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Introduction 

1-1. Brain Oscillations and Their Role in the Brain 

Brain oscillations refer to the periodic neural activity that characterizes the 

central nervous system (Bauer, Wilson, & MacNamara, 2022). Brain oscillations 

occur in a wide range of frequency bands (György Buzsáki, 2009; von Stein & 

Sarnthein, 2000). Oscillations can arise in individual neurons due to intrinsic 

electrochemical fluctuations (Izhikevich, 2004a), but they more commonly result 

from interactions among interconnected neuronal populations. High-frequency 

oscillations in the gamma range (above 25 Hz) are created locally through 

interactions within microcircuits (von Stein & Sarnthein, 2000; M. A. Whittington, 

Traub, Kopell, Ermentrout, & Buhl, 2000). For oscillations in intermediate and low-

frequency bands such as alpha (8-12 Hz), theta (4-8 Hz) and delta (1-4 Hz), it is 

assumed that interactions over larger distances such as among cortical areas 

(Sarnthein, Petsche, Rappelsberger, Shaw, & von Stein, 1998; Schack, Vath, 

Petsche, Geissler, & Möller, 2002; von Stein & Sarnthein, 2000) or even between 

cortical and subcortical structures play a role (Gould, Rushworth, & Nobre, 2011; 

Lopes Da Silva & Storm Van Leeuwen, 1977; von Stein & Sarnthein, 2000). For 

example, the thalamus is thought to be intrinsically involved in generating alpha 

oscillations (Hughes & Crunelli, 2005), and the septum has been shown to be 

instrumental in generating theta oscillations in the hippocampus when animals are in 

an active (encoding) state (Chee, Menard, & Dringenberg, 2015). For some specific 

high-frequency oscillations, the origin can also be subcortical, as is the case for 

hippocampal ripples (Bragin, Engel, Wilson, Fried, & Buzsáki, 1999), which play a 

role in memory consolidation (G. Buzsáki, 1996). Oscillations in different frequency 

bands may coexist or become rhythmically synchronized or nested into each other. 

In this way, a highly structured and coordinated collaboration of different frequency 

bands involving different areas, cortical layers, and subcortical structures emerges 

that could play a fundamental role in cognitive function and behaviour (Başar et al., 

2000; Kahana, 2006).  

The exact mechanisms explaining how networks give rise to oscillations in 

different frequency ranges are still a topic of debate. Nevertheless, there is ample 

evidence for the crucial role of coordinated inhibitory and excitatory neural 

interactions in the generation of networkoscillations (Buzśaki & Wang, 2012; Fries, 

2015; Wang & Buzsáki, 1996). These interactions are best understood for gamma 

oscillations. Two main models exist for cortical gamma (P. Tiesinga & Sejnowski, 

2009). According to the first model (the Pyramidal Interneuron Network Gamma 

model, or PING model), (sensory) input to excitatory pyramidal cells followed by 

inhibitory feedback drives the gamma rhythm (Hansel & Mato, 2003; M. A. 
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1 
Whittington et al., 2000; Wilson & Cowan, 1972). In particular, in conditions of high 

excitatory drive of pyramidal cells, a feedback loop is activated in which fast-spiking 

(FS) basket cells become depolarized and send inhibitory feedback to the pyramidal 

cells. In these pyramidal cells, a competition arises between the ongoing excitatory 

drive and the decaying Gamma-aminobutyric acid (GABA) inhibition. Once the 

excitation overcomes the inhibition, the pyramidal neuron can spike again and the 

cycle repeats. Hence, important factors determining the frequency of gamma are the 

level of excitatory input impinging on the pyramidal cells and the time constant of 

inhibitory decay (P. H. Tiesinga, Fellous, Salinas, José, & Sejnowski, 2004; M. A. 

Whittington et al., 2000). Gap junctions among inhibitory interneurons may play an 

additional role in the rapid spatial spread and synchronization of gamma rhythms in 

a stimulated network (Fukuda, Kosaka, Singer, & Galuske, 2006).  

Whereas in the PING model, pyramidal cells drive the gamma rhythm, in the 

Interneuron network Gamma (ING) model, the periodic activity of FS basket cells 

entrains the activity of pyramidal cells and induces periodic activity in the entire 

network through rhythmic inhibition (Cardin et al., 2009; Fellous & Sejnowski, 

2003; Hasenstaub et al., 2005; Lytton & Sejnowski, 1991; P. Tiesinga & Sejnowski, 

2009; M Vinck, Womelsdorf, & Fries, 2013). Specifically, according to the ING 

model, the synchronized activity of basket cells that results from their mutual 

inhibition, entrains the activity of pyramidal cells (Bartos, Vida, & Jonas, 2007; 

Wang & Buzsáki, 1996; Miles A. Whittington, Traub, & Jefferys, 1995). In this case, 

the timing of pyramidal cells depends on the rhythmic inhibition of basket cells, 

which itself depends on the decay time course of GABA (Miles A. Whittington et 

al., 1995).  

Gamma is ubiquitous in the visual cortex when presenting a stimulus and hence 

is important in bottom-up processing (Bastos et al., 2015; Herrmann, Munk, & 

Engel, 2004). Many experiments have additionally shown that the bottom-up gamma 

response is modulated by cognitive factors such as expectation, attention, working 

memory and other factors (Bastos et al., 2015; Engel, Fries, & Singer, 2001; P. Fries, 

Reynolds, Rorie, & Desimone, 2001). Cognitive demands generally increase gamma 

power and frequency (Fitzgibbon, Pope, MacKenzie, Clark, & Willoughby, 

2004)while simultaneously reducing alpha and beta frequencies (Engel et al., 2001). 

Alpha oscillations tend to suppress the activity of neural groups encoding non-

attended stimuli, with higher power signifying more suppression (Gould et al., 2011; 

Haegens, Nácher, Luna, Romo, & Jensen, 2011; von Stein & Sarnthein, 2000). Beta 

oscillations generate feedback in the visual system (Bastos et al., 2015) and reinforce 

the activity of neural groups encoding attended stimuli (Bastos et al., 2015). Hence, 

there are intrinsic interactions among oscillations in different frequency bands that 
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orchestrate the interplay between feedforward (FF) and feedback (FB) processing 

that enables cognition (Colgin & Moser, 2010; Fries, 2015). 

The intrinsic mechanisms of oscillations are embedded in the structure of the 

network and its nodes, and are not easily modifiable. At the same time, oscillations 

provide a means for flexibility in neural communication that may be essential in 

allowing the flexibility of cognitive functioning (Christoph von der Malsburg, 1995; 

Milanese, 1994; Pavlaslk, 1998; Treisman, 1996). Communication or information 

exchange presupposes interactions between at least two networks (oscillators) 

operating in a common (or sufficiently similar) frequency band. Figure 1.1 

schematically depicts the conditions for information exchange according to the 

communication through coherence hypothesis (CTC). In Figure 1.1A, the excitatory 

phases of the two networks are closely matched in time, so that spikes emitted by 

one network arrive within the excitatory phase of the other, and hence can influence 

the state and output of the receiving network.  In Figure 1.1B, the two networks show 

oscillations in opposite phases, so that spikes from the sending network are received 

during the inhibitory phase of the receiving network, rendering mutual 

communication difficult. Figure 1.1C illustrates cross-frequency interactions. Note 

that the emphasis on in-phase synchronization is a strict interpretation of CTC. 

According to this interpretation, interactions between neurons (or neuronal groups) 

can only occur when their phases are perfectly aligned (after taking potential 

transmission delays into account). However, most neurons (and neuronal groups) 

advance or delay their phase in response to incoming perturbations that precede or 

follow their excitatory peak, respectively (Gutkin, Ermentrout, & Reyes, 2005; 

Stiefel, Gutkin, & Sejnowski, 2008). The direction and magnitude of these phase 

adjustments are captured by phase response curves (Gutkin et al., 2005), which are 

typically sufficiently broad to allow neurons (and neuronal) groups to synchronize 

to spike trains that differ somewhat in phase (and even frequency) (Crook, 

Ermentrout, & Bower, 1998; Gutkin et al., 2005). In the present thesis, we consider 

this less strict interpretation of CTC.  
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1 

 
Figure 1.1: A schematic view reflecting the importance of phase relations according to the 

communication through coherence hypothesis. A, simultaneous excitation peaks (in-phase 

synchronization) for two neural oscillators provide a common communication window. This leads to 

the on-time arrival of input from the presynaptic to the peak excitability of the postsynaptic neuron 

(shown by pointed arrows), allowing for effective communication between the two neurons. B, anti-

phase synchronization of two neural oscillators prevents effective communication, as in this case, inputs 

from the presynaptic neuron always miss the peak excitability of the postsynaptic neuron (shown by 

round arrowheads). C, partial coherence (p:q phase-locking (Izhikevich, 2004c)) between the excitation 

peaks that at some points may lead to a certain level of communication.  

 

Regardless of the specific interpretation of CTC, and of the potential additional 

relevance of oscillations in lower frequency ranges (Schroeder & Lakatos, 2009), 

CTC emphasizes the role of gamma in selective long-range communication and 

assumes that the flexibility in long-range communication depends on dynamic 

patterns of coherence in the gamma range (Fries, 2005, 2015).  Part of the work in 

the present thesis focuses on the interplay between modifiable delays and modifiable 

coupling strength in a network of oscillators and permits interpretations in the 

context of long-range communication. Another part of the thesis focuses primarily 

on a putative role of intra-regional gamma oscillations as a mechanism for local 

information processing. Specifically, we investigated the extent to which 

synchronization patterns within a low-level visual area can contribute to the 

segregation of figure from ground in textured stimuli. The underlying idea is that 

retinotopically organized cortical microcircuits oscillating in the gamma range are 

stimulated by visual patterns and segregate into regions differentiated by levels of 

synchronization, thereby distinguishing figure from ground (Hummel, 2010; Sporns, 

Tononi, & Edelman, 1991; Christoph von der Malsburg & Buhmann, 1992). These 
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functional networks are flexibly reconstituted with every new stimulus and hence 

provide an additional illustration of how gamma oscillations contribute to the 

flexibility of cognition. These ideas can be related to Gestalt laws in perception 

(Wagemans et al., 2012), where synchronization could be considered as the 

mechanism that groups similar elements in an image and segregates different groups 

from each other. The way in which we use the concept of synchronization to study 

visual figure-ground segregation can also be linked with the larger concept of 

‘binding’ (Gray, König, Engel, & Singer, 1989a; C. von der Malsburg, 1999).  

Binding refers to brain-wide interactions that link different aspects of an object 

processed in different parts of the brain into a coherent whole, similar to the long-

range interactions hypothesized in CTC. However, in our study of visual figure-

ground segregation in textures, we study the binding among elements (and their 

segregation from others) in a more local sense (within a visual area). If the 

mechanisms we study in the context of our figure-ground segregation experiments 

were to be compared to binding, we would qualify this comparison and refer to a 

‘local’ form of binding.  

  

1-2. Modelling Neural Oscillations using the Theory of Weakly 

Coupled Oscillators 
In computational neuroscience, there are many mathematical formulations to 

model oscillations and their interactions at different spatial scales (Borisyuk, 

Borisyuk, Kazanovich, & Ivanitskii, 2002). For example, at the scale of individual 

neurons, several models capture interactions between activation and inactivation 

variables that give rise to repetitive firing (neuronal oscillations). The Hodgkin and 

Huxley model (Hodgkin, Huxley, & Katz, 1952; Nelson & Rinzel, 1998) is arguably 

the most prominent example of such models. When modelling neural populations, 

models typically capture interactions between neurons that give rise to oscillations 

at the network level. In such cases, it is common practice to refrain from modelling 

individual neurons and instead use more abstract descriptions like neural mass 

models and simple phase oscillators. This is legitimate because phase oscillator 

models may capture the oscillatory behaviour of neural networks equally well as 

models that simulate individual neurons. For instance, Bhowmik and Shanahan 

(2012) (Bhowmik & Shanahan, 2012a) replicated two studies on large-scale 

networks of oscillators whose population dynamics were modelled by the Kuramoto 

model (Jadbabaie, Motee, & Barahona, 2018; Kuramoto, 1984). The authors 

replicated a number of studies that used the Kuramoto model and replaced the model 

by (populations of) quadratic integrate-and-fire (QIF) neurons (Latham, Richmond, 
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Nelson, & Nirenberg, 2000) as well as Hodgkin-Huxley neurons (Hodgkin et al., 

1952) and showed that these changes did not significantly affect the results of the 

original studies (Bhowmik & Shanahan, 2012b). Likewise, Lowet et al., (2015) 

compared synchronization behaviour of coupled Kuramoto oscillators with that of 

coupled PING models where individual neurons were of the Izhikevich type 

(Izhikevich, 2004b). Analytical results derived from the Kuramoto model matched 

well to simulations of the spiking neuron model for a wide range of coupling and 

detuning conditions that were inspired by experimental (neurophysiological) 

observations. Taken together, these findings indicate that phase oscillator models 

capture many of the essential characteristics of the neural oscillatory processes of 

interest in the present thesis.  

In phase oscillator modelling approaches, the state of neural populations in the 

oscillatory activity is reduced to its phase. Specifically, the phase 𝜃 (𝑡) of an 

oscillator evolves according to a linear or nonlinear function 𝑓 (𝜃 (𝑡)); i.e. 𝜃̇(𝑡) =

𝑓 (𝜃 (𝑡)), and exhibits periodicity 𝑡0, 𝜃(𝑡 + 𝑡0) = 𝜃 (𝑡). The Kuramoto model is a 

popular choice in computational neuroscience for specifying 𝑓 (𝜃 (𝑡)) and has been 

successfully used to reveal under which conditions synchronization occurs among 

groups of oscillators (Acebr et al., 2005; Kuramoto, 1984; Kuramoto & Kuramoto 

Y., 1975). Kuramoto specified the phase dynamics of a group of 𝑛 weakly coupled 

oscillators as 

 
𝜃̇𝑖 = 𝜔𝑖 +

𝑘

𝑛
∑sin(𝜃𝑗 − 𝜃𝑖)

𝑛

𝑗=1

   
 

(1.1) 

where 𝜔𝑖 is the intrinsic frequency of oscillator 𝑖 and 𝑘 is the coupling strength 

between oscillators. For small coupling strengths, each oscillator evolves according 

to its intrinsic frequency, whereas for large1 coupling strengths the oscillators 

synchronize, rendering coupling strength an essential factor for predicting the state 

of synchronization in the network. The value of 𝑘 at which a transition between 

asynchronous to synchronous behaviour occurs is commonly referred to as the 

critical coupling strength. Another important factor is the mismatch between 

oscillators‘ intrinsic frequencies (their frequency detuning). Indeed, Kuramoto has 

shown that 𝑘 ≥
|𝜔i−𝜔j| 

2
 is a necessary condition for synchronization (stable phase-

relationship) between pairs of oscillators 𝑖 and 𝑗 and thus constitutes a lower bound 

                                                           

1 Note that “large” only means that coupling strength exceeds the critical value. Coupling 

always needs to be sufficiently weak such that interactions among neuronal groups only 

affect each others’ phases. 



 

 

20 
 

Introduction 

for the critical coupling strength. As such, in a network of oscillators, weaker 

coupling among oscillators or a larger frequency mismatch will reduce the likelihood 

of synchronization. The interplay between these two factors can be visualized in the 

‘Arnold tongue’ (Coombes & Bressloff, 1999; Pikovsky, Rosenblum, Self, & 2001, 

2003; P. H. Tiesinga & Sejnowski, 2010), named after Vladimir Arnold (1937-2010) 

(Adjan et al., 1965). For the simplest case, which involves two identical oscillators 

with coupling strength 𝑘 and detuning level ∆𝜔, the Arnold tongue is displayed in 

Figure 1.2. The two oscillators show synchronization only if their combination of 𝑘 

and ∆𝜔 falls inside a triangular region which traditionally is referred to as a ‘tongue’ 

(grey region).  

 

 
Figure 1.2: The Arnold tongue for a system of two identical oscillators with coupling strength 𝑘 and 

detuning level ∆𝜔. (∆𝜔0, 𝑘0) fall outside the grey area (tongue) which means this combination does 

not fulfil the synchronization conditions. On the contrary, the system would end up with synchronous 

oscillations for any combination of  ∆𝜔 and 𝑘 that falls inside the tongue (like (∆𝜔1, 𝑘1)). 

 

1-3. Oscillations in the early visual system 
Brain oscillations play a fundamental role in sensory functions involving the 

transmission and processing of neural signals that convey sensory information 

(Kandel, Schwartz, Jessell, & Siegelbaum, 2000a). In the human brain, vision is 

potentially the most complicated sensory function, as almost half of the cerebral 

cortex is dedicated to it (Longstaff & Ronczkowski, 2011). Human and non-human 

primate cortex contain on the order of 20-30 visual areas (David C. van Essen et al., 

2001; David C. van Essen & Glasser, 2018), which form intricate networks that serve 

major processing goals, such as recognizing objects and determining their location 
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(Mishkin, Ungerleider, & Macko, 1983). However, all high-level processing goals 

derive from low-level processing at the level of early visual areas, such as the 

primary and secondary visual cortices (V1 and V2). Since two chapters of the thesis 

present research related to visual processing in the early visual cortex, an 

introduction to that processing level is provided below. 

   

1-3-1. Anatomy and function of the early visual system 

Low-level visual processing starts from the stimulation of retinal receptors in the 

back of the two eyes. The retinal circuitry affords ganglion cells with round, 

antagonistic centre-surround receptive fields. These receptive fields exist in two 

varieties, either with an ON centre and an OFF surround, or with an OFF centre and 

an ON surround. ON sub-regions are best stimulated by light onset and OFF regions 

by light offset. The antagonistic nature of these sub-regions yields high sensitivity to 

contrast.  Ganglion cell axons exit the eye in a bundle that forms the optic tract to 

the lateral geniculate nucleus (LGN), from where neurons project to the primary 

visual cortex. The projection of the retinal image to the cortex follows several 

principles. First, the temporal retinae project to the ipsilateral LGN and visual cortex, 

and the nasal retinae project to the contralateral LGN and visual cortex. As a result, 

a view of the left visual hemifield from both eyes projects to the right LGN and 

visual cortex and a view of the right visual hemifield from both eyes projects to the 

left LGN and visual cortex. Second, the input from the two eyes remains segregated 

in different layers in the LGN but then combines in V1 by projecting to the same 

neurons. Furthermore, for the entire visual field, the projection is retinotopic, which 

means that neighbouring points on the retina will project to neighbouring points in 

the LGN and to neighbouring points in V1 and V2 (Kandel, Schwartz, Jessell, & 

Siegelbaum, 2000b). In addition, because of the low convergence of retino-geniculo-

cortical projections in central vision (where the density of photoreceptors is 

extremely high), and the high convergence of the retino-geniculo-cortical projections 

in peripheral vision, the amount of cortical surface per visual degree decreases 

sharply with the increase of the eccentricity (cortical magnification) (Kandel et al., 

2000b). 

One of the most remarkable transformations between LGN and area V1 is the 

change from center-surround receptive fields in LGN to Gabor-like receptive fields 

in V1 (referred to as ‘simple’ cells (Hubel & Wiesel, 1968)).  These neurons, 

therefore, are sensitive to the orientation of luminance-defined lines and edges. 

Notably, neurons with the same preferred orientation are organized in so-called 

‘orientation columns’ that span the thickness of the cortex from top to bottom (with 
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the exception of layer 4C).  However, the antagonistic sub-regions composing the 

receptive fields of simple cells in V1 render them also highly sensitive to local 

contrast and to spatial frequency. This suggests that LGN and simple cells play a role 

both in the detection of boundaries and edges of objects, but also in the processing 

of fine textures and details that define the surfaces encompassed by their boundaries 

(Kandel et al., 2000b). Whereas the brief overview of the visual system provided 

here focused on the major feed-forward projections driving responses in the early 

visual cortex, additional circuitry exists that provides the basis for contextual 

interactions. In particular, V1 neurons are laterally connected over distances of up to 

6 mm (C. D. Gilbert & Wiesel, 1983, 1989; Charles D. Gilbert & Wiesel, 1979; 

Levitt, Yoshioka, & Lund, 1994; Rockland & Lund, 1982; Yoshioka, Blasdel, Levitt, 

& Lund, 1996), providing a basis for interaction between local stimuli placed in 

neighbouring locations in the visual field (C. D. Gilbert & Wiesel, 1989; Lund, 

Angelucci, & Bressloff, 2003; Ts’o, Gilbert, & Wiesel, 1986). Similar lateral 

anatomical connectivity exists in V2 and other extrastriate visual cortical areas. 

Furthermore, the visual system contains feedback projections from higher-level to 

lower-level visual areas (D. C. van Essen, Felleman, DeYoe, Olavarria, & Knierim, 

1990).  

 

1-3-2. The debate about the functional role of gamma oscillations 

in the early visual system 

Research into the contribution of gamma oscillations to visual processing started 

in the late 1980s when Grey and Singer (Gray, König, Engel, & Singer, 1989b) 

reported strong synchronization among V1 neurons in the gamma band in response 

to visual stimulation. Subsequently, further empirical studies in cat, monkey and 

human visual cortex (Chalk et al., 2010; Friedman-Hill, Maldonado, & Gray, 2000; 

Gieselmann & Thiele, 2008; Hoogenboom, Schoffelen, Oostenveld, Parkes, & Fries, 

2006; Livingstone, Freeman, & Hubel, 1996; Ray & Maunsell, 2010; Rols, Tallon-

Baudry, Girard, Bertrand, & Bullier, 2001; Martin Vinck et al., 2010; Womelsdorf 

& Fries, 2007; Yu & Ferster, 2010) confirmed this finding. Nevertheless, whether 

gamma oscillations play a role in vision, and generally, cognitive processes, remains 

a controversial topic. The power and frequency of gamma oscillations depend on 

stimulus features, including eccentricity, motion, and contrast (Buia & Tiesinga, 

2006; Womelsdorf, Fries, Mitra, & Desimone, 2005). In recent years, the debate 

related to the usefulness of gamma has focused on the high contrast dependence of 

gamma frequency. Ray & Maunsell (2010) used dual-site recordings in conjunction 

with Gabor and grating stimuli to demonstrate contrast-dependent differences in 
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gamma frequency among different cortical locations encoding these stimuli. The 

authors argued that such spatial variance in gamma frequency across locations within 

an object runs counter the idea of binding, and therefore precludes a role of gamma 

in visual processing. Moreover, some studies have shown that gamma frequency and 

power may vary randomly (Burns, Xing, & Shapley, 2011; Xing et al., 2012) or in 

accordance with the idea of internal fluctuations (Gray & McCormick, 1996) even 

during constant exposure to static stimuli. If these temporal variations were 

independent across different visual areas, or across different locations within an area, 

then this would argue against gamma synchronization as a means of neural 

communication. Finally, variability in conduction delays may be problematic for a 

role of gamma in communication. Conduction delays have the potential to disrupt 

information transmission, because each cortical site receives many signals from 

many sources with highly distributed distances and the corresponding wide-range 

conduction delays might interfere with achieving gamma coherence and therefore 

communication (Ray & Maunsell, 2015).   

Although the above arguments, at first sight, are appealing, they lack a coherent 

theoretical framework. When gamma is considered in light of the theory of weakly 

coupled oscillators (TWCO) (Izhikevich & Kuramoto, 2005), it becomes obvious 

that the observation of frequency differences cannot be seen as an argument against 

synchronization (phase-locking) without also considering coupling (anatomical 

connectivity). This is directly demonstrated in the Arnold tongue (Coombes & 

Bressloff, 1999; Pikovsky et al., 2003; P. H. Tiesinga & Sejnowski, 2010), which 

can be analytically derived from the Kuramoto model (Acebr et al., 2005). The 

Arnold tongue shows how synchronization results from appropriate combinations of 

frequency difference and coupling. To show that this theoretical model directly 

applies to neural communication in V1, Lowet et al. (2015, 2017) (Lowet et al., 2015; 

Lowet, Roberts, Peter, Gips, & de Weerd, 2017) translated the concepts of the 

Arnold tongue to the architecture and function of V1. Specifically, they considered 

that when assessing the synchronization of gamma between two nearby recorded V1 

sites, the coupling parameter might be related to the strength of horizontal anatomical 

connections and hence distance between electrodes, and the detuning to the 

difference in gamma frequency imposed by stimulation with local stimuli at different 

contrasts. Following that idea, they manipulated the strength of coupling (anatomical 

connectivity) by changing the distance between recording sites, and the magnitude 

of detuning (gamma frequency difference) by changing the contrast difference 

between the two stimuli. Both modelling and neurophysiological results (Lowet et 

al., 2015, 2017) showed that the stimulus dependency of gamma oscillations does 

not hamper the (partial) synchronization of gamma oscillations as long as it is 
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matched by sufficiently strong coupling. Hence, frequency differences, rather than 

precluding a role of gamma in neural processing, are an inherent part of 

synchronization. Hence, the mere observation of frequency differences at cortical 

sites representing the same or different stimuli does not tell much about whether 

communication is going on between these sites. Instead, frequency differences are 

in fact part of how the visual cortex encodes information in visual images (Lowet et 

al., 2015). 

A similar reasoning holds with respect to the observation of noise (Lowet et al., 

2015, 2017). Noise is a natural phenomenon in neurophysiological data, and 

observing it at a single recording site is uninformative with respect to the question 

whether it would preclude a role of gamma synchronization in neural 

communication. If the noise were sufficiently correlated in different sites, it would 

not prevent gamma synchronization between these sites. Roberts et al. (2013) have 

shown robust gamma synchronization between V1 and V2 for different peaks in the 

gamma spectrum set by stimuli of different contrasts. Importantly, they also found 

large fluctuations over time of the spectral peaks for constant stimulation. However, 

these fluctuations correlated tightly between V1 and V2. This implies that 

communication between V1 and V2 through gamma synchronization is possible, 

which is also what they demonstrated.    

Finally, there is the issue of conduction delays. Conduction delays will depend 

on various factors, including the length, diameter and state of myelination of the 

projecting neuron’s axon, and can vary from a few milliseconds to several tens of 

milliseconds (Caminiti, Ghaziri, Galuske, Hof, & Innocenti, 2009; Stoelzel, 

Bereshpolova, Alonso, & Swadlow, 2017). Because the gamma cycle has a duration 

of about 20 ms, it could be argued that locking at an appropriate phase difference 

can overcome conduction delays between sites. For feedforward projections from 

one cortical area to the next, this strategy might be sufficient to preserve a role for 

gamma in long-range communication. For feedback connections, which may 

occasionally be extremely long-range, phase-shifting within the gamma cycle may 

be insufficient to permit communication, and communication may be more efficient 

in lower frequency bands. This reasoning fits to some extent with reports showing 

that gamma serves feedforward communication, and lower frequency ranges (alpha, 

beta) serve feedback (Bastos et al., 2015; Engel et al., 2001; P. Fries et al., 2001; 

Herrmann et al., 2004; von Stein & Sarnthein, 2000). Hence, although it is 

reasonable to state that not all conduction delays are compatible with communication 

in the gamma range, it is equally reasonable to maintain that for a subset of long-

range communications, gamma is well-suited to play this role. Furthermore, 
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conduction delays are likely too short to noticeably affect synchronization in the 

gamma range within cortical areas.  

An additional perspective on the effects of conduction delays on neural 

communication comes from recent insights into the complementary roles of grey and 

white matter plasticity (Zatorre, Fields, & Johansen-berg, 2012). Synchronization in 

the gamma band in response to long-term, repeated visual stimulation in fact plays 

an important role in eliciting both synaptic and white matter plasticity (Fregnac, 

Shulz, Thorpe, & Bienenstock, 1992; Galuske, Munk, & Singer, 2019; Jenkins, 

Merzenich, Ochs, Allard, & Guic-Robles, 1990; Kilgard & Merzenich, 1998; 

Recanzone, Merzenich, & Dinse, 1992; A. Schoups, Vogels, Qian, & Orban, 2001; 

Schuett, Bonhoeffer, & Hübener, 2001). The plastic changes in the neural networks 

are often the consequence of either changes in the synaptic strength (grey matter 

plasticity) or changes in the thickness or structure of the myelin sheath around the 

axons that in some way plays the role of an insulator (white matter plasticity). Both 

types of plasticity are activity-dependent and can increase the efficiency of signal 

transmission and information flow in neural networks. This is relevant for the issue 

of conduction delays, as an increase in myelination could be a tool to bring 

conduction delays within a range allowing the gamma band to contribute to neural 

communication.  Therefore, activity-dependent myelination may be able to resolve 

the problem of variable long-range conduction delays in reaching gamma 

synchronization among distributed neural populations (Fields, 2015; Fields & 

Bukalo, 2020; Scholz, Klein, Behrens, & Johansen-Berg, 2009). 

Taken together, the above brief review supports the idea that gamma oscillations 

are an important vehicle for communication in various cognitive tasks (Bosman et 

al., 2012; Brunet et al., 2015; Colgin & Moser, 2010; Engel, König, Kreiter, & 

Singer, 1991; Engel, Kreiter, König, & Singer, 1991; Gray et al., 1989b; Hermes, 

Miller, Wandell, & Winawer, 2015; Lowet et al., 2015; Uhlhaas, Pipa, 

Neuenschwander, Wibral, & Singer, 2011; Womelsdorf & Fries, 2007). In addition, 

TWCO is successful in bringing together disparate findings and views on the 

function of gamma oscillations. Accordingly, TWCO also constitutes the primary 

theoretical framework for hypothesis formation in the present thesis.  

 

1-4. A paradigm for inducing visual plasticity – visual 

perceptual learning 

Memory exists in declarative (explicit) and non-declarative (implicit) forms. 

Perceptual learning, a form of non-declarative memory formation, is defined as the 

experience-induced incremental process of changes in the detection and 
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discrimination of sensory attributes (Crist, Kapadia, Westheimer, & Gilbert, 1997). 

The sensory information may be visual, auditory, tactile or olfactory. In vision, a 

particularly important perceptual skill that can improve through perceptual learning 

is the ability to discriminate between a figure and its background.  

Most of the studies investigating perceptual learning in the context of figure-

ground distinction involve psychophysics experiments with stimuli in which the 

figure differs from its background with respect to simple visual features such as 

luminance (H. C. Nothdurft, 1990a; H.-C. Nothdurft, 2015) orientation (de Weerd, 

Sprague, Vandenbussche, & Orban, 1994; Hans Christoph Nothdurft, 2000; H. C. 

Nothdurft, 1985a), contrast (Hadjipapas, Lowet, Roberts, Peter, & de Weerd, 2015; 

H.-C. Nothdurft, 2015), spacing between the texture elements (H. C. Nothdurft, 

1990c), or the size of elements with respect to their spacing (Gori & Spillmann, 2010; 

H. C. Nothdurft, 1985b, 1990b) as well as combinations of these features (Gori & 

Spillmann, 2010; Julesz & Bergen, 1983; Julesz & Papathomas, 1984; WILLIAMS 

& JULESZ, 1992). 

The learning process of acquiring better skill in figure-ground segregation shows 

specific characteristics. In the process of daily training, progress is fast during the 

first few days but slows down as training becomes asymptotic and performance 

plateaus (Ahissar & Hochstein, 2004; Karni & Bertini, 1997; Lange, Lowet, Roberts, 

& Weerd, 2018). Many studies have shown that after extensive asymptotic training, 

the skill becomes specific to the stimulus and to its location in the visual field 

(Ahissar & Hochstein, 1996; Crist et al., 1997; Karni & Sagi, 1991; Lange et al., 

2018; A. A. Schoups, Vogels, & Orban, 1995; A. Schoups et al., 2001). The 

specificity to location and stimulus characteristics is in line with a contribution of 

low-level visual areas to this form of learning (Ahissar & Hochstein, 1996; Crist et 

al., 1997; Karni & Sagi, 1991; Lange et al., 2018; A. A. Schoups et al., 1995; A. 

Schoups et al., 2001). There is a debate, however, regarding the mechanisms that 

lead to the specificity of visual skills. One view, known as the ‘lowest-level theory’ 

(Karni & Bertini, 1997), suggests that learning initially requires higher-level areas 

to establish strategies for performing the task. However, during asymptotic learning, 

long-term and slow structural tuning changes would occur within lower-level areas 

(Ahissar & Hochstein, 2004; Karni & Bertini, 1997; Lange et al., 2018), which form 

the ‘memory trace’ for the skill. In other words, according to this view, plasticity in 

low-level sensory areas is a core mechanism in perceptual learning. The ‘reverse 

hierarchy hypothesis’ (Ahissar & Hochstein, 1997), on the other hand, suggests that 

perceptual learning increasingly fine-tunes the read-out from low-level sensory areas 

by high-level areas, rather than requiring plasticity within these low-level areas. 

According to this hypothesis, the skill may be embedded in a broader network that 
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enables the enhanced read-out (Ahissar & Hochstein, 1997, 2004; Hochstein & 

Ahissar, 2002; Liu & Weinshall, 2000; Rubin, Nakayama, & Shapley, 1997). There 

are also in-between views that propose the concurrent occurrence of both suggested 

processes (Crist et al., 1997; Dosher & Lu, 1998; Roelfsema, van Ooyen, & 

Watanabe, 2010).  

In the present thesis, we will design a stimulus and a perceptual learning task for 

which it is reasonable to assume that neural activity in the gamma band is involved 

in the perception of the figure, and the training-induced enhancement of figure-

ground segregation.  This will then permit the formulation of hypotheses regarding 

figure-ground segregation as well as its enhancement by training based on TWCO.  

 

1-5. Summary and thesis organization 
In this thesis, we investigated mechanisms by which neural oscillators reach or 

lose synchronization, and implications for the role of gamma synchronization in 

cortical information processing. According to TWCO, the degree of heterogeneity 

in oscillators’ intrinsic frequencies (frequency detuning), and the strength of their 

interactions (coupling strength) determine the success or failure of their 

synchronization (Pikovsky et al., 2003). There is evidence that variability in signal 

propagation delays, as well as in stimulus features, affects the heterogeneity of 

(gamma) frequencies (detuning) (Buia & Tiesinga, 2006; Fries, 2005). In this thesis, 

we investigated effects of detuning and coupling strength on model network 

synchronization and visual perception. Chapter 2 presents a study concerning the 

effect of activity-dependent (plastic) coupling changes on synchronization behaviour 

in a network of coupled phase oscillators. Coupling changes were considered not 

only in terms of synaptic plasticity but also in terms of plastic changes in conduction 

velocities (a proxy of white matter plasticity). We were interested in assessing to 

what extent experience-dependent changes in conduction velocities would interact 

with experience-dependent synaptic changes during the formation of synchronized 

clusters in a network of oscillators. Chapters 3 and 4 focused on the synchronization 

of gamma oscillations in V1 as a potential underlying mechanism of figure-ground 

segregation. In these two chapters, a phase oscillator network capturing relevant 

properties of V1 is exposed to texture stimuli, in which the figure is a group of texture 

elements showing a spatial distribution of contrast differing from that in the 

background.  Through the manipulation of figure contrast heterogeneity and spacing 

between texture elements (grid coarseness), we aim to control, respectively, detuning 

and interaction strength among local V1 neural oscillators. Differences in V1 model 

synchronization between figure and background were used to predict human figure-
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ground segregation in the same conditions as used with the V1 oscillator model. The 

fourth chapter investigates whether training-induced improvement in task 

performance is mediated by altered synchronization patterns in V1 that result from 

plasticity-induced changes in coupling. Finally, the last chapter includes a thorough 

discussion of the methodology, results and conclusions presented in this thesis.   
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Abstract 
Models of learning typically focus on synaptic plasticity. However, learning is the 

result of both synaptic and myelin plasticity. Specifically, synaptic changes often co-

occur and interact with myelin changes, leading to complex dynamic interactions 

between these processes. Here, we investigate the implications of these interactions 

for the coupling behaviour of a system of Kuramoto oscillators. To that end, we 

construct a fully connected, one-dimensional ring network of phase oscillators whose 

coupling strength (reflecting synaptic strength), as well as conduction velocity 

(reflecting myelination), are each regulated by a Hebbian learning rule. We evaluate 

the behaviour of the system in terms of structural (pairwise connection strength and 

conduction velocity) and functional connectivity (local and global synchronization 

behaviour).  

We find that adaptive myelination is able to both functionally de-couple structurally 

connected oscillators as well as to functionally couple structurally disconnected 

oscillators.  With regard to the latter, we find that for conditions in which a system 

limited to synaptic plasticity develops two distinct clusters both structurally and 

functionally, additional adaptive myelination allows for functional communication 

across these structural clusters. These results confirm that network states following 

learning may be different when myelin plasticity is considered in addition to synaptic 

plasticity, pointing towards the relevance of integrating both factors in computational 

models of learning.   

 

 

 

Synaptic and myelin plasticity are two crucial mechanisms underlying learning 

in the brain. Synaptic plasticity, which refers to activity-dependent changes of 

synaptic coupling, has been modelled intensely in recent decades. However, 

myelin plasticity, which refers to activity-dependent changes in the structure 

and thickness of myelin sheaths, has been largely absent from computational 

models of learning. These two plasticity mechanisms are likely to exhibit 

complex interactions. In this work, we suggest a simple mathematical 

framework as a first attempt to understand these interactions. Our results may 

pave the way for the development of new models of learning incorporating both 

synaptic and myelin plasticity.  
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Chapter 2 

2 
2-1. Introduction 

Synchronization, the mutual adjustment of rhythms among interacting 

oscillators (Haken, 2002; Pikovsky, Rosenblum, Self, & 2001, 2003), is a ubiquitous 

phenomenon in physics, biology, and neuroscience (El-Nashar, Zhang, Cerdeira, & 

Ibiyinka A., 2003; Gonze, Bernard, Waltermann, Kramer, & Herzel, 2005; Kumar, 

Verma, & P.Parmananda, 2017; Mörtl, Lorenz, & Hirche, 2014). In the latter, this 

phenomenon has been linked to various cognitive functions including perception 

(Hipp, Engel, & Siegel, 2011; Krause, Pörn, Lang, & Laine, 1997; Melloni et al., 

2007), attention (Burylko, Kazanovich, & Borisyuk, 2018; Doesburg, Roggeveen, 

Kitajo, & Ward, 2008; Fell, Klaver, Elger, & Fries, 2003; Kazanovich & Borisyuk, 

2017; Womelsdorf & Fries, 2007), and learning (Niyogi & English, 2009; Nowotny, 

Zhigulin, Selverston, Abarbanel, & Rabinovich, 2003; Pfister & Gerstner, 2006; 

Quiroga, Arnhold, & Grassberger, 2000; Seliger, Young, & Tsimring, 2002; Singer, 

1993; Siri, Quoy, Delord, Cessac, & Berry, 2007; Song, Miller, & Abbott, 2000; 

Timms & English, 2014; Traubab et al., 1998; Zouridakis, Baluch, Stevenson, Diaz, 

& Subramanian, 2007). Learning involves the dynamic adjustment of connections 

among neuronal populations in the form of synaptic plasticity (D. O. Hebb, 1949). 

Mutual interactions between synaptic plasticity and synchronization have been of 

particular interest in neuroscience (H. Markram, L. H. R. Lübke, M. Frotscher, & B. 

Sakmann, 1997; Kasatkin, Yanchuk, Schöll, & Nekorkin, 2017; Maistrenko, 

Lysyansky, Hauptmann, Burylko, & Tass, 2007; Niyogi & English, 2009; Nowotny 

et al., 2003; Popovych, Yanchuk, & Tass, 2013; Seliger et al., 2002; Siri et al., 2007; 

Song et al., 2000; Timms & English, 2014; Traubab et al., 1998). However, synaptic 

plasticity is not the only factor being affected by as well as affecting synchronized 

activity in oscillating neuronal populations. Myelination is also activity-dependent 

(Chang, Redmond, & Chan, 2016; Fields, 2015; McKenzie et al., 2014; Nickel & 

Gu, 2018; Purger, Gibson, & Monje, 2016; R. D. Fields, 2014; Scholz, Klein, 

Behrens, & Johansen-Berg, 2009; Yeung & Strogatz, 1999) and since it influences 

the conduction velocity of neuronal signals, it is an additional dynamic factor 

potentially affecting synchronization behaviour. Myelination is integral to the 

unimpaired functioning of the brain as it ensures that signals originating from 

presynaptic sources at various locations nevertheless arrive within short succession 

of each other at a postsynaptic target (Pajevic, Basser, & Fields, 2014). The effect of 

myelination on signal transduction is quite profound with even slight changes in its 

thickness possessing the ability to bring about significant differences in the number 

of signals received by a specific neuron within a given time interval (Dutta et al., 

2018; Pajevic et al., 2014). This, in turn, might strongly affect local and global 
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synchrony among neural groups. Therefore, it might be beneficial for the brain to 

dispose of the ability to dynamically adjust signal conduction among remote areas 

depending on the frequency with which they interact (engage in functional 

connectivity). Indeed, abundant biological evidence supports the idea of continued 

adaptive changes in myelination throughout the whole lifespan (Barrera et al., 2013; 

Fields, 2010; McKenzie et al., 2014; Nickel & Gu, 2018; Purger et al., 2016; Zatorre, 

Fields, & Johansen-berg, 2012). The fact that adaptive myelination constitutes a 

second dynamic factor in addition to synaptic plasticity, both of which depend on 

the temporal statistics of neural activations in pre- and post-synaptic neuronal 

populations (Pajevic et al., 2014), inspired us to systematically investigate their 

interactions in a system of weakly coupled oscillators. We employ a neural mass 

model to capture the phase evolution of weakly coupled neural groups as their 

connections undergo activity-dependent changes in coupling strength and 

conduction velocity.  

Specifically, we consider a system of Kuramoto oscillators (Acebr et al., 2005) 

with distance-dependent delays previously established to study the effect of synaptic 

plasticity (Timms & English, 2014). We extend this model by dynamically adjusting 

conduction velocity (and hence transmission delays) in addition to synaptic weights. 

Changes in both synaptic weight and conduction depend on a Hebbian learning rule 

(D. O. Hebb, 1949), which is based on the frequency of the coactivations among 

pairs of network oscillators. That is, both connection weights and conduction 

velocity are time-dependent parameters influencing each other and the dynamics of 

the network as a whole. 

 

2-2. Materials and Methods 

2-2-1. Weakly-coupled oscillator model 
In line with previous work (Timms & English, 2014), our network model 

consists of an ensemble of 𝑁 phase oscillators arranged along a circle; i.e. a one-

dimensional array with periodic boundary conditions. The network is fully connected 

with the exact coupling strengths between oscillators given by the real-valued 

directed connectivity matrix 𝐾. Local dynamics of each phase oscillator are 

governed by a Kuramoto model with transmission delays 

 



 

 

45 

 

Chapter 2 

2 

{
 
 

 
 𝜑̇𝑖(𝑡) =  𝜔𝑖 + 

1

𝑁
∑𝐾𝑖𝑗  (t) 𝑠𝑖𝑛 (𝜑𝑗(𝑡 − 𝝉𝒊𝒋) −  𝜑𝑖(𝑡)) ,                     𝜏𝑖𝑗 =

𝑑𝑖𝑗

𝑣
 

𝑁

𝑗=1

𝜑̇𝑖(𝑡) =  𝜔𝑖 + 
1

𝑁
∑𝐾𝑖𝑗  (t) 𝑠𝑖𝑛 (𝜑𝑗(𝑡 − 𝝉𝒊𝒋 (𝒕)) −  𝜑𝑖(𝑡)),   𝜏𝑖𝑗  (t) =

𝑑𝑖𝑗

𝑣𝑖𝑗  (𝑡)

𝑁

𝑗=1

 (2.1) 

 

where 𝜑𝑖(𝑡) ∈ [0,2𝜋) denotes the phase of oscillator 𝑖 (𝑖 = 1,… ,𝑁) at time 𝑡, 𝜔𝑖 is 

its intrinsic frequency and 𝐾𝑖𝑗 reflects the strength of the connection from the 𝑗𝑡ℎ to 

the 𝑖𝑡ℎ oscillator. The transmission delay from 𝑗 to 𝑖 is static (𝜏𝑖𝑗) if conduction 

velocity is constant (𝑣), or time-dependent (𝜏𝑖𝑗  (t)) if conduction velocity is dynamic 

(𝑣𝑖𝑗 (𝑡), see Equation 2.4). Finally, 𝑑𝑖𝑗 is the distance between two oscillators. Due 

to periodic boundary conditions, this distance can be defined as 

 

 𝑑𝑖𝑗 = 
𝐿

𝑁
min(|𝑖 − 𝑗|, 𝑁 − |𝑖 − 𝑗|) (2.2) 

 

with 𝐿 controlling the circumference of the circle. For the case of static delays, 

we define a coupling delay constant 𝑇 =
𝐿

𝑣
 as the time needed for signals travelling 

at a velocity 𝑣 to revolve once around the circle (Timms & English, 2014).  

The coupling strength 𝐾𝑖𝑗 between oscillators 𝑖 and 𝑗 varies dynamically 

according to a form of Hebbian learning where the growth or decay of coupling 

strengths depend on the phase offset between oscillators (Bi & Poo, 1998; 

Wittenberg & Wang, 2006) 

 

{
 

 𝐾̇𝑖𝑗(𝑡) =  𝜀𝑠 [𝛼𝑠 𝑐𝑜𝑠 (𝜑𝑖(𝑡) −  𝜑𝑗(𝑡 −  𝜏𝑖𝑗)) −  𝐾𝑖𝑗(𝑡)] ,                    𝜏𝑖𝑗 =
𝑑𝑖𝑗

𝑣
   

𝐾̇𝑖𝑗(𝑡) =  𝜀𝑠 [𝛼𝑠 𝑐𝑜𝑠 (𝜑𝑖(𝑡) −  𝜑𝑗(𝑡 −  𝜏𝑖𝑗  (𝑡))) −  𝐾𝑖𝑗(𝑡)] ,   𝜏𝑖𝑗(t) =
𝑑𝑖𝑗

𝑣𝑖𝑗(𝑡)
.
 (2.3) 

 

In Equation 2.3, ε𝑠 and 𝛼𝑠 respectively control the learning rate and learning 

enhancement factor of the coupling strength. The learning enhancement factor 𝛼𝑠 

determines the maximum and minimum coupling strength (Niyogi & English, 2009) 

and ensures that these remain sufficiently weak.  

For the case in which conduction velocities between pairs of oscillators vary 

dynamically, conduction velocity is no longer identical for all pairs of oscillators but 

varies according to a second Hebbian learning process 
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 𝑣̇𝑖𝑗(𝑡) =  ε𝑣  [𝛼𝑣  𝑐𝑜𝑠 (𝜑𝑖(𝑡) −  𝜑𝑗(𝑡 −  𝜏𝑖𝑗  (𝑡))) −  𝑣𝑖𝑗(𝑡)] .  (2.4) 

  

Here, ε𝑣 and 𝛼𝑣   are, respectively, the learning rate and learning enhancement factor 

of the conduction velocity. Note that conduction velocity was bounded from below 

because 𝑣𝑖𝑗(𝑡) may otherwise grow too small leading to delays approaching infinity.  

We chose to bound 𝑣𝑖𝑗(𝑡) at a value of 0.1 as this corresponds to 𝑇 = 10 in the static 

case if all pairwise conduction velocities decay to this value. 

 

2-2-2. Quantitative analyses  

2-2-2-1. Global synchronization behaviour 

In a network of globally coupled oscillators arranged along a ring with distance-

dependent delays, the distribution of phases may show propagating structures, static 

phase increments from one oscillator to the next, referred to as coherent-wave modes 

(Timms & English, 2014; Zanette, 2000). Phase offsets with respect to a reference 

oscillator (e.g. the first) may exhibit periodicity at integer (or half-integer, see below) 

multiples of 2𝜋. Frequency synchronization, identical frequencies but distributed 

phases, in such a system, can thus be characterized in terms of these multiples of 2𝜋 

which are referred to as coherent-wave modes (denoted by 𝑚). However, for the 

system employed here, identification of coherent-wave mode values is complicated 

by the fact that either a single or two clusters of synchronized oscillators may form. 

We refer to the formation of a single cluster as single-cluster synchronization and to 

the formation of two (anti-phase) clusters as double-cluster synchronization. To 

overcome this problem, we measure both in-phase synchronization (𝑟1) and anti-

phase synchronization (𝑟2). In-phase synchronization is characterized by the 

generalized order parameter (𝑟1) (Acebr et al., 2005; Dénes, Sándor, & Néda, 2019) 

 

 

𝑟1𝑒
𝑖𝜓 (𝑡) = 

1

𝑁
 ∑𝑒𝑖𝜑𝑗

∗ (𝑡)

𝑁

𝑗=1

 
 

(2.5) 

 

where 𝜓 (𝑡) is the mean phase at time 𝑡 (Acebr et al., 2005) and 𝜑𝑗
∗ is the phase of 

oscillator 𝑗 corrected for phase increments around the ring determined by the value 

of the mode 𝑚 (Schröder, Timme, & Witthaut, 2017) 

 

 
𝜑𝑗
∗ (𝑡) =  𝜑𝑗(𝑡) ± 2𝜋𝑚(𝑗 − 1) 𝑁⁄ . 

 

(2.6) 
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Anti-phase synchronization is given by (Niyogi & English, 2009; Timms & English, 

2014) 

 

 𝑟2 = |𝑟
′ − 𝑟1| 

where 

𝑟′𝑒𝑖𝜓
′ (𝑡) = 

1

𝑁
 ∑𝑒2𝑖𝜑𝑗

∗ (𝑡)

𝑁

𝑗=1

. 

 

(2.7) 

The term 𝑟′ measures in-phase and anti-phase synchronization by stretching the 

range from zero to π around the full circle. Hence, this measure needs to be adjusted 

for in-phase synchronization to obtain a measure of anti-phase synchronization (𝑟2). 

In accordance with previous work (Timms & English, 2014) we used a threshold on 

𝑟2 to determine the presence of a second cluster (here 𝑟2 ≥ 0.15). This implies that 

a second (smaller) cluster may exist even though 𝑟1 > 𝑟2. 

To determine the mode of the system and whether it exhibits single- or double-cluster 

synchronization in any particular simulation, we compute both r1 and r2 for a range 

of candidate mode values (𝑚 ∈ {0,0.5,1,1.5,2}) and select the mode that maximizes 

the global phase-coherence [max  (𝑟1, 𝑟2)]. Please note that for double-cluster 

synchronization 𝑚 may take on half-integer values (Timms & English, 2014).  This 

procedure, while able to detect double-clustered states when clusters are of unequal 

size, can only do so if the phase-offset between clusters equals 𝜋. This does not imply 

that two clusters may not exhibit smaller phase-offsets.  

 

2-2-2-2. Pairwise connectivity 

In addition to the global synchronization behaviour of the system, we also 

examine its local (i.e. pairwise) structural and functional connectivity. Structural 

connectivity is straightforwardly given by the coupling strength matrix 𝐾 ranging 

from −𝛼𝑠 to 𝛼𝑠. To measure functional connectivity, we introduce a coherence 

matrix 𝐷 whose elements are given by 

 

 

𝐷𝑖𝑗 = 
1

∆𝑡
∫ cos(𝜑𝑖(𝑡) − 𝜑𝑗(𝑡) ) 𝑑𝑡

𝑡𝑟+ ∆𝑡

𝑡𝑟

. 
 

(2.8) 

 

Here, 𝑡𝑟 marks a time-point after which the system no longer experiences major 

changes in coupling strength and/or conduction velocity. 𝐷𝑖𝑗 ranges from −1 to 1 
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with a value of 1 indicating that two nodes are in phase (over a time interval ∆𝑡) 

whereas a value of −1 indicates that two nodes are in anti-phase. 

 

2-2-2-3. Numerical simulations 

We analyze the system in terms of its global synchronization behaviour as well 

as in terms of pairwise structural and functional connectivity for three different 

cases: I) dynamic coupling strength and static conduction velocity; (c.f. (Timms & 

English, 2014)) II) static coupling strength and dynamic conduction velocity; and 

III) dynamic coupling strength and dynamic conduction velocity. For the first 

scenario, the system is evaluated for a range of combinations of parameters 𝜀𝑠 and 

𝑇. For the latter two scenarios, 𝜀𝑠 is fixed at either 0 (no learning, scenario II) or 0.1 

(fast learning, scenario III) and the behaviour is observed while the parameters ε𝑣 

and 𝛼𝑣 are varied. The long-term behaviour of the system is characterized by its 

coherent-wave mode of synchronization and its cluster formation. For notational 

convenience, we denote each final state{m,c}, where m indicates the (half-)integer 

value of the coherent-wave mode and c indicates whether the network exhibits single 

(s) or double (d) cluster synchronization. For example, state{1,d} describes a system 

exhibiting double cluster synchronization and a mode of 1. 

For all simulations, intrinsic frequencies 𝜔𝑖 are drawn from a normal distribution 

ℵ (1,0.01) and initial phases are drawn from a uniform distribution in the range 

[0,2𝜋). All simulations start from a network with coupling strengths fixed at their 

maximum value (𝛼𝑠 = 1) which exceeds the critical coupling strength and supports 

interactions among oscillators. Furthermore, for those simulations for which velocity 

changes dynamically, conduction velocities are initialized as 𝑣𝑖𝑗  (𝑡 = 0) = 0.14, 

which means that initial coupling delays correspond to the scenario where the delay 

constant (𝑇) is ~7 for a ring length 𝐿 = 1.  Parameters characterizing the network 

are summarized in Table 1 while those characterizing the three simulated scenarios 

are summarized in Table 2. 

  

Network parameter value 

𝑵 100 

𝑳 1 

Table 2.1: Network parameters 
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Scenario parameter value 

 

Dynamic coupling strengths, static conduction velocities 

𝛼𝑠 1 

ε𝑣 0 

𝛼𝑣 0 

Static coupling strengths, dynamic conduction velocities 
ε𝑠 0 

𝛼𝑠 1 

Dynamic coupling strengths and conduction velocities 
ε𝑠 0.1 

𝛼𝑠 1 

Table 1.2: Simulation parameters 

 

The model is implemented in MATLAB (R2016a) and integrated for 20000 time 

steps using the forward Euler method with a step size 𝑑𝑡 = 0.01 in arbitrary units of 

time. To accommodate for delays, we always first simulate 1000 time steps during 

which oscillators are non-interacting. Subsequently, the time delay interaction is 

switched on to simulate the 19000 time steps of interest. 

We perform 50 simulations with different randomizations of initial conditions 

for each parameter combination in every scenario. We select the most frequently 

observed combination of coherent-wave mode of synchronization and cluster-

formation (single vs double) as the characteristic final state of a given parameter 

combination. Whenever the characteristic state is observed in less than 70% of the 

simulations, we additionally identify a secondary state as the one occurring for at 

least 50% of the remaining simulations (i.e. of those not classified as the 

characteristic state). In this case, we regard the system as bistable. If no secondary 

state can be unambiguously identified and individual simulations yield different 

states, we regard the system as multistable. This procedure assumes that states are 

discernible for individual simulations; that is, they are indeed characterizable in 

terms of a unique combination of coherent-wave mode of synchronization and 

cluster-formation. This assumption may be violated if the system remains incoherent 

or by the formation of chimera-like states; i.e. different subsets of oscillators exhibit 

distinct 10 behaviours (Abrams & Strogatz, 2004; Breakspear, Heitmann, & 

Daffertshofer, 2010; Kotwal, Jiang, & Abrams, 2017; Laing, 2009; Yao, Huang, Lai, 

& Zheng, 2013). In this case, we regard the system as erratic. 
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2-3. Results 

2-3-1. Scenario I: dynamic coupling strengths, static conduction 

velocities 

We first examined learning in the context of static conduction velocity. For this 

purpose, we explored a parameter space defined by the delay constant 𝑇 and the 

learning rate 𝜀𝑠. Most parameter settings yield highly consistent results. However, 

some regions of parameter space exhibit diverse results. This is especially prevalent 

at borders between adjacent regions and likely reflects transitions in mode 

synchronization, cluster-formation, or both. At borders, the system may be 

multistable and the state observed for any given simulation depends on initial 

conditions. The two parameters affect the behaviour of the system in different, albeit 

interacting, ways. The learning rate mainly affects cluster-formation, with slow 

learning leading to the emergence of a single cluster while fast learning leads to the 

formation of two clusters (see Figure 2.1a). In the former case, changes in coupling 

strength between pairs of oscillators occur at a slower rate than synchronization. That 

is, the system synchronizes before large initial phase offsets can decrease coupling. 

In the latter case, changes in coupling strength between pairs of oscillators occur at 

a faster rate than synchronization. That is, initially large phase offsets between pairs 

of oscillators quickly drive their coupling strength to negative values, thus 

exacerbating their offset until they are separated by exactly 𝜋. 

The delay constant interacts with learning rate as increasing delays allow for the 

formation of two clusters at progressively lower learning rates (Nakamura, 

Tominaga, & Munakata, 1994). However, it mainly affects mode synchronization 

with longer delays leading to larger 𝑚 (see Figure 2.1). Specifically, for non-zero 

values, phases distribute around the circle such that the offset between each pair of 

neighbouring oscillators is 
2𝜋

𝑁
𝑚 (within a cluster) or 

2𝜋

𝑁
𝑚 + 𝜋 (across clusters). Note 

that for the emergence of two clusters, half-integer values can be obtained (Figure 

2.1d, f). This is in line with previous observations (Timms & English, 2014) that 

half-integer values are the result of the two clusters interconnecting. Oscillator pairs 

within a cluster “see” each other in phase when their phase offsets are matched by 

their delays. That is, due to delays, from the perspective of each oscillator in a cluster, 

the other oscillators within the same cluster appear in-phase whereas to an external 

observer they may appear out of phase. For the emergence of a single cluster, there 

is an exception to this observation for oscillator pairs with a phase offset around 
𝜋

2
. 

For these values, the trailing oscillator sees the leading oscillator in phase. However, 

the leading oscillator sees the trailing one in anti-phase. This asymmetry affects the 
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coupling strength such that the structural connection from the leading to the trailing 

oscillator is positive while that from the trailing to the leading is negative. The 

magnitude of their coupling strength is otherwise equal. This leads to one or two 

stripes of negative values in the structural connectivity matrix for modes 𝑚 = 1 and 

𝑚 = 2, respectively (see Figure 2.2g,h). Interestingly, the structural connectivity 

matrices emerging for double-cluster formation also exhibit stripes for non-zero 

modes (Figure 2.2d-f). The number of these stripes in each case is twice its 

corresponding mode value 𝑚. According to the Hebbian learning rule (Equation 2.4), 

coupling strengths between every two oscillators 𝑖 and 𝑗 approach a stable value 

given by 𝐾𝑖𝑗 = 𝛼𝑠𝑐𝑜𝑠(𝜑𝑖 − 𝜑𝑗). For phase differences of (2𝑛 − 1)
𝜋

2
 this entails that 

the connection weights between the corresponding oscillators decay to zero.  Since 

the mode determines the repetition of phase offsets equal to (2𝑛 − 1)
𝜋

2
 for each 

oscillator, it also determines the number of stripes in the structural connectivity 

matrices. 

The emergence of stripes is also apparent in functional connectivity matrices 

(Figure 2.3). Here, stripes are symmetric, however, since functional connectivity is 

undirected. Therefore, twice as many stripes can be observed in functional 

connectivity matrices as compared to structural connectivity matrices. Furthermore, 

the exact location of stripes in the structural and functional connectivity matrices are 

different because temporal delays are not considered in the computation of pairwise 

correlations.  

 

 

|∆
𝛗
𝟏
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Figure 2.1: Arrangement of phase offsets with respect to the first oscillator when coupling 

strength is dynamic and conduction velocity is static. Panel a) shows the colour-coded state 

(coherent-wave mode of synchronization and cluster-formation) for each point in the parameter space 

defined by 𝑻 and 𝜺𝒔. Colours indicate the characteristic states. Furthermore, coloured disks indicate 

secondary states (bistability). A white disk indicates multistability. Panel b) shows absolute phase 

offsets between every oscillator and the first (|∆𝝋𝟏,𝒊|) for state{0,s}. All offsets are close to zero. Panel 

c) shows |∆𝝋𝟏,𝒊| for the state{0,d}. Phase offsets are close to zero for oscillators falling into the same 

cluster as the first and close to π (half period) for those falling into the opposite cluster. Panel d) shows 

|∆𝝋𝟏,𝒊| for the state{0.5,d}. Phase offsets exhibit one half-cycle; i.e. oscillators falling into the same 

cluster as the first increases with distance, whereas those in the opposite cluster decrease with distance. 

Panel e) shows |∆𝝋𝟏,𝒊| for the state{1,d}. Phase offsets exhibit one full cycle with offsets for oscillators 

falling into the same cluster as the first mirroring those of oscillators in the opposite cluster. Panel f) 

shows |∆𝝋𝟏,𝒊| for the state{1.5,d}. Phase offsets exhibit one and a half cycles with offsets for oscillators 

falling into the same cluster as the first mirroring those of oscillators in the opposite cluster. Panel g) 

shows |∆𝝋𝟏,𝒊| for the state{1,s}. Phase offsets exhibit one full cycle. Panel h) shows |∆𝝋𝟏,𝒊| for the 

state{2,s}. Phase offsets exhibit two full cycles passed by a single cluster. All phase offsets are averaged 

over the last 100 time steps. Phase offsets for each parameter combination are shown in supplementary 

Figure S2.1b. 

 

 
 

Figure 2.2: Pairwise structural connectivity emerging in the context of dynamic coupling and 

static conduction. Panel a) shows the colour-coded state of coherent-wave mode of synchronization 
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and cluster-formation observed at each point in the parameter space defined by 𝑻 and 𝜺𝒔. As in Figure 

2.1, the secondary state (bistability) is marked with coloured disks whereas white indicates 

multistability. Panel b) shows the structural connectivity matrix of the network for the state{0,s}. The 

network largely preserves the initial connectivity pattern. Panel c) shows structural connectivity of the 

network for the state{0,d}. Pairwise connection weights are close to +𝜶𝒔 and −𝜶𝒔  for oscillator pairs 

belonging to the same or distinct clusters, respectively.  Panels d-f) show structural connectivity 

matrices of the network for the state{0.5,d} (panel d), state{1,d} (panel e), state{1.5,d} (panel f). As 

before, coupling weights have approached  +𝜶𝒔  for within cluster connections and −𝜶𝒔 for between 

cluster connections. However, based on the mode synchronization, 1, 2 and 3 stripes of near-zero 

connection weights have formed in panels d, e and f, respectively. Panel g) shows the structural 

connectivity matrix of the network for the state{1,s}. All possible phase offsets ((𝒏 − 𝟏)(𝟐𝝅 𝑵⁄ )) with 

respect to the first oscillator can be observed. Panel h) shows the structural connectivity matrix for a 

network given the state{2,s}. The same observations as for panel g can be made, with the difference 

that phase differences are repeated. The structural connectivity matrices are averaged over the last 100 

time steps of the simulation. Structural connectivity matrices for each parameter combination are shown 

in supplementary Figure S2.1c.   

   

 
 

Figure 2.3:  Pairwise functional connectivity among oscillators emerging when coupling strength 

is dynamic and conduction is static. Panel a) shows the colour-coded state of coherent-wave mode 

of synchronization and cluster-formation observed at each point in the parameter space defined by 𝑻 

and 𝜺𝒔. Colour coding is the same as in Figure 2.1. Panel b) shows the functional connectivity matrix 

of the network for the state{0,s}. The globally correlated functional connectivity matrix resembles the 

structural connectivity matrix. Panel c) shows the functional connectivity matrix of a network for the 
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state{0,d}. Panels d-f) show functional connectivity matrices of networks for the state{1.5,d} (panel 

d), state{1,d} (panel e), state{1.5,d} (panel f). The functional pairwise correlations are associated with 

the cluster-formation of oscillators as they are 1 or close to 1 for intra-cluster correlations and are −1 

or close to −1 for between cluster correlations. Based on the mode of synchronization, 2, 4 and 6 stripes 

of zero or very weak correlations in panel d, e and f are formed, respectively. Panel g) shows the 

functional connectivity matrix of a network for the state{1,s}. Pairwise functional connectivity values 

are 1 for the neighbouring oscillators and decrease to  −1 as a function of distance. Panel h) shows the 

functional connectivity matrix of the network for the state{2,s}. A similar pattern as for panel g 

manifests, but reflecting two complete revolutions of phase offsets around the circle. The elements of 

correlation matrices were computed over the last 100 time steps of the simulation. Functional 

connectivity matrices for each parameter combination are shown in supplementary Figure S2.1d.  

 

2-3-2. Scenario II: static coupling strengths, dynamic conduction 

velocities  
Next, we examine the effects of dynamic conduction velocity on a network with 

static connection weights to establish the unique effects of adaptive myelination on 

functional connectivity among phase oscillators. To that end, we vary the learning 

rate 𝜀𝑣 and enhancement factor 𝛼𝑣 controlling dynamic changes in conduction 

velocity. Note that we no longer vary the coupling delay constant T since delays 

depend on conduction. Rather, we initialize conduction velocity among oscillator 

pairs such that 𝑣𝑖𝑗(𝑡 = 0) = 0.14, which means that the initial coupling delays 

correspond to the case where 𝑇 ≅7. These parameter settings correspond to a system 

exhibiting state{1,s} in simulations where conduction remains static. For dynamic 

conduction velocity, state{1,s} is still observed most frequently irrespective of which 

values have been chosen for 𝜀𝑣 and 𝛼𝑣. However, within a contiguous region of 

parameter space, the system exhibits state{2,d} as its secondary state, which is 

indicative of bistability (Figure 2.4a). Furthermore, at the borders of this region, the 

system exhibits highly variable behaviour, indicative of multistability.  

Figure 2.4 shows absolute phase offsets of all oscillators with respect to the first. 

Remarkably, for state{2,d} phases cluster around 0 and 𝜋 with sharp transitions 

between the two rather than smooth transitions. In fact, dynamic conduction velocity 

pushes phase offsets to either 0 or 𝜋 which brings about a transformation from 

state{2,s} to state{2,d}. This localized clustering leads to highly structured clusters, 

where an oscillator’s affiliation with a cluster is determined by its location along the 

ring rather than by randomly distributed initial phase values. Interestingly, 

conduction matrices emerging for state{2,d}  suggest that the system exhibits four 

distinct clusters rather than two (see Figure 2.5d); one cluster for each peak and 

trough of the phase offsets (cf. Figure 2.4d). That is, signals are conducted fast 

among oscillators within a peak (trough) and slow among oscillators across peaks 
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(troughs). This is the result of initial conditions. With conduction velocity being 

equal, short distances among oscillators within a peak (trough) lead to short delays, 

whereas long distances across peaks (troughs) lead to long delays. In this case, the 

pressure to synchronize peaks (troughs) is most easily met when signals are 

transmitted instantaneously within a peak (trough) or with a delay matching exactly 

one period across peaks (troughs). Functionally, these four clusters are not 

discernible (see Figure 2.6d) since oscillators falling into both peaks (troughs) 

exhibit no phase-offset with respect to each other. 

 

 
 

Figure 2.4: Phase offsets with respect to the first oscillator when coupling strength is static and 

conduction is dynamic. Panel a) shows the colour-coded state of coherent-wave mode of 

synchronization and cluster-formation observed at each point in the parameter space defined by 𝜺𝒗 and 

𝜶𝒗. Colour coding is the same as in Figure 2.1. The entire parameter space is primarily characterized 

by state{1,s}. However, a wide region of parameter space exhibits a secondary state defined by a mode 

of 2 and the formation of two clusters. Panel b) shows |∆𝝋𝟏,𝒊|for state{1,s}. Phase offsets exhibit one 

full cycle. Panel c) shows |∆𝝋𝟏,𝒊| for state{2,s}. Phase offsets exhibit two full cycles. Panel d) shows 

|∆𝝋𝟏,𝒊|for state{2,d}. Phase offsets are largely pushed to either 𝟎 or 𝝅, depending on cluster affiliation. 
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All phase offsets are averaged over the last 100 time steps. Phase offsets for each parameter 

combination are shown in supplementary Figure S2.2b. 

 

 
Figure 2.5: Conduction velocity matrices when coupling strength is static and conduction is 

dynamic. Panel a) shows the colour-coded state of coherent-wave mode of synchronization and 

cluster-formation observed at each point in the parameter space defined by 𝜺𝒗 and 𝜶𝒗. Colour coding 

is the same as in Figure 2.1.  Panels b and c) show the pairwise conduction velocity matrices for 

state{1,s} (reflecting one full cycle of phase offsets), and state{2,s} (reflecting two full cycles of phase 

offsets), respectively. Panel d) shows the pairwise conduction velocity matrices for state{2,d}. 

Conduction velocities between the intra--cluster oscillators are noticeably higher than those between 

other pairs. The conduction velocity matrices are averaged over the last 100 time steps of the simulation. 

Conduction velocity matrices for each parameter combination are shown in supplementary Figure 

S2.2c. 
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Figure 2.6: Pairwise functional connectivity among oscillators when coupling strength is static 

and conduction is dynamic. Panel a) shows the colour-coded state of coherent-wave mode of 

synchronization and cluster-formation observed at each point in the parameter space defined by 𝜺𝒗 and 

𝜶𝒗. Colour coding is the same as in Figure 2.1. Panel b) shows a representative functional connectivity 

matrix of the network for state{1,s}. The matrix reflects a full cycle of phase offsets. Panel c) shows a 

functional connectivity matrix of the network for state{1,s}. Two complete revolutions of the relative 

phase offsets are exhibited. Panel d) shows a functional connectivity matrix of the network for 

state{2,d}. A vast majority of the pairwise correlations reflect either in-phase or anti-phase relations 

among oscillators. The correlation matrices were computed over the last 100 time steps of the 

simulation. Functional connectivity matrices for each parameter combination are shown in 

supplementary Figure S2.2d. 
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2-3-3. Scenario III: dynamic coupling strengths and conduction 

velocities 
Having explored the effects of dynamic structural connectivity and dynamic 

conduction velocity in isolation, we next investigate their interaction. Dynamic 

changes in connection strength and conduction velocity constitute the most 

biologically relevant scenario. In this simulation, initial values of the conduction 

velocity matrix 𝑣 were again chosen such that they resemble the condition where 

𝑇 ≅7. Furthermore, the learning rate 𝜀𝑠 was fixed at 0.1 (fast learning). Recall that 

this configuration produces state{1,d} for static conduction velocity (cf. Figure 2.1a). 

As for scenario II, we explore the parameter space defined by the enhancement factor 

𝛼𝑣 and the learning rate 𝜀𝑣 controlling dynamic conduction velocity. Figure 2.7a 

reveals that the behaviour of the system is mainly affected by the enhancement factor 

𝛼𝑣, which determines the maximum conduction velocity. If the learning rate 𝜀𝑣 is 

small, conduction velocity changes too slowly to have any discernible influence on 

the behaviour of the system and state{1,d} is preserved for all values of 𝛼𝑣. Once the 

conduction learning rate 𝜀𝑣 is sufficiently large, however, the behaviour of the 

system is entirely determined by 𝛼𝑣. Note that in this case, the rate of change in 

conduction velocity may be still a factor of 10 smaller than the learning rate 

controlling synaptic plasticity. 

For values of 𝛼𝑣 < 0.14, conduction necessarily decays towards values lower 

than initialization. This produces a situation essentially equivalent to fast learning 

and very long delays (𝑇 ≥ 9) in scenario I and leads to the emergence of state{1.5,d} 

(cf. Figure 2.1f). For 𝛼𝑣 ≅ 0.14, the system frequently exhibits erratic behaviour. To 

account for the system’s behaviour as 𝛼𝑣 increases, it is essential to consider the fact 

that both coupling strengths and conduction velocities evolve according to the same 

Hebbian learning rule with the sole difference that conduction velocities are bounded 

from below at 0.1. This implies that whenever the coupling strength between two 

oscillators tends towards +𝛼𝑠, conduction velocity between the two increases 

(towards 𝛼𝑣). In contrast, whenever the coupling strength between two oscillators 

tends towards −𝛼𝑠, coupling velocity between the two decreases (towards 0.1).  This 

implies that coupling strength and conduction velocity act agonistically for 

oscillators within the same cluster; these oscillators are both positively coupled and 

exhibit fast conduction velocity (short delays). However, for oscillators in separate 

clusters, coupling strength and conduction velocity act antagonistically. Negative 

coupling is paired with slow conduction velocity (long delays). For intermediate 

values of 𝛼𝑣, oscillators in different clusters ‘see’ each other in anti-phase for phase 

offsets smaller than 𝜋. They thus form two clusters whose offset is less than half a 
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period (depending on the exact offset, our procedure may label them as single or 

double cluster; ‘see’ boundary between red and blue regions in Figure 2.7). For large 

values of 𝛼𝑣, oscillators in different clusters ‘see’ each other in anti-phase for phase 

offsets close to zero (Figure 2.7d). This allows them to form a single functional 

cluster (Figure 2.10d) even though they may be structurally segregated, both in terms 

of coupling strength (Figure 2.8d) and conduction velocity (Figure 2.9d). The system 

can thus exhibit a wide array of states not observed when considering dynamic 

coupling strength alone.  

 

 
 

Figure 2.7: Phase offsets with respect to the first oscillator when coupling strength and conduction 

velocity are both dynamic. Panel a) shows the colour-coded state of coherent-wave mode of 

synchronization and cluster-formation observed at each point in the parameter space defined by 𝜺𝒗 and 

𝜶𝒗. Colour coding is the same as in Figure 2.1. Grey circles mark erratic states. Panel b) shows |∆𝝋𝟏,𝒊| 

for state{1,d}. Panel c) shows |∆𝝋𝟏,𝒊| for state{1.5,d}. Phase offsets exhibit one and a half cycles Panel 

d) shows |∆𝝋𝟏,𝒊| for state{0,s}. Aside from a few exceptions, offsets are generally close to zero. Panel 

e) shows |∆𝝋𝟏,𝒊| for state{0,d}. While our procedure identified this example as 0-mode 

synchronization, visually it appears to not fit any state particularly well.  Phase offsets were averaged 

over the last 100 time steps. Phase offsets for each parameter combination are shown in supplementary 

Figure S2.3b.  
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Figure 2.8: Pairwise structural connectivity emerging when coupling strength and conduction 

velocity are both dynamic. Panel a) shows the colour-coded state of coherent-wave mode of 

synchronization and cluster-formation observed at each point in the parameter space defined by 𝜺𝒗 and 

𝜶𝒗. Colour coding is the same as in Figure 1 (grey disks as in Figure 2.7). Panels b) shows structural 

connectivity of the network for state{1,d}. Panel c) shows structural connectivity matrix of the network 

for state{1.5,d}. As for simulations with static conduction velocity, in this region, connectivity matrices 

exhibit 3 (2m) stripes reflecting weak connections. Panel d) shows structural connectivity of the 

network for state{0,s}.  Panel e) shows structural connectivity of the network for state{0,d}.  The 

structural connectivity matrices are averaged over the last 100 time steps of the simulation. Structural 

connectivity matrices for each parameter combination are shown in supplementary Figure S2.3c. 

 

 
 

Figure 2.9: Pairwise conduction velocities among oscillators when coupling strength and 

conduction velocity are both dynamic. Panel a) shows the colour-coded state of coherent-wave mode 

of synchronization and cluster-formation observed at each point in the parameter space defined by 𝜺𝒗 
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and 𝜶𝒗. Colour coding is the same as in Figure 1 (grey disks as in Figure 2.7). Panel b) shows the 

pairwise conduction velocity of the network for state{1,d}. Conduction velocities only change slightly 

relative to their initial values. Panel c) shows pairwise conduction velocity of the network for 

state{1.5,d}. Conduction velocities have decayed to zero. Panel d) shows pairwise conduction velocity 

of the network for state{0,s}. Panel e) shows pairwise conduction velocity of the network for 

state{0,d}. The conduction velocity matrices are averaged over the last 100 time steps of the simulation. 

Conduction velocity matrices for each parameter combination are shown in supplementary Figure 

S2.3d. 

 

 
Figure 2.10: Pairwise functional connectivity among oscillators when coupling strength and 

conduction velocity are both dynamic. Panel a) shows the colour-coded state of coherent-wave mode 

of synchronization and cluster-formation observed at each point in the parameter space defined by 𝜺𝒗 

and 𝜶𝒗. Colour coding is as in Figure 2.1 (grey disks as in Figure 2.7). Panel b) shows functional 

connectivity of the network for state{1,d}. Panel c) shows functional connectivity of the network for 

state{1.5,d}. The formation of 4m stripes of zero or very weak connection weights can be observed. 

Panel d) shows the functional connectivity matrix for a network of state{0,s}. Panel e) shows the 

functional connectivity matrix for a network of state{0,d}. Correlation matrix elements are averaged 

over the last 100 time steps of the simulation. Functional connectivity matrices for each parameter 

combination are shown in supplementary Figure S2.3e. 

 

2-4. Discussion 
In the present study we investigated the effects of dynamic coupling strength and 

dynamic conduction velocity on the synchronization behaviour of weakly coupled 

oscillators arranged on a circle. For dynamic coupling strength combined with static 

conduction velocity, we found that depending on the learning rate controlling 

changes in coupling strength, a single or two clusters can emerge. This is in line with 

previous studies on dynamic coupling in the Kuramoto model (Niyogi & English, 

2009). Furthermore, depending on delay, phase offsets may exhibit periodicity 
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according to coherent-wave modes of synchronization (Niyogi & English, 2009; 

Timms & English, 2014). For non-zero modes, structural clusters become 

functionally apparent only after correcting for offsets.  

For zero modes, a tight 

correspondence between structural and 

functional clusters is straightforwardly 

apparent. This is no longer the case 

once conduction velocity is allowed to 

vary. Already in the context of static 

coupling strength, we observed that 

dynamic conduction velocity 

dissociates structural from functional 

connectivity. In terms of coupling 

strength, the system may appear as a 

single cluster. However, in terms of 

conduction velocity, which is another 

structural aspect, a wide range of 

parameters leads to the formation of 

four distinct clusters with fast 

communication within clusters and 

slow communication across clusters. 

Interestingly, communication between 

neighbouring clusters is, while slower 

than within clusters, faster than 

between non-neighbouring clusters.  

This leads to the emergence of two 

functional clusters. Oscillator pairs 

with either very fast and very slow 

communication ‘see’ each other in 

phase since phase offsets are either 

close to zero or some integer multiple 

of 2π and hence form a single functional 

cluster. This cluster is spatially 

discontinuous and interleaved with 

oscillators belonging to a second cluster. 

Conduction velocity between oscillators 

in separate clusters is such that these 

oscillators ‘see’ each other in anti-phase. If conduction velocity is dynamic, it is thus 

 Figure 2.11: Dissociation between 

structural and functional clusters for 

state{2,d} observed in scenario 2. Panel a) 
phase offsets between every oscillator and the 

first (|∆𝝋𝟏,𝒊|). Offsets reflect two anti-phase 

clusters. Panel b), pairwise conduction 

velocity reflecting four structural clusters. 

Panel c), pairwise functional connectivity 

reflecting two functional clusters.   
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possible that clusters are structurally connected in terms of coupling strength and yet 

functionally distinct because they are segregated by another structural factor 

(conduction velocity see Figure 2.11). If both coupling strength and conduction 

velocity are dynamic, we observed that for a sufficiently large enhancement factor, 

which determines maximum conduction velocity, a single functional cluster 

exhibiting zero-mode synchronization emerges. Yet, structural connectivity is 

characterized by positive values only for neighbouring oscillators and negative 

values between remote oscillators. Conduction velocity counteracts the repellent 

effects of negative coupling by producing delays of roughly half a period such that 

negatively coupled oscillator pairs ‘see’ each other in anti-phase when they are in 

fact in phase (see Figure 2.12). Dynamic conduction velocity thus appears to enable 

the system to resist the effects of coupling strength and allow for both functional 

integration of structurally segregated oscillators as well as functional segregation of 

structurally integrated clusters.  

Figure 2.12: Dissociation between structural and functional clusters for state{0,s} observed in 

scenario 3. Panel a) phase offsets between every oscillator and the first (|∆𝜑1,𝑖|). Offsets reflect a 

single (global) cluster. Panel b), pairwise structural connectivity reflecting two clusters. Panel c), 
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pairwise conduction velocity reflecting two clusters. Panel d), pairwise functional connectivity 

reflecting a single cluster. 

 

In line with previous work (Hauptmann, Omel‘chenko, Popovych, Maistrenko, 

& Tass, 2007; Montbrió, Pazó, & Schmidt, 2006; Nakamura et al., 1994; Niebur, 

Schuster, & Kammen, 1991; Schuster & Wagner, 1989; Yeung & Strogatz, 1999), 

we observe bi- and multistability for non-zero delays, most prominently at 

boundaries in parameter space. Furthermore, regions of bi- / multistability appear to 

occur largely as a function of delay (cf. (Schuster & Wagner, 1989; Yeung & 

Strogatz, 1999)), either in the form of delay parameter T for scenario I or in the form 

of the enhancement factor 𝛼𝑣 determining maximum delay for scenarios II and III. 

In contrast to previous studies which reported bistability of synchronous and 

incoherent states (Kotwal et al., 2017; Nickel & Gu, 2018; Yao et al., 2013), the 

circle topology of our network supports  bi- / multistability between fully 

synchronous states which differ with respect to their coherent-wave mode of 

synchronization and single- vs double-cluster formation. At least as long as either 

coupling strength or conduction velocity are dynamic. When both coupling strength 

and conduction velocity are dynamic, we additionally observe bistability between 

states which can and those which cannot be characterized in terms of standing-wave 

mode and cluster formation. These latter states might simply reflect incoherence 

among oscillators. However, we cannot rule out that they reflect chimera states. This 

possibility is intriguing in light of previous studies showing that chimera states 

emerge from a pitchfork bifurcation as a function of coupling delay (Kotwal et al., 

2017; Laing, 2009). The fact that this parameter is itself dynamic in our simulations 

may give rise to hitherto unobserved behaviour (such as chimera states characterized 

by mixtures of those states described here) and constitute an interesting avenue for 

further research. 

In light of neuroscientific evidence that myelination continues to exhibit 

adaptive changes even in the adult brain (Gibson et al., 2014; Sampaio-Baptista et 

al., 2013; Scholz et al., 2009), our results highlight the importance of considering 

this factor in computational models of learning. For instance, our observation that 

dynamic conduction velocity provides the possibility for synchronization even in the 

context of fast learning highlights that adaptive myelination may have a useful 

dampening role to compensate for fast synaptic changes that might otherwise 

desynchronize neural groups. It may thus prevent networks in the brain from 

associating or dissociating too quickly under the influence of experiences. 

Interestingly, this compensation involves both increases and decreases in conduction 

velocity, highlighting that simply maximizing conduction speed is not necessarily 
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optimal (Fields, 2015). Furthermore, the compensatory effect of dynamic conduction 

velocity could be observed in our simulations even when its rate of change is a factor 

of 10 slower than that of synaptic strength. This suggests that our findings are 

relevant for the biologically plausible scenario where myelin related changes lag 

behind changes in synaptic efficacy, as it may take up to several weeks of daily 

stimulation of neuronal axons before changes in myelination can be detected 

(Demerens et al., 1996; Ishibashi et al., 2006). A role of slowly changing myelination 

in sharpening synchronization during neuronal communication would be in line with 

several theories in which rhythmic spike synchronization is thought to determine the 

efficiency of neural communication (Fries, 2005, 2015; Jensen & Lisman, 2000; 

Lowet et al., 2018). Our results call for an investigation of the neuro-computational 

mechanisms allowing for activity- and experience-dependent modulations of 

adaptive myelination. Based on observations that white matter structural changes 

resemble synaptic changes to the extent that they depend on the frequency of neural 

co-activation (Blumenfeld-Katzir, Pasternak, Dagan, & Assaf, 2011; Chang et al., 

2016; Fields, 2015; McKenzie et al., 2014; Nickel & Gu, 2018; Purger et al., 2016; 

Sampaio-Baptista et al., 2013; Scholz et al., 2009), we implemented it as a Hebbian 

learning process. This is surely an over-simplification given that the control of 

myelination in adults, while incompletely understood, involves glia-neuronal 

interactions. We could not consider these here due to the simplicity of our model. 

Future work is thus needed to develop a more biologically appropriate learning 

mechanism and embed it in a model incorporating both types of cells. Nevertheless, 

our approach captures the most essential dynamical aspect of adaptive myelination, 

namely that conduction velocity of frequently used connections is strengthened 

while that of rarely used connections is weakened. Other simplifications of our work 

include the arrangement of oscillators along a circle, arbitrary units of space and 

time, and the lack of input. However, using these simplifications, we were able to 

decrease the complexity of computations and the number of parameters in order to 

plainly identify the influences of synaptic and myelin plasticity on collective 

behaviour of oscillators. Furthermore, since the system studied here is not intended 

to address any specific neural processes, our results are sufficiently general to be 

translated to several spatial and temporal scales. Future research will be necessary to 

investigate the contribution of realistic network topology as well as of functionally 

relevant external stimulation. 
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S2. Supplementary Material 
See supplementary material for overall view of the changes in structural and 

functional characteristic behaviour of the network in relation to the learning 

parameters.  

In the following, we present absolute phase offsets between every oscillator and 

the first, structural connectivity matrices (if coupling strengths are dynamic), 

functional connectivity matrices and conduction velocity matrices (if conduction 

velocities are dynamic) for every combination of learning parameters (i.e., 𝑇 and 𝜀𝑠 

for scenario I, and 𝜀𝑣 and 𝛼𝑣 for scenarios II and III) obtained from a single example 

simulation for each scenario. The parameter space of each example case is depicted 

in panel (a) of each figure.   

 

 

 

 

 



 

 

67 

 

Chapter 2 

2 



 

 

68 
 

Synaptic and Myelin Plasticity in a Network of Kuramoto Phase Oscillators 



 

 

69 

 

Chapter 2 

2 

 



 

 

70 
 

Synaptic and Myelin Plasticity in a Network of Kuramoto Phase Oscillators 

 
Figure S2.1: Representation of structural and functional behaviour characteristics of scenario I 

for every point of the parameter space. Panel a) shows the colour-coded state of coherent-wave 

mode of synchronization and cluster-formation obtained from a single simulation. Panel b) shows the 

absolute phase offsets between every oscillator and the first (|∆𝜑1,𝑖|) for all combinations of 𝜀𝑠 and T. 

Phase offsets are averaged over the last 100 time steps of the simulation. Panel c) shows structural 

coupling matrices for all combinations of 𝜀𝑠 and T. Panel d) shows functional connectivity matrices 

for all combinations of 𝜀𝑠 and T. Matrix elements are averages over the last 100 time steps of the 

simulation in panels c and d. The learning enhancement factor 𝛼𝑠 is fixed at 1 and all values of the 

connectivity matrix K were initialized to 𝛼𝑠.  
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Figure S2.2: Representation of structural and functional behaviour characteristic of scenario II 

for every point of the parameter space. Panel a) shows the colour-coded state of coherent-wave 

mode of synchronization and cluster-formation obtained from a single simulation. Panel b) shows 

absolute phase offsets between every oscillator and the first (|∆𝜑1,𝑖|) for all combinations of 𝜀𝑣 and 𝛼𝑣. 

Phase offsets are averaged over the last 100 time steps of the simulation. Panel c) shows conduction 

velocity matrices for all combinations of 𝜀𝑣 and 𝛼𝑣. Panel d) shows functional connectivity matrices 

for all combinations of 𝜀𝑣 and 𝛼𝑣. Matrix elements are averages over the last 100 time steps of the 

simulation in panels c and d.The connections’ learning rate 𝜀𝑠 and the learning enhancement factor 𝛼𝑠 

are fixed at 0 and 1 respectively, and all values of the connectivity matrix K were fixed at 𝛼𝑠. The 

pairwise conduction velocities 𝑣𝑖𝑗 are initialized at 0.14, equivalent with the condition where 𝑇 ≅7. 
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Figure S 2.3: Representation of structural and functional behaviour characteristic of scenario III 

for every point of the parameter space. Panel a) shows the colour-coded state of coherent-wave 

mode of synchronization and cluster-formation obtained from a single simulation. Panel b) shows 

absolute phase offsets between every oscillator and the first (|∆𝜑1,𝑖|) for all combinations of 𝜀𝑣 and 𝛼𝑣. 

Phase offsets are averaged over the last 100 time steps of the simulation. Panel c) shows structural 

coupling matrices for all combinations of 𝜀𝑣 and 𝛼𝑣. Panel d) shows conduction velocity matrices for 

all combinations of 𝜀𝑣 and 𝛼𝑣. Panel e) shows functional connectivity matrices for all combinations of 

𝜀𝑣 and 𝛼𝑣. Matrix elements are averages over the last 100 time steps of the simulation in panels c, d 

and e. The connections’ learning rate 𝜀𝑠 and the learning enhancement factor 𝛼𝑠 are fixed at 0.1 and 1 

respectively, and all values of the connectivity matrix K were fixed at 𝛼𝑠. The pairwise conduction 

velocities 𝑣𝑖𝑗 are initialized at 0.14, equivalent with the condition where 𝑇 ≅7. 

 

Moreover, in Figure S 2.4, all Figures 2.7, 2.8, 2.9 and 2.10 are merged for an 

easier comparison between functional and structural characteristic behaviours.  
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Figure S 2.4: Representation of structural and functional behaviour characteristic of scenario III. 

Panel a) shows the colour-coded state of coherent-wave mode of synchronization and cluster-formation 

obtained from a single simulation with respect to the changes of 𝜺𝒗 and 𝜶𝒗. Panels b-e) show |∆𝝋𝟏,𝒊| 

(top left of each panel), structural connectivity matrix (top right), conduction velocity matrix (bottom 

left) and functional connectivity matrix (bottom right) for state{1,d} in panel b, state{1.5,d} in panel c, 

state{0,s} in panel d and state{0,d} in panel e. Matrix elements are averages over the last 100 time steps 

of the simulation in panels c, d and e. The connections’ learning rate 𝜺𝒔 and the learning enhancement 
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factor 𝜶𝒔 are fixed at 0.1 and 1 respectively, and all values of the connectivity matrix K were fixed at 

𝜶𝒔. The pairwise conduction velocities 𝒗𝒊𝒋 are initialized at 0.14, equivalent with the condition where 

𝑻 ≅7. 
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5-1. Aims of the thesis  
Neural oscillators and their synchronization take centre stage in the present thesis 

with an emphasis on the role of gamma synchronization in cortical information 

processing. While stimulus-induced cortical oscillations in the gamma range are 

ubiquitous in the cortex (Bertrand & Tallon-Baudry, 2000; N. Brunet et al., 2015; 

Buzśaki & Wang, 2012), a number of studies have cast doubt on the notion that they 

play a functional role. In particular, critiques that long signal propagation delays 

(Ray & Maunsell, 2015) and high variance among frequencies in the gamma range 

(D. Hermes, Miller, Wandell, & Winawer, 2015; Jia, Xing, & Kohn, 2013; Ray & 

Maunsell, 2015) may interfere with synchrony-based neural information processing 

have been influential. Prior neurophysiological studies have shown however that 

neither propagation delays (Fries, Nikolić, & Singer, 2007; Nikolić, 2006) nor 

frequency variance (Fries et al., 2007; Lowet, Roberts, Peter, Gips, & de Weerd, 

2017) are necessarily detrimental to the selective and flexible synchronization 

required for neural information processing. According to the theory of weakly 

coupled oscillators (TWCO), the distribution of intrinsic frequencies differences 

(frequency detuning) among oscillators as well as the strength of their interactions 

(coupling strength) determines the likelihood that oscillators synchronize (Pikovsky, 

Rosenblum, Self, & 2001, 2003). In other words, a frequency difference can still 

permit (partial) synchronization when there is sufficient coupling strength. The 

existence of long propagation delays and associated variability when communicating 

oscillators are at various distances from each other in a network can affect 

synchronization. Nevertheless, empirical evidence indicates that within a range, 

variable propagation delays do not render synchronization impossible (Fries et al., 

2007; Nikolić, 2006). Thus, rather than considering the existence of variability in 

propagation delays among remote oscillators as an absolute argument against 

synchronization as a viable mechanism for information processing, it may be 

considered as a factor that can be used by the brain to control synchronization. 

Variability in propagation delays may exert their effect by affecting detuning (Buia 

& Tiesinga, 2006; Fries, 2005). Hence, TWCO posits that coupling strength and 

frequency detuning are crucial factors controlling synchronization behaviour among 

oscillators.  Using this framework, and in order to investigate the usefulness of 

gamma synchronization in (visual) information processing, we aimed to address the 

following questions: 

1) What are the effects of (plastic) coupling delays on the synchronization 

behaviour and synaptic plasticity within a phase oscillator network and how does 

this affect structural and functional features of the network (Chapter 2)?  
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2) To what extent is a phase oscillator network exposed to texture stimuli 

capable of predicting human figure-ground segregation performance (Chapter 

3)?  

3) To what extent are learning-induced structural changes in a phase oscillator 

network exposed to texture stimuli predictive of human performance 

improvement on a figure-ground segregation task (Chapter 4)?  

 

5-2. Summary of Results  
Before presenting a detailed summary of results per chapter addressing the 

above-formulated aims, the main results are briefly summarized here. The results in 

Chapter 2 demonstrate that signal propagation delays and experience-induced 

plasticity affect the (spatial) distribution of gamma frequencies in a network of 

oscillators (Buia & Tiesinga, 2006; Fries, 2005) as well as the strength of coupling 

among neural oscillators. Thus, propagation delays vary as a function of distance, 

but are at the same time subject to plastic regulatory mechanisms that use 

propagation delays as a tool to facilitate or prevent synchronization between different 

groups of oscillators. The results in Chapters 3 and 4 support the perceptual 

relevance of levels of synchronization as controlled by detuning and coupling 

strength in an oscillator network (Baldi & Meir, 1990; Buia & Tiesinga, 2006; Dubey 

& Ray, 2020; Feng, Havenith, Wang, Singer, & Nikolić, 2010; Gieselmann & Thiele, 

2008; Gilbert & Wiesel, 1983; Gray, König, Engel, & Singer, 1989; Hadjipapas, 

Lowet, Roberts, Peter, & de Weerd, 2015; Hall et al., 2005; Henrie & Shapley, 2005; 

Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Lowet et al., 2015, 2017; 

Ray & Maunsell, 2010; Roberts et al., 2013; Shapira et al., 2017; Stettler, Das, 

Bennett, & Gilbert, 2002; Swettenham, Muthukumaraswamy, & Singh, 2009; Ts’o, 

Gilbert, & Wiesel, 1986; M. A. Whittington, Traub, Kopell, Ermentrout, & Buhl, 

2000; Miles A. Whittington, Cunningham, LeBeau, Racca, & Traub, 2011). We 

found an excellent fit between model predictions of synchronization levels 

associated with manipulations of stimulus- and experience-dependent factors on the 

one hand, and behavioural measures of human figure-ground segregation on the 

other. Hence, the present thesis has contributed behavioural and computational 

modelling research that argues against the idea that (because of detuning and because 

of the long transmission delays in long-range communication) gamma oscillations 

would be useless epiphenomena of visual processing without a substantial 

contribution to visual perception and other forms of cognition.  
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5-2-1. Chapter 2: Effects of Plastic Coupling delays and Plastic 

Coupling Strengths on the Synchronization and Learning in 

Networks of Coupled Oscillators 

Chapter 2 addressed the question how (plastic) coupling delays affect 

synchronization behaviour and synaptic plasticity in a phase oscillator network. In 

this chapter, synchronization was investigated in a ring network of coupled phase 

oscillators whose pairwise coupling strength and conduction velocities were plastic. 

What is presented in this chapter is a simple neural mass model developed to evaluate 

structural (pairwise connection strength and conduction velocity) and functional 

states (local and global synchronization behaviour) of a one-dimensional network of 

self-sustained oscillators that receives no external input. The network’s states 

evolved based on the activity-dependent interplay between synaptic plasticity 

(connectivity strength) and myelin plasticity (conduction velocity). Synaptic 

plasticity was implemented in terms of activity-dependent modifications of pairwise 

connection strengths, whereas myelin plasticity was implemented indirectly through 

its effects on axonal conduction velocities and therefore signal transmission delays.  

The contributions of synaptic plasticity to various forms of learning and memory 

have been extensively studied (Milner, Squire, & Kandel, 1998; Niyogi & English, 

2009; Nowotny, Zhigulin, Selverston, Abarbanel, & Rabinovich, 2003; Seliger, 

Young, & Tsimring, 2002; Siri, Quoy, Delord, Cessac, & Berry, 2007; Song, Miller, 

& Abbott, 2000; Timms & English, 2014; Traubab et al., 1998), whereas the 

contribution of myelin plasticity to learning has become recognized only more 

recently as an important mechanism for learning and memory (Nickel & Gu, 2018; 

Sampaio-Baptista et al., 2013; Scholz, Klein, Behrens, & Johansen-Berg, 2009). 

Studies of the mechanisms of myelination (Fields, 2015; Fields & Bukalo, 2020; 

Giedd et al., 1996; Pajevic, Basser, & Fields, 2014; R. D. Fields, 2014) combined 

with diffusion neuroimaging studies of plastic changes in the integrity of white 

matter (Chang, Redmond, & Chan, 2016; Dutta et al., 2018; Fields, 2015; McKenzie 

et al., 2014; Pajevic et al., 2014; Purger, Gibson, & Monje, 2016; Scholz et al., 2009) 

indicate that myelination remains plastic throughout life (Giedd et al., 1996). 

Moreover, myelin plasticity depends, like synaptic plasticity, on the temporal 

relations of spiking activity between pre- and post-synaptic neural populations 

(Fields, 2015; Pajevic et al., 2014; R. D. Fields, 2014). Accordingly, synaptic and 

myelin plasticity in our model were both governed by Hebbian learning rules. The 

effects of both kinds of plasticity were assessed in terms of functional connectivity 

(synchronization behavior) in the model network and in terms of structural 

connectivity (myelination of axons and synaptic connectivity strength). The resulting 
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model revealed significant differences in both structural and functional connectivity 

when separately considering effects from pure synaptic plasticity, from pure myelin 

plasticity and from the interplay between the two. For example, with respect to 

synaptic plasticity, we found that for conditions in which the phase oscillator 

network developed two segregated structural clusters, also two corresponding, 

segregated, functional clusters emerged. In other words, parts of the network where 

the oscillators became more weakly connected also showed less synchronization. 

However, when in the same conditions that led to a segregation of the network into 

two separate clusters, myelin plasticity was allowed, this resulted in the formation of 

a single functional cluster. In other words, functional integration (synchronization) 

occurred across structurally segregated clusters. Because in this chapter we only 

studied the internal dynamics of the constructed network, without external input, an 

interpretation of these findings at the level of perception and cognition is difficult. 

Nevertheless, the fact that a larger network can be segregated into subnetworks is 

conceptually important for understanding perception and cognition. Note however 

that the model used in Chapter 2 does not relate to specific spatial and temporal 

scales. Instead, it provides a general framework to study neural oscillatory networks 

at any spatio-temporal scale.  

 

5-2-2. Chapter 3: Role of the Synchronization among Stimulus-

dependent Gamma Oscillations in Figure-ground Segregation 
The third chapter asked the question whether gamma synchronization assists in 

figure-ground segregation. To address this question, we first designed a network of 

coupled phase oscillators exposed to texture stimuli. The oscillator network was 

designed to reflect elementary V1-like neural circuits. For this reason, dynamical 

and structural network parameters were based on electrophysiological recordings 

and organizational principles of V1 in macaques (Lowet et al., 2017) and humans 

(Balasubramanian & Schwartz, 2002; Polimeni et al., 2005; Schwartz, 1980). The 

scope of this chapter’s main question was limited to an investigation of whether 

synchronization could constitute a pre-attentive process in early visual areas that 

supports figure-ground segregation in texture stimuli.  

The texture stimuli comprised Gabor annuli arranged on a random grid. Each 

stimulus included a rectangular region, the figure, where annulus contrast was less 

heterogeneous than in the background. Based on prior observations in early visual 

cortex that local contrast drives gamma frequency (Hadjipapas et al., 2015; Henrie 

& Shapley, 2005; Lowet et al., 2015; Roberts et al., 2013; Shapira et al., 2017) and 

that coupling strength depends on cortical distance (Gilbert & Wiesel, 1983; Lowet 
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et al., 2015, 2017; Stettler et al., 2002; Ts’o et al., 1986), we assumed that contrast 

heterogeneity affects frequency detuning and physical proximity among annuli 

affects coupling strength among corresponding neural circuits. Hence, the starting 

point in this chapter is the realization that the mathematical factors that determine 

synchrony among weakly coupled oscillators can be linked to the stimulus features 

that guide figure-ground segregation.  

If neural synchrony is indeed relevant for figure-ground segregation, one would 

expect that formalizing such a conceptual relation in a computational model would 

allow deriving quantitative predictions of figure-ground segregation performance 

from modelled synchronization behaviour. When the model was exposed to the 

texture stimuli, it revealed a triangular region of high synchronization in the space 

spanned by contrast heterogeneity (detuning) and grid coarseness (coupling 

strength). Remarkably, human participants who were asked to detect the figure from 

the ground in the same texture stimuli showed a quantitatively matched triangular 

region of supra-threshold figure-ground segregation performance for the same 

conditions. Interestingly, the model parameters chosen based on neurophysiological 

data in the macaque monkey were close to optimal to predict human figure-ground 

segregation performance. The consistency between model predictions and 

behavioural results suggests a mechanistic link between gamma synchronization in 

V1 and figure-ground segregation. This suggestion does not exclude that other 

mechanisms than the synchronization behaviour among neural groups in early visual 

cortex could contribute to figure-ground segregation. However, our data indicate at 

the very least that low-level neural synchrony is a viable mechanism for figure-

ground segregation in the texture stimuli we used. Interestingly, participants’ 

response times did not reveal an Arnold tongue as these were only affected 

significantly by contrast heterogeneity, but not by the physical distance between 

texture elements. This observation suggests that synchronization in V1 may not be a 

dominant factor in determining the speed of cortical information processing. Only 

after training-induced gains in synchrony and performance (see Chapter 4) did 

synchronization in our model become related to response times. This suggests a 

training-induced increase in the relevance of synchronization in the speed of cortical 

information processing. This finding will be discussed below. What can be inferred 

from the results of Chapter 3 is that the high stimulus dependency of gamma 

oscillations constitutes an essential aspect of the synchronization mechanism 

underlying figure-ground segregation. This dependency forms the basis of 

synchronization among figure elements (integration) and simultaneous de-

synchronization between figure and ground elements (segregation). Therefore, 
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Chapter 3 shows that the high stimulus dependency of gamma oscillations may 

underlie, rather than preclude, a functional role in cortical information processing. 

 

5-2-3. Chapter 4: Role of the Synchronization among Stimulus-

dependent Gamma Oscillations in Perceptual Learning of Figure-

ground Segregation 
The fourth chapter addressed the question to what extent learning-induced 

changes in a phase oscillator model are predictive of human performance 

improvements in a figure-ground segregation task. In the third chapter, it was 

suggested that synchronization of gamma oscillations in V1 constitutes an important 

component of the neural mechanism that underlies figure-ground segregation. If this 

is indeed the case and if, as assumed in Chapter 2, synchronization behaviour is 

affected by experience-dependent changes in coupling strength, then any learning-

induced gains in performance should be quantitatively related to learning-induced 

increases in neural synchrony. To evaluate this hypothesis, modelling was combined 

with psychophysics experimentation using the same stimulus conditions as in 

Chapter 3. Learning was incorporated into the model in the form of a three-factor 

learning rule that took phase coherence and the probability of correct responses on 

all trials of a session into account. Free parameters of the learning mechanism were 

estimated from the first two sessions, and subsequently used to predict learning 

effects in the remaining sessions. Results in Chapter 4 showed that synchrony and 

performance exhibit a close quantitative resemblance that was maintained across 

training sessions. In particular, the triangular region of supra-threshold accuracy data 

in a space defined by contrast heterogeneity and grid coarseness showed training-

induced changes in shape that were closely matched by learning-induced changes in 

the Arnold tongue of the V1 oscillator model. Late in the training, an Arnold tongue 

emerged for response times as well. This further supports the idea that 

synchronization may be an important component of a neural figure-ground 

segregation mechanism and that learning-induced changes in figure-ground 

perception may at least in part be mediated by plasticity-induced changes in neural 

synchrony in a low-level visual area. The learning rule employed in Chapter 4 rested 

on the assumption that skill learning in early visual cortex is position specific (Merav 

Ahissar & Hochstein, 1996; Crist, Kapadia, Westheimer, & Gilbert, 1997; Karni & 

Sagi, 1991; A. A. Schoups, Vogels, & Orban, 1995). We verified this in a transfer 

session, in which figure-ground segregation was tested after moving the figure to the 

diametrically opposite visual field quadrant. Although figure-ground performance 

had increased significantly with training, it remained at baseline in the transfer 



 

 

171 

 

Chapter 5 

5 

session. Overall, the psychophysical and modelling data in this chapter suggest that 

training-induced changes in synchrony in V1 may contribute to enhanced accuracy 

in figure-ground segregation in an expanded range of grid coarseness and contrast 

heterogeneity conditions. Moreover, towards the end of training, synchronization 

strength also becomes related to processing speed.  

 

5-3. Theoretical Implications 

The key conjecture of the present thesis is that oscillations are functionally 

relevant for neural information processing. In particular, the flexible synchronization 

behaviour of neural oscillators may underlie the flexible integration and segregation 

of stimulus-dependent and other types of information. This conjecture is central to 

two theories that feature prominently in neuroscience: the communication through 

coherence (CTC) theory (Fries, 2005) and the theory of weakly coupled oscillators 

(TWCO) (Ermentrout, Park, & Wilson, 2019; Pikovsky et al., 2003). CTC 

emphasizes long-range cortical interactions and proposes that synchronization 

within distributed neural networks facilitates selective communication (Fries, 2005). 

Specifically, it proposes that selective communication is achieved through coherence 

between oscillating activity in sending and receiving regions. However, CTC does 

not specify the mechanisms by which these regions synchronize in the first place. 

CTC simply states that two brain regions cannot communicate unless their activity 

patterns are in-phase (or more generally in a favourable phase-relation). Stated in 

this manner, CTC considers coherence as a prerequisite for communication. 

However, a crucial question is to understand how coherence is achieved in the first 

place, and therefore one may wonder if a form of communication needs to occur 

prior to the emergence of coherence. The latter idea is an essential aspect of the 

theoretical framework of TWCO, which stipulates that two brain regions may 

achieve synchrony through mutual interactions. In particular, TWCO formalizes and 

specifies the mutual interactions among oscillators under which specific phase 

relationships among two (or more) interacting oscillators can be achieved. As such, 

TWCO assumes that interaction precedes coherence. The opposition that is created 

here between CTC and TWCO may be overstated, and the two frameworks can be 

seen as compatible as long as one accepts that CTC is underspecified in terms of the 

mechanisms that enable the phase relations that in turn enable communication. Note 

that in joining the concepts of CTC and TWCO it is interesting to reflect on the 

meaning of the terms ‘interaction’ and ‘communication’. Interaction between two 

oscillators refers to the mutual influences that bring oscillators into a favourable 

phase-relationship that permits communication. If communication is defined as the 
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ability of action potentials from a sending population of neurons to trigger action 

potentials in a receiving population of neurons, then interaction may precede 

communication, because the interactions among connected oscillators will take place 

partly in time periods where communication as defined above is not (yet) possible. 

In this sense communication and interaction can be distinguished. However, at the 

same time, it is clear that the mutual interactions among neuronal pools occur 

through spiking, and that spikes from a sending population that arrive in an inhibitory 

period of a receiving population are still part of the interaction that leads to 

favourable phase relations required for action potentials from a sending population 

to trigger action potentials in a receiving population. From that perspective, the 

mechanisms of interaction and communication are closely related.  

It is fascinating to note that TWCO is a general theory of synchronization 

phenomena, and that its concepts have been applied successfully and widely in 

chemistry, biology, and neuroscience (Ermentrout et al., 2019). As a general theory, 

TWCO is not concerned with whether or not oscillations and synchrony in the brain 

are relevant for neural information processing. However, a number of theoretical 

neuroscientists have over the years developed theories of neural information 

processing that are rooted in TWCO and that adhere to its fundamental principles. 

Noteworthy in this context is seminal work led by Izhikevich who suggested that 

synchrony allows for the flexible connection and disconnection of neural oscillators 

based on changing task demands (Hoppensteadt & Izhikevich, 1999; Izhikevich & 

Appl Math, 2006). At the macroscopic scale (involving long-range interactions), this 

concept is in line with dynamic routing of information to ensure that the output of 

local computations is sent to the appropriate brain regions for further processing. At 

the mesoscopic scale (i.e. within cortical areas), the flexibility of network 

synchronization may be utilized for local information integration and segregation 

such as required for associative memory (Hoppensteadt & Izhikevich, 1999) or 

figure-ground segregation. Depending on the spatio-temporal framework applied to 

the oscillator network and simulated data in Chapter 2, the findings in that chapter 

can be relevant in the context of a putative role of neural synchrony for long-range 

interactions2. Specifically, Chapter 2 revealed that dynamic conduction velocity 

                                                           

2 In the context of fast oscillations such as gamma, typical cortical conduction velocities (on 

the order of 100 meters per second (Swadlow & Waxman, 2012)) may manifest as significant 

delays for long-range connections (between cortical areas) but not for short-range 

connections (within cortical areas). The reason is that a) delays typically manifest as phase-

shifts and b) the impact of phase-shifts is relative to oscillation periods. As a rule of thumb 

(and exactly for pure sine interaction function as employed in the Kuramoto model), only 
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provides the possibility for synchronization even in the context of fast synaptic 

changes promoting structural network segregation. This indicates that adaptive 

myelination may have the capacity to compensate for synaptic effects that might 

otherwise desynchronize neural groups. Adaptive myelination may thus help to 

stabilize dynamic routing in the context of synaptic changes in long-range 

connectivity. Chapters 3 and 4 speak towards a putative role of neural synchrony at 

the mesoscopic scale. Depending on stimulus properties, and on the excitatory drive 

delivered locally to the various neuronal populations encoding the stimulus, these 

neuronal populations may synchronize and hence form an integrated neural group 

that is segregated from other groups in a manner that is relevant for visual perception 

(Lowet et al., 2015). The stimulus dependence of synchronization renders this 

process highly flexible and hence perceptually relevant. Furthermore, synchronized 

neuronal groups within cortical regions, rather than entire cortical regions, likely 

form higher-order oscillators that interact at the macroscopic scale. This interplay 

between local information processing and global routing may constitute a highly 

flexible mechanism for cortical information processing (Kirst, Timme, & Battaglia, 

2016).  

Though not the focus of the present thesis, results in Chapter 4 are also relevant 

for an ongoing debate whether (location) specificity is a defining characteristic of 

perceptual learning. Several studies have reported that experience-induced 

improvements in perceptual skills are specific to the retinotopic location (Merav 

Ahissar & Hochstein, 1996; Crist et al., 1997; Karni & Sagi, 1991; A. A. Schoups et 

al., 1995) and stimulus features (Merav Ahissar & Hochstein, 1996; Merav Ahissar, 

Laiwand, Kozminsky, & Hochstein, 1998; M. Ahissar & Hochstein, 1993; Crist et 

al., 1997; Fiorentini & Berardi, 1980; Karni & Sagi, 1991; A. Schoups, Vogels, Qian, 

& Orban, 2001) of the trained skill. However, other studies have reported that skills 

can generalize to novel locations and stimulus features (Aberg, Tartaglia, & Herzog, 

2009; Jeter, Dosher, Petrov, & Lu, 2009; R. Wang, Cong, & Yu, 2013; R. Wang, 

Zhang, Klein, Levi, & Yu, 2012; Zhang et al., 2010). The modelling work in Chapter 

4 assumes that perceptual learning is location-specific. We validated this assumption 

empirically by including an additional session wherein it was shown that 

improvements on a figure-ground segregation skill do not generalize across 

retinotopic locations. 

                                                           

phase-shifts between 
1

2
𝜋 and 

3

2
𝜋 will notably affect synchronization behaviour (Ermentrout 

& Ko, 2009). For gamma oscillations, such phase-shifts may occur for long-range but not 

short-range connections. 
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5-4. Implications for the Role of Local Gamma 
While TWCO is agnostic with regard to the role of specific frequency bands, 

gamma range oscillations were of particular interest in the present thesis. Chapters 3 

and 4 suggest that gamma oscillations contribute to visual processing. These studies 

show that local and global image statistics drive an oscillatory mechanism for image 

segmentation. This is in line with a number of studies (N. Brunet et al., 2015; Gray 

& Goodell, 2011) that have reported the presence of gamma oscillations in macaque 

visual cortical areas, specifically in V1, during free viewing of static images. 

Specifically, Lowet et al. (2015), who in a modelling study using an online image 

database (Martin, Fowlkes, Tal, & Malik, 2001) showed a meaningful link between 

border segmentation in natural images by human observers and gamma 

synchronization among nearby neuronal groups driven by image contrast within their 

receptive fields. Lowet et al.’s study (Lowet et al., 2015) suggested that surface 

perception is related both to the smaller contrast variations (thus lower detuning) 

within surfaces in comparison to the large contrast variations (thus higher detuning) 

across surfaces, at the surface borders. This led to the integration (synchronization) 

of neural activity induced within each figure surface, and to the segregation of 

activity across surface borders. Lowet et al.’s study (Lowet et al., 2015) together 

with our own data (Chapters 3 and 4) provide support for the idea that gamma 

synchronization provides a means for grouping elements into wholes that reflect 

objects in a scene. The utility of a synchronization-based algorithm for (natural) 

image segmentation has also been demonstrated previously (Lowet et al., 2015; 

Yogendra, Chamika, Fan, Shim, & Roy, 2017).  

While previous findings along with those presented in this thesis provide 

converging evidence for a role of local gamma in visual scene analysis, some studies 

have failed to detect gamma oscillations in response to moving (Kayser, Salazar, & 

König, 2003) and even static (Dora Hermes, Miller, Wandell, & Winawer, 2015; 

Ray & Maunsell, 2015) natural images. This absence of gamma oscillations in 

response to static natural images is surprising and suggests that gamma oscillations 

may be sufficient but not necessary for visual processing. This conclusion, however, 

may be premature. A failure to detect gamma oscillations does not imply their 

absence. Indeed, failure to detect gamma can be due to inadequate spatial resolution 

of electrophysiological recording methods. Images with low degree of structure (i.e., 

with a high degree of heterogeneity, randomness and many small elements) are 

reflected by unstructured patterns of gamma oscillations on the cortical surface with 

variations in frequencies and phases that are too closely spaced to be detected with 
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typical electrodes (N. M. Brunet & Fries, 2019). Electrophysiological recordings 

with insufficient spatial resolution may capture several neuronal pools whose gamma 

rhythms may cancel each other out. Furthermore, signals from asynchronous neural 

oscillations may mask signals from synchronous oscillations. Insufficient data and 

the effect of noise for detecting low gamma power in response to images with low 

degree of structure could be another factor preventing the detection of gamma 

oscillations. Interestingly, even if the absence of gamma oscillations in response to 

natural images turns out to be a credible observation, this does not preclude that 

neuronal synchrony may be necessary for visual processing. Hermes et al. (2015) 

reported the presence of non-oscillatory broad-band signals (around 80-200 Hz) 

during the processing of natural images. Given that even non-oscillatory signals can 

become synchronized (Thivierge, 2008), predictions based on the synchronization 

(of non-oscillatory signals) among neural groups may still hold true for figure-

ground segregation in natural images.  

The present thesis provides support for a functional role of gamma oscillations 

and their synchronization. The absence of gamma oscillations in some conditions is 

a weak argument to make broad claims about its irrelevance. Likewise, observations 

of variations in gamma frequency or transmission delays are a weak argument 

against the functional contributions of gamma oscillations in the absence of a 

theoretical framework specifying factors that regulate synchronization. A step 

forward in assessing a potential role of gamma in perception is through the 

development of biologically constrained theoretical/computational models that 

formalize a putative perceptual role of gamma and generate testable predictions. Our 

work follows this approach and provides quantitative support for a role of gamma 

oscillations and synchronization in figure-ground segregation.  

 

5-5. Reflections on the Modeling Approach Presented in this 

Thesis 
We will not reiterate the limitations in terms of modelling choices and/or 

experimental setup that are already discussed in Chapters 2-4. Instead, the general 

modelling approach followed in this thesis will be evaluated. Throughout the thesis, 

a neural mass model has been utilized that reduces the dynamics of neural 

communities to the interaction between simple phase oscillators. This may be 

regarded as too abstract for a model to yield plausible mechanistic accounts of neural 

and behavioural phenomena. This concern shall be addressed in the following 

sections in the light of a deeper examination of scientific models in general. 
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5-5-1. Ontology, Epistemology and Semantics of Scientific 

Models 
Models are highly relevant in many scientific contexts. However, the exact role 

models play within science is highly dependent on the context and the type of model 

employed. Analogical models, phenomenological models, theoretical models, 

mathematical models, computational models, explanatory models, idealized models, 

scale models, animal models, and didactic models are but some of the different types 

of models that can be identified in the literature (Roman & Hartmann, 2020). The 

diversity of models renders it difficult to provide an overarching definition of what 

a model is, and of its purpose. Instead, it can be elucidating to consider models from 

the perspective of their ontology, their epistemology and their semantics.  

The ontological perspective on models focuses on the question what kind of 

objects scientists are dealing with when they work with models. It is important to 

realize that a model does not need to be a theoretical or mathematical entity.  The 

class of models contains a heterogeneous collection of different objects that belong 

to different ontological kinds. Some models are physical objects such as animal 

models used in the life sciences or wooden scale models used in aeronautical 

engineering. Other models are fictional or abstract models such as imaginary atoms, 

populations, or economies. Nevertheless, in the natural sciences, most models are 

indeed equations and other forms of stylized descriptions of a target system.  

Epistemology poses the question what can be learned from models. Models serve 

several epistemological functions as they allow scientists to learn something about 

the models themselves as well as to learn something about their target systems; 

aspects of the world that are of scientific interest. Both the construction of a model 

and its manipulation afford opportunities to learn about the model (Morgan, 1999) 

and once scientists have knowledge about the model, they can transfer this 

knowledge to the target system through the derivation and validation of testable 

hypotheses.  

Finally, semantics poses the question which target systems are represented by 

models, and in which manner. Before elaborating on this motion, it is useful to note 

that models do not always represent a target system and may be an object of study 

in their own right. In particular, when models are highly abstract and lend themselves 

to the investigation of many diverse phenomena, scientists may be interested in the 

model per se rather than any specific target system they may represent. However, 

more frequently, models are used as stand-ins for a specific target system, which 

allows scientists to form hypotheses about the target; i.e., to convert truths found in 

the model into claims about the target system. According to Hughes (Hughes, 1997), 
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this involves three steps. First, elements of the target system are denoted by elements 

of the model. The precise conditions that need to be met for a model to denote (or 

represent) a target are still a matter of debate among philosophers of science (Roman 

& Hartmann, 2020) and depend on the type and intended use of a model. 

Phenomenological (descriptive) models, for instance, only represent observable 

properties of their target systems and refrain from postulating underlying 

mechanisms (Bokulich, 2009). A Gabor function may, for instance, be used as a 

phenomenological model of the receptive field of a neuron in V1 in that it captures 

the neuron’s activation profile in response to different stimuli.  Mechanistic 

(explanatory) models, on the other hand, represent both the components and the 

causal relations between these components that together constitute the mechanism 

underlying a target system (Kaplan, 2011). A model of the receptive field of a neuron 

in V1 would thus need to specify the components (such as retinal receptors, thalamic 

neurons, connection profiles etc.) and their (causally relevant) interactions in order 

to be considered mechanistic. Second, models exhibit internal properties and 

dynamics that allow researchers to demonstrate theoretical conclusions. This step 

takes place entirely within models and is thus removed from the target system. 

Finally, the results of these demonstrations are interpreted in terms of the target. The 

last step is necessary because demonstrations establish results only about the model 

itself, and only in interpreting these results can the model user draw inferences about 

the target, which can be used as hypotheses for experimental research.  

 

5-5-2. Mechanisms and Idealizations 
The central endeavour of science is to explain and understand natural 

phenomena. Though explanation and understanding are closely related, they are 

nevertheless distinct cognitive functions and this translates directly into how they 

affect scientific modelling. Models are considered to be explanatory of a target 

phenomenon if they meet the mechanism-model mapping (3M) criterion; i.e., if there 

is a mapping between elements in the model and elements in the mechanism that 

produces the target phenomenon (Kaplan, 2011). Explanatory models are thus 

mechanistic models. This implies that a) the variables in an explanatory model 

correspond to identifiable components and organizational features of the mechanism 

that produces, maintains or underlies the phenomenon and b) dependencies posited 

among variables in the model correspond to causal relations among the components 

of the target mechanism. Inclusion of model elements that take additional 

mechanism components into account as well as faithful representations of causal 

relations among mechanism components are generally considered to yield better 
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explanations of the target phenomenon (Boone & Piccinini, 2016; Kaplan, 2011). 

However, this does not necessarily improve understanding. In fact, due to humans’ 

limited cognitive capacity, understanding may be hampered by excessive 

mechanistic fidelity and detail (Elgin, 2017). Indeed, understanding benefits from 

idealizations, such as deliberate distortions and omissions, and from abstractions 

(Humphreys, 1995; Strevens, 2004, 2008; Weisberg, 2007b).  

Philosophers of science generally distinguish two major types of idealization, 

distortive idealization and minimalist idealization. Distortive idealizations involve 

simplifications that introduce deliberate distortions of the target such as point masses 

moving on frictionless planes or perfectly rational economic agents (Roman & 

Hartmann, 2020). Interestingly, distortive idealization is often not justified in terms 

of facilitating understanding and accommodating the limited capacity of our mental 

apparatus. Instead, distortive idealization may be justifiable in terms of 

computational tractability; i.e., the ability to analyze/simulate these models on 

existing hardware. Therefore, it is often argued that with advances in computational 

power and mathematical techniques, models should be de-idealized (McMullin, 

1985). It is a matter of debate, however, whether this is possible without dismantling 

the models altogether (Batterman, 2002, 2010; Rice, 2015, 2019).  

Minimalist idealization involves limiting models only to core causal factors; i.e., 

only those factors that make a difference in the occurrence of a target phenomenon 

(Strevens, 2003). In contrast to distortive idealization, minimalist idealization 

involves no commitment to de-idealization. The focus of the minimalist idealization 

approach on core causal factors roots its justification deeply in considerations of our 

restricted understanding due to limited cognitive capacity. Note that idealized 

models may still be considered mechanistic as long as they abide by the 3M criterion 

to the extent that there is a mapping between at least one element in the model and 

at least one element of the mechanism that produces the target phenomenon (Kaplan, 

2011). Indeed, a common view is that abstracting away from irrelevant details may 

be as important to mechanistic explanation as including relevant details (Boone & 

Piccinini, 2016; Piccinini & Craver, 2011). Idealization thus serves an important role 

in science and the resulting models can arguably still be considered mechanistic. 

This does not mean that the practice of developing models that exhibit a high degree 

of mechanistic fidelity and detail is not important. Indeed, it is probably best practice 

to construct multiple models for any particular target phenomenon that exhibit 

varying degrees of mechanistic fidelity and detail. This allows scientists to seek an 

appropriate trade-off between explanation and understanding (Levins, 1966; 

Odenbaugh, 2003; Weisberg, 2007a, 2015). 
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5-5-3. Models in Computational Neuroscience 
What holds true for scientific models in general, also applies to models in 

computational neuroscience. However, models in neuroscience, and biology in 

general, differ from models in disciplines such as physics and chemistry. In contrast 

to physics and chemistry, biology often deals with target systems that perform 

functions (Piccinini & Shagrir, 2014). In case of the brain, this function is arguably 

to perform information processing that allows animals (including humans) to interact 

with a dynamic environment in a meaningful way (i.e., such that the animal may 

survive and reproduce). This abstract function is typically decomposed into 

subordinate functions such as visual object recognition or the coordination of 

grasping movements that are performed by individual neural structures and 

processes that serve as targets for computational neuroscientists. This implies that 

the target systems studied by neuroscientists exhibit both, what may be termed, 

(bio)physical and functional phenomena and both need to be explained and 

understood. This requires computational neuroscientists to take a somewhat different 

perspective in constructing their models than, for example, a theoretical physicist. In 

addition to specify the physical, chemical and biological elements of neural 

structures and their causal interactions, computational neuroscientists also need to 

think about their computational and representational properties and functional 

purpose (Marr, 1982). When considering the neuronal membrane, for instance, 

computational neuroscientists need to specify physical and chemical properties such 

as voltage, conductance, capacitance, the presence of voltage- and/or chemically-

gated ion channels, their dynamics and interactions in order to provide a mechanistic 

model of action potentials. In this aspect, the work of a computational neuroscientist 

is similar to (and may draw from) that of a theoretical physicist. However, 

computational neuroscientists also need to understand how information about 

external stimuli or intrinsic states is encoded and transmitted by action potentials and 

how this is functionally relevant. By contrast, a theoretical physicist who is 

interested, for example, in vortex shedding in fluids does not need to be concerned 

with any notions of representation or computations performed by the fluid. Within 

neuroscience, only the combination of the (bio)physical and functional perspective 

provides a complete account of neural target systems. An interesting advantage is 

that this enables scientists to draw testable functional conclusions from biophysical 

models and vice versa, thus raising the informative content of their models and hence 

their testability and falsifiability (Popper, 2014). 
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5-5-4. Models in the Present Thesis  

It is now possible to evaluate the models used in the present thesis as well as the 

modelling approaches that were employed. All models in the present thesis utilized 

the Kuramoto equation, an abstract coupled oscillator model that can be used to study 

many kinds of synchronization phenomena (see Acebr et al., (2005) for a review). 

The ontology of the model is thus shared between chapters. However, Chapter 2 

differs from Chapters 3 and 4 in terms of semantics and epistemology. Specifically, 

in the second chapter, the model should be considered to be inspired by properties 

of neural systems in general rather than to represent any specific neural target system. 

Hence, in Chapter 2, the model was the object of study in its own right. In this case, 

the question whether the model is appropriate, in the sense of whether the model can 

adequately represent a particular target system, is no longer pressing. What is 

relevant is whether the model can, in principle, represent some target systems. In the 

specific case of Chapter 2, we investigated the effects of adaptive coupling strength 

and of adaptive transmission delays on the collective behaviour of weakly coupled 

oscillators. This can be relevant to any synchronization phenomenon wherein 

coupling strength and transmission delays are adaptive. This is the case for neural 

oscillations and synchrony (Pajevic et al., 2014). The results in the second chapter 

were interpreted within this context. However, the conclusions that can be drawn 

from the second chapter are conclusions about the model and not conclusions about 

the brain. They only hint at new possibilities (such as a dissociation between 

structure and function) and future avenues for brain research, and any parallels we 

have drawn with specific brain processes in that chapter are to be considered with 

caution.  

In contrast to the model in Chapter 2, the model presented in Chapter 3 and 

expanded in Chapter 4 does represent a specific target system; namely a network of 

oscillating neuronal populations in early visual cortex. However, individual neuronal 

populations were not modelled as circuits of excitatory and inhibitory neurons but 

instead by simple phase oscillators. Likewise, coupling between populations was not 

modelled in the form of synaptic interactions between neurons but instead by a 

simple (sinusoidal) coupling function. This raises the question in what sense the 

model represents neural processes in a sufficiently mechanistic manner. To answer 

this question, it is important to keep in mind the purpose of the model. The model 

was intended to represent networks of oscillating neuronal populations in early visual 

cortex. Therefore, it is possible to abstract away from the detailed neuronal and 

synaptic processes that give rise to interactions among individual populations that 

underlie the oscillations (Bartos, Vida, & Jonas, 2007; Hansel & Mato, 2003; X. J. 
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Wang & Buzsáki, 1996; Miles A. Whittington, Traub, & Jefferys, 1995; Wilson & 

Cowan, 1972), and focus instead on interactions among the oscillations at the 

population level. Whether the Kuramoto model is an appropriate choice for such an 

abstraction depends on whether it captures the synchronization behaviour of 

synaptically coupled neuronal circuits. Prior research has shown that this is indeed 

the case. It has, for instance, been shown that networks of quadratic integrate-and-

fire, Izhikevich and Hodgkin-Huxley neurons as well as Winfree-type ensembles of 

oscillators exhibited synchronization behaviour comparable to that in networks of 

Kuramoto oscillators (Bhowmik & Shanahan, 2012; Lowet et al., 2015; Politi & 

Rosenblum, 2015). The chosen model can thus generally represent neural oscillator 

networks. To specifically represent neural oscillator networks in V1, elements of the 

model need to denote elements of this particular target system. These elements are 

the retinotopic organization of neuronal populations in V1, the distance-dependence 

of horizontal coupling and the relation between the contrast in an oscillator’s 

population receptive field and their intrinsic frequencies in the gamma range. In 

Chapter 4, a learning algorithm was added to the model. The denotationally relevant 

elements of this are the eligibility of individual weights to change based on the co-

occurrence of pre- and post-synaptic activity, and reward in response to 

synchronization behaviour. All of these are based on extensive pre-existing literature 

(Chubykin, Roach, Bear, & Shuler, 2013; Diekelmann & Born, 2010; Gerstner, 

Lehmann, Liakoni, Corneil, & Brea, 2018; He et al., 2015; Izhikevich, Jay, Drive, & 

Diego, 2007; Rasch & Born, 2013) as well as electrophysiological data (Lowet et al., 

2017) in order to maximize their biological fidelity. The model thus specifies 

relevant components in early visual cortex and their interactions that are considered 

to be part of the mechanism that gives rise to neural synchrony in the gamma range. 

It further provides a mapping between elements in the model and elements in this 

mechanism. As such, the model may be considered mechanistic according to the 3M 

criterion. However, only the core causal factors were included in this specification, 

rendering the model a minimalist idealization.  

Chapters 3 and 4 then proceeded to demonstrate how synchronization behaviour 

in the model depends on stimulus conditions and training-induced changes in 

coupling. This was interpreted to reflect synchronization behaviour among neuronal 

populations in the corresponding patch of V1. Importantly, from an epistemological 

perspective, the work conducted in these chapters was not intended to provide novel 

insights regarding the synchronization behaviour of neuronal populations in V1. This 

would have been the case, if the work was primarily intended to study biophysical 

phenomena, which could have been investigated, for example, with in vivo and in 

vitro recording methods (Jehee, Ling, Swisher, van Bergen, & Tong, 2012; Lowet et 
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al., 2017; A. Schoups et al., 2001; Shibata, Watanabe, Sasaki, & Kawato, 2011; Z. 

Wang et al., 2021; Yan et al., 2014), perhaps combined with optogenetic 

manipulations (Kirchberger et al., 2021). Instead, we intended to study functional 

phenomena and, specifically, to test the hypothesis that synchronization behaviour 

in our minimalist idealization of the target system could be predictive for perception. 

In order to do so, it is important to consider both the modelling and experimentation 

conducted within these two chapters and to view this approach from a falsification 

perspective. In essence, the work in Chapters 3 and 4 rests on two premises. First, 

synchronization in the employed oscillator model reflects synchronization in V1. 

Second, synchronization in V1 has observable (i.e., testable) perceptual 

consequences. This premise is the core hypothesis of Chapters 3 and 4. These 

premises together warrant the conclusion that synchronization in the employed 

oscillator model has observable (i.e., testable) perceptual consequences and 

rejection of the conclusion (i.e., failure to empirically verify model predictions) 

means that either the first, second or both premises are false. The first premise is 

supported not only by the care taken to ensure the model is an appropriate 

representation of the relevant components and processes in V1 but also by 

independent neurophysiological data (Lowet et al., 2017). Rejection of the 

conclusion must then entail rejection specifically of the second premise and hence 

falsification of the core hypothesis of the two chapters. Experiments in both chapters 

failed to falsify this hypothesis, thus rendering it tentatively acceptable. Therefore, 

we suggest that it is reasonable to conclude that synchronization mechanisms in V1 

contribute to human perceptual performance. 

The preceding overview of the scientific practice of modelling as well as analysis 

of the work presented in the core chapters of this thesis warrant the conclusion that, 

given the respective objectives of the three chapters and their accompanying 

requirements regarding modelling approaches, the employed models can indeed be 

considered adequate for their intended purposes. 

 

5-6. Future Directions 
The work presented in the present thesis may provide the impetus for several 

further research lines. First, the present focus on function may be supplemented by 

work focusing on biophysics in order to arrive at a more holistic understanding of 

gamma oscillations and synchrony in early visual cortex. This would involve both 

empirical and modelling work. The former might entail a replication of the studies 

presented in Chapters 3 and 4 using electrophysiological recordings in monkeys. The 

latter might entail translating the current model to a spiking neuron implementation 
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wherein local (columnar) oscillations are driven by external inputs in conjunction 

with recurrent interactions among intracolumnar excitatory and inhibitory neuronal 

populations, wherein synchrony may be the result of lateral interactions between 

columns. A combination of monkey electrophysiological and behavioural results 

with detailed biophysical modelling would permit a thorough validation of the 

proposed synchrony-based information integration mechanism at the biological and 

behavioural level. Introducing a biologically realistic laminar profile to the columnar 

model would additionally allow for studying the spatio-temporal profiles of 

feedforward, lateral and feedback (e.g., attention) signals and how they interact 

during visual scene analysis (Brosch, Tschechne, & Neumann, 2016). 

The interaction between feedforward, lateral and feedback signals is also 

relevant from an extended functional perspective. While the present thesis provides 

evidence that local gamma may be relevant for figure-ground segregation, it is likely 

that it is merely one component of a larger mechanism that involves several cortical 

and subcortical structures. Another avenue for further research would therefore be 

the development of a large-scale model that leverages oscillations and synchrony to 

perform scene analysis in natural stimuli. Such a model should be able to segregate 

image regions corresponding to different objects and integrate those regions 

corresponding to the same object. This is a challenging task that requires a 

hierarchical neural architecture exhibiting feedforward, lateral and feedback 

connections. Notably, such a model should strive to unify the local synchronization 

mechanisms detailed in the present thesis with border reconstruction and filling-in 

mechanisms proposed by other groups (Poort, Self, van Vugt, Malkki, & Roelfsema, 

2016; Roelfsema, Lamme, Spekreijse, & Bosch, 2002; Self, Kooijmans, Supèr, 

Lamme, & Roelfsema, 2012). An important validation for such a model, besides 

realistic perceptual performance, would be its ability to account for 

neurophysiological observations demonstrating the necessary contributions of 

feedback for figure-ground segregation, following an initial feedforward sweep 

(Kirchberger et al., 2019; Lamme, Supèr, & Spekreijse, 1998; Supèr & Lamme, 

2007).  

 

  

https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=3668815
https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=3668815
https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=3668815


 

 

184 
 

General Summary and Discussion 

References 

 

Aberg, K. C., Tartaglia, E. M., & Herzog, M. H. (2009). Perceptual learning with Chevrons requires 

a minimal number of trials, transfers to untrained directions, but does not require sleep. Vision 

Research, 49 (16), 2087–2094.  

Acebr, J. A., Gradenigo, V., Matematica, D., Acebrón, J. A., Bonilla, L. L., Vicente, C. J. P., … 

Spigler, R. (2005). The Kuramoto model: A simple paradigm for synchronization phenomena. 

Reviews of Modern Physics, 77 (January), 137–185.  

Ahissar, Merav, & Hochstein, S. (1996). Learning Pop-out Detection: Specificities to Stimulus 

Characteristics. Vision Research, 36 (21), 3487–3500.  

Ahissar, Merav, Laiwand, R., Kozminsky, G., & Hochstein, S. (1998). Learning pop-out detection: 

building representations for conflicting target-distractor relationships. Vision Research, 38 (20), 

3095–3107.  

Ahissar, M., & Hochstein, S. (1993). Attentional control of early perceptual learning. Proceedings of 

the National Academy of Sciences of the United States of America, 90 (12), 5718–5722.  

Balasubramanian, M., & Schwartz, E. L. (2002). The isomap algorithm and topological stability. 

Science, 295 (5552), 7.  

Baldi, P., & Meir, R. (1990). Computing with Arrays of Coupled Oscillators: An Application to 

Preattentive Texture Discrimination. Neural Computation, 2 (4), 458–471.  

Bartos, M., Vida, I., & Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in 

inhibitory interneuron networks. Nature Reviews Neuroscience 2007 8:1, 8 (1), 45–56.  

Batterman, R. W. (2002). The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction 

and Emergence. Oxford University Press.  

Batterman, R. W. (2010). Emergence, Singularities, and Symmetry Breaking. Foundations of Physics, 

41 (6), 1031–1050.  

Bertrand, O., & Tallon-Baudry, C. (2000). Oscillatory gamma activity in humans: a possible role for 

object representation. International Journal of Psychophysiology, 38 (3), 211–223.  

Bhowmik, D., & Shanahan, M. (2012). How well do oscillator models capture the behaviour of 

biological neurons? Proceedings of the International Joint Conference on Neural Networks. 

Bokulich, A. (2009). How scientific models can explain. Synthese 2009 180:1, 180 (1), 33–45.  

Boone, W., & Piccinini, G. (2016). Mechanistic Abstraction. Philosophy of Science, 83 (5), 686–697. 

Brosch, T., Tschechne, S., & Neumann, H. (2016). Visual Processing in Cortical Architecture from 

Neuroscience to Neuromorphic Computing. Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10087 

LNCS, 86–100. 



 

 

185 

 

Chapter 5 

5 

Brunet, N., Bosman, C. A., Roberts, M., Oostenveld, R., Womelsdorf, T., de Weerd, P., & Fries, P. 

(2015). Visual Cortical Gamma-Band Activity During Free Viewing of Natural Images. 

Cerebral Cortex, 25 (4), 918–926.  

Brunet, N. M., & Fries, P. (2019). Human visual cortical gamma reflects natural image structure. 

NeuroImage, 200, 635–643.  

Buia, C., & Tiesinga, P. (2006). Attentional modulation of firing rate and synchrony in a model cortical 

network. Journal of Computational Neuroscience, 20 (3), 247–264.  

Buzśaki, G., & Wang, X. J. (2012). Mechanisms of Gamma Oscillations. Annual Review of 

Neuroscience, 35, 203–225.  

Chang, K.-J., Redmond, S. A., & Chan, J. R. (2016). Remodeling myelination: implications for 

mechanisms of neural plasticity. Nature Neuroscience, 19 (2), 190–197.  

Chubykin, A. A., Roach, E. B., Bear, M. F., & Shuler, M. G. H. (2013). A Cholinergic Mechanism 

for Reward Timing within Primary Visual Cortex. Neuron, 77 (4), 723–735.  

Crist, R. E., Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (1997). Perceptual learning of spatial 

localization: Specificity for orientation, position, and context. Journal of Neurophysiology, 78 

(6), 2889–2894.  

Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience 2010 

11:2, 11 (2), 114–126. 

Dubey, A., & Ray, S. (2020). Comparison of tuning properties of gamma and high-gamma power in 

local field potential (LFP) versus electrocorticogram (ECoG) in visual cortex. Scientific Reports 

2020 10:1, 10 (1), 1–15.  

Dutta, D. J., Ho Woo, D., Lee, P. R., Pajevic, S., Bukalo, O., Huffman, W. C., … Wake, H. (2018). 

Regulation of myelin structure and conduction velocity by perinodal astrocytes. PNAS, 115 

(46), 11832–11837.  

Elgin, C. Z. (2017). True Enough. MIT Press.  

Ermentrout, B., & Ko, T. W. (2009). Delays and weakly coupled neuronal oscillators. Philosophical 

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 

(1891), 1097–1115.  

Ermentrout, B., Park, Y., & Wilson, D. (2019). Recent advances in coupled oscillator theory. 

Philosophical Transactions of the Royal Society A, 377 (2160).  

Feng, W., Havenith, M. N., Wang, P., Singer, W., & Nikolić, D. (2010). Frequencies of gamma/beta 

oscillations are stably tuned to stimulus properties. NeuroReport, 21 (10), 680–684.  

Fields, R. D. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. 

Nature Reviews Neuroscience, 16 (12), 756–767.  

Fields, R. D., & Bukalo, O. (2020). Myelin makes memories. Nature Neuroscience, 23 (4), 469–470.  

Fiorentini, A., & Berardi, N. (1980). Perceptual learning specific for orientation and spatial frequency. 

Nature 1980 287:5777, 287 (5777), 43–44.  



 

 

186 
 

General Summary and Discussion 

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal 

coherence. Trends in Cognitive Sciences, 9 (10), 474–480.  

Fries, P., Nikolić, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30 (7), 309–

316. 

Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., & Brea, J. (2018). Eligibility Traces and 

Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian Three-Factor 

Learning Rules. Frontiers in Neural Circuits, 12, 53.  

Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., … Rapoport, 

J. L. (1996). Quantitative MRI of the Temporal Lobe, Amygdala, and Hippocampus in Normal 

Human Development: Ages 4-18 Years. THE JOURNAL OF COMPARATIVE NEUROLOGY, 

366, 223–230. 

Gieselmann, M. A., & Thiele, A. (2008). Comparison of spatial integration and surround suppression 

characteristics in spiking activity and the local field potential in macaque V1. European Journal 

of Neuroscience, 28 (3), 447–459. 

Gilbert, C. D., & Wiesel, T. N. (1983). Clustered intrinsic connections in cat visual cortex. Journal of 

Neuroscience, 3 (5), 1116–1133.  

Gray, C. M., & Goodell, B. (2011). Spatiotemporal Dynamics of Synchronous Activity across 

Multiple Areas of the Visual Cortex in the Alert Monkey. In The Dynamic Brain: An 

Exploration of Neuronal Variability and Its Functional Significance.  

Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex 

exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 1989 

338:6213, 338 (6213), 334–337.  

Hadjipapas, A., Lowet, E., Roberts, M. J., Peter, A., & de Weerd, P. (2015). Parametric variation of 

gamma frequency and power with luminance contrast: A comparative study of human MEG 

and monkey LFP and spike responses. NeuroImage, 112, 327–340.  

Hall, S. D., Holliday, I. E., Hillebrand, A., Singh, K. D., Furlong, P. L., Hadjipapas, A., & Barnes, G. 

R. (2005). The missing link: Analogous human and primate cortical gamma oscillations. 

NeuroImage, 26 (1), 13–17.  

Hansel, D., & Mato, G. (2003). Asynchronous States and the Emergence of Synchrony in Large 

Networks of Interacting Excitatory and Inhibitory Neurons. Neural Computation, 15 (1), 1–56.  

He, K., Huertas, M., Hong, S. Z., Tie, X. X., Hell, J. W., Shouval, H., & Kirkwood, A. (2015). Distinct 

Eligibility Traces for LTP and LTD in Cortical Synapses. Neuron, 88 (3), 528–538.  

Henrie, J. A., & Shapley, R. (2005). LFP power spectra in V1 cortex: The graded effect of stimulus 

contrast. Journal of Neurophysiology, 94 (1), 479–490.  

Hermes, D., Miller, K. J., Wandell, B. A., & Winawer, J. (2015). Stimulus dependence of gamma 

oscillations in human visual cortex. Cerebral Cortex, 25 (9), 2951–2959.  

Hermes, Dora, Miller, K. J., Wandell, B. A., & Winawer, J. (2015). Gamma oscillations in visual 

cortex: The stimulus matters. Trends in Cognitive Sciences, 19 (2), 57. 



 

 

187 

 

Chapter 5 

5 

Hoppensteadt, F. C., & Izhikevich, E. M. (1999). Oscillatory Neurocomputers with Dynamic 

Connectivity. Physical Review Letters, 82 (14), 2983.  

Hughes, R. I. G. (1997). Models and Representation. Philosophy of Science, 64, S325–S336. 

Humphreys, P. (1995). Abstract and Concrete. Philosophy and Phenomenological Research, 55 (1), 

157–161.  

Izhikevich, E. M., & Appl Math, S. J. (2006). Weakly Connected Quasi-periodic Oscillators, FM 

Interactions, and Multiplexing in the Brain. Http://Dx.Doi.Org/10.1137/S0036139997330623, 

59 (6), 2193–2223.  

Izhikevich, E. M., Jay, J., Drive, H., & Diego, S. (2007). Solving the Distal Reward Problem through 

Linkage of STDP and Dopamine Signaling. Cerebral Cortex, 17, 2443–2452.  

Jehee, J. F. M., Ling, S., Swisher, J. D., van Bergen, R. S., & Tong, F. (2012). Perceptual Learning 

Selectively Refines Orientation Representations in Early Visual Cortex. Journal of 

Neuroscience, 32 (47), 16747–16753.  

Jeter, P. E., Dosher, B. A., Petrov, A., & Lu, Z. L. (2009). Task precision at transfer determines 

specificity of perceptual learning. Journal of Vision, 9 (3), 1–1.  

Jia, X., Xing, D., & Kohn, A. (2013). No Consistent Relationship between Gamma Power and Peak 

Frequency in Macaque Primary Visual Cortex. Journal of Neuroscience, 33 (1), 17–25.  

Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese 2011 

183:3, 183 (3), 339–373.  

Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: evidence for 

primary visual cortex plasticity. Proceedings of the National Academy of Sciences, 88 (11), 

4966–4970.  

Kayser, C., Salazar, R. F., & König, P. (2003). Responses to natural scenes in cat VI. Journal of 

Neurophysiology, 90 (3), 1910–1920.  

Kirchberger, L., Mukherjee, S., Schnabel, U. H., van Beest, E., Barsegyan, A., Levelt, C. N., … 

Roelfsema, P. (2019). The Essential Role of Feedback Processing for Figure-Ground Perception 

in Mice. SSRN Electronic Journal. 

Kirchberger, L., Mukherjee, S., Schnabel, U. H., van Beest, E. H., Barsegyan, A., Levelt, C. N., … 

Roelfsema, P. R. (2021). The essential role of recurrent processing for figure-ground perception 

in mice. Science Advances, 7 (27). 

Kirst, C., Timme, M., & Battaglia, D. (2016). Dynamic information routing in complex networks. 

Nature Communications 2016 7:1, 7 (1), 1–9. 

Lamme, V. A. F., Supèr, H., & Spekreijse, H. (1998). Feedforward, horizontal, and feedback 

processing in the visual cortex. Current Opinion in Neurobiology, 8 (4), 529–535.  

Levins, R. (1966). THE STRATEGY OF MODEL BUILDING IN POPULATION BIOLOGY. 

American Scientist, 54 (9), 421–431. 

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological 

investigation of the basis of the fMRI signal. Nature, 412 (6843), 150–157. 



 

 

188 
 

General Summary and Discussion 

Lowet, E., Roberts, M., Hadjipapas, A., Peter, A., van der Eerden, J., & de Weerd, P. (2015). Input-

Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial 

Synchronization and Enables Phase Coding. PLoS Computational Biology. 

Lowet, E., Roberts, M. J., Peter, A., Gips, B., & de Weerd, P. (2017). A quantitative theory of gamma 

synchronization in macaque V1. ELife, 6. 

Marr, D. (1982). The Philosophy and the Approach. In Y. Steve (Ed.), Visual Perception: Essential 

Readings (pp. 104–123). PSYCHOLOGY PRESS. 

Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images 

and its application to evaluating segmentation algorithms and measuring ecological statistics. 

Proceedings of the IEEE International Conference on Computer Vision, 2, 416–423.  

McKenzie, I. A., Ohayon, D., Li, H., de Faria, J. P., Emery, B., Tohyama, K., & Richardson, W. D. 

(2014). Motor skill learning requires active central myelination. Science, 346 (6207), 318–322. 

McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science Part A, 16 

(3), 247–273.  

Milner, B., Squire, L. R., & Kandel, E. R. (1998). Cognitive Neuroscience Review and the Study of 

Memory. Neuron, 20, 445–468. 

Morgan, M. S. (1999). Learning from models. In Models as Mediators (Vol. 52, pp. 347–388). 

Cambridge University Press. 

Nickel, M., & Gu, C. (2018). Regulation of Central Nervous System Myelination in Higher Brain 

Functions. Neural Plasticity, 2018, 1–12. 

Nikolić, D. (2006). Non-parametric detection of temporal order across pairwise measurements of time 

delays. Journal of Computational Neuroscience, 22 (1), 5–19.  

Niyogi, R. K., & English, L. Q. (2009). Learning-rate-dependent clustering and self-development in a 

network of coupled phase oscillators. Physical Review E - Statistical, Nonlinear, and Soft 

Matter Physics, 80 (6), 1–7.  

Nowotny, T., Zhigulin, V. P., Selverston, A. I., Abarbanel, H. D. I., & Rabinovich, M. I. (2003). 

Enhancement of Synchronization in a Hybrid Neural Circuit by Spike-Timing Dependent 

Plasticity. The Journal of Neuroscience, 23 (30), 9776–9785. 

Odenbaugh, J. (2003). Complex systems, trade-offs and mathematical modeling: a response to Sober 

and Orzack. Philosophy of Science, 70 (5), 1496–1507.  

Pajevic, S., Basser, P. J., & Fields, A. R. D. (2014). Role of Myelin Plasticity in Oscillations and 

Synchrony of Neuronal Activity. Neuroscience, 276, 135–147.  

Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: functional analyses as 

mechanism sketches. Synthese, 183 (3), 283–311.  

Piccinini, G., & Shagrir, O. (2014). Foundations of computational neuroscience. Current Opinion in 

Neurobiology, 25, 25–30.  

Pikovsky, A., Rosenblum, M., Self, J. K.-, & 2001, undefined. (2003). A universal concept in 

nonlinear sciences. Researchgate.Net.  



 

 

189 

 

Chapter 5 

5 

Polimeni, J. R., Hinds, O. P., Balasubramanian, M., Kouwe, A. J. W. van der, Wald, L. L., Dale, A. 

M., … Schwartz, E. L. (2005). Two-dimensional mathematical structure of the human 

visuotopic map complex in V1, V2, and V3 measured via fMRI at 3 and 7 Tesla. Journal of 

Vision, 5 (8), 898–898.  

Politi, A., & Rosenblum, M. (2015). Equivalence of phase-oscillator and integrate-and-fire models. 

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91 (4), 042916.  

Poort, J., Self, M. W., van Vugt, B., Malkki, H., & Roelfsema, P. R. (2016). Texture Segregation 

Causes Early Figure Enhancement and Later Ground Suppression in Areas V1 and V4 of Visual 

Cortex. Cerebral Cortex, 26 (10), 3964–3976.  

Popper, K. (2014). Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge.  

Purger, D., Gibson, E. M., & Monje, M. (2016). Myelin plasticity in the central nervous system. 

Neuropharmacology, 110, 563–573.  

Rasch, B., & Born, J. (2013). About sleep’s role in memory. Physiological Reviews, 93 (2), 681–766.  

Ray, S., & Maunsell, J. H. R. (2015). Do gamma oscillations play a role in cerebral cortex? Trends in 

Cognitive Sciences, 19 (2), 78–85.  

Ray, S., & Maunsell, J. H. R. (2010). Differences in Gamma Frequencies across Visual Cortex Restrict 

Their Possible Use in Computation | Elsevier Enhanced Reader. Neuron, 67, 885–896.  

R. D. Fields. (2014). Myelin-More than Insulation. SCIENCE, 344 (6181), 264–266. 

Rice, C. (2015). Moving Beyond Causes: Optimality Models and Scientific Explanation. Noûs, 49 (3), 

589–615. 

Rice, C. (2019). Models don’t decompose that way: A holistic view of idealized models. The British 

Journal for the Philosophy of Science, 70 (1), 179–208. 

Roberts, M. J., Lowet, E., Brunet, N. M., TerWal, M., Tiesinga, P., Fries, P., & de Weerd, P. (2013). 

Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. 

Neuron. 

Roelfsema, P. R., Lamme, V. A. F., Spekreijse, H., & Bosch, H. (2002). Figure - Ground segregation 

in a recurrent network architecture. Journal of Cognitive Neuroscience, 14 (4), 525–537.  

Roman, F., & Hartmann, S. (2020). Models in Science. 

Sampaio-Baptista, C., Khrapitchev, A. A., Foxley, S., Schlagheck, T., Scholz, J., Jbabdi, S., … 

Johansen-Berg, H. (2013). Motor Skill Learning Induces Changes in White Matter 

Microstructure and Myelination. Journal of Neuroscience, 33 (50), 19499–19503. 

Scholz, J., Klein, M. C., Behrens, T. E. J. J., & Johansen-Berg, H. (2009). Training induces changes 

in white-matter architecture. Nature Neuroscience, 12 (11), 1370–1371.  

Schoups, A. A., Vogels, R., & Orban, G. A. (1995). Human perceptual learning in identifying the 

oblique orientation: retinotopy, orientation specificity and monocularity. The Journal of 

Physiology, 483 (3), 797–810.  



 

 

190 
 

General Summary and Discussion 

Schoups, A., Vogels, R., Qian, N., & Orban, G. (2001). Practising orientation identification improves 

orientation coding in V1 neurons. Nature 2001 412:6846, 412 (6846), 549–553.  

Schwartz, E. L. (1980). Computational anatomy and functional architecture of striate cortex: A spatial 

mapping approach to perceptual coding. Vision Research, 20 (8), 645–669.  

Self, M. W., Kooijmans, R. N., Supèr, H., Lamme, V. A., & Roelfsema, P. R. (2012). Different 

glutamate receptors convey feedforward and recurrent processing in macaque V1. Proceedings 

of the National Academy of Sciences of the United States of America, 109 (27), 11031–11036.  

Seliger, P., Young, S. C., & Tsimring, L. S. (2002). Plasticity and learning in a network of coupled 

phase oscillators. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 65 (4), 

1–7.  

Shapira, A., Sterkin, A., Fried, M., Yehezkel, O., Zalevsky, Z., & Polat, U. (2017). Increased gamma 

band activity for lateral interactions in humans. PLoS ONE, 12 (12), e0187520.  

Shibata, K., Watanabe, T., Sasaki, Y., & Kawato, M. (2011). Perceptual learning incepted by decoded 

fMRI neurofeedback without stimulus presentation. Science (New York, N.Y.), 334 (6061), 

1413–1415. 

Siri, B., Quoy, M., Delord, B., Cessac, B., & Berry, H. (2007). Effects of Hebbian learning on the 

dynamics and structure of random networks with inhibitory and excitatory neurons. Journal of 

Physiology Paris, 101 (1–3), 136–148.  

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-

dependent synapticplasticity. Nature Neuroscience, 3 (9), 919–926.  

Stettler, D. D., Das, A., Bennett, J., & Gilbert, C. D. (2002). Lateral connectivity and contextual 

interactions in macaque primary visual cortex. Neuron, 36 (4), 739–750.  

Strevens, M. (2003). The Causal and Unification Accounts of Explanation unified—causally. Noûs.  

Strevens, M. (2004). The Causal and Unification Approaches to Explanation Unified—Causally. 

Noûs, 38 (1), 154–176.  

Strevens, M. (2008). Comments on Woodward, Making Things Happen. Philosophy and 

Phenomenological Research, 77 (1), 171–192. 

Supèr, H., & Lamme, V. A. F. (2007). Altered figure-ground perception in monkeys with an extra-

striate lesion. Neuropsychologia, 45 (14), 3329–3334.  

Swadlow, H. A., & Waxman, S. G. (2012). Axonal conduction delays. Scholarpedia, 7 (6), 1451.  

Swettenham, J. B., Muthukumaraswamy, S. D., & Singh, K. D. (2009). Spectral properties of induced 

and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli. 

Journal of Neurophysiology, 102 (2), 1241–1253.  

Thivierge, J.-P. (2008). Neural diversity creates a rich repertoire of brain activity. 

Http://Www.Tandfonline.Com/Action/AuthorSubmission?JournalCode=kcib20&page=instruc

tions, 1 (2), 188–189.  



 

 

191 

 

Chapter 5 

5 

Timms, L., & English, L. Q. (2014). Synchronization in phase-coupled Kuramoto oscillator networks 

with axonal delay and synaptic plasticity. Physical Review E - Statistical, Nonlinear, and Soft 

Matter Physics, 89 (3).  

Traubab, R. D., Spruston, N., Soltesz, I., Konnerth, A., Whittington, M. A., & Jefferys, J. G. R. (1998). 

Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and 

intrinsic cellular processes, and inducing synaptic plasticity. Progress in Neurobiology, 55 (6), 

563–575. 

Ts’o, D. Y., Gilbert, C. D., & Wiesel, T. N. (1986). Relationships between horizontal interactions and 

functional architecture in cat striate cortex as revealed by cross-correlation analysis. Journal of 

Neuroscience, 6 (4), 1160–1170. 

Wang, R., Cong, L. J., & Yu, C. (2013). The classical TDT perceptual learning is mostly temporal 

learning. Journal of Vision, 13 (5), 9–9.  

Wang, R., Zhang, J. Y., Klein, S. A., Levi, D. M., & Yu, C. (2012). Task relevancy and demand 

modulate double-training enabled transfer of perceptual learning. Vision Research, 61, 33–38.  

Wang, X. J., & Buzsáki, G. (1996). Gamma Oscillation by Synaptic Inhibition in a Hippocampal 

Interneuronal Network Model. Journal of Neuroscience, 16 (20), 6402–6413.  

Wang, Z., Tamaki, M., Frank, S. M., Shibata, K., Worden, M. S., Yamada, T., … Watanabe, T. (2021). 

Visual perceptual learning of a primitive feature in human V1/V2 as a result of unconscious 

processing, revealed by decoded functional MRI neurofeedback (DecNef). Journal of Vision, 

21 (8), 1–15.  

Weisberg, M. (2007a). Forty Years of ‘The Strategy’: Levins on Model Building and Idealization. 

Biology and Philosophy, 21 (5), 623–645.  

Weisberg, M. (2007b). Three Kinds of Idealization. The Journal of Philosophy, 104 (12), 639–659.  

Weisberg, M. (2015). Qualitative Theory and Chemical Explanation. Philosophy of Science, 71 (5), 

1071–1081. 

Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H. (2000). Inhibition-based 

rhythms: experimental and mathematical observations on network dynamics. International 

Journal of Psychophysiology, 38 (3), 315–336.  

Whittington, Miles A., Cunningham, M. O., LeBeau, F. E. N., Racca, C., & Traub, R. D. (2011). 

Multiple origins of the cortical gamma rhythm. Developmental Neurobiology, 71 (1), 92–106.  

Whittington, Miles A., Traub, R. D., & Jefferys, J. G. R. (1995). Synchronized oscillations in 

interneuron networks driven by metabotropic glutamate receptor activation. Nature 1995 

373:6515, 373 (6515), 612–615.  

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and Inhibitory Interactions in Localized Populations 

of Model Neurons. Biophysical Journal, 12 (1), 1–24.  

Yan, Y., Rasch, M. J., Chen, M., Xiang, X., Huang, M., Wu, S., & Li, W. (2014). Perceptual training 

continuously refines neuronal population codes in primary visual cortex. Nature Neuroscience 

2014 17:10, 17 (10), 1380–1387.  



 

 

192 
 

General Summary and Discussion 

Yogendra, K., Chamika, L., Fan, D., Shim, Y., & Roy, K. (2017). Coupled Spin-Torque Nano-

Oscillator-Based Computation. ACM Journal on Emerging Technologies in Computing Systems 

(JETC), 13 (4).  

Zhang, J. Y., Zhang, G. L., Xiao, L. Q., Klein, S. A., Levi, D. M., & Yu, C. (2010). Rule-Based 

Learning Explains Visual Perceptual Learning and Its Specificity and Transfer. Journal of 

Neuroscience, 30 (37), 12323–12328. 

  



 

193 

 

 

  



 

194 
 

 

  



 

195 

 

 

 
 

 

 

 

Impact Paragraph 

 



 

 

196 
 

Impact Paragraph 

Impacts of studies in the current thesis 
Oscillations are a ubiquitous phenomenon in nature, society and technology. In 

nature, oscillations include predator-prey population cycles (Leconte, Masson, & Qi, 

2022), sea surface temperature variations (Knudsen, Seidenkrantz, Jacobsen, & 

Kuijpers, 2011), and climate oscillations (Mann, Park, & Bradley, 1995). In addition, 

oscillations play a significant role in living organisms, specifically in human and 

animal organs. For example, heartbeats (Ryzhii & Ryzhii, 2014), insulin 

concentration changes in blood (Hellman, Gylfe, Grapengiesser, Dansk, & Salehi, 

2007; Lang, Matthews, Peto, & Turner, 2010), and vocal cord vibrations (Titze, 

1993)  are all oscillatory.  Many economic and societal phenomena exhibit 

oscillations as well. For example, when viewed over long periods of time, prosperity 

in society and related parameters like unemployment tend to be cyclical (Eeckhout 

& Lindenlaub, 2019; Mitchell, 1941). Similarly, the development of a circular 

economy is based on continual recycling between raw materials and derived finished 

products (Mitchell, 1941). Finally, oscillations are relevant for technology, as many 

devices and instruments work based on rhythmicity. For example, electrical devices 

use alternating currents that reverse direction and change their amplitude 

periodically (Bhargava & Kulshreshtha, 1983). String instruments, like a guitar, 

produce sound as the result of the vibration in their strings (Perov, Johnson, & 

Perova-Mello, 2015). Quartz wristwatches, digital clocks, computers and cellphones 

have electronic oscillator circuits known as crystal oscillators, which keep track of 

time and stabilize clock signals or frequencies (Matthys, n.d.).  

In addition to isolated oscillations, it is also possible to observe systems of 

coupled oscillators. Whenever a group of oscillators interacts, synchronization can 

arise (Pikovsky, Rosenblum, Self, & 2001, 2003). This insight occurred to Christiaan 

Huygens (1629-1695) in the 17th century when he observed that two pendulum 

clocks suspended from the same beam synchronize (Huygens & Oscillatorium, 

1986). Huygens’ observations are in line with the more recently formulated theory 

of weakly coupled oscillators (TWCO). TWCO describes the rules according to 

which two or more oscillators interact with each other.  

In the present thesis, we used a simple, yet well-defined formulation of TWCO 

known as the Kuramoto model (Ermentrout, Park, & Wilson, 2019) to study how 

synchronization arises in neural networks. In particular, we used the Kuramoto 

model to investigate the factors that determine the size and number of clusters of 

synchronized (integrated) and unsynchronized (segregated) neuronal groups. We 

showed that structural characteristics of neural networks (like synaptic strength and 

conductivity) can interact with the functional segregation of networks and 
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demonstrated how external influences (visual stimuli) affect integration and 

segregation in behavioural experiments. We found that TWCO was a powerful 

framework to understand and predict our observations. According to the principles 

of TWCO, depending on how the oscillations evolve, different functionally 

segregated networks can form very quickly. Because of this flexibility, oscillations 

are thought to play a major role in cognition. One’s ability to switch quickly from 

one thought to another may be intimately related to oscillatory mechanisms, and to 

the ability to quickly change functional networks through synchronization 

mechanisms. At the same time, specific aspects of the hardware design of the 

network can influence how likely it is that a large neural network will segregate into 

smaller ones, all showing their own local synchronization around their own 

synchronization frequency. 

The relationship between oscillations and cognition suggests that aberrations in 

neural oscillations may be linked to psychiatric disease. Neuroscientific studies have 

indeed revealed that many mental diseases and disorders, such as major and bipolar 

depression (Canali et al., 2015; Fitzgerald & Watson, 2018; Linkenkaer-Hansen et 

al., 2005), obsessive-compulsive disorder (Min, Kim, Park, & Park, 2011), 

schizophrenia (Canali et al., 2015; Chung, Geramita, & Lewis, 2022; Shin, 

O’Donnell, Youn, & Kwon, 2011), spatial attentional deficits (Banerjee, Snyder, 

Molholm, & Foxe, 2011), post-traumatic stress disorder (Popescu et al., 2019; 

Reuveni et al., 2022) and epilepsy (Lehnertz et al., 2009; Traub & Wong, 1982) are 

related to abnormalities in ongoing interactions within and between oscillating 

networks in the brain, which either impede desired synchrony or give rise to 

undesirable synchronization patterns. The insights afforded by the present thesis may 

thus not only provide a better understanding of information processing in healthy 

brains but may also be exploited for clinical applications. In Chapter 2 of the present 

thesis, we showed that plastic delays can significantly alter the spread of synchrony 

across a network of oscillators. This might be relevant for computational models of 

epilepsy that are being used to identify epileptogenic zones of drug-resistant epilepsy 

patients in order to provide targets for surgery (Jirsa et al., 2017; Olmi, Petkoski, 

Guye, Bartolomei, & Jirsa, 2019; Proix, Bartolomei, Guye, & Jirsa, 2017; Proix, 

Jirsa, Bartolomei, Guye, & Truccolo, 2018). The effects of delays on synchrony as 

well as synchrony-induced changes of delays described in the second chapter provide 

additional insights that might improve the fidelity of epilepsy models and hence 

render them more accurate in identifying epileptogenic zones. This might render 

them safer and thus useful to a larger patient population. Beyond physically 

removing a source of pathological synchronization, synchronization states can also 

be modulated by external interventions. Transcranial alternating current stimulation 
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(tACS) (Elyamany, Leicht, Herrmann, & Mulert, 2020) or high-frequency repetitive 

transcranial magnetic stimulation (rTMS) (Zrenner et al., 2020) can help to treat or 

control some of the mentioned mental diseases (e.g. major depression, obsessive-

compulsive disorder, schizophrenia, spatial attentional deficits). In such treatments, 

the repetitive synchronization of neural oscillations in selected functional systems 

with electrical pulses modulates these selected neural networks, which results in 

plastic changes, of which positive therapeutic outcomes have been documented 

(Elyamany et al., 2020; Zrenner et al., 2020). Insights gleaned from Chapter 2 may 

provide a better understanding of plastic changes and their implications.  

The previous paragraphs already showed that external influences (e.g. TMS 

pulses) and ensuing changes in neural network structure modulate neural oscillations 

and synchrony in the brain to a significant degree. In the present thesis, we focused 

on a related finding, which is that neural oscillations in the visual cortex depend on 

visual stimuli in the outside world. Remarkably, stronger stimuli (e.g. moving faster, 

or having greater contrast) produce faster oscillations in visual neurons. This is an 

important finding, as it suggests that local contrasts in an image will help in 

determining which parts in an image belong together and which parts do not. TWCO 

hence is useful to understand how a figure is perceptually segregated from the 

background, but, conversely, it can also be used to understand situations in which 

figure-ground segregation is unsuccessful.  

In Chapters 3 and 4, we have experimentally investigated the effects of the 

stimulus-dependence of oscillations on visual perception. We used a computational 

model rooted in TWCO to predict which areas in a stimulus would be perceived as 

separate from others in figure-ground segregation experiments. The computational 

model consisted of a network of connected oscillators, in which each oscillator 

corresponds to a small pool of neurons receiving input from a given receptive field 

(RF). In this computational model, we used additional knowledge about V1, 

specifying that more distant neurons have weaker connections, and specifying that 

RF stimuli would produce higher-frequency oscillations the higher the local contrast 

of the stimuli.  Second, we used the TWCO principles specifying that neuronal 

populations (oscillators) that can influence each other more effectively (coupled by 

stronger connections) and neuronal populations (oscillators) that are stimulated with 

stimuli generating more similar oscillation frequencies, would be more likely to 

reach synchronization. This computational network, which incorporated V1 

architectural knowledge and TWCO principles, was able to predict whether human 

observers would be able to see one specific texture as different from another texture 

in experimental stimuli. Specifically, whenever the V1 neural network model 

converged to two different synchronization states in response to different areas in a 
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large texture stimulus, human observers would also perceive these texture 

differences. 

This view on figure-ground segregation, aside from providing insight into a set 

of mechanisms giving rise to the distinct perception of objects in the visual field, 

provides an interesting perspective on visual tricks in nature, such as camouflage. 

Camouflage in prey or predator animals is a functional form of unsuccessful figure-

ground segregation that can be understood in the TWCO framework. Many animals 

use camouflage to merge with their background and to hide from their predators 

and/or prey39,40. Our findings suggest that animals can blend in with their 

surroundings because neuronal groups whose receptive fields fall on the animal will 

synchronize with those neuronal groups whose receptive fields fall on the 

surroundings because they receive highly similar low-level features. A deeper 

understanding of the contribution of oscillations and synchrony to successful and 

unsuccessful figure-ground segregation may thus prove relevant not only to vision 

neuroscientists but also to evolutionary ecologists interested in the competing 

evolutionary drives for better camouflage and the ability to see through this 

camouflage.  

 

 
 

Animal camouflage 

 

Insights from the third and fourth chapters on how oscillations and synchrony 

contribute to figure-ground segregation (a form of image segmentation) are not only 

Photo by Juan Carlos Fernandez Rodrigues on Unsplash  
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relevant for biological but also for computer vision. There is a growing interest in 

neuromorphic, and in particular, oscillation-based computing (Csaba & Porod, 

2020). In particular, spin-torque nano-oscillators (STNOs) are a developing 

technology for oscillation-based computing that is very energy efficient, noise 

tolerant and has promising applications in technologies that heavily rely on computer 

vision, such as in self-driving cars. The reliability of self-driving cars depends on the 

accuracy and time-efficiency of decision-making processes, which, in turn, depend 

on the precision of information received by sensors of the surrounding environment. 

Visual signals comprise a large proportion of this information. Hence, self-driving 

cars need to perform fast and efficient analysis of visual signals while minimizing 

battery use. In particular, self-driving cars need to continuously perform 

segmentation on the stream of incoming images (Sellat et al., 2022). The results of 

Chapters 3 and 4 provide insights into how image segmentation may be achieved by 

networks of oscillators that may prove relevant for the development of networks of 

coupled STNOs specifically dedicated to this task. Importantly, the present thesis 

also provides insights on how a form of (tri-factor) biological reinforcement  learning 

can be utilized to improve figure-ground segregation and, by extension, image 

segmentation. These insights might be exploited for the development of systems that 

are capable of continuously adjusting their performance based on past experience.   

To summarize, oscillations and synchronization are essential to normal cognition 

and perception and understanding the precise role of these phenomena may pave the 

way for new technological developments. Furthermore, tracking as well as 

manipulation of oscillations and synchronization in the brain may help in alleviating 

pathology in brain function and mental disease. Novel insights gained from the 

results presented in the present thesis have the potential to contribute to further 

improvement of both brain-inspired technology and healthcare.  
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