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5-1. Aims of the thesis  
Neural oscillators and their synchronization take centre stage in the present thesis 

with an emphasis on the role of gamma synchronization in cortical information 

processing. While stimulus-induced cortical oscillations in the gamma range are 

ubiquitous in the cortex (Bertrand & Tallon-Baudry, 2000; N. Brunet et al., 2015; 

Buzśaki & Wang, 2012), a number of studies have cast doubt on the notion that they 

play a functional role. In particular, critiques that long signal propagation delays 

(Ray & Maunsell, 2015) and high variance among frequencies in the gamma range 

(D. Hermes, Miller, Wandell, & Winawer, 2015; Jia, Xing, & Kohn, 2013; Ray & 

Maunsell, 2015) may interfere with synchrony-based neural information processing 

have been influential. Prior neurophysiological studies have shown however that 

neither propagation delays (Fries, Nikolić, & Singer, 2007; Nikolić, 2006) nor 

frequency variance (Fries et al., 2007; Lowet, Roberts, Peter, Gips, & de Weerd, 

2017) are necessarily detrimental to the selective and flexible synchronization 

required for neural information processing. According to the theory of weakly 

coupled oscillators (TWCO), the distribution of intrinsic frequencies differences 

(frequency detuning) among oscillators as well as the strength of their interactions 

(coupling strength) determines the likelihood that oscillators synchronize (Pikovsky, 

Rosenblum, Self, & 2001, 2003). In other words, a frequency difference can still 

permit (partial) synchronization when there is sufficient coupling strength. The 

existence of long propagation delays and associated variability when communicating 

oscillators are at various distances from each other in a network can affect 

synchronization. Nevertheless, empirical evidence indicates that within a range, 

variable propagation delays do not render synchronization impossible (Fries et al., 

2007; Nikolić, 2006). Thus, rather than considering the existence of variability in 

propagation delays among remote oscillators as an absolute argument against 

synchronization as a viable mechanism for information processing, it may be 

considered as a factor that can be used by the brain to control synchronization. 

Variability in propagation delays may exert their effect by affecting detuning (Buia 

& Tiesinga, 2006; Fries, 2005). Hence, TWCO posits that coupling strength and 

frequency detuning are crucial factors controlling synchronization behaviour among 

oscillators.  Using this framework, and in order to investigate the usefulness of 

gamma synchronization in (visual) information processing, we aimed to address the 

following questions: 

1) What are the effects of (plastic) coupling delays on the synchronization 

behaviour and synaptic plasticity within a phase oscillator network and how does 

this affect structural and functional features of the network (Chapter 2)?  
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2) To what extent is a phase oscillator network exposed to texture stimuli 

capable of predicting human figure-ground segregation performance (Chapter 

3)?  

3) To what extent are learning-induced structural changes in a phase oscillator 

network exposed to texture stimuli predictive of human performance 

improvement on a figure-ground segregation task (Chapter 4)?  

 

5-2. Summary of Results  
Before presenting a detailed summary of results per chapter addressing the 

above-formulated aims, the main results are briefly summarized here. The results in 

Chapter 2 demonstrate that signal propagation delays and experience-induced 

plasticity affect the (spatial) distribution of gamma frequencies in a network of 

oscillators (Buia & Tiesinga, 2006; Fries, 2005) as well as the strength of coupling 

among neural oscillators. Thus, propagation delays vary as a function of distance, 

but are at the same time subject to plastic regulatory mechanisms that use 

propagation delays as a tool to facilitate or prevent synchronization between different 

groups of oscillators. The results in Chapters 3 and 4 support the perceptual 

relevance of levels of synchronization as controlled by detuning and coupling 

strength in an oscillator network (Baldi & Meir, 1990; Buia & Tiesinga, 2006; Dubey 

& Ray, 2020; Feng, Havenith, Wang, Singer, & Nikolić, 2010; Gieselmann & Thiele, 

2008; Gilbert & Wiesel, 1983; Gray, König, Engel, & Singer, 1989; Hadjipapas, 

Lowet, Roberts, Peter, & de Weerd, 2015; Hall et al., 2005; Henrie & Shapley, 2005; 

Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Lowet et al., 2015, 2017; 

Ray & Maunsell, 2010; Roberts et al., 2013; Shapira et al., 2017; Stettler, Das, 

Bennett, & Gilbert, 2002; Swettenham, Muthukumaraswamy, & Singh, 2009; Ts’o, 

Gilbert, & Wiesel, 1986; M. A. Whittington, Traub, Kopell, Ermentrout, & Buhl, 

2000; Miles A. Whittington, Cunningham, LeBeau, Racca, & Traub, 2011). We 

found an excellent fit between model predictions of synchronization levels 

associated with manipulations of stimulus- and experience-dependent factors on the 

one hand, and behavioural measures of human figure-ground segregation on the 

other. Hence, the present thesis has contributed behavioural and computational 

modelling research that argues against the idea that (because of detuning and because 

of the long transmission delays in long-range communication) gamma oscillations 

would be useless epiphenomena of visual processing without a substantial 

contribution to visual perception and other forms of cognition.  
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5-2-1. Chapter 2: Effects of Plastic Coupling delays and Plastic 

Coupling Strengths on the Synchronization and Learning in 

Networks of Coupled Oscillators 

Chapter 2 addressed the question how (plastic) coupling delays affect 

synchronization behaviour and synaptic plasticity in a phase oscillator network. In 

this chapter, synchronization was investigated in a ring network of coupled phase 

oscillators whose pairwise coupling strength and conduction velocities were plastic. 

What is presented in this chapter is a simple neural mass model developed to evaluate 

structural (pairwise connection strength and conduction velocity) and functional 

states (local and global synchronization behaviour) of a one-dimensional network of 

self-sustained oscillators that receives no external input. The network’s states 

evolved based on the activity-dependent interplay between synaptic plasticity 

(connectivity strength) and myelin plasticity (conduction velocity). Synaptic 

plasticity was implemented in terms of activity-dependent modifications of pairwise 

connection strengths, whereas myelin plasticity was implemented indirectly through 

its effects on axonal conduction velocities and therefore signal transmission delays.  

The contributions of synaptic plasticity to various forms of learning and memory 

have been extensively studied (Milner, Squire, & Kandel, 1998; Niyogi & English, 

2009; Nowotny, Zhigulin, Selverston, Abarbanel, & Rabinovich, 2003; Seliger, 

Young, & Tsimring, 2002; Siri, Quoy, Delord, Cessac, & Berry, 2007; Song, Miller, 

& Abbott, 2000; Timms & English, 2014; Traubab et al., 1998), whereas the 

contribution of myelin plasticity to learning has become recognized only more 

recently as an important mechanism for learning and memory (Nickel & Gu, 2018; 

Sampaio-Baptista et al., 2013; Scholz, Klein, Behrens, & Johansen-Berg, 2009). 

Studies of the mechanisms of myelination (Fields, 2015; Fields & Bukalo, 2020; 

Giedd et al., 1996; Pajevic, Basser, & Fields, 2014; R. D. Fields, 2014) combined 

with diffusion neuroimaging studies of plastic changes in the integrity of white 

matter (Chang, Redmond, & Chan, 2016; Dutta et al., 2018; Fields, 2015; McKenzie 

et al., 2014; Pajevic et al., 2014; Purger, Gibson, & Monje, 2016; Scholz et al., 2009) 

indicate that myelination remains plastic throughout life (Giedd et al., 1996). 

Moreover, myelin plasticity depends, like synaptic plasticity, on the temporal 

relations of spiking activity between pre- and post-synaptic neural populations 

(Fields, 2015; Pajevic et al., 2014; R. D. Fields, 2014). Accordingly, synaptic and 

myelin plasticity in our model were both governed by Hebbian learning rules. The 

effects of both kinds of plasticity were assessed in terms of functional connectivity 

(synchronization behavior) in the model network and in terms of structural 

connectivity (myelination of axons and synaptic connectivity strength). The resulting 
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model revealed significant differences in both structural and functional connectivity 

when separately considering effects from pure synaptic plasticity, from pure myelin 

plasticity and from the interplay between the two. For example, with respect to 

synaptic plasticity, we found that for conditions in which the phase oscillator 

network developed two segregated structural clusters, also two corresponding, 

segregated, functional clusters emerged. In other words, parts of the network where 

the oscillators became more weakly connected also showed less synchronization. 

However, when in the same conditions that led to a segregation of the network into 

two separate clusters, myelin plasticity was allowed, this resulted in the formation of 

a single functional cluster. In other words, functional integration (synchronization) 

occurred across structurally segregated clusters. Because in this chapter we only 

studied the internal dynamics of the constructed network, without external input, an 

interpretation of these findings at the level of perception and cognition is difficult. 

Nevertheless, the fact that a larger network can be segregated into subnetworks is 

conceptually important for understanding perception and cognition. Note however 

that the model used in Chapter 2 does not relate to specific spatial and temporal 

scales. Instead, it provides a general framework to study neural oscillatory networks 

at any spatio-temporal scale.  

 

5-2-2. Chapter 3: Role of the Synchronization among Stimulus-

dependent Gamma Oscillations in Figure-ground Segregation 
The third chapter asked the question whether gamma synchronization assists in 

figure-ground segregation. To address this question, we first designed a network of 

coupled phase oscillators exposed to texture stimuli. The oscillator network was 

designed to reflect elementary V1-like neural circuits. For this reason, dynamical 

and structural network parameters were based on electrophysiological recordings 

and organizational principles of V1 in macaques (Lowet et al., 2017) and humans 

(Balasubramanian & Schwartz, 2002; Polimeni et al., 2005; Schwartz, 1980). The 

scope of this chapter’s main question was limited to an investigation of whether 

synchronization could constitute a pre-attentive process in early visual areas that 

supports figure-ground segregation in texture stimuli.  

The texture stimuli comprised Gabor annuli arranged on a random grid. Each 

stimulus included a rectangular region, the figure, where annulus contrast was less 

heterogeneous than in the background. Based on prior observations in early visual 

cortex that local contrast drives gamma frequency (Hadjipapas et al., 2015; Henrie 

& Shapley, 2005; Lowet et al., 2015; Roberts et al., 2013; Shapira et al., 2017) and 

that coupling strength depends on cortical distance (Gilbert & Wiesel, 1983; Lowet 
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et al., 2015, 2017; Stettler et al., 2002; Ts’o et al., 1986), we assumed that contrast 

heterogeneity affects frequency detuning and physical proximity among annuli 

affects coupling strength among corresponding neural circuits. Hence, the starting 

point in this chapter is the realization that the mathematical factors that determine 

synchrony among weakly coupled oscillators can be linked to the stimulus features 

that guide figure-ground segregation.  

If neural synchrony is indeed relevant for figure-ground segregation, one would 

expect that formalizing such a conceptual relation in a computational model would 

allow deriving quantitative predictions of figure-ground segregation performance 

from modelled synchronization behaviour. When the model was exposed to the 

texture stimuli, it revealed a triangular region of high synchronization in the space 

spanned by contrast heterogeneity (detuning) and grid coarseness (coupling 

strength). Remarkably, human participants who were asked to detect the figure from 

the ground in the same texture stimuli showed a quantitatively matched triangular 

region of supra-threshold figure-ground segregation performance for the same 

conditions. Interestingly, the model parameters chosen based on neurophysiological 

data in the macaque monkey were close to optimal to predict human figure-ground 

segregation performance. The consistency between model predictions and 

behavioural results suggests a mechanistic link between gamma synchronization in 

V1 and figure-ground segregation. This suggestion does not exclude that other 

mechanisms than the synchronization behaviour among neural groups in early visual 

cortex could contribute to figure-ground segregation. However, our data indicate at 

the very least that low-level neural synchrony is a viable mechanism for figure-

ground segregation in the texture stimuli we used. Interestingly, participants’ 

response times did not reveal an Arnold tongue as these were only affected 

significantly by contrast heterogeneity, but not by the physical distance between 

texture elements. This observation suggests that synchronization in V1 may not be a 

dominant factor in determining the speed of cortical information processing. Only 

after training-induced gains in synchrony and performance (see Chapter 4) did 

synchronization in our model become related to response times. This suggests a 

training-induced increase in the relevance of synchronization in the speed of cortical 

information processing. This finding will be discussed below. What can be inferred 

from the results of Chapter 3 is that the high stimulus dependency of gamma 

oscillations constitutes an essential aspect of the synchronization mechanism 

underlying figure-ground segregation. This dependency forms the basis of 

synchronization among figure elements (integration) and simultaneous de-

synchronization between figure and ground elements (segregation). Therefore, 
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Chapter 3 shows that the high stimulus dependency of gamma oscillations may 

underlie, rather than preclude, a functional role in cortical information processing. 

 

5-2-3. Chapter 4: Role of the Synchronization among Stimulus-

dependent Gamma Oscillations in Perceptual Learning of Figure-

ground Segregation 
The fourth chapter addressed the question to what extent learning-induced 

changes in a phase oscillator model are predictive of human performance 

improvements in a figure-ground segregation task. In the third chapter, it was 

suggested that synchronization of gamma oscillations in V1 constitutes an important 

component of the neural mechanism that underlies figure-ground segregation. If this 

is indeed the case and if, as assumed in Chapter 2, synchronization behaviour is 

affected by experience-dependent changes in coupling strength, then any learning-

induced gains in performance should be quantitatively related to learning-induced 

increases in neural synchrony. To evaluate this hypothesis, modelling was combined 

with psychophysics experimentation using the same stimulus conditions as in 

Chapter 3. Learning was incorporated into the model in the form of a three-factor 

learning rule that took phase coherence and the probability of correct responses on 

all trials of a session into account. Free parameters of the learning mechanism were 

estimated from the first two sessions, and subsequently used to predict learning 

effects in the remaining sessions. Results in Chapter 4 showed that synchrony and 

performance exhibit a close quantitative resemblance that was maintained across 

training sessions. In particular, the triangular region of supra-threshold accuracy data 

in a space defined by contrast heterogeneity and grid coarseness showed training-

induced changes in shape that were closely matched by learning-induced changes in 

the Arnold tongue of the V1 oscillator model. Late in the training, an Arnold tongue 

emerged for response times as well. This further supports the idea that 

synchronization may be an important component of a neural figure-ground 

segregation mechanism and that learning-induced changes in figure-ground 

perception may at least in part be mediated by plasticity-induced changes in neural 

synchrony in a low-level visual area. The learning rule employed in Chapter 4 rested 

on the assumption that skill learning in early visual cortex is position specific (Merav 

Ahissar & Hochstein, 1996; Crist, Kapadia, Westheimer, & Gilbert, 1997; Karni & 

Sagi, 1991; A. A. Schoups, Vogels, & Orban, 1995). We verified this in a transfer 

session, in which figure-ground segregation was tested after moving the figure to the 

diametrically opposite visual field quadrant. Although figure-ground performance 

had increased significantly with training, it remained at baseline in the transfer 
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session. Overall, the psychophysical and modelling data in this chapter suggest that 

training-induced changes in synchrony in V1 may contribute to enhanced accuracy 

in figure-ground segregation in an expanded range of grid coarseness and contrast 

heterogeneity conditions. Moreover, towards the end of training, synchronization 

strength also becomes related to processing speed.  

 

5-3. Theoretical Implications 

The key conjecture of the present thesis is that oscillations are functionally 

relevant for neural information processing. In particular, the flexible synchronization 

behaviour of neural oscillators may underlie the flexible integration and segregation 

of stimulus-dependent and other types of information. This conjecture is central to 

two theories that feature prominently in neuroscience: the communication through 

coherence (CTC) theory (Fries, 2005) and the theory of weakly coupled oscillators 

(TWCO) (Ermentrout, Park, & Wilson, 2019; Pikovsky et al., 2003). CTC 

emphasizes long-range cortical interactions and proposes that synchronization 

within distributed neural networks facilitates selective communication (Fries, 2005). 

Specifically, it proposes that selective communication is achieved through coherence 

between oscillating activity in sending and receiving regions. However, CTC does 

not specify the mechanisms by which these regions synchronize in the first place. 

CTC simply states that two brain regions cannot communicate unless their activity 

patterns are in-phase (or more generally in a favourable phase-relation). Stated in 

this manner, CTC considers coherence as a prerequisite for communication. 

However, a crucial question is to understand how coherence is achieved in the first 

place, and therefore one may wonder if a form of communication needs to occur 

prior to the emergence of coherence. The latter idea is an essential aspect of the 

theoretical framework of TWCO, which stipulates that two brain regions may 

achieve synchrony through mutual interactions. In particular, TWCO formalizes and 

specifies the mutual interactions among oscillators under which specific phase 

relationships among two (or more) interacting oscillators can be achieved. As such, 

TWCO assumes that interaction precedes coherence. The opposition that is created 

here between CTC and TWCO may be overstated, and the two frameworks can be 

seen as compatible as long as one accepts that CTC is underspecified in terms of the 

mechanisms that enable the phase relations that in turn enable communication. Note 

that in joining the concepts of CTC and TWCO it is interesting to reflect on the 

meaning of the terms ‘interaction’ and ‘communication’. Interaction between two 

oscillators refers to the mutual influences that bring oscillators into a favourable 

phase-relationship that permits communication. If communication is defined as the 
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ability of action potentials from a sending population of neurons to trigger action 

potentials in a receiving population of neurons, then interaction may precede 

communication, because the interactions among connected oscillators will take place 

partly in time periods where communication as defined above is not (yet) possible. 

In this sense communication and interaction can be distinguished. However, at the 

same time, it is clear that the mutual interactions among neuronal pools occur 

through spiking, and that spikes from a sending population that arrive in an inhibitory 

period of a receiving population are still part of the interaction that leads to 

favourable phase relations required for action potentials from a sending population 

to trigger action potentials in a receiving population. From that perspective, the 

mechanisms of interaction and communication are closely related.  

It is fascinating to note that TWCO is a general theory of synchronization 

phenomena, and that its concepts have been applied successfully and widely in 

chemistry, biology, and neuroscience (Ermentrout et al., 2019). As a general theory, 

TWCO is not concerned with whether or not oscillations and synchrony in the brain 

are relevant for neural information processing. However, a number of theoretical 

neuroscientists have over the years developed theories of neural information 

processing that are rooted in TWCO and that adhere to its fundamental principles. 

Noteworthy in this context is seminal work led by Izhikevich who suggested that 

synchrony allows for the flexible connection and disconnection of neural oscillators 

based on changing task demands (Hoppensteadt & Izhikevich, 1999; Izhikevich & 

Appl Math, 2006). At the macroscopic scale (involving long-range interactions), this 

concept is in line with dynamic routing of information to ensure that the output of 

local computations is sent to the appropriate brain regions for further processing. At 

the mesoscopic scale (i.e. within cortical areas), the flexibility of network 

synchronization may be utilized for local information integration and segregation 

such as required for associative memory (Hoppensteadt & Izhikevich, 1999) or 

figure-ground segregation. Depending on the spatio-temporal framework applied to 

the oscillator network and simulated data in Chapter 2, the findings in that chapter 

can be relevant in the context of a putative role of neural synchrony for long-range 

interactions2. Specifically, Chapter 2 revealed that dynamic conduction velocity 

                                                           

2 In the context of fast oscillations such as gamma, typical cortical conduction velocities (on 

the order of 100 meters per second (Swadlow & Waxman, 2012)) may manifest as significant 

delays for long-range connections (between cortical areas) but not for short-range 

connections (within cortical areas). The reason is that a) delays typically manifest as phase-

shifts and b) the impact of phase-shifts is relative to oscillation periods. As a rule of thumb 

(and exactly for pure sine interaction function as employed in the Kuramoto model), only 
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provides the possibility for synchronization even in the context of fast synaptic 

changes promoting structural network segregation. This indicates that adaptive 

myelination may have the capacity to compensate for synaptic effects that might 

otherwise desynchronize neural groups. Adaptive myelination may thus help to 

stabilize dynamic routing in the context of synaptic changes in long-range 

connectivity. Chapters 3 and 4 speak towards a putative role of neural synchrony at 

the mesoscopic scale. Depending on stimulus properties, and on the excitatory drive 

delivered locally to the various neuronal populations encoding the stimulus, these 

neuronal populations may synchronize and hence form an integrated neural group 

that is segregated from other groups in a manner that is relevant for visual perception 

(Lowet et al., 2015). The stimulus dependence of synchronization renders this 

process highly flexible and hence perceptually relevant. Furthermore, synchronized 

neuronal groups within cortical regions, rather than entire cortical regions, likely 

form higher-order oscillators that interact at the macroscopic scale. This interplay 

between local information processing and global routing may constitute a highly 

flexible mechanism for cortical information processing (Kirst, Timme, & Battaglia, 

2016).  

Though not the focus of the present thesis, results in Chapter 4 are also relevant 

for an ongoing debate whether (location) specificity is a defining characteristic of 

perceptual learning. Several studies have reported that experience-induced 

improvements in perceptual skills are specific to the retinotopic location (Merav 

Ahissar & Hochstein, 1996; Crist et al., 1997; Karni & Sagi, 1991; A. A. Schoups et 

al., 1995) and stimulus features (Merav Ahissar & Hochstein, 1996; Merav Ahissar, 

Laiwand, Kozminsky, & Hochstein, 1998; M. Ahissar & Hochstein, 1993; Crist et 

al., 1997; Fiorentini & Berardi, 1980; Karni & Sagi, 1991; A. Schoups, Vogels, Qian, 

& Orban, 2001) of the trained skill. However, other studies have reported that skills 

can generalize to novel locations and stimulus features (Aberg, Tartaglia, & Herzog, 

2009; Jeter, Dosher, Petrov, & Lu, 2009; R. Wang, Cong, & Yu, 2013; R. Wang, 

Zhang, Klein, Levi, & Yu, 2012; Zhang et al., 2010). The modelling work in Chapter 

4 assumes that perceptual learning is location-specific. We validated this assumption 

empirically by including an additional session wherein it was shown that 

improvements on a figure-ground segregation skill do not generalize across 

retinotopic locations. 

                                                           

phase-shifts between 
1

2
𝜋 and 

3

2
𝜋 will notably affect synchronization behaviour (Ermentrout 

& Ko, 2009). For gamma oscillations, such phase-shifts may occur for long-range but not 

short-range connections. 
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5-4. Implications for the Role of Local Gamma 
While TWCO is agnostic with regard to the role of specific frequency bands, 

gamma range oscillations were of particular interest in the present thesis. Chapters 3 

and 4 suggest that gamma oscillations contribute to visual processing. These studies 

show that local and global image statistics drive an oscillatory mechanism for image 

segmentation. This is in line with a number of studies (N. Brunet et al., 2015; Gray 

& Goodell, 2011) that have reported the presence of gamma oscillations in macaque 

visual cortical areas, specifically in V1, during free viewing of static images. 

Specifically, Lowet et al. (2015), who in a modelling study using an online image 

database (Martin, Fowlkes, Tal, & Malik, 2001) showed a meaningful link between 

border segmentation in natural images by human observers and gamma 

synchronization among nearby neuronal groups driven by image contrast within their 

receptive fields. Lowet et al.’s study (Lowet et al., 2015) suggested that surface 

perception is related both to the smaller contrast variations (thus lower detuning) 

within surfaces in comparison to the large contrast variations (thus higher detuning) 

across surfaces, at the surface borders. This led to the integration (synchronization) 

of neural activity induced within each figure surface, and to the segregation of 

activity across surface borders. Lowet et al.’s study (Lowet et al., 2015) together 

with our own data (Chapters 3 and 4) provide support for the idea that gamma 

synchronization provides a means for grouping elements into wholes that reflect 

objects in a scene. The utility of a synchronization-based algorithm for (natural) 

image segmentation has also been demonstrated previously (Lowet et al., 2015; 

Yogendra, Chamika, Fan, Shim, & Roy, 2017).  

While previous findings along with those presented in this thesis provide 

converging evidence for a role of local gamma in visual scene analysis, some studies 

have failed to detect gamma oscillations in response to moving (Kayser, Salazar, & 

König, 2003) and even static (Dora Hermes, Miller, Wandell, & Winawer, 2015; 

Ray & Maunsell, 2015) natural images. This absence of gamma oscillations in 

response to static natural images is surprising and suggests that gamma oscillations 

may be sufficient but not necessary for visual processing. This conclusion, however, 

may be premature. A failure to detect gamma oscillations does not imply their 

absence. Indeed, failure to detect gamma can be due to inadequate spatial resolution 

of electrophysiological recording methods. Images with low degree of structure (i.e., 

with a high degree of heterogeneity, randomness and many small elements) are 

reflected by unstructured patterns of gamma oscillations on the cortical surface with 

variations in frequencies and phases that are too closely spaced to be detected with 
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typical electrodes (N. M. Brunet & Fries, 2019). Electrophysiological recordings 

with insufficient spatial resolution may capture several neuronal pools whose gamma 

rhythms may cancel each other out. Furthermore, signals from asynchronous neural 

oscillations may mask signals from synchronous oscillations. Insufficient data and 

the effect of noise for detecting low gamma power in response to images with low 

degree of structure could be another factor preventing the detection of gamma 

oscillations. Interestingly, even if the absence of gamma oscillations in response to 

natural images turns out to be a credible observation, this does not preclude that 

neuronal synchrony may be necessary for visual processing. Hermes et al. (2015) 

reported the presence of non-oscillatory broad-band signals (around 80-200 Hz) 

during the processing of natural images. Given that even non-oscillatory signals can 

become synchronized (Thivierge, 2008), predictions based on the synchronization 

(of non-oscillatory signals) among neural groups may still hold true for figure-

ground segregation in natural images.  

The present thesis provides support for a functional role of gamma oscillations 

and their synchronization. The absence of gamma oscillations in some conditions is 

a weak argument to make broad claims about its irrelevance. Likewise, observations 

of variations in gamma frequency or transmission delays are a weak argument 

against the functional contributions of gamma oscillations in the absence of a 

theoretical framework specifying factors that regulate synchronization. A step 

forward in assessing a potential role of gamma in perception is through the 

development of biologically constrained theoretical/computational models that 

formalize a putative perceptual role of gamma and generate testable predictions. Our 

work follows this approach and provides quantitative support for a role of gamma 

oscillations and synchronization in figure-ground segregation.  

 

5-5. Reflections on the Modeling Approach Presented in this 

Thesis 
We will not reiterate the limitations in terms of modelling choices and/or 

experimental setup that are already discussed in Chapters 2-4. Instead, the general 

modelling approach followed in this thesis will be evaluated. Throughout the thesis, 

a neural mass model has been utilized that reduces the dynamics of neural 

communities to the interaction between simple phase oscillators. This may be 

regarded as too abstract for a model to yield plausible mechanistic accounts of neural 

and behavioural phenomena. This concern shall be addressed in the following 

sections in the light of a deeper examination of scientific models in general. 
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5-5-1. Ontology, Epistemology and Semantics of Scientific 

Models 
Models are highly relevant in many scientific contexts. However, the exact role 

models play within science is highly dependent on the context and the type of model 

employed. Analogical models, phenomenological models, theoretical models, 

mathematical models, computational models, explanatory models, idealized models, 

scale models, animal models, and didactic models are but some of the different types 

of models that can be identified in the literature (Roman & Hartmann, 2020). The 

diversity of models renders it difficult to provide an overarching definition of what 

a model is, and of its purpose. Instead, it can be elucidating to consider models from 

the perspective of their ontology, their epistemology and their semantics.  

The ontological perspective on models focuses on the question what kind of 

objects scientists are dealing with when they work with models. It is important to 

realize that a model does not need to be a theoretical or mathematical entity.  The 

class of models contains a heterogeneous collection of different objects that belong 

to different ontological kinds. Some models are physical objects such as animal 

models used in the life sciences or wooden scale models used in aeronautical 

engineering. Other models are fictional or abstract models such as imaginary atoms, 

populations, or economies. Nevertheless, in the natural sciences, most models are 

indeed equations and other forms of stylized descriptions of a target system.  

Epistemology poses the question what can be learned from models. Models serve 

several epistemological functions as they allow scientists to learn something about 

the models themselves as well as to learn something about their target systems; 

aspects of the world that are of scientific interest. Both the construction of a model 

and its manipulation afford opportunities to learn about the model (Morgan, 1999) 

and once scientists have knowledge about the model, they can transfer this 

knowledge to the target system through the derivation and validation of testable 

hypotheses.  

Finally, semantics poses the question which target systems are represented by 

models, and in which manner. Before elaborating on this motion, it is useful to note 

that models do not always represent a target system and may be an object of study 

in their own right. In particular, when models are highly abstract and lend themselves 

to the investigation of many diverse phenomena, scientists may be interested in the 

model per se rather than any specific target system they may represent. However, 

more frequently, models are used as stand-ins for a specific target system, which 

allows scientists to form hypotheses about the target; i.e., to convert truths found in 

the model into claims about the target system. According to Hughes (Hughes, 1997), 
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this involves three steps. First, elements of the target system are denoted by elements 

of the model. The precise conditions that need to be met for a model to denote (or 

represent) a target are still a matter of debate among philosophers of science (Roman 

& Hartmann, 2020) and depend on the type and intended use of a model. 

Phenomenological (descriptive) models, for instance, only represent observable 

properties of their target systems and refrain from postulating underlying 

mechanisms (Bokulich, 2009). A Gabor function may, for instance, be used as a 

phenomenological model of the receptive field of a neuron in V1 in that it captures 

the neuron’s activation profile in response to different stimuli.  Mechanistic 

(explanatory) models, on the other hand, represent both the components and the 

causal relations between these components that together constitute the mechanism 

underlying a target system (Kaplan, 2011). A model of the receptive field of a neuron 

in V1 would thus need to specify the components (such as retinal receptors, thalamic 

neurons, connection profiles etc.) and their (causally relevant) interactions in order 

to be considered mechanistic. Second, models exhibit internal properties and 

dynamics that allow researchers to demonstrate theoretical conclusions. This step 

takes place entirely within models and is thus removed from the target system. 

Finally, the results of these demonstrations are interpreted in terms of the target. The 

last step is necessary because demonstrations establish results only about the model 

itself, and only in interpreting these results can the model user draw inferences about 

the target, which can be used as hypotheses for experimental research.  

 

5-5-2. Mechanisms and Idealizations 
The central endeavour of science is to explain and understand natural 

phenomena. Though explanation and understanding are closely related, they are 

nevertheless distinct cognitive functions and this translates directly into how they 

affect scientific modelling. Models are considered to be explanatory of a target 

phenomenon if they meet the mechanism-model mapping (3M) criterion; i.e., if there 

is a mapping between elements in the model and elements in the mechanism that 

produces the target phenomenon (Kaplan, 2011). Explanatory models are thus 

mechanistic models. This implies that a) the variables in an explanatory model 

correspond to identifiable components and organizational features of the mechanism 

that produces, maintains or underlies the phenomenon and b) dependencies posited 

among variables in the model correspond to causal relations among the components 

of the target mechanism. Inclusion of model elements that take additional 

mechanism components into account as well as faithful representations of causal 

relations among mechanism components are generally considered to yield better 
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explanations of the target phenomenon (Boone & Piccinini, 2016; Kaplan, 2011). 

However, this does not necessarily improve understanding. In fact, due to humans’ 

limited cognitive capacity, understanding may be hampered by excessive 

mechanistic fidelity and detail (Elgin, 2017). Indeed, understanding benefits from 

idealizations, such as deliberate distortions and omissions, and from abstractions 

(Humphreys, 1995; Strevens, 2004, 2008; Weisberg, 2007b).  

Philosophers of science generally distinguish two major types of idealization, 

distortive idealization and minimalist idealization. Distortive idealizations involve 

simplifications that introduce deliberate distortions of the target such as point masses 

moving on frictionless planes or perfectly rational economic agents (Roman & 

Hartmann, 2020). Interestingly, distortive idealization is often not justified in terms 

of facilitating understanding and accommodating the limited capacity of our mental 

apparatus. Instead, distortive idealization may be justifiable in terms of 

computational tractability; i.e., the ability to analyze/simulate these models on 

existing hardware. Therefore, it is often argued that with advances in computational 

power and mathematical techniques, models should be de-idealized (McMullin, 

1985). It is a matter of debate, however, whether this is possible without dismantling 

the models altogether (Batterman, 2002, 2010; Rice, 2015, 2019).  

Minimalist idealization involves limiting models only to core causal factors; i.e., 

only those factors that make a difference in the occurrence of a target phenomenon 

(Strevens, 2003). In contrast to distortive idealization, minimalist idealization 

involves no commitment to de-idealization. The focus of the minimalist idealization 

approach on core causal factors roots its justification deeply in considerations of our 

restricted understanding due to limited cognitive capacity. Note that idealized 

models may still be considered mechanistic as long as they abide by the 3M criterion 

to the extent that there is a mapping between at least one element in the model and 

at least one element of the mechanism that produces the target phenomenon (Kaplan, 

2011). Indeed, a common view is that abstracting away from irrelevant details may 

be as important to mechanistic explanation as including relevant details (Boone & 

Piccinini, 2016; Piccinini & Craver, 2011). Idealization thus serves an important role 

in science and the resulting models can arguably still be considered mechanistic. 

This does not mean that the practice of developing models that exhibit a high degree 

of mechanistic fidelity and detail is not important. Indeed, it is probably best practice 

to construct multiple models for any particular target phenomenon that exhibit 

varying degrees of mechanistic fidelity and detail. This allows scientists to seek an 

appropriate trade-off between explanation and understanding (Levins, 1966; 

Odenbaugh, 2003; Weisberg, 2007a, 2015). 
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5-5-3. Models in Computational Neuroscience 
What holds true for scientific models in general, also applies to models in 

computational neuroscience. However, models in neuroscience, and biology in 

general, differ from models in disciplines such as physics and chemistry. In contrast 

to physics and chemistry, biology often deals with target systems that perform 

functions (Piccinini & Shagrir, 2014). In case of the brain, this function is arguably 

to perform information processing that allows animals (including humans) to interact 

with a dynamic environment in a meaningful way (i.e., such that the animal may 

survive and reproduce). This abstract function is typically decomposed into 

subordinate functions such as visual object recognition or the coordination of 

grasping movements that are performed by individual neural structures and 

processes that serve as targets for computational neuroscientists. This implies that 

the target systems studied by neuroscientists exhibit both, what may be termed, 

(bio)physical and functional phenomena and both need to be explained and 

understood. This requires computational neuroscientists to take a somewhat different 

perspective in constructing their models than, for example, a theoretical physicist. In 

addition to specify the physical, chemical and biological elements of neural 

structures and their causal interactions, computational neuroscientists also need to 

think about their computational and representational properties and functional 

purpose (Marr, 1982). When considering the neuronal membrane, for instance, 

computational neuroscientists need to specify physical and chemical properties such 

as voltage, conductance, capacitance, the presence of voltage- and/or chemically-

gated ion channels, their dynamics and interactions in order to provide a mechanistic 

model of action potentials. In this aspect, the work of a computational neuroscientist 

is similar to (and may draw from) that of a theoretical physicist. However, 

computational neuroscientists also need to understand how information about 

external stimuli or intrinsic states is encoded and transmitted by action potentials and 

how this is functionally relevant. By contrast, a theoretical physicist who is 

interested, for example, in vortex shedding in fluids does not need to be concerned 

with any notions of representation or computations performed by the fluid. Within 

neuroscience, only the combination of the (bio)physical and functional perspective 

provides a complete account of neural target systems. An interesting advantage is 

that this enables scientists to draw testable functional conclusions from biophysical 

models and vice versa, thus raising the informative content of their models and hence 

their testability and falsifiability (Popper, 2014). 
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5-5-4. Models in the Present Thesis  

It is now possible to evaluate the models used in the present thesis as well as the 

modelling approaches that were employed. All models in the present thesis utilized 

the Kuramoto equation, an abstract coupled oscillator model that can be used to study 

many kinds of synchronization phenomena (see Acebr et al., (2005) for a review). 

The ontology of the model is thus shared between chapters. However, Chapter 2 

differs from Chapters 3 and 4 in terms of semantics and epistemology. Specifically, 

in the second chapter, the model should be considered to be inspired by properties 

of neural systems in general rather than to represent any specific neural target system. 

Hence, in Chapter 2, the model was the object of study in its own right. In this case, 

the question whether the model is appropriate, in the sense of whether the model can 

adequately represent a particular target system, is no longer pressing. What is 

relevant is whether the model can, in principle, represent some target systems. In the 

specific case of Chapter 2, we investigated the effects of adaptive coupling strength 

and of adaptive transmission delays on the collective behaviour of weakly coupled 

oscillators. This can be relevant to any synchronization phenomenon wherein 

coupling strength and transmission delays are adaptive. This is the case for neural 

oscillations and synchrony (Pajevic et al., 2014). The results in the second chapter 

were interpreted within this context. However, the conclusions that can be drawn 

from the second chapter are conclusions about the model and not conclusions about 

the brain. They only hint at new possibilities (such as a dissociation between 

structure and function) and future avenues for brain research, and any parallels we 

have drawn with specific brain processes in that chapter are to be considered with 

caution.  

In contrast to the model in Chapter 2, the model presented in Chapter 3 and 

expanded in Chapter 4 does represent a specific target system; namely a network of 

oscillating neuronal populations in early visual cortex. However, individual neuronal 

populations were not modelled as circuits of excitatory and inhibitory neurons but 

instead by simple phase oscillators. Likewise, coupling between populations was not 

modelled in the form of synaptic interactions between neurons but instead by a 

simple (sinusoidal) coupling function. This raises the question in what sense the 

model represents neural processes in a sufficiently mechanistic manner. To answer 

this question, it is important to keep in mind the purpose of the model. The model 

was intended to represent networks of oscillating neuronal populations in early visual 

cortex. Therefore, it is possible to abstract away from the detailed neuronal and 

synaptic processes that give rise to interactions among individual populations that 

underlie the oscillations (Bartos, Vida, & Jonas, 2007; Hansel & Mato, 2003; X. J. 
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Wang & Buzsáki, 1996; Miles A. Whittington, Traub, & Jefferys, 1995; Wilson & 

Cowan, 1972), and focus instead on interactions among the oscillations at the 

population level. Whether the Kuramoto model is an appropriate choice for such an 

abstraction depends on whether it captures the synchronization behaviour of 

synaptically coupled neuronal circuits. Prior research has shown that this is indeed 

the case. It has, for instance, been shown that networks of quadratic integrate-and-

fire, Izhikevich and Hodgkin-Huxley neurons as well as Winfree-type ensembles of 

oscillators exhibited synchronization behaviour comparable to that in networks of 

Kuramoto oscillators (Bhowmik & Shanahan, 2012; Lowet et al., 2015; Politi & 

Rosenblum, 2015). The chosen model can thus generally represent neural oscillator 

networks. To specifically represent neural oscillator networks in V1, elements of the 

model need to denote elements of this particular target system. These elements are 

the retinotopic organization of neuronal populations in V1, the distance-dependence 

of horizontal coupling and the relation between the contrast in an oscillator’s 

population receptive field and their intrinsic frequencies in the gamma range. In 

Chapter 4, a learning algorithm was added to the model. The denotationally relevant 

elements of this are the eligibility of individual weights to change based on the co-

occurrence of pre- and post-synaptic activity, and reward in response to 

synchronization behaviour. All of these are based on extensive pre-existing literature 

(Chubykin, Roach, Bear, & Shuler, 2013; Diekelmann & Born, 2010; Gerstner, 

Lehmann, Liakoni, Corneil, & Brea, 2018; He et al., 2015; Izhikevich, Jay, Drive, & 

Diego, 2007; Rasch & Born, 2013) as well as electrophysiological data (Lowet et al., 

2017) in order to maximize their biological fidelity. The model thus specifies 

relevant components in early visual cortex and their interactions that are considered 

to be part of the mechanism that gives rise to neural synchrony in the gamma range. 

It further provides a mapping between elements in the model and elements in this 

mechanism. As such, the model may be considered mechanistic according to the 3M 

criterion. However, only the core causal factors were included in this specification, 

rendering the model a minimalist idealization.  

Chapters 3 and 4 then proceeded to demonstrate how synchronization behaviour 

in the model depends on stimulus conditions and training-induced changes in 

coupling. This was interpreted to reflect synchronization behaviour among neuronal 

populations in the corresponding patch of V1. Importantly, from an epistemological 

perspective, the work conducted in these chapters was not intended to provide novel 

insights regarding the synchronization behaviour of neuronal populations in V1. This 

would have been the case, if the work was primarily intended to study biophysical 

phenomena, which could have been investigated, for example, with in vivo and in 

vitro recording methods (Jehee, Ling, Swisher, van Bergen, & Tong, 2012; Lowet et 
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al., 2017; A. Schoups et al., 2001; Shibata, Watanabe, Sasaki, & Kawato, 2011; Z. 

Wang et al., 2021; Yan et al., 2014), perhaps combined with optogenetic 

manipulations (Kirchberger et al., 2021). Instead, we intended to study functional 

phenomena and, specifically, to test the hypothesis that synchronization behaviour 

in our minimalist idealization of the target system could be predictive for perception. 

In order to do so, it is important to consider both the modelling and experimentation 

conducted within these two chapters and to view this approach from a falsification 

perspective. In essence, the work in Chapters 3 and 4 rests on two premises. First, 

synchronization in the employed oscillator model reflects synchronization in V1. 

Second, synchronization in V1 has observable (i.e., testable) perceptual 

consequences. This premise is the core hypothesis of Chapters 3 and 4. These 

premises together warrant the conclusion that synchronization in the employed 

oscillator model has observable (i.e., testable) perceptual consequences and 

rejection of the conclusion (i.e., failure to empirically verify model predictions) 

means that either the first, second or both premises are false. The first premise is 

supported not only by the care taken to ensure the model is an appropriate 

representation of the relevant components and processes in V1 but also by 

independent neurophysiological data (Lowet et al., 2017). Rejection of the 

conclusion must then entail rejection specifically of the second premise and hence 

falsification of the core hypothesis of the two chapters. Experiments in both chapters 

failed to falsify this hypothesis, thus rendering it tentatively acceptable. Therefore, 

we suggest that it is reasonable to conclude that synchronization mechanisms in V1 

contribute to human perceptual performance. 

The preceding overview of the scientific practice of modelling as well as analysis 

of the work presented in the core chapters of this thesis warrant the conclusion that, 

given the respective objectives of the three chapters and their accompanying 

requirements regarding modelling approaches, the employed models can indeed be 

considered adequate for their intended purposes. 

 

5-6. Future Directions 
The work presented in the present thesis may provide the impetus for several 

further research lines. First, the present focus on function may be supplemented by 

work focusing on biophysics in order to arrive at a more holistic understanding of 

gamma oscillations and synchrony in early visual cortex. This would involve both 

empirical and modelling work. The former might entail a replication of the studies 

presented in Chapters 3 and 4 using electrophysiological recordings in monkeys. The 

latter might entail translating the current model to a spiking neuron implementation 
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wherein local (columnar) oscillations are driven by external inputs in conjunction 

with recurrent interactions among intracolumnar excitatory and inhibitory neuronal 

populations, wherein synchrony may be the result of lateral interactions between 

columns. A combination of monkey electrophysiological and behavioural results 

with detailed biophysical modelling would permit a thorough validation of the 

proposed synchrony-based information integration mechanism at the biological and 

behavioural level. Introducing a biologically realistic laminar profile to the columnar 

model would additionally allow for studying the spatio-temporal profiles of 

feedforward, lateral and feedback (e.g., attention) signals and how they interact 

during visual scene analysis (Brosch, Tschechne, & Neumann, 2016). 

The interaction between feedforward, lateral and feedback signals is also 

relevant from an extended functional perspective. While the present thesis provides 

evidence that local gamma may be relevant for figure-ground segregation, it is likely 

that it is merely one component of a larger mechanism that involves several cortical 

and subcortical structures. Another avenue for further research would therefore be 

the development of a large-scale model that leverages oscillations and synchrony to 

perform scene analysis in natural stimuli. Such a model should be able to segregate 

image regions corresponding to different objects and integrate those regions 

corresponding to the same object. This is a challenging task that requires a 

hierarchical neural architecture exhibiting feedforward, lateral and feedback 

connections. Notably, such a model should strive to unify the local synchronization 

mechanisms detailed in the present thesis with border reconstruction and filling-in 

mechanisms proposed by other groups (Poort, Self, van Vugt, Malkki, & Roelfsema, 

2016; Roelfsema, Lamme, Spekreijse, & Bosch, 2002; Self, Kooijmans, Supèr, 

Lamme, & Roelfsema, 2012). An important validation for such a model, besides 

realistic perceptual performance, would be its ability to account for 

neurophysiological observations demonstrating the necessary contributions of 

feedback for figure-ground segregation, following an initial feedforward sweep 

(Kirchberger et al., 2019; Lamme, Supèr, & Spekreijse, 1998; Supèr & Lamme, 

2007).  
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