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Chapter 1  

General Introduction  

Since antiquity, rationalists and empiricists alike have asked the question: Do my 

perceptions reflect reality? Plato first proposed that the true forms of reality are not 

accessible to our senses (2000/370 B.C.E). Instead, what we truly perceive is 

determined by comparing our sensations to prototypical object qualities grasped only 

by the mind. Contemporary formulations expand this concept by describing perception 

as part of an active process of hypothesis testing by which the most likely object 

qualities are learned (Gregory, 1980). These hypotheses are key to the interpolation of 

sensory causes when information is ambiguous and to extrapolation when future 

conditions are predictable. Already In the 19th century, von Helmholtz argued that 

perception is additionally shaped by our interaction with the environment 

(Koenigsberger, 1906). A common aspect underlying these notions is a process of 

unconscious inference, marked by the development of a division between how self- 

and externally-generated sensations contribute to perceptions. Consequently, this 

bestows an understanding of how willed-action and environmental stimuli may interact 

and influence each other. At a basic level, this property is present across the animal 

kingdom, allowing for adaptable volitional and reflexive actions to promote survival in 

a changing environment (Bruineberg & Rietveld, 2014; Crapse & Sommer, 2008). 

Moreover, increasing complexity in these mechanisms is hypothesized to underlie 

emergent properties in humans, including mental imagery such as inner speech (Jones 

& Fernyhough, 2007a; Perrone-Bertolotti et al., 2014; Tian & Poeppel, 2012), visual 

imagery and imagination (Dijkstra et al., 2022; Gershman, 2019; Thakkar et al., 2021; 

Williams, 2021), a sense of self (Fotopoulou & Tsakiris, 2017; Haggard, 2017; Moore, 

2016; Picard & Friston, 2014), and even consciousness (Clark, 2013; Clark et al., 2019; 

Haggard, 2005; Hobson & Friston, 2014; Seth et al., 2012; Vallortigara et al., 2021; Vilas 

et al., 2021). 

Unsurprisingly, variability in the function of mechanisms fundamental to perception is 

linked to both anomalous perceptual experiences and distinctions between self and 

other (or internal and external) attribution. For example, distortions of reality such as 
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hallucinations are externalized false perceptions in the absence of corresponding 

sensory input (Bentall, 1990; Brookwell et al., 2013). Hallucinations are transdiagnostic 

phenomena most often reported as a key psychotic symptom in schizophrenia, a 

disorder marked by abnormal perceptual and self-related processing (Bauer et al., 

2011; Lim et al., 2016; McCarthy-Jones et al., 2017). However, these experiences have 

been conceptualized as a part of a psychosis-continuum across the population as 

opposed to a clinical dichotomy (Baumeister et al., 2017; Healy & Cannon, 2020; Johns 

& van Os, 2001; Johns, 2005; Myin-Germeys et al., 2003; van Os, 2003). For example, 

a spectrum of proneness is reported within the general population, with 8-15% of 

otherwise healthy people reporting to have experienced hallucinations (Beavan et al., 

2011; Linscott & van Os, 2013; McGrath et al., 2015). Nevertheless, most of the 

research into these perceptual distortions of reality has been conducted within samples 

of individuals diagnosed with schizophrenia. It has been suggested that, due to the 

observed continuum and common risk factors associated with the presence of 

hallucinations in both clinical and non-clinical samples, a common aetiology may be 

present (Johns & van Os, 2001; Johns, 2005; Myin-Germeys et al., 2003).    

Due to the inherent confounds introduced by clinical samples (e.g., duration of illness, 

effects of medication, and hospitalization), investigations in healthy samples have been 

suggested as crucial for uncovering functional and structural factors of the proneness 

to experience hallucinations (Kelleher et al., 2010; Kelleher & Cannon, 2011; Verdoux & 

van Os, 2002). In psychotic disorders, hallucinations occur in combination with a range 

of other symptoms (Breier & Berg, 1999; Peralta & Cuestra, 1999). This results, for 

example, in a vastly heterogenous presentation of symptom profiles within 

schizophrenia (e.g., Grube et al., 1998; Lehoux et al., 2009; Shafer, 2005; Shafer & 

Dazzi, 2019; Smith et al., 1998; Wallwork et al., 2012), describing multiple subtypes with 

distinctive phenomenological and pathophysiological states (see reviews in Grover et 

al., 2018; Picardi et al., 2012). Although neurochemical theories have provided 

evidence for an underlying dysregulation of dopamine – and interaction with glutamate, 

gamma-aminobutyric acid, and serotonin pathways – associated with schizophrenia, 

these explanations are not pathognomonic and can only explain the presence of 

positive symptoms such as hallucinations (Brisch et al., 2014; Howes et al., 2017; Stahl, 

2018). Therefore, it is reasonable to conduct hallucination research independent of 
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other symptoms of schizophrenia, for example, in terms of cognitive mechanisms which 

may specifically associate with the phenomenology of hearing voices (Waters et al., 

2012a).  

Throughout this dissertation, the putative neural substrates and cognitive mechanisms 

associated with hallucination proneness were investigated in healthy samples. The 

respective research set off with a focus on three particular aspects: 1) sensorimotor 

feedback processing, as arguably the most prominent theory of ‘voice hearing’, 2) the 

cerebellum, as a structure critical to processing errors in predicted sensory feedback, 

and 3) voice processing regions of the brain, as the most common form of hallucinatory 

experience is in the form of hearing voices. Numerous other explanatory models for 

the emergence and phenomenology of hallucinations are acknowledged, including 

spontaneous or hyperactive neural responses, intrusive memory or thought, as well as 

underlying fundamental cognitive mechanisms such attention or inhibition impairments 

(reviewed in Rollins et al., 2019). 

1.1 Perceptual inference 

1.1.1 Systems built to predict and how they may err      

Over a century after von Helmholtz proposed that perception is the product of 

unconscious inference, neuroscience began to make strides in developing a formal 

biologically plausible theory; offering hypotheses for the emergence of false 

perceptions. Between 1950 and 1990 multiple schemes of brain function and 

organization were put forth, describing perception as the result of an optimization 

process where one models the world by comparing actual and expected sensory input 

(reviewed in Friston, 2010, 2012a). During this era, the foundations for contemporary 

theories of perceptual systems in the biological brain can be credited to the reciprocal 

interaction between the fields of machine learning and computational neuroscience. In 

recent years, this relationship has been reignited due to technological advances in both 

computer and brain sciences, demonstrating the effectiveness of machine learning 

models of perception in accomplishing complex cognitive tasks as well as presenting 

feasible neural correlates (Lillicrap et al., 2020; Song et al., 2020; Whittington & Bogacz, 

2019; Yang & Wang, 2020). Moreover, by integrating computational models with 
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findings from experimental neuroscience, it is possible to build comprehensive 

hypotheses incorporating the neural substrates, underlying mechanisms, and 

abnormal structure and function observed in psychiatric illness such as schizophrenia 

(reviewed in Valton et al., 2017). Although the direct comparison of neural correlates 

with computational models is outside the scope of the current dissertation, a general 

understanding of the putative network and components underlying perception is 

invaluable for the interpretation of hallucinatory experience.   

The first attempts to model neural networks of perception were limited to machines 

akin to single neurons. In these single-layer feedforward neural networks, unilateral 

external inputs (sensory information) are propagated to output nodes (perceptual 

belief) which activate based on the sum of the weighted inputs (Rosenblatt, 1958). 

Decades later, a breakthrough was achieved by creating multi-layer feedforward neural 

networks where nested levels of sensory input could adjust the weight of connections 

in subsequent layers (Rumelhart et al., 1986a). Within this model, hidden layers 

throughout the multiple level framework encode an internal state based on previous 

experience to predict later inputs to the system. When faced with errors in predicted 

output, backpropagation of signals can adjust weighting at each previous layer to 

minimize the chance of future discrepancies, forming a recurrent neural network 

(Rumelhart et al., 1986b). Ultimately, in 1995, the Helmholtz machine based on the 

statistical inference of perception outlined the hierarchical system of interacting high- 

and low-level inputs necessary for building internal generative models capable of 

predicting the sensorium of the external world (Dayan et al., 1995). These findings 

provided an initial basis for reciprocal hierarchical cortico-cortical connection models 

of the brain as a recurrent neural network in the emergence of perception (i.e., 

Mumford, 1992). Notably, cerebellar circuitry frameworks proposed around 1970 by 

Marr (1969), Ito (1970) and Albus (1971) provide an analogous explanation for a 

subcortical system capable of linking expected sensory input with action (i.e., motor 

learning and adaptation via prediction error) which are now understood to represent 

hierarchical internal models (reviewed in Kawato et al., 2021). The presence of 

hierarchical sensory prediction systems in both cortical processing of passive stimuli 

and subcortical processing of self-generated stimuli has created a long-standing 

discussion regarding the nature of false perceptions (Behrendt, 1998).  
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Decades prior to modern formulations of false perceptions, theories of schizophrenia 

symptoms had attributed auditory verbal hallucinations (AVH) to abnormal prediction 

of self-generated sensory input (Feinberg, 1978). Conversely, at around the same time, 

hallucinations were proposed to emerge from faulty hypothesis testing of prior 

expectations in environmental sensory input against new sensory evidence (Frith, 

1979). Nazimek et al. summarize a broad range of possible defective sensory 

prediction mechanisms attached to AVH (2012). These include dysfunction or 

hyperactivity of the auditory cortex, impaired bottom-up signalling of external input, 

abnormal modulation of the thalamus, as well as aberrant connectivity or 

neurotransmission. The authors present an expectation-perception hypothesis that 

outlines hallucinations as most likely driven by overly strong predictions that are not 

adjusted due to the absence or weakening of prediction error transmission (Nazimek 

et al., 2012). However, theories ascribing hallucinations to abnormal processing of self-

generated input view false perceptions as the result of weak predictive signalling 

resulting in misattribution of sensory feedback to an external source (Ford & Mathalon, 

2005; Heinks-Maldonado et al., 2007; van Lutterveld et al., 2011; Whitford et al., 2012). 

These dissonant propositions have resulted in a debate regarding the characterization 

of abnormal predictive processing associated with hallucinations (Brower et al., 2019; 

Corlett et al., 2019; Ford & Mathalon, 2019; Sterzer et al., 2018). 

1.1.2 Learning and predicting our effect on the external world      

The Bayesian Brain Hypothesis describes an adaptive self-organizing system driven to 

minimize uncertainty by encoding a probabilistic model of the environment (Bogacz, 

2017; Friston et al., 2006; Friston & Stephan, 2007). This requires the functional 

integration of disparate cortical regions subserving hierarchical components of passive 

perceptual inference and has been supported by advancing electrophysiological and 

neuroimaging methods (Friston, 2002, 2005a, 2012a). Through an intricate 

arrangement of neurons across the cortex, inference and representational learning are 

recruited to optimize a generative model to aptly predict the causes of sensory inputs 

(Friston, 2003, 2005a). However, inferring the nature of our perceptions is not limited 

to exteroceptive (afferent) input. Predicting the source and quality of stimuli that build 

perception is also fundamental to how the brain processes self-generated (reafferent) 
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sensory feedback (Friston, 2003; Miall & Wolpert, 1996). Akin to passive perceptual 

inference, this active process is compatible with a unifying free energy principle by 

which all organisms and systems are driven to minimize entropy (Friston et al., 2007). 

In mobile organisms, this drive encourages selective sampling of the environment, such 

as curiosity motivated behaviour, to actively seek out salient and novel sensory input 

that may aid in reducing uncertainty (Friston et al., 2017). Notably, divergent theories 

are proposed by afferent and reafferent sensory prediction models for the presence of 

false perceptions such as hallucinations. Contrary to the putative role of overweighted 

top-down priors in passive inference models of perception, reafferent models ascribe 

hallucinatory experience to weakened or absent top-down signalling of predicted 

sensory input during action (Ćurčić-Blake et al., 2017a; Horga et al., 2019; Nazimek et 

al., 2012). Not only does this mark a theoretical divide in how false perceptions emerge, 

but it puts to question what hallucinations are at their core; are hallucinations just 

meaning imposed onto otherwise meaningless noise, the externalization of one's own 

feedback, or a combination of both? Although hallucination research is often 

conducted from either theoretical framework, there appears to be no definitive reason 

for these concepts to be mutually exclusive.  

From a Helmholtzian perspective, action unto the external world is a process of self-

evidencing. Generative models of the environment are learned primarily through 

observation, while interaction with the environment provides the secondary ability to 

test hypotheses and minimize prediction error (Hohwy, 2014, 2016, 2017). An 

alternative proposal claims that action is not simply a tool used in tuning internal models 

of the outside world. Instead, action and perception together form a single cyclic 

process to construct the generative model (Bruineberg et al., 2018a). Hence, an 

organism does not merely model its environment, but instead models an interactive 

coupling between organism and environment. In such a way, the drive to act is not to 

provide evidence for hypothesis testing, but to reduce misalignment with the 

environment, a necessary function in driving the planning and navigation of mobile 

creatures (Bruineberg & Rietveld, 2014; Crapse & Sommer, 2008; Kaplan & Friston, 

2018). As the causal structure between organism and environment is bidirectional, 

free-energy may also be reduced via manipulating one’s action or the environment 

itself, for example, in reacting to a danger or constructing a secure niche (Bruineberg 
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et al., 2018b; Clark, 2013). The general theory of the brain as a system that regulates 

and optimizes the interaction between organism and environment has been present for 

much of the past century (e.g., Conant & Ashby, 1970; Craik, 1943; Kawato, 1999). 

Importantly, a system capable of this task must physically change itself to match the 

environment in which it regulates (Parr & Friston, 2018). Through cycles of action and 

perception, the structure and function of the brain becomes aligned with the external 

conditions, fitting the classical description of a self-organizing system (Ashby, 1947; 

Banzhaf, 2009; Bruineberg & Rietveld, 2014; Sengupta et al., 2016). Moreover, the 

structure and function of internal sensorimotor models to predict causal organism-

environment interaction has been instrumental for motor control research (e.g., Kawato 

et al., 1987; Jordan and Rumelhart, 1992; Jordan, 1995; Miall and Wolpert, 1996; Wolpert 

et al., 1995, 2001; Wolpert, 1997). Notably, accounts of action-observation in motor 

control diverge computationally from active inference models of cortical prediction 

coding. Under this self-monitoring theory, one can assess a network of sensorimotor 

processing to understand how false perceptions emerge in those who hallucinate as 

well as related functions that may contribute to the phenomenology of those 

experiences.   

The sensorimotor system directs two pathways of action, namely, feedback and 

feedforward control (Frith 1987; Goldberg, 1985; Wolpert et al., 2011). Through 

interaction with the environment, a process of sensorimotor integration binds what one 

does and what one senses (Wolpert et al., 1995). As a result, a sensorimotor 

transformation is mapped which aligns a causal relationship between action and 

sensation and is crucial to any biological organism or artificial system that possesses 

the ability to react to the environment (Pouget & Snyder, 2000). Simultaneous to this 

mapping, internalized models of the transformations are learned (Jordan, 1995; Kawato 

et al., 1987; Miall & Wolpert, 1996; Wolpert et al., 2001). An internal model can be 

applied to feedforward control by determining a required motor command to generate 

a desired stimulus (forward model) or for feedback control by determining which motor 

command is necessary in response to a specific sensation (inverse model) (Jordan & 

Rumelhart, 1992; Miall & Wolpert, 1996). The predictive forward model is of particular 

importance as it subserves multiple functions integral to motor control: to cancel or 

suppress cortical responses to expected reafferent sensations, to estimate the current 
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state or predict future ones, to maintain efficient action in the presence of natural 

feedback delay, to learn from errors in prediction, and to mentally simulate action and 

feedback (Frith et al., 2000; Miall & Wolpert, 1996; Wolpert et al., 1995). Additionally, via 

the monitoring of congruence between predicted and observed sensory input during 

action, an abstract sense of agency or distinction between self- and other-generated 

stimuli develops (e.g., David et al., 2008; Griffin & Fletcher, 2017; Jeannerod & Pacherie, 

2004). Due to the dynamic nature of the state of the environment, forward models are 

continuously engaged with the goal of constantly reducing incongruence between 

intended and actual feedback (Desmurget & Grafton, 2000; Jordan & Rumelhart, 1992). 

This form of self-monitoring can be applied to feedback from proprioceptive (Miall & 

Wolpert, 1996; Wolpert & Kawato, 1998), visual (Leube et al., 2003), auditory (Hashimoto 

& Sakai, 2003), and tactile modalities (Blakemore et al., 1998). Indeed, schizophrenia 

patients – a clinical group most often marked by AVH – have displayed impairments in 

motor-induced suppression (e.g., Ford et al., 2014; Whitford et al., 2019), and in 

attribution between self- and other-generated sensation (Blakemore et al., 2002; Frith 

et al., 2000; van Der Weiden et al., 2015). Therefore, it has been proposed that a 

proneness to hallucinate is the product of defective forward model processing - a 

central tenet to hypotheses across this dissertation (Jones & Fernyhough, 2007a). 

1.1.3 The cerebellum: Internal models and error signal processing 

Although learning sensorimotor associations requires a network of specialized regions 

throughout the brain, the cerebellum plays the critical role in compensation or 

adaptation to unexpected changes in feedback (Caligiore et al., 2017; Doya, 2000, Doya 

et al., 2001; Bastian, 2006; Doyon et al., 2009; Halsband & Lange, 2006; Hardwick et al., 

2013; Krakauer et al., 2019; Schmuelof & Krakaeur, 2011; Schwartze & Kotz, 2013, 

2016). During action, descending motor fibres send signals to the effectors (e.g., 

muscles) while parallel projections representing an efference copy are sent to the pons. 

Mossy fibres project from the pons into the cerebellum to innervate granule cells which 

extend long dendritic branches along the outer layer of the cerebellar cortex as parallel 

fibres. To determine if a predicted outcome has been achieved at the expected time, 

ascending feedback signals are compared to expected feedback in medullary nuclei 

and enter the cerebellum as climbing fibres where the error is processed (reviewed in 

Popa & Ebner, 2019). The resulting signal is propagated back to the cerebral cortex to 
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facilitate the updating or adaptation of motor commands and internal models. However, 

the cerebellum has been suggested as more than just a tool for producing smooth 

successful movement, instead acting as a universal prediction system (Ramnani, 2006). 

Three properties of this structure make this possible: generalizability, specificity, and 

sheer processing power. 

First, in order to serve various functions, the cerebellum must be simplistic enough to 

offer a common computational mechanism. It has been hypothesized that this requires 

a hierarchically arranged architecture of repeated modules (Grafton & Hamilton, 2007; 

Haruno et al., 2003), each with paired internal (controller) and forward (predictor) 

components (Gomi & Kawato, 1993; Haruno et al., 2001; Wolpert & Kawato, 1998; 

Wolpert & Flanagan, 2001). The uniform structure of the cerebellum is congruent with 

such computational schemes of sensorimotor learning and inference (Dean et al., 2009; 

Haruno et al., 2003; Ito, 2000, 2006; Kawato & Gomi, 1992; Miall et al., 1993; Porrill et 

al., 2004; Raymond et al., 1996). Further evidence is provided in the field of robotics, 

where algorithms inspired by cerebellar microcircuitry have produced successful 

results in motor adaptation and learning (e.g., Asadi-Eydivand et al., 2015; Broucke, 

2021; Carrillo et al., 2008; Casellato et al., 2014, 2015; Coenen et al., 2001; Floreano et 

al., 2014; Hofstötter et al., 2002; Kalidindi et al., 2019; Urbain et al., 2020). The 

maintenance of accurate predictions requires two opposing states of cerebellar activity 

during feedback processing. A) Expected feedback (successful prediction): simple 

spike Purkinje cell (PC) activity as a result of parallel fibre (PF) input and normal 

spontaneous firing patterns. Here, PFs which innervate the PC are active in the 

absence of climbing fibre inputs, allowing long-term potentiation (LTP) of the PF-PC 

synapse to persist. B) Unexpected feedback (unsuccessful prediction) feedback: 

complex spike PC activity as a result of climbing fibre input. In this case, the PC and 

PF will be coactive, leading to long-term depression (LTD) of the PF-PC synapse 

essential for adaptive processing (detailed description of cerebellar circuits in Fujita, 

2022; Ishikawa et al., 2016; Kawato et al., 2021; Manto et al., 2011; Zang & De Schutter, 

2019). Therefore, bidirectional PF-PC LTP/LTD plasticity allows for the system to 

continuously update, for example, to achieve the most reliable motor command-

sensory feedback relationship. 
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Second, in order to influence the activity in numerous specialized regions of the 

cerebral cortex, the cerebellum must have specific connections to diverse areas of the 

brain. Separate functional regions within the repeated structure of the cerebellar cortex 

receive inputs from motor, cognitive, and sensory regions of the cerebral cortex 

(Buckner, 2013; Glickstein et al., 2011; Guell & Schmahmann, 2020; Ito, 2008; Koziol et 

al., 2013; Stoodley & Schmahmann, 2010, 2018). The functional divisions of the 

cerebellar cortex share both functional connectivity to corresponding regions of the 

cerebral cortex (Allen et al., 2005a; Bernard et al., 2012; Bucker et al., 2011; Habas et 

al., 2009; Krienen & Bucker, 2009; O’Reilly et al., 2009; Sang et al., 2012), as well as 

structural connectivity by forming closed loops (or processing units) which operate 

using the same computational structure (Kelly & Strick, 2003; Witter & De Zeeuw, 2015). 

Within the sensorimotor domain, there is also strong evidence for somatotopic mapping 

of the cerebellar cortex of different body parts similar to the primary motor cortex 

(Boillat et al., 2020; Grodd et al., 2001; Manni & Petrosini, 2004; Mottolese et al., 2013; 

Nitschke et al., 1996; Rijntjes et al., 1999; van der Zwaag et al., 2013; Wiestler et al., 

2011). Although it may appear that one-to-one relationships between functional regions 

of cerebral and cerebellar cortices create an excess of processing units, the nature of 

the PF-PC synapse allows for an extraordinary number of combinations to increase 

efficiency. For example, each PC acts as a convergence point receiving synapses from 

100,000 PFs, yet is innervated by only a single climbing fibre (Hoxha et al., 2016). This 

allows each climbing fibre error signal to manipulate the plasticity of many different 

PFs, which themselves receive inputs (via mossy fibres) from different regions of the 

cerebral cortex. Moreover, each PF innervates multiple PCs either directly or via 

inhibitory interneurons (detailed review of cerebellar interneurons in Kim et al., 2021; 

Palacios et al., 2021; Schilling et al., 2008; Yamazaki & Lennon, 2019). The result is a 

mixture of overlapping functional zones of the cerebellar cortex, and conversely, 

contributions from disparate functional zones to a single sensorimotor process.  

Third, in order to serve various tasks involving different motor, sensory, and cognitive 

regions of the brain, the cerebellum requires a substantial level of processing power. 

Although the cerebellum only makes up roughly 10% of total brain volume, it holds 

more than 50% of the neurons in the brain (roughly 50-100 billion neurons in 

comparison to the 10-20 billion of the cerebral cortex) (Von Bartheld et al., 2016). 
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Granule cells (including PF dendritic branches) account for the majority of cerebellar 

neurons at 50-70 billion, while PCs have been reported at a far smaller number of about 

20 million. The densely packed repeating structure of the cerebellar cortex, composed 

of only four inhibitory (Purkinje, Golgi, basket, and stellate) and two excitatory neurons 

(granule and brush), therefore provides the simple yet high power universal 

computation machine required for complex tasks of learning and inference in the brain 

(Ito, 2006; Paulin, 2005; Raymond et al., 1996). 

Across the studies in this dissertation, the second topic of focus was on the role of the 

cerebellum in the externalization of self-generated feedback. This structure - essential 

to monitoring and processing prediction error - has shown abnormal cerebellar activity 

associated with hallucinations in schizophrenia and self-monitoring (Picard et al., 2008; 

Pinheiro et al., 2021; Moberget & Ivry, 2019). Although the role of the cerebellum in 

sensorimotor feedback processing and theories of self-monitoring abnormalities in 

false perception are well established, there is still no full consensus on exactly what 

component is responsible for the emergence of hallucinations. For example, abnormal 

function within the cortico-cerebello-cortical loops may exist at the level of top-down 

predictive signalling, integration of those signals, comparison with actual feedback, or 

signalling from the cerebellum to the cortex (Pinheiro et al., 2020). Therefore, the 

cerebellum and its connections are prime candidates for future research into the role 

of sensorimotor processing in hallucinations.  

1.2 Voice signals and speaker identity 

The majority of hallucinations are in the form of “hearing voices” in the absence of a 

corresponding speaker. This pattern is reported for patients, most notably as the 

hallmark symptom of schizophrenia (Bauer et al., 2011; McCarthy-Jones et al., 2017; 

Waters et al., 2014). Although psychosis-like experiences in non-clinical samples are 

reported in multiple forms (Healy et al., 2019; Kelleher et al., 2012; Linscott & van Os, 

2013, van Os et al., 2009), one of the most prevalent findings is voice hearing whereby 

perceptual aberrations lie on a continuum with pathological presentation of symptoms 

(Beavan et al., 2011; de Leede-Smith & Barkus, 2013; Johns, 2005; Johns et al., 2014; 

Larøi et al., 2012; Maijer et al., 2018; Zhuo et al., 2019). Although most people who do 

not meet the criteria for diagnosis report only attenuated forms of abnormal 
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experiences related to voice hearing, a specific group known as healthy voice hearers 

shows a phenomenology and severity similar, but not equal, to those in schizophrenia 

(Baumeister et al., 2017; de Leede-Smith & Barkus, 2013; Johns et al., 2014; Larøi et al., 

2012; Zhuo et al., 2019). This underscores the presence of a dimensionality in general 

cognitive mechanisms subserving perception as opposed to schizophrenia-specific 

pathological brain states as the cause of hallucinatory experience. For this reason, the 

third focus of the dissertation centres on how the brain responds to voice signals in 

non-clinical samples and how the involved regions are associated with one’s proneness 

to hallucinate. Voice signal processing, in theory and functional organization of the 

brain, has much to do with the concepts of perceptual inference and self-monitoring 

discussed above. Therefore, a brief description is provided for how the same 

underlying mechanisms have afforded the ability to recognize, understand, and 

communicate with other actors in the world, and the relationship of these functions to 

hallucinations of voice. Finally, a specialized network in the brain required to serve 

voice processing is described, including how and where abnormal functioning 

associated with hallucinations may occur. 

1.2.1 Communication signaling: Aligning with actors in the external world 

Predictive action-perception models develop based on the distinct physiological 

attributes and environmental niche of a species. Driven by the hierarchically 

mechanistic mind, the motor system directs an organism to low entropy states 

particular to their phenotype, increasing the chance of survival (Badcock et al., 

2019a,b). This innate drive may rely on both the phylogenetic contribution of heritable 

adaptive priors and ontogenetic adaptations over the lifespan which may be passed 

onto future generations. Through the pressures of natural selection, as a Bayesian 

model of free-energy minimization (Campbell, 2016), species-typical patterns of 

cognition and behaviour develop (Friston, 2011a). This implies that conspecific 

creatures applying active inference in a shared environment may evolve the ability to: 

1) find common meaning in stimuli (Constant et al., 2019), 2) form a social cognition to 

attribute the mental states of other actors (Brown & Brüne, 2012; de Bruin & Michael, 

2021; Teufel et al., 2010), and/or 3) regulate one’s action and inner states via the 

observed behaviour of other organisms (Tison & Poirier, 2021a). Moreover, intentional 



   

 

13 

 

cooperative communication emerges. This may be driven by an innate pressure to 

minimize prediction error by aligning with other actors within the species (Vasil et al., 

2020), or alternatively to constrain affordances to the mutual goal of a collaborative 

action (Tison & Poirier, 2021b). Functionally, the alignment of internal states between 

actors relies on an intrinsic link between action and perception (i.e., James, 

1890/1950), evidenced by the activation of motor programmes when imagining or 

observing the corresponding action being performed by another actor (Jeannerod, 

1994; Prinz, 1997). Through the collective feeling of agency during joint action (Loehr, 

2022; Zapparoli et al., 2022), shared action-perception representations are formed to 

predict the actions of the other actors (Bolt & Loehr, 2021; Sebanz et al., 2006; Wilson 

& Knoblich, 2005). By synchronizing internal brain states, a communicative dialogue 

may form allowing one to infer the state of mind necessary for the action of the other 

agent (Friston et al., 2011; Friston & Frith, 2015; Sebanz et al., 2006). Self-monitoring 

theories of motor control offer a mechanistic model for joint action and communication 

resulting from the alignment of internal states (Brown & Brüne, 2011; Pesquita et al., 

2018; Vesper et al., 2010; Wolpert et al., 2003). As proposed by Wolpert, Doya, and 

Kawato (2003), the hierarchical modular architecture underlying sensorimotor 

transformations extends to ‘social interaction loops’, whereby communication (i.e., 

motor signaling) can tune models of action-perception between actors and the 

reliability of the intended meaning of internal states being conveyed. Notably, 

hallucinations are most often misperceived as communicative signals (i.e., voices) in 

the absence of an external agent (Baumeister et al., 2017; Larøi et al., 2012; Stephane 

et al., 2003; Waters & Fernyhough, 2017; Zhuo et al., 2019). Although auditory verbal 

hallucinations (AVH) may appear as inside or outside of the head, they can be 

dissociated from inner speech and be commenting, commanding, or even 

conversational in nature (e.g., Alderson-Day et al., 2021; Toh et al., 2020a,b; Woods et 

al., 2015). 

Multiple functional neuroimaging studies have demonstrated abnormal localized and 

distributed activations across a cortical network underlying vocal communication in 

people who experience hallucinations (Alderson-Day, 2015, 2016; Bohlken et al., 2017; 

Ćurčić-Blake et al., 2017a; Hugdahl, 2017; Northoff, 2014). Additionally, there is 

evidence for both speech production and speech perception regions to become active 
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when experiencing AVH (Allen et al., 2008; Bohlken et al., 2017; Jardri & Sommer, 2013; 

Upthegrove et al., 2016). However, not all reports of AVH symptom capture during 

scanning report involvement of speech production regions, leaving outstanding 

questions regarding the necessity of premotor and prefrontal area activation for the 

emergence of hallucinatory voice hearing. Moreover, interpreting studies that do 

observe speech production region activity during AVH is further complicated, as 

theories of motor system involvement in passive voice perception have been 

presented, contested, and refined for decades (reviewed in Devlin & Aydelott, 2009; 

Diehl et al., 2004; Galantucci et al., 2006; Massaro & Chen, 2008; Samuel, 2011; 

Schwartz et al., 2012; Scott et al., 2009; Stokes et al., 2019). In particular, the last 20 

years have included controversial accounts of “mirror neuron” activity during passive 

voice hearing (Grafton & Hamilton, 2007; Kilner et al., 2007; Rizzolatti & Craighero, 

2004), and in doing so have re-ignited debate (e.g., Hickok et al., 2009; Lotto et al., 

2009; Wilson, 2009). The original (contentious) motor theory of speech perception 

posits the primary mechanism of speech perception as the decoding and recognizing 

of stored motor programmes associated with phonetic representations (Liberman, 

1957; Liberman et al., 1967; Liberman & Whalen, 2000). However, as evident from 

aphasia research, a lack of speech production region involvement does not eliminate 

the ability to perceive speech sounds (reviewed in Hickok et al., 2011; Lotto et al., 2009; 

Venezia & Hickok, 2009). It is, therefore, clear that speech production regions are not 

essential for perception. Conversely, it has been suggested that speech production 

regions serve a secondary role to speech perception, engaged under specific contexts. 

For example, motor regions engage during ambiguous, noisy, or degraded stimuli to 

assist in decoding of phonetic representations (Adank, 2012; Liebenthal & Möttönen, 

2018; Wilson, 2009; Wu et al., 2014), and to guide turn-taking or conversational 

smoothness by predicting the other speaker’s speech to avoid processing delays 

(Pickering & Garrod, 2007; Scott et al., 2009). Additionally, a prominent motor control 

theory of speech describes the action-perception mapping as necessary for successful 

acquisitions of speech sounds and articulation (Guenther, 1994, 1995; Guenther & 

Vladuisch, 2012; Kearney & Guenther, 2019; Tourville & Guenther, 2011). This model 

outlines an adaptive neural network which integrates specialized cortical and 

subcortical components, such as speech sound maps in the left inferior frontal cortex 



   

 

15 

 

and ventral premotor cortex, auditory state and target/error maps in the left superior 

temporal gyrus, somatosensory state maps in the ventral somatosensory cortex, and - 

in line with self-monitoring theories - cerebellar modules serving a feedforward control 

subsystem (see schematics in Golfinopoulos et al., 2010; Guenther, 2006; Tourville & 

Guenter, 2011). 

The involvement of the motor system when ‘hearing voices’ in the absence of another 

speaker is most often attributed to self-monitoring theories, i.e., served by the 

aforementioned speech production-perception network (Jones, 2010). An assumption 

central to this theory posits AVH as the result of abnormal top-down predictive signaling 

(in contrast to theories of abnormal bottom-up sensory processing). Essentially, the 

propensity to externalize self-generated stimuli is extended to inner speech. Predictive 

signaling from speech productions regions to auditory target/error maps in the planum 

temporale are insufficient, resulting in a lack of suppression of sensory cortices 

allowing activation thresholds to be surpassed under conditions of minimal noise 

(Bentall, 1990; Frith & Done, 1988; Frith et al., 2000; Jones & Fernyhough, 2007b; Weiss 

& Heckers, 1999). These accounts may provide a sound explanation for why AVH are 

the most common form of hallucination, as there are no direct analogues for the speech 

action-perception network within other sensory modalities. Evidence for the self-

monitoring of (inner) speech theory of AVH is primarily demonstrated in 

electrophysiological responses where motor-induced suppression is reduced for those 

with schizophrenia, schizotypy, or clinical high-risk for psychosis (e.g., Ford et al., 

2001a, 2001b, 2007, 2013; Ford & Mathalon, 2004; Mathalon & Ford, 2008; Oestreich 

et al., 2015; Perez et al., 2012; Pinheiro et al., 2017, 2020b; Rosburg et al., 2008; van 

Lutterveld et al., 2011; Whitford, 2019). Furthermore, the pathway connecting prefrontal 

speech production and temporal speech perception regions assumed to subserve a 

direct route for motor predictions to target/error predictions maps has indicated 

structural abnormalities in patients with schizophrenia who experience AVH (Catani et 

al., 2011; Chawla et al., 2019; Ćurčić-Blake et al., 2015; De Weijer et al., 2011, 2013; 

Hubl et al., 2004; Leroux et al., 2017; McCarthy-Jones et al., 2015; Psomiades et al., 

2016; Rotarska-Jagiela et al., 2009). Additionally, atypical processing of left-lateralized 

speech perception in those with AVH has been linked to variability in the connectivity 

of pathways connecting the cerebral hemispheres (Hugdahl, 2009). The 
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interhemispheric miscommunication theory is supported by both structural and 

functional connectivity evidence which may be influenced by progression into 

psychotic illness or severity of symptoms such as AVH (Ćurčić-Blake et al., 2017a; 

Steinmann et al., 2014). Like unconscious inference accounts of false perceptions, this 

theory integrates the imbalance of excitatory/inhibitory inputs in top-down signaling, 

ascribed to an increase in the excitatory neurotransmitter glutamate affecting 

interhemispheric pathways involved in the perception of speech signals (Ćurčić-Blake 

et al., 2017b; Hugdahl, 2009; Hugdahl et al., 2015; Steinmann et al., 2019).   

The self-monitoring theory provides a compelling explanation for the emergence and 

phenomenology of AVH. However, observations in neuroimaging research indicate the 

involvement of more distributed, interacting, brain networks which may indicate a 

broader cognitive mechanism (Alderson-Day et al., 2015, 2016; Ćurčić-Blake et al., 

2017a; Northoff, 2014). For example, activation during hallucinations is not limited to 

left-hemisphere speech and language processing regions, and includes a larger 

network including bilateral frontal, temporal, and parietal regions of the cortex (see 

meta-analyses in Jardri et al., 2011; Kompus et al., 2011; Kühn & Gallinat, 2012; van 

Lutterveld et al., 2013; Zmigrod et al., 2016). Likewise, abnormalities in various white 

matter pathways additional to those serving speech have been reported in 

schizophrenia patients and healthy individuals prone to hallucinate (Bopp et al., 2017; 

Ćurčić-Blake et al., 2015; de Weijer et al., 2011, 2013; Filippi et al., 2014; Hubl et al., 

2004; Jung et al., 2020). Perhaps most importantly, functional connectivity studies 

provide evidence for abnormal switching between default-mode and active sensory 

processing (including speech and language) as the result of inappropriate attribution 

of salience to irrelevant stimuli (Menon et al., 2011; Palaniyappan & Liddle, 2012; 

Schmidt et al., 2015). 

1.2.2 Voice signal processing: Identifying other actors in the external world      

To explore neural substrates associated with AVH, brain activity across a cortical voice 

perception network is assessed. A summary of the information carried in voice relevant 

to AVH (e.g., identity) is provided, and candidate regions for abnormal hypersalient 

cortical responses as well as errors in self-other identity attribution. In general, most 

living organisms possess a capacity to produce and understand signs necessary for 
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successful interaction with the outside world (reviewed in Sebeok, 2001). Detecting 

signals from the environment or conspecifics conveying affective meaning will trigger 

an automatic behavioural response. However, for species who have evolved intentional 

communication of meaning, more complex abilities are endowed such as the ability to 

learn about the agency of actors and to engage in cooperative information sharing 

(Tomasello et al., 2012). Although this can be signalled via gesture, touch, or even 

scent, vocal communication is particularly efficient. It allows for information transfer 

over long distances, and when articulated through speech, conveys increasingly 

complex messages which peak at the uniqueness of human language (Christiansen & 

Kirby, 2003). In humans, the emergence of this complex vocal communication system 

relied on an interwoven evolution of multiple capacities, such as voluntary control of 

the vocal apparatus, a flexible set of vocal sounds, and the capacity for vocal learning 

to add to this repertoire (reviewed in Belyk & Brown, 2017). Seminal biosemiotic and 

biolinguistic theories present different explanations on why language emerged in 

humans, yet find agreement in that linguistic communication may be an exaptation 

made possible from the adaptive traits evolved for vocal signaling in the human social 

environment (Barbieri, 2010; Hauser et al., 2002; Sebeok, 2001). Foreseeably, an 

evolutionary history shaped by social interaction has produced additional value to vocal 

signaling irrespective of language, in the form of discriminating or recognizing the 

identity of other individuals. In such a way, voice itself may operate as an “auditory 

face” by which the specific affective and identity information of an actor may be 

ascertained (Belin et al.,2004; Belin et al., 2011; Schirmer, 2018). Accordingly, human 

voice processing imports two functions: to identify what a speaker is communicating 

and to identify information about the speaker themselves. To extract these features 

from complex human voice signals, the brain relies on a broad network of temporal and 

extra-temporal regions. 

Human voice processing spans many cortical and subcortical regions of the brain, with 

divergent functional systems recruited for the analysis of speech-, affective, and 

identity-related features. Although language may be unique to humans, vocal 

communication is not, and therefore early processing of information wrapped in a voice 

signal is likely constrained to basic encoding of dynamic, rapid, acoustic changes 

phylogenetically related to non-human primate models (Davis & Johnsrude, 2007; Fitch 
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et al., 1997; Ghazanfar & Hauser, 1999; Rauschecker, 1998; Rauschecker & Scott, 2009; 

Scott & Johnsrude, 2003). In humans, cortical processing begins in the primary auditory 

cortex (A1) with structural encoding of input from the ascending auditory pathway 

(Belin et al., 2004). The bilateral posterior superior temporal gyri (STG) are recruited 

for the identification of relevant features signifying the presence of a communicative 

voice signal requiring further processing. These regions are involved in the extraction 

of spectrotemporal templates for different classes of complex sounds, including the 

voice (Griffiths & Warren, 2004; Warren et al., 2005a,b). Although the posterior superior 

temporal gyri are not specialized for voice per se, activation in these regions is 

preferential for complex voice signals in comparison to other environmental sounds 

(Pernet et al., 2007). At this point, speech processing pathways diverge into a left 

hemisphere-lateralized dorsal (“what”) stream engaged in sound-to-action mapping 

and a ventral (“where/how”) stream engaged in sound-to-meaning mapping and 

localization involving both left and right hemispheres (Hickok & Poeppel, 2004, 2007; 

Rauschecker, 2011, 2018). The dorsal stream converges with the aforementioned 

substrates of speech action-perception underlying self-monitoring theories of AVH. 

However, further analysis into the involvement of sound-to-meaning processing in 

voice signals may provide more insight into the phenomenological presentation of 

hallucinated voice (e.g., speech content, affective state, or identity of the perceived 

speaker).   

An important distinction when assessing the distributed voice processing network, is 

to isolate subsystems or components of interest (e.g., serving speech, language, or 

speaker evaluation). Within sound-to-meaning (auditory object) voice processing, we 

can further distinguish between speech-related linguistic (“what”) and speaker-related 

paralinguistic (“who”) features (Belin et al., 2000; Formisano et al., 2008). Although 

these processes may interact, they are predominantly biased to specialized 

hemispheric pathways. The left hemisphere is more involved in linguistic information 

and the right in paralinguistic analysis such as speaker identity, and emotion. This 

asymmetrical processing may be the result of general hemispheric specialization, 

delineating a left-side advantage in temporal resolution processing and a ride-side in 

spectral, benefitting speech and tonal information processing, respectively (Belin & 

Zatorre, 2000; Zatorre et al., 2002; Zatorre & Gadour, 2008; see rebuttal in McGettigan 
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& Scott, 2012). Furthermore, for both linguistic and paralinguistic subsystems, 

processing of increasingly complex information appears to be processed 

hierarchically. In the right-hemisphere paralinguistic pathway, hierarchical processing 

proceeds along a posterior to anterior gradient (Belin & Zatorre, 2003, Nakamura et al., 

2001; von Kriegstein et al., 2003, von Kriegstein and Giraud, 2004). Low-level acoustic 

components containing paralinguistic information are identified, allowing the posterior 

STG to detect a change in voice source (Belin et al., 1999; Warren et al., 2003, Warren 

et al., 2005a). For voice identity processing, a multi-stage process outlines the 

evaluation of low-level acoustic features relevant to speaker identification in the 

posterior STG, followed by prototype comparison and deviance detection in the middle 

STG, and finally identity recognition in the anterior STG (Maguinness et al., 2018). 

Importantly, this hierarchy may not be serial, as cross-modal information, or the 

interaction of top-down and bottom-up signals may modulate the activity of the system 

(Warren et al., 2006). For example, attribution of identity may be influenced by visual 

information such as faces (Blank et al., 2011, 2014; von Kriegstein et al., 2005; Watson 

et al., 2014a; Yovel & Belin, 2013), an interaction between auditory, visual, and affective 

cues (Davies-Thompson et al., 2019; Ethofer et al., 2013; Stevenage & Neil, 2014; 

Watson et al., 2014b), or selective attention to task-relevant voice cues (Bonte et al., 

2014).    

It has been suggested that voice-related activity most accurately represents a general 

processing of dynamic auditory information such as picking out innately salient signals 

from a noisy environment (reviewed in Grandjean, 2021). The theory of abnormal 

salience attribution in the emergence of false perceptions (i.e., over-weighted priors in 

perceptual inference) is congruent with functional connectivity findings indicating an 

abnormal switching to active sensory processing during irrelevant stimuli (Menon et al., 

2011; Palaniyappan & Liddle, 2012; Schmidt et al., 2015). It is possible that an initial 

salience attribution issue jump starts prefrontal top-down signaling from speech 

production, memory, and emotion systems to drive the phenomenology of AVH 

perception. Voice stimuli from the environment are considered highly salient, and 

therefore may serve as the ideal trigger for the abnormal engagement of the voice 

processing network leading to the emergence of AVH. Although this theory appears to 

reject self-monitoring theories of AVH which describe the impetus of the false 
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perception as weak predictive signals, it indeed does not stand in full opposition. For 

example, the hallucinatory percept may emerge through hypersalient cortical 

responses, yet the perception must still be guided phenomenologically by voice 

production regions as well as misattributed to an external source, indicating deficient 

self-monitoring. This dissertation provides an exploration into an association between 

this putative early-stage hypersalient voice processing as one’s subjective proneness 

for hallucinatory experience. 

2 Aims and methods of the dissertation 

The goal of this dissertation is to provide new insight into the cognitive mechanisms 

and neural correlates underlying the proneness to hallucinate. This is realized through 

a comprehensive research project that combines functional neuroimaging meta-

analyses, established and novel functional tasks, and structural analyses on the pattern 

of diffusion and connectivity of white matter tracts of the brain. Multiple theories have 

been put forward that attempt to describe the emergence of hallucinations and 

emphasize the key role of different regions across the brain. This research is 

approached primarily from the perspective that hallucinations are a consequence of 

incorrect prediction or monitoring of sensorimotor feedback with an emphasis on the 

role of cerebellar pathways. Alternatively, theories of cortical neural coding suggest a 

general difference in balancing top-down and bottom-up inputs leading to the presence 

or propensity to experience false perceptions. Additional conceptualizations of self-

monitoring have prominently described auditory hallucinations as an erroneous 

processing of prefrontal speech planning and production signals by the temporal 

cortex as the voice of another person. Although all these explanations are sufficient in 

describing the overactivity of sensory cortices during hallucinations – both as the result 

of external noise or the misattribution of internal processes – it is unclear if these 

processes are mutually exclusive or comprise a common dysfunction affecting multiple 

pathways. The individual experiments within this dissertation have been successively 

arranged and conducted to describe how putative hallucination-related substrates 

compare to a subjective proneness for hallucinatory experience. Furthermore, the 

dissertation aims to present these findings within samples of the general population, to 
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avoid the confounds of previous hallucination research in clinical samples often limited 

to schizophrenia. 

2.1 Measure of hallucination proneness 

In two of the four original studies presented in the dissertation (chapter 3 and chapter 

5), the subjective level of hallucination proneness (HP) of each participant was 

determined. This measure can be acquired using the adapted Launay-Slade 

Hallucination Scale (LSHS) revised scale (Larøi & Van Der Linden, 2005a). In contrast 

to metrics which assess the severity of positive symptoms in psychotic disorders (e.g., 

Scale for the Assessment of Positive Symptoms: SAPS, the Positive and Negative 

Syndrome Scale: PANSS, or the Psychotic Ratings Symptom Scale: PSYRATS), the 

LSHS is particularly effective in providing quantifiable indications of the level of 

susceptibility one has for transient false or abnormal perceptual experience. For this 

reason, the LSHS is a reliable tool applicable to the general population and can provide 

a measure of proneness along a continuum ranging from overt hallucinatory 

experience to normal states (Waters et al., 2003).   

Originally developed in 1981 to investigate the link between aggressive-paranoid 

tendencies and HP in prison inmates (Launay & Slade), the LSHS originally consisted 

of 12 true or false items related to intrusive and vivid thoughts, daydreams, as well as 

auditory and visual hallucinations. In the three following decades, the tool has been 

revised and adapted multiple times, including multiple principal component and 

validation analyses. In 1985 (Bentall & Slade), the scale was first revised with the 

introduction of a 5-point Likert scale rating system. The application of the revised LSHS 

(LSHS-R) was influential in hallucination research, as principal component analyses 

determined that this tool was capable of both separating subclinical and clinical types 

of auditory hallucinations (Levitan et al., 1996), and supported HP as a multidimensional 

construct (Aleman et al., 2001). In the early 2000s, the LSHS-R was accordingly 

modified to better incorporate the diverse dimensions of HP. Morrison, Wells, and 

Nothard presented an adapted version with additional visual hallucination items 

increasing the total amount to 16 (2000). Subsequently, this adaptation was expanded 

to dimensions of tactile and olfactory hallucinations as well as the feeling of the 

presence of someone close who passed away (Larøi et al., 2004). Furthermore, items 
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referring to God or hearing the devil were removed due to low variability and response 

rate (Larøi et al., 2004). Finally, a set of follow-up questions for each item was 

incorporated to assess various characteristics associated with prevalence such as 

frequency, degree of control, emotional reaction, relationship to stressful events, and 

personal saliency (Larøi & Van der Linden, 2005a).   

Versions of the LSHS have been applied in various non-clinical studies exploring the 

link between HP and associated characteristics, for example, other psychosis-related 

traits like delusions, paranoia, and dissociation (e.g., Alderson-Day et al., 2014; Allen et 

al., 2006; Bradbury et al., 2009; Cella et al., 2008; Larøi, Van der Linden, 2005b; Morrison 

et al., 2000; Pilton et al., 2015; Stirling et al., 2007; Varese et al., 2011). Moreover, LSHS 

research has provided insight on cognitive mechanisms associated with psychosis 

such as thought control, meta-cognitive beliefs, source-monitoring, reality-monitoring 

(e.g., Collignon et al., 2005; Jones & Fernyhough, 2009; Larøi & Van der Linden, 2005b; 

Morrison et al., 2000; Perona-Garcelan et al., 2013; Stirling et al. 2007; Varese et al., 

2011), as well as speech and language processing (e.g., Alderson-Day et al., 2014; Allen 

et al., 2006; McCarthy-Jones & Fernyhough, 2011; Vercammen & Aleman, 2010). Other 

comorbidities with HP such as anxiety, depression, and childhood trauma have been 

assessed using this tool (Berry et al., 2018; Jones & Fernyhough, 2009; Morrison et al., 

2000; Varese et al., 2012).  

In the current dissertation, the Larøi & Van der Linden adaptation of the LSHS-R is used 

(2005a). The questionnaire consists of 16 items relating to the proneness of tactile, 

sleep-related, visual, and auditory hallucinations, as well as vivid thoughts and 

daydreaming. The total LSHS-R score provides a powerful indication of overall 

proneness driven by various factors capturing the multidimensional nature of HP. 

However, as previous principal component analyses have successfully shown 

segregation between factors and therefore separate analysis and comparison is of 

value (e.g., Aleman et al., 2001; Larøi et al., 2004; Larøi & Van der Linden, 2005a; Levitan 

et al., 1996; Morrison et al., 2000). As the projects involved are closest tied to AVH, 

analyses of auditory item subtotals in addition to total score are included.  
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2.2 Functional magnetic resonance imaging 

All four studies within the current dissertation include the analysis of magnetic 

resonance imaging (MRI) data collected by our team or metadata from previous 

literature. MRI is an established neuroimaging tool commonly in use since the 1970s 

for diagnostic and research purposes (for a historical review see Viard et al., 2021). 

Through the application of magnetic fields and radio wave pulses inside the MRI 

scanner, a matrix of data is acquired to generate detailed 2D and 3D images (detailed 

description of MRI physics in Currie et al., 2013; Plewes & Kucharczyk, 2012). First, a 

magnetic gradient longitudinal to the orientation of the body aligns the spin of hydrogen 

protons. Consecutively, a sequence of radio wave pulses is introduced which 

temporarily realigns the resonance perpendicular to the longitudinal magnetization, 

producing a wave signal detectable by the scanner coils. The difference in relaxation 

time across the voxels allows for the distinction of tissues and the creation of contrast 

images. Furthermore, by altering the pulse sequence various contrast images can be 

produced, while an assortment of data at each voxel can be used to analyse different 

anatomical or physiological processes (Bitar et al., 2006; Young et al., 2020).   

In the early 1990s, MRI technology was extended to mapping of activations in the brain 

(for a historical review see Bandettini, 2012). Although other tomographic imaging 

methods had previously existed, able to model differential sustained states of brain 

activation, this form of functional MRI (fMRI) offers several benefits which ultimately led 

to a burgeoning of empirical findings across neuroscience over the past 30 years. First, 

it allows for more detailed analysis of the time-course of activations. Second, in addition 

to contrasting blocks of sustained activation patterns, fMRI can model activations 

relative to stimulus presentation via event-related paradigms (Amaro Jr. & Barker, 

2006). Signal detection in fMRI employs a long-standing discovery that the magnetic 

susceptibility of haemoglobin changes based on its level of oxygenation (Pauling & 

Coryell, 1936). When an area of the brain becomes active, energy is expended and 

oxygen is consumed, leading to an initial rise in deoxyhemoglobin concentration 

followed by a compensatory increase in blood flow and oxygenated haemoglobin and 

the eventual return to baseline levels. Due to the paramagnetic properties of 

deoxyhemoglobin and paramagnetic of oxyhemoglobin, a shift in magnetic 
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susceptibility can be detected, referred to as the blood-oxygen-level-dependent 

(BOLD) signal (Gauthier & Fan, 2019; Kim & Ogawa, 2012; Logothesis & Wandell, 2004; 

Ogawa et al., 1998). Much research has attempted to deconstruct the physiological or 

neuronal basis of this signal, attributed to temporally discrete components of neuro-

vascular coupling including changes in blood volume or flow, oxygen depletion, or 

metabolic rate (Attwell & Iadecola, 2002; Buxton & Frank, 1997; Jueptner & Weiller, 

1995; Raichle & Mintun, 2006). However, in fMRI analysis, net changes in BOLD signals 

are commonly interpreted as an indirect measure of stimulus- or state-attributed neural 

activity (Heeger & Ress, 2002; Logothesis, 2008).  

Two fMRI tasks were conducted within the dissertation project utilising BOLD contrast 

estimates, comparing different conditions via event-related paradigms. The first is a 

widely used functional localizer task which identifies temporal and extra-temporal areas 

of the cerebral cortex sensitive to voice stimuli (Belin et al., 2000). In chapter 3, this 

localizer for an ROI analysis is used, where contrast estimate values for voice versus 

silence (voice sensitive), non-voice versus silence (environment sensitive), and voice 

versus non-voice (voice preference) are extracted and correlated them to subjective 

levels of hallucination proneness. In chapter 4, this localizer task is used to determine 

a specific voice sensitive region of interest to build a mask for parameter extraction in 

a voice perception task assessing motor-induced suppression and error-monitoring 

activity in self- and other-attributed voice signals (vowel excerpts /a/ and /o/). The task 

was adaptation from an EEG paradigm capable of eliciting prediction error responses 

to self-initiation vowels independent of vocal production, via button-press (Knolle et al., 

2019; Pinheiro et al., 2020b). A 2x3 factorial design was used, with factors of source 

(self-generated and passively-heard) and voice (self, uncertain, and other). Uncertain 

self-other voice identity stimuli were produced using a morphing software (STRAIGHT: 

Kawahara 2003, 2006). An event-related design of randomly-ordered stimuli conditions 

was selected to avoid fMRI adaptation of the auditory HRF response (Barron et al., 

2016; Grill-Spector et al., 2006; Larsson et al., 2016). A delayed-acquisition technique 

was employed to allow for stimulus to be acquired during periods of relative silence 

(Belin et al., 1999; Hall et al., 1999). 
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2.3 Activation-likelihood meta-analysis 

Although many functional neuroimaging studies have experimentally altered self-

generated sensory feedback, no clear consensus on the brain regions involved had 

been previously presented. For this reason, a meta-analysis was conducted on pre-

existing experiments altering either visual or auditory stimuli to model brain regions 

responsive to modality-specific or multi-modal feedback error (chapter 2). A 

coordinate-based technique was employed known as activation-likelihood estimation 

(ALE) (www.brainmap.org/ale). This technique differs from other quantitative models of 

neuroimaging meta-analysis, as it incorporates each focus in standard space weighted 

against the n from the contributing study. Each of the activation foci is then modelled 

as a probability distribution of spatial uncertainty, and the resulting output is a set of 

coordinates representing those likely to share spatial association (Eickhoff et al., 2009, 

2012; Laird et al., 2005). 

2.4 Diffusion tensor imaging 

To investigate how white matter structure varies with hallucination proneness, 

diffusion-weighted imaging (DWI) was acquired. DWI is an MRI method that detects the 

movement of water within organic tissue (Le Bihan, 1986).  The science of MR 

spectroscopy and pulse gradient techniques underlying DWI were discovered several 

decades ago (Carr & Purcell, 1954; Stejskal & Tanner, 1965), yet development of the 

method was impeded by technical constraints of the time. Only in the 1990s was it was 

proposed that tensors quantifying the directionality of water diffusion could be modeled 

using DWI data (diffusion tensor imaging: DTI), allowing for interpretations regarding 

the structure, architecture, and orientation of the underlying tissue (Basser et al., 1994). 

A tensor at each voxel is calculated from the magnitude (eigenvalues) of diffusion in 

three perpendicular directions (eigenvectors). Using the eigenvalues and eigenvectors, 

multiple properties of diffusion can be inferred at each voxel (detailed description in 

Kubicki et al., 2002; O’Donnell & Westin, 2012; Soares et al., 2013). These can be 

quantified along the main axis of diffusion (axial diffusivity: AD), transverse to the main 

axis (radial diffusivity: RD), the mean rate across all directions (mean diffusivity: MD), 

and perhaps most importantly, the preferential direction of diffusion (fractional 

anisotropy: FA). Additionally, the FA value can indicate within each voxel how evenly 
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(isotropic) or specific (anisotropic) water diffusion appears. DTI interpretation often 

attributes change in diffusion patterns to variability in myelin or axonal differences 

which putatively restrict the flow of diffusion. Measures of FA were applied as the 

primary measure of diffusion directionality as well as secondary measures of MD, AD, 

and RD for interpretation of findings. Furthermore, probabilistic tractography was used 

as a tool for modelling specific pathways of the brain and to quantify streamlines as a 

measure of connectivity. Finally, diffusion and connectivity data to LSHS scores were 

compared to assess the relationship between white matter structure and HP. 

3 Outline of the dissertation  

Following the historical and theoretical account of research describing the emergent 

phenomenon of hallucinations as false perceptions, chapter 2 opens the empirical part 

of this dissertation. In this section, a meta-analysis is provided focusing on all regions 

across both auditory and visual bodies of functional neuroimaging studies responsive 

to errors in predicted feedback of self-generated stimuli. The aim of this study was two-

fold: to determine if feedback-error regions are specific or non-specific to a sensory 

modality and if the role of the cerebellum in processing unpredicted sensory feedback 

is detectable in fMRI as indicated by this body of research. Additionally, as theories of 

hallucination research posit a central role of misattributed self-generated feedback to 

another agent, the neural substrates of perceived internalization versus externalization 

of sensation during action are outlined. The following fMRI investigation in chapter 3 is 

focused on how voice sensitive areas may be systematically related to the proneness 

of a hallucinatory experience. Moreover, this chapter investigates if hallucination 

proneness relates to changes in brain activity without the involvement of the motor 

system and is detectable in hypersensitivity to passive sensory stimuli. The findings 

from these chapters cumulatively informed the fMRI investigation reported in chapter 

4 which explored if feedback-error and voice-processing regions are affected by 

unexpected changes to the quality of one’s own voice during action. Finally, chapter 5 

presents a DTI study that outlines if and how structural changes to white matter 

pathways involved in prediction, auditory and salience processing underlie sensitivity 

to subjective levels of hallucination proneness. This investigated a possible correlation 

between HP and white matter structural changes in pathways selected as reported in 
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literature for patients with AVH and putative roles in the mechanisms hypothesized to 

be associated with these experiences. The discussion provided in chapter 6 elaborates 

on the involvement of theories underlying prediction-perception and action-perception 

models in the findings across chapters 2-5. Additionally, the interpretations are re-

integrated into established models of psychotic illness in search of coherence with 

continuum theories or a vulnerability to transition to clinical expression. 
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Chapter 2 

The role of the cerebellum in adaptation: ALE meta-analyses 

on sensory feedback error 

Johnson, J.F., Belyk, M., Schwartze, M., Pinheiro, A.P., & Kotz, S.A. 

Abstract. It is widely accepted that unexpected sensory consequences of self-action 

engage the cerebellum. However, we currently lack consensus on where in the 

cerebellum, we find fine-grained differentiation to unexpected sensory feedback. This 

may result from methodological diversity in task-based human neuroimaging studies 

that experimentally alter the quality of self-generated sensory feedback. We gathered 

existing studies that manipulated sensory feedback using a variety of methodological 

approaches and performed activation likelihood estimation (ALE) meta-analyses. Only 

half of these studies reported cerebellar activation with considerable variation in spatial 

location. Consequently, ALE analyses did not reveal significantly increased likelihood 

of activation in the cerebellum despite the broad scientific consensus of the 

cerebellum's involvement. In light of the high degree of methodological variability in 

published studies, we tested for statistical dependence between methodological 

factors that varied across the published studies. Experiments that elicited an adaptive 

response to continuously altered sensory feedback more frequently reported activation 

in the cerebellum than those experiments that did not induce adaptation. These 

findings may explain the surprisingly low rate of significant cerebellar activation across 

brain imaging studies investigating unexpected sensory feedback. Furthermore, 

limitations of functional magnetic resonance imaging to probe the cerebellum could 

play a role as climbing fiber activity associated with feedback error processing may not 

be captured by it. We provide methodological recommendations that may guide future 

studies. 

Human Brain Mapping, 2019, 40(13), 3966-3981 
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1 Introduction 

To successfully act within a dynamic environment, we continuously monitor sensory 

feedback associated with our own movements to ensure our actions have the desired 

outcomes. Even the simplest movements require complex coordination between 

multiple effectors. The continuous monitoring of sensory feedback helps to refine 

motor plans and adjust them to contextual and environmental changes. The forward 

model is a computational process that compares expected to actual sensory 

consequences of an action [Figure 1] (Jordan & Rumelhart, 1992; Miall & Wolpert, 1996; 

Wolpert, 1997). This comparison is essential to motor control and relies partly on the 

cerebellum (Blakemore et al., 2001; Ishikawa et al., 2016; Ito, 1984a; Kawato et al., 1987; 

Miall et al., 1993; Wolpert et al., 1998). However, there is still no strong consensus on 

where in the cerebellum unexpected sensory feedback is processed. To this end, the 

current meta-analysis systematically explores patterns of cerebellar activation in 

neuroimaging studies of sensory feedback manipulations. Such manipulations create 

an artificial mismatch between intended and perceived sensory consequences of an 

action, constituting methods commonly used to probe forward models in brain imaging 

studies.  

A fundamental component of the forward model is the efference copy: when the motor 

cortex sends a command to the peripheral nervous system for the execution of motor 

behavior, a copy of the command is fed forward to provide an estimate of the 

sensorimotor feedback predicted from the movement (von Holst & Mittelstaedt, 1950). 

The predicted feedback is compared to the actual feedback from the proprioceptive 

(Miall & Wolpert, 1996; Wolpert & Kawato 1998), visual (Leube et al., 2003), auditory 

(Hashimoto & Sakai, 2003), and tactile (Blakemore et al., 1998) sensory periphery. Any 

discrepancy between predicted and actual feedback constitutes an output known as a 

corollary discharge (Feinberg, 1978). The resultant error signal is processed by the 

cerebellum, ultimately resulting in an output to cortical areas to adaptively fine-tune 

behavior. As both the state of the organism and the environment are dynamic, forward 

models are employed continuously to reduce any discrepancy between predicted and 

actual feedback through constant monitoring and adjustment of behavior (Desmurget 

& Grafton, 2000; Jordan & Rumelhart, 1992).  



   

 

31 

 

FIGURE 1. Components of a forward model. A diagram which outlines five major components of a 

Forward Model. The “Motor Plan” incorporates the components (1) “Efference Copy” and (2) “Motor 

Command.” The implantation of the Motor Command leads to (3) “Observed Sensory Feedback.” The 

efference copy is an expectation of sensory consequences of the enactment of the motor plan, providing 

(4) “Predicted Sensory Feedback.” The Observed Sensory Feedback and the Predicted Sensory 

Feedback are compared. If they do not match, an (5) “Error Signal” indicating violation of the expected 

consequences is returned for updating of the motor plan. The “Observed Sensory Feedback” can also 

notify the “Predicted Sensory Feedback” with contextual information of body or environment in order to 

make temporary changes to the prediction rather than updating the motor plan. This is denoted as 

“Dynamic assessment of state”  

The cerebellar cortex comprises overlapping functional zones that process input from 

specific sensory modalities (Witter & De Zeeuw, 2015). Specific areas respond to 

auditory or visual stimuli (O'Reilly et al., 2009; Petacchi et al., 2005; Sang et al., 2012). 

Likewise, portions of the cerebellum segment into somatomotor topographies 

associated with the control of different body parts (Buckner et al., 2011; Mottolese et 

al., 2013). These divisions are coupled to associated subdivisions of motor cortex 

responsible for controlling the same body parts. The motor areas contribute cortical 

input to communication loops between the cortex and cerebellum employed in ongoing 

motor control. Therefore, the cerebellar cortex receives two principal types of afferents: 

mossy fibres primarily via the pons which relay information such as the efference copy 

from corresponding cortical regions (Raymond et al., 1996), while medullary nuclei 

relay bottom-up sensory feedback-related signals and induce changes in the influence 

of cortical top-down signals to the cerebellar cortex (Ito, et al., 1982). The inferior olive 

monitors the discrepancy between predicted and actual sensory input and relays an 

error signal to the cerebellum via climbing fibers (Ito, 1984b; Kawato & Gomi, 1992). 
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The cerebellum also receives signals of unpredicted auditory feedback from the dorsal 

cochlear nuclei of the medulla (Schwartze & Kotz, 2013). In turn, the cerebellum 

continuously signals the discrepancy back to the cerebral cortex to induce adaptation 

of motor behaviour until the expected feedback matches the actual sensory feedback.  

In order to guide the complex task of adapting behaviour to resolve discrepancy 

between expected and actual sensory feedback, the cerebellum must communicate 

and coordinate with multiple areas of the cerebral cortex. All output from the 

cerebellum, such as from the processing of the corollary discharge, are issued via deep 

cerebellar nuclei (Middleton & Strick, 1997), connecting to regions such as the 

prefrontal cortex (Allen et al., 2005a; Balsters et al., 2010; Kelly & Strick, 2003; Middleton 

& Strick, 2001; Ramnani, 2012; Watson et al., 2014c), motor areas (Akkal et al., 2007; 

Balsters et al., 2010; Dum & Strick, 2003; Kelly & Strick, 2003; Lu et al., 2012; Wise & 

Strick, 1984), and parietal area (Allen et al., 2005a; Clower et al., 2001; Prevosto et al., 

2009; Ramnani, 2012). The cerebellum and these frontal and parietal areas also create 

loops where reciprocal exchange of information can be continuously fed through a 

cortico-cerebellar system to allow for continuous adaptation of motor activity (Watson 

et al., 2014c).  

A common experimental approach to study neural substrates that implement 

processes related to the forward model is to manipulate the sensorimotor feedback of 

self-generated movements. In these experiments, participants typically produce 

articulatory or manual movements while feedback is altered. For example, studies have 

investigated how the brain responds to unpredicted feedback by manipulating the 

acoustic properties of one's own voice (Tourville et al., 2008; Zheng et al., 2013), by 

introducing illusory visual displacement of the hand or a mechanically controlled avatar 

(David et al., 2007; Diedrichsen et al., 2005; Schnell et al., 2007), or by applying an 

unpredicted external physical force (Diedrichsen et al., 2005; Golfinopoulos et al., 2011). 

Therefore, there can be much variability in how this mechanism is studied in 

neuroimaging research in terms of form of motor production, feedback manipulation, 

and sensory modality of feedback. It was our intention to evaluate over the body of 

literature eliciting activity in response to various manipulations of self-generated 

sensory feedback any common areas reported in the brain, with specific interest in 
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finding consensus on the regions of the cerebellum involved. We conducted three 

activation likelihood estimation (ALE) meta-analyses of functional neuroimaging studies 

to identify patterns of neural activation that are reliably affected by these manipulations. 

A primary analysis was expected to yield a modality independent but anatomically 

precise global impression of cerebellar contributions to processes related to the 

forward model. Two secondary ALE analyses were conducted to differentiate this 

impression in terms of potential modality-specific components, as well as a contrast 

analysis between auditory and visual feedback results. This distinction is made as 

although higher processing cortical areas may be responsive irrespective of the 

sensory modality, there is cerebellar and cortical distinction between areas responsive 

to auditory and visuomotor feedback manipulations. In doing so, we may shed light on 

a consensus of where the cerebellum is involved in processing feedback error, and 

specifically if the cerebellum is more reliably probed in areas segregated for auditory 

or visual sensory input. Additionally, due to the high diversity in methods across this 

body of literature, we aimed to further investigate the dependency of cerebellar activity 

reported on the factors which most commonly varied across the experiments selected 

for our meta-analyses.  

2 Materials and Methods 

We generally followed recent best practice guidelines for the conducting of 

neuroimaging meta-analyses (Müller et al., 2017). These guidelines have been put 

forward to improve the transparency and replicability of meta-analyses. We accordingly 

report information advised such as research question, inclusion and exclusion criteria, 

detailed information for all experiments, and a step-by-step flowchart [see Figure 2].  

 

FIGURE 2. Meta-analysis flowchart. A flowchart diagram recommended in the best practice guidelines 

for the conducting of neuroimaging meta-analyses (Müller et al., 2017). The flowchart lists eight sections. 

(1) Specification of research question. (2) Systematic literature search. (3) Data extraction. (4) Double 

checking of data. (5) Decisions of the specific analyses and potential sub-analyses. (6) Conversion of 

coordinates into the same reference space. (7) Calculation of meta-analyses. (8) Transparent reporting. 

Each section is outlined to provide the reader with all necessary information for replication. 
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2.1 Study selection 

The PubMed (www.ncbi.nlm.nih.gov/pubmed) database was searched for human 

neuroimaging studies using combinations of relevant keywords (e.g., functional 

magnetic resonance imaging [fMRI], positron emission tomography [PET], 

sensorimotor learning, adaptation, and shifted-, delayed-, altered-, masked-, 

incongruent-, and distorted feedback). We further cross-referenced the articles 

produced from the search term to corroborate that no relevant articles were 

overlooked. Studies were selected if they reported activation contrasts of unpredicted 

(manipulated) compared to predicted (non-manipulated) self-generated feedback, data 

acquisition covered the whole brain encompassing the cerebellum, and included tables 

listing peak activations in standard stereotaxic space. Only data from healthy adult 

participants were selected. Results reported in Talairach space (Talairarch & Tournoux, 

1988) were converted to MNI (Holmes et al., 1998) using the GingerALE (2.3.6) 

icbm2tal conversion algorithm (Lancaster et al., 2007). This search yielded experiments 

from 36 studies, reporting a total of 368 foci of activation from 601 participants, 

including 16 studies of manipulated auditory feedback from vocalizations or button-

presses, and 20 studies of manipulated visual feedback of hand movements [Table 1]. 

TABLE 1A       |       VISUAL FEEDBACK STUDIES IN META-ANALYSIS 

Study N Manipulation Imaging # of Foci 

Anguera et al. (2010) 21 Spatial shift 3 T 18 

Backasch et al. (2014) 16 Temporal 3 T 6 

Balsev et al. (2017) 15 Temporal 3 T 4 

Brand et al. (2017) 14 Spatial shift 3 T 13 

David et al. (2007) 14 Mismatch 1.5 T 11 

Diedrichsen et al. (2005) 39 Spatial shift 3 T 8 

Farrer et al. (2008) 15 Temporal 1.5 T 10 

Fink et al. (1999) 10 Mismatch PET 1 

Grafton et al. (2008) 10 Spatial shift 1.5 T 14 

Graydon et al. (2005) 24 Spatial shift 4 T 12 

Inoue et al. (2000) 6 Spatial shift PET 19 

Krakauer et al. (2004) 12 Spatial shift PET 7 

Leube et al. (2003) 18 Temporal 1.5 T 12 

Limanowski et al. (2017) 16 Temporal 3 T 5 

Ogawa et al. (2007) 17 Temporal 1.5 T 3 

Seidler et al. (2006) 26 Spatial shift 3 T 12 

Schell et al. (2007) 15 Mismatch 1.5 T 11 

Spaniel et al. (2015) 35 Spatial shift 3 T 2 

Tunik et al. (2013) 12 Mismatch 3 T 12 

Yomogida et al. (2010) 28 Mismatch 1.5 T 6 



   

 

36 

 

 

TABLE 1B      |      AUDITORY FEEDBACK STUDIES IN META-ANALYSIS 
Study N Manipulation Imaging # of Foci 

Behroozmand et al. (2015) 8 Acoustic shift 3 T 16 

Christoffels et al. (2007) 14 Noise mask 3 T 3 

Fu et al. (2005) 13 Acoustic shift 1.5 T 6 

Golfinopoulos et al. (2011) 13 Physical 3 T 52 

Hashimoto & Sakai (2003) 15 Temporal shift 1.5 T 6 

Kleber et al. (2013) 22 Noise mask 3 T 22 

McGuire et al. (1996) 6 Acoustic shift PET 4 

Parkinson et al. (2012) 12 Acoustic shift 3 T 6 

Pfordresher et al. (2014) 20 Temporal/mismatch 3 T 34 

Sakai et al. (2009) 10 Temporal 1.5 T 9 

Takaso et al. (2010) 8 Temporal PET 4 

Tourville et al. (2008) 11 Acoustic shift 3 T 18 

Toyomura et al. (2007) 12 Acoustic shift 1.5 T 6 

Zarate & Zadorra (2008) 12 Acoustic shift 1.5 T 6 

Zheng et al. (2010) 21 Acoustic shift 3 T 5 

Zheng et al. (2013) 20 Acoustic shift 3 T 4 

TABLE 1. N: participants contributing to pooled dataset. Imaging method: MRI or PET imaging 

equipment. Number of foci: contributing to pooled dataset. (A) Visual feedback studies. Feedback 

manipulation: temporal and spatial shifts, and random mismatch between action and feedback. (B) 

Auditory feedback studies. Feedback manipulation: temporal and acoustic shifts, noise masking, and 

random mismatch between action and feedback. 

2.2 ALE analyses 

The software package GingerALE (2.3.6) was used to perform three analyses on 

coordinates for peak activations derived from the studies identified by the literature 

search (www.brainmap.org/ale; Eickhoff et al., 2009; Eickhoff et al., 2012; Laird et al., 

2005; Turkeltaub et al., 2012). Three single set ALE and one contrast analysis were 

conducted. ALE computes the likelihood of a voxel for being a source of activation 

within the set of studies across the whole brain. A primary ALE analysis was conducted 

on the full dataset of 38 experiments from the 36 studies included, using a cluster 

forming threshold of p < 0.001 and 1,000 random permutations with a cluster-level 

correction of p < 0.05. These parameters were chosen as they were the recommended 

threshold settings for the cluster-level multiple test correction listed in the GingerALE 

software user guidelines. This analysis was performed to identify concordant 

activations regardless of the feedback modality. A secondary set of ALE analyses was 
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conducted separately on a dataset of 17 experiments from the 16 studies with 

manipulated auditory feedback, and on 21 experiments from the 20 studies with 

manipulated visual feedback. Identical cluster forming threshold and correction 

parameters for the first ALE were applied to the auditory and visual dataset analyses. 

Contrast analyses were performed comparing auditory and visual ALE results applying 

a False Discovery Rate assuming independence or positive dependence (FDR pID) of 

0.01, with threshold parameters as recommended in the GingerALE manual. 

2.3 Tests of independence 

We investigated the relative success of the most commonly applied experimental 

designs to engage the cerebellum. To this end, we categorized the studies in our 

dataset by sensory modality (visual vs. auditory), acquisition methods (blocked vs. 

event-related design), response to manipulated feedback (adaption vs. no-adaptation), 

and type of feedback manipulation (temporal, spatially or acoustically shifted, masked, 

mismatched, or physical perturbation). Adaptation studies are categorized as eliciting 

adjustment in response to sustained manipulation of feedback, where the fine-tuning 

of motor commands may be relevant to the success of future action. This differs from 

automatic compensatory responses to brief changes in feedback that do not inform 

successive behaviour. We tested whether the presence of significant activation within 

the cerebellum was associated with these methodological factors with a chi-squared 

test of independence applying the Yates correction of continuity using SPSS version 

24 (IBM Corp., Armonk, NY). Significance thresholds were set at p < 0.05.  

3 Results 

3.1 Manipulated feedback: ALE analyses 

The primary ALE identified five clusters [Table 2a, Figure 3a]. The largest cluster was 

centred medially in the superior frontal gyrus extending into the right and left 

supplementary motor area (SMA) (BA 6). There were two right lateralized clusters in 

the precentral gyrus (preCG) (BA 9) and inferior frontal gyrus (IFG) pars opercularis 

(BA 44), as well as two left hemisphere clusters in the supramarginal gyrus (SMG) (BA 

40) and SMA (BA 6). The secondary ALE on auditory feedback manipulation identified 
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six clusters, centred at the left superior temporal gyrus (STG) (BA 22) and right STG 

(BA 41), with four additional right lateralized clusters at the SMA (BA 6), IFG pars 

opercularis (BA 44), SMG (BA 40), and primary motor cortex (M1) (BA 4) [Table 2b and 

Figure 3b]. The secondary ALE on visual feedback manipulation also identified six 

clusters, centred at the right preCG (BA 6), left hemisphere frontal eye fields (BA 8) 

and SMA (BA 6), as well as right lateralized clusters at the preCG (BA 6), extrastriate 

body area (EBA) (BA 37), and SMA (BA 6) [Table 2c, Figure 3c]. Remarkably, both the 

primary and secondary ALE analyses failed to identify clusters of activation in the 

cerebellum. The subsequent contrast analysis between auditory and visual feedback 

error ALE results utilized only clusters obtained in at least one of the three individual 

ALE analyses for comparison. As no cerebellar clusters were produced in either of the 

ALE analyses, the contrast analysis did not produce any valuable comparisons of 

modality specific cerebellar clusters. At a cortical level, the auditory compared to visual 

ALE cluster contrast produced two clusters in the left and right STG specifically for 

auditory and not visual feedback error. No significant clusters were found for visual and 

auditory feedback errors nor any common regions between modality in a conjunction 

of both ALE analyses clusters [see Supplementary Materials Table S1]. 

3.2 Relationship between experimental design and 

cerebellar activation 

To determine whether certain methodological differences were linked with being more 

likely to activate the cerebellum we conducted chi-squared tests of independence for 

four common design features in which experiments differed from one another. With an 

a priori significance threshold set to p < 0.05, finding cerebellar activation was not 

contingent on sensory modality (p = 0.243), manipulation type (p = 0.306), or 

acquisition method (p = 0.071). However, cerebellar activation was contingent on 

adaptation (p = 0.005). Then, 14 of 18 studies (78%) that elicited adaption responses 

reported significant activation in the cerebellum. In summary, of the four factors tested, 

cerebellar activation proved to depend significantly on the need for adaptation.  
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FIGURE 3. Meta-analyses results. ALE: activation likelihood estimation, MNI: Montreal Neurological 

Institute, STG: superior temporal gyrus, TPJ: temporoparietal junction, IFG (p.op): Inferior frontal gyrus 

(pars opercularis), PreCG: precentral gyrus, SMA: supplementary motor area, M1: primary motor cortex, 

SMG: supramarginal gyrus, FEF: frontal eye fields, EBA: extrastriate body. (A) Sensory feedback error 

ALE. Images: six slices at MNI space x axis 49, 3, −60, y axis 55, −24, and z axis 8. Units of measurement: 

ALE scores with a minimum value of 0.008 and maximum of 0.029. A threshold of likelihood calculated 

from a cluster-forming threshold of p < .001, with a cluster-level correction of 0.05, 1,000 random 

permutations. (B) Auditory feedback error ALE Images: four slices at MNI space x axis 4, 45, 61, and 

z axis 8. Units of measurement: ALE scores with a minimum value of 0.000 and maximum of 0.021. A 

threshold of likelihood calculated from a cluster-forming threshold of p < .001, with a cluster-level 

correction of 0.05, 1,000 random permutations. (C) Visual feedback error ALE. Images: four slices at 

MNI space x axis 50, 4, −4, and y axis 4. Units of measurement: ALE scores with a minimum value of 

0.010 and maximum of 0.020. A threshold of likelihood calculated from a cluster-forming threshold of p 

< .001, with a cluster-level correction of 0.05, 1,000 random permutations. 

TABLE 2                     |                     META-ANALYSES RESULTS   
Brain regions BA MNI coordinates (x, y, z) Cluster size (mm3) 

A. Sensory feedback error: Manipulated feedback > non-manipulated feedback   
R/L SMA 6 0.5 3.3 60.3 3,576 

R PreCG 9 55.9 9.7 31.7 2,528 

R IFG (p. op.) 44 45.6 13.9 1.2 1,824 

L STG 42 -57.6 -26 9.2 1,072 

L TPJ 22 -61.4 -40.2 19.9 848 

B. Auditory feedback error: Manipulated feedback > non-manipulated feedback 
L STG 22 -56.7 -29.6 14.2 6,400 

R STG 41 55.5 -19.3 4.8 4,064 

R SMA 6 2.5 3.9 61.3 1,792 

R IFG (p. op.) 44 45.8 9.7 3.8 1,400 

R SMG 40 63.8 -21.1 20.3 832 

R M1 4 62.3 -2 18 792 

C. Visual feedback error: Manipulated feedback > non-manipulated feedback 
R PreCG 6 51.5 7.3 38.7 1,000 

L FEF 8 -4.5 17.2 46.4 856 

L SMA 6 -3.9 -2.4 58 768 

R PreCG 6 36.4 1.2 58.4 768 

R EBA 37 48.9 -68 2.3 712 

R SMA 6 4.6 14 60.1 696 
TABLE 2. Abbreviations: ALE, activation likelihood estimation; L FEF, left frontal eye fields; L SMA, left 

supplementary motor area; MNI, Montreal Neurological Institute; R EBA, right extrastriate body area; R 

PreCG, right precentral gyrus; R SMA, right supplementary motor area. Abbreviations: BA, Brodmann 

area; EBA, extrastriate body area; FEF, frontal eye fields; IFG (p. op.), inferior frontal gyrus pars 

opercularis; M1, primary motor cortex; L, left; PreCG, precentral gyrus; R, right; SMA, supplementary 

motor area; SMG, supramarginal gyrus; STG, superior temporal gyrus; TPJ, temporoparietal junction. 
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4 Discussion 

We conducted three meta-analyses of neuroimaging studies that altered sensory 

feedback during ongoing movements with the aim of localizing the cerebellar 

contributions to processes related to the forward model. In doing so, we attempted to 

reconcile an apparent lack of consensus of the role of the cerebellum in experiments 

of unexpected changes to sensory consequences of our own action. Contrary to our 

expectations and to broad scientific consensus suggesting that the cerebellum is 

involved in this process, we did not observe a convergence of activation foci in the 

cerebellum, although the analyses successfully identified the expected network of 

cortical areas. We therefore systematically assessed methodological factors that could 

potentially increase the likelihood of specific experimental designs to activate the 

cerebellum. Our findings confirm that studies that require adaptation of behaviour in 

response to sensory feedback manipulations most reliably evoke cerebellar activation.  

4.1 Responses to unpredicted feedback 

4.1.1 Cerebral cortex. The primary ALE analysis of the manipulated sensory 

feedback dataset indicated clusters in the SMA, preCG, IFG, STG, and TPJ. Two of the 

clusters, the SMA and preCG, were centered in the right secondary motor cortex, 

regions associated with the production of an efference copy for assessing sensory 

consequences of movement (Christensen et al., 2006; Ellaway et al., 2004; Haggard & 

Whitford, 2004). The cluster centered at the IFG and extending into the prefrontal 

frontal regions incorporates areas which lend themselves to a broader self-awareness 

network and are thought to reflect agency over action (David et al., 2008; Fink et al., 

1999; Jardri et al., 2007; Leube et al., 2003; Nahab et al., 2010). The right IFG plays a 

role in detecting cues which are relevant to inhibiting motor activity (Corbetta & 

Shulman, 2002; Hampshire et al., 2010) and in subsequent reorienting and updating of 

action plans (Levy & Wagner, 2011). The cluster centered in the TPJ extends into much 

of the IPL, which is associated with monitoring motor outflow (Desmurget & Sirigu, 

2009; Sirigu et al., 1996), as well as with awareness of consistency of intended and 

actual motor consequences (Farrer et al., 2008), where activity is higher when another 

agent is active (Decety et al., 2002; Farrer & Frith, 2002; Ruby & Decety, 2001). The TPJ 
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has been shown to be active in response to changes in visual and auditory stimuli that 

are task-relevant (Downar et al., 2001). Almost all clusters identified by the full dataset 

primary ALE comprised foci from both auditory and visual studies, suggesting a 

multisensory network. This asserts that some cortical areas process error in both 

auditory and visual self-generated feedback. The cluster centred in the left STG 

however was an exception, with only foci contributed from auditory studies.  

Analyses of the auditory subset ALE revealed bilateral STG activation. These auditory 

cortical processing areas have shown a stronger response to auditory stimuli initiated 

by others than by oneself (Christoffels et al., 2007; Curio et al., 2000; Heinks-Maldonado 

et al., 2005; Houde et al., 2002; Knolle et al., 2012; Numminen & Curio, 1999). Increased 

activation of auditory cortex has also been correlated with the degree of delay in 

auditory feedback in speech production (Hashimoto & Sakai, 2003) and in response to 

sound masking compared to expected auditory feedback (Christoffels et al., 2007). 

Likewise, there was a large medial cluster in the auditory subset in the right SMA. The 

SMA has been suggested to play a role in auditory sensorimotor associations, for 

example, in using auditory information to elicit automatic motor responses (Lima et al., 

2016) and auditory conditioning in a motor task (Kurata et al., 2000).  

Studies that manipulated visual feedback were more likely to activate the premotor 

cortex of the right preCG, and a cluster in the EBA extending into the IPL. The EBA is 

involved in the visual processing of perceiving the human body (Downing et al., 2001; 

Peelen & Downing, 2007), of goal-directed action of body parts (Astafiev et al., 2004), 

and in processing incoherent human biological motion sequences (Downing et al., 

2006). David et al. (2007) suggest that the EBA may be part of a larger network 

including posterior parietal cortex, premotor cortex, and the cerebellum, that is 

involved in correcting sensorimotor discrepancy. The IPL engages in the monitoring 

and comparison of one's own action and the visual feedback that it generates (Schnell 

et al., 2007), and in visuomotor incongruences (Balslev et al., 2006), reported as well 

more broadly in the parietal cortex (Fink et al., 1999; Shimada et al., 2005).  

4.1.2 Cerebellum.  Despite a strong consensus suggesting that forward models 

generally rely on the cerebellum (Bastian, 2006; Ishikawa et al., 2016 Ito, 2005; Kawato 

& Gomi, 1992; Wolpert et al., 1998), cerebellar activations were reported in only half of 
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the 38 experiments that formed the dataset for the current analyses. The majority of 

these activations were localized in lobules VI and VIII. Cerebellar lobule VI contains 

overlapping functional zones that are sensitive to auditory and visual stimulation while 

a functional zone of lobule VIII is associated with sensorimotor processing (O'Reilly et 

al., 2009; Sang et al., 2012). The cerebellum receives climbing fibre inputs from the 

sensory periphery and corticopontocerebellar mossy fibre inputs from cortical motor 

areas. The cerebellar cortex is arranged into functional modules which act as points of 

convergence of these inputs (Odeh et al., 2005). These modules in turn send 

cerebellothalamocortical projections back up to the corresponding cortical motor areas 

to inform further movements (Palesi et al., 2017). Through functional connectivity 

magnetic resonance imaging in humans, there have been efforts to accurately map the 

functional segmentation of the cerebellum to their corresponding cortical regions (Allen 

et al., 2005a; Habas et al., 2009; Krienen & Buckner, 2009; O'Reilly et al., 2009). For 

example, Buckner et al. (2011) performed functional connectivity analyses on data from 

1,000 participants to provide a comprehensive view of all cerebellar connections with 

cortex. Their results provide strong evidence for two somatomotor homunculi in the 

anterior and posterior lobes. The anterior map is centred on lobule VI, while the 

posterior is centred on lobule VIII. The majority of cerebellar activations in studies 

included in our analyses were reported in lobules VI (Brand et al., 2017; Diedrichsen et 

al., 2005; Grafton et al., 2008; Graydon et al., 2005; Inoue et al., 2000; Pfordresher et al., 

2014; Tunik et al., 2013; Yomogida et al., 2010; Zheng et al., 2013), and VIII (Anguera et 

al., 2010; Krakauer et al., 2004; Pfordresher et al., 2014; Tourville et al., 2008). This 

demonstrates that where cerebellar activations were observed they were not 

distributed randomly, making these findings unlikely to be false positives.  

The majority of activations in the cerebellum reflecting fine-tuning motor control will be 

predominately in either of these two somatotopically organized lobules. However, in 

the ALE analyses, we do not see clustering at each of those regions. The reason for 

this may be due to the histological organization of the cerebellum. Its structure is 

completely uniform in its cortex, made up of repeating modules intermixed and 

overlapping with modules of separate function, having no integral borders (Ito, 1984b). 

This can lead to a lack of clear separation of focal activity for one specific function. For 

instance, electrical stimulation at different sites within the cerebellum can induce 
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contraction of the same muscles (Mottolese et al., 2013), while stimulating areas 

directly adjacent to responsive areas for movement of a body part would cause no 

movement at all. This creates a difficult picture to deconstruct, where representations 

in the cerebellum may be very spatially specific, where there may be multiple 

representations for movement of one body part, and if so where these representations 

may be sparsely distributed. For these reasons although many studies will report 

cerebellar activation in response to the same contrast, attempting to find meaningful 

clusters of functional localization common across studies may be limited. 

4.2 Considerations for reliable probing of the forward model 

Although all studies included in this meta-analysis contrasted experimental conditions 

of manipulated feedback with non-manipulated feedback, there was a considerable 

degree of diversity in methodology. Experiments varied in terms of feedback modality, 

the quality and quantity of the feedback manipulation, whether participants were able 

to adapt behaviour, and whether similar experimental trials were blocked together or 

intermixed. 

4.2.1 Choice of feedback manipulation. There was considerable variability in the 

way that different studies implemented manipulations of sensory feedback from self-

produced action. The most common feedback manipulations employed delays, a 

mismatch leading to an abrupt loss of control over feedback, noise masking, spectral 

shifting of auditory feedback or spatial shifting of visual feedback, and the physical 

application of an external force. The relative amount of cerebellar foci contributing to 

the study pool from different forms of manipulations differed accordingly. For example, 

shifted and feedback mismatch studies were twice as likely to elicit cerebellar activity 

than not (12/18 and 4/6), while temporal manipulations only elicited cerebellar activity 

in a quarter of the respective experiments (2/8). Among studies that implemented a 

continuous shift of feedback, six activations were in lobule VI (Brand et al., 2017; 

Diedrichsen et al., 2005; Grafton et al., 2008; Graydon et al., 2005; Inoue et al., 2000; 

Zheng et al., 2013), three in lobule VIII (Anguera et al., 2010; Krakauer et al., 2004; 

Tourville et al., 2008), with two foci just anterior to Lobule VI in the IV/V region (Anguera 

et al., 2010; Seidler et al., 2006), and two in Crus I/II (Krakauer et al., 2004). The same 

regions were reported for studies of mismatched feedback, with three foci incorporated 
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in Lobule VI (Pfordresher et al., 2014; Tunik et al., 2013; Yomogida et al., 2010), two in 

Crus II (Pfordresher et al., 2014; Schnell et al., 2007), and one in Lobule VIII (Pfordresher 

et al., 2014). However, there was no significant statistical contingency shown between 

type of manipulation and the report of cerebellar activity in our test of independence 

analyses. 

4.2.2 Motor response or motor disturbance. Feedback manipulations can either 

elicit an adjustment to feedback or disrupt movement altogether. For instance, there is 

a tendency to speak louder when auditory feedback is masked (Lane & Tranel, 1971; 

Lombard, 1911) or to speak more quietly when auditory feedback is amplified (Chang-

Yit et al., 1975). In both cases, feedback from the auditory periphery is at an 

unpredicted level and motor behavior is adapted accordingly. Likewise, by applying an 

external physical force to speech effectors (Abbs & Gracco, 1984; Gomi et al., 2002; 

Honda et al., 2002; Saltzman et al., 1998; Shaiman & Gracco, 2002), or shifting the 

frequency or pitch of feedback (Donath et al., 2002; Elman, 1981; Houde & Jordan, 

1998, 2002; Jones & Munhall, 2000; Larson et al., 2000; Natke et al., 2003; Purcell & 

Munhall, 2006; Xu et al., 2004; Zarate & Zatorre, 2008; Zarate et al., 2010), automatic 

compensation responses are elicited as the speaker attempts to reach their intended 

auditory targets of their natural sounding speech. These responses of automatic 

compensation differ from adaptation as they are instantaneous shifts to counteract 

perturbation, while adaptation can be a conscious process of adjusting motor 

commands for future behaviour in response to continuous change of sensory feedback. 

High magnitude manipulations may cause feedback to be perceived as entirely outside 

a range of control of the actor, and thus no longer triggering an automatic 

compensation in motor production. This stems from the theory that our sense of 

agency over sensory feedback from the environment is dependent on the magnitude 

of discrepancy between the predictable consequences of our own action and the 

unpredictable external influences of sensory input (David et al., 2008). For example, 

singers can successfully suppress the automatic compensation response when the 

pitch of their voice is shifted by a large amount, but not when a smaller shift is applied 

(Zarate & Zatorre, 2008). The duration of manipulated feedback also influences 

compensation responses. Pitch shifts with short durations prompted automatic 
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adjustments while pitch shifts with longer durations were more easily ignored (Burnett 

et al., 1998; Hain et al., 2000; Zarate & Zatorre, 2008; Zarate et al., 2010). Some forms 

of feedback can disrupt movement altogether. By applying delayed auditory feedback 

(DAF), speech and musical performance are interrupted (Black, 1951; Fukawa et al., 

1988; Havlicek, 1968; Howell & Powell, 1987; Lee, 1950; Mackay, 1968; Siegel et al., 

1982). The magnitude of delay is also an important consideration, with DAF of 

approximately 200ms being the most disruptive (Fairbanks & Guttman, 1958; 

Hashimoto & Sakai, 2003; Stuart et al., 2002). Further increase of delay may lead to 

similar disregard of feedback as irrelevant to the agency of the actor. 

4.2.3 Adaptation to changes in feedback. Unpredicted feedback informs not 

only adjustments to ongoing movements, but also updates predictions for future 

movements by means of adaptation. This response to changes in environmental 

feedback is a form of motor learning and differs qualitatively from motor sequence 

learning (Doyon et al., 2003). This type of motor learning therefor must not be seen as 

planning new coordinated motor plans, and instead viewed specifically as 

reoptimization that seeks to minimize future costs to the motor system by forming more 

accurate predictions of existing motor plans (Izawa et al., 2008). Across the studies in 

our analyses, cerebellar foci were most common in studies driving adaptation in 

response to physical perturbation of the mouth (Golfinopoulos et al., 2011) and arm 

(Diedrichsen et al., 2005), learning new associations between the spatial consequences 

of movement when visual feedback is shifted (Anguera et al., 2010; Brand et al., 2017; 

Grafton et al., 2008; Graydon et al., 2005; Inoue et al., 2000; Krakauer et al., 2004; Seidler 

et al., 2006; Zheng et al., 2013), and when vocal pitch was shifted during continuous 

speech (Tourville et al., 2008; Zheng et al., 2013). All of these manipulations evoke the 

fine-tuning of accurately predicting movement outcomes in response to changes in the 

environment (Ishikawa et al., 2016). Indeed, adaptation was found to be the only factor 

in our analyses that showed a significant dependency with the elicitation of cerebellar 

activation. 

The cerebellum plays an important role in adapting future predictions in light of error. 

Cerebellar patients are able to react to changes to feedback (Morton & Bastian, 2006; 

Smith et al., 2000), but are unable adapt by calibrating their predictions for subsequent 
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behaviour (Maschke et al., 2004; Morton & Bastian, 2006; Smith & Shadmehr, 2005). 

This suggests that adjustments to feedback, which inform subsequent fine-tuning, 

require cerebellar engagement. Monkeys with experimental lesions to areas of the 

cerebellum which receive mossy fibres from cortex such as the posterior lobe 

parafloculus and uvula are unable to adapt to changes in feedback (Baizer et al., 1999). 

Inactivation of deep cerebellar nuclei impairs adaptation to physical and visuomotor 

perturbation (Kerr, Miall & Stein, 1993). Cerebellar activity may change over time as the 

system moves from a state of adapting predictions that have failed, to executing 

predictions that have been adapted (Gilbert & Thach, 1977). 

The effect of activation of the cerebellar cortex on adaptation has been reported as 

well in humans. Cerebellar excitation in transcranial direct current stimulation can lead 

to faster adaptation to visuomotor feedback transformation (Galea et al., 2010; Jayaram 

et al., 2012). Moreover, activity in the cerebellum is greatest immediately after 

conditions in the environment change (e.g., when feedback is first manipulated) but 

decreases over time (Friston et al., 1992; Nezafat et al., 2001). This has strong 

implications for the choice of design in experiments seeking to probe the cerebellum's 

involvement in the forward model. 

4.3 The implications of fMRI 

4.3.1 Neurovascular coupling in the cerebellum. The blood-oxygen-level-

dependent (BOLD) response that is measured by fMRI may not be sensitive to some 

of the neural processes of sensory feedback error in the cerebellum. The BOLD 

response is correlated with local field potentials (LFP) rather than the spiking rate of 

neurons (Ekstrom, 2010), which has implications for fMRI studies of the cerebellum. 

Mossy fibre inputs to the cerebellum synapse thousands of Purkinje cells via parallel 

fibres and strongly influence LFP, leading to strong increases in the BOLD signal. 

Climbing fibres communicate via one-to-one inputs to Purkinje cells and are thus poorly 

coupled to the BOLD signal. Experiments that drive cerebellar activity via bottom-up 

climbing fibre error signals may be unsuited to measurement by fMRI, whereas 

experiments that drive cerebellar activity via mossy fibre inputs may lead to detectable 

BOLD responses (Diedrichsen et al., 2010). This is consistent with the view that the 

mossy fibre input system is more strongly associated with processes of motor learning 



   

 

48 

 

in adapting to sensorimotor prediction errors (Giovannucci et al., 2017; Ito, 2000; 

Thach, 1998). 

4.3.2 Choice of experimental design. Our findings suggest that some 

experimental fMRI designs are more appropriately suited to elicit BOLD responses in 

the cerebellum. Designs that prevent participants from habituating to altered feedback, 

and continually cause them to adapt their motor responses, may be most effective in 

eliciting a detectable BOLD response. McGuire et al. (1996) illustrate habituation in 

block designs as they observed increased activation of the cerebellum during the first 

half of their study, but not in the latter half. This is consistent with the broader finding 

that the cerebellum may be more strongly engaged in adjusting to altered feedback 

than applying adjustments that have already been computed (Andersson & Armstrong, 

1987; Flament et al., 1996; Horn et al., 2004; Imamizu et al., 2000; Moberget, et al., 

2014). However, the arrangement instead of fast cycling between trials of different 

conditions in event-related designs may hinder adaptation responses if feedback is not 

consistent from trial to trial. Long events of consistent perturbation (e.g., Christoffels et 

al., 2007; Grafton et al., 2008; Limanowski et al., 2017) or similarly with short blocks 

(e.g., Inoue et al., 2000; McGuire et al., 1996; Seidler et al., 2006) may be best suited 

for probing processes related to the forward model associated BOLD response in the 

cerebellum. 

5 Conclusions 

We performed three ALE meta-analyses and one contrast analysis of functional 

neuroimaging studies that manipulated predicted self-initiated auditory, visual, and 

sensory feedback with the primary aim to identify cerebellar areas responsive to 

prediction error. No cerebellar clusters were produced as a result of these analyses. 

Contrary to common presumptions, we found that not all studies that used such 

approach show significant activation of the cerebellum, as well as variability in where 

in the cerebellum activations were reported. Our study suggests that this discrepancy 

stems from differential sensitivity and specific limitations of the experimental paradigms 

employed across MR neuroimaging altered sensory feedback experiments. These 

method- specific characteristics can restrict compatibility with other frameworks, which 

overwhelmingly support the involvement of the cerebellum in responding to errors in 
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predicted feedback as part of the forward model. We therefore assessed 

methodological variations that may determine the success of brain imaging 

experiments in evoking cerebellar activation. The results indicate that experimental 

designs which most reliably evoked cerebellar activation employed continuous 

feedback manipulations relevant for adapting motor plans for future action. Due to 

constraints of neurovascular coupling in cerebellar activity, it is possible that only 

mossy fibre inputs in response to adaptation elicit demonstrable BOLD signals, while 

error signals conveyed via climbing fibre spike firing increase may not suitable for fMRI 

testing. The results further suggest that short-blocked designs may offer the most 

effective approach, engaging a period of adaptation to changes in feedback without 

reaching a state of habituation, leading to reliable activation of the cerebellum. 
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Supplementary information  

  SUP TABLE 1           |         CONTRAST AND CONJUNCTION RESULTS   
Brain regions BA MNI coordinates (x, y, z) Cluster size (mm3) 

A. Auditory Feedback Error > Visual Feedback Error   
L STG (A1) 41 -59.9 -28.2 10.7 4,456 

R STG (A1) 41 53.9 -16.3 4.0 2,528 

B. Auditory Feedback Error > Visual Feedback Error 

- - - - - - 

C. Auditory Feedback Error ᴖ Visual Feedback Error 

- - - - - - 
SUPPLEMENTARY TABLE 1. Contrast and conjunction analyses using ALE clusters reported (see Table 

2) (cluster-level inference threshold correction (P<0.05) with a cluster-forming threshold of uncorrected 

p<0.001 using 1,000 permutations).  Contrast thresholding with False Discovery Rate (pID) 0.01. 

Abbreviations: BA, Brodmann area; L, left; R, right; STG, superior temporal gyrus; A1, primary auditory 

cortex 
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Chapter 3 

Hypersensitivity to passive voice hearing in hallucination 

proneness 

Johnson, J.F., Belyk, M., Schwartze, M., Pinheiro, A.P., & Kotz, S.A. 

Abstract. Voices are a complex and rich acoustic signal processed in an extensive 

cortical brain network. Specialized regions within this network support voice perception 

and production and may be differentially affected in pathological voice processing. For 

example, the experience of hallucinating voices has been linked to hyperactivity in 

temporal and extra-temporal voice areas, possibly extending into regions associated 

with vocalization. Predominant self-monitoring hypotheses ascribe a primary role of 

voice production regions to auditory verbal hallucinations (AVH). Alternative 

postulations view a generalized perceptual salience bias as causal to AVH. These 

theories are not mutually exclusive as both ascribe the emergence and 

phenomenology of AVH to unbalanced top-down and bottom-up signal processing. The 

focus of the current study was to investigate the neurocognitive mechanisms 

underlying predisposition brain states for emergent hallucinations, detached from the 

effects of inner speech. Using the temporal voice area (TVA) localizer task, we explored 

putative hypersalient responses to passively presented sounds in relation to 

hallucination proneness (HP). Furthermore, to avoid confounds commonly found in in 

clinical samples, we employed the Launay-Slade Hallucination Scale (LSHS) for the 

quantification of HP levels in healthy people across an experiential continuum spanning 

the general population. We report increased activation in the right posterior superior 

temporal gyrus (pSTG) during the perception of voice features that positively correlates 

with increased HP scores. In line with prior results, we propose that this right-lateralized 

pSTG activation might indicate early hypersensitivity to acoustic features coding 

speaker identity that extends beyond own voice production to perception in healthy 

participants prone to experience AVH.  

Frontiers in Human Neuroscience, 2022, 16:859731. 
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1 Introduction 

The human voice is a complex signal that carries rich information. This allows the 

listener not only to identify linguistic messages but also who speaks and how something 

is said (Belin et al., 2004; Lavan et al., 2019). Some individuals experience auditory 

verbal hallucinations (AVH), in which they perceive voices in the absence of a 

corresponding incoming voice signal (Anthony, 2004; Bentall, 1990; Brookwell et al., 

2013). Experience of AVH is a key symptom of schizophrenia (Bauer et al., 2011; 

Hugdahl & Sommer, 2018; Larøi et al. 2012). Yet, it is also reported in multiple other 

psychiatric, developmental, and neurological disorders (Reininghaus et al., 2016; Rollins 

et al., 2019; van Os et al., 2000; Waters & Fernyhough, 2017; Zhuo et al., 2019) and in 

a minority of otherwise healthy people (Beavan et al., 2011; Linscott & Van Os, 2013; 

McGrath et al., 2015).  Variability in AVH phenomenology exists within and across brain 

disorders (Stephane et al., 2003; Jones, 2010) and between clinical and non-clinical 

voice hearers (Baumeister et al., 2017; Daalman et al., 2011; Larøi, 2012; Johns et al., 

2014). However, hallucinated voices commonly carry information regarding the identity 

or emotion of a perceived speaker (Badcock & Chhabra, 2013; Larøi & Woodward, 

2007; McCarthy-Jones et al., 2014; Stephane et al., 2003), therefore involving a wide 

range of cortical areas in a voice perception network.  

Multiple cognitive theories have been proposed delineating the emergence and 

phenomenology of AVH (Ćurčić-Blake et al., 2017a; Jones, 2010; Rollins et al., 2019). 

One long standing model considers hallucinations as the misattribution of self-

generated input to an outside source (Feinberg, 1978). In terms of AVH, signals from 

voice production cortical regions during inner speech are misperceived as hearing 

someone else speak (Allen et al., 2007a; Gregory, 2016; Jones & Fernyhough, 2007a,b; 

Swiney & Sousa, 2014). Recently, competing theories have gained traction, claiming 

that the initiation of hallucinations does not require motor activity while they are, at their 

core, misperceived sensations from the environment (e.g., Ford & Mathalon, 2019; 

Thakkar et al., 2021).   

The selection and processing of sensory inputs from the environment relevant to 

learning, adaptation, or behavioural responses involves multiple regions and 

distributed networks across the brain. The role of salience attribution within this 
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integrated system provides the necessary trigger to shift processing from a state of 

rest to active sensation and perception (Menon & Uddin, 2010; Menon, 2011; 

Palaniyappan & Liddle, 2012; Uddin, 2015). According to this framework, increased 

auditory cortex activation associated with AVH can be ascribed to a bottom-up 

hypersensitivity, or salience bias, towards irrelevant sounds. The modulation and over-

weighting of top-down predictions may influence this salience bias as well as guide the 

system to perceive what it expects in meaningless unimodal and multimodal stimuli 

(Deneve & Jardri, 2016; Fletcher & Frith, 2009; Friston, 2005a, 2012b; Jardri et al., 2016; 

Leptourgos et al., 2017). Since voice signals in humans are inherently salient to human 

listeners, they may be particularly implicated in hypersensitive responses leading to 

false perceptions. Furthermore, for those who experience AVH, the engagement of 

brain regions controlling inner speech signals, memory retrieval, and emotion may then 

guide the phenomenology of the perceived speech in terms of content and speaker-

related features (Waters et al., 2012a). Abnormal salience processing has been strongly 

linked to positive symptoms of schizophrenia (Miyata, 2019).  

Researching the contribution of these mechanisms to AVH in non-clinical samples may 

be particularly useful as it avoids potential confounds seen in clinical populations such 

as medication, age of onset, and duration of symptoms that may affect brain structure 

and function (Kelleher et al., 2010; Kelleher & Cannon, 2011; Verdoux & Van Os, 2002). 

This perspective is in line with the experiential continuum of psychosis (Beavan et al., 

2011; de Leede-Smith & Barkus, 2013; Johns, 2005; Johns et al., 2014; Larøi et al., 2012; 

Zhuo et al., 2019), whereby functional variability in the mechanisms serving perception 

across the population account for the spectrum of normal experience, vivid perceptions 

and imagery, sub-clinical forms of hallucinations, and those seen in full-blown 

psychosis. The revised Launay Slade Hallucination Scale (LSHS) is as a measure of 

perceptual experience and beliefs associated with vivid daydreams, thoughts, imagery, 

and those related to false perceptions such as visual and auditory hallucinations (Larøi 

& Van der Linden, 2005a). The LSHS provides a measure of hallucination proneness 

(HP), where higher scores signify increasing abnormality in perceptual experience and 

beliefs, including true hallucinations. Although individual items from the LSHS can be 

used to identify the prevalence of AVH (e.g., Kompus et al., 2015), HP itself is not a 

measure of risk for psychosis. 



   

 

54 

 

Two critical factors have been incorporated into the formulation of our hypotheses. 

First, differential brain activity may indicate abnormal voice processing as a 

predisposition for false perceptions, i.e., activation patterns similar to those during 

hallucinations. Second, the localization of reported changes in brain responses may 

indicate a specific stage within hierarchical voice processing at which this 

predisposition manifests. To date, no consensus has been empirically established 

regarding a trait-based association between hallucinations and brain responses to the 

voice. For example, when presented with voices, patients who commonly experience 

hallucinations display decreases (Copolov et al., 2003), increases (Escarti et al., 2010; 

Martí-Bonmatí et al., 2007; Parellada et al., 2008), or no activation differences in voice 

selective temporal regions (Simons et al., 2010; Woodruff et al., 1997). Such 

inconsistency is likely due to methodological heterogeneity (Bohlken et al., 2017). For 

example, these studies differed in terms of stimulus type, stimulus content, and the 

inclusion of a non-hallucinating patient control group. Moreover, patients with chronic 

hallucinations can experience spontaneous AVH during scanning (Jardri et al., 2011; 

Kühn & Gallinat, 2012; van Lutterveld et al., 2013; Zmigrod et al., 2016), which may even 

be unintentionally elicited by tasks (e.g., Copolov et al., 2003; Parellada et al., 2008). 

Although this hallucinatory state elicits brain activity in voice perception regions, 

simultaneous external voice input during AVH results in a paradoxical net activity 

decrease (Hugdahl & Sommer, 2018; Kompus et al., 2011).   

The localization of changes in functional brain activity within the voice processing 

network can be particularly informative in determining how hallucination proneness 

may arise. Within the upper bank and lateral regions of the temporal lobe, voice signals 

are processed hierarchically along a pathway composed of multiple functional 

subsystems or components (Belin et al., 2004; Pernet et al., 2015; Zhang et al., 2021). 

The engagement of these temporal voice areas (TVA) starts with the evaluation of low-

level acoustic features in the posterior superior temporal gyrus (STG), an area 

specialized in processing spectro-temporal properties of complex sounds (Griffiths & 

Warren, 2004; Warren et al., 2005a,b). Further processing occurs along hemispherically 

specialized pathways, with linguistic features predominantly in the left and 

paralinguistic (i.e., speaker-related information) in the right side of the brain (Belin et 

al., 2000; Formisano et al., 2008). However, some stimuli such as emotional 



   

 

55 

 

vocalizations contain both speaker-and speech-relevant information and involve 

bilateral processing of separate features in the signal (Schirmer & Kotz, 2006). 

Importantly, AVH often contain marked paralinguistic information about speaker 

identity or emotion (Larøi & Woodward, 2007; Larøi et al., 2012; McCarthy-Jones et al., 

2014). In non-clinical voice hearers, however, the degree of perceived emotional 

valence is less prominent (Daalman et al., 2012; de Boer et al., 2016). Speaker-related 

feature processing operates along a multi-stage hierarchy in the right temporal cortex 

along a posterior to anterior gradient (Belin & Zatorre, 2003, Nakamura et al., 2001; von 

Kriegstein et al., 2003, von Kriegstein and Giraud, 2004).  The TVA localizer is a widely 

used fMRI task which reliably identifies activation peaks localized in the bilateral 

anterior, middle, and posterior superior temporal cortex (Pernet et al., 2015). By 

comparing voice to non-voice activation in response to passively heard sounds, regions 

of interest (ROI) can be defined for further investigation. Using ROIs produced by this 

task, we predicted HP-related early sensitivity to low-level voice features to be isolated 

to the posterior STG ROI. Alternatively, changes to voice processing in the anterior 

direction of the right STG might indicate an abnormal salience bias for identity or 

emotion associated with an increasing propensity to hallucinate. 

2 Methods 

2.1 Participants 

Twenty-six participants took part in this study, recruited through the SONA system and 

social media channels at Maastricht University, the Netherlands. Participants were 

provided with informed consent and offered university study credit for compensation. 

Exclusion criteria included any history of psychotic disorder, neurological impairment, 

history of drug dependence or abuse, and traumatic brain injury. Participants were 

screened for MRI safety and reported no metal implants, claustrophobia, or pregnancy. 

Furthermore, all participants reported no known hearing deficits. Robust statistics using 

the interquartile range rule for participant age revealed one outlier (Rousseeuw & 

Hubert, 2011), leading to the exclusion of the dataset from further analysis. Of the 

resulting 25 individuals (17 female), the average age was 20.92 years (SD = 3.95; range 

18 to 32). The Ethical Review Committee of the Faculty of Psychology and 

Neuroscience at Maastricht University (ERCPN-176_08_02_2017) approved this study. 
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2.2 Hallucination proneness 

The revised LSHS was employed as a self-report measure of HP (Larøi & Van der 

Linden, 2005a). The questionnaire consists of 16 items targeting tactile, sleep-related, 

visual, and auditory modalities of psychosis-like experience as well as vivid thoughts 

and daydreaming. Responses were given using a five-point Likert scale, measuring the 

extent to which each statement applied to them. The sum of all responses equated to 

an overall HP measure. Furthermore, to investigate the exclusivity of auditory-only 

items, subscores of three items were summed to produce a composite score (Larøi et 

al., 2004; Larøi & Van der Linden, 2005a).  

2.3 Voice area fMRI-localizer task 

Voice selective cortical brain regions were identified using a standard fMRI-localizer 

task (Belin et al., 2000). This widely used tool reliably probes activity across three 

bilateral peaks in the superior temporal gyrus (e.g., Pernet et al., 2015), often 

designated as anterior, middle, and posterior temporal voice areas (TVA). Furthermore, 

many studies applying this task have reported extra-temporal voice regions, such as 

the inferior frontal cortex (IFC). The voice area localizer consists of 20 vocal (V) and 20 

non-vocal (NV) trials. Additionally, 20 silence (S) trials are included allowing relaxation 

of the hemodynamic response to auditory stimuli.  The voice condition is composed of 

human speech (words, syllables, or sentence excerpts) and non-speech voices 

produced by male and female speakers of different ages (7 babies, 12 adults, 23 

children, and 5 elderly). This broad selection of voice stimuli allows for the probing and 

inclusion of functionally diverse regions of TVA. Conversely, the non-voice condition 

includes environmental (natural and animal) and man-made (e.g., cars, alarm clocks, 

instrumental music) sounds. Sound clips are presented at a standard 70db volume (for 

a detailed report of the included sounds and recording duration, amplitude, and frequency 

see Pernet et al., 2015). Trials were presented in a pseudorandom order, each with a 

duration of eight seconds. With a two second inter-trial interval, the total run time of the 

task was 10 minutes.   

2.4 FMRI data acquisition 

Scanning was conducted using a Siemens 3T Magnetom Prisma Fit equipped with a 

32-channel head coil (Siemens Healthcare, Erlangen, Germany), at the Scannexus 
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facilities (Maastricht, the Netherlands). Structural whole-brain T1-weighted images 

were acquired with a single-shot echoplanar imaging (EPI) sequence (field of view 

(FOV) 256 mm; 192 axial slices; 1mm slice thickness; 1 × 1 × 1mm voxel size; repetition 

time (TR) of 2250 ms; echo-time (TE) 2.21 ms). For the functional localizer task, T2-

weighted EPI scans were collected (FOV 208mm; 60 axial slices; 2mm slice thickness; 

2 × 2 × 2mm voxel size; TE 30 ms; flip angle = 77°). To reduce scanner noise 

interference, auditory stimuli were presented via S14 MR-compatible earphones, fitted 

with foam earplugs (Sensimetrics Corporation). Furthermore, to provide relative silence 

during playback of auditory stimuli, a long inter-acquisition-interval was adopted where 

time between consecutive acquisition was delayed, resulting in a TR of 10 seconds. 

The delayed TR was timed to allow a 2000ms acquisition period during peak activation 

in the auditory cortex (Belin et al., 1999; Hall et al., 1999).    

2.5 Data pre-processing and analysis 

Pre-processing of the TVA localizer blood-oxygen-level-dependent (BOLD) signal was 

conducted in SPM12 (Wellcome Department of Cognitive Neurology, London, UK). A 

standard pipeline was applied using slice timing correction, realignment and 

unwarping, segmentation, normalization to standard (MNI) space (Fonov et al., 2009), 

and 8mm isotropic Gaussian kernel full width at half maximum (FWHM) smoothing. 

Analysis followed a two‐level procedure in which contrast estimates were first 

determined as fixed effects at the level of individual participants then modelled as 

random effects at the level of the sample. Contrast estimates were computed on BOLD 

data to assess voice sensitivity (V > NV) and sensitivity to environmental sounds (NV > 

S) for each participant. A first‐level fixed‐effects GLM analysis for the conjunction 

analysis ((V > NV) ∩ (V > S)) was computed to localize the temporal voice areas. A 

second‐level random‐effects analysis tested for group‐level significance and 

determined the ROIs for parameter extraction. Contrast estimates of V >S and NV > S 

were then used to contrast voice with non-voice activity, corrected for baseline, in the 

subsequent hypothesis‐driven ROI analysis to investigate the correlation of voice-

preferential TVA activity compared to HP. Contrast estimates were extracted from a 

5mm radius of the centre coordinates from each region of peak activity produced in 

the TVA-localizer using the SPM MARSbar toolbox (Brett et al., 2002). Pearson’s 
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correlation analysis using bootstrapping (5000 samples) and bias-corrected 

confidence intervals was then employed to test for significant relationships between 

the sensitivity of the voice ROIs and HP measures.  

 

FIGURE 1. Temporal voice area fMRI localizer task results: Purple = right premotor cortex, dark blue = 

right posterior temporal gyrus, middle blue = right middle temporal gyrus, light blue = right anterior 

temporal gyrus, orange = right inferior frontal cortex, dark green = left posterior superior temporal gyrus, 

middle green = left middle superior temporal gyrus, light green = left anterior superior temporal gyrus, 

red = left inferior temporal cortex. All coordinates listed in MNI space (x,y,z). 

3 Results 

3.1 Hallucination proneness 

For the HP composite score (possible maximum score of 80), the mean self-reported 

rating was 25.20 (SD = 10.47; range 0 to 42). The HP auditory subscale mean score 

(possible maximum score 15) was 3.92 (SD = 2.74; range 0 to 11). To test for normality 

of the distribution of demographics and hallucination proneness across the sample, 

Shapiro-Wilk tests were conducted. Both total LSHS (0.948, df = 25, p = 0.229) and 

auditory subscale (0.928, df = 25, p = 0.078) were not different from normal. A 

moderately strong correlation was also found between LSHS auditory subscale and 

non-auditory item totals (r = 0.457, df = 25, p = 0.019). 
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3.2 Voice area localizer 

The fMRI localizer task produced 5 clusters covering bilateral lateral temporal cortices, 

bilateral inferior frontal gyri, and the right precentral gyrus (preCG) [Table 1, Figure 1]. 

Within each bilateral temporal cortex ‘voice patch’, peak activity localizations were 

distinguished in three distinct regions: posterior (pSTG), middle (mSTG), and anterior 

STG (aSTG). These regions correspond to the expected divisions of the TVA localizer 

(Pernet et al., 2015).   

 

TABLE 1                     |                      TVA LOCALIZER RESULTS 

# Hem. Label BA 
MNI coordinates 

(x, y, z) 

Cluster-

level p-

FDR 

Peak-level 

p-FDR 

Size 

(voxels) 

1 L 

mSTG 22 -58 -10 -4 

1.68e17 

1.46e-09 

4145 pSTG 22 -60 -26 0 1.46e-09 

aSTG 22 -58 0 -8 1.36e-08 

2 R 

mSTG 22 56 -18 -2 

2.07e-17 

1.46e-09 

4010 aSTG 22 56 0 -12 1.60e-08 

pSTG 22 54 -34 4 1.60e-08 

3 R pMC 5 52 2 48 0.005 4.15e-05 285 

4 L IFC 44 -42 16 22 0.038 0.002 142 

5 R IFC 44 40 16 22 0.023 0.030 180 

TABLE 1. Results from Temporal Voice Area fMRI localizer task. Hem = hemisphere, (a/m/p) STG = 

(anterior/middle/posterior) superior temporal gyrus, pMC = premotor cortex, IFC = inferior frontal cortex, 

BA = Brodmann's Area, p-FDR = false discovery rate corrected p-value (threshold = 0.05). All 

coordinates listed in MNI space (x,y,z). 
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3.3 FMRI correlation 

Correlational tests were performed between contrast estimates representing voice 

preference ([V > S] > [NV > S]) observed in each TVA-ROI with both the composite 

HP score and the auditory subscore of the LSHS. All thresholds for significance were 

Bonferroni-adjusted for multiple comparisons using (p < 0.025). Only the right pSTG 

reached statistical significance (r = 0.470, df = 25, p = 0.020) [Table 2, Figure 2]. Post-

hoc correlation analyses were run to assess the relative contributions of both voice (V 

> S) and non-voice (NV > S) contrasts to correlational analyses (see detailed results in 

supplementary information). We conducted these analyses in order to rule out a 

general hypersensitivity of temporal cortex activity nonspecific to the conditions of 

interest probed by the conjunction analysis. No significant correlations with HP were 

found in any ROI for voice (V > S), however, a significant negative correlation was 

reported in the right IFC for non-voice (V > S) sensitive activity (r = -0.614, df = 25, p 

= 0.001).  

 

FIGURE 2. Hallucination proneness fMRI correlation analysis results: Right posterior superior temporal 

gyrus (BA 22; MNI 54, -34, 4), Voice preference = contrast estimate ([Voice>Silence]>[Non-

voice>Silence]), LSHS = Launay Slade Hallucination Proneness scale. Correlation coefficient r 0.470, df 

= 25, p = 0.020. 
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TABLE 2          |          VOICE PREFERENCE RESPONSE CORRELATION 

ROI LSHS LSHS-Auditory 

Hem. Label μ SD 
CI 

(95%) 
r p r P 

L 

mSTG 1.189 0.479 
0.203-

0.434 
0.120 0.576 0.178 0.406 

pSTG 1.505 0.586 
0.997-

1.380 
-0.237 0.267 -0.024 0.915 

aSTG 1.511 0.560 
1.271-

1.740 
-0.058 0.791 0.055 0.797 

R 

mSTG 1.019 0.452 
0.838-

1.200 
0.266 0.208 0.165 0.440 

aSTG 1.295 0.515 
1.089-

1.501 
-0.177 0.408 -0.033 0.882 

pSTG 1.213 0.406 
1.051-

1.375 
0.470 *0.020 0.276 0.192 

R pMC 0.625 0.447 
0.446-

0.804 
0.087 0.685 -0.103 0.635 

L IFC 0.319 0.288 
0.204-

0.434 
-0.048 0.827 -0.025 0.911 

R IFC 0.293 0.323 
0.164-

0.422 
0.231 0.277 0.134 0.534 

TABLE 2. Voice preference response ([Voice>Silence]>[Non-voice>Silence]) correlation with 

hallucination proneness: ROI = region of interest, (a/m/p) STG = (anterior /middle /posterior) superior 

temporal gyrus, pMC = premotor cortex, IFC = inferior frontal cortex, μ = mean activation from contrast, 

SD = standard deviation, LSHS = Launay-Slade Hallucination Proneness scale, LSHS-Auditory = subset 

of 3 auditory items, r = correlation coefficient, Bonferroni-corrected significance level (*p < 0.025) 

4 Discussion 

The current study investigated whether a measure of abnormal perceptual experience 

(HP) in a non-clinical sample is associated with variability in the functional brain 

responses of the temporal cortex regions serving detecting and processing of voice 

signals. Considering the well-established roles of specific voice sensitive regions of the 
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cerebral cortex, we aimed to determine if this putative relationship would be limited to 

specific subprocesses in hierarchical voice perception. As hypothesized, activity for 

voice versus non-voice processing correlated positively with HP only in the pSTG, a 

region associated with the early processing of low-level acoustic features in complex 

auditory signals (i.e., Griffiths & Warren, 2004; Warren et al., 2005a,b). Furthermore, this 

finding was restricted to the right hemisphere and therefore is likely linked to the 

processing of paralinguistic voice information (Belin et al., 2000; Formisano et al., 2008). 

Additionally, post-hoc analysis revealed a negative correlation with HP in the right IFC 

for non-voice versus silence. Together, these findings may confirm that as the 

propensity to hallucinate increases, right posterior temporal lobe voice hypersensitivity 

increases and is accompanied by a decreased prefrontal response to non-vocal 

environmental sounds.   

4.1 Hallucination proneness and hypersensitvity 

Multiple neurocognitive mechanisms underlying hallucinations have been proposed. 

Most commonly, these theories have focused on describing the emergence and 

phenomenology of pathological voice hearing in patients with psychotic disorders such 

as schizophrenia (Allen et al., 2008; Ćurčić-Blake et al., 2017a; Hugdahl, 2015). The 

most influential models describe atypical increases in brain activity in cortical voice 

regions. The current investigation was approached from the perspective of perceptual 

salience models claiming a central role of hypersensitivity to irrelevant sensory stimuli 

in auditory regions (Menon & Uddin, 2010; Menon, 2011; Palaniyappan & Liddle, 2012; 

Uddin, 2014). Conversely, prominent self-monitoring models of hallucinatory 

experience describe increased activity as the result of insufficient suppression of 

sensory cortices during inner speech (Allen et al., 2007a, 2008; Frith & Done, 1988; 

Jones & Fernyhough, 2007b; Tracy & Shergill, 2006; Weiss & Heckers, 1999). According 

to this theory, the activation of speech production regions is required for the 

emergence of AVH. However, the current results demonstrate that variability in voice 

processing cortical regions in relation to HP exists without motor activity.  

It is possible that theories proposing divergent involvement of speech production and 

perception mechanisms in AVH may be not mutually exclusive. Experiences of people 

who hallucinate are diverse. As theories of hallucination proneness become more 
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specific and concrete, they may become less well aligned with the phenomenology of 

the hallucinator. Therefore, hallucinatory experience might be best characterized by 

multiple subtypes, to which specific theories might apply better than others (Jones, 

2010). For example, models describing the phenomenology of voice hearing ascribe 

the top-down contribution of intrusive memories and thoughts to the quality of false 

perception experiences (Bohlken et al., 2017; Ćurčić-Blake et al., 2017a; Hugdahl, 2015; 

Upthegrove et al., 2016). A core abnormality in brain function central to the emergence 

of false perceptions likely rests in the interactive process of top-down predictions and 

bottom-up sensory input (Allen et al., 2008; Hugdahl, 2009; 2015; Kowalski et al., 2021). 

Regarding perceptual salience, bottom-up hypersensitivity to sensory input is 

congruent with established computation neuroscience accounts of predictive coding 

in false perceptions (Sterzer et al., 2018). Here, weighted top-down predictions and 

bottom-up explanations of sensation interact along a hierarchical network, constantly 

updating via Bayesian inference to form the most reliable percept (Feldman & Friston, 

2010; Fletcher & Frith, 2009; Friston, 2005a, 2012b; Hohwy, 2017). When internal 

prediction signals are weighted too strongly, one ‘senses what they expect’. Moreover, 

when the top-down input is too strong, the threshold for active perception may be 

reached under minimal sensory input. However, the self-monitoring theory posits a 

delayed or absent prediction signal resulting in increased activation of sensory cortical 

regions and is therefore in apparent conflict with the former account (Corlett et al., 

2019; Leptourgos & Corlett, 2020). These expectations could operate on separate time 

scales, at different levels of the information processing hierarchy, or simply serve two 

different functions in hallucinations (Thakkar et al., 2021).   

The role of perceptual salience in a multistage process leading to false perceptions has 

gathered substantial support in functional neuroimaging. Namely, research into large-

scale functional brain networks has provided a resting-state hypothesis, outlining brain 

states serving as a predisposition for hallucinations, including voice hearing (Northoff 

& Qin, 2011; Northoff, 2014). While at rest, activation of the salience network, under 

conditions of irrelevant stimuli, may interrupt the Default Mode Network (DMN) and 

engage active sensory processing (Alderson-Day et al., 2015, 2016; Schmidt et al., 

2015). The salience network therefore operates as a switch between the DMN and 

central executive network and how attention is directed towards incoming sensations, 
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constituting a triple network model (TMN) subserving the advent of hallucinatory 

experience (Menon, 2011). Although we did not acquire behavioural data from the 

participants with ratings of perceived salience while listening to stimuli during scanning, 

we suggest that the change in brain activity that we observed in the right pSTG is 

indicative of the TMN in response to voice stimuli.   

4.2 Hierarchical voice network processing 

Voices are processed along a series of bilateral voice patches in the posterior, middle, 

and anterior STG. These temporal voice areas are reliably identified by a standardized 

TVA localizer task (Pernet et al., 2015).  Participants with greater HP displayed 

increased right pSTG activation in response to vocal stimuli. Activity in this region may 

reflect sensitivity to low-level acoustic features during early stages of voice processing 

(Griffiths & Warren, 2004; Warren et al., 2005a,b). Furthermore, the pSTG is not 

specialized for voice processing per se, and likely plays a broader role in extracting 

spectro-temporal acoustic features from complex sounds, of which voices are an 

example. However, activation in these regions preferentially responds to salient stimuli, 

such as voices, over and above other similarly complex environmental sounds (Pernet 

et al., 2007).  

In terms of the salience hypothesis for hallucinatory experience, the assignment of 

salience to irrelevant, neutral, events must be considered in terms of the paralinguistic 

factors which may be involved. Indeed, the phenomenology of AVH is often marked by 

prominent paralinguistic features in the identity and emotional valence of the 

hallucinated speaker (Larøi & Woodward, 2007; Badcock & Chhabra, 2013; McCarthy-

Jones et al., 2014; Stephane et al., 2003). Individuals who experience hallucinations 

often express difficulty in discerning the identity of veridical voices. For example, in 

schizophrenia patients who experience hallucinations, there is a bias to externalize 

voices to another person (Allen et al., 2007b; Johns et al., 2001; Mechelli et al., 2007; 

Pinheiro et al., 2016, 2017). Likewise, severity of AVH in patients is increasingly altered 

by emotional processing (Alba-Ferrara et al., 2013; Rossell & Boundy, 2005; Shea et al., 

2007; Tseng et al., 2013). The role of salience may be influential in perceptions of 

speaker identity, as misattributions are more prevalent for emotional stimuli (Costafreda 

et al., 2008; Ditman & Kuperberg, 2005; Pinheiro et al., 2016, 2017). However, the 
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effects of emotional valence in perceiving voice identity for people prone to false 

perceptions of voices has not shown clear consensus (i.e., Brookwell et al., 2013). 

Comparisons of AVH severity in patients with schizophrenia with judgements of 

speaker identity have indicated an increasing proneness to externalize voices with 

negative content (Allen et al., 2004; Pinheiro et al., 2016). In non-clinical groups, the 

involvement of salient emotional features in voices is less clear. For example, higher 

levels of hallucination proneness in the general population are not associated with 

atypical evaluation of emotional valence in words or vocalizations (Pinheiro et al., 2019). 

However, it has been indicated that non-clinical individuals prone to voice hearing 

require stronger emotional information to consider a stimulus as emotional (Amorim at 

al., 2021) or may allocate similar attention to voices irrespective of their emotional 

salience (Castiajo & Pinheiro, 2021). Future research is required into how variability in 

perceived salience of speaker-related features may affect processing in the 

hierarchical voice network and, in particular, how posterior STG activity related to HP 

may be influenced. 

In addition to the TVA findings, the localizer task often provides a subset of extra-

temporal regions indicating an extended voice processing network (Pernet et al., 

2015). In our sample, extra-temporal peak activations were ascribed to bilateral inferior 

frontal and right hemisphere premotor cortex. Prefrontal involvement of the left IFC is 

commonly found in voice perception, with different subregions serving various 

functions. For example, the pars orbitalis is involved in processing semantic and 

emotional information (Belyk et al., 2017). Here, the left IFC peak was found in Broca’s 

area, which has been theorized to represent mirror neuron activity which may be useful 

in guiding conversational turn-taking (Grafton & Hamilton, 2007; Kilner et al., 2007; 

Rizzolatti & Craighero, 2004). Likewise, precentral motor regions are involved in the 

perception and production of speech (Cheung et al., 2016; Pulvermüller et al., 2006; 

Wilson et al., 2004). This could explain speech production region activity sometimes 

reported during AVH (Jardri et al., 2011; Kühn & Gallinat, 2012; Zmigrod et al., 2016). 

However, self-monitoring theories take this as evidence for top-down inner speech 

signals guiding the perceived hallucinatory voice. Notably, transcranial direct-current 

stimulation targeting a fronto-parietal sensorimotor network is an effective treatment 

for the alleviation of AVH in patients with schizophrenia (Yang et al., 2019). In our post-
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hoc analysis, the right IFC ROI shows an intriguing negative correlation to HP, however, 

only for non-voice sounds. The right IFC may serve a role in salience processing, for 

example in recognizing salient cues in voice signals (Bestelmeyer et al., 2012; 

Johnstone et al., 2006; Johnson et al., 2021; Jones et al., 2015). Additionally, this area 

shares a high functional integration with temporal regions serving voice perception and 

may assist successful voice recognition (Aglieri et al., 2018). Although this finding is 

difficult to interpret on its own, it may indicate a decrease in salience attribution for 

environmental sounds during a voice perception task. This may indicate not only an 

HP-related salience bias affecting the sensitivity of cortical responses to voice sounds, 

but also a general bias away from non-voice sounds between hypersalient responses 

to intermittent voice stimuli.  

4.3 Limitations and recommendations 

We identify a number of limitations within the current study and provide suggestions 

for future research. First, although the use of the established TVA localizer task 

facilitated the testing of our hypotheses regarding an early hypersensitivity to voice 

sounds, it did not preclude further investigation into how more complex stages of the 

voice processing hierarchy may relate to HP. Specifically, BOLD responses from this 

task are averaged across the trials containing different types of voice stimuli. This 

implies that signals extracted from ROIs serving different functional roles in voice 

processing, e.g., emotion or identity, do not represent the processing of specific 

features, but rather constitute a generalized voice detection signal. Second, in this 

study, behavioral measures of perceived stimulus salience were not collected. 

Therefore, interpretations of a salience bias attributed to increased functional brain 

responses cannot be directly linked to the subjective perception of the participants. 

Third, participants in the current study were sampled from a relatively homogenous 

sample of university students, similar in age, ethnicity, and cultural backgrounds. Due 

to the uneven distribution of environmental risk factors for psychotic symptoms 

throughout the population (Baumeister et al., 2017; DeRosse & Karlsgodt, 2015; Johns 

& van Os, 2001), our sample may unintentionally capture a set of protective factors. To 

address these limitations in future studies, we suggest a two-step procedure using a 

novel task that systematically varies paralinguistic voice features. This may allow 
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investigations into how hierarchical processing downstream of initial HP-related 

hypersensitivity may influence responses to the perceived emotion or identity of the 

speaker. Furthermore, behavioural appraisals of perceived salience may be included 

to compare fMRI response patterns and HP scores. Finally, subsequent research may 

benefit from an increased sample size and diversity, including a structured collection 

of additional demographic data and associated environmental risk factors as possible 

covariates for HP-related brain changes. 

5 Conclusion 

We observed that hallucination proneness is positively correlated with increased 

activation in the right pSTG in response to passively heard voices. This suggests a 

hypersensitivity associated with a propensity to hallucinate in a region of the brain 

which extracts low-level acoustic features from complex auditory signals. The right 

pSTG comprises the early processing of voice signals along the paralinguistic 

information pathway of the cortical voice processing network. We propose that this 

increases activity in response to voices represents a perceptual salience bias as a 

precursor for the emergence of hallucinations. This interpretation is in line with 

functional network models that posit abnormal engagement of a salience network 

during irrelevant stimulus exposure as the underlying neurocognitive mechanism of 

false perceptions. Furthermore, the current findings conflict with self-monitoring 

accounts of inner speech models that propose a critical role of voice production 

regions in the inception of auditory verbal hallucinations. We have demonstrated that 

HP is associated with right pSTG activation driven by external auditory signals. 

Although we do not reject self-monitoring accounts, we suggest that a state of cortical 

hypersensitivity to irrelevant sensory input may be the first step in the emergence of a 

hallucinatory experience, possibly followed by the influence of top-down signals such 

as inner speech, memory, and thought that together contribute to the phenomenology 

of AVH.    
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Supplementary information  

 

SUP TABLE 1 | VOICE SENSITIVE RESPONSE CORRELATION 

ROI LSHS 

Hem. Label μ Min Max SD r p 

L 

aSTG 1.189 0.398 2.288 0.479 -0.255 0.229 

mSTG 1.505 0.470 2.650 0.586 -0.210 0.327 

pSTG 1.511 0.250 2.600 0.560 -0.096 0.655 

R 

aSTG 1.019 0.180 1.720 0.452 0.026 0.903 

mSTG 1.295 0.440 2.500 0.515 -0.128 0.551 

pSTG 1.213 0.471 1.867 0.406 0.095 0.660 

R pMC 0.625 -0.290 1.510 0.447 -0.174 0.419 

L IFC 0.319 -0.273 1.009 0.288 -0.190 0.376 

R IFC 0.293 -0.440 0.920 0.323 -0.385 0.064 

SUPPLEMENTARY TABLE 1. Voice selective response (Voice>Silence) correlation with hallucination 

proneness results: ROI = region of interest, (a/m/p) STG = (anterior /middle /posterior) superior temporal 

gyrus, pMC = premotor cortex, IFC = inferior frontal cortex, μ = mean activation from contrast, Min = 

minimum score; Max = maximum score, SD = standard deviation, LSHS = Launay-Slade Hallucination 

Proneness scale 

SUPPLEMENTARY TABLE 2. Non-voice selective response (Non-voice>Silence) correlation with 

hallucination proneness results: ROI = region of interest, (a/m/p) STG = (anterior /middle /posterior) 

superior temporal gyrus, pMC = premotor cortex, IFC = inferior frontal cortex, μ = mean activation from 

contrast, Min = minimum score; Max = maximum score, SD = standard deviation, LSHS = Launay-Slade 

Hallucination Proneness scale 

 

SUP TABLE 2 | NON-VOICE SENSITIVE RESPONSE CORRELATION 

ROI LSHS 

Hem. Label μ Min Max SD r p 

L 

aSTG 1.189 0.398 2.288 0.479 -0.326 0.120 

mSTG 1.505 0.470 2.650 0.586 -0.086 0.689 

pSTG 1.511 0.250 2.600 0.560 -0.088 0.683 

R 

aSTG 1.019 0.180 1.720 0.452 -0.145 0.499 

mSTG 1.295 0.440 2.500 0.515 -0.050 0.817 

pSTG 1.213 0.471 1.867 0.406 -0.106 0.622 

R pMC 0.625 -0.290 1.510 0.447 -0.329 0.118 

L IFC 0.319 -0.273 1.009 0.288 -0.208 0.329 

R IFC 0.293 -0.440 0.920 0.323 -0.614 0.001 



   

 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
[This page is left intentionally blank]



71 

 

Chapter 4 

Expectancy changes the self-monitoring of voice identity 

Johnson, J.F., Belyk, M., Schwartze, M., Pinheiro, A.P., & Kotz, S.A. 

Abstract. Self-voice attribution can become difficult when voice characteristics are 

ambiguous, but functional magnetic resonance imaging (fMRI) investigations of such 

ambiguity are sparse. We utilized voice-morphing (self-other) to manipulate (un-

)certainty in self-voice attribution in a button-press paradigm. This allowed investigating 

how levels of self-voice certainty alter brain activation in brain regions monitoring voice 

identity and unexpected changes in voice playback quality. FMRI results confirmed a 

self-voice suppression effect in the right anterior superior temporal gyrus (aSTG) when 

self-voice attribution was unambiguous. Although the right inferior frontal gyrus (IFG) 

was more active during a self-generated compared to a passively heard voice, the 

putative role of this region in detecting unexpected self-voice changes during the 

action was demonstrated only when hearing the voice of another speaker and not when 

attribution was uncertain. Further research on the link between right aSTG and IFG is 

required and may establish a threshold monitoring voice identity in action. The current 

results have implications for a better understanding of the altered experience of self-

voice feedback in auditory verbal hallucinations. 

European Journal of Neuroscience, 2021, 53(8), 2681-2695. 
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1 Introduction 

The self-monitoring of the voice relies on comparing what we expect to hear and what 

we actually hear (Frith, 1992; Wolpert & Kawato, 1998). However, in a dynamic 

environment sensory feedback is often ambiguous, e.g., when listening to multiple 

speakers. Any judgment of the voice source further depends on how much sensory 

feedback deviates from expectations (Feinberg, 1978). Minor deviations regarding 

one’s own voice are typically self-attributed and used to compensate motor control. 

Major deviations may lead to source-attributing the voice to another person. The study 

of misattributed self-voice is often associated with auditory verbal hallucinations (AVH) 

in patients with psychotic disorders (Kumari et al., 2010; Sapara et al., 2015). However, 

under conditions of ambiguous feedback, healthy individuals also display uncertainty 

in attributing the source of their own voice (Asai & Tanno, 2013; Pinheiro et al., 2019). 

Functional neuroimaging studies of self-voice monitoring have examined the neural 

substrates of self-other voice attribution but have so far not examined responses to 

uncertainty in ambiguous conditions (e.g., Allen et al., 2006; Fu et al., 2006). However, 

we need to better understand how the brain establishes correct self and other voice 

attribution and where and how the voice is processed in uncertain conditions to better 

understand the mechanisms underlying dysfunctional self-monitoring. 

Previous research has reported that unaltered self-voice production leads to reduced 

functional brain activity in the auditory cortex (Christoffels et al., 2007). This motor-

induced suppression (MIS) is compatible with findings of numerous studies employing 

diverse methodology. It is similar to the N1 suppression effect, a modulation of the 

event-related potential of the electroencephalogram (EEG) (e.g., Behroozmand & 

Larson, 2011; Heinks-Maldonado et al., 2005; Pinheiro et al., 2018; Sitek et al., 2013; 

Wang et al., 2014), or  M1 suppression in magnetoencephalography (Houde et al., 

2002; Numminen et al., 1999; Ventura et al., 2009), weakened activity in 

electrocorticography and at intracranial electrodes (Chang et al., 2013; Greenlee et al., 

2011), or direct- and inter-cell recordings in non-human primates (Eliades & Wang, 

2008; Müller-Preuss & Ploog, 1981). 

In addition to suppressed activity in the auditory cortex, self-voice monitoring activates 

a widespread system of functionally connected brain regions, including cortical motor 
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and speech planning areas as well as subcortical regions such as the thalamus and 

cerebellum (Behroozmand et al., 2015; Christoffels et al., 2007). Moreover, within the 

auditory cortex different regions contribute specialized roles in the processing of voice. 

Notably, the left lateral temporal cortex demonstrates a larger role in speech-related 

processing, while the right lateral temporal cortex plays an essential role in speaker-

related features of voice (Belin et al., 2002; Ethofer et al., 2006, 2007; Formisano et al., 

2008; Grandjean et al., 2005; Kotz et al., 2003; Moerel et al., 2012; Schirmer & Kotz, 

2006; Wiethoff et al., 2008). In the current study, we focused on the perception of voice 

identity particularly ascribed to the right anterior superior temporal gyrus (aSTG) and 

the adjacent upper bank of the superior temporal sulcus (STS) (Belin and Zatorre, 2003; 

Belin et al., 2004; von Kriegstein et al., 2003; von Kriegstein & Giraud, 2004). Patient 

studies support this assumption as lesions or damage to the aSTG can lead to deficits 

in voice identity recognition (Gainotti et al., 2010; Gainotti & Marra, 2011; Hailstone et 

al., 2011; Van Lancker & Canter, 1982; Van Lancker & Kreiman, 1987). 

MIS in voice monitoring is not only effective in voice production but also in response 

to voice recordings activated via a button press (Ford et al., 2007; Knolle et al., 2019; 

Pinheiro et al., 2018; Pinheiro et al., 2020b; Whitford et al., 2011) as well as for non-

verbal sounds including tones (e.g., Aliu et al., 2009; Baess et al., 2009; Knolle et al., 

2013). Furthermore, MIS seems to operate across modalities of sensory feedback and 

arises from various motor effectors (e.g., Blakemore et al., 1998; Leube et al., 2003; 

Miall & Wolpert, 1996; Wolpert & Kawato, 1998). One explanation for MIS is that the 

internal model of an expected action outcome is fed-forward to the relevant cortical 

regions to cancel out impending activity to the anticipated stimulus (Jordan & 

Rumelhart, 1992; Miall & Wolpert, 1996; Wolpert, 1997). Studies that experimentally 

manipulated sensory feedback created a mismatch between expected and actual 

outcome and indicated concomitant modulation or absence of MIS under such 

circumstances. EEG studies typically show decreased N1 suppression (e.g., 

Behroozmand & Larson, 2011; Heinks-Maldonado et al., 2005), while functional 

magnetic resonance imaging (fMRI) studies report a relative increase of STG activity 

when expected feedback is altered (Christoffels et al., 2007, 2011; Fu et al., 2006; 

McGuire et al., 1996; Zheng et al., 2010). With this approach, it is not only possible to 

make listeners uncertain about self- or other-voice attribution (Allen et al., 2004, 2005, 
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2006; Fu et al., 2006; Versmissen et al., 2007), but to also lead listeners to incorrectly 

attribute self-voice to another speaker (Allen et al., 2004, 2005, 2006; Fu et al., 2006; 

Johns et al., 2001, 2003, 2006; Kumari et al., 2010; Sapara et al., 2015). STG 

suppression only persists when the voice is correctly judged as self-voice in distorted 

feedback conditions (Fu et al., 2006). Critically, data reflecting uncertain voice 

attribution are often removed from fMRI analyses (Allen et al., 2005b; Fu et al., 2006). 

However, to gain a better understanding of voice attribution to internal or external 

sources, it is mandatory to specify such data and to define how the known voice 

attribution region of the STG reacts to uncertainty. 

Next to the auditory cortex, activation in the right inferior frontal gyrus increases in 

response to distorted auditory feedback (Johnson et al., 2019). However, while 

attenuation of the right aSTG activation reflects expected voice quality, the right IFG is 

selectively responsive to unexpected sensory events (Aron et al., 2004). Increased right 

IFG activity has been reported when voice feedback is acoustically altered 

(Behroozmand et al., 2015, Fu et al., 2006; Guo et al., 2016; Tourville et al., 2008; 

Toyomura et al., 2007), delayed (Sakai et al., 2009; Watkins et al., 2005), replaced with 

the voice of another speaker (Fu et al., 2006), or physically perturbed during vocal 

production (Golfinopoulos et al., 2010). In response to unexpected sensory feedback in 

voice production, the right IFG produces a “salient signal”, indicating the potential need 

to stop and respond to stimuli that may be affected by external influence.  

In the current fMRI experiment, we investigated how cortical voice identity and auditory 

feedback monitoring brain regions respond to (un)certain self-other voice attribution. 

Participants elicited their own voice that varied along a morphing continuum from self 

to other voice, including intermediate ambiguous voices. Region of interest (ROI) 

analyses motivated by a priori hypotheses focussed on the right aSTG and the right 

IFG. The right aSTG ROI stems from a well-replicated temporal voice area (TVA) 

localizer task (Belin et al., 2000). The right IFG ROI conforms to a region responsive to 

experimental manipulation of auditory feedback previously identified in an activation-

likelihood estimation (ALE) analysis (Johnson et al., 2019). Due to possible individual 

variability in thresholds for self-other voice attribution (Asai & Tanno, 2013), each 

participant underwent psychometric testing to determine individualized points of 
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maximum uncertainty on a continuum from self to other voice. The primary goal was 

to test if (a) MIS of self-voice in the right aSTG is present, and the degree of 

suppression is greater when self-voice attribution is certain compared to uncertain, and 

(b) right IFG activation would increase in response to voice uncertainty or 

externalization. Confirming these results would further substantiate EEG findings 

regarding MIS for self-voice elicited via button-press (Ford et al., 2007; Knolle et al., 

2019; Pinheiro et al., 2018, 2020b; Whitford et al., 2011), indicating that suppressed 

activity in auditory cortex aligns with predicted self-voice quality and not only as a 

function of expected quality of voice feedback. 

2 Materials and methods 

2.1 Participant recruitment 

Twenty-seven participants took part in the study. The data of two participants were 

discarded due to scanning artefacts. Of the remaining 25 (17 female), the average age 

was 21.88 years (SD = 4.37; range 18 to 33). Inclusion criteria assured that participants 

had no diagnosis of psychological disorder, normal or corrected-to-normal vision, 

reported no hearing loss, and no evidence of phonagnosia. The latter was tested with 

an adapted version of a voice-name recognition test (Roswandowitz et al., 2014). All 

participants gave written informed consent and received university study participant 

credit. This study was approved by the Ethical Review Committee of the Faculty of 

Psychology and Neuroscience at Maastricht University (ERCPN-176_08_02_2017).  

2.2 Phonagnosia screening 

Phonagnosia is a disorder restricting individuals from perceiving speaker identity in the 

voice (Van Lancker et al., 1988). We screened for phonagnosia using an adapted 

version of a phonagnosia screening task (see Roswandowitz et al., 2014). The task was 

composed of four rounds of successive learning and testing phases, in which 

participants initially listened to the voices of three speakers of the same gender. 

Identification of each speaker was subsequently tested 10 times with response 

accuracy feedback provided during the first half of the test trials. Finally, the task was 

repeated with stimuli of the gender not used in the first run. The presentation order of 

these runs was counterbalanced across participants. 
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2.3 Psychometric task 

In a voice attribution task (VAT), participants heard neutral samples of the vowels /a/ 

and /o/. These samples varied in voice identity, which was morphed along a continuum 

from “self-voice” to “other-voice” using the STRAIGHT voice morphing software 

package (Kawahara 2003, 2006) running in MATLAB (R2019A, v9.6.0.1072779, 

MathWorks, Inc., Natick, MA). Samples of the self-voice (SV) and other-voice (OV), 

producing the two vowels were obtained from each participant and normalized for 

duration (500ms) and amplitude (70db), using the Praat software package (v6.0.28, 

http://www.praat.org/). The OV sample matched the gender of the participant. On this 

basis, 11 stimuli for each vowel were created along a morphing spectrum in steps of 

10% morphing from SV to OV. In a two-alternative forced-choice (2AFC) task, 

participants listened to each stimulus 10 times presented in random order and 

responded to the question: Is the voice “more me” or “more other”?  This procedure 

was repeated twice. In one run, stimuli were presented passively while in the other run 

participants were visually cued to press a button that elicited the next stimulus [Figure 

1]. A total of 440 trials were presented across both runs. The duration across both runs 

was 26.7 minutes. This task was used to identify an individualized point of maximum 

ambiguity (PMA) along the morphing spectrum for each participant. The PMA was 

defined as the stimulus that was closest to chance level (50%) self-other judgement 

and used as the uncertain voice (UV) to inform subsequent fMRI analyses. 
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FIGURE 1. Psychometric Voice Attribution Task (VAT): Active = button-press condition; Passive = 

hearing conditions, * = affected by individual motor response-time variability; Response = two-alternate 

forced-choice (“The voice sounded more like me.” or “The voice sounded more like someone else.”). 

2.4 FMRI tasks 

2.4.1 Temporal Voice Area (TVA) Localizer. To identify voice sensitive brain 

areas, participants were scanned during a voice localizer task (Belin et al., 2000). This 

task is widely used to reliably probe activity along the bilateral temporal cortices (e.g., 

Pernet et al., 2015) designated as anterior, middle, and posterior TVA regions. Stimuli 

consisted of 8-second auditory clips with 20 vocal and 20 non-vocal sounds. In a single 

run, participants passively listened to these sounds and 20 silent trials of the same 

duration in pseudorandom order. A 2-second inter-stimulus-interval separated each 

trial, resulting in a total task duration of 10 minutes. Contrasting responses of vocal and 

non-vocal sounds identified brain regions selectively sensitive to voice processing. The 

peak activation in the anterior TVA (aSTG) of the right hemisphere was then chosen as 

the voice-attribution ROIs in the subsequent empirical fMRI investigation. 

2.4.2 Voice Perception Task (VPT). Participants listened to passively presented 

or self-generated voice stimuli. When shown a cue signifying the active button-press 

condition, participants pressed a button to elicit voice stimuli, and conversely when 

shown a cue signifying the passive condition were instructed to do nothing [Figure 2]. 

In the active condition, half of the trials elicited a voice following the button press, while 

in the other half no voice was presented. In the passive condition, all trials involved the 

presentation of a voice. A subset of stimuli used in the VAT was selected for the VPT, 

specifically the 100, 60, 50, 40, and 0% self-voice morphs. Intermediate steps of 60, 

50, and 40% were selected as pilot data had revealed that individual PMA fell within a 

range of 35-65% morphing, while morphs outside of this range produced high degrees 

of confidence in self versus other judgement. This ensured that every participant 

received the voice stimuli nearest to their subjective PMA. Trial onsets were 9 seconds 

(+/- 500ms) apart to allow the BOLD response to return to baseline before the 

presentation of the next stimulus started. To avoid the effects of adaptation suppression 

(Andics et al., 2010, 2013; Belin et al., 2003; Latinus & Belin., 2011; Wong et al., 2004), 

voice conditions were presented in a random order. Stimuli were presented via 

Sensimetrics S14 MR-compatible earphones, fitted with foam earplugs to reduce 
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interference from scanner noise (Sensimetrics Corporation). While in the scanner 

participants were required to confirm successful perception of the control stimulus at 

the standard 70db volume. Over two runs, a total of 100 trials were presented in each 

condition of Source (active and passive). Within each condition of Source, each voice 

stimulus (100, 60, 50, 40, and 0% morphs from self-to-other) was heard 20 times. 20 

null trials were included to provide a baseline comparison of activity in response to 

experimental trials. The total duration of this task over both runs was 33 minutes. 

 

FIGURE 2. fMRI Voice Perception Task (VPT): Active = button-press condition; Passive = hearing 

conditions, * = affected by individual motor response-time variability. 

2.5 FMRI data acquisition and analysis 

Data acquisition was performed at a Siemens 3T Magnetom Prisma Fit MRI scanner at 

Scannexus facilities (Maastricht, the Netherlands), equipped with a 32-channel head 

coil (Siemens Healthcare, Erlangen, Germany). A structural whole brain T1-weighted 

single-shot echoplanar imaging (EPI) sequence was collected for each participant (field 

of view (FOV) 256mm; 192 axial slices; 1mm slice thickness; 1 x 1 x 1mm voxel size; 

repetition time (TR) of 2250ms seconds; echo-time (TE) 2.21ms).  

Two functional tasks were conducted with T2-weighted EPI scans (FOV 208mm; 60 

axial slices; 2mm slice thickness; 2 x 2 x 2mm voxel size; TE 30ms; flip angle = 77°). 

Both tasks applied a long inter-acquisition-interval where the time between consecutive 

image acquisition (2000ms) was delayed, resulting in a TR of 10 and 9 seconds for the 
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TVA localizer and VPT, respectively. This allowed auditory stimuli to be presented 

during a period of relative silence to reduce noise artefacts and for volume acquisition 

to proceed during a period of peak activation in the auditory cortex (Belin et al., 1999; 

Hall et al., 1999). 

2.5.1 Preprocessing. DICOM image data were converted to 4D NIFTI format using 

the Dcm2Nii converter provided in the MRIcron software package 

(https://www.nitrc.org/projects/mricron/). The topup tool (Smith, et al., 2004) 

implemented in FSL (www.fmrib.ox.ac.uk/fsl) was used to estimate and correct for 

susceptibility induced image distortions. Pre-processing was performed using SPM12 

(Wellcome Department of Cognitive Neurology, London, UK). A pre-processing pipeline 

applied slice timing correction, realignment and unwarping, segmentation, 

normalization to standard Montreal Neurological Institute (MNI) space (Fonov et al., 

2009) as well as smoothing with a full width at half maximum (FWHM) 8mm isotropic 

Gaussian kernel. 

2.5.2 General Linear Model (GLM) Analysis. The TVA localizer and experimental 

VPT fMRI data were analysed with a standard two-level procedure in SPM12. For the 

TVA localizer, contrast images for Vocal > Non-Vocal and Vocal > Silent were estimated 

for each participant. To test for the main effect of interest, a conjunction analysis ((V > 

NV) ∩ (V > S)) was performed. A second level random-effects analysis tested for group-

level significance. A first-level fixed-effects GLM of the VPT data calculated contrast 

estimates for each participant. Contrast estimates were then used in the subsequent 

hypothesis-driven ROI analysis to investigate TVA activity. 

2.5.3 Linear Mixed Model (LMM) ROI Analyses. Two spherical (5mm) ROIs were 

selected for analysis: the right aSTG/S in Brodmann Area (BA) 22 (MNI coordinates x 

58, y 2, z -10) defined by the TVA fMRI localizer task, and the right IFG opercular region 

in BA 44 (MNI coordinates x 46, y 10, z 4) defined in a previous fMRI meta-analysis 

(Johnson et al., 2019) [see Figure 3]. For both ROIs, the mean contrast estimates were 

produced for each SV, UV, and OV condition against the null trials. Using these values 

as input, a 2x3 factorial design was formulated using the factors of Source and Voice. 

The two-levelled factor Source included self-generated (A) and passively-heard (P) 
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playback of voice recordings. The three-levelled factor Voice included self-attributed 

(SV), other-attributed (OV), and ambiguous voice (UV).  

Data were analysed in R v3.6.1 (R Core Team, 2019) running on OS v10.11.6. Data 

handling and visualization were supplemented with the tidyverse (Wickham, 2017). 

Linear Mixed Models (LMMs) were fit with lme4 (Bates et al., 2015). Separate LMMs 

were fitted for contrast estimates of the IFG and the aSTG ROIs with Source (A and P), 

Voice (SV, OV and UV), and their interaction as fixed effects. Participant was modelled 

as a random intercept. Model residuals were examined for potential outliers. Five data 

points were removed from the IFG analysis and one was removed from the aSTG 

analysis. 

The main effects of Voice, Source and their interaction were tested with the afex 

package using Kenward-Rogers degrees of freedom (Singmann et al., 2015). Estimated 

marginal means and confidence intervals were computed with the emmeans package 

(Lenth, 2020) for visualization. All p-values are corrected for multiple comparisons 

controlling at a false-discovery rate (FDR) of 0.05. Furthermore, to investigate the effect 

that (un)certainty has on the suppression of the right aSTG, we compared contrasts of 

A > P in each voice condition to see if it differs for SV stimuli as compared to OV or UV 

stimuli. 

Finally, to provide clear effects of each treatment condition (UV and OV) compared to 

the control variable of one’s own voice (SV), contrast estimates were reported via two-

tailed paired sample t-tests. These comparisons were done within both active (A) and 

passive (P) conditions. Furthermore, we provide BOLD whole-brain activation maps for 

each Source condition (P and A) against null trials [see Supplementary Information].  

3 Results 

3.1 VAT results 

Psychometric analysis of the VAT indicated little variability in the degree of morphing 

between SV and OV required to elicit responses at chance level (50%), which we 

identified as the point of maximum ambiguity. For the A condition, nine participants had 

PMAs at 40%, eight at 50% and ten at 60% morphing. In the passive condition, eleven 

participants required 40%, seven 50%, and nine 60% morphing. There was no 
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significant difference between the average morphing required to elicit PMA in A (μ = 

50%, SD = 0.085) and P (μ = 50%, SD = 0.087) conditions. Although no participant 

matched criteria for phonagnosia as specified by the screening task, VAT data from 

one participant was excluded due to an inability to reliably differentiate between their 

own and other voices.  

3.2 TVA localizer results 

The TVA fMRI localizer produced four significant cluster-level activations [see Table 1 

for details]. Within two large bilateral STG (BA 22) clusters, each included three peak-

level significant activations. These peaks correspond to the posterior, middle, and 

anterior STG. Two smaller clusters were found in the right precentral gyrus (BA 6), the 

left IFG (BA 44), and the left inferior parietal lobule (BA 40). All significant cluster- and 

peak-level coordinates survived FDR correction of 0.05.  These results replicate the 

pattern of TVA regions of peak activity (e.g., Belin et al., 2000; Fecteau et al., 2004; 

Latinus et al., 2013; Pernet et al., 2015). The right aSTG peak was chosen for the ROI 

analysis of self-voice-attribution. 

TABLE 1                     |                      TVA LOCALIZER RESULTS 

# Hem. Label BA 
MNI coordinates 

(x, y, z) 

Cluster-

level p-

FDR 

Peak-level 

p-FDR 

Size 

(voxels) 

1 L 

pSTG 22 -60 -24 0 

2.76e-14 

9.29e-12 

4551 aSTG 22 -58 -10 -2 9.04e-11 

mSTG 22 -66 -16 -2 3.51e-08 

2 R 

pSTG 22 58 -24 -2 

2.05e-14 

1.07e-09 

4565 aSTG 22 58 2 -10 2.00e-09 

mSTG 22 58 -8 -6 2.74e-09 

3 R preCG 6 52 52 0 0.007 3.44e-04 408 

4 L IFG 44 -42 14 22 0.019 0.002 294 

TABLE 1. L: left, R: right, (p/a/m)STG: posterior/anterior/middle superior temporal gyrus, preCG: 

precentral gyrus, IFG: inferior frontal gyrus; All listed significant regions survived FDR-corrected 

threshold 0.05. 
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FIGURE 3. Regions of Interest: Blue: right inferior frontal gyrus; MNI coordinates x 58, y 2, z −10; 

determined from ALE neuroimaging meta-analysis (Johnson et al., 2019). Red: right anterior superior 

temporal gyrus; MNI coordinates x 46, y 10, z 4; determined in our sample from fMRI temporal voice 

area localizer task. 

3.3 LMM ROI results 

Contrast estimates calculated for each Voice condition (SV, UV, and OV) within each 

Source condition (A and P) were used as input for the 2x3 factorial design [see 

Supplementary Information]. Linear mixed model analysis of the right aSTG [Table 2A, 

Figure 4A] produced an FDR-corrected significant main effect for the factor of Voice 

(F2,118.94 = 4.90, p = 0.021). No significant effect was observed for Source (F1,118.92 = 

0.53, p = 0.47). A trend for the expected interaction effect between Voice and Source 

was observed, although it did not survive FDR correction for multiple comparisons 

(F2,118.94 = 3.40, p = 0.065). Our a priori hypotheses regarding a difference in 
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suppression effects (A > P) between voice conditions however was supported by the 

finding that MIS is observed preferentially for SV stimuli (t119 = -2.7, p = 0.021).  

The LMM analysis was repeated for the right IFG ROI [Table 2B, Figure 4B]. A significant 

FDR-corrected main effect of Source was observed (F1,116.04 = 9.93, p = 0.002). No 

main effect was found for the factor of Voice (F2,115.95 = 1.52, p = 0.26), and no 

interaction between Voice and Source were observed (F2,115.81 = 1.60, p = 0.26). 

 

FIGURE 4. fMRI Voice Perception Task (VPT) LMM Results: Linear mixed model analysis on ROIs in A) 

right anterior superior temporal gyrus (aSTG) and B) right inferior frontal gyrus (IFG). Active: button-

press condition, passive: hearing condition, SV: self-voice, UV: uncertain-voice, OV: other-voice. 

Hypothesis-driven analysis in right aSTG confirmed motor induced suppression (for contrast active > 

passive) for only SV as compared to UV or OV (t(119) = −2.7, p = .021) 

Finally, for both ROIs we report direct comparisons of treatment (UV and OV) and 

control (SV) conditions within each source conditions (A and P). Activation of the right 

aSTG was reduced when participants actively produced SV compared to OV (t121 = -

2.773, p = 0.0064), but not compared to UV (t121 = -0.591, p = 0.5553). Conversely, 

activation of the right aSTG was no different when participants were passively exposed 

to SV compared to the OV (t118 = 0.401, p = 0.6891), but increased compared to UV 

(t118 = 2.612, p = 0.0102). Therefore, the right aSTG was less active when self-

generating a voice certain to be one’s compared to an external source, and more active 

when passively hearing a voice certain to be one’s own compared to when uncertain. 
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In the right IFG, activation was reduced when participants actively produced SV 

compared to OV (t116 = -2.316, p = 0.0223), but not compared to UV (t115 = -0.846, p = 

0.3993). When passively exposed, activation of the right IFG was no different when 

presented with SV compared to OV (t117= 1.66, p= 0.8681), or to UV (t117 = 0.758, p = 

0.4499). In summary, in the right IFG a greater activation relative to the self-voice 

control was reported in only the externalized self-generated voice 

4 Discussion 

The current study investigated how unexpected sensory feedback affects certainty in 

self-voice attribution. We report first fMRI evidence that aligns with EEG reports, namely 

self-voice MIS is observed in the anterior region of the STG even when one’s own voice 

is elicited by a button press. Expected self-voice quality, learned through long-term 

experience with self-voice feedback sufficiently modulates MIS. Importantly, this effect 

was specific to vocal properties matching the producer’s own voice and was not 

observed when hearing another voice or being uncertain about the voice of a speaker. 

The right IFG showed increased activation in response to the self-generated voice 

compared to listening to the same voice. It is possible that this response is driven by 

voice trials not attributed to oneself. This region is known to be more active when 

perceived stimuli conflict with expected sensory feedback. Together, these findings 

suggest a differentiation between and a potential interplay of right IFG and anterior STG 

in voice processing, and more specifically feedback monitoring of self-generated voice 

and voice attribution.  

4.1 Voice identity and motor-induced suppression in the 

anterior STG 

Our results confirm right anterior STG/S involvement for voice identity and indicate that 

this region plays a specific role in segregating the speaker’s voice from other voices in 

the monitoring of auditory feedback. We replicate previous TVA findings that the STG 

and upper bank of the STS contain three bilateral voice patches [Table 1] (Belin et al., 

2000; Pernet et al., 2015). The processing of speech-related linguistic (“what”) features 

have been attributed predominantly to the left hemisphere, while speaker-related 

paralinguistic (“who”) features have been attributed predominantly to the right 

hemisphere (Belin et al., 2002; Ethofer et al., 2006, 2007; Formisano et al., 2008; 
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Grandjean et al., 2005; Kotz et al., 2003; Moerel et al., 2012; Schirmer & Kotz, 2006; 

Wiethoff et al., 2008).  Furthermore, regions of the right lateral temporal cortex are 

specialized for different speaker-related information. Identity attribution is localised to 

the anterior region of the STG/S (Belin et al., 2003; Fecteau et al., 2004; Latinus et al., 

2013; Schelinski et al., 2016; von Kriegstein et al., 2003; von Kriegstein & Giraud, 2004). 

Considering voice-identity processing as a multi-stage process, low-level acoustics 

features are evaluated in the posterior STG for cues relevant to speaker identification; 

the extracted cues are then further processed and compared to prototypes for 

deviance detection in the middle STG, and finally voice identity recognition occurs in 

the anterior STG (Maguiness et al., 2018).  

We conducted ROI analyses to test voice identity in the right anterior STG due to its 

responsiveness to variation in voice identity but did not include other TVA regions in 

our analysis. This allowed us to detect fine-grain differences in activation patterns 

influenced only by voice identity in a region that is related to the perception of one’s 

own voice. To provide sufficient information for the extraction of paralinguistic speaker-

related features, steady 500ms vowel excerpts were chosen as voice samples (Pinheiro 

et al., 2018; Schweinberger et al., 1997, 2011; van Berkum et al., 2008). Although vowels 

provide fundamental cues that allow differentiating between speakers (Belin et al., 

2004; Kreiman & Sidtis, 2011; Latinus & Belin, 2011; Schweinberger et al., 2014), to the 

best of our knowledge no study has yet confirmed whether such basic stimuli carry 

enough identity cues to allow for explicit self-recognition (Conde et al., 2018). Our 

results confirm that the use of short vowels is sufficient to accurately recognize self 

verses other voices.  

Suppression of self-generated relative to passively-heard voice in the right anterior 

STG occurred only within SV (see Figure 4A). One possible interpretation for this 

selective finding is that participants are most familiar with their own voice and they can 

therefore predict the features of their own voice more efficiently. In the right anterior 

STG, voice identity is defined by the extent that speaker-related cues deviate from 

prototypes of expected voice qualities (Andics et al., 2010, 2013; Bruckert et al., 2010; 

Latinus & Belin, 2011; Latinus et al., 2013; Mullennix et al., 2011; Petkov & Vuong, 2013; 

Schweinberger et al., 2014). These referential prototypes are learned through mean-
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based coding (Hoffman & Logothesis, 2009), and differ for male and female voices 

(Latinus et al., 2013; Charest et al., 2013). While it is clear that low-level acoustic 

processing is involved in recognizing the identity of a speaker (Baumann & Belin, 2010; 

Gaudrain et al., 2009; Kreitewolf et al., 2014; Nolan et al., 2011; Smith & Patterson, 2005; 

Smith et al., 2007; Zheng et al., 2011), the specific features that drive voice identification 

vary from voice to voice (Kreiman et al., 1992; Latinus & Belin, 2012; Lavner et al., 2000, 

2001; Xu et al., 2013). Furthermore, variable acoustic features of the voice do not only 

exist between speakers, but also within individual speakers (Lavan et al., 2019). 

Therefore, increased experience with the voice of a specific speaker facilitates more 

efficient recognition of voice identity. As speakers are most experienced with their own 

voice, little divergence from mean-based coding is expected. 

Alternatively, MIS of the self-voice in a dynamic multi-speaker environment is important 

for the segregation of internally- and externally-controlled voice stimuli. During 

vocalization, an efference copy of the motor command is sent from motor planning 

areas to auditory and sensorimotor cortical regions to notify of impending feedback 

(Hickok et al., 2011; Hickok, 2012; Kearney & Guenther, 2019; Rauschecker & Scott, 

2009; Rauschecker, 2011; Tourville & Guenther, 2011). Error-cells in the posterior STG 

(planum temporale) receive these signals from Broca’s area to remain inactive in 

response to the expected self-voice, and to engage when perceiving voice feedback 

outside the control of the speaker (Guenther et al., 2006). To date, fMRI research using 

vocal feedback paradigms, has provided evidence for this form of MIS dependent on 

vocal production. For example, MIS has been reported for unaltered vocal production 

relative to hearing a recording of self-voice or in a noisy environmental (Christoffels et 

al., 2007), when acoustically distorted (Christoffels et al., 2011; Fu et al., 2006; McGuire 

et al., 1996; Zheng et al., 2010), or replaced with the voice of another speaker (Fu et 

al., 2006; McGuire et al., 1996). However, as these paradigms all rely on vocal 

production, they could not isolate how voice identity engages the anterior STG in voice 

production. EEG research has provided evidence for MIS in the auditory cortex that 

does not depend on vocal speech production as it is observed even when sounds are 

elicited by a button press. For example, MIS of the N1 response was reported for both, 

vocal (Behroozmand & Larson, 2011; Heinks-Maldonado et al., 2005; Sitek et al., 2013; 

Wang et al., 2014) and button-press elicited self-voice (Ford et al., 2007; Knolle et al., 
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2019; Pinheiro et al., 2018, 2020b; Whitford et al., 2011). In line with previous EEG 

evidence, the current findings confirm self-voice suppression as a marker of voice 

identity in the right anterior STG. The reported MIS is specific to self-voice processing, 

providing further evidence of voice identity suppression independent of previously 

reported cortical suppression during unperturbed speech. Importantly, this pattern was 

observed only for own voice attribution, and was not present when the voice was 

distorted to an extent that self-attribution was uncertain.  

4.2 Expected feedback and the IFG 

The right IFG was more strongly activated when participants generated their own voice 

with a button press as compared to passive listening to their own voice. This finding 

confirms that this region is more responsive to sounds triggered by oneself, potentially 

as part of an auditory feedback loop. Increased activity in this region has been 

observed in response to acoustically altered (Behroozmand et al., 2015, Fu et al., 2006; 

Guo et al., 2016; Tourville et al., 2008; Toyomura et al., 2007), physically perturbed 

(Golfinopoulos et al., 2010), and externalized voice feedback (Fu et al., 2006). 

In response to unexpected sensory information, the right IFG plays a significant role in 

relaying salient signals to attention networks. Moreover, the right IFG is part of a 

prediction network, which forms expectations and detects unexpected sensory 

outcomes (Siman-Tov et al., 2019). When prediction errors are detected, an inferior 

frontal network produces a salience response (Cai et al., et al., 2014; Chang et al., 2013; 

Power et al., 2011; Seeley, 2010). Salience signals engage ventral and dorsal attention 

networks, overlapping the right inferior frontal cortex. The ventral attention network 

responds with bottom-up inhibition of ongoing action (Aron et al., 2004, 2014), such as 

halting manual or speech movement (Aron & Poldrack, 2006; Aron, 2007; Chevrier et 

al., 2007; Xue et al., 2008). Correspondingly, damage to prefrontal regions affects the 

ability to stop one’s own actions (Aron et al., 2003), and is similarly diminished when 

the IFG is deactivated with TMS (Chambers et al., 2006). The salience response may 

also engage the dorsal attention network to facilitate a top-down response (Corbetta & 

Shulman, 2002; Dosenbach et al., 2007; Eckert et al., 2009; Fox et al., 2006), for 

example, in goal-directed vocal compensation to pitch-shift (Riecker et al., 2000; 

Toyomura et al., 2007; Zarate and Zatorre, 2005) or somatosensory perturbation 
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(Golfinopoulos et al. 2011). The right IFG in the current study maps with a region 

determined by an ALE meta-analysis of neuroimaging studies that experimentally 

manipulated auditory feedback in vocal and manual production (Johnson et al., 2019). 

As the current experiment required no explicit response to a change in stimulus quality, 

we hypothesized that increased activity in the right IFG may represent the initial 

salience response to unexpected voice quality. However, the effect of voice identity in 

the right IFG did not reach significance, and there was no significant interaction 

between stimulus source and voice identity in this region. We note that the main effect 

of source appears most strongly driven by unfamiliar or ambiguous voices, with an 

intermediate level increase in the uncertain condition [see Figure 4B]. It is possible that 

substantial variability in the data limiting these results was due to the passive nature of 

the task with no overt attention to stimulus quality. As activity in this region is associated 

with attention and subsequent inhibition/adaptation responses, the degree to which 

each participant attended to the change in stimulus quality is unclear. However, simple 

contrast analyses relative to self-voice demonstrated a significant increase in activation 

for only self-generated other-voice. It is possible that this region is solely activated 

when voice feedback is manipulated to the extent that it is externalized. Conversely, 

although psychometric testing confirmed the subjective ability of participants to 

correctly recognize their own and other voices at a behaviour level, it is possible that 

the brief vowel stimuli did not provide sufficient information to signal a strong response 

to unexpected changes in self-voice leading to uncertainty. Further research is 

therefore needed to clarify whether the right IFG is responsive to voice identity, and to 

which extent this may be driven by the degree of salience elicited in divergence from 

expected qualities of self-voice. 

5.3 Variability in self-monitoring thresholds 

Although recordings of self-voice can produce a feeling of eeriness for listeners as 

compared to when spoken (Kimura et al., 2018), people nevertheless recognize 

recorded voice samples as their own (Candini et al., 2014; Hughes & Nicholson, 2010; 

Kaplan et al., 2008; Nakamura et al., 2001; Pinheiro et al., 2016a, 2016b, 2019; Rosa et 

al., 2008; Xu et al., 2013). However, in ambiguous conditions (i.e., acoustic distortion), 

the ability to accurately attribute a voice to oneself is diminished (Allen et al., 2004, 
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2005, 2006, 2007; Fu et al., 2006; Kumari et al., 2010). As ambiguity increases, an 

attribution threshold is passed, initiating a transition from uncertainty to externalization 

(Johns et al., 2001, 2003, 2006; Versmissen et al., 2007). This threshold, however, 

varies from person to person (Asai and Tanno, 2013). It was therefore necessary to 

determine the degree of morphing required to elicit uncertainty in the attribution of 

voice identity via separate 2AFC psychometric analysis for each participant. In doing 

so, we could confirm that fMRI responses in the PMA condition were specific to the 

experience of maximum uncertainty, regardless of any variability in the individual 

thresholds. These results confirmed that participants were able to discriminate their 

self-voice from an unfamiliar voice, with relatively little variation regarding the point of 

maximum ambiguity. 

An externalization bias is particularly prominent in schizophrenia patients who 

experience AVH (Allen et al., 2004, 2007; Costafreda et al., 2008; Heinks-Maldonado et 

al., 2007; Johns et al., 2001, 2006; Pinheiro et al., 2016a). It has been hypothesized that 

the processing of salient stimuli with minimal divergence from expectations leads to an 

externalization bias that may manifest in the experience of AVH (Sommer et al., 2008). 

Correspondingly, as the severity of AVH symptoms increase, accuracy in self-

attribution voice diminishes (Allen et al., 2004, 2006; Pinheiro et al., 2016a). Notably, 

this symptomology does not only exist within patient groups. Individuals who present 

sub-clinical symptoms but are at a high risk to develop psychosis, display levels of self-

monitoring performance similar to patients who meet a clinical diagnosis of 

schizophrenia (Johns et al., 2010; Versmissen et al., 2007). Indeed, proneness to 

hallucinate is a continuum and AVH are experienced in the general populations as well, 

although at lower rates (Baumeister et al., 2017). Even in non-clinical populations, AVH 

are associated with a bias towards external voice attributions (Asai & Tanno, 2013; 

Pinheiro et al., 2019). The current findings may be of value in the understanding of the 

neural substrates underlying dysfunctional self-other voice attribution. In light of our 

observation that the anterior STG displays a qualitatively different activation for self-

voice relative to an unfamiliar voice and the hypothesized influence of right IFG 

overactivity in salience detection in AVH, we suggest future research in high-risk 

groups to assess a possibly altered interaction between these two regions. Structural 

and functional connectivity MRI analysis may help explain whether aberrant 
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communication between these two regions, or individual changes in either or both 

regions lead to this symptomatology.  

5 Conclusion 

The goal of the current experiment was to investigate how levels of self-voice certainty 

alter brain activity in voice identity and feedback quality monitoring regions of the brain. 

By replicating earlier findings using a voice area localizer task, we isolated a putative 

voice identity region in the right anterior STG. Our results indicate activity in this TVA 

is suppressed only for the self-generated voice. Although the involvement of the right 

IFG was not confirmed in processing unexpected features of uncertain voice identity, 

increased IFG activity in response to the self-generated other-voice was observed 

indicating a possible role of feedback-monitoring for externalized voice. Using a novel 

self-monitoring paradigm, we provide the first fMRI evidence for the effectiveness of 

button-press voice-elicitation in modulating identity-related MIS in the auditory cortex. 

Further, we present novel findings on the effectiveness of brief vowel excerpts to 

provide sufficient paralinguistic information to explicitly identify one’s own voice. 

Finally, we suggest a potential dynamic interaction of the right anterior STG and IFG in 

self-voice monitoring. The feedback monitoring frontal region may inform the temporal 

voice identity region whenever a salience threshold has been passed and voice 

feedback is influenced by or under control of an external actor. The implications of the 

current results may be particularly relevant to the externalization of self-generated 

voice in AVH.  
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Supplementary information  

 

SUP TABLE 1                 |                  CONTRAST ESTIMATES 

Source Voice N μ SD 

A. Right aSTG   

P 

SV 24 6.29 6.74 

UV 24 2.55 7.75 

OV 24 5.49 6.30 

All 24 4.78 7.05 

A 

SV 24 3.71 6.69 

UV 24 4.46 7.98 

OV 24 6.29 9.19 

All 24 4.82 7.98 

B. Right IFG 

P 

SV 21 -0.35 5.12 

UV 21 -1.72 4.82 

OV 21 -0.19 3.18 

All 21 -0.75 4.44 

A 

SV 21 0.37 4.05 

UV 21 1.02 3.31 

OV 21 2.06 4.74 

All 21 1.15 4.07 

SUPLEMENTARY TABLE 1. Contrast estimates of each condition vs. null trials (input data for factorial 

design used in LMM). Source condition: P = passively-heard, A = active button-press. Voice condition: 

SV = self-voice, UV = uncertain-voice, OV = other-voice. , N = number of datapoints, μ = mean activation 

from contrast, SD = standard deviation, 

 

 

 

 

 

 

 

 

 

 

SUPPLEMENTARY FIGURE 1. Contrast estimates of Source condition vs. null trials: FWE-corrected 

0.05, extent threshold k = 0, degrees of freedom 1.0, 24.0. 

Active 

> Null 

Passive 

> Null 
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Chapter 5 

Variability in white matter structure relates to hallucination 

proneness 

Johnson, J.F., Schwartze, M., Belyk, M., Pinheiro, A.P., & Kotz, S.A. 

Abstract. Hallucinations are a prominent transdiagnostic psychiatric symptom but 

are also prevalent in individuals who do not require clinical care. Moreover, persistent 

psychosis-like experience in otherwise healthy individuals may be related to an 

increased risk to transition to a psychotic disorder. This suggests a common aetiology 

across clinical and non-clinical individuals along a multidimensional psychosis 

continuum that may be detectable in structural variations of the brain. The current 

diffusion tensor imaging study assessed 50 healthy individuals (37 female) to identify 

possible differences in white matter associated with hallucination proneness (HP). This 

approach circumvents potential confounds related to medication, hospitalization, and 

disease progression common in clinical individuals. We determined how HP relates to 

white matter structure in selected association, commissural, and projection fibre 

pathways putatively linked to psychosis. Increased HP was associated with enhanced 

fractional anisotropy (FA) in the right uncinate fasciculus, the right anterior and 

posterior arcuate fasciculus, and the corpus callosum. Although FA in cortico-

cerebellar pathways revealed no relationship, streamline quantity between the left 

cerebellum and the right motor cortex positively correlated with HP. These findings 

support the notion of a psychosis continuum, providing first evidence of structural white 

matter variability associated with HP in healthy individuals. Furthermore, alterations in 

the targeted pathways likely indicate an association between HP-related structural 

variations and the putative salience and attention mechanisms that these pathways 

subserve. 

Manuscript under review at Neuroimage: Clinical 
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Chapter 6 

Integrated Discussion 

Across the four empirical studies in this thesis, a number of findings were reported 

which help shed light on the mechanisms and brain regions associated with false 

perceptions. Outcomes are identified and discussed which independently inform about 

the structure and function of brain regions involved in the processing of predicted 

sensory feedback (and prediction errors), sensitivity to voice signals, and changes in 

perceived voice identity related to the experience of hallucinations. Based on these 

findings, the involvement of regions and pathways previously associated with 

prediction, inhibition and salience may indicate a specific etiological cognitive 

mechanism underlying the emergence of false perceptions. 

1 Cortical and cerebellar processing of (un)expected 

sensory input 

The primary goal of the first study (chapter 2. The role of the cerebellum in 

adaptation: ALE meta-analyses on sensory feedback error) was to use the existing 

literature to determine which brain regions consistently activate when sensory 

feedback from one's own action is experimentally manipulated. Critically, the resultant 

activation pattern, representing the feedback-error response, conforms to regions 

putatively involved in self-monitoring models of hallucinations. The secondary and 

more explorative goal was to define potential modality-specific cerebellar regions 

responsive to manipulations of either visual or auditory feedback. However, no 

consensus regarding such regions was indicated by the respective ALE meta-analyses. 

None-the-less, considering that a cerebellar role in the adaptive processing cycle of 

sensorimotor control is well-established from other sources of data (Bastian, 2006; 

Caligiore et al., 2017; Doya, 2000; Doyon et al., 2009; Halsband & Lange, 2006; Hardwick 

et al., 2013; Krakauer et al., 2019; Schmuelof & Krakaeur, 2011; Schwartze & Kotz, 2013, 

2016) (see chapter 1. Introduction section 1.1.3), this outcome was interpreted as a 

possible methodological shortcoming of fMRI paradigms that are commonly used to 

probe this system (see chapter 2). Tests of independence across the included studies 

- in terms of sensory modality and task design - revealed that those few studies which 
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did observe activation of the cerebellum were also methodologically similar. Cerebellar 

activity was more reliably probed by studies eliciting an adaptation or compensatory 

responses (e.g., for sustained manipulation of sensory feedback).  

Cerebellar patients exhibit a behavioural impairment in motor adaptation tasks (Bastian, 

2008, 2011; Manto et al., 2011; Therrien & Bastian, 2015). Moreover, schizophrenia 

patients often exhibit structural or functional cerebellar abnormalities (Ding et al., 2019; 

Koziol et al., 2014; Moberget et al., 2018). These irregularities are often linked to 

additional motor symptoms, yet a relationship has also been observed between the 

cerebellum and psychotic symptoms such as hallucinations (Abboud et al., 2017; 

Andreasen & Pierson, 2008; Martin & Albers, 1995; Picard et al., 2008; Schmahmann, 

2000). Within the cognitive dysmetria model of psychosis, the cerebellum holds a 

central role, whereby an impairment in mental coordination of memory, attention, 

emotion, and motor activity may account for the broad range of symptom profiles within 

schizophrenia (Andreasen et al., 1998; Andreasen & Pierson, 2008; Cao & Cannon, 

2019). Although this presents an apparent interrelation between cerebellar pathology, 

the sensorimotor system, and psychotic symptoms, direct evidence is currently sparse 

for the specific link between cerebellar changes and the cognitive mechanisms 

underlying AVH such as inner voice or acoustic imagery (Moberget & Ivry, 2019; 

Pinheiro et al., 2021). The particular point of dysfunction in the self-monitoring loops 

incorporating the cerebellar forward model must be established (Pinheiro et al., 2020a): 

are hallucinations due to deficient descending efference copy signaling from the 

cortex, comparison of reafferent signals for forward model predictions, or signaling 

back to the cortex for updating motor commands? In the final study of the dissertation 

(chapter 5. Variability in white matter structure related to hallucination 

proneness), two components of a cortico-cerebellar-cortical processing loop between 

the motor cortex and the cerebellar cortex were investigated. Applying a measure of 

structural connectivity (number of streamlines), a positive correlation with one’s 

proneness for hallucinations from the left cerebellar cortex to the right motor cortex 

was found. This might indicate variability associated with the pathway that propagates 

error signals for adaptation in sensorimotor control. 
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In terms of cortical responses, the meta-analysis (chapter 2) indicated activation of the 

inferior frontal and premotor regions putatively involved in a network serving salience 

detection and action planning (Cai et al., et al., 2014; Chang et al., 2013; Power et al., 

2011; Seeley, 2010). This may signify the detection of cues to inhibit and reorient action 

plans (Corbetta & Shulman, 2002; Hampshire et al., 2010; Levy & Wagner, 2011), via the 

engagement of an overlapping ventral attention system (Aron et al., 2003, 2004, 2014; 

Aron, 2007). Additionally, an observed increase in sensory cortex activation likely 

indicates the interruption of motor-induced suppression (MIS) due to the discrepancy 

between forward model (predicted) and reafferent (actual) feedback as outlined by the 

self-monitoring theory (Frith et al., 2000; Miall & Wolpert, 1996; Wolpert et al., 1995). 

MIS is present across various sensory modalities, resulting in the “cancelling out” of 

cortical responses to predicted self-generated stimuli. This phenomenon may be best 

illustrated via the often-cited observation that one cannot tickle oneself (Blakemore et 

al., 1998), or the attenuated response one has to one’s own voice while speaking 

(Hickok et al., 2012; Houde & Nagarajan, 2011). Importantly, patients prone to 

hallucinate are more likely to express an impairment in MIS (Ford & Mathalon, 2012, 

2019; Thakkar et al., 2021; van Lutterveld et al., 2011; Whitford, 2019). This mechanism 

is the likely cause for the externalization bias or misattribution of self-generated stimuli 

(Allen et al., 2007a, 2008; Brookwell et al., 2013; Cho & Wu, 2013; Damiani et al., 2022; 

Ditman & Kuperberg, 2005; Waters et al., 2012a,b; Zmigrod et al., 2016). In accordance 

with the self-monitoring theory, the cortical sensory processing regions reported in the 

meta-analysis are taken as likely candidates to show abnormally increased activity 

during action that leads to false perceptions.  This interpretation is also in line with a 

set of functional neuroimaging studies which report increased activation in these areas 

during hallucinations (Allen et al., 2008; Bohlken et al., 2017; Jardri & Sommer, 2013; 

Upthegrove et al., 2016).  

Another critical aspect was raised in the interpretation of the feedback-error meta-

analysis: how does error-related activity in these regions relate to an inner speech 

model of AVH? Inner speech theory is built around the fundamental assumption that 

thoughts are a complex form of action (Ford & Mathalon, 2019; Jones & Fernyhough, 

2007; Subramanian et al., 2019). The evolution of a cortical suppression mechanism 

not only allowed the brain to discern self-generated sensory input, but also an 
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exaptation trait whereby covert motor actions can lead to vivid imagery such as the 

voice inside your head without overt motor production (see recent arguments for the 

evolution and development of inner speech in Agnati et al., 2012, 2017, 2018; Alderson-

Day & Fernyhough, 2015; Geva & Fernyhough, 2019; O’Connor, 2020; Perrone-Bertolotti 

et al., 2014; Vandervert, 2020). This may also explain the mechanistic and 

phenomenological link between hallucinations and the emergence of dreams as 

internally-generated signals perceived as sensory events (Feinberg, 2011; D’Agostino 

et al., Scarone 2012). Here, false perception and attribution to an external actor is due 

to misperceived inner speech. This is the result of a delayed, or absent, corollary 

discharge during inner speech and the ensuing (erroneous) co-activation of speech 

planning/production and perception regions (Allen et al., 2007a; Jones & Fernyhough, 

2007a,b; Swiney & Sousa, 2014; Gregory, 2016). This framework converges with the 

traditional speech production-perception network, as top-down predictions are sent to 

both cortical and subcortical regions to facilitate MIS (Golfinopoulos et al., 2010; 

Guenther, 2006; Tourville & Guenter, 2011). However, inner speech models link the 

weak predictive signaling (corollary discharge) to the connection between speech 

planning and processing regions (cortico-cortical) and not to descending projections 

(cortico-subcortical) incorporating cerebellar error processing. In light of these 

divergent positions, interpreting the results from this meta-analysis (utilizing only data 

from overt sensory feedback paradigms) has to be done cautiously. Next to the 

cerebellar pathway results, The DTI study (chapter 5) specifically assessed the 

directionality of diffusion in the white matter pathways associated with (inner) speech 

theories of hallucinatory experience. These connections, from prefrontal to auditory 

cortex, correspond to the arcuate fasciculi (AF). A positive correlation with hallucination 

proneness (HP) was found in the anterior and posterior segments of the AF in the right 

hemisphere. This selective finding stands in contrast to inner speech theories of 

hallucinations which ascribe the putative prediction signaling to the left hemisphere 

and the sound-to-action mapping stream (Hickok & Poeppel, 2004, 2007; Rauschecker, 

2011, 2018). 

Informed by the results of the feedback-error meta-analysis (chapter 2), an fMRI 

experiment was conducted (chapter 4. Expectancy changes the self-monitoring of 

voice identity). This study was designed to further investigate the prefrontal (error-
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monitoring) and temporal cortex (voice processing) responses to the externalization of 

self-generated auditory input. Using a novel paradigm, a factorial design assessing the 

main effects and interaction of source of feedback (self-generated or passively-heard) 

and voice identity (self, other, or uncertain) was applied. The self-generated voice was 

elicited via a button-press, to see if MIS during one’s own voice would occur in the 

absence of direct input from Broca’s area to the auditory cortex. Results indicated MIS 

in the right anterior STG voice identity ROI for own-voice but not for uncertain or other. 

The interpretation of this finding is not straightforward: how can a response to one’s 

own voice be suppressed when there is no corollary discharge from voice production 

regions? However, first, it is essential to differentiate the MIS in this particular context 

from auditory cortex activity that is “cancelled out” while speaking. Instead, the initial 

MIS reported here is comparable to commonly applied manually-generated auditory 

signals, for example hearing an expected sound when typing on a keyboard or stroking 

a string on a guitar. Therefore, MIS observed in this study may reflect inadequate error 

signals from the subcortical cerebellar comparator system (i.e., a reduced sense of 

ownership over sounds), as opposed to any direct influence of Broca’s area predictions 

sent directly to the STG. Second, the observed MIS modulation requires the interaction 

of inputs from coded predictability of voice features (Andics et al., 2013; Hoffman & 

Logothetis, 2009) and inputs signaling ownership over current auditory feedback via 

subcortical-cortical pathways (sensorimotor self-monitoring). Importantly, this requires 

mean-based coding to count own-voice as more expected, as one has the most 

experience with the qualities of their own voice. The decreased predictability in voice 

identity (other-voice perception) may negate the ownership that one infers from the 

sensorimotor feedback, resulting in the negation of an MIS response. A similar effect 

was observed in other studies in which the expectancy of manually-generated tones 

(Aliu et al., 2009; Baess et al., 2009; Knolle et al., 2013) or voices were modulated (Ford 

et al., 2007; Knolle et al., 2019; Pinheiro et al., 2018; Whitford et al., 2011). The majority 

of cortical response suppression research relies on EEG. This is the first time fMRI has 

demonstrated button-press MIS in voice processing, providing a higher level of spatial 

resolution regarding the specific structural correlates of self-attributed voice. 
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2 Cortical processing of voice and identity 

Two studies included in this dissertation (chapter 3. Hypersensitivity to passive 

voice hearing in hallucination proneness and chapter 4) investigated functional 

brain responses in well-established regions of interest (ROI) forming part of the voice 

processing network. The reasoning behind this approach was two-fold: 1) to provide 

further evidence for specialized roles in subsections of the temporal voice perception 

network, and 2) to determine how particular regions may serve the emergence of false 

perceptions of AVH. The temporal voice areas (TVA) of the left and right superior 

temporal cortex compose the network exhibiting preferentially responses to voice (as 

compared to non-voice signals). Since the TVA localizer fMRI task was first established 

over 20 years ago (Belin et al., 2000), it has been widely applied - by an informal count 

in over 100 papers - in research involving healthy and pathological groups. It has 

proven a reliable tool that indicates bilateral patches consisting of separate anterior, 

middle, and posterior peak activations, and additional extra-temporal regions recruited 

in voice processing (Pernet et al., 2015). In both studies, the localizer task was applied 

to delineate ROIs at separate TVA peak activity regions. First, the correlation between 

subjective levels of HP in a non-clinical sample and TVA voice-preferential BOLD 

activations was investigated (chapter 3), where contrast estimates (voice and non-

voice versus silence) were extracted at each location to calculate a voice preference 

response ([voice > silence] > [non-voice > silence]). As outlined in the previous section, 

an experiment using a novel fMRI task (chapter 4) was conducted to investigate how 

the TVA region susceptible to differential responses of voice identity would respond in 

a healthy sample to self-other attributed voice during action. 

The findings pertaining to HP-related voice hypersensitivity (chapter 3) help to 

disentangle both the hierarchical nature of TVA processing as well as theoretical claims 

for the emergence of AVH. According to the self-monitoring theory of hallucinations, 

increased activation in voice perception regions during hallucinations is attributed to 

absent MIS and the subsequent misperception of inner speech (Frith et al., 2000; Jones 

& Fernyhough, 2007; Weiss & Heckers, 1999). In other words, voice perception cortical 

areas are active because they are perceiving voice, even though no corresponding 

sensory voice input is present. Additionally, it has been suggested that a general 
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hypersensitivity of these regions is what causes the hallucination in the first place 

(Deneve & Jardri, 2016; Friston, 2005a, 2012b; Fletcher & Frith, 2009). Here, a 

propensity for increased activation in regions processing bottom-up sensory signals 

incorrectly attributes salience and engages attention networks towards irrelevant 

stimuli. As abnormal perceptual experiences related to hallucinations occupy a 

continuum throughout the general population (Beavan et al., 2011; de Leede-Smith & 

Barkus, 2013; Johns, 2005; Johns et al., 2014; Larøi et al., 2012; Zhuo et al., 2019), it 

seems possible that a degree of covariance with TVA localizer data from the general 

population may be present. Therefore, caution should be taken when assessing voice-

related activations within the general population. For instance, the subsequent study 

(chapter 4) utilized the same TVA localizer task to produce a specific ROI in the right 

anterior superior temporal gyrus (STG) as a mask for analysis of data from a novel 

voice identity fMRI task. Prior to conducting this experiment, the possible susceptibility 

of a HP-related covariance in the ROI (right anterior STG) selected for analysis was 

investigated and rejected. 

The comparison between HP and TVA voice-preference activity (chapter 3) revealed 

a positive correlation in only the right posterior STG. The right hemisphere has been 

linked to speaker-related features in voice processing (Belin & Zatorre, 2003, Nakamura 

et al., 2001; von Kriegstein et al., 2003, von Kriegstein and Giraud, 2004). This includes 

the inference of voice identity, a multi-stage process whereby detection of the relevant 

low-level acoustic features is associated with posterior regions of the STG, with 

subsequent comparison to mean-based coded prototypes and recognition occurring 

in the middle and anterior regions, respectively (Maguinness et al., 2018). As elaborated 

earlier (see chapter 1. Introduction section 1.2.2), this is a hierarchical pathway (Belin 

et al., 1999; Warren et al., 2003, Warren et al., 2005a; Zhang et al., 2021). Notably, this 

hierarchical processing does not occur in isolation and is not purely serial in nature, as 

an interaction with visual and affective inputs is frequently reported (Ethofer et al., 2013; 

Davies-Thompson et al., 2019; Stevenage & Neil, 2014; Watson et al., 2014b). For 

example, visual information from faces is involved in the identity attribution of voice 

signals (Blank et al., 2011, 2014; Von Kriegstein et al., 2005; Watson et al., 2014a; Yovel 

& Belin, 2013). As this correlation was limited to only the right posterior STG involved 

in lower-level acoustic processing of paralinguistic voice processing, HP was not 
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applied as a covariate to data in the subsequent fMRI study on activations in the right 

anterior STG voice identity ROI (chapter 4). However, this study did report the 

differential processing in the voice identity region in response to self-other attribution 

during action versus when passively heard.  

Taken together, these two findings indicate a relation of the TVA network to 

hallucinations: A) As the propensity for aberrant perceptual experience (i.e., HP) 

increases, the hierarchical processing of voice signals may be vulnerable at only early 

stages of voice feature detection in passively-heard sensory-input. B) Downstream 

regions of voice processing involved in decisions of internalization or externalization of 

voice are influenced by sensorimotor processing during self-generated feedback. 

Although this clarifies where TVA responses are directly affected by HP, it opens the 

door to two major complexities: can a vulnerability to passive sensory processing alone 

lead to hallucinations and, perhaps more importantly, how might passive and active 

models of hallucinations interact?  

3 The nature of prediction (error) in the brain and 

alternative accounts for emergent hallucinations 

In the introduction (chapter 1), background on the predominant sensorimotor theories 

associated with hallucinatory experience was provided. These perspectives are related 

to the multidisciplinary science of perceptual inference, where the interaction of top-

down (predicted) and bottom-up (sensory) inputs can provide us with the best estimate 

of the sensory causes of our perception. This research is approached from the 

perspective of self-monitoring, where abnormal internal model processing of 

sensorimotor transformation is linked to the emergence of false perceptions. However, 

alternative theories have been proposed and have gained a substantial degree of 

traction in the past decades, in parallel to sensorimotor accounts of hallucinations. In 

this section, the current findings are reflected against competing accounts underlying 

the emergence of hallucinations. According to the first (primary concept), 

hallucinations are due to the insufficient top-down sensory predictions during action, 

resulting in the misattribution of self-generated sensation to an external source (see 

chapter 1. Introduction section 1.1.2). For example, this is outlined in sensorimotor 

control theories of self-monitoring (Feinberg, 1978; Frith, 1992; Frith & Done, 1998). The 
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second (alternate concept) describes hallucinations as the excessive top-down 

sensory predictions during passive perception. For example, this may be due to 

deficient updating of prior belief weighting (predictive coding: Fletcher & Frith, 2009; 

Friston, 2005a, 2012b) or deficient inhibition leading to overcounting of priors (circular 

inference: Deneve & Jardri, 2016; Jardri et al., 2016; Leptourgos et al., 2017). An 

important distinction between these two concepts is in what hallucinations truly 

represent. Are they the externalization of one’s own action and thought, or 

misperceptions of meaningless input from the environment, respectively (Ford & 

Mathalon, 2019). 

3.1 Alternative concept: Hallucinations as meaning in 

meaningless noise 

In the early 2000s (overlapping with the development of sensorimotor control theory), 

a computational theory of perception outlined essential components and biologically 

plausible cortical substrates of the brain capable of supporting unconscious inference 

(see historical account in Friston, 2012a). Notably, the scale-free nature of these models 

has allowed for research at the micro-, meso-, and macro-levels to build a 

comprehensive hypothesis of this passive perceptual inference in the brain (Smith et 

al., 2021). Across a hierarchical cortical network, higher-level regions provide top-

down predictions of lower-level bottom-up responses, which receive continuous 

driving inputs until conflict between expected and actual input is achieved (Friston, 

2002, 2003). In addition to structural and functional evidence, predictive coding is 

supported by theoretical assumptions of synaptic physiology and psychophysical 

accounts (Friston, 2005a). Although this model was initially developed in the field of 

vision (Rao & Ballard, 1999), the general Bayesian inference mathematical framework 

on which it is based has since been expanded as a unified model for optimization 

processes in the brain (Knill & Pouget, 2004). Specifically in predictive coding, the error 

is precision-weighted, thereby minimizing uncertainty (the inverse of precision) 

through a process of belief updating (Feldman & Friston, 2010; Hohwy, 2014, 2016, 

2017). It is in the failure to encode uncertainty (or inversely the precision of prior and 

sensory evidence) that resulting excessive weighting of priors is hypothesized by some 

to lead to false inference such as hallucinations (Adams et al., 2013a; Fletcher & Frith, 

2009; Friston, 2005a, 2012b). In the analysis of TVA responses (chapter 3), an 
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increasing propensity for the engagement of voice processing regions during 

passively-heard stimuli perceived as voice appears congruent with this model. If 

cortical neurons are coded to expect increasing certainty in the cause of voice signals 

- one of the most salient environmental stimuli in our human environment - then 

increasing levels of HP may account for this hypersalient response. 

The predictive coding framework has provided a strong explanation for how a system 

designed to predict the sensory causes of exteroceptive input may be dysfunctional in 

those who experience false perceptions. However, in the case of hallucinations it does 

not concretely explain how a percept can occur in the complete absence of external 

stimuli. Moreover, the formulation of this theory lacks a focus on the contribution of 

inhibitory connections necessary to balance activity across hierarchical processing 

operating in top-down, bottom-up, and lateral directions. To address these issues, an 

alternative Bayesian inference model was presented to describe how an imbalance in 

excitatory-inhibitory inputs may influence the strength of top-down priors responsible 

for the manifestation of hallucinations (Jardri & Deneve, 2013). Within this model, 

inhibitory loops are integrated to modulate excitatory connections and ensure reliable 

belief propagation. For example, if inhibitory interneurons are not effective, then top-

down or bottom-up signaling will reverberate through a process of circular inference 

and inflate priors or sensory precision weighting, respectively. In this sense, alteration 

of descending loops will result in prior beliefs to be over-counted, and ultimately to 

“sense what we expect”, i.e., in hallucinations (Deneve & Jardri, 2016). Importantly, as 

in predictive coding, circular inference can explain multiple symptoms of psychosis via 

a single Bayesian framework (Fletcher & Frith, 2009; Jardri & Deneve, 2013). 

Interneurons controlling inhibition via ascending pathways left unchecked may result 

in the opposite, to “expect what we sense” and increase the weighting of sensory input 

precision. Leptourgos et al. (2017) applying Marr’s three levels of analysis, found 

support for inhibitory inputs into the belief propagation model at the computational, 

algorithmic, and neural level. Notably, at the neural level inhibitory loops might present 

not only at the local level subserved by interneurons, but also at the long-range level 

connecting sensory-motor, limbic system, and subcortical with cortical regions. Long-

range inhibitory connections of the neocortex may be substrates for inhibitory control 

of feedback signals, i.e., requiring processing across distal regions.   
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In a report from the International Consortium on Hallucinations Research a wide range 

of supporting evidence for an inhibition abnormality was presented from molecular, 

pharmacological, neuroimaging, neurophysiological, neuromodulation, and cognitive 

research (reviewed in Jardri et al., 2016). Notably, they address the plurality of the term 

“inhibition” in neuroscience, and operationalize inhibitory differences associated with 

hallucinations to pertain to post-stimulus processes related to salience as opposed to 

automatic pre-stimulus or inference control. Finally, to distinguish biological substrates 

associated with false perceptions the authors suggest combining methodological 

(multiscale) approaches, and to isolate hallucinatory experience from pathology such 

as in non-clinical samples. The latter proposal may be of insight as both circular 

inference and predictive coding accounts suggest that abnormalities may exist over a 

continuum spanning normal and pathological states (Deneve & Jardri, 2016; Nazimek 

et al., 2012).  

3.2 Comparing internal prediction models of perception 

Although the theory of predictive coding has expanded beyond purely passive 

perception to incorporate active inference of self-generated feedback, this is not 

synonymous with theories pertaining to sensorimotor self-monitoring theories. This is 

due to an apparent inconsistency in how prediction functions in predictive coding 

versus self-monitoring, and therefore the mechanisms by which it is hypothesised to 

malfunction to produce false perceptions. Importantly, this does not mean the two are 

mutually exclusive. 

The conflict between predictive coding and self-monitoring accounts of false 

perceptions is rooted deeply in the divergent ways that prediction is placed in the 

overall flow of information for perceptual processing (Adams et al., 2013b). Predictive 

coding considers a hierarchical flow of information along the direction from sensory 

input (low-level) to perceptual belief as an output (high-level) (detailed description of 

predictive coding microcircuits in Bastos et al., 2012; Huang & Rao, 2011; Shipp, 2016). 

Therefore, information is fed-forward from sensation (bottom-up) while higher-level 

layers signals are fed-back (top-down) to shift the accuracy of predictions in lower-level 

units. By viewing the network as a system driven to optimize accuracy, it can be said 

that the information moving along the forward/bottom-up direction is the propagation 
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of prediction error, while signals in the backwards/top-down direction are the 

adjustment of probabilistic representations (review of predictive coding in the auditory 

system in Carbajal & Malmierca, 2018; Heilbron & Chait, 2018). The prediction is 

therefore coded-in to the units across the network, creating a filter through which 

information regarding error passes. 

Conversely, self-monitoring theories posit information flow as a loop between action 

and sensation (sensorimotor transformation) (Jordan & Rumelhart, 1992; Miall & 

Wolpert, 1996). As elaborated in the introduction (chapter 1. Introduction section 

1.1.2), internalized models of sensorimotor transformations can be applied in the 

forward and inverse directions. In forward (internal) models, the motor command is the 

input selected to produce the desired sensory outcome, while inverse models hold 

sensation as the input to derive selection of the necessary motor command (Jordan, 

1995; Kawato et al., 1987; Miall & Wolpert, 1996; Wolpert et al., 2001). The forward 

model in particular is essential for hypothesis testing or inference in self-generated 

sensation. During action, top-down predicted consequences of efferent motor 

commands (efference copies) are fed-forward for comparison with actual (bottom-up) 

sensory outcomes, resulting in error signals being fed-back to the cortex. Therefore, 

the main difference between predictive coding and forward modelling can be seen in 

the input necessary to begin the process of inference. The former requires only the 

stimulus, as the structure and weights of the connections through which information 

passes represent the predictions themselves, while the latter requires action for the 

prediction and reafferent feedback to be simultaneously engaged. As the prediction 

must be “sent-ahead”, the false perception must be the result of a weak or absent 

prediction signal where the sensory processing regions are unprepared for the coming 

stimuli.  

If the predictive coding account of strong predictions in hallucinations extends to active 

inference, then these weak predictions of the forward model appear to be fully 

incongruent. Few researchers have attempted to reconcile this ‘strong versus weak 

priors' debate for the emergence of hallucinations. For example, they may both be 

present at different levels of hierarchical perceptual inference, affecting the 

phenomenological aspects of false perceptions and beliefs (Powers et al., 2016). 
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Recently, Corlett et al. (2019) have suggested that the existence of evidence for both 

strong and weak prior accounts indicate a process whereby sensorimotor self-

monitoring and cortical predictive coding inference operate together as one integrated 

network. Within this model, abnormal (weak) forward model predictions result in the 

overreliance (strong priors) on expected causes of external sensory input (detailed 

schematics for system in Leptourgos & Corlett, 2020). Simply put, a feeling of agency 

over sensory feedback is gradually lost, and the brain determines the most likely cause 

of the external input, progressively becoming more and more certain. As proposed by 

Thakkar and colleagues (2021), the effects of these two interacting mechanisms are 

best illustrated by the phenomenological differences between clinical and non-

treatment-seeking voice hearers. In healthy voice hearers, an ability to explain the false 

perception remains as a form of volitional control (e.g., shaping the hallucination into 

something beneficial or viewing their affliction as a meta-physical gift). This way, 

although self-monitoring impairments (weak or sensorimotor predictions) remain, they 

hold some form of control over forming the predictions of their cause. In a similar 

observation, healthy voice hearers often acknowledge the internal nature of the 

bottom-up false perception, due to the preserved capacity of prefrontal top-down 

inhibition (Hugdahl, 2009, 2015). Together, these propositions of interacting 

sensorimotor prediction errors, cortical predictions, and top-down control allow for an 

integrated account of false perceptions.  

4 A unified account for salience and self-monitoring 

abnormalities in hallucinations 

Findings regarding the regions and pathways functionally and structurally associated 

with the cognitive mechanisms underlying false perceptions are presented, as well as 

direct comparisons to a proneness for abnormal perceptual experience. Included are 

consistent findings on the functional role of the prefrontal cortex in error monitoring 

(chapter 2 and chapter 4), as well as prefrontal-temporal connections serving salience 

and auditory perception (chapter 5). In the superior temporal gyrus, further consistent 

results are provided in the perceived externalization of the control (chapter 2) and 

identity of auditory stimuli (chapter 4). At first glance, it may appear that these findings 

are congruent with the fronto-temporal networks connecting speech production to 
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perception regions widely hypothesized to underlie AVH (Alderson-Day et al., 2015; 

Allen et al., 2007; Ćurčić-Blake et al., 2018; Frith & Done, 1998; Whitford et al., 2012). 

However, all results were reported in the right hemisphere, and therefore should 

remain separate from interpretations of (inner) speech models of AVH (i.e., direct 

influence of Broca's area on auditory cortex suppression). In line with the current 

findings, indicating cerebellar adaptation responses to feedback-error (chapter 2) and 

increased HP-related connectivity in the cerebello-cortical motor pathway (chapter 5), 

the findings associated with button-press MIS (right STG) for own voice (chapter 4) 

are suggested to involve a general self-monitoring process involving the cerebellar 

forward model system interacting with cortically coded expectations of stimulus 

features. Although this frames hallucinations as misattributed self-generated feedback, 

one particular finding - indicating HP-related functional brain changes without motor 

production (chapter 3) - opened the door to a wider interpretation. The above findings 

can arguably be integrated under a single framework, tied together by a string called 

salience.  

The role of abnormal salience processing in false perceptions has been at the forefront 

of psychosis research for the last two decades. This focal point was primarily 

spotlighted by two parallel streams of research: A) psychopharmacological findings 

from the field of psychiatry, and B) functional brain network findings from the field of 

neuroimaging (detailed description of additional streams of evidence in Miyata, 2019). 

These theories have been particularly instrumental in describing etiological and 

pathophysiological mechanisms underlying schizophrenia. However, they also provide 

a framework by which transdiagnostic or non-clinical models of hallucinatory 

experience can be compared. In accordance with the psychosis continuum hypothesis 

and the search for possible common etiological factors underlying or interacting with 

this spectrum of perceptual experience, abnormal salience processing associated with 

psychotic experience are reviewed below. The aim is to offer an explanation of just how 

much non-clinical hallucination proneness may be influenced by the salience 

mechanisms affected in schizophrenia.  
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4.1 Salience: aetiology at the cellular level? 

In terms of psychopharmacology (stream A), the aberrant salience hypothesis of 

psychosis can be credited to the proposal of a unitary framework underscored by the 

relationship between mesolimbic dopamine dysregulation and the mediation of 

salience (Kapur, 2003). This theory was founded on the observation that first generation 

antipsychotic medication acting as D2 receptor antagonists (e.g., chlorpromazine and 

haloperidol) are highly effective at alleviating positive symptoms via the dampening of 

salience processing for external and internal cues (Howes & Nour, 2016; Kapur, 2004; 

Kapur et al., 2005; Winton-Brown et al., 2014). Correspondingly, the administration of 

the dopamine agonist amphetamine can lead to psychotic experience similar to that in 

schizophrenia. Versions of this theory were presented as early as the 1970s when it 

was first discovered that these drugs operated via dopamine modulation (Carlsson, 

1977, 1978, 2001; Meltzer & Stahl, 1976). In the decades since, a body of research 

across animal models, post-mortem, and in vivo human neuroimaging has 

corroborated the association between this pathway of action and the relationship to 

positive symptoms (detailed description of multi-modal findings in McCutcheon et al., 

2020). Furthermore, the aberrant salience hypothesis is congruent with inner speech 

models of hallucinations (Barber et al., 2021), as well as theories of abnormal source 

monitoring in patients with positive symptoms of psychosis (Kowalski et al., 2021). 

Additionally, dopamine regulated salience is integral to inference models such as 

predictive coding for the assessment of epistemic affordance of sensory events (Parr 

& Friston, 2017), via the balancing of bottom-up sensory and top-down prior belief 

information (Friston et al., 2012c). Within this Bayesian inference framework, the 

influence of striatal dopamine regulation on prediction and error signaling underlies the 

link between inflated salience (strong prior) processing and hallucinatory experience 

(Howes et al., 2020; Kesby et al., 2021). This divergence has been extended to clinical 

high-risk groups (Howes et al., 2020), and at-risk mental states (Kowalski et al., 2021), 

suggesting an effect outside of the clinical range. 

Although the link between dopamine, salience, and positive symptoms (such as 

hallucinations and delusions) has been established, it may not reflect a true etiological 

relationship. Theories regarding glutamate and serotonin circuits offer alternative and 
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integrated accounts for neurotransmitter imbalances associated with different 

(negative, cognitive, affective and other positive) symptoms of psychosis (Corlett et al., 

2010; Johnsen et al., 2013; Rolland et al., 2014; Stahl, 2018). Perhaps the most 

prominent argument revolves around the interaction of glutamate and dopamine 

systems (early proposals in Coyle, 1996; Olney & Farber, 1995; Olney et al., 1999; 

Riederer et al., 1992; Tamminga, 1998). Within this glutamate account of psychosis, an 

upstream hypofunction of the glutamate receptor N-Methyl-D-aspartic acid (NMDA-R) 

on γ-Aminobutyric acid (GABA) interneurons results in the dopamine dysregulation 

underlying the aberrant salience hypothesis of psychosis (Howes et al., 2015; Ishimaru 

& Toru, 2012; Kehrer et al., 2008; Lewis & Sweet, 2009; McCutcheon et al., 2020; 

Moghaddam & Javitt, 2011; Stahl, 2007; Uno & Coyle, 2019). Abnormal functions of 

different glutamate pathways account for disparate symptomologies (detailed 

description of glutamate-GABA-dopamine circuits in Schwartz et al., 2012). For example, 

the emergence of positive symptoms involves the suboptimal function of NMDA 

receptors in the frontal lobe, resulting in an increased stimulation of the mesolimbic 

dopamine pathway by glutamatergic cortical-brainstem signals. Hugdahl and 

colleagues demonstrated a relationship between increasing levels of cortical (temporal 

and frontal lobe) glutamate with the increasing frequency and severity of AVH (2015). 

They proposed that NMDA-R dysfunction not only results in increased stimulation of 

the mesolimbic dopamine pathway, but also - due to the lack of inhibitory feedback - 

leaves an excess of glutamate in the temporal cortex imposing an excitatory effect. 

Glutamate, therefore, may mediate the imbalance of bottom-up/top-down processing 

associated with AVH at the level of neurotransmission (Hugdahl, 2009, 2017; Hugdahl 

et al., 2009; Hugdahl & Sommer, 2018), and provide an appropriate system to target for 

treatment (Sommer et al., 2018). The glutamate account of psychosis is in line with 

Bayesian inference computational models (see discussion section 3.1.), positioning the 

excitatory glutamate signaling and NMDA-R hypofunction as the neurochemical inputs 

underlying the excitatory-inhibitory imbalance leading to false perceptions (Corlett et 

al., 2011; Heinz et al, 2019; Jardri et al., 2016; Sterzer et al., 2018).  

Abnormal glutamate levels may underlie an additional characteristic of schizophrenia: 

dysconnectivity of dispersed brain areas (Davis et al., 2003; Goff & Coyle, 2001; 

Mighdoll et al., 2015; Plitman et al., 2014; Suárez-Posos et al., 2020; Takahashi et al., 
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2011; Walterfang et al., 2006, 2011). Due to the excitotoxic properties of glutamate (for 

detailed description see Lau & Tymianski, 2010), the excess of this neurotransmitter in 

the synaptic cleft due NMDA-R hypofunction has been linked to a breakdown of myelin 

along white matter pathways (Bakiri et al., 2009; Butt et al., 2014; Luttenbacher et al., 

2022; Matute et al., 2007; Stys et al., 2007;). At a structural level, changes to white 

matter structure detected using DTI may be influenced by myelin thickness and axonal 

structure or density (Kubicki et al., 2002; O’Donnell & Westin, 2012; Soares et al., 2013). 

In schizophrenia, DTI studies often indicate a decrease in the directionality of diffusion 

(fractional anisotropy: FA) of white matter pathways (e.g., Fitzsimmons et al., 2013; 

Kubicki et al., 2005; Tamnes & Agartz, 2016). Interpretation of white matter changes 

associated with myelin breakdown and hallucinatory experience are, however, not 

straightforward.  

First, FA data alone cannot confirm demyelination, as other axonal and glial changes 

may also contribute to the overall decrease in directionality (Alba-Ferrara & Erausquin, 

2013; Alexander et al., 2007; Figley et al., 2021; Winklewski et al., 2018). Second, 

although schizophrenia patients who hallucinate show a lower FA than those who do 

not, and healthy controls, both positive and negative correlations have been found 

between FA and severity of positive symptoms (Bopp et al., 2017; Knöchel et al., 2012; 

Lee et al., 2013; Phillips et al., 2009; Rotarska-Jagiela et al., 2009; Seok et al., 2007; 

Szeszko et al., 2008; Whitford et al., 2010, 2014) and AVH severity (Bopp et al., 2017; 

Ćurčić-Blake et al., 2013; Mulert et al., 2012; Psomiades et al., 2016; Rotarska-Jagiela et 

al., 2009; Seok et al., 2007; Szeszko et al., 2008). Likewise, in the current sample of 

non-clinical individuals (chapter 5), increasing hallucination proneness was associated 

with higher FA. Third, an effect of antipsychotic medication has been reported in DTI 

studies on patients with schizophrenia (e.g., Leroux et al., 2017; Seok et al., 2007), 

indicating the need for caution when interpreting myelin changes in clinical samples. 

Fourth, although this comprehensive framework accounts for the mechanisms of 

hallucinatory experience at the level of neurotransmitters, macrostructure, cognition 

(salience) and perception, the etiological genetic factors for glutamate and NMDA-R 

dysfunction are specific to schizophrenia (detailed review in Karoutzou et al., 2007). For 

these reasons, caution is advised when assessing glutamate/NMDA-R salience theories 

with structural changes to white matter pathways of non-schizophrenia samples. 
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However, given the evidence reported by the current DTI study (chapter 5) indicating 

HP-related increased directionality, the data suggests the rejection of a common 

underlying (NMDA-R hypofunction) aetiology for the psychosis continuum ranging from 

normal experience to subclinical and pathological perceptual abnormalities. Instead, it 

may be useful to assess salience theories associated with false perceptions at the 

functional level, in terms of observable patterns in dopaminergic, electrophysiological, 

or BOLD brain activity. As hallucinations are transdiagnostic and occur in the non-

clinical population, it is likely that cascading of various etiological factors in different 

subpopulations result in the same imbalance of mechanisms which influence 

perception. 

4.2 Salience: an imbalance in functional brain networks? 

At roughly the same time as the (stream A) salience theories from the field of 

psychopharmacology, Downar and colleagues (2000, 2001, 2002) performed studies 

investigating the role of functional brain networks in the processing of behaviourally 

salient information. The integration and synchrony (functional connectivity) between 

networks serving the active sensory processing and an abnormal relationship to default 

mode network (DMN) processing has been theorized (i.e., stream B) as a characteristic 

feature of schizophrenia (Buckner, 2022; Calhoun et al., 2009; Hunt et al., 2017; 

Karbasforoushan & Woodward, 2012; Williamson & Allman, 2012). Abnormal DMN 

engagement in schizophrenia has further been linked to both changes in dopamine 

signaling and other functional network activity such as those controlling salience (Hu 

et al., 2017). This salience network (SN) is essential in the transferring from task-

negative to task-positive states (Seeley et al., 2007; Seeley, 2019). When sensory 

information requires a shift of attention, the engagement of the SN composed of 

anterior insular and anterior cingulate cortical regions will interrupt DMN processing to 

facilitate rapid involvement of the central executive network (CEN) and motor systems 

(Goulden et al., 2014; Menon & Uddin, 2010; Menon, 2011; Sridharan et al., 2008; Uddin, 

2015). This triple network model is affected in psychosis, where erroneous activation 

of the SN triggers a switch from DMN to CEN, allowing for active sensory processing 

to occur during irrelevant stimuli such as sensory noise (Manoliu et al., 2013; 

Palaniyappan & Liddle, 2012). It has been suggested that the overactivity of the auditory 
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cortex may result in the perception of AVH (Hare, 2021; Northoff & Qin, 2011), due to 

a disconnection between frontal top-down and bottom-up sensory regions (Allen & 

Modinos, 2012; Petterson-Ye et al., 2011). This desynchrony between functional 

networks may therefore explain the phenomenon of hypersalient processing of inner 

speech and abnormal activation of speech processing regions at rest (Alderson-Day et 

al., 2015, 2016; Ćurčić-Blake et al., 2015; Northoff, 2014). 

Although the link between functional connectivity and microstructure of structural 

pathways of the brain is not fully understood (Bullmore & Sporns, 2009; Friston, 2011b; 

Honey et al., 2009; Suárez et al., 2020; van den Heuvel & Pol, 2010), abnormal network 

structure-function associations have been reported in schizophrenia (Cocchi et al., 

2014; Fitzsimmons et al., 2013; Hu et al., 2017; Skudlarski et al., 2010). This has been 

particularly evident for patients who experience AVH (Benetti et al., 2015; Kubera et al., 

2019; Roes et al., 2020). Indeed, the disconnection hypothesis is a longstanding 

perspective for schizophrenia (Coyle et al., 2016; Friston & Frith, 1995; Pettersson-Yeo 

et al., 2011; Rubinov & Bullmore, 2022; Silverstein et al., 2016). In line with 

neurochemical salience accounts, disordered brain connectivity has been theorized to 

arise from abnormal regulation of NMDA-R regulated synaptic plasticity (Brennan et al., 

2013; Stephan et al., 2006, 2009). Moreover, this is congruent with predictive coding 

in which abnormal NMDA-R involvement alters synaptic efficacy and the resulting 

alterations of gain in pyramidal cells lead to the computational impairments which bring 

forth false perceptions (Friston, 2016). Furthermore, it has been suggested that 

patterns of atypical functional network connectivity in schizophrenia may be 

neurodevelopmental (Fornito & Bullmore, 2015; Nath et al., 2021; Uhlhaas, 2013). 

According to one perspective of the psychosis continuum, if NMDA-R etiological 

factors are phenotypically expressed along a spectrum, then the detection of abnormal 

structure-function coupling or changes to functional network integration may be useful 

in identifying those at risk for pathology (Schmidt et al., 2015). 

In the same vein as the glutamate/NMDA-R account for abnormal salience in 

schizophrenia (stream A), a functional network imbalance salience theory (stream B) 

could indeed link hallucinatory experience in schizophrenia to a genetic neurochemical 

aetiology. However, as genetics play only a partial role in both the emergence of false 
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perceptions and the risk of illness, the use of abnormal functional network integration 

alone may not be a strong marker for hereditary factors. Moreover, as hallucinations 

are also reported in other disorders and non-clinical groups, and HP in the general 

population recruits the same perceptual processes, it is possible that the same salience 

mechanisms of the TMN are responsible for a bias in sensory processing seen in all 

groups, regardless of underlying causes. For example, a positive correlation is reported 

between HP and the strength of BOLD activation preferential to passively heard voice 

sounds that may reflect hypersalient processing (chapter 3). Future research is 

encouraged to explore both TNM functional connectivity as well as dopamine 

concentration associated with increasing HP, as consistent with the aberrant salience 

hypothesis. Although this would not provide the etiological basis for dysregulated 

neurotransmitters associated with abnormal, or vivid, sensory experience in the 

general population, it may assist in differentiating the mechanisms fundamental to the 

continuum hypothesis of psychosis from those of schizophrenia, and provide a 

common neurochemical substrate for perceptual abnormalities. 

5 Hallucination proneness and the psychosis 

continuum 

Two empirical studies in the dissertation (chapter 3 and chapter 5) included 

correlational analyses comparing brain function and structure to the LSHS measure of 

one’s proneness for hallucinations. Interpretations of hallucinatory experience in non-

clinical samples are theoretically rooted in a psychosis continuum spanning the entire 

(clinical and otherwise healthy) population. Although psychiatry and diagnostic tools 

have propagated a categorical approach in determining the presence of clinical 

disorders involving psychotic symptoms, it has been observed that similar experiences 

occur in those without mental illness across the lifespan (see meta-analyses in Healy et 

al., 2019; Kelleher et al., 2012; Linscott & van Os, 2013; Maijer et al., 2018; van Os et al., 

2009). Despite initial population-based reports appearing in the late 19th century 

(reviewed in Le Malefan & Sommer, 2015; Sommer, 2011), it was not until roughly a 

century later when researchers began to suggest a dimensional or continuous nature 

of psychosis (Bentall, 1990; Chapman & Chapman, 1980; Claridge, 1994; Strauss, 

1969). Arguably, an escalation in large community-based prevalence reports of 
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psychosis-like experience precipitated the beginning of a paradigm shift at the turn of 

the millennium (e.g., Eaton et al., 1991; Johns et al., 1998; Kendler et al., 1996; Ohayon, 

2000; Tien, 1991; van Os et al., 2000). Likewise, scales were developed to measure 

variability in the prevalence or predisposition of healthy people to experience 

hallucinations (e.g., Barrett & Etheridge, 1992; Launay & Slade, 1981; Posey & Losch, 

1983). Based on these findings, researchers urged for the disentangling of the 

dimensionality of these experiences in the general population (Johns & van Os, 2001; 

Myin-Germeys et al., 2003; Verdoux & van Os, 2002). For example, are hallucinatory 

experiences in healthy people different from those in psychosis? Are they a 

predisposition for psychotic illness? Or, do they exist along a continuum ranging from 

normal to pathological experience? (de Leede-Smith & Barkus, 2013). This call to 

refocus, in parallel with planning for the DSM-V, created the perfect storm for a field-

wide debate on how a change from a categorical to a continuity perspective of 

psychosis may benefit (or deter) both research and clinical practice (reviewed in 

Allardyce, et al., 2007; David, 2010; Dutta et al., 2007; Esterberg & Compton, 2009; 

Kaymaz & van Os, 2010; Peralta & Cuesta, 2007; Sommer, 2010). For research into 

underlying risk (genetic or environmental) or etiological (cognitive or neurological) 

factors, the message was clear. One should treat the continuum as a null hypothesis 

and consider how one's sample and tool of measurement contributes to testing the 

model. In this regard, a discussion is provided below which highlights the bounds of 

the presented interpretations as well as possible limitations.  

For the sake of clarity, the terminology used by David (2010) is applied outlining two 

forms of dimensionality associated with psychosis-like experiences including 

hallucinations: A type 1 continuum pertains to population-level distributions useful for 

determining correlated spectrum of risk (in terms of frequency of experience) or 

subpopulations more likely to progress to clinical levels of psychosis, while a type 2 

continuum pertains to phenomenological-level variability which can be observed as a 

spectrum of severity. Beginning with an examination of type 1-implications in the 

current data, the exact section of this continuum that is sampled must be considered. 

In both chapter 3 (n = 27) and chapter 5 (n = 52), participants were recruited from the 

local university (Faculty of Psychology and Neuroscience, Maastricht University, the 

Netherlands). Most participants were undergraduate students, capturing only a limited 
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age range across the general population. Type 1 distributions are not fully one-

dimensional (e.g., not determined by a single gene distributed across the population), 

and therefore random sampling from any given area or age group will not produce a 

representative sample of the psychosis continuum. The uneven distribution of 

environmental risk factors associated with psychosis throughout the population, such 

as urbanicity, ethnicity, or socio-economic status, in interaction with putative genetic 

risk factors may produce a quasi-dimensional distribution where subpopulations (with 

higher or lower risk) are grouped (Baumeister et al., 2017; DeRosse & Karlsgodt, 2015; 

Johns & van Os, 2001). Likewise, the effect of age in the continuum cannot be ignored. 

Children are more likely to report psychotic-like experiences including hallucinations 

as compared to adolescents (Kelleher et al., 2012; Maijer et al., 2018; Rubio et al., 2012). 

Moreover, post-adolescence decreases in both hallucination prevalence (Yates et al., 

2021) and proneness (Thompson et al., 2021) continue across the lifespan. By sampling 

only post-adolescence – or post-developmental risk period – those of higher risk who 

sought clinical help may be eliminated from the community-based pool. It is apparent 

that the current sampling, in terms of demographics (e.g., low rates of male, urban, 

non-white) and age (predominately bachelor program university students), represent 

only a small, lower risk section of a type 1 population-level continuum. In fact, although 

this sample did include variability in a predisposition for hallucinations, it did not include 

any participants who reported chronic hallucinations. Therefore, results pertaining to a 

hypersensitivity of cortical voice processing (chapter 3) or in the increased 

directionality of white matter diffusion (chapter 5) should not be taken as psychosis 

risk markers indicated by increased frequency of reported experiences, as would be 

predicted by a type 1 continuum.  

Instead, the current findings (chapter 3 and chapter 5) are more in line with the type 

2 psychosis continuum. In particular, these studies isolate a single experience 

associated with the multi-dimensionality of psychosis, hallucinations, which also appear 

to exist on a continuum (Beavan et al., 2011; de Leede-Smith & Barkus; Johns, 2005; 

Johns et al., 2014; Larøi et al., 2012; Zhuo et al., 2019). The application of the LSHS 

provides such a unidimensional (continuous) measurement of perceptual experiences 

(HP), as a composite of 16 items which range normal experience (e.g., vivid thought 

and daydreaming) to subclinical perceptual symptoms of psychosis (e.g., auditory and 
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visual hallucinations) using a 5-point Likert scale assessing "to what extent this 

statement applies to you" (Larøi & Van der Linden, 2005a). The scale is therefore 

bounded by two extremes: the absence of proneness and the presence of experiences 

similar to those in psychosis. It can be determined where one lies on this type 2 

continuum by collecting measurements within individuals as opposed to type 1 which 

requires the measurement of a distribution across a population (Larøi, 2012). The LSHS 

thus provides a useful tool for correlational analyses in smaller sample sizes, for 

example, as often found in neuroimaging studies.  

The interpretation of type 2 psychosis continua in community samples relies on a 

number of suppositions: 1) the same cognitive mechanisms underlie normal perceptual 

experience, unusual non-hallucinatory perceptions, and false perceptions, 2) an 

increase in unusual perceptions is associated with an increased proneness for true 

hallucinations, and 3) true hallucinations in healthy and clinical groups are the same 

thing. These assumptions have been subject to debate, particularly the latter, as 

phenomenological differences have been observed between hallucinations in non-

clinical and clinical groups (Stip & Letourneau, 2009). For example, it has been 

suggested that this disparity may indicate subtypes of hallucinations rooted in distinct 

cognitive functions and related brain regions (Johns et al., 2014). However, false 

perceptions may arise via abnormal salience processing and subsequently be 

phenomenologically guided by associated cognitive mechanisms that contribute or 

bias predictions (e.g., traumatic memories or negative emotion) as well as in how the 

false perceptions are interpreted (e.g., unusual thought content). The guiding and 

interpretation of the false perceptions may provide the delineation between healthy 

hallucinators and those who seek (or require) help (Johns et al., 2014). Moreover, these 

factors may exist as overlapping type 2 continua (e.g., severity of perceptual 

abnormality versus unusual thought content) that interact to produce clinically relevant 

hallucinatory experience (Kelleher & Cannon, 2016). The LSHS does not incorporate 

unusual thought content items, and therefore, if such interacting continua exist, cannot 

be used to infer upon a proneness for clinical forms of hallucination. Instead, this 

measure may only be interpreted as a proneness for hallucinations in general, non-

continuous with clinical symptomatology. However, follow-up questions were included 

for those who responded strongly (rating 3-5 out of 5) to each of the primary 16 items 
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which assessed secondary factors such as frequency, emotional valence, and level of 

control to stop or avoid the experiences that may assist in disentangling characteristics 

associated with seeking help and/or diagnosis. Unfortunately, a second limitation of the 

included studies applying LSHS measures – in addition to, or perhaps related to the 

homogeneous demographic characteristics mentioned above – is that only a small 

number of participants responded strongly enough to provide data on these secondary 

factors. In summary, the findings related to brain function (chapter 3) and structure 

(chapter 5) associated with HP should not be interpreted in terms of increased risk for 

psychosis as related to frequency of psychosis-like experience (type 1) or associated 

phenomenological factors that demarcate clinical-level manifestations of hallucinations 

(overlapping or interacting type 2). Instead, the interpretations of these findings 

relevant to the psychosis continuum should remain in terms of a progressive 

susceptibility (or bias) of normal cognitive mechanisms underlying perception to false 

perceptions as proneness to hallucination increases, in other words, of an experiential 

continuum. 
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Summary 
The aim of the present doctoral dissertation was to extend current knowledge of the 

putative cognitive mechanisms and neural substrates associated with hallucination 

proneness. Hallucinations, or the experience of sensory stimuli in the absence of an 

associated external source, are phenomena often described as a symptom of psychotic 

disorders, such as schizophrenia. However, they are also seen in different disorders as 

well as otherwise healthy people. The prevalence across the population, comparable 

phenomenology, and common risk factors suggests a common aetiology underwriting 

affecting atypical brain function. It has been theorized that a spectrum of hallucination 

proneness contributes to a multidimensional psychosis continuum spanning clinical 

and non-clinical parts of the population. Although multiple patterns of brain activity, 

structure variability and associated cognitive mechanisms have emerged, there still is 

much uncertainty in the basic substrates explaining the presence of the many forms of 

hallucinations. Moreover, most of the existing research has been conducted in clinical 

samples, predominately in schizophrenia, making aberrations specific to hallucinatory 

experience difficult to conclude. Through various methodologies in magnetic 

resonance imaging data analysis, a comprehensive argument across four empirical 

studies is provided for neural substrates associated with basic mechanisms in theories 

of hallucination. Importantly, all data analysed across the dissertation has been 

acquired from non-clinical individuals of the general population.  

In Chapter 1, a comprehensive review of the history of hallucination research is 

presented. This section outlines the three main perspective from which the hypotheses 

across the dissertation are based: 1) sensorimotor feedback processing as the 

predominate mechanism associated with hallucinatory experience, 2) the cerebellum 

as the primary structure serving the processing of predicted and unpredicted 

sensorimotor feedback, and 3) cortical voice processing, as hallucinations are most 

commonly reported as hearing voices. Additionally, a description is provided of the 

main methods applied in included research chapters: the Launay-Slade Hallucination 

Scale (LSHS), the temporal voice area (TVA) localizer task, a novel voice-elicitation 

task, and a general description of the physics and application of magnetic resonance 

imaging (MRI).  
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Chapter 2 provides a meta-analysis on functional neuroimaging research into the 

neural substrates of prediction error. Specifically, this data represents how the brain 

responds to unexpected sensory feedback from one’s own action when manipulated 

by an external source. In line with feedback prediction theories of hallucinations, the 

parts of the brain where typical source attribution is present in the healthy brain were 

outlined. Multiple separate regions were identified to visual and auditory feedback 

modalities. Importantly, sensory cortices were more active when self-generated 

feedback was influenced by an external actor. This finding is congruent with previous 

hallucination theories, which suggest increased activity in these regions when feedback 

is incorrectly misattributed to another agent. In addition, although the cerebellum is 

theorized as a primary actor in this feedback processing system, functional 

neuroimaging paradigms may be incapable of detecting involvement of this region due 

to methodological limitations.    

Chapter 3 investigated how increased sensory cortex activity may be related to 

subjective levels of hallucination proneness (collected via the LSHS) when hearing 

voice stimuli. Using a passive TVA localizer neuroimaging task, a positive correlation 

between proneness and activation strength was found in specific voice sensitive 

regions of the temporal cortex engaged in early auditory object processing. Although 

this finding does not negate propositions of hallucinations as the product of 

misattributed internally-generated signals such as inner voice and memories, it 

provides important insight on how a general hypersensitivity of these regions to 

external input is present.  

In Chapter 4, a novel voice-elicitation paradigm was conducted to determine if 

feedback-error and voice identity regions of the brain are differentially as feedback 

diverges from the expected qualities of one’s own voice. A feedback-error region of 

interest was created using coordinates from the Chapter 3 meta-analysis study, while 

the voice identity region was chosen using the localizer task used also in Chapter 4. In 

the novel paradigm, voices were elicited via button-press and the quality ranged from 

one’s own to the voice of another with merged samples at various iterations in between. 

Findings indicated that during action, the brain suppresses activity in response to one’s 

own voice, but not for that of another person or when uncertain of the source. 
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Furthermore, as the voice diverges from one’s voice, an inferior frontal feedback-error 

region may engage in monitoring unexpected voice quality. Importantly, the use of the 

button-press paradigm indicates that specialized processing of one’s own voice during 

action is not contingent on vocal production.  

The final empirical study included in Chapter 5 analyses the relationship between 

subjective levels of hallucination proneness and the structure of white matter brain 

pathways. As proneness increases, the directionality of water diffusion rises in right 

hemisphere tracts and those connecting the halves of the brain. The reported right-

hemisphere pathways have been linked with connecting brain regions and networks 

involved in the salience attribution and processing of sensory stimuli. These findings 

may signify a structural variability relating to underlying hypersalient processing of 

irrelevant sensory stimuli subserving hallucinations.   

Discussed in Chapter 6, the findings are interpreted in comparison with alternative 

computation models of false perceptions, the theories of neurotransmitter imbalance 

often reported in schizophrenia explaining positive symptoms such as hallucinations, 

as well as a detailed exploration into the intricacies of interpreting the continuum of 

psychosis. In relation to the three perspectives delineated in the introduction, a set of 

conclusions can be drawn. First, cortical substrates implicated in self-monitoring 

theories of hallucinations are supported by this research. Premotor and sensory 

regions identified as feedback-error sensitive - including specific regions differentially 

responsive to self-other voice identity attribution - correspond to those underlying 

abnormal self-monitoring and hallucinatory experience. However, these findings refer 

only to central cognitive mechanisms and are not directly linked to observed false 

perceptions. Therefore, the cortical regions outlined across this research can be used 

in future research as regions of interest to delineate differential brain activity associated 

with the proneness or presence of hallucinations. Second, the current dissertation 

provides evidence for the role of the cerebellum in self-monitoring pathways associated 

with hallucinations. This region was implicated in the adaptation to sensorimotor 

feedback-error, and demonstrated structural changes in white matter tracts carrying 

putative error-signals to the cerebral cortex associated with increasing levels of 

hallucination proneness. Third, in terms of cortical voice processing regions, although 
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sensorimotor feedback influences the attribution of identity, no motor signals are 

required to elicit an early auditory object sensitivity for voice sounds linked to increased 

hallucination proneness.  

In closing, hallucination proneness - as an indication of increasing abnormality in 

perceptual experience - is related to both functional and structural changes to the 

brain. These changes involve both systems incorporating the motor system as well as 

those that are purely perceptual. It is possible that an underlying abnormality in the 

attribution of salience to internally- and externally-generated signals biases perceptual 

processing, leading to a continuum across the population. The aim of the present 

doctoral dissertation project is to extend current knowledge of the putative cognitive 

mechanisms and neural substrates associated with hallucination proneness. 

Hallucinations, or the experience of sensory stimuli in the absence of an associated 

external source, are phenomena often described as a symptom of psychotic disorders, 

such as schizophrenia. However, they are also seen in different disorders as well as 

otherwise healthy people. The prevalence across the population, comparable 

phenomenology, and common risk factors suggests a common aetiology underwriting 

affecting atypical brain function. It has been theorized that a spectrum of hallucination 

proneness contributes to a multidimensional psychosis continuum spanning clinical 

and non-clinical parts of the population. Although multiple patterns of brain activity, 

structure variability and associated cognitive mechanisms have emerged, there still is 

much uncertainty in the basic substrates explaining the presence of the many forms of 

hallucinations. Moreover, most of the existing research has been conducted in clinical 

samples, predominately in schizophrenia, making aberrations specific to hallucinatory 

experience difficult to conclude. Through various methodologies in magnetic 

resonance imaging data analysis, we attempt to build a comprehensive argument 

across four empirical studies for neural substrates associated with basic mechanisms 

in theories of hallucination. Importantly, all data analysed across the dissertation has 

been acquired from non-clinical individuals of the general population. 
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Samenvatting 
Het doel van dit proefschrift was het vergroten van de huidige kennis van de 

vermeende cognitieve mechanismen en neurale substraten geassocieerd met de 

neiging tot hallucinatie. Het zich voordoen van hallucinaties, of het ervaren van 

zintuiglijke stimuli in afwezigheid van een gelinkte externe bron, is een fenomeen dat 

vaak beschreven wordt als een symptoom van psychotische stoornissen zoals 

schizofrenie. Zij worden echter ook waargenomen bij andere stoornissen, en bij verder 

gezonde individuen. De prevalentie van hallucinaties in de gehele bevolking, 

vergelijkbare fenomenologie, en gemeenschappelijke risicofactoren suggereren een 

gemeenschappelijke etiologie die de atypische hersenfunctie beïnvloedt. Er is 

getheoretiseerd dat een spectrum van hallucinatie-gevoeligheid bijdraagt tot een 

multidimensioneel psychose-continuüm dat klinische en niet-klinische delen van de 

bevolking omvat. Hoewel verschillende patronen van hersenactiviteit, 

structuurvariabiliteit en geassocieerde cognitieve mechanismen naar voren zijn 

gekomen, is er nog steeds veel onduidelijkheid over de basissubstraten die de 

aanwezigheid van de vele vormen van hallucinaties verklaren. Bovendien is het meeste 

bestaande onderzoek uitgevoerd in klinische steekproeven, voornamelijk bij individuen 

met schizofrenie, waardoor afwijkingen die specifiek zijn aan een hallucinerende 

ervaring moeilijk te isoleren zijn. Door middel van verschillende methodologieën in 

magnetische resonantie beeldvorming data analyse, wordt een uitgebreid betoog over 

vier empirische studies geleverd voor neurale substraten geassocieerd met 

basismechanismen in theorieën van hallucinatie. Belangrijk is dat alle geanalyseerde 

data in het proefschrift verkregen zijn van niet-klinische personen uit de algemene 

bevolking.   

In hoofdstuk 1 wordt een uitgebreid overzicht gegeven van de geschiedenis van het 

wetenschappelijk onderzoek naar hallucinatie. Dit hoofdstuk schetst de drie 

perspectieven waarop de hypothesen in het proefschrift zijn gebaseerd: 1) 

sensorimotorische feedbackverwerking als het overheersende mechanisme 

geassocieerd met een hallucinerende ervaring, 2) het cerebellum als de primaire 

structuur die dient voor de verwerking van verwachte en onverwachte 

sensorimotorische feedback, en 3) corticale stemverwerking, aangezien hallucinaties 
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het vaakst worden gerapporteerd als het horen van stemmen. Daarnaast wordt een 

beschrijving gegeven van de belangrijkste methoden die in de 

onderzoekshoofdstukken zijn toegepast: de Launay-Slade Hallucination Scale (LSHS), 

de temporal voice area (TVA) localisatietaak, een nieuwe stem-elicitatie taak, en een 

algemene beschrijving van de fysica en de toepassing van magnetische resonantie 

imaging (MRI).   

Hoofdstuk 2 bevat een meta-analyse van het functioneel neuroimaging onderzoek 

naar de neurale substraten van voorspellingsfouten. Deze gegevens geven weer hoe 

de hersenen reageren op onverwachte sensorische feedback van de eigen actie 

wanneer deze wordt gemanipuleerd door een externe bron. In lijn met feedback 

voorspellingstheorieën van hallucinaties werden de delen van de hersenen waar 

typische bronattributie aanwezig is in de gezonde hersenen geschetst. Meerdere 

afzonderlijke gebieden werden geïdentificeerd voor visuele en auditieve feedback 

modaliteiten. Belangrijk was dat de sensorische cortex actiever was wanneer zelf-

gegenereerde feedback werd beïnvloed door een externe actor. Deze bevinding is 

congruent met eerdere hallucinatietheorieën, die een verhoogde activiteit in deze 

regio's suggereren wanneer feedback ten onrechte verkeerd wordt toegeschreven aan 

een andere actor. Hoewel het is getheoretiseerd dat het cerebellum een primaire actor 

is in dit feedback verwerkingssysteem zijn functionele neuroimaging paradigma's niet 

in staat om de betrokkenheid van deze regio te detecteren als gevolg van 

methodologische beperkingen.     

In hoofdstuk 3 wordt onderzocht hoe een verhoogde activiteit van de sensorische 

cortex kan samenhangen met subjectieve niveaus van hallucinatie-gevoeligheid 

(verzameld via de LSHS) bij het horen van stemstimuli. Met behulp van een passieve 

TVA localizer neuroimaging taak werd een positieve correlatie gevonden tussen 

neiging tot hallucinatie en de activatiesterkte in specifieke, stem-gevoelige gebieden 

van de temporale cortex die betrokken zijn bij de vroege verwerking van auditieve 

objecten. Hoewel deze bevinding niet ontkracht dat hallucinaties het product zijn van 

verkeerd toegeschreven intern gegenereerde signalen, zoals een innerlijke stem en 

herinneringen, geeft het een belangrijk inzicht in een algemene overgevoeligheid van 

deze regio's voor externe input.   
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In Hoofdstuk 4 werd een nieuw stem-elicitatie paradigma uitgevoerd om te bepalen of 

feedback-error en stem-identiteit regio's van de hersenen differentieel zijn als feedback 

afwijkt van de verwachte kwaliteiten van iemands eigen stem. Een feedback-error 

gebied van belang werd gecreëerd met behulp van coördinaten uit de meta-analyse 

van hoofdstuk 3, terwijl het stemidentiteitsgebied werd gekozen met behulp van de 

localisatietaak die ook in hoofdstuk 4 werd gebruikt. In het nieuwe paradigma werden 

stemmen opgewekt door op knoppen te drukken; de stemmen varieerden van de eigen 

stem tot de stem van een ander, met daartussen samengevoegde samples in 

verschillende iteraties. Uit de bevindingen bleek dat de hersenen tijdens actie de 

activiteit onderdrukken als reactie op de eigen stem, maar niet als reactie op de stem 

van een andere persoon of wanneer men niet zeker is van de bron. Bovendien, als de 

stem afwijkt van de eigen stem kan een inferieure frontale feedback-error regio zich 

bezighouden met het controleren van onverwachte stemkwaliteit. Belangrijk is dat het 

gebruik van het knop-druk paradigma aangeeft dat gespecialiseerde verwerking van 

de eigen stem tijdens actie niet afhankelijk is van vocale productie.   

De laatste empirische studie in Hoofdstuk 5 analyseert de relatie tussen subjectieve 

niveaus van hallucinatie-gevoeligheid en de structuur van witte stof hersenbanen. 

Naarmate de gevoeligheid voor hallucinatie toeneemt, neemt de richtingsgevoeligheid 

van de waterdiffusie toe in de rechterhersenhelft en in de banen die de hersenhelften 

met elkaar verbinden. De gerapporteerde banen van de rechterhersenhelft zijn in 

verband gebracht met het verbinden van hersengebieden en netwerken die betrokken 

zijn bij de opmerkzaamheid en verwerking van zintuiglijke stimuli. Deze bevindingen 

kunnen wijzen op een structurele variabiliteit met betrekking tot onderliggende 

hypersalient verwerking van irrelevante zintuiglijke stimuli die hallucinaties 

veroorzaken.    

In hoofdstuk 6 worden de bevindingen geïnterpreteerd in vergelijking met alternatieve 

rekenmodellen van valse waarnemingen, de theorieën van neurotransmitter 

onevenwichtigheid die vaak bij schizofrenie worden gerapporteerd en die positieve 

symptomen zoals hallucinaties verklaren, alsmede een gedetailleerde verkenning van 

de fijne kneepjes van het interpreteren van het continuüm van psychose. Met 
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betrekking tot de drie perspectieven die in de inleiding werden geschetst, kunnen een 

aantal conclusies worden getrokken.  

Ten eerste, corticale substraten die betrokken zijn bij zelf-controlerende theorieën van 

hallucinaties worden door dit onderzoek ondersteund. Pre-motorische en sensorische 

regio's die gevoelig zijn voor terugkoppelingsfouten - inclusief specifieke regio's die 

differentieel reageren op zelf-ander stem identiteitsattributie - komen overeen met de 

regio's die ten grondslag liggen aan abnormale zelf-monitoring en hallucinerende 

ervaringen. Deze bevindingen hebben echter alleen betrekking op centrale cognitieve 

mechanismen en zijn niet direct gekoppeld aan waargenomen valse percepties. 

Daarom kunnen de corticale regio's die in dit onderzoek geschetst worden in 

toekomstig onderzoek gebruikt worden als regio's van belang om differentiële 

hersenactiviteit af te bakenen die geassocieerd wordt met de vatbaarheid of 

aanwezigheid van hallucinaties. Ten tweede levert het huidige proefschrift bewijs voor 

de rol van het cerebellum in zelf-controlerende paden geassocieerd met hallucinaties. 

Dit gebied werd betrokken bij de aanpassing van sensorimotorische feedback-fouten, 

en toonde structurele veranderingen in witte stof traktaten die vermeende fout-signalen 

naar de cerebrale cortex stuurden, geassocieerd met toenemende niveaus van 

hallucinatie vatbaarheid. Ten derde, in termen van corticale stemverwerkingsregio's, 

hoewel sensorimotorische feedback de toekenning van identiteit beïnvloedt, zijn er 

geen motorische signalen nodig om een vroege auditieve objectgevoeligheid op te 

wekken voor stemgeluiden gekoppeld aan een verhoogde neiging tot hallucinatie.   

Tot slot, hallucinatie-gevoeligheid - als een indicatie van toenemende abnormaliteit in 

perceptuele ervaring - is gerelateerd aan zowel functionele als structurele 

veranderingen in de hersenen. Deze veranderingen betreffen zowel systemen die het 

motorische systeem bevatten als systemen die zuiver perceptueel zijn. Het is mogelijk 

dat een onderliggende afwijking in de toeschrijving van opvallendheid aan intern- en 

extern-gegenereerde signalen de perceptuele verwerking vertekent, wat leidt tot een 

continuüm in de populatie.  

Het doel van dit doctoraatsproject is het vergroten van de huidige kennis van de 

vermeende cognitieve mechanismen en neurale substraten geassocieerd met de 

neiging tot hallucinatie. Het zich voordoen van hallucinaties, of de ervaring van 
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zintuiglijke stimuli in afwezigheid van een gelinkte externe bron, is een fenomeen dat 

vaak beschreven wordt als een symptoom van psychotische stoornissen zoals 

schizofrenie. Zij worden echter ook waargenomen bij andere stoornissen en bij verder 

gezonde individuen. De prevalentie van hallucinaties in de gehele bevolking, 

vergelijkbare fenomenologie, en gemeenschappelijke risicofactoren suggereren een 

gemeenschappelijke etiologie die de atypische hersenfunctie beïnvloedt. Er is 

getheoretiseerd dat een spectrum van hallucinatie-gevoeligheid bijdraagt tot een 

multidimensioneel psychose-continuüm dat klinische en niet-klinische delen van de 

bevolking omvat. Hoewel verschillende patronen van hersenactiviteit, 

structuurvariabiliteit en geassocieerde cognitieve mechanismen naar voren zijn 

gekomen, is er nog steeds veel onduidelijkheid over de basissubstraten die de 

aanwezigheid van de vele vormen van hallucinaties verklaren. Bovendien is het meeste 

bestaande onderzoek uitgevoerd in klinische steekproeven, voornamelijk bij individuen 

met schizofrenie, waardoor afwijkingen die specifiek zijn aan een hallucinerende 

ervaring moeilijk te isoleren zijn. Door middel van verschillende methodologieën in 

magnetische resonantie beeldvorming dataanalyse proberen we een uitgebreid 

argument op te bouwen over vier empirische studies naar neurale substraten 

geassocieerd met basismechanismen in theorieën van hallucinatie. Belangrijk is dat 

alle geanalyseerde gegevens uit dit proefschrift afkomstig zijn van niet-klinische 

personen uit de algemene bevolking. 
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Impact Paragraph 

Numerous findings reported in this dissertation could offer impactful theoretical or 

practical contributions to future empirical research, possibly extending to interventions 

and cross-diagnostics pertaining to a psychosis continuum. Moreover, the included 

examinations incorporating a spectrum of hallucination proneness may provide a 

broader value to society itself, in terms of how an advanced knowledge of a psychosis 

continuum may improve the lives of those affected. 

Potential scientific impact. The outcomes suggest both short- and long-term 

impacts to neuroimaging and translational cognitive neuroscience. Already, three 

methodological findings may be utilized. In chapter 3, findings from a widely-used 

voice perception task indicate a general variability of brain activations across the 

general population (Pernet et al., 2015). In healthy participants, a hypersensitivity was 

indicated in the brain region associated with early stages of voice processing, related 

to an increasing proneness for abnormal perceptual experience. It would therefore be 

of interest to studies investigating this region to consider how a general variability in 

response strength may be distributed in their sample, and how this may affect 

downstream processing of voice. In chapter 4, a behavioural task was the first to show 

that participants are able to correctly identify their own voice when hearing brief half-

second vowel sounds. In theory, this implies that such short, simple, stimuli contain 

sufficient information for recognizing self-voice identity. In the same study, the first 

functional magnetic resonance imaging (MRI) evidence for a specific pattern of brain 

activity associated with self-generated, self-attributed, voice was demonstrated when 

participants played a sound by pressing a button. Therefore, investigators interested in 

brain responses to varying expectancy of voice features during action, and not speech 

itself, can adopt a button-press paradigm avoiding vocal production and reduce the 

associated head movement which lead to difficulties in MRI processing and analysis 

(Havsteen et al., 2017; Makowski et al., 2019; Zaitsev et al., 2015). Although these 

methodological reports are innovative, the lack of comparable findings in the literature 

implies that replication is necessary before accepting the generalizability of these 

interpretations. 
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The current dissertation offers longer-term implications to the scientific field. The meta-

analysis in chapter 2 may provide a farther-reaching, lasting, impact. The brain areas 

indicated as responsive to unexpected errors in sensory feedback suggest a network 

of motor and sensory regions with different roles in adaptation motor control. This was 

intended to isolate brain regions relevant to the mechanisms serving hallucinations. 

However, due the fundamental nature of this investigation, it was presented as a poster 

at an established conference (Society for Neuroscience, 2018) within the motor control 

section. Likewise, it was shared among broader circles, and has resulted in numerous 

citations, which foreseeably will continue to inform any future research into the brain 

correlates of sensory feedback and adaptive processes. 

Two studies will predictably lead to debate, or possibly a shift in understanding, 

regarding predominant theories of hallucinations. The abovementioned chapter 3 

finding – of a hypersensitivity to voice sounds – views hallucinations as misperceived 

externally-produced sensations. This appears to conflict with theories positing 

hallucinations as misattributed, externalized, internally-produced signals (Ford & 

Mathalon, 2005; Heinks-Maldonado et al., 2007; van Lutterveld et al., 2011; Whitford et 

al., 2012). However, as suggested in the chapter 6 discussion, these positions may not 

be mutually exclusive, reflecting a general abnormality in salience processing. It is 

anticipated that future research will determine the contribution of both internally- and 

externally-generated signals to overactive brain regions serving perception and the 

emergence of false perceptions. Although schizophrenia research has provided 

plausible neurochemical aetiology for this salience deficit (Corlett et al., 2011; Heinz et 

al, 2019; Jardri et al., 2016; Karoutzou et al., 2007; Sterzer et al., 2018), the underlying 

source of these abnormalities related to false perceptions across the general 

population remains to be determined. Deeper understanding of the function or 

imbalance of these inputs may help describe neurochemically how these experiences 

manifest in the healthy brain and establish an etiological or development distinction 

specific to schizophrenia. 

In chapter 5, analyses on the structural pathways connecting brain regions showed a 

pattern opposite to many reported in schizophrenia compared to healthy participants 

(e.g., Fitzsimmons et al., 2013; Kubicki et al., 2005; Tamnes & Agartz, 2016). As 
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hallucinations are a main symptom of schizophrenia, this finding pertaining to 

hallucination proneness also appears to conflict with contemporary disconnection 

theories (Coyle et al., 2016; Friston & Frith, 1995; Pettersson-Yeo et al., 2011; Rubinov 

& Bullmore, 2022; Silverstein et al., 2016). However, there has been a lack of consensus 

across clinical samples, and the report of effects in both directions when assessing 

symptom severity, for example, in hallucinated voices (e.g., Bopp et al., 2017; Ćurčić-

Blake et al., 2013; Mulert et al., 2012; Psomiades et al., 2016; Rotarska-Jagiela et al., 

2009; Seok et al., 2007; Szeszko et al., 2008). It has been suggested that research using 

non-clinical groups may be of particular help in assessing the underlying cognitive 

functions and related brain areas associated with symptoms of psychosis. For example, 

investigations into white matter structure related to hallucinations may be difficult in 

schizophrenia samples, as changes to these pathways are also susceptible to effects 

of antipsychotic medication (e.g., Leroux et al., 2017; Seok et al., 2007). Additionally, 

white matter research may help inform the aforementioned neurochemical 

associations to false perceptions, and differences between the schizophrenic and 

healthy brain prone to hallucinations, as these pathways are structurally affected by 

imbalances in the neurotransmitters implicated in psychotic symptoms (Davis et al., 

2003; Goff & Coyle, 2001; Mighdoll et al., 2015; Plitman et al., 2014; Suárez-Posos et al., 

2020; Takahashi et al., 2011; Walterfang et al., 2006, 2011). 

Potential social impact. A continuum theory of psychosis provides more than 

theoretical discussion among researchers, as it offers a vital perspective for how 

variability in these experiences can be perceived within society. All over the world, a 

proneness for abnormal perceptual experience such as hallucinations has been 

reported across large population-based samples (e.g., Moseley et al., 2021; Siddi et al., 

2019). Likewise, at a higher level of that spectrum, experiences similar to symptoms of 

psychosis occur at various frequencies in the general population (e.g., Bitta et al., 2022; 

Bourgin et al., 2020; McGrath et al., 2015; Subramaniam et al., 2016). Finally, some 

subgroups of the general population experience chronic psychosis-like experience 

without the need for care or clinical diagnoses (e.g., healthy hallucinators) (Baumeister 

et al., 2017; Johns, 2014; van Os et al., 2009). Although different cultures provide 

varying explanations for the source of these experiences (e.g., religious or spiritual) 

(Larøi et al., 2014; van Elk & Aleman, 2017), it is evident that they are present in the 
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lives of many different people at many different levels, existing on a continuum with 

normal human experience. The findings in chapter 3 and 5 indicate a correlation of 

brain function and structure with hallucination proneness in healthy people, supporting 

this theory. However, a dichotomous, categorical, perspective has led to much stigma, 

further impairing the mental health and help-seeking behaviour or those affected 

(Corrigan et al., 2017; Lien et al., 2015; Peter et al., 2021). Therefore, this dissertation 

may contribute to a general shift in perspective to a continuum, allowing for an 

understanding that abnormal perceptual experiences are nothing to hide or scorn, and 

allow those who have them to feel more comfortable in sharing with others, including 

clinicians, when requiring care. 
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