% Maastricht University

In Sync

Citation for published version (APA):

Karimian, M. (2022). In Sync: Neural Oscillations and their Relation to Visual Perception and Learning.
[Doctoral Thesis, Maastricht University]. Maastricht University. https://doi.org/10.26481/dis.20221031mk

Document status and date:
Published: 01/01/2022

DOI:
10.26481/dis.20221031mk

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

« A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.

« The final author version and the galley proof are versions of the publication after peer review.

« The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 19 Apr. 2024


https://doi.org/10.26481/dis.20221031mk
https://doi.org/10.26481/dis.20221031mk
https://cris.maastrichtuniversity.nl/en/publications/48ffddad-892d-40f2-8d24-b4ffe345316b

In Sync:

Neural Oscillations and
their Relation to Visuadl
Perception and Learning

Maryam Karimian



DOCTORAL THESIS, MAASTRICHT UNIVERSITY
© Maryam Karimian, Maastricht 2022

All rights reserved. No part of this publication may be reproduced, stored in retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written permission of the
author.

Cover design: Maryam Karimian, Zahed Allahyari
Layout: Maryam Karimian
Production: Ipskamp Printing | www.ipskampprinting.nl

ISBN: 978-94-6421-895-4

First release, October 2022



In Sync:

Neural Oscillations and
their Relation to Visuadl
Perceptfion and Learning

Dissertation

To obtain the degree of Doctor at Maastricht University, on the authority of the Rector
Magnificus, Prof.dr. Rianne M. Letschert, In accordance with the decision of the board of
Deans, to be defended in public on Monday the 31st of October 2022, at 16:00 hours

by

Maryam Karimian



The work in this thesis was supported by the Dutch province of Limburg.



Promotor

Prof. dr. Peter De Weerd

Co-promotors

Dr. Mario Senden
Dr. Ronald Westra

Assessment Committee

Prof. dr. Alexander Sack (chair)
Maastricht University

Prof. dr. Gustavo Deco
Pompeu Fabra University

Prof. dr. Pascal Fries
Ernst Strungmann Institute (ESI)

Dr. Vincent van de Ven
Maastricht University






able of Contentis

1- General INtrodUCHION ..o 13
1-1. Brain Oscillations and Their Role:dn the Brain..........cc.ccocovvvviviinnne. 14
1-2. Modelling Neural Oscillations using the Theory of Weakly Coupled
L@ o] 1| - 1 (0] SRR 18
1-3. Oscillations in the early visual SYySteM ..........ccococviiiriiiniineiseeeae 20

1-3-1. Anatomy and function of the early visual system............ccccevevivrvennne 21

1-3-2. The debate about the functional role of gamma oscillations in the early
VISURE SYSEEIM ... 22

1-4. A paradigm for inducing visual plasticity — visual perceptual learning25



1-5. Summary and thesis organization ............cccoceeveveiieie s 27
] (=] =] 00O 29

2- Effects of Synaptic and Myelin Plasticity on Learning in a Network of

Kuramoto Phase OSCIHIAtOrS..........cccceuiiiiiiiie e 41
ADSTFACT ... e 42
2-1. INEFOAUCTION ... 43
2-2. Materials and Methods.........c.ccoiiiieiiiiie e 44

2-2-1. Weakly-coupled oscillator model .............ccooviiiiiiiiniieciecce 44
2-2-2. QUANLItatiVe ANAIYSES ......ccviieieiiiee e e 46
2-3. RESUITS ...ttt ettt raene s 50

2-3-1. Scenario I: dynamic coupling strengths, static conduction velocities...50
2-3-2. Scenario |I: static coupling strengths, dynamic conduction velocities .54

2-3-3. Scenario I11: dynamic coupling strengths and conduction velocities....58

24, DISCUSSION.....etteuieieeiiesiesieesiesteesee e sse et e steeseestestees e sbeeseestesseensesteaneeseesseensens 61
S2. Supplementary Material............cccooiiiiiiiii s 66
ACKNOWIEAGEMENTS ..ottt 81
] (=] =] oL OSSR 82

3- Synchronization of Input-dependent Gamma Oscillations in V1: A

Criterion to Predict Figure-ground Segregation in Texture Stimuli................ 89
ADSTFACT ... 90
3-1. INFOTUCTION ... 91
3-2. IMIBENOMS ...ttt et 94

3-2-1. Behavioural EXPeriments..........cccovviiinineneessesese e 94
3-2-2. Model SIMUILIONS ..o 98
3-8 RESUILS ... e 102
3-3-1. Simulation Results reveal an Arnold TONQUE ..........ccoevrerieiieieiennnn 102
3-3-2. Accuracy reveals an Arnold TONQUE........ccceevvevee e e 103

3-3-3. Response Times Depend on Contrast heterogeneity but not Grid
COAISEINESS ...tveee it e et et s e et e e st e e et e e st e e e be e e ta e e ssbe e e sabeesbeeeateeesnteeesaneeans 107



B D 1T ol 1 13] [0 o TR 110

S3. Supplementary MaterialS ..........ccccooiiiiiiiiineee e 116
S3-1. Discrimination accuracy of individual participants .............cccccceevrnnn. 116
S3-2. Response times of Individual participants ...........ccccccvveveieiieiieeiiennens 117
S3-3. The effeCt 0f NOISE ...ocvovviieieice e 117

TS (= =] (0TSRRI 119

4- Perceptual Learning of Figure-ground Segregation in Texture Stimuli and

Synchronization of Gamma Oscillations in V1. 129
ADSEFACT ... e 130
I 1 4 oo 181 o] o PSS 131
N |V, 1 1 T o USRS 134

4-2-1. Behavioural EXPEriments.........ccocviviiieieseeieseeeese s esre e see e svaenens 134
4-2-2. Model SIMUIALIONS ......c.oiviiiiiieicse e 138
A-3. RESUITS ...ttt sttt be e 142
4-3-1. Low-Level Learning Improves Discrimination Accuracy and Response
THIMIES <ttt b e bbb ae e 142

4-3-2. Transfer Session Results Validate Assumption of Local Learning ....145
4-3-3. Simulation Results Reveal Bounded Growth of The Arnold Tongue 146

4-3-4. Quantitative Model Predictions of Experimental Results................... 149

A4, DISCUSSION.....uveuieiieieitistestesteseesees e te e stesteste sttt seeseasestessesbe st e e eneenennennes 151
RETEIENCES ... ettt saeereenae s 157
5- General summary and DISCUSSION .........ccoiierierieieieiseee e 164
5-1. AIMS Of the TheSiS.......cccvcieiiiic e 165
5-2. SUMMArY Of RESUITS ......ueeiie e 166

5-2-1. Chapter 2: Effects of Plastic Coupling delays and Plastic Coupling
Strengths on the Synchronization and Learning in Networks of Coupled
L@ LYot || =10 £ S S S 167

5-2-2. Chapter 3: Role of the Synchronization among Stimulus-dependent
Gamma Oscillations in Figure-ground Segregation ...........cccccovvvveeieeneenen. 168



5-2-3. Chapter 4: Role of the Synchronization among Stimulus-dependent
Gamma Oscillations in Perceptual Learning of Figure-ground Segregation.170

5-3. Theoretical IMPlICALIONS..........coeiiiiiiiieee e 171
5-4. Implications for the Role of Local Gamma..........cccceovverenencieicinnnnns 174
5-5. Reflections on the Modeling Approach Presented in this Thesis......... 175
5-5-1. Ontology, Epistemology and Semantics of Scientific Models ........... 176
5-5-2. Mechanisms and 1dealizations ...........cccocvevveieiieeiinienieie e 177
5-5-3. Models in Computational NeuroSCIenCe...........ccccevvvvivereseevieseeiennens 179
5-5-4. Models in the Present TheSIS ........covviiiereneiieinieesese e 180

5-6. FULUFE DIFECLIONS .....voiveeiieie et s st 182
RETEIENCES ... et 184

| MPACE PAragraph .......cccooviiiieiess e 195
Impacts of studies in the current thesis..........cccocveviiiiie i 196
RETEIBNCES ... ettt sae s et 201
Acknowledgements ............................................................................................ 205
AADOUE tNE AULNOT ...oooo oo eseeeee e 209

List OF PUDIICALIONS ...ttt e et e e e n e e neeees 211


file://///unimaas.nl/Research/FSE_MACSBIO/maryam.karimian/Thesis/Thesis_final.docx%23_Toc115189268
file://///unimaas.nl/Research/FSE_MACSBIO/maryam.karimian/Thesis/Thesis_final.docx%23_Toc115189269
file://///unimaas.nl/Research/FSE_MACSBIO/maryam.karimian/Thesis/Thesis_final.docx%23_Toc115189270







Chapter

General Introduction




Introduction

1-1. Brain Oscillations and Their Role in the Brain

Brain oscillations refer to the periodic neural activity that characterizes the
central nervous system (Bauer, Wilson, & MacNamara, 2022). Brain oscillations
occur in a wide range of frequency bands (Gyorgy Buzsaki, 2009; von Stein &
Sarnthein, 2000). Oscillations can arise in individual neurons due to intrinsic
electrochemical fluctuations (lzhikevich, 2004a), but they more commonly result
from interactions among interconnected neuronal populations. High-frequency
oscillations in the gamma range (above 25 Hz) are created locally through
interactions within microcircuits (von Stein & Sarnthein, 2000; M. A. Whittington,
Traub, Kopell, Ermentrout, & Buhl, 2000). For oscillations in intermediate and low-
frequency bands such as alpha (8-12 Hz), theta (4-8 Hz) and delta (1-4 Hz), it is
assumed that interactions over larger distances such as among cortical areas
(Sarnthein, Petsche, Rappelsberger, Shaw, & von Stein, 1998; Schack, Vath,
Petsche, Geissler, & Mdller, 2002; von Stein & Sarnthein, 2000) or even between
cortical and subcortical structures play a role (Gould, Rushworth, & Nobre, 2011;
Lopes Da Silva & Storm Van Leeuwen, 1977; von Stein & Sarnthein, 2000). For
example, the thalamus is thought to be intrinsically involved in generating alpha
oscillations (Hughes & Crunelli, 2005), and the septum has been shown to be
instrumental in generating theta oscillations in the hippocampus when animals are in
an active (encoding) state (Chee, Menard, & Dringenberg, 2015). For some specific
high-frequency oscillations, the origin can also be subcortical, as is the case for
hippocampal ripples (Bragin, Engel, Wilson, Fried, & Buzsaki, 1999), which play a
role in memory consolidation (G. Buzsaki, 1996). Oscillations in different frequency
bands may coexist or become rhythmically synchronized or nested into each other.
In this way, a highly structured and coordinated collaboration of different frequency
bands involving different areas, cortical layers, and subcortical structures emerges
that could play a fundamental role in cognitive function and behaviour (Basar et al.,
2000; Kahana, 2006).

The exact mechanisms explaining how networks give rise to oscillations in
different frequency ranges are still a topic of debate. Nevertheless, there is ample
evidence for the crucial role of coordinated inhibitory and excitatory neural
interactions in the generation of networkoscillations (Buz$aki & Wang, 2012; Fries,
2015; Wang & Buzséki, 1996). These interactions are best understood for gamma
oscillations. Two main models exist for cortical gamma (P. Tiesinga & Sejnowski,
2009). According to the first model (the Pyramidal Interneuron Network Gamma
model, or PING model), (sensory) input to excitatory pyramidal cells followed by
inhibitory feedback drives the gamma rhythm (Hansel & Mato, 2003; M. A.
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Chapter 1

Whittington et al., 2000; Wilson & Cowan, 1972). In particular, in conditions of high
excitatory drive of pyramidal cells, a feedback loop is activated in which fast-spiking
(FS) basket cells become depolarized and send inhibitory feedback to the pyramidal
cells. In these pyramidal cells, a competition arises between the ongoing excitatory
drive and the decaying Gamma-aminobutyric acid (GABA) inhibition. Once the
excitation overcomes the inhibition, the pyramidal neuron can spike again and the
cycle repeats. Hence, important factors determining the frequency of gamma are the
level of excitatory input impinging on the pyramidal cells and the time constant of
inhibitory decay (P. H. Tiesinga, Fellous, Salinas, José, & Sejnowski, 2004; M. A.
Whittington et al., 2000). Gap junctions among inhibitory interneurons may play an
additional role in the rapid spatial spread and synchronization of gamma rhythms in
a stimulated network (Fukuda, Kosaka, Singer, & Galuske, 2006).

Whereas in the PING model, pyramidal cells drive the gamma rhythm, in the
Interneuron network Gamma (ING) model, the periodic activity of FS basket cells
entrains the activity of pyramidal cells and induces periodic activity in the entire
network through rhythmic inhibition (Cardin et al., 2009; Fellous & Sejnowski,
2003; Hasenstaub et al., 2005; Lytton & Sejnowski, 1991; P. Tiesinga & Sejnowski,
2009; M Vinck, Womelsdorf, & Fries, 2013). Specifically, according to the ING
model, the synchronized activity of basket cells that results from their mutual
inhibition, entrains the activity of pyramidal cells (Bartos, Vida, & Jonas, 2007;
Wang & Buzséki, 1996; Miles A. Whittington, Traub, & Jefferys, 1995). In this case,
the timing of pyramidal cells depends on the rhythmic inhibition of basket cells,
which itself depends on the decay time course of GABA (Miles A. Whittington et
al., 1995).

Gamma is ubiquitous in the visual cortex when presenting a stimulus and hence
is important in bottom-up processing (Bastos et al., 2015; Herrmann, Munk, &
Engel, 2004). Many experiments have additionally shown that the bottom-up gamma
response is modulated by cognitive factors such as expectation, attention, working
memory and other factors (Bastos et al., 2015; Engel, Fries, & Singer, 2001; P. Fries,
Reynolds, Rorie, & Desimone, 2001). Cognitive demands generally increase gamma
power and frequency (Fitzgibbon, Pope, MacKenzie, Clark, & Willoughby,
2004)while simultaneously reducing alpha and beta frequencies (Engel et al., 2001).
Alpha oscillations tend to suppress the activity of neural groups encoding non-
attended stimuli, with higher power signifying more suppression (Gould et al., 2011;
Haegens, Nacher, Luna, Romo, & Jensen, 2011; von Stein & Sarnthein, 2000). Beta
oscillations generate feedback in the visual system (Bastos et al., 2015) and reinforce
the activity of neural groups encoding attended stimuli (Bastos et al., 2015). Hence,
there are intrinsic interactions among oscillations in different frequency bands that
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Introduction

orchestrate the interplay between feedforward (FF) and feedback (FB) processing
that enables cognition (Colgin & Moser, 2010; Fries, 2015).

The intrinsic mechanisms of oscillations are embedded in the structure of the
network and its nodes, and are not easily modifiable. At the same time, oscillations
provide a means for flexibility in neural communication that may be essential in
allowing the flexibility of cognitive functioning (Christoph von der Malsburg, 1995;
Milanese, 1994; Pavlaslk, 1998; Treisman, 1996). Communication or information
exchange presupposes interactions between at least two networks (oscillators)
operating in a common (or sufficiently similar) frequency band. Figure 1.1
schematically depicts the conditions for information exchange according to the
communication through coherence hypothesis (CTC). In Figure 1.1A, the excitatory
phases of the two networks are closely matched in time, so that spikes emitted by
one network arrive within the excitatory phase of the other, and hence can influence
the state and output of the receiving network. In Figure 1.1B, the two networks show
oscillations in opposite phases, so that spikes from the sending network are received
during the inhibitory phase of the receiving network, rendering mutual
communication difficult. Figure 1.1C illustrates cross-frequency interactions. Note
that the emphasis on in-phase synchronization is a strict interpretation of CTC.
According to this interpretation, interactions between neurons (or neuronal groups)
can only occur when their phases are perfectly aligned (after taking potential
transmission delays into account). However, most neurons (and neuronal groups)
advance or delay their phase in response to incoming perturbations that precede or
follow their excitatory peak, respectively (Gutkin, Ermentrout, & Reyes, 2005;
Stiefel, Gutkin, & Sejnowski, 2008). The direction and magnitude of these phase
adjustments are captured by phase response curves (Gutkin et al., 2005), which are
typically sufficiently broad to allow neurons (and neuronal) groups to synchronize
to spike trains that differ somewhat in phase (and even frequency) (Crook,
Ermentrout, & Bower, 1998; Gutkin et al., 2005). In the present thesis, we consider
this less strict interpretation of CTC.

16



Chapter 1

time

Figure 1.1: A schematic view reflecting the importance of phase relations according to the
communication through coherence hypothesis. A, simultaneous excitation peaks (in-phase
synchronization) for two neural oscillators provide a common communication window. This leads to
the on-time arrival of input from the presynaptic to the peak excitability of the postsynaptic neuron
(shown by pointed arrows), allowing for effective communication between the two neurons. B, anti-
phase synchronization of two neural oscillators prevents effective communication, as in this case, inputs
from the presynaptic neuron always miss the peak excitability of the postsynaptic neuron (shown by
round arrowheads). C, partial coherence (p:q phase-locking (I1zhikevich, 2004c)) between the excitation
peaks that at some points may lead to a certain level of communication.

Regardless of the specific interpretation of CTC, and of the potential additional
relevance of oscillations in lower frequency ranges (Schroeder & Lakatos, 2009),
CTC emphasizes the role of gamma in selective long-range communication and
assumes that the flexibility in long-range communication depends on dynamic
patterns of coherence in the gamma range (Fries, 2005, 2015). Part of the work in
the present thesis focuses on the interplay between modifiable delays and modifiable
coupling strength in a network of oscillators and permits interpretations in the
context of long-range communication. Another part of the thesis focuses primarily
on a putative role of intra-regional gamma oscillations as a mechanism for local
information processing. Specifically, we investigated the extent to which
synchronization patterns within a low-level visual area can contribute to the
segregation of figure from ground in textured stimuli. The underlying idea is that
retinotopically organized cortical microcircuits oscillating in the gamma range are
stimulated by visual patterns and segregate into regions differentiated by levels of
synchronization, thereby distinguishing figure from ground (Hummel, 2010; Sporns,
Tononi, & Edelman, 1991; Christoph von der Malsburg & Buhmann, 1992). These
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functional networks are flexibly reconstituted with every new stimulus and hence
provide an additional illustration of how gamma oscillations contribute to the
flexibility of cognition. These ideas can be related to Gestalt laws in perception
(Wagemans et al., 2012), where synchronization could be considered as the
mechanism that groups similar elements in an image and segregates different groups
from each other. The way in which we use the concept of synchronization to study
visual figure-ground segregation can also be linked with the larger concept of
‘binding” (Gray, Konig, Engel, & Singer, 1989a; C. von der Malsburg, 1999).
Binding refers to brain-wide interactions that link different aspects of an object
processed in different parts of the brain into a coherent whole, similar to the long-
range interactions hypothesized in CTC. However, in our study of visual figure-
ground segregation in textures, we study the binding among elements (and their
segregation from others) in a more local sense (within a visual area). If the
mechanisms we study in the context of our figure-ground segregation experiments
were to be compared to binding, we would qualify this comparison and refer to a
‘local’ form of binding.

1-2. Modelling Neural Oscillations using the Theory of Weakly

Coupled Oscillators

In computational neuroscience, there are many mathematical formulations to
model oscillations and their interactions at different spatial scales (Borisyuk,
Borisyuk, Kazanovich, & Ivanitskii, 2002). For example, at the scale of individual
neurons, several models capture interactions between activation and inactivation
variables that give rise to repetitive firing (neuronal oscillations). The Hodgkin and
Huxley model (Hodgkin, Huxley, & Katz, 1952; Nelson & Rinzel, 1998) is arguably
the most prominent example of such models. When modelling neural populations,
models typically capture interactions between neurons that give rise to oscillations
at the network level. In such cases, it is common practice to refrain from modelling
individual neurons and instead use more abstract descriptions like neural mass
models and simple phase oscillators. This is legitimate because phase oscillator
models may capture the oscillatory behaviour of neural networks equally well as
models that simulate individual neurons. For instance, Bhowmik and Shanahan
(2012) (Bhowmik & Shanahan, 2012a) replicated two studies on large-scale
networks of oscillators whose population dynamics were modelled by the Kuramoto
model (Jadbabaie, Motee, & Barahona, 2018; Kuramoto, 1984). The authors
replicated a number of studies that used the Kuramoto model and replaced the model
by (populations of) quadratic integrate-and-fire (QIF) neurons (Latham, Richmond,
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Nelson, & Nirenberg, 2000) as well as Hodgkin-Huxley neurons (Hodgkin et al.,
1952) and showed that these changes did not significantly affect the results of the
original studies (Bhowmik & Shanahan, 2012b). Likewise, Lowet et al., (2015)
compared synchronization behaviour of coupled Kuramoto oscillators with that of
coupled PING models where individual neurons were of the Izhikevich type
(Izhikevich, 2004b). Analytical results derived from the Kuramoto model matched
well to simulations of the spiking neuron model for a wide range of coupling and
detuning conditions that were inspired by experimental (neurophysiological)
observations. Taken together, these findings indicate that phase oscillator models
capture many of the essential characteristics of the neural oscillatory processes of
interest in the present thesis.

In phase oscillator modelling approaches, the state of neural populations in the
oscillatory activity is reduced to its phase. Specifically, the phase 6 (t) of an
oscillator evolves according to a linear or nonlinear function f (6 (t)); i.e. 8(t) =
f (6 (t)), and exhibits periodicity tq, 8(t + t,) = 6 (t). The Kuramoto model is a
popular choice in computational neuroscience for specifying f (6 (t)) and has been
successfully used to reveal under which conditions synchronization occurs among
groups of oscillators (Acebr et al., 2005; Kuramoto, 1984; Kuramoto & Kuramoto
Y., 1975). Kuramoto specified the phase dynamics of a group of n weakly coupled
oscillators as

. ke
91' = Wi + ;Z sm(Hj - 91) (11)
j=1

where w; is the intrinsic frequency of oscillator i and k is the coupling strength
between oscillators. For small coupling strengths, each oscillator evolves according
to its intrinsic frequency, whereas for large! coupling strengths the oscillators
synchronize, rendering coupling strength an essential factor for predicting the state
of synchronization in the network. The value of k at which a transition between
asynchronous to synchronous behaviour occurs is commonly referred to as the
critical coupling strength. Another important factor is the mismatch between
oscillators® intrinsic frequencies (their frequency detuning). Indeed, Kuramoto has

shown that k > @ IS a necessary condition for synchronization (stable phase-

relationship) between pairs of oscillators i and j and thus constitutes a lower bound

! Note that “large” only means that coupling strength exceeds the critical value. Coupling
always needs to be sufficiently weak such that interactions among neuronal groups only
affect each others’ phases.
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for the critical coupling strength. As such, in a network of oscillators, weaker
coupling among oscillators or a larger frequency mismatch will reduce the likelihood
of synchronization. The interplay between these two factors can be visualized in the
‘Arnold tongue’ (Coombes & Bressloff, 1999; Pikovsky, Rosenblum, Self, & 2001,
2003; P. H. Tiesinga & Sejnowski, 2010), named after Vladimir Arnold (1937-2010)
(Adjan et al., 1965). For the simplest case, which involves two identical oscillators
with coupling strength k and detuning level Aw, the Arnold tongue is displayed in
Figure 1.2. The two oscillators show synchronization only if their combination of k
and Aw falls inside a triangular region which traditionally is referred to as a ‘tongue’
(grey region).

Arnold tongue

Awy  Aw,y

Coupling strength

Detuning

Figure 1.2: The Arnold tongue for a system of two identical oscillators with coupling strength k and
detuning level Aw. (Awy, ko) fall outside the grey area (tongue) which means this combination does
not fulfil the synchronization conditions. On the contrary, the system would end up with synchronous
oscillations for any combination of Aw and k that falls inside the tongue (like (Aw4, k1)).

1-3. Oscillations in the early visual system

Brain oscillations play a fundamental role in sensory functions involving the
transmission and processing of neural signals that convey sensory information
(Kandel, Schwartz, Jessell, & Siegelbaum, 2000a). In the human brain, vision is
potentially the most complicated sensory function, as almost half of the cerebral
cortex is dedicated to it (Longstaff & Ronczkowski, 2011). Human and non-human
primate cortex contain on the order of 20-30 visual areas (David C. van Essen et al.,
2001; David C. van Essen & Glasser, 2018), which form intricate networks that serve
major processing goals, such as recognizing objects and determining their location
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(Mishkin, Ungerleider, & Macko, 1983). However, all high-level processing goals
derive from low-level processing at the level of early visual areas, such as the
primary and secondary visual cortices (V1 and V2). Since two chapters of the thesis
present research related to visual processing in the early visual cortex, an
introduction to that processing level is provided below.

1-3-1. Anatomy and function of the early visual system

Low-level visual processing starts from the stimulation of retinal receptors in the
back of the two eyes. The retinal circuitry affords ganglion cells with round,
antagonistic centre-surround receptive fields. These receptive fields exist in two
varieties, either with an ON centre and an OFF surround, or with an OFF centre and
an ON surround. ON sub-regions are best stimulated by light onset and OFF regions
by light offset. The antagonistic nature of these sub-regions yields high sensitivity to
contrast. Ganglion cell axons exit the eye in a bundle that forms the optic tract to
the lateral geniculate nucleus (LGN), from where neurons project to the primary
visual cortex. The projection of the retinal image to the cortex follows several
principles. First, the temporal retinae project to the ipsilateral LGN and visual cortex,
and the nasal retinae project to the contralateral LGN and visual cortex. As a result,
a view of the left visual hemifield from both eyes projects to the right LGN and
visual cortex and a view of the right visual hemifield from both eyes projects to the
left LGN and visual cortex. Second, the input from the two eyes remains segregated
in different layers in the LGN but then combines in V1 by projecting to the same
neurons. Furthermore, for the entire visual field, the projection is retinotopic, which
means that neighbouring points on the retina will project to neighbouring points in
the LGN and to neighbouring points in V1 and V2 (Kandel, Schwartz, Jessell, &
Siegelbaum, 2000b). In addition, because of the low convergence of retino-geniculo-
cortical projections in central vision (where the density of photoreceptors is
extremely high), and the high convergence of the retino-geniculo-cortical projections
in peripheral vision, the amount of cortical surface per visual degree decreases
sharply with the increase of the eccentricity (cortical magnification) (Kandel et al.,
2000b).

One of the most remarkable transformations between LGN and area V1 is the
change from center-surround receptive fields in LGN to Gabor-like receptive fields
in V1 (referred to as ‘simple’ cells (Hubel & Wiesel, 1968)). These neurons,
therefore, are sensitive to the orientation of luminance-defined lines and edges.
Notably, neurons with the same preferred orientation are organized in so-called
‘orientation columns’ that span the thickness of the cortex from top to bottom (with
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the exception of layer 4C). However, the antagonistic sub-regions composing the
receptive fields of simple cells in V1 render them also highly sensitive to local
contrast and to spatial frequency. This suggests that LGN and simple cells play a role
both in the detection of boundaries and edges of objects, but also in the processing
of fine textures and details that define the surfaces encompassed by their boundaries
(Kandel et al., 2000b). Whereas the brief overview of the visual system provided
here focused on the major feed-forward projections driving responses in the early
visual cortex, additional circuitry exists that provides the basis for contextual
interactions. In particular, V1 neurons are laterally connected over distances of up to
6 mm (C. D. Gilbert & Wiesel, 1983, 1989; Charles D. Gilbert & Wiesel, 1979;
Levitt, Yoshioka, & Lund, 1994; Rockland & Lund, 1982; Yoshioka, Blasdel, Levitt,
& Lund, 1996), providing a basis for interaction between local stimuli placed in
neighbouring locations in the visual field (C. D. Gilbert & Wiesel, 1989; Lund,
Angelucci, & Bressloff, 2003; Ts’o, Gilbert, & Wiesel, 1986). Similar lateral
anatomical connectivity exists in V2 and other extrastriate visual cortical areas.
Furthermore, the visual system contains feedback projections from higher-level to
lower-level visual areas (D. C. van Essen, Felleman, DeYoe, Olavarria, & Knierim,
1990).

1-3-2. The debate about the functional role of gamma oscillations

in the early visual system

Research into the contribution of gamma oscillations to visual processing started
in the late 1980s when Grey and Singer (Gray, Koénig, Engel, & Singer, 1989b)
reported strong synchronization among V1 neurons in the gamma band in response
to visual stimulation. Subsequently, further empirical studies in cat, monkey and
human visual cortex (Chalk et al., 2010; Friedman-Hill, Maldonado, & Gray, 2000;
Gieselmann & Thiele, 2008; Hoogenboom, Schoffelen, Oostenveld, Parkes, & Fries,
2006; Livingstone, Freeman, & Hubel, 1996; Ray & Maunsell, 2010; Rols, Tallon-
Baudry, Girard, Bertrand, & Bullier, 2001; Martin Vinck et al., 2010; Womelsdorf
& Fries, 2007; Yu & Ferster, 2010) confirmed this finding. Nevertheless, whether
gamma oscillations play a role in vision, and generally, cognitive processes, remains
a controversial topic. The power and frequency of gamma oscillations depend on
stimulus features, including eccentricity, motion, and contrast (Buia & Tiesinga,
2006; Womelsdorf, Fries, Mitra, & Desimone, 2005). In recent years, the debate
related to the usefulness of gamma has focused on the high contrast dependence of
gamma frequency. Ray & Maunsell (2010) used dual-site recordings in conjunction
with Gabor and grating stimuli to demonstrate contrast-dependent differences in
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gamma frequency among different cortical locations encoding these stimuli. The
authors argued that such spatial variance in gamma frequency across locations within
an object runs counter the idea of binding, and therefore precludes a role of gamma
in visual processing. Moreover, some studies have shown that gamma frequency and
power may vary randomly (Burns, Xing, & Shapley, 2011; Xing et al., 2012) or in
accordance with the idea of internal fluctuations (Gray & McCormick, 1996) even
during constant exposure to static stimuli. If these temporal variations were
independent across different visual areas, or across different locations within an area,
then this would argue against gamma synchronization as a means of neural
communication. Finally, variability in conduction delays may be problematic for a
role of gamma in communication. Conduction delays have the potential to disrupt
information transmission, because each cortical site receives many signals from
many sources with highly distributed distances and the corresponding wide-range
conduction delays might interfere with achieving gamma coherence and therefore
communication (Ray & Maunsell, 2015).

Although the above arguments, at first sight, are appealing, they lack a coherent
theoretical framework. When gamma is considered in light of the theory of weakly
coupled oscillators (TWCO) (Izhikevich & Kuramoto, 2005), it becomes obvious
that the observation of frequency differences cannot be seen as an argument against
synchronization (phase-locking) without also considering coupling (anatomical
connectivity). This is directly demonstrated in the Arnold tongue (Coombes &
Bressloff, 1999; Pikovsky et al., 2003; P. H. Tiesinga & Sejnowski, 2010), which
can be analytically derived from the Kuramoto model (Acebr et al., 2005). The
Arnold tongue shows how synchronization results from appropriate combinations of
frequency difference and coupling. To show that this theoretical model directly
applies to neural communication in V1, Lowet et al. (2015, 2017) (Lowet et al., 2015;
Lowet, Roberts, Peter, Gips, & de Weerd, 2017) translated the concepts of the
Arnold tongue to the architecture and function of V1. Specifically, they considered
that when assessing the synchronization of gamma between two nearby recorded V1
sites, the coupling parameter might be related to the strength of horizontal anatomical
connections and hence distance between electrodes, and the detuning to the
difference in gamma frequency imposed by stimulation with local stimuli at different
contrasts. Following that idea, they manipulated the strength of coupling (anatomical
connectivity) by changing the distance between recording sites, and the magnitude
of detuning (gamma frequency difference) by changing the contrast difference
between the two stimuli. Both modelling and neurophysiological results (Lowet et
al., 2015, 2017) showed that the stimulus dependency of gamma oscillations does
not hamper the (partial) synchronization of gamma oscillations as long as it is
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matched by sufficiently strong coupling. Hence, frequency differences, rather than
precluding a role of gamma in neural processing, are an inherent part of
synchronization. Hence, the mere observation of frequency differences at cortical
sites representing the same or different stimuli does not tell much about whether
communication is going on between these sites. Instead, frequency differences are
in fact part of how the visual cortex encodes information in visual images (Lowet et
al., 2015).

A similar reasoning holds with respect to the observation of noise (Lowet et al.,
2015, 2017). Noise is a natural phenomenon in neurophysiological data, and
observing it at a single recording site is uninformative with respect to the question
whether it would preclude a role of gamma synchronization in neural
communication. If the noise were sufficiently correlated in different sites, it would
not prevent gamma synchronization between these sites. Roberts et al. (2013) have
shown robust gamma synchronization between V1 and V2 for different peaks in the
gamma spectrum set by stimuli of different contrasts. Importantly, they also found
large fluctuations over time of the spectral peaks for constant stimulation. However,
these fluctuations correlated tightly between V1 and V2. This implies that
communication between V1 and V2 through gamma synchronization is possible,
which is also what they demonstrated.

Finally, there is the issue of conduction delays. Conduction delays will depend
on various factors, including the length, diameter and state of myelination of the
projecting neuron’s axon, and can vary from a few milliseconds to several tens of
milliseconds (Caminiti, Ghaziri, Galuske, Hof, & Innocenti, 2009; Stoelzel,
Bereshpolova, Alonso, & Swadlow, 2017). Because the gamma cycle has a duration
of about 20 ms, it could be argued that locking at an appropriate phase difference
can overcome conduction delays between sites. For feedforward projections from
one cortical area to the next, this strategy might be sufficient to preserve a role for
gamma in long-range communication. For feedback connections, which may
occasionally be extremely long-range, phase-shifting within the gamma cycle may
be insufficient to permit communication, and communication may be more efficient
in lower frequency bands. This reasoning fits to some extent with reports showing
that gamma serves feedforward communication, and lower frequency ranges (alpha,
beta) serve feedback (Bastos et al., 2015; Engel et al., 2001; P. Fries et al., 2001;
Herrmann et al., 2004; von Stein & Sarnthein, 2000). Hence, although it is
reasonable to state that not all conduction delays are compatible with communication
in the gamma range, it is equally reasonable to maintain that for a subset of long-
range communications, gamma is well-suited to play this role. Furthermore,
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conduction delays are likely too short to noticeably affect synchronization in the
gamma range within cortical areas.

An additional perspective on the effects of conduction delays on neural
communication comes from recent insights into the complementary roles of grey and
white matter plasticity (Zatorre, Fields, & Johansen-berg, 2012). Synchronization in
the gamma band in response to long-term, repeated visual stimulation in fact plays
an important role in eliciting both synaptic and white matter plasticity (Fregnac,
Shulz, Thorpe, & Bienenstock, 1992; Galuske, Munk, & Singer, 2019; Jenkins,
Merzenich, Ochs, Allard, & Guic-Robles, 1990; Kilgard & Merzenich, 1998;
Recanzone, Merzenich, & Dinse, 1992; A. Schoups, VVogels, Qian, & Orban, 2001,
Schuett, Bonhoeffer, & Hubener, 2001). The plastic changes in the neural networks
are often the consequence of either changes in the synaptic strength (grey matter
plasticity) or changes in the thickness or structure of the myelin sheath around the
axons that in some way plays the role of an insulator (white matter plasticity). Both
types of plasticity are activity-dependent and can increase the efficiency of signal
transmission and information flow in neural networks. This is relevant for the issue
of conduction delays, as an increase in myelination could be a tool to bring
conduction delays within a range allowing the gamma band to contribute to neural
communication. Therefore, activity-dependent myelination may be able to resolve
the problem of variable long-range conduction delays in reaching gamma
synchronization among distributed neural populations (Fields, 2015; Fields &
Bukalo, 2020; Scholz, Klein, Behrens, & Johansen-Berg, 2009).

Taken together, the above brief review supports the idea that gamma oscillations
are an important vehicle for communication in various cognitive tasks (Bosman et
al., 2012; Brunet et al., 2015; Colgin & Moser, 2010; Engel, Konig, Kreiter, &
Singer, 1991; Engel, Kreiter, Konig, & Singer, 1991; Gray et al., 1989b; Hermes,
Miller, Wandell, & Winawer, 2015; Lowet et al.,, 2015; Uhlhaas, Pipa,
Neuenschwander, Wibral, & Singer, 2011; Womelsdorf & Fries, 2007). In addition,
TWCO is successful in bringing together disparate findings and views on the
function of gamma oscillations. Accordingly, TWCO also constitutes the primary
theoretical framework for hypothesis formation in the present thesis.

1-4. A paradigm for inducing visual plasticity — visual

perceptual learning

Memory exists in declarative (explicit) and non-declarative (implicit) forms.
Perceptual learning, a form of non-declarative memory formation, is defined as the
experience-induced incremental process of changes in the detection and
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discrimination of sensory attributes (Crist, Kapadia, Westheimer, & Gilbert, 1997).
The sensory information may be visual, auditory, tactile or olfactory. In vision, a
particularly important perceptual skill that can improve through perceptual learning
is the ability to discriminate between a figure and its background.

Most of the studies investigating perceptual learning in the context of figure-
ground distinction involve psychophysics experiments with stimuli in which the
figure differs from its background with respect to simple visual features such as
luminance (H. C. Nothdurft, 1990a; H.-C. Nothdurft, 2015) orientation (de Weerd,
Sprague, Vandenbussche, & Orban, 1994; Hans Christoph Nothdurft, 2000; H. C.
Nothdurft, 1985a), contrast (Hadjipapas, Lowet, Roberts, Peter, & de Weerd, 2015;
H.-C. Nothdurft, 2015), spacing between the texture elements (H. C. Nothdurft,
1990c), or the size of elements with respect to their spacing (Gori & Spillmann, 2010;
H. C. Nothdurft, 1985b, 1990b) as well as combinations of these features (Gori &
Spillmann, 2010; Julesz & Bergen, 1983; Julesz & Papathomas, 1984; WILLIAMS
& JULESZ, 1992).

The learning process of acquiring better skill in figure-ground segregation shows
specific characteristics. In the process of daily training, progress is fast during the
first few days but slows down as training becomes asymptotic and performance
plateaus (Ahissar & Hochstein, 2004; Karni & Bertini, 1997; Lange, Lowet, Roberts,
& Weerd, 2018). Many studies have shown that after extensive asymptotic training,
the skill becomes specific to the stimulus and to its location in the visual field
(Ahissar & Hochstein, 1996; Crist et al., 1997; Karni & Sagi, 1991; Lange et al.,
2018; A. A. Schoups, Vogels, & Orban, 1995; A. Schoups et al., 2001). The
specificity to location and stimulus characteristics is in line with a contribution of
low-level visual areas to this form of learning (Ahissar & Hochstein, 1996; Crist et
al., 1997; Karni & Sagi, 1991; Lange et al., 2018; A. A. Schoups et al., 1995; A.
Schoups et al., 2001). There is a debate, however, regarding the mechanisms that
lead to the specificity of visual skills. One view, known as the ‘lowest-level theory’
(Karni & Bertini, 1997), suggests that learning initially requires higher-level areas
to establish strategies for performing the task. However, during asymptotic learning,
long-term and slow structural tuning changes would occur within lower-level areas
(Ahissar & Hochstein, 2004; Karni & Bertini, 1997; Lange et al., 2018), which form
the ‘memory trace’ for the skill. In other words, according to this view, plasticity in
low-level sensory areas is a core mechanism in perceptual learning. The ‘reverse
hierarchy hypothesis’ (Ahissar & Hochstein, 1997), on the other hand, suggests that
perceptual learning increasingly fine-tunes the read-out from low-level sensory areas
by high-level areas, rather than requiring plasticity within these low-level areas.
According to this hypothesis, the skill may be embedded in a broader network that
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enables the enhanced read-out (Ahissar & Hochstein, 1997, 2004; Hochstein &
Ahissar, 2002; Liu & Weinshall, 2000; Rubin, Nakayama, & Shapley, 1997). There
are also in-between views that propose the concurrent occurrence of both suggested
processes (Crist et al., 1997; Dosher & Lu, 1998; Roelfsema, van Ooyen, &
Watanabe, 2010).

In the present thesis, we will design a stimulus and a perceptual learning task for
which it is reasonable to assume that neural activity in the gamma band is involved
in the perception of the figure, and the training-induced enhancement of figure-
ground segregation. This will then permit the formulation of hypotheses regarding
figure-ground segregation as well as its enhancement by training based on TWCO.

1-5. Summary and thesis organization

In this thesis, we investigated mechanisms by which neural oscillators reach or
lose synchronization, and implications for the role of gamma synchronization in
cortical information processing. According to TWCO, the degree of heterogeneity
in oscillators’ intrinsic frequencies (frequency detuning), and the strength of their
interactions (coupling strength) determine the success or failure of their
synchronization (Pikovsky et al., 2003). There is evidence that variability in signal
propagation delays, as well as in stimulus features, affects the heterogeneity of
(gamma) frequencies (detuning) (Buia & Tiesinga, 2006; Fries, 2005). In this thesis,
we investigated effects of detuning and coupling strength on model network
synchronization and visual perception. Chapter 2 presents a study concerning the
effect of activity-dependent (plastic) coupling changes on synchronization behaviour
in a network of coupled phase oscillators. Coupling changes were considered not
only in terms of synaptic plasticity but also in terms of plastic changes in conduction
velocities (a proxy of white matter plasticity). We were interested in assessing to
what extent experience-dependent changes in conduction velocities would interact
with experience-dependent synaptic changes during the formation of synchronized
clusters in a network of oscillators. Chapters 3 and 4 focused on the synchronization
of gamma oscillations in V1 as a potential underlying mechanism of figure-ground
segregation. In these two chapters, a phase oscillator network capturing relevant
properties of V1 is exposed to texture stimuli, in which the figure is a group of texture
elements showing a spatial distribution of contrast differing from that in the
background. Through the manipulation of figure contrast heterogeneity and spacing
between texture elements (grid coarseness), we aim to control, respectively, detuning
and interaction strength among local V1 neural oscillators. Differences in V1 model
synchronization between figure and background were used to predict human figure-
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ground segregation in the same conditions as used with the V1 oscillator model. The
fourth chapter investigates whether training-induced improvement in task
performance is mediated by altered synchronization patterns in V1 that result from
plasticity-induced changes in coupling. Finally, the last chapter includes a thorough
discussion of the methodology, results and conclusions presented in this thesis.
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Learning in a Network of Kuramoto Phase
Oscillators



Synaptic and Myelin Plasticity in a Network of Kuramoto Phase Oscillators

Abstract

Models of learning typically focus on synaptic plasticity. However, learning is the
result of both synaptic and myelin plasticity. Specifically, synaptic changes often co-
occur and interact with myelin changes, leading to complex dynamic interactions
between these processes. Here, we investigate the implications of these interactions
for the coupling behaviour of a system of Kuramoto oscillators. To that end, we
construct a fully connected, one-dimensional ring network of phase oscillators whose
coupling strength (reflecting synaptic strength), as well as conduction velocity
(reflecting myelination), are each regulated by a Hebbian learning rule. We evaluate
the behaviour of the system in terms of structural (pairwise connection strength and
conduction velocity) and functional connectivity (local and global synchronization
behaviour).

We find that adaptive myelination is able to both functionally de-couple structurally
connected oscillators as well as to functionally couple structurally disconnected
oscillators. With regard to the latter, we find that for conditions in which a system
limited to synaptic plasticity develops two distinct clusters both structurally and
functionally, additional adaptive myelination allows for functional communication
across these structural clusters. These results confirm that network states following
learning may be different when myelin plasticity is considered in addition to synaptic
plasticity, pointing towards the relevance of integrating both factors in computational
models of learning.

Synaptic and myelin plasticity are two crucial mechanisms underlying learning
in the brain. Synaptic plasticity, which refers to activity-dependent changes of
synaptic coupling, has been modelled intensely in recent decades. However,
myelin plasticity, which refers to activity-dependent changes in the structure
and thickness of myelin sheaths, has been largely absent from computational
models of learning. These two plasticity mechanisms are likely to exhibit
complex interactions. In this work, we suggest a simple mathematical
framework as a first attempt to understand these interactions. Our results may
pave the way for the development of new models of learning incorporating both
synaptic and myelin plasticity.
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2-1. Introduction

Synchronization, the mutual adjustment of rhythms among interacting
oscillators (Haken, 2002; Pikovsky, Rosenblum, Self, & 2001, 2003), is a ubiquitous
phenomenon in physics, biology, and neuroscience (El-Nashar, Zhang, Cerdeira, &
Ibiyinka A., 2003; Gonze, Bernard, Waltermann, Kramer, & Herzel, 2005; Kumar,
Verma, & P.Parmananda, 2017; Mértl, Lorenz, & Hirche, 2014). In the latter, this
phenomenon has been linked to various cognitive functions including perception
(Hipp, Engel, & Siegel, 2011; Krause, Porn, Lang, & Laine, 1997; Melloni et al.,
2007), attention (Burylko, Kazanovich, & Borisyuk, 2018; Doesburg, Roggeveen,
Kitajo, & Ward, 2008; Fell, Klaver, Elger, & Fries, 2003; Kazanovich & Borisyuk,
2017; Womelsdorf & Fries, 2007), and learning (Niyogi & English, 2009; Nowotny,
Zhigulin, Selverston, Abarbanel, & Rabinovich, 2003; Pfister & Gerstner, 2006;
Quiroga, Arnhold, & Grassberger, 2000; Seliger, Young, & Tsimring, 2002; Singer,
1993; Siri, Quoy, Delord, Cessac, & Berry, 2007; Song, Miller, & Abbott, 2000;
Timms & English, 2014; Traubab et al., 1998; Zouridakis, Baluch, Stevenson, Diaz,
& Subramanian, 2007). Learning involves the dynamic adjustment of connections
among neuronal populations in the form of synaptic plasticity (D. O. Hebb, 1949).
Mutual interactions between synaptic plasticity and synchronization have been of
particular interest in neuroscience (H. Markram, L. H. R. Liibke, M. Frotscher, & B.
Sakmann, 1997; Kasatkin, Yanchuk, Scholl, & Nekorkin, 2017; Maistrenko,
Lysyansky, Hauptmann, Burylko, & Tass, 2007; Niyogi & English, 2009; Nowotny
etal., 2003; Popovych, Yanchuk, & Tass, 2013; Seliger et al., 2002; Siri et al., 2007;
Song et al., 2000; Timms & English, 2014; Traubab et al., 1998). However, synaptic
plasticity is not the only factor being affected by as well as affecting synchronized
activity in oscillating neuronal populations. Myelination is also activity-dependent
(Chang, Redmond, & Chan, 2016; Fields, 2015; McKenzie et al., 2014; Nickel &
Gu, 2018; Purger, Gibson, & Monje, 2016; R. D. Fields, 2014; Scholz, Klein,
Behrens, & Johansen-Berg, 2009; Yeung & Strogatz, 1999) and since it influences
the conduction velocity of neuronal signals, it is an additional dynamic factor
potentially affecting synchronization behaviour. Myelination is integral to the
unimpaired functioning of the brain as it ensures that signals originating from
presynaptic sources at various locations nevertheless arrive within short succession
of each other at a postsynaptic target (Pajevic, Basser, & Fields, 2014). The effect of
myelination on signal transduction is quite profound with even slight changes in its
thickness possessing the ability to bring about significant differences in the number
of signals received by a specific neuron within a given time interval (Dutta et al.,
2018; Pajevic et al., 2014). This, in turn, might strongly affect local and global
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synchrony among neural groups. Therefore, it might be beneficial for the brain to
dispose of the ability to dynamically adjust signal conduction among remote areas
depending on the frequency with which they interact (engage in functional
connectivity). Indeed, abundant biological evidence supports the idea of continued
adaptive changes in myelination throughout the whole lifespan (Barrera et al., 2013;
Fields, 2010; McKenzie et al., 2014; Nickel & Gu, 2018; Purger et al., 2016; Zatorre,
Fields, & Johansen-berg, 2012). The fact that adaptive myelination constitutes a
second dynamic factor in addition to synaptic plasticity, both of which depend on
the temporal statistics of neural activations in pre- and post-synaptic neuronal
populations (Pajevic et al., 2014), inspired us to systematically investigate their
interactions in a system of weakly coupled oscillators. We employ a neural mass
model to capture the phase evolution of weakly coupled neural groups as their
connections undergo activity-dependent changes in coupling strength and
conduction velocity.

Specifically, we consider a system of Kuramoto oscillators (Acebr et al., 2005)
with distance-dependent delays previously established to study the effect of synaptic
plasticity (Timms & English, 2014). We extend this model by dynamically adjusting
conduction velocity (and hence transmission delays) in addition to synaptic weights.
Changes in both synaptic weight and conduction depend on a Hebbian learning rule
(D. O. Hebb, 1949), which is based on the frequency of the coactivations among
pairs of network oscillators. That is, both connection weights and conduction
velocity are time-dependent parameters influencing each other and the dynamics of
the network as a whole.

2-2. Materials and Methods

2-2-1. Weakly-coupled oscillator model

In line with previous work (Timms & English, 2014), our network model
consists of an ensemble of N phase oscillators arranged along a circle; i.e. a one-
dimensional array with periodic boundary conditions. The network is fully connected
with the exact coupling strengths between oscillators given by the real-valued
directed connectivity matrix K. Local dynamics of each phase oscillator are
governed by a Kuramoto model with transmission delays
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where ¢;(t) € [0,2m) denotes the phase of oscillator i (i = 1, ..., N) at time t, w; is
its intrinsic frequency and K;; reflects the strength of the connection from the jth to
the ith oscillator. The transmission delay from j to i is static (z;;) if conduction
velocity is constant (v), or time-dependent (z;; (t)) if conduction velocity is dynamic
(v;; (t), see Equation 2.4). Finally, d;; is the distance between two oscillators. Due
to periodic boundary conditions, this distance can be defined as

L
dy = min(li = LN = li = ) 22

with L controlling the circumference of the circle. For the case of static delays,
we define a coupling delay constant T = % as the time needed for signals travelling

at a velocity v to revolve once around the circle (Timms & English, 2014).

The coupling strength K;; between oscillators i and j varies dynamically
according to a form of Hebbian learning where the growth or decay of coupling
strengths depend on the phase offset between oscillators (Bi & Poo, 1998;
Wittenberg & Wang, 2006)

]'(l.].(t) = & [as cos ((pi(t) - <Pj(t - Tij)) - Kif(t)]’ Ty = %
| d;; (2.3)
K = & [as cos ((pi(t) - i(t— 1 (t))) - Kij(t)], 7;(0) = _v-'(]t_)'

ij

In Equation 2.3, & and ag respectively control the learning rate and learning
enhancement factor of the coupling strength. The learning enhancement factor a;
determines the maximum and minimum coupling strength (Niyogi & English, 2009)
and ensures that these remain sufficiently weak.

For the case in which conduction velocities between pairs of oscillators vary
dynamically, conduction velocity is no longer identical for all pairs of oscillators but
varies according to a second Hebbian learning process
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v (1) = & [av cos ((Pi(t) - (Pj(t - Tij (t))) - Uij(t)]. (2.4)

Here, €, and a,, are, respectively, the learning rate and learning enhancement factor
of the conduction velocity. Note that conduction velocity was bounded from below
because v;;(t) may otherwise grow too small leading to delays approaching infinity.
We chose to bound v;; () at a value of 0.1 as this corresponds to T = 10 in the static
case if all pairwise conduction velocities decay to this value.

2-2-2. Quantitative analyses

2-2-2-1. Global synchronization behaviour

In a network of globally coupled oscillators arranged along a ring with distance-
dependent delays, the distribution of phases may show propagating structures, static
phase increments from one oscillator to the next, referred to as coherent-wave modes
(Timms & English, 2014; Zanette, 2000). Phase offsets with respect to a reference
oscillator (e.g. the first) may exhibit periodicity at integer (or half-integer, see below)
multiples of 2m. Frequency synchronization, identical frequencies but distributed
phases, in such a system, can thus be characterized in terms of these multiples of 2r
which are referred to as coherent-wave modes (denoted by m). However, for the
system employed here, identification of coherent-wave mode values is complicated
by the fact that either a single or two clusters of synchronized oscillators may form.
We refer to the formation of a single cluster as single-cluster synchronization and to
the formation of two (anti-phase) clusters as double-cluster synchronization. To
overcome this problem, we measure both in-phase synchronization (r;) and anti-
phase synchronization (r,). In-phase synchronization is characterized by the
generalized order parameter (r;) (Acebr et al., 2005; Dénes, Sandor, & Néda, 2019)

N
. 1 -
(6 — _z 0
ne N L ' (2.5)
]=

where v (t) is the mean phase at time t (Acebr et al., 2005) and ¢; is the phase of
oscillator j corrected for phase increments around the ring determined by the value
of the mode m (Schréder, Timme, & Witthaut, 2017)
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Anti-phase synchronization is given by (Niyogi & English, 2009; Timms & English,
2014)

r,=|r'— nl
where

N
cpiw' @ = L Z 22007 () 27)
N £
j=1

The term r' measures in-phase and anti-phase synchronization by stretching the
range from zero to & around the full circle. Hence, this measure needs to be adjusted
for in-phase synchronization to obtain a measure of anti-phase synchronization (r).
In accordance with previous work (Timms & English, 2014) we used a threshold on
r, to determine the presence of a second cluster (here r, = 0.15). This implies that
a second (smaller) cluster may exist even though r; > ;.

To determine the mode of the system and whether it exhibits single- or double-cluster
synchronization in any particular simulation, we compute both r; and r; for a range
of candidate mode values (m € {0,0.5,1,1.5,2}) and select the mode that maximizes
the global phase-coherence [max (ry,73)]. Please note that for double-cluster
synchronization m may take on half-integer values (Timms & English, 2014). This
procedure, while able to detect double-clustered states when clusters are of unequal
size, can only do so if the phase-offset between clusters equals 7z. This does not imply
that two clusters may not exhibit smaller phase-offsets.

2-2-2-2. Pairwise connectivity

In addition to the global synchronization behaviour of the system, we also
examine its local (i.e. pairwise) structural and functional connectivity. Structural
connectivity is straightforwardly given by the coupling strength matrix K ranging
from —a, to a,. To measure functional connectivity, we introduce a coherence
matrix D whose elements are given by

t+ At

Dj=— | cos(pi(t)— ¢;(®))dt. (2.8)

tr

Here, t,, marks a time-point after which the system no longer experiences major
changes in coupling strength and/or conduction velocity. D;; ranges from —1 to 1
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with a value of 1 indicating that two nodes are in phase (over a time interval At)
whereas a value of —1 indicates that two nodes are in anti-phase.

2-2-2-3. Numerical simulations

We analyze the system in terms of its global synchronization behaviour as well
as in terms of pairwise structural and functional connectivity for three different
cases: |) dynamic coupling strength and static conduction velocity; (c.f. (Timms &
English, 2014)) 1) static coupling strength and dynamic conduction velocity; and
I11) dynamic coupling strength and dynamic conduction velocity. For the first
scenario, the system is evaluated for a range of combinations of parameters & and
T. For the latter two scenarios, &; is fixed at either O (no learning, scenario 11) or 0.1
(fast learning, scenario I11) and the behaviour is observed while the parameters ¢,
and «,, are varied. The long-term behaviour of the system is characterized by its
coherent-wave mode of synchronization and its cluster formation. For notational
convenience, we denote each final state{m,c} where m indicates the (half-)integer
value of the coherent-wave mode and c indicates whether the network exhibits single
(s) or double (d) cluster synchronization. For example, state{1,d} describes a system
exhibiting double cluster synchronization and a mode of 1.

For all simulations, intrinsic frequencies w; are drawn from a normal distribution
X (1,0.01) and initial phases are drawn from a uniform distribution in the range
[0,2m). All simulations start from a network with coupling strengths fixed at their
maximum value (ay = 1) which exceeds the critical coupling strength and supports
interactions among oscillators. Furthermore, for those simulations for which velocity
changes dynamically, conduction velocities are initialized as v;; (t = 0) = 0.14,
which means that initial coupling delays correspond to the scenario where the delay
constant (T) is ~7 for a ring length L = 1. Parameters characterizing the network
are summarized in Table 1 while those characterizing the three simulated scenarios
are summarized in Table 2.

Network parameter value
N - 100
L 1
Table 2.1: Network parameters
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Scenario parameter value

ag 1

Dynamic coupling strengths, static conduction velocities £, 0

a, 0

. . . . . 0

Static coupling strengths, dynamic conduction velocities =s 1
aS

. . . " €5 0.1

Dynamic coupling strengths and conduction velocities 1

aS

Table 1.2: Simulation parameters

The model is implemented in MATLAB (R2016a) and integrated for 20000 time
steps using the forward Euler method with a step size dt = 0.01 in arbitrary units of
time. To accommodate for delays, we always first simulate 1000 time steps during
which oscillators are non-interacting. Subsequently, the time delay interaction is
switched on to simulate the 19000 time steps of interest.

We perform 50 simulations with different randomizations of initial conditions
for each parameter combination in every scenario. We select the most frequently
observed combination of coherent-wave mode of synchronization and cluster-
formation (single vs double) as the characteristic final state of a given parameter
combination. Whenever the characteristic state is observed in less than 70% of the
simulations, we additionally identify a secondary state as the one occurring for at
least 50% of the remaining simulations (i.e. of those not classified as the
characteristic state). In this case, we regard the system as bistable. If no secondary
state can be unambiguously identified and individual simulations yield different
states, we regard the system as multistable. This procedure assumes that states are
discernible for individual simulations; that is, they are indeed characterizable in
terms of a unique combination of coherent-wave mode of synchronization and
cluster-formation. This assumption may be violated if the system remains incoherent
or by the formation of chimera-like states; i.e. different subsets of oscillators exhibit
distinct 10 behaviours (Abrams & Strogatz, 2004; Breakspear, Heitmann, &
Daffertshofer, 2010; Kotwal, Jiang, & Abrams, 2017; Laing, 2009; Yao, Huang, Lai,
& Zheng, 2013). In this case, we regard the system as erratic.
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2-3. Results
2-3-1. Scenario I: dynamic coupling strengths, static conduction

velocities

We first examined learning in the context of static conduction velocity. For this
purpose, we explored a parameter space defined by the delay constant T and the
learning rate &;. Most parameter settings yield highly consistent results. However,
some regions of parameter space exhibit diverse results. This is especially prevalent
at borders between adjacent regions and likely reflects transitions in mode
synchronization, cluster-formation, or both. At borders, the system may be
multistable and the state observed for any given simulation depends on initial
conditions. The two parameters affect the behaviour of the system in different, albeit
interacting, ways. The learning rate mainly affects cluster-formation, with slow
learning leading to the emergence of a single cluster while fast learning leads to the
formation of two clusters (see Figure 2.1a). In the former case, changes in coupling
strength between pairs of oscillators occur at a slower rate than synchronization. That
is, the system synchronizes before large initial phase offsets can decrease coupling.
In the latter case, changes in coupling strength between pairs of oscillators occur at
a faster rate than synchronization. That is, initially large phase offsets between pairs
of oscillators quickly drive their coupling strength to negative values, thus
exacerbating their offset until they are separated by exactly .

The delay constant interacts with learning rate as increasing delays allow for the
formation of two clusters at progressively lower learning rates (Nakamura,
Tominaga, & Munakata, 1994). However, it mainly affects mode synchronization
with longer delays leading to larger m (see Figure 2.1). Specifically, for non-zero
values, phases distribute around the circle such that the offset between each pair of

neighbouring oscillators is %”m (within a cluster) or%"m + m (across clusters). Note

that for the emergence of two clusters, half-integer values can be obtained (Figure
2.1d, ). This is in line with previous observations (Timms & English, 2014) that
half-integer values are the result of the two clusters interconnecting. Oscillator pairs
within a cluster “see” each other in phase when their phase offsets are matched by
their delays. That is, due to delays, from the perspective of each oscillator in a cluster,
the other oscillators within the same cluster appear in-phase whereas to an external
observer they may appear out of phase. For the emergence of a single cluster, there
is an exception to this observation for oscillator pairs with a phase offset around %

For these values, the trailing oscillator sees the leading oscillator in phase. However,
the leading oscillator sees the trailing one in anti-phase. This asymmetry affects the
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coupling strength such that the structural connection from the leading to the trailing
oscillator is positive while that from the trailing to the leading is negative. The
magnitude of their coupling strength is otherwise equal. This leads to one or two
stripes of negative values in the structural connectivity matrix for modes m = 1 and
m = 2, respectively (see Figure 2.2g,h). Interestingly, the structural connectivity
matrices emerging for double-cluster formation also exhibit stripes for non-zero
modes (Figure 2.2d-f). The number of these stripes in each case is twice its
corresponding mode value m. According to the Hebbian learning rule (Equation 2.4),
coupling strengths between every two oscillators i and j approach a stable value

given by K;; = agcos(p; — ¢;). For phase differences of (2n — 1) %this entails that
the connection weights between the corresponding oscillators decay to zero. Since
the mode determines the repetition of phase offsets equal to (2n — 1)% for each

oscillator, it also determines the number of stripes in the structural connectivity
matrices.

The emergence of stripes is also apparent in functional connectivity matrices
(Figure 2.3). Here, stripes are symmetric, however, since functional connectivity is
undirected. Therefore, twice as many stripes can be observed in functional
connectivity matrices as compared to structural connectivity matrices. Furthermore,
the exact location of stripes in the structural and functional connectivity matrices are
different because temporal delays are not considered in the computation of pairwise
correlations.
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Figure 2.1: Arrangement of phase offsets with respect to the first oscillator when coupling
strength is dynamic and conduction velocity is static. Panel a) shows the colour-coded state
(coherent-wave mode of synchronization and cluster-formation) for each point in the parameter space
defined by T and &,. Colours indicate the characteristic states. Furthermore, coloured disks indicate
secondary states (bistability). A white disk indicates multistability. Panel b) shows absolute phase
offsets between every oscillator and the first (|A¢q ;) for state{0,s}. All offsets are close to zero. Panel
c) shows |A(p1’,-| for the state{0,d}. Phase offsets are close to zero for oscillators falling into the same
cluster as the first and close to z (half period) for those falling into the opposite cluster. Panel d) shows
|A(p1,i| for the state{0.5,d}. Phase offsets exhibit one half-cycle; i.e. oscillators falling into the same
cluster as the first increases with distance, whereas those in the opposite cluster decrease with distance.
Panel e) shows |A¢4 ;| for the state{1,d}. Phase offsets exhibit one full cycle with offsets for oscillators
falling into the same cluster as the first mirroring those of oscillators in the opposite cluster. Panel f)
shows |Ag4 ;| for the state{1.5,d}. Phase offsets exhibit one and a half cycles with offsets for oscillators
falling into the same cluster as the first mirroring those of oscillators in the opposite cluster. Panel g)
shows |A¢4 | for the state{1,s}. Phase offsets exhibit one full cycle. Panel h) shows |A¢4 | for the
state{2,s}. Phase offsets exhibit two full cycles passed by a single cluster. All phase offsets are averaged
over the last 100 time steps. Phase offsets for each parameter combination are shown in supplementary
Figure S2.1b.

Oscillator index

20 40 60 80

Oscillator index

Figure 2.2: Pairwise structural connectivity emerging in the context of dynamic coupling and
static conduction. Panel a) shows the colour-coded state of coherent-wave mode of synchronization
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and cluster-formation observed at each point in the parameter space defined by T and &,. As in Figure
2.1, the secondary state (bistability) is marked with coloured disks whereas white indicates
multistability. Panel b) shows the structural connectivity matrix of the network for the state{0,s}. The
network largely preserves the initial connectivity pattern. Panel ¢) shows structural connectivity of the
network for the state{0,d}. Pairwise connection weights are close to +ea and —a for oscillator pairs
belonging to the same or distinct clusters, respectively. Panels d-f) show structural connectivity
matrices of the network for the state{0.5,d} (panel d), state{1,d} qanel e), state{1.5,d} (panel f). As
before, coupling weights have approached +a for within cluster connections and —a, for between
cluster connections. However, based