with their coding RNA levels may differ across GO categories, 2/ as

different  GO categories  contained an unequal  number of  proteins,  the size of  a  GO category was

inversely proportional to the R2 metric (a smaller random set of values has a higher chance of obtaining

a  high  R2,  and  vice  versa),  3/  GO categories  with  stable  protein  abundances  (and mRNA levels)

performed better than otherwise. 

An important detail to consider is that drastically different data is generated when utilizing different

methods to quantify proteomics intensities: from values that correlate with absolute abundance based

on the MS signal of histones (also referred to as the “proteomic ruler” approach32),  going through

intensities inferred based on the ratio of detected peptides (pertaining to each protein) between samples

(MaxLFQ33), to isobaric proteomics data (TMT/iTRAQ); wherein changes in the peptide intensity from

one sample has a ripple effect on the intensities from all the co-isolated samples34. In our study, the Hi3

label free method35 was used to quantify protein intensities, hence values from absolute abundance

methodologies are expected to perform similarly. Despite that, isobaric proteomics methods should not

be entirely dismissed, as the range of values predicted by a random forest model is highly dependent on

the  range  of  the  data  the  model  is  trained  on.  The  compositional  nature  of  isobaric  proteomics

experiments results in signals that are highly batch-dependent.  Our predictions would not take the

batch structure into account, and as a result, a correction would be required. Thus, the inability of

random forest models to extrapolate does make them an appealing option for compositional data, but

simoultaneously may be a limiting factor for absolute intensity values.

Based on the inefficient accuracy for all models tested in the protein-splitting strategy, we hypothesize

that even though we tried to include as much information related to protein expression as possible

(transcript expression,  transcript properties,  protein characteristics,  and stability),  predicting protein

expression anew (without ever training the model with that protein’s data) may have required of an

even more complete (i.e. RNA binding proteins, long non-coding RNAs, transcript half-life, etc.) or

different set of features. For example, a study by Barzine et al26 showed improved results (R2 = 0.51)

extrapolating  proteomics  values  while  only  using  gene  expression  data,  GO  terms,  and  UniProt
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keywords. Future research should focus on either including the last two features as features to the

dataset,  or  improving  their  deep  learning  model  by  including  our  (or  other)  post-transcriptional

features.

In conclusion, after developing different machine learning models to predict proteomics values out of

transcriptomics ones, we have achieved to build a random forest model that can predict with significant

accuracy the protein expression of a new sample. Building a random forest model with the selected

features can thus be used to predict the missing data inherent in proteomics studies, independently of

the cell’s  nature.  The code used for  the  pre-processing of  data  and the  model  building process is

available on Github (https://github.com/jochotecoa/ml_proteomics  )  36. 
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Abstract

In next-generation transcriptomics, differential expression analysis has established itself as one of the

main strategies to evaluate the effects of two biological conditions on the gene expression of different

biological samples. However, the current statistical workflows provide very lenient standardized filters

for the selection of differentially expressed genes, leading to an important number of false positives.

Authors usually include their arbitrary thresholds, leading to statistically significant genes with expression

profiles that, if individually analyzed, would not be considered biological relevant to investigate further.

In  this  study,  we  focused  on  the  development  of  a  machine  learning  model,  called  AutoRel,  which

encompasses not only the most common statistical evaluations but also all the intricacies that characterize

biologically relevant changes based on manual observations. AutoRel classifies each assessed gene into

“relevant”,  “irrelevant”  or  “dubious”.  We  evaluated  the  model  using  both  simulated  datasets  and

biological  interpretation  of  the  selected  genes.  GitHub  Repository  at

https://github.com/jochotecoa/AutoRel.git .

Introduction

Next-generation sequencing (or NGS) of RNA (RNA-seq) has brought the  capacity  to  sequence and

quantify virtually all RNA molecules within a given sample, being a great advancement from single or

few  molecule  identification  methods  such  as  Northern  Blot  or  even  a  limited  set  of  transcripts  in

microarray technologies. RNA-seq is especially relevant for contrasting different biological conditions,

where the effects at the molecular level can be analyzed in different conditions, such as cells during

tumorigenesis or upon exposure to toxic compounds. For the evaluation of these differences, multiple

tools have been developed since the dawn of transcriptomics, however, their usage can be mishandled

without a proper understanding of the mechanisms behind it. This problem is especially relevant for the

selection of  differentially  expressed  genes  (DEGs)  based solely  on statistical  results.  Using standard
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statistical  criteria,  the  selected  DEGs between two biological  conditions  frequently  display  low read

abundance,  inconsistent  expression  among  the  replicates,  or  the  presence  of  outliers.  Establishing  a

reference  and  guideline  to  avoid  such  pitfalls  is  critical.  We  recently  collaborated  in  the  R-ODAF

framework1, which aimed to standardize omics data analyses for regulatory applications, specifically in

the toxicogenomics discipline2. Selecting a list of genes affected by a compound exposure for regulatory

decision-making  requires  a  high  level  of  stringency,  as  false  interpretation  could  have  drastic

consequences. 

The development of R-ODAF originated primarily from the necessity to implement novel filtering criteria

based on the expression profiles of the selected DEGs. The selection process was performed by analyzing

the  significantly  different  genes  and  evaluating  their  biological  relevance  by  considering  the

quantification values across all samples and groups. Metrics such as fold change and p-values 3-5 can be

misleading  (and  lead  to  false  positives)  if  not  evaluated  in  their  proper  context  due  to  common

characteristics  such as  the  presence of  outliers  or  a  low read  quantification.  Systems to  prevent  the

inclusion of statistically significant genes that presented such properties (thus probably not biologically

relevant) were set up in the R-ODAF pipeline. However, despite being designed to decrease the frequency

of irrelevant genes from the DEG set, the R-ODAF is still based on an adjusted p-value threshold (FDR <

0.01, FDR: False Discovery Rate adjustment), which by definition creates an arbitrary cut-off. Moreover,

applying a stringent pipeline essentially generates more false negatives, especially in the typical context

of  experiments  performed  in  triplicates.  A  filtering-based  method  only  includes  the  most  frequent

characteristics of genes that would be manually discarded, thus frequently requiring a manual selection

afterward.

An alternative to the threshold-based selection of DEGs would be to apply a machine learning method

trained on gene expression profiles considered “relevant” by experts  (relevant  defined as “worthy of

further  investigation”  after  an  analysis  of  the  quantification  values  and  their  distribution  in  each

condition). Advancements in artificial intelligence allow practitioners to automatize labeling processes

(classification)  or  predictions  of  numerical  values  (regression)  through the  use  of  enough data 6-9.  In

classification  tasks,  data  is  required  for  the  nascent  model  to  differentiate  between  labels  via  their

different features or characteristics. These methodologies can learn the synchronicities of the labels across

numerous examples without the need for explicitly and manually specifying such differences. In addition,

the selection of the variables will rely on how informative they are for the classification of each label, and

thus by analyzing the predictive model one can also derive which features and to which degree each of

them is important.  
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In this study, we developed and tested machine learning models to automate the biologist-supervised

DEG selection process. The best performing model, called AutoRel, informed us of the importance of

each  of  our  previously  designed  norms,  while  simultaneously  providing  a  novel  system  to  select

biologically  relevant  genes  without  the  expertise  needed to evaluate  them or based purely on a  few

arbitrary thresholds. Due to the subjective nature of the notion of what is “biologically relevant”, AutoRel

outputs not only a “relevant” and “irrelevant” list of genes, but also a class named “dubious” for the gene

profiles  subject  to  debate  during the training.  Ultimately,  the  AutoRel  selected list  of  genes  (named

“relevant” list) is compared to conventional methods. 

Results

The transcriptomics dataset consisted of 60683 assessed genes in 42 samples: 21 APAP-treated samples

and 21 control samples. From this original dataset, we built three datasets based on different comparisons

based on the number of replicates: 21 versus 21 (all time points), 9 versus 9 (2h, 8h, 24h), and 3 versus 3

(2h). For this analysis, we considered all samples in each group (treatment or control) as replicates. For

each  of  these  datasets,  the  quantification  barplots  of  individual  genes  were  used  to  manually  label

hundreds of genes into two categories: ‘irrelevant’ or ‘relevant’, based on whether the gene expression

profile was considered worthy of further investigation due to biological differences. Observations that did

not suit either of those classes were classified as “dubious”. An example of each class is displayed in

Figure 1. After labeling genes for all three datasets, we assembled all labeled genes into a new dataset,

identified as ‘MixR’. Next, we derived features related to the expression levels that might help train a

machine learning model to predict the categories of new genes based on the manually annotated data. In

total, 160 features were obtained for all datasets (Supplementary Methods). Before the model training,

each dataset was pre-processed to remove uninformative or redundant features. We trained and tested all

datasets with 11 machine learning algorithms, whose results can be found below. 

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84



Figure 1: Quantified expression of genes from different classes. A: Example of a gene with a relevant biological difference. B:

Example of a gene with an irrelevant biological difference. C: Example of a gene with a dubious biological difference.

Selecting the best-performing models in the 3R, 9R, 21R, and MixR datasets

To decide which was the best performing model, we did not utilize accuracy, which is easily biased

towards  the  class  with  the  highest  number  of  observations.  Instead,  we  averaged  the  sensitivity,

specificity, PPV, and NPV for each class, which we named “equilibrated accuracy”. We will use the

MixR dataset as an example to show the process of the selection of the best model (in each dataset), but

all  datasets were pre-processed and trained in the same manner,  including the same algorithms.  The

results  for  the  models  built  in  the  other  three  datasets  (3R,  9R,  and  21R)  can  be  found  in  the

Supplementary Results. 

The ‘treebag’ algorithm showed the best performance out of 10 tested algorithms in total (Figure 2A),

closely followed by ‘rf’ (both algorithms also performed the best in the 3R and 21R datasets). Even with
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the biggest training dataset, four algorithms (‘rpart2’, ‘lssvmRadial’, ‘pam’, and ‘CSimca’) were not able

to predict ‘dubious’-class observations.

CSimca

naive_bayes

pam

lssvmRadial

rpart2

multinom

sparseLDA

kknn

rf

treebag

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Equilibrated Accuracies (3-9-21R)

relevant irrelevant dubious

Figure  2:  Selection  and  evaluation  of  the  best-performing  model  using  MixR as  the  training  dataset .  A: Equilibrated

accuracies for the models built with 11 machine learning algorithms using the MixR dataset. The models were sorted by the
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average of equilibrated accuracies in descending order.  B: Variable importance for the 10 most important features sorted in

decreasing order for the ‘treebag’ model trained with the combined dataset.

For the variable  importance of  the  model  (Figure  2B),  ‘pvalue’  and ‘padj’  became again  (as  in  the

‘treebag_3R’ model) the most important features. Similarly, variables featured as the most important for

the best-performing models in differing training datasets were also found in the top 10 features for the

combined  dataset:  ‘fdrlowerthan0.01’,  ‘threequartilediff_rule’,  ‘q3belmin’,  ‘rule_cpm_0.75_above_1’,

‘lfcSE’, and ‘baseMean’. Curiously, two additional features were also part of the top 10 that were not

observed before: the minimum expression value for the treatment group (‘quantile_0._APA_The’), and

the  proportion  of  non-expressed  samples  in  the  treatment  group

(‘Proportion_nonexpressed_samples_APA_The’).

Testing the best-performing models with all the testing datasets

Even though the four best-performing models were trained and tested with their characteristic datasets,

we hypothesized that these models might present different predicting capabilities for datasets not similar

to the ones they were trained for. To test the hypothesis, we tested each of the best-performing models

with each of the corresponding test datasets and calculated the Cohen’s Kappa Coefficient. 

Table 1: Kappa score for all best-performing models. Each row represented one of the best-performing models, labeled by the

name of the algorithm and its training dataset. Each column, in turn, represented the testing dataset utilized to obtain the Kappa

score.

Testing datasets

3R 9R 21R MixR Average score

B
es

t 
m

od
el

 in

ea
ch

 d
at

as
et

treebag (3R) 0.970 0.894 0.485 0.849 0.800

sparseLDA (9R) 0.614 0.918 0.316 0.609 0.614

rf (21R) 0.538 0.919 0.915 0.658 0.757

treebag (MixR) 0.974 0.955 0.912 0.946 0.947

Average score 0.774 0.922 0.657 0.766

As seen  in  the  results  (Table  1),  substantial  differences  were shown when training and testing  with

different datasets. The best performing model for predicting any contrast independently of the number of

replicates was the treebag (MixR) model,  which we referred to as ‘AutoRel’.  Remarkably, the latter

model presented a higher Kappa Score when testing the 3R and 9R datasets than the models trained with

those datasets. In turn, the testing dataset with the highest average Kappa Score (the testing dataset best

predicted by all models) was ‘9R’. The quality of the dataset did not appear to influence directly both
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training  and  testing  steps,  as  the  average  training  and  average  testing  scores  presented  a  Pearson

correlation of -0.521. 

Model comparison

To further  investigate  how the  ‘treebag_MixR’  model  classified  genes  as  ‘relevant’,  we  decided  to

compare the predictions of this model with several methods that could be used to select genes of interest

in a transcriptomics study: FDR (p.adjusted value) < 0.05, FDR < 0.05 in combination with a log2 fold

change > 1.5, FDR < 0.01, FDR < 0.01 in combination with a log2 fold change > 1.5, and R-ODAF. The

statistical values were obtained using DESeq2. The input used to compare the different methods were the

full 3R, 9R, and 21R datasets. 

For the first comparison, we made use of the 3R dataset for which results showed the highest difference

between ‘relevant’ and significant genes (Figure 3A). In addition to the ‘relevant’ set size being 1.8 times

bigger than the significant set size, only 39.4% of the ‘relevant’ genes were significant (FDR < 0.05), and

of these, 69.7% presented an L2FC > 1.5. Although only 28.1% of the ‘relevant’ genes were detected by

R-ODAF, 100% of the R-ODAF genes were ‘relevant’. 
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Figure  3: UpSet plot of the intersections between the evaluated methods using the diverse datasets. A:  3R dataset.  B: 9R

dataset. C: 21R dataset. Set Size referred to the total number of genes positively labeled or predicted by any of the methods

For the 9R dataset (Figure 3B), the ‘relevant’ class was no more the smallest group by Set Size. The

impact of significance for the ‘relevant’ genes was decreased: 80.7% of them were significant (FDR <

0.05). The 9R results, when compared with the 21R results, showed that the ‘relevant’ class was less

reliant on p-values the fewer replicates were used for the contrast. The decreased reliance on statistical

values also decreased the proportion of R-ODAF genes in the ‘relevant’ set (60.3% of ‘relevant’ genes

detected by R-ODAF), although simultaneously almost all genes in the R-ODAF set were also ‘relevant’
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(94.8% of  the  R-ODAF set  of  genes  were  also  ‘relevant’).  72.6% of  the  significant  (p.adj  <  0.05)

‘relevant’ genes presented an L2FC > 1.5. For the significant genes (FDR < 0.05), 68.1% of them were

also ‘relevant’. 

Lastly, we performed the same analysis using the 21R dataset as input (Figure 3C). For this number of

replicates, the genes labeled as ‘relevant’ appeared to be a more restricted subset of genes compared to

any other significant set of genes (as seen in the Set Size). The ‘relevant’ genes were mostly significant

(99.7% of them with an FDR < 0.05), and slightly biased to have a high L2FC (64.3% of the significant

‘relevant’ genes presented an L2FC > 1.5). The ‘relevant’ genes also presented a high overlap with R-

ODAF (87.0% of them detected by R-ODAF), but R-ODAF identified in total more genes (76.3% of the

latter were ‘relevant’). For the significant genes (FDR < 0.05), 46.15% of them were also ‘relevant’,

showing that for this number of replicates, significance was a necessary condition for ‘relevant’ genes,

but not sufficient.
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Analysis of exclusively ‘relevant’ genes167



The results of the model in the 3R dataset showed that the majority of the ‘relevant’ genes were not

statistically significant using an FDR threshold of 0.05. We thus further analyzed these gene expressions

to visualize how a gene expression change could be simultaneously relevant and not significant. For this

reason, we extracted the normalized reads of the first three genes from the “exclusively relevant” set

(M6PR, DBNDD1, and RBM5), and generated a barplot and boxplot for each of them (Figure 4A, Figure

4B,  and  Figure  4C).
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Figure  4:  Barplot  and  boxplot  of  the  normalized  count  expression  of  exclusively  relevant  genes.  A: AM6PR

(ENSG00000003056, FDR = 6.25E-01. L2FC = 0.38). B: DBNDD1 (ENSG00000003249, FDR = 4.68E-01, L2FC = -0.67). C:

RBM5 (ENSG00000003756, FDR = 6.52E-02, L2FC = 1.73). In the barplot (left half), the gray columns represented the gene

expression in the control samples, while the pink columns represented the gene expression in the treated samples. The boxplot

(right half) represented the same values while summarizing the values for each condition in a boxplot.

M6PR  gene  expression  (Figure  4A)  showed  that,  in  a  triplicate  setting,  a  single  sample

(ConDMSO_024_3) could affect substantially the statistical values, while still being potentially relevant

for further investigation. For DBNDD1 (Figure 4B), a pattern could be seen for both groups triplicate-

wise, while expressing in different scales, the low number of replicates makes these two conditions not

significantly different. 

Lastly, the expression levels of RBM5 (Figure 4C) showed a clear difference between both conditions,

including a high log2 fold change (1.73). Even so, the use of a standard 5% FDR threshold identified the

expression levels in the treatment group as not significantly different from the control condition. 

Effect of relevant genes on biological interpretation

The AutoRel  model  detected 3839,  2293,  and 2686 relevant  genes  in  the  3R,  9R,  and 21R datasets

respectively. To evaluate the effect on the biological interpretation of the genes labeled by the model, we

decided to use the relevant gene set derived from the 21R dataset. As a contrast gene set, we selected the

significant (p. adj. < 0.05) genes from the same dataset, with a set size of 5811 genes.

The analysis showed that the GO terms in the three different ontologies (Biological Process, Biological

Function,  and  Biological  Component)  were  simplified  in  the  relevant  genes  in  comparison  to  the

significant ones (Figure 5). In the Biological Process ontology, GO terms exclusive to the significant gene

set  were  very  variable  and  unrelated  to  hepatocytes  exposed  to  APAP.  Some  examples  were

spermatogenesis (p-value = 4.51E-5), male gamete generation (p-value = 6.04E-5), regulation of neuron

differentiation (p-value = 1.77E-4), and oocyte development (p-value = 2.54E-4). Out of the exclusive

GO terms in the relevant gene set, the most significant were response to stimulus (p-value = 9.51E-5) and

biological_process (p-value = 5.02E-4). The other three GO terms were related to coagulation (negative

regulation  of  coagulation,  negative  regulation  of  blood  coagulation,  and  negative  regulation  of

hemostasis), which has been hypothesized to be enhanced via p62 in APAP-induced liver injury29.

177

178
179
180
181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204



Figure 5: UpSet plot of the different enriched GO terms between significant (FDR 0.05) and relevant genes. Set Size shows the

number of enriched GO terms for a specific method (FDR < 0.05 or RELEVANT) in a concrete ontology (Process, Function, or

Component). The Intersection Size shows how many enriched GO terms were exclusive for that method (single dot) or shared

with the equivalent method for the same ontology (two dots connected by a line).

For the Biological Function ontology, the only shared GO term between both methods was anion binding.

The  significant  gene  set  showed  a  diverse  range  of  terms  related  to  the  catalytic  activity

(phosphotransferase  activity,  kinase  activity,  sterol  14-demethylase  activity)  and  molecule  binding

(peptide hormone receptor  binding,  CD4 receptor  binding,  drug binding),  while  the  relevant  set  was

limited to cytoskeletal protein binding. Lastly, the Biological Component ontology showed, despite the
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lower  number  of  GO  terms  in  the  relevant  set,  the  highest  overlap  of  the  three  ontology  classes.

Interestingly, the significant set presented ‘neuron part’ as an enriched GO term, but not the relevant set.

Dataset simulation

To evaluate the predictive value of the model, we generated simulated datasets with different numbers of

replicates: 50 (50R), 21 (21R), 9 (9R), and 3 (3R). For every number of replicates setting, 100 iterations

were performed to avoid skewed results.  As predictors,  we selected significant genes (FDR < 0.05),

relevant genes, and a combination of relevant and dubious genes. We compared the predicted results with

the original population difference and evaluated it using several parameters: Accuracy, Kappa, Sensitivity

(or Recall), Specificity, PPV (or Precision), NPV, and Balanced Accuracy. 

In the 50R setting (Supplementary Figure 7), relevant genes presented a similar accuracy to significant

ones.  Kappa and sensitivity showed the biggest  decrease,  the latter of  which (in combination with a

slightly increased specificity) led to a decrease in the balanced accuracy. PPVs were instead increased, in

combination with a  slight  decrease in  NPVs. Including the dubious genes (Supplementary Figure 8)

decreased the differences with the significant genes among all metrics. In the 21R setting (Supplementary

Figures  9  and  10),  highly  similar  results  to  the  50R  setting  were  found  (for  both  relevant  and

dubious+relevant groups), which suggested that similar results might be interpolated in the range between

21 and 50 replicates. 

In  the  9R  setting  (Supplementary  Figure  11),  the  differences  across  metrics  generally  decreased.

Accuracy continued to be similar between relevant and significant genes. Kappa was also still decreased

for  relevant  genes,  but  the  difference  was  smaller.  Sensitivity  was  also  slightly  decreased,  but  in

combination with an almost unchanged specificity, led to an almost equally balanced accuracy between

both  groups.  The  PPV was  also  mostly  decreased,  while  the  NPV was  overwhelmingly  unaffected.

Including dubious genes increased sensitivity but at the cost of PPV (Supplementary Figure 12).

In the 3R setting (Supplementary Figure 13), we found the biggest differences across groups. Accuracy

was slightly decreased, and kappa, although also decreased, showed a much bigger variance depending on

the dataset/iteration. Sensitivity was strongly increased, while specificity was slightly decreased, thus

balanced accuracy was only marginally decreased. The increase in sensitivity was at the cost of PPV,

which  strongly  decreased.  Adding  dubious  genes  mostly  decreased  most  metrics:  accuracy,  kappa,

specificity, PPV, and balanced accuracy (Supplementary Figure 14).
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Discussion

As an alternative to the typical selection of differentially expressed genes using a statistical threshold, we

chose to build a model that would select genes with biologically relevant differences across treatments

trained on the criteria selection we generally use for further validation. For this, the model was trained

with our decision-making based on the characteristics observed in the expression of hundreds of genes.

Training a ‘treebag’ algorithm with observations from diverse datasets resulted in the optimal model to

classify ‘relevant’, ‘dubious’, and ‘irrelevant’ genes. 

Among the best-performing algorithms trained on distinct training datasets (3R, 9R, 21R, and MixR), the

model that showed the best overall Kappa accuracy was the one trained with the MixR dataset using the

‘treebag’  algorithm (which  we named ‘AutoRel’).  This  was consistent  with  our  suppositions,  as  the

training dataset contained the highest number of observations in addition to the most variance among

them. 

Analyzing the variable importance of the AutoRel model allowed us to evaluate what factors were critical

for selecting genes as potentially relevant in a biological setting. As expected, P-values and FDR values

were vital predictors for the model, as extreme changes statistically tended to refute the null hypothesis.

Secondly, the ‘threequartilerule’ feature (Supplementary Methods), which refers to gene changes where

there are three quartile differences across groups (such as the minimum of one group presenting a value

higher than the 3rd quartile of the other group), also appeared highly important in AutoRel. This might be

explained  by the fact  that  these genes,  while  being substantially  different  across  groups,  were  more

informative than more extreme rules (such as ‘fourquartilediff’), as the former difference occurred more

frequently than the latter. 

Even though statistical  values were critical for the AutoRel model,  the overlap between relevant  and

significant genes decreased drastically as the number of replicates involved decreased (,  Figure 3). This

was especially the case with the dataset with the lowest number of replicates (3R, Figure 3A). This might

have been due to the higher impact of every sample for the whole contrast. As seen in  Figure 4, the

expression of a single replicate (the third control triplicate) resulted in a high p-value, independently of a

clear difference between most samples in both groups. This was also an example of how using L2FC as a

statistical threshold might have discarded this gene: the average of the control group was highly affected

by a single outlier, decreasing the L2FC value. In addition, M6PR, with a relatively high gene expression,

was modestly increased in relative terms to the control average, even though (discarding the outlier), there

was at least a 500 normalized count difference between both groups. Thus, we observed that AutoRel

selected relevant genes based on the differences between the majority of the replicates from both groups,
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presenting resilience to the presence of potential outliers, in contrast to the use of statistical p-values or

fold changes.

Additionally, the effects of manually selecting biologically relevant genes through the developed model

were also perceivable during the biological interpretation phase. When evaluating the differences between

significant  (FDR < 0.05)  and relevant  genes,  we observed that  in  all  the  three main GO categories

(Process, Function, and Component) there was a reduction in the number of enriched GO terms in the

relevant set. The shrinkage did not appear to be stochastic, as some GO terms completely unrelated to the

hepatic toxicity of APAP disappeared (spermatogenesis, oocyte development), while other terms, such as

negative regulation of coagulation, were exclusive to the relevant set. Previous research has found an

inducement of coagulation in APAP-induced liver injury29, thus compensatory mechanisms might be in

effect in therapeutic doses.

A potential improvement of the model could include previously selected differentially expressed genes,

especially if those were later validated (or not)  in vitro. In addition, providing an online tool for quick

assessments  of  random quantification  barplots  to  increase  the  size  of  the  training  dataset  and  help

diversify the  selection  criteria  outside of  our  department  would  be beneficial.  This  would of  course

require strict criteria to recruit external experts in the training, to avoid the addition of noisy data to the

dataset. 

In conclusion, we generated a machine learning model named AutoRel that can artificially simulate the

manual selection often required for further research on a select number of differentially expressed genes

based on our understanding of the biology and sequencing processes. AutoRel was more stringent than

standard FDR thresholds in experiments with a high number of replicates, decreasing the number of false

positives. For a low number of replicates, the effects were inverted, where the number of relevant genes

was  superior  to  the  number  of  significant  ones,  decreasing  the  number  of  false  negatives  in  a  low

informative experiment. The model (and the code used to generate it) is publicly available on GitHub:

https://github.com/jochotecoa/AutoRel.git .
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 Methods

Dataset composition

The original dataset used for this manuscript originated from a 3D liver cell culture made of spheroids by

InSphero Inc. 42 samples were taken, 21 per group: control DMSO and acetaminophen (APAP) exposure.

Those 21 samples were the accumulation of samples in triplicate at 7 different time points: 2, 8, 24, 72,

168,  240,  and 336 hours.  The applied dose was selected based on a PBPK profile,  whose design is

described in Kuepfer et al10. Total RNA was extracted and ribo-depleted. The libraries were sequenced on

an Illumina Hiseq 2000, where the average sequencing depth was 27.8 million reads. The nomenclature

of the samples was as follows: “Exposure”_” Timepoint”_” Replicate”, where exposure could be either

the control group (“ConDMSO”) or the treatment (“APAP”), followed by any of the seven time points

(002 – 336), and ending with any of the triplicates (1 – 3).

This  dataset  was  used  as  input  to  the  DESeq2  pipeline  in  three  different  configurations:  3  samples

(triplicates from a single time point: 24 hours) from each group contrasted against each other, 9 samples

(triplicates from 3-time points: 2, 8, and 24 hours) from each group, and 21 samples (triplicates from 7-

time points: 2, 8, 24, 72, 168, 240, and 336 hours) from each group. All programming scripts that pertain

to the analyses of this manuscript were written in the R language (major version 3, minor version 6.3)11.

For all 3 comparisons, we used the R package ‘DESeq2’ (version 1.26.0) 12 to obtain both the quantitative

and statistical features that would be used as input for the model. The quantitative features were obtained

from the normalized counts. The normalization was performed using DESeq2’s median of ratios. The

features used for our models are listed and described in the ‘Supplementary Methods’ document.

Model training
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The targets to be predicted were annotated manually for the training dataset. The three labels assigned

were ‘irrelevant’,  ‘dubious’, and ‘relevant’. The ‘irrelevant’ label was assigned when a gene was not

estimated to present a biological effect, as a consequence of (but not limited to) both groups being almost

identical, their distributions being so variable that no clear change can be identified, or not enough reads

are sequenced for most samples for that gene. ‘Relevant’ genes were those where a substantial change

could be detected for most samples in both groups, so that a researcher would consider them for further

research for their biological effect, such as the distributions of both groups spanning a different range of

high quantification levels. Observations that did not classify for either of the previously described classes

were labeled as ‘Dubious’. To evaluate each gene in each comparison, we plotted the normalized counts

for both groups using both barplots and boxplots.  For each comparison, we labeled a random set  of

observations to include a diverse set of distribution changes for the model to learn from. Thus, after each

comparison,  we obtained a  distinct  dataset,  which  we named in  an  increasing  number  of  replicates:

datasets 3R, 9R, and 21R.

Pre-processing and modeling

After forming the complete dataset, it led to a total of 160 features. Aside from the 3 datasets derived

from the 3 different comparisons (3, 9, and 21 replicates), we generated a new dataset that included the

observations of all 3 datasets (dataset named MixR). For all four datasets, we performed several pre-

processing steps to filter out redundant or uninformative features that might either worsen or slow down

the model training process. For the first 2 steps, we used an under-sampled version of the dataset. Under-

sampling reduces the size of all groups to the size of the smallest one. In the first step, we used a (near)

zero-variance filter using the ‘nearZeroVar’ function from the caret13 library. Without under-sampling, a

feature with a common value that was predominant in the most common labels would have presented a

reduced variance, and thus would have been more prone to be discarded due to over-representation of a

target  label,  and  not  due  to  low variance.  The  second step  involved the  removal  of  features  highly

correlated to each other (correlation > 0.99). The last step of pre-processing involved the exclusion of

features with a linear dependency on other features, using caret’s ‘findLinearCombos’ function.

After the pre-processing of the dataset, we built different models using 11 different algorithms available

to use via the ‘caret’ package: ‘CSimca’ (SIMCA14), ‘kknn’ (k-Nearest Neighbors15), ‘lssvmRadial’ (Least

Squares  Support  Vector  Machine  with  Radial  Basis  Function  Kernel16),  ‘multinom’  (Penalized

Multinomial Regression17), ‘naive_bayes’ (Naïve Bayes18), ‘ordinalNet’ (Penalized Ordinal Regression19),

‘pam’ (Nearest Shrunken Centroids20), ‘rf’ (Random Forest21), ‘rpart2’ (CART22), ‘sparseLDA’ (Sparse

Linear Discriminant Analysis23), and ‘treebag’ (Bagged CART24). We selected these algorithms based on

maximal dissimilarity sampling starting from the ‘rf’ algorithm25. 
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Model evaluation

To evaluate the models,  we assessed the sensitivity, specificity, positive predictive value (PPV),  and

negative predictive value (NPV) for the 3 labels (for each model). To summarize those 4 metrics, we

averaged their values at the label level, resulting in 3 metrics per model. We named each of these values

‘equilibrated accuracies’. Next, to select the best model per comparison, the mean of these equilibrated

accuracies (average of the previous 3 values) was computed; and the model with the highest value was

selected. Even so, we verified in all cases that the metrics were not biased for labels that were relatively

less important (i.e. a model with high performance for the ‘dubious’ label but low for the ‘relevant’ label).

Concretely,  we  first  selected  models  that  presented  a  near-maximum  equilibrated  accuracy  for  the

‘relevant’ label. A near maximum value was defined as a value with at least 98.5% of the maximum value

(i.e. if the maximum value was 1, values between 0.985 and 1 were considered near maximum). Out of

the  selected  models,  we  further  selected  those  with  near-maximum  equilibrated  accuracies  of  the

‘irrelevant’  label.  And lastly,  we selected  models  with near-maximum equilibrated accuracies  of  the

‘dubious’ label.  If several  models were selected in the last  step, the model  with the highest  average

equilibrated accuracy was selected. 

To calculate the variable importance for the models, we used the ‘varImp’ function from the ‘caret’

package. We used the default parameters to calculate and plot the variables' importance. The importance

values were scaled between 0 and 100. This resulted in different calculations depending on the algorithm.

For example, ‘rf’ and ‘treebag’ presented their variable importance calculation, while algorithms like

‘sparseLDA’  used  ROC  (Receiver  Operating  Characteristic)  curve  variable  importance,  where  the

variables were sorted by maximum importance across the classes.
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Model comparison

To compare the models’  accuracies  across  different  datasets,  for  each model  trained with a  specific

dataset, we tested each of those datasets: 3R, 9R, 21R, and MixR datasets. In case the same dataset would

be used for training and testing, we split the full dataset into training and testing datasets to prevent an

overfit.  The  accuracy  metric  used  was  Cohen’s  Kappa  Coefficient,  as  it  takes  into  account  class

imbalance while providing a straightforward metric. 

Method comparison

We utilized the same initial datasets to compare the different methods to detect differential expression.

The p-values, FDR values, and log2 fold-change values were all obtained from the results table from

DESeq2 for each comparison. We use the ‘&’ symbol to indicate that the conditions on both sides of the

symbol need to be true. The methods were as follows: FDR < 0.05, FDR < 0.05 & |log2 Fold Change

value|  > 1.5, FDR < 0.01, FDR < 0.01 & |log2 Fold Change value|  > 1.5, R-ODAF, and ‘Relevant’

labelled genes by our model. 

Enrichment analysis

We used GORILLA26 for the Gene Ontology enrichment analysis. The advanced parameters included a

‘P-value threshold’ of 10^-3,  and fast  mode was enabled.  The data  used were derived from the 21R

dataset. The FDR 0.05 gene set contained the significantly differentially expressed genes based on an

FDR threshold of 0.05, which contained 5811 genes. The RELEVANT gene set  contained the genes

labeled as ‘relevant’ by our ‘AutoRel’ model, which contained 2686 genes. 

Simulated dataset

The simulated datasets were generated using the SPsimSeq R package27. The Zhang bulk RNA-seq data28

was used as a reference for the data generation process. Four comparisons were made using a different

number of replicates: 50 (as performed in the package demonstration), 21, 9, and 3. The total number of

genes was 3000, and the proportion of Differentially Expressed Genes was 10% (300 genes), with at least

a 0.5 log-fold-change in the source data. Each of the 4 comparisons was performed 100-fold, generating a

new/random dataset for each iteration. We applied the DESeq2 pipeline and used the consequent results

as input for AutoRel’s prediction process.
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Supplementary Methods (Chapter 5)1



Model features

The features used in the machine learning model are derived from the normalized counts. The mean,

standard deviation (SD),  and variance of all  normalized counts per  gene were added as features.  40

features were added (20 per group), each of them representing a quantile from 0% to 100% every 5% (i.e.

quantile_55%_control). 20 features were related to the normalized values: all replicates (per group) were

divided into 10 subgroups based on the order of their imputation. The median of each subgroup was

obtained and saved as a feature (i.e. out of 21 samples, ‘1st subset median’ would be the median between

the 1st and 2nd replicates; ‘2nd subset median’ would represent the median between the 3rd and 4th replicates,

etc.). In addition, four features of N (absolute number) and proportion (N / number of samples) of zero

values  per  group (i.e.  N_nonexpressed_samples_treatment)  were added.  Next,  12  features  for  outlier

features (N and proportion per group for 3 groups of outliers: total, mild, and extreme) were included. For

each of the aforementioned features, an additional feature was added, where the feature of the treatment

was divided by the same feature for the control group, whose feature name would start with ‘foldchange’

(foldchange_N_mild_outliers). 

Quartile rules: all potential differences between the quartiles of the 2 groups were described with different

features. Four degrees of changes were recorded as features depending on the shift between both group

distributions: mild changes with only a 25% difference (i.e. the 50% quantile of the treatment group

above the 75% quantile of the control group), 50% difference (i.e. 50% quantile of the treatment group

above the 100% quantile of the control group), 75% difference (i.e. 25% quantile of the treatment group

above the 100% quantile of the control group), and 100% difference (i.e. 0% quantile of the treatment

group  above  the  100% quantile  of  the  control  group).  The  names  for  the  rules  were,  respectively:

`onequartilediff_rule’,  ‘twoquartilediff_rule’,  ‘threequartilediff_rule’,  and  ‘fourquartilediff_rule’.  In

addition, all possible differences were added as features (i.e. ‘q1belmin’ stood for 25% quantile of the

control group below 0% quantile of the treatment group). The last feature regarding quartiles was named

‘quartilediff_score’. The score represented an overall description of all potential changes between the two

distributions. Any quartile rule where the treatment group values were above the control ones contributed

+1  to  the  score.  Any  quartile  rule  where  the  treatment  group  values  were  below the  control  ones

contributed -1 to the score. This resulted in a score that ranged between -10 and +10.  For example, if the

quantile 50% control group was below the quantile 0% treatment group, this resulted in two rules being

true: ‘q2belmin’ and ‘q1belmin’; thus the resulting score would be +2. If simultaneously the 75% quantile

control  group  was  above  the  100%  quantile  treatment  group,  a  negative  rule  would  also  apply

(‘q3abomax’), and thus the score would result in +1. 
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Aside  from  the  third  quartile  rule,  which  inspired  the  aforementioned  rules  as  features,  we  also

incorporated additional rules inspired by the R-ODAF method1. The “expression consistency” rule uses

values transformed to counts per million (CPM), and for an observation to be true, 75% of the values on

either the control or treatment groups need to be above 1 CPM. A “spurious spike” rule was designed to

detect single samples with most of either group’s reads, where the threshold limit for the proportion of

reads  depends  on  the number  of  replicates:  Spike threshold=1.4 N−0.66,  where  N is  the  number  of

replicates of the group). 

Another source of features for the dataset was the result table from each DESeq analysis. The result table

included  base  means  across  samples  (‘baseMean’),  standard  errors  (‘lfcSE’),  log2  fold  changes

(‘log2FoldChange’),  p-values  (‘pvalue’),  adjusted  p-values  (‘padj’),  and  test  statistics  (‘stat’).  An

additional  feature  was added from R-ODAF,  where an FDR threshold limit  of  0.01 was established

(‘fdrlowerthan0.01’).  All  NA  values  from  the  result  table  for  ‘log2FoldChange’  and  ‘stat’  were

transformed to zero, while all NA values for ‘lfcSE’, ‘pvalue’, and ‘padj’ were set to one. 
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Supplementary Results (Chapter 5)
Dataset 3R: 3 replicates per group

The ‘relevant’  class was generally  the  best  performing across the  three classes,  followed closely by

‘irrelevant’  (Figure  1).  The ‘dubious’  class  was  generally  the  worst-performing class,  where  a  clear

difference could be seen for all models but one (‘CSimca’). We selected ‘treebag’ as the best-performing

model on average. 

CSimca

naive_bayes

lssvmRadial

pam

rpart2

multinom

rf

kknn

sparseLDA

treebag

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Equilibrated Accuracies (3R)

relevant irrelevant dubious

Figure 1: Equilibrated accuracies for the models built with 11 machine learning algorithms using the 3R dataset. The models

were sorted by the average of equilibrated accuracies in descending order.

To further investigate the best-performing model, we calculated the variable importance of the ‘treebag’

model (‘treebag_3R’) to evaluate which features were crucial for a gene to be classified. Only the 20 most

important features were plotted (Figure 2). Seven features distinguished as predominantly important, from

most  to  least  importance:  ‘pvalue’,  ‘padj’,  ‘rule_cpm_0.75_above_1’,  ‘fdrlowerthan0.01’,  ‘lfcSE’,

‘threequartilediff_rule’, and ‘twoquartilediff_rule’. 
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Figure 2: Variable importance for the 10 most important features sorted in decreasing order for the ‘treebag’ model trained with

the 3R dataset. 

The first two relate to the statistical significance, which is confirmed to be of primordial importance in a

high number of observations even with only three replicates. The CPM rule described whether a gene was

considered expressed in  at  least  75% of the  samples  of either group.  This  rule  was essential  in  our

decision-making  during  the  labeling  process,  and  thus  it  was  also  reflected  in  the  model’s  variable

importance.  ‘fdrlowerthan0.01’  was  able  to  label  the  most  extreme  cases  of  statistical  significance.

‘lfcSE’ (Log Fold Change Standard Error) reflected the confidence of the log2 Fold Change, while the

feature  that  represented  the  latter  ‘log2FoldChange’  was  situated  in  the  lower  half  of  the  variable

importance  ranking.  The  last  two  features  of  the  most  important  seven were  related  to  the  quartile

differences between groups: these “rules” showed how different both groups were by comparing their

quartiles. 

Dataset 9R: 9 replicates per group

Even though the ‘treebag’ algorithm also performed correctly in the contrast with nine replicates per

group (Figure 3),  the best performing model was ‘sparseLDA’. ‘multinom’ and ‘treebag’ presented a

higher equilibrated accuracy for the ‘relevant’ class, but the difference was minimal. On the other hand,

the equilibrated accuracy for the ‘dubious’ class was substantially higher for sparseLDA, leading to a

higher mean equilibrated accuracy.  
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CSimca

naive_bayes

pam

ordinalNet

rpart2

lssvmRadial

kknn

rf

treebag

multinom

sparseLDA

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Equilibrated Accuracies (9R)

relevant irrelevant dubious

Figure 3: Equilibrated accuracies for the models built with 11 machine learning algorithms using the 9R dataset. The models

were sorted by the average of equilibrated accuracies in descending order.

The variable importance calculation was obtained via the use of the ROC curve (Figure 4). As there were

variable importances for each class, the variables were sorted by maximum importance across the classes.

Focusing on the 20 most important variables, we were able to detect some similarities with the most

important ones from the previous contrast. All the seven most important features for the ‘treebag_3R’

model  were  also  present:  the  quartile  difference  rules  (‘twoquartilediff_rule’,  ‘onequartilediff’),  the

statistical  features  (‘padj’,  ‘pvalue’,  ‘fdrlowerthan0.01’,  and  ‘lfcSE’),  and  the  CPM  rule

(‘rule_cpm_0.75_above_1’).  Other  features  related  to  those  groups  were  also  detected

(‘threequartilediff_rule’  and  ‘baseMean’).  In  addition,  we  observed  important  features  related  to  the

treatment  group  (‘X8th_subset_median_APA_The’,  ‘var_APA_The’,  ‘sd_APA_The’,

‘Proportion_nonexpressed_samples_APA_The’),  and  up-regulation  (‘q3belq2’,  ‘q2belq1’,  ‘q1belmin’,

‘q3belq1’, ‘q2belmin’, and ‘q3belmin’).
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Figure 4: Variable importance for the 20 most important features for the ‘sparseLDA’ model trained with the 9R dataset. The

features were sorted in a decreasing order based on the maximum importance value across the three classes.

 

Dataset 21R: 21 replicates per group

When analyzing the results for the equilibrated accuracies of this contrast (Figure 5), we noted that most

models presented an equilibrated accuracy for the ‘dubious’ class of approximately 0.5. This was due to

the  lack  of  prediction  of  this  class  for  these  models,  even  though  the  training  dataset  included
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observations from that class. The best performing model was thus random forest (‘rf’), with high metrics

for ‘relevant’ and ‘irrelevant’ classes, but especially for the ‘dubious’ class, being the only model above

0.6.  

bam

Csimca

naive_bayes

lssvmRadial

multinom

rpart2

treebag

sparseLDA

ordinalNet

pam

kknn

rf

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Equilibrated Accuracies (21R)

relevant irrelevant dubious

Figure 5: Equilibrated accuracies for the models built with 11 machine learning algorithms using the 21R dataset. The models

were sorted by the average of equilibrated accuracies in descending order.

As performed for the previous contrasts, we evaluated the most important variables for the ‘rf’ model

(Figure  6).  The  ‘threequartilediff_rule’  was  predominantly  the  most  important  feature,  having  an

importance value 400% higher than the second most important feature. Again, we observed similarities

with the previous datasets: quartile difference features (‘threequartilediff_rule’, ‘quartilediff_score’, and

‘maxbelq1’),  statistical  features  (‘pvalue’,  ‘padj’,  and  ‘lfcSE’),  and  the  CPM  rule

(‘rule_cpm_0.75_above_1’). 
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Figure 6: Variable importance for the 10 most important features sorted in decreasing order for the ‘rf’ model trained with the

21R dataset.
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50 replicates

Figure 7: Boxplot of the ratio of several metrics between relevant and significant genes with 50 replicates per group. For every

simulated dataset, a metric is derived for both relevant and significant genes compared to the population/original difference. The

result of each metric from the relevant list of genes is divided by the result of each metric from the significant list of genes. If they

perform equally, the value will be 1. If the relevant list of genes performs better, the value of the ratio will be above 1. If the

relevant list of genes performs worse than the significant list of genes, the value of the ratio will be below 1. A vertical line at 1

visualizes where the equilibrium is situated.  
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Figure 8: Boxplot of the ratio of several metrics between relevant-dubious and significant genes with 50 replicates per group.

For every simulated dataset, a metric is derived for both relevant and significant genes compared to the population/original

difference. The result of each metric from the relevant list of genes is divided by the result of each metric from the significant list

of genes. If they perform equally, the value will be 1. If the relevant list of genes performs better, the value of the ratio will be

above 1. If the relevant list of genes performs worse than the significant list of genes, the value of the ratio will be below 1. A

vertical line at 1 visualizes where the equilibrium is situated.  
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21 replicates

Figure 9: Boxplot of the ratio of several metrics between relevant and significant genes with 21 replicates per group. For every

simulated dataset, a metric is derived for both relevant and significant genes compared to the population/original difference. The

result of each metric from the relevant list of genes is divided by the result of each metric from the significant list of genes. If they

perform equally, the value will be 1. If the relevant list of genes performs better, the value of the ratio will be above 1. If the

relevant list of genes performs worse than the significant list of genes, the value of the ratio will be below 1. A vertical line at 1

visualizes where the equilibrium is situated.  
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Figure 10: Boxplot of the ratio of several metrics between relevant-dubious and significant genes with 21 replicates per group.

For every simulated dataset, a metric is derived for both relevant and significant genes compared to the population/original

difference. The result of each metric from the relevant list of genes is divided by the result of each metric from the significant list

of genes. If they perform equally, the value will be 1. If the relevant list of genes performs better, the value of the ratio will be

above 1. If the relevant list of genes performs worse than the significant list of genes, the value of the ratio will be below 1. A

vertical line at 1 visualizes where the equilibrium is situated.
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9 replicates

Figure 11: Boxplot of the ratio of several metrics between relevant and significant genes with 9 replicates per group. For every

simulated dataset, a metric is derived for both relevant and significant genes compared to the population/original difference. The

result of each metric from the relevant list of genes is divided by the result of each metric from the significant list of genes. If they

perform equally, the value will be 1. If the relevant list of genes performs better, the value of the ratio will be above 1. If the

relevant list of genes performs worse than the significant list of genes, the value of the ratio will be below 1. A vertical line at 1

visualizes where the equilibrium is situated.  
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Figure 12: Boxplot of the ratio of several metrics between relevant-dubious and significant genes with 9 replicates per group.

For every simulated dataset, a metric is derived for both relevant and significant genes compared to the population/original

difference. The result of each metric from the relevant list of genes is divided by the result of each metric from the significant list

of genes. If they perform equally, the value will be 1. If the relevant list of genes performs better, the value of the ratio will be

above 1. If the relevant list of genes performs worse than the significant list of genes, the value of the ratio will be below 1. A

vertical line at 1 visualizes where the equilibrium is situated.
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3 replicates

Figure 13: Boxplot of the ratio of several metrics between relevant and significant genes with 3 replicates per group. For every

simulated dataset, a metric is derived for both relevant and significant genes compared to the population/original difference. The

result of each metric from the relevant list of genes is divided by the result of each metric from the significant list of genes. If they

perform equally, the value will be 1. If the relevant list of genes performs better, the value of the ratio will be above 1. If the

relevant list of genes performs worse than the significant list of genes, the value of the ratio will be below 1. A vertical line at 1

visualizes where the equilibrium is situated.  
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Figure 14: Boxplot of the ratio of several metrics between relevant-dubious and significant genes with 3 replicates per group.

For every simulated dataset, a metric is derived for both relevant and significant genes compared to the population/original

difference. The result of each metric from the relevant list of genes is divided by the result of each metric from the significant list

of genes. If they perform equally, the value will be 1. If the relevant list of genes performs better, the value of the ratio will be

above 1. If the relevant list of genes performs worse than the significant list of genes, the value of the ratio will be below 1. A

vertical line at 1 visualizes where the equilibrium is situated.
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Chapter 6: General Discussion and Summary

OMICs data has become the new tool to study all kinds of areas related to molecular biology: from cancer

and its prognosis1 to microbiology discovery2. Its use has become so universal that the data generation

process has led to an enormous library of molecular data. Even though the size of data is crucial for

research, its management and analysis are at least as important. In the case of this thesis, the data used

originated  in  the  HeCaToS  project.  This  project  spanned  tens  of  compounds,  with  different  doses,

timepoints, and cell models. Even so, the abundance of data was not free of important limitations. The

number  of  replicates  was  minimal  (three).  In  addition,  these  were  technical  replicates,  i.e.,  repeated

simultaneously and originating from the same batch of cells. A great limitation of such design is that the

results obtained are at best indicative of potential changes, but cannot be used as evidence per se. The full

investment in the data generation process, while helpful, undermines its own results by not being able to

have access to further resources to validate the results. A different approach might be to increase the

number  of  both  technical  and  biological  replicates,  even  at  the  cost  of  decreasing  the  number  of

conditions tested. The danger of the latter approach is that, while being more scientifically sound, it might

hinder its financing, as it may be evaluated at face value to be less ambitious than other broader-scoped

projects. 

As evidence of our intention to be biologically sound and more data skeptical, one can observe that in

Chapter 2 we applied in vitro techniques to validate the existence of the circular RNAs studied. Ideally,

we would have not only validated their existence but ratified their effect at the toxicological level by

either  overexpressing  or  knocking  down each  of  the  transcripts  described  in  the  post-transcriptional

regulation axes. This is especially relevant for the circRNAs themselves, which, even though they have

been  frequently  studied  since  their  hypothesized  function  as  miRNA  sponges3,  some  bioinformatic

analyses showed that this is rather the exception than the rule4,5. In addition, artificially modifying the

expression levels of the studied circRNAs would help us discern whether those changes are simply a

result or also a mechanism of the toxicity exerted by those compounds. Other modifications would have

introduced more specificity in our novel method to detect and quantify circRNAs. For example, one of

the main weaknesses of the remapping strategy is that circRNAs are not mapped based on their most

characteristic property: the back-spliced junction (BSJ). This is because the sequences introduced to be

mapped were structured in the classical or genomic 5’ to 3’ form. To this effect, no read that mapped the

BSJ would be assigned to their circRNA sequence. One solution would be to truncate or split the original

sequences in half and join the 3’ end of the second half to the 5’ end of the first one. In this manner, the

characteristical BSJ would lay in the middle of the sequence. The reads mapping to the BSJ would not

only increase the read count for each circRNA but would help to more correctly assess their expression.
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This is due to the algorithms used by quantification software, which assign shared reads (reads that map

to more than one location) by looking at the proportion of non-shared reads (reads that uniquely map to a

genomic locus).  This  change  in  the  transcriptome file  would still  allow quantifying circRNAs more

broadly  than  CIRI26,  as  circRNAs without  a  BSJ  read  would  still  be  identified,  but  simultaneously

improve the quantification step for the circRNAs whose BSJ reads were sequenced.  

As seen in  Chapter 2, the integration of all the multi-omics is not a straightforward process. Even the

study of two circular RNAs leads to a complex network of interactions that  affect  the translation of

messenger RNAs, upon which the whole structure and function of the cell are based. For this reason, we

proposed in  Chapter 3 to formulate  an equation that  would help quantify the number of transcripts

available for translation. Even though from the toxicological view the dataset used (HeCaToS) involved

certain complexities due to the  various  factors to  consider (time,  dose,  or  batch effects),  it  included

different omics data extracted simultaneously from the same samples, thus a special design for a big

dataset that is truly beneficial when aiming for a new crossomics (integration of multiple omics data)

strategy. In addition, the fact that the RNA-Sequencing data was ribo-depleted (instead of using poly (A)

capture) permitted the quantification of circRNAs, thus expanding the level of  RNA types analyzed.

Including important factors that affect the levels of free transcripts can become endless, not only for the

calculations  necessary,  but  also  due  to  data  that  is  not  accessible  at  that  moment  in  time  (such  as

epigenetics or translatomics), and the different number of factors that affect each gene: some will be

limited by transcriptional factors while others might be mostly regulated by histone acetylation. Thus,

even to the best of our efforts, the results showed that the prediction of transcript availability was much

more complex than  a  formulation  derived  from our  current  knowledge  of  the  main  drivers  of  post-

transcriptional regulation. 

This issue brought about our published work7 encapsulated in Chapter 4, where we addressed the issue

from a different perspective. First, we selected the proteomics expression as the target to be predicted.

Second, we switched our method from human formulation to machine learning. These changes were

sounder for several reasons. First, having proteomics data allowed us to directly evaluate the accuracy of

our research. Second, machine learning is mainly limited by the data it uses. So, if we fed the data in the

most comprehensive way possible, it would output the most optimized prediction, as was the case. Even

so, one would acknowledge that the information available is  still  far  from completely describing the

molecular landscape of a cell. And so, even though the metrics showed a good prediction accuracy in

terms of R2, it is fair to wonder how much of the model accuracy is due to being trained in untreated

conditions: if the model has been trained with the same protein on a different sample, outputting the same

value that was trained on is a safe bet which would also lead to a potentially good correlation score. In
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any case, if the conditions were met, the ideal situation to generate the best model would be to make a

model for each protein (to be predicted), where the variables encapsulate all other molecules. In this

manner, all potential effects would be considered, from miRNAs to transcription factors, and thus if such

an abundant source of data was available, one could in principle predict any molecule’s quantity based on

all other variables. Of course, such a model would only be useful if one would also have access to the

huge number of variables that  trained the model,  and thus it  would probably be more of a proof of

concept of whether we can completely map and understand the molecular biology of the cell. In addition,

such a model would allow us to modify the abundance of specific molecules in order to study the effects

on all the components of the cell. A model with these characteristics is, in the author’s opinion, still not

possible nowadays due to technological limitations, and so one would caution in favor of skepticism

whenever projects aim to develop a model of similar characteristics to predict all toxic effects inside a

cell. 

This is though not a leeway as a scientist to presume that using machine learning is per se a universal

method to solve current scientific problems as long as there is enough data. As an example, just feeding a

model with all published transcriptomics data and assumed results derived from that will mostly result, in

the author’s opinion, in a big model with very stochastic results. This is because the human component in

the decisions taken, be it due to different methods, thresholds, or prejudices used, will ultimately lead to

different conclusions, and these decisions would all be mixed into a single model. For this reason, even

though one of the main limitations of  Chapter 5 is that most of the observations fed into the AutoRel

were labeled by the author of this thesis, it also ensures a more replicable model of the reasoning behind

those decisions, that is, that the model can more accurately label observations in concordance to how it

has been trained. As mentioned in the chapter, this would represent a further step in the direction of

automatizing manual filtering steps in RNA-Sequencing analyses, as was the case for our collaboration in

R-ODAF8. In any case, it can be argued that different strategies could have been applied to represent more

extensively  the  expert  decision-making.  The  most  direct  manner  would  have  been  to  introduce  all

possible interpretations from the maximal number of scientists in a single model. One could also instead

have built a model per researcher, and a global algorithm would be used to assign a label based on the

majority vote from all those distinct models. A different strategy could have been to only label as relevant

genes that have been previously proven to be differentially expressed via several distinct confirmation

experiments, or  at least  train these models more extensively by using simulation datasets,  where the

differentially  expressed  genes  (DEGs)  are  known  beforehand.  A  limitation  of  the  use  of  simulated

datasets, though, is that it selects its DEGs by fold change alone, which is a limited metric to use. It is

based  on  the  comparison  of  means,  which  are  easily  tilted  by  the  presence  of  outliers.  In  addition,

simulated datasets do not take into account low quantification values, and thus a difference of a few reads
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is considered a DEG, as small values have a higher chance at random to present a higher fold change

value. In practice, this can easily be the result of an irrelevant small variation of expression. 

It  is  of  interest  to  note  the  use  of  previous  machine  learning  approaches  to  evaluate  differentially

expressed  genes.  For  example,  LASSO  regression  analysis  is  usually  utilized  after  a  differential

expression analysis to further filter the number of DEGs9. The use of random forest has been recently

suggested for the selection of important genes in microarray data10. The theory is based on the hypothesis

that  if  two  conditions  (control  vs  treatment)  are  able  to  be  separated  by  the  data  available  (gene

expression data), an artificial intelligence model should be able to differentiate between them. In addition,

the commonplace existence of variable importance values would help identify which variables (genes) are

the most responsible for the differences/splitting between the two conditions. We consider the evaluation

of several classification algorithms (including LASSO and random forest) of great interest to discern to

which extent these algorithms can correctly identify such genes, by the use of validated gene expression

results. 

Summary

Novel bioinformatics approaches have been applied to elucidate the function of circular RNAs in the

mechanism  of  action  of  several  cardiotoxicants  through  their  importance  in  the  post-transcriptional

regulation. We further our investigation of this regulation via a formulation to predict the quantity of

coding transcripts that  are available for translation. The complexity of this  task makes necessary the

introduction  of  machine  learning  strategies,  which  help  us  predict  and  impute  proteomics  values  in

untreated samples. Finally, we make use of the artificial intelligence methods to classify genes according

to their biological relevance based on expert labeling.
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Scientific and Social Impact 
Currently, regulatory agencies rely on the use of animals for testing drugs for several reasons. First, the

most accurate way of testing drugs would be testing them in humans, which is not ethically possible.

Second,  modeling everything that  happens in  our bodies  in a Petri  dish is  nowadays unfeasible:  the

complexity of a human body requires 30 trillion cells to keep functioning. In addition, each of those cells

also involves its level of complexity: even a simple yeast cell contains 42 million proteins 1, which does

not include other essential molecules like sugars and fatty acids. Even so, recent incentives (such as the

regulation (EC) No 1223/2009 of the European parliament2) have pushed the scientific community to

search for alternative testing methods without the use of animals. Specifically, the area of Toxicology is

affected, as it studies the potentially toxic effects of drugs both before and after being released on the

market. A popular method for studying the effects a compound can have in humans is by testing them in

vitro, that is, by exposing human cells. Doing so helps to narrow the bridge between what is being tested

(human cells  outside the body) and the actual goal of the study (human cells inside the body) when

compared to animal testing, where the model and the end goal belong to different species. Nowadays, the

development of induced pluripotent stem cell (iPSC) technology allows reverting any human skin cell to

another tissue type (such as cardiac cells that contain the same DNA as the donor of the skin cells),

without  the  need  for  surgery  or  invasive  biopsies.  Although  some  drugs  may  kill  cells  by  simply

destroying the membrane that encapsulates the cell, most of them disturb the cell in more subtle ways.

One of these ways is  the deregulation of the number of proteins synthesized by a  cell.  Proteins  are

essential molecules, as they perform most of the cell functions. For this reason, disturbing or blocking

their production can lead to the disruption or death of a cell  and/or the ones that depend on it.  The

processes that lead to the making of proteins involve mainly RNAs, molecules that work as messengers

from DNA to proteins. Therefore, in Toxicogenomics, studying how specific treatments can affect these

molecules can help understand their mechanisms of toxicity. 

In Chapter 2, we assessed how a recently discovered class of RNA, called circular RNAs (circRNAs),

are disturbed in heart cells by known toxicants.  These circRNAs have been hypothesized to regulate

microRNAs (miRNAs) by letting the latter bind to the former. When messenger RNAs (mRNAs) are not

bound to miRNAs, they can provide the instructions to produce proteins. When miRNAs are occupied

binding circRNAs, they are not able to bind to mRNAs. For this reason, by assessing changes in the

number  of  circRNAs,  miRNAs,  mRNAs,  and  proteins;  we  helped  better  understand  how  these

compounds (that are still in use) are being toxic in the human heart without the use of animal testing.

Going further into the thesis,  we realized that knowing how many proteins are in a cell  is crucial to
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understanding  how  a  drug  (or  disease,  or  any  other  perturbation)  affects  a  cell.  Unfortunately,  the

technology  used  for  doing  it,  mass  spectrometry,  does  not  measure  all  proteins  in  a  cell.  Instead,

researchers tend to use transcriptomics, which exhaustively measures the quantity of RNAs. Nevertheless,

the number of RNAs and the number of proteins do not always perfectly correlate with each other. 

In Chapter 3, we designed an equation to estimate how many RNAs are available to produce proteins.

We did that by counting the total number of mRNAs and subtracting the ones that will be affected by

miRNAs, but only those miRNAs that are not binding to other RNAs (like another mRNA or circRNA).

Nonetheless, the formula, which is focused mainly on RNA molecules, demonstrated an added value for

only a subset of proteins. As a result, in Chapter 4, we went a step further. We built a large dataset with

RNAs  and  their  corresponding  proteins  and  trained  a  machine  learning  model  to  predict  the  latter.

Machine learning algorithms “learn” how to predict values by looking at how other similar values behave.

Using our data, our model predicted well the increases and decreases of proteins, which can help others to

predict how many proteins there are in a sample of cells based on how many there are in similar ones. 

As mentioned before, in the area of Toxicogenomics it is of great interest to study the changes happening

in a cell. Transcriptomics is exceptionally good at counting how many RNAs there are, consequently

using this technology helps us understand which molecules change in quantity due to a specific cause.

The statistical tools used to detect changes, though, do not work without fault. For this reason, experts in

this technology can manually detect these errors. On the flip side, this manual curation is pretty time-

intensive  when  taking  into  account  the  number  of  genes  to  be  evaluated,  and  requires  specialist

knowledge to do so. That is why, in Chapter 5, we again trained a machine learning model. In this case,

we taught the model to recognize the profile of genes that are typically of interest to the researcher. We

built several of them with different characteristics and selected the best one, which we named ‘AutoRel’.

Even though AutoRel was not flawless, it showed improvements by removing genes that were not of

interest.  

In an era of increasing societal pressure against animal testing, added to the inherent shortcomings of

animal assays, regulatory agencies need to reevaluate their historical procedure of risk assessment. With

the rapid development of methodologies that allow the analysis of the complete set of biological entities

in a cell exposed to any substance, regulators will need both a better understanding of all the complex

interactions behind molecular biology and powerful data analysis tools to integrate them. The work of this

thesis contributes to this necessary transition toward a next-generation risk assessment.  This is achieved

by the discovery of new changes that happen when a toxic compound affects a cell, predicting protein

measures that are usually unknown with artificial intelligence, and filtering results in an automated way to
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have a better understanding of the changes that occur in a cell. In aggregate, this contributes to assess

more accurately how toxic a drug is, making the use of treatments more safe and reliable.
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