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With more than 3.6 million diagnoses and 2.2 million 
related deaths in 2020 worldwide, gastrointestinal can-
cers (oesophagus, stomach and intestine) represent 
a major health burden, accounting for 22.5% of all 
cancer-​related deaths worldwide1. Proper management 
of gastrointestinal cancers is challenging because the 
gastrointestinal tract is a vibrant and dynamic ecosys-
tem wherein each component — epithelial and various 
other cell types, luminal contents, the microbiota and 
extracellular matrix (ECM) — can be an accomplice to 
the pathogenesis of these cancers, as they serve various 
biological roles. Collectively, these components consti-
tute the so-​called tumour microenvironment (TME)2,3. 
In the early days of cancer research, scientists believed 
that a tumour was a homogeneous mass of cancer cells. 
However, a plethora of long-​term and in-​depth inves-
tigations uncovered that tumour development closely 
resembles normal organogenesis and should be regarded 
as a heterogeneous entity resulting from the dynamic, 
reciprocal interactions between cancer cells and their 
surrounding microenvironment4,5. Moreover, the coor-
dinated cellular and molecular processes that enable the 
body to manage its homeostatic balance will be governed 
by the tumour itself4,6. A well-​understood phenomenon 
driving this feature is the ability of tumours to foster the 

formation of blood and lymph vessels by which neces-
sary nutrients are received and by which spreading to 
distant sites is conferred4,6. To this end, the ‘established’ 
TME strongly influences the behaviour of a primary 
tumour, determines whether it will disseminate to other 
organs and affects responses to therapy6,7. Whereas 
immune, endothelial and cancer (epithelial) cells have 
been in the spotlight for many years, justifying the devel-
opment of targeted therapies, the role of the nervous sys-
tem only entered the limelight in the past couple of years, 
which is remarkable given the extensive innervation of 
the gastrointestinal tract.

The gastrointestinal tract is innervated by the three 
main divisions of the autonomic nervous system, which 
provide both extrinsic and intrinsic neural control of 
gut function8,9. The parasympathetic and sympathetic 
nervous systems supply the gastrointestinal tract with 
extrinsic innervation, that is, parasympathetic and 
sympathetic neurons have their cell bodies outside 
the gut wall, whereas cells of the enteric nervous sys-
tem (ENS) are located within the bowel itself, provid-
ing intrinsic control of gut function (Fig. 1 and Box 1).  
In mammals, the ENS forms an intricate neural network 
embedded along the gastrointestinal wall that consists 
of different types of enteric neurons and glia, which are 

Nerves in gastrointestinal cancer: 
from mechanism to modulations
Nathalie Vaes   1, Musa Idris   1,2, Werend Boesmans   1,3, Maria M. Alves   2 and 
Veerle Melotte   1,2 ✉

Abstract | Maintenance of gastrointestinal health is challenging as it requires balancing 
multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal 
tract. Disturbances within this vibrant environment can have detrimental consequences, including 
the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all 
cancer cases and ~22.5% of all cancer-​related deaths. Developing new ways to more readily 
detect and more efficiently target these malignancies are urgently needed. Whereas members  
of the tumour microenvironment, such as immune cells and fibroblasts, have already been in  
the spotlight as key players of cancer initiation and progression, the importance of the nervous 
system in gastrointestinal cancers has only been highlighted in the past few years. Although 
extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut’s intrinsic 
innervation also have the ability to do so. Here, we shed light on this thriving field and discuss 
neural influences during gastrointestinal carcinogenesis. We focus on the interactions between 
neurons and components of the gastrointestinal tract and tumour microenvironment, on the 
neural signalling pathways involved, and how these factors affect the cancer hallmarks, and 
discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-​related 
therapies that have potential for the management of gastrointestinal cancers.

1Department of Pathology, 
GROW–School for Oncology 
and Reproduction, Maastricht 
University Medical Centre, 
Maastricht, Netherlands.
2Department of Clinical 
Genetics, Erasmus University 
Medical Centre, Rotterdam, 
Netherlands.
3Biomedical Research 
Institute (BIOMED), Hasselt 
University, Hasselt, Belgium.

✉e-​mail: veerle.melotte@
maastrichtuniversity.nl

https://doi.org/10.1038/ 
s41575-022-00669-9

REVIEWS

Nature Reviews | Gastroenterology & Hepatology

http://orcid.org/0000-0001-9571-3449
http://orcid.org/0000-0002-7762-241X
http://orcid.org/0000-0002-2426-0451
http://orcid.org/0000-0003-0083-5318
http://orcid.org/0000-0002-9459-123X
mailto:veerle.melotte@maastrichtuniversity.nl
mailto:veerle.melotte@maastrichtuniversity.nl
https://doi.org/10.1038/s41575-022-00669-9
https://doi.org/10.1038/s41575-022-00669-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s41575-022-00669-9&domain=pdf


0123456789();: 

predominantly clustered within interconnected ganglia 
of the submucosal and myenteric plexus10. Although the 
inner workings of the gut are modulated by the ENS, 
extensive extrinsic inputs fine-​tune gut function11. 
By collaborating with a variety of cell types, such as 
smooth muscle cells and interstitial cells of Cajal as well 
as epithelial, endothelial and immune cells, the enteric 
neuron–glial network controls motility patterns, sup-
ports mucosal barrier function, aids in immunological 
defence and controls mucosal secretions12. The ENS 
has been implicated in the pathogenesis of various 
gastrointestinal disorders, with an obvious role in the 
aetiology of enteric neuropathies13. Moreover, increased 
understanding of its contribution to several other dis-
eases, including those associated with intestinal inflam-
mation, is currently arising14. Despite the recognized 
importance of neurons in cancer4, the role of the nerv-
ous system in gastrointestinal carcinogenesis is only  
now emerging15,16.

In this Review, we focus on the blossoming area of 
neural contributions to the pathogenesis of gastrointes-
tinal cancers. We address how neurons interact with the 
gut microbiota and various TME components and how 
these interactions affect the hallmarks of cancer. Neural 
and neural-​related intracellular signalling pathways and  
the neural signature in gastrointestinal cancers are also 
highlighted. Supported by the resulting insights, we discuss  
current and potential future therapeutic strategies.

Crosstalk between cancer and neural cells
In the past decade, several landmark papers have shown 
that tumour innervation promotes the malignant 
phenotype of cancer cells. For oesophageal, stomach 
and colorectal cancers, it has been established that per-
ineural invasion (Box 2) is an independent prognostic 
factor associated with worse prognosis and poor clinical 
outcome17–22. Similarly, axonogenesis (that is, the forma-
tion of new axons or increased nerve density23,24) and 
(neo)neurogenesis (that is, de novo formation of nerve 
cells25,26) confer tumours a growth advantage. From the 
early 2000s onwards, pioneering in vivo studies started to 
use a variety of tools to interfere with tumour innervation 

and explore their mechanistic and functional importance 
for the aetiology of gastrointestinal cancers.

Denervation
Both surgical cutting of nerves and injection of neuro
toxic drugs have been used to study the effect of 
denervation in cancer. In humans, extrinsic vagal den-
ervation, termed vagotomy, either unilateral or bilat-
eral, was first used in the management of gastric and 
duodenal ulcers27,28. This treatment seemed to increase 
the risk of developing gastric cancer due to delayed 
gastric emptying and concomitant hypochlorhydria, 
which could increase the levels of N-​nitroso com-
pounds29–31. Similarly, unilateral vagotomy increased 
the numbers of gastric tumours that were formed upon 
treatment of Wistar rats with the nitrosoguanidine deriv-
ative N-​methyl-​N-​nitro-​N-​nitrosoguanidine (MNNG)32. 
However, later papers have shown that, for gastric and 
small intestinal cancers, vagal denervation has anti-
tumorigenic effects. Using a spontaneous (Ins-​Gas), 
carcinogen-​induced (MNU) and bacteria-​infected 
(Helicobacter pylori–H+/K+–ATPase-​Il1β) mouse model 
of gastric cancer, Zhao et al. demonstrated that surgical 
denervation (bilateral or unilateral truncal vagotomy) 
or a botulin toxin injection (which blocks acetylcholine 
release from axon endings) suppressed tumorigenesis23. 
In agreement, gastric cancer is more prevalent in the 
lesser as opposed to the greater curvature in mice and 
humans33,34, which parallels the higher nerve density in 
the lesser curvature23. The discrepant outcomes between 
earlier and later studies are most likely explained by the 
fact that later studies applied vagotomy with an accom-
panying drainage procedure (pyloroplasty) to improve 
gastric emptying31. In a genetic intestinal cancer mouse 
model (APCMin/+), tumour development in the small intes-
tine was suppressed by subdiaphragmatic vagotomy35. 
Interestingly, for colorectal cancer (CRC), truncal vagot-
omy with accompanying drainage procedure had no clear 
effect on carcinogenesis in rats36,37 whereas, in humans, 
this treatment for gastric or duodenal ulcers increased the 
risk of developing CRC across a range of studies of vary-
ing cohort sizes38–40. Further research is needed to specify 
if this increased risk results from delayed emptying and 
increased levels of gastrin, because these findings were 
observed in patient cohorts treated with different gastric 
surgeries with or without accompanying drainage.

Conflicting data have also been reported following 
surgical and pharmacological sympathetic denervation. 
The most widely used compound to achieve chemi-
cal sympathectomy is 6-​hydroxydopamine, a neuro-
toxin that destroys catecholaminergic neurons at the 
injection site. Using Wistar rats, Tatsuta et al. found 
that prolonged administration of 6-​hydroxydopamine 
markedly reduced azoxymethane-​induced colonic 
tumour incidence as well as gastric tumorigenesis 
(MNNG-​induced)41,42. Even though Sadighparvar et al. 
observed substantially fewer aberrant crypt foci follow-
ing sympathetic denervation (coeliac–mesenteric gan-
glionectomy and guanethidine sulfate administration) 
in Wistar rats during 1,2-​dimethylhydrazine (DMH)-​ 
induced carcinogenesis, no effect on colon tumour inci-
dence or size was observed43. Surgical sympathectomy 

Key points

•	The gut is a highly innervated, dynamic ecosystem wherein nerves are key for 
intestinal functioning and homeostasis by communicating with a variety of cell types 
and the gut microbiome.

•	Neural contributions to gastrointestinal cancers represent a flourishing area of 
investigation as both intrinsic and extrinsic nerves influence gastrointestinal 
tumorigenesis via their interplay with cancer cells.

•	Neural-​related signals and pathways can influence the cancer hallmarks, interfering 
with several cancer cell characteristics (metabolism and (epi)genomic stability) 	
and/or supporting a cancer-​promoting microenvironment (immune infiltration, 
extracellular matrix).

•	While neoneurogenesis and axonogenesis are emerging within the gastrointestinal 
cancer field, both topics require in-​depth investigation to identify their exact origin 
and driving mechanisms.

•	Cancer cells are able to hijack (embryonic) neural pathways to promote their 	
own fitness.

•	Targeting neural cell-​derived messengers and their respective receptors holds great 
promise in the treatment of gastrointestinal cancers.

www.nature.com/nrgastro
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of the small intestine did not affect Apc-​driven intestinal 
carcinogenesis in mice35. Compared with normal tissue, 
human gastric44–46 and colon cancer47 tissues were char-
acterized by markedly reduced sympathetic nerve fibres 
or noradrenaline levels, which were gradually restored 
with increasing distance from the tumour site. However, 
these conclusions were drawn from studies with small 
patient cohorts (82 and 5, respectively) and do not 
provide conclusive data regarding potential positive 
effects of sympathetic innervation on gastrointestinal 
carcinogenesis.

For intrinsic denervation in animal models, benza-
lkonium chloride is the chemical that has mostly been 
used to locally damage the myenteric plexus48. Whereas 
application of benzalkonium chloride to the serosal 
surface of the gastrointestinal tract initially induces 
hyperplasia of gastric G cells, oesophageal cells and 
descending colonic epithelial cells49–51, it hampers gas-
tric and colon tumour development and growth in an 
MNNG and DMH rat model of gastric52 and colon can-
cer53, respectively. This finding could be mediated by an 
imbalance in the levels of several neural factors as well 
as by the interplay between benzalkonium chloride, the 
acidic environment and various neuropeptides. Upon 
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Fig. 1 | nervous signalling paths and modulators of  
the gastrointestinal tract in mammals. Each part of the 
gastrointestinal tract (that is, oesophagus, stomach, small 
and large intestine) is differentially innervated, both  
extrinsically and intrinsically. a | Extrinsic innervation of the 
gastrointestinal tract. Parasympathetic (cholinergic) inner-
vation (green trajectories) via the vagus nerve is very dense 
at the beginning of the gastrointestinal tract, yet becomes 
sparse whilst moving distally, with most parasympathetic 
innervation of the distal colon originating from pregangli-
onic neurons within S1–S4 lumbosacral spinal cord regions. 
Parasympathetic preganglionic neurons synapse with 
myenteric postganglionic neurons in the gastrointestinal 
tract (purple pentagon). Sympathetic (adrenergic) innerva-
tion (blue trajectories) varies per organ of the gastrointesti-
nal tract, with the cervical and thoracic trunk from spinal 
segments T1–T10 innervating the oesophagus, T6–T9 and 
T9–10 thoracic neurons supplying the stomach and small 
intestine, respectively, and L2–L5 lumbar regions innervat-
ing the colon. Sympathetic preganglionic neurons synapse 
with postganglionic neurons in the prevertebral ganglia or, 
yet less likely, in the paravertebral ganglia (rose pentagons). 
Visceral afferent fibres travel along the vagus and spinal 
nerves as well as the sympathetic nerves and transduce 
sensory signals from the enteric nervous system (ENS) (not 
shown). b | Intrinsic innervation and major synapses in the 
gastrointestinal tract. Schematic overview of a variety of 
neurotransmitters and synapses in the ENS with a specific 
focus on those that have been shown to be involved in gas-
trointestinal carcinogenesis. The ENS is embedded along 
the entire gastrointestinal wall with a variable design 
depending on the intestinal segment. The myenteric plexus 
continues from the upper oesophagus to the internal anal 
sphincter, whereas the submucosal plexuses are absent in 
the oesophagus, contain few ganglia in the stomach, and 
are only fully established in the small and large intestine. 
ENS neurons are depicted in various colours to distinguish 
subpopulations (see key). Enteric glial cells are not shown  
in this figure. PSNS, parasympathetic nervous system; SNS, 
sympathetic nervous system.
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benzalkonium chloride treatment, levels of substance P  
and vasoactive intestinal polypeptide (the two main 
neuropeptides driving MNNG-​induced carcinogenesis) 
decrease, leading to an inflamed and acidic gastric envi-
ronment, which reduces the effectiveness of MNNG52,54. 
Correspondingly, benzalkonium chloride-​induced 
denervation of the rat oesophagus51 and distal colon55 is 
associated with megaoesophagus and megacolon, with 
the latter condition also hindering colorectal tumori-
genesis in humans56. By contrast, a small increased risk 
of developing oesophageal cancer has been observed 
in several cohorts of patients with megaoesophagus57. 
Given that Munari et al. ascribed this risk to prolonged 
contact with food, microbial overgrowth and increased 
nitrate levels57, it is questionable whether the absence of 
nerves is really accountable for the discrepant gastro
intestinal cancer risks rather than the influence of  
the distended gut wall or obstructed luminal content  
on the carcinogenic process. To accommodate for this 
aspect, Zhao et al. used a mouse gastric model wherein 
they performed denervation after completion of the  
cancer induction protocol. The finding that vagotomy 
also inhibited gastric tumorigenesis in this model suggests  
that this is a nerve-​driven inhibitory effect23.

Before these denervation studies can be translated to 
the patient, it is important to fully understand the neuro
anatomy and biology during carcinogenesis, which is 
currently far from being fully established. The manner 
(surgical versus chemical), location, period (short term 
versus long term) and timing (before or during cancer 
onset or progression) of the employed interference rep-
resent fundamental denominators for the experimental 
outcomes and could account for the discrepancies that 
have been described. For instance, although it seems 
that, especially in the human situation, denervation 
before the onset of carcinogenesis (for example, treat-
ment of ulcers) inhibits tumour formation, Zhao et al. 
demonstrated equally positive effects of denervation 
before or after the establishment of gastric cancer on 
tumour incidence and progression in mice23. Moreover, 
the various techniques described have limitations due 
to their incomplete denervation, subsequent nerve 
regeneration or unintended secondary effects on other 
members of the TME. In effect, the observation that par-
asympathetic but not sympathetic denervation reduces 
intestinal carcinogenesis in the ApcMin/+ mouse model 
might be explained by the difference in complete par-
asympathetic versus partial sympathetic denervation of 
the small intestine35,58,59.

Modulation of neural factors
Several neurotransmitters, neurotrophic factors and their 
respective receptors have been shown to regulate intes-
tinal epithelial growth and proliferation and are com-
monly overexpressed in gastrointestinal cancer tissue15. 
As a consequence, multiple in vitro and in vivo studies 
have applied a variety of techniques, such as knockdown, 
overexpression, blocking or (ant)agonizing, to assess the 
influence of neurotrophin and neurotransmitter signal-
ling on gastrointestinal carcinogenesis. Neurotrophic 
factors are defined as endogenous molecules that reg-
ulate survival, growth and morphological plasticity of 
neurons. Considering their name, neurotrophic mole-
cules were initially thought to be uniquely related to the 
nervous system. However, since the mid-1900s, it has 
been shown that other cells, including cancer cells, also 
possess the machinery to produce, secrete and respond 
to neural factors60. Interestingly, different receptor sub-
types have been identified on a variety of cell types 
within the gastrointestinal tract. However, the implica-
tion in gastrointestinal carcinogenesis is restricted to the 
muscarinic M3R receptor and, to a lesser extent, the M1R 
receptor as well as the α2-​adrenoceptor, β2-​adrenoceptor 
and β3-​adrenoceptor for neurotransmitters and 
the Trk and p75NTR receptors for neurotrophins16,61. 
A comprehensive overview of the main neurotrophic 
factors and neurotransmitters involved in gastrointes-
tinal carcinogenesis is provided elsewhere15,62; however, 
within these studies, the origin of these messengers 
was often not defined. In the following section, we 
elaborate on the neuronal cell-​derived messengers  
and their respective receptors on cancer cells.

Cholinergic signalling in gastrointestinal cancers. 
During gastric tumorigenesis, cholinergic nerve den-
sity increases with tumour progression and both mouse 

Box 1 | Innervation of the gastrointestinal tract

The nervous system in vertebrates is built from two main parts: the central nervous 
system and the peripheral nervous system, with the first comprising the brain and spinal 
cord, and the latter consisting of neural cells located outside of the brain and spinal cord. 
The peripheral nervous system can be separated into the somatic and autonomic 
nervous systems, with the autonomic nervous system further subdivided into the 
parasympathetic (Fig. 1a, green trajectories), sympathetic (Fig. 1a, blue trajectories) 
and enteric nervous systems12.
Acetylcholine is the primary neurotransmitter to relay signals in parasympathetic 

preganglionic and postganglionic synapses as well as from preganglionic sympathetic 
fibres. Noradrenaline, on the other hand, is the main neurotransmitter released from 
postganglionic sympathetics (Fig. 1b). The native receptors via which acetylcholine and 
noradrenaline exert their actions are muscarinic or nicotinic cholinergic receptors, 	
and the α-​adrenoceptor and β-​adrenoceptor, respectively. Acetylcholine released 
within ganglionic synapses primarily activates nicotinic receptors on postganglionic 
neurons to transmit autonomic signals from preganglionic to postganglionic neurons. 
Postganglionic neurons extend further to visceral organs, including the gastrointestinal 
tract, where parasympathetic acetylcholine binds muscarinic receptors (M1–M5) and 
sympathetic noradrenaline binds α-​adrenergic receptors (α1 and α2) and β-​adrenergic 
receptors (especially β1 and β3) on target gastrointestinal cells, including epithelial, 
immune and other stromal cells. Next to neuronal sources of these neurotransmitters, 
systemic adrenaline produced by adrenal glands or members of the tumour 
microenvironment can reach target cells in the gastrointestinal tract286.
Sensory information is conveyed via visceral afferents that make up most of the extrinsic 

gastrointestinal innervation and largely follow autonomic fibres to reach the central 
nervous system following two distinct routes. Splanchnic and pelvic afferents, which have 
their cell bodies in thoracolumbar and lumbosacral dorsal root ganglia, mainly follow the 
sympathetic and parasympathetic chain, respectively, to enter the brain via the spinal 
cord. The nodose or jugular ganglia harbour cell bodies of vagal afferents and project 	
to the nucleus tractus solitarius within the brainstem287–290 (Fig. 1a). The enteric nervous 
system harbours region-​specific circuits that integrate information from the gut lumen 
and gut wall via intrinsic primary afferent neurons, interneurons and motor neurons 	
to regulate gut motility and secretomotor and vasomotor responses287,291,292 (Fig. 1b). 	
In addition, intestinofugal neurons project outside the gut wall and convey afferent 
information to sympathetic prevertebral ganglia292. Enteric neuron subtypes communicate 
with one another and with target cells, using neurotransmitters, such as acetylcholine 
nitric oxide and serotonin, as well as neuropeptides such as neuropeptide Y, substance P 
and vasoactive intestinal peptide. Collectively, these messengers assist in controlling 
gastrointestinal homeostasis and motility293,294 (Fig. 1b).

www.nature.com/nrgastro
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and human oesophageal, gastric and colon cancer cells 
upregulate the expression of M3R23,63–67 (Fig. 2). Binding 
of acetylcholine to M3R activates intracellular EGFR–
ERK–AKT signalling in gastric and colon cancer cells 
in vitro68,69 and in vivo (azoxymethane-​induced CRC 
mouse model)70. M3R receptor activation also induces 
ligand-​independent Wnt signalling through YAP 
in vivo (MNU gastric mouse model), with a concomi-
tant upregulation of, amongst other Wnt targets, CD44 
and Lgr5 as well as nuclear translocation of β-​catenin. 
Both pathways trigger proliferation and expansion of 
the gastrointestinal epithelium63,68–72. In addition, acti-
vating the M3R–AMPK–MACC1 and matrix metallo-
proteinase (MMP) pathway by acetylcholine promotes 

gastric and colon cancer migration and invasion 
in vitro73 and in vivo74,75. Progression towards a can-
cerous gastrointestinal epithelium reinforces bidirec-
tional crosstalk as human gastric and colon (cancer) 
cells can synthesize and release acetylcholine, which 
subsequently stimulates neighbouring nerve fibres and  
axonogenesis63–65,69,76,77.

Adrenergic signalling in gastrointestinal cancers. Given  
that adrenergic stimulation, for example, via α2-​adrenergic- 
​induced EGFR–MEK–ERK signalling, in the gastroin-
testinal epithelium supports cell migration and wound 
healing73,78, it is not surprising that dysregulation of 
these signalling cues is involved in the pathogenesis 
of gastrointestinal cancers (Fig. 3). Moreover, adrener-
gic signals and receptors are commonly overexpressed 
within cancer tissues, further suggesting that adrenergic 
signals take part in gastric79 and colorectal80 tumorigen-
esis. According to several in vitro and in vivo stud-
ies79–86, the carcinogenic influences are mostly mediated 
by β2-​adrenoceptor and α2-​adrenoceptor, attenuating 
critical cell functions such as apoptosis and immune 
responses, inducing epithelial–mesenchymal transition, 
and promoting metastatic and invading capacities. Both 
in vitro79,84 and in vivo79 studies have shown that this pro-
cess is mediated via activation of the VEGF–MMP and 
STAT3–ERK–MAPK pathways. For instance, noradren-
aline promotes cell survival through AMPK-​dependent 
autophagy in gastric cancer cell lines85. Similarly, 
β2-​signalling enhances the survival of gastric cancer 
xenografts, whereas pharmacological blocking of the 
β2-​adrenoceptor promotes apoptosis of these xenografts 
(propranolol induced)79 and of CRC cells in vitro86. In 
agreement, elevated levels of the β2-​adrenoceptor have 
been identified as a clinically significant prognos-
tic marker for CRC in humans80. Notably, the studies 
described mainly focus on extrinsic innervation and no 
knowledge is available on the ENS.

Targeting neurotrophin signalling. As mentioned ear-
lier, acetylcholine can immediately fuel a reciprocal 
nerve–cancer communication by activating M3R on 
epithelial cells. This process stimulates nerve growth 
factor (NGF) production, which subsequently targets its 
respective TrkA receptor on nerves and triggers cholin-
ergic neurite growth63. Functional blocking or inhibition 
of either M3R or TrkA receptors reduces epithelial cell 
proliferation and tumour innervation in mouse gastric 
cancer models, thereby emphasizing the contribution 
of neurotrophic signals to the pathogenesis of gastric 
cancer63. Likewise, oesophageal carcinogenesis can be 
enhanced by neurotrophic factors and their receptors. 
Human oesophageal cancer tissues overexpressing NGF 
are characterized by the presence of nerve bundles and 
neuropeptide-​immunoreactive nerve fibres expressing 
the TrkA receptor17,87. Moreover, oesophageal cancer 
cells undergo apoptosis upon silencing of the non-​
specific neurotrophin receptor p75NTR (ref.88). However, 
in CRC, this receptor is often silenced in human tis-
sues to counteract its tumour suppressive effects, that 
is, inhibiting proliferation and promoting apoptosis 
in vitro89,90.

Box 2 | perineural invasion in gastrointestinal cancers

One of the key factors affecting the aggressiveness of a cancer cell is its ability to 
disseminate and migrate towards remote tissue sites. Although lymph and blood vessels 
are considered the primary routes for cancer cells to migrate, metastatic spread via 
nerve fibres was identified in the mid-1800s and termed perineural invasion (PNI). To 
date, PNI has been recognized as an important hallmark and a prognostic feature for 
different cancer types. Even though it is well established that this process comprises 
neoplastic spreading via nerves, a universal definition for PNI is still lacking.
Originally, PNI was thought to be a passive process, being defined as “silent 

extensions of malignant cells along the nerve sheath” by Mohs and Lathrop in 1952 
(ref.295). Later on, Batsakis broadly defined PNI as “tumour cell touching and invasion 	
in, around and through nerves”296. This definition covers all of the histopathological 
characteristics that have been observed for PNI, yet might vary according to subjective 
interpretations. The following suggestion by Veness to cite PNI “only when tumour 	
cells are able to invade the perineurium” seems too stringent given that the nerve 
sheath consists of three connective tissue layers: epineurium, perineurium and 
endoneurium297. Consequently, to further limit variable interpretations of this 
definition, different papers (Fagan et al.298, Bockman et al.299 and Nagakawa et al.300) 
have described that ‘at least 33% of the nerve circumference should be surrounded by 
tumour cells’ to classify it as PNI. Liebig and colleagues then advocated to define PNI 	
as tumour cell touching and invasion in, around and through nerves, with tumour 	
cells in any of the three nerve sheath layers, or involving at least 33% of the nerve 
circumference301. Importantly, it has become apparent that PNI is not a simple, passive 
process, but rather an active process involving reciprocal communication between 
nerves and tumour cells via paracrine signalling. Such a mechanism was first described 
by Ayala et al. using mouse dorsal root ganglia and prostate cancer cells co-​cultured in 
a Matrigel matrix302.
For gastrointestinal cancers specifically, the prevalence of PNI varies from 4% to 76%, 

depending on the specific gastrointestinal site and the definition that has been 
used18,19,22,303,304. Nevertheless, it has been identified as a prognostic factor associated 
with poor prognostic outcomes in a variety of gastrointestinal cancer types. For 
oesophageal cancer, PNI was found to be an independent predictor for shorter 
disease-​free and disease-​specific survival17,18. Similarly, high levels of PNI have been 
observed in gastric cancer, corresponding with disease progression and also predicting 
gastric cancer recurrence in patients who underwent curative resection19,20. For 
colorectal cancer, PNI has been characterized as a prognostic marker associated with 	
a worse clinical outcome because of increased local recurrences and shorter 5-​year 
disease-​free survival. Its prognostic value reportedly compares with that of other 
well-​established markers such as differentiation grade and depth of invasion21,22. 
Moreover, work by Duchalais et al. provided a mechanistic understanding of how 
cancer cells adhere to nerves: with tumour epithelial cells preferentially and directly 
adhering to enteric neurons via N-​cadherin and L1CAM, predominantly at the invasive 
front, and faithfully following the neural trajectory305.
These findings underscore that PNI should be respected as a high-​risk feature and 

supports its implementation in the standardized reporting criteria of (gastrointestinal) 
cancers. However, determination of the PNI pattern can be challenging in clinical 
practice due to potential subjective pathological interpretation among certified 
pathologists and the requirement of deeper sections for immunohistochemistry. Thus, 
the identification of proper neural-​related biomarkers for diagnostic purposes would 
be desirable306–308.
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Similar to acetylcholine, noradrenaline also directly 
nourishes bidirectional crosstalk as its binding to the 
β3-​adrenoceptor increases the levels of brain-​derived 
neurotrophic factor (BDNF), which consequently stim-
ulates axonogenesis and tumour growth and/or pro-
gression via its native NTRK2 (also known as TrkB) 
receptor on nerve cells79,91–93. BDNF–TrkB signalling 
can also instantaneously modify cancer cell charac-
teristics, favouring malignant progression in vitro94,95. 
This aspect is achieved by transactivation of the EGF 
pathway on cancer cells, thereby promoting the prolif-
eration of small and large intestinal cancer cell lines94,95, 
a mechanism that confers resistance to EGFR inhibitors 
in CRC96,97. Moreover, this pathway activates ERK and 
AKT signalling92,98, which leads to the upregulation of 
anti-​apoptotic proteins, such as BCL-2, in vitro. Such 
survival effect is abolished by BDNF knockdown in CRC 
cell lines99. These data might justify studying the bene-
fits of therapeutic co-​administration of TrkB and EGFR 
inhibitors in patients with CRC.

Taken together, these studies emphasize that a vari-
ety of neural signalling mechanisms fuel the inter-
action between the nervous system and intestinal 
epithelium. However, even though some mechanis-
tic insights have established how cancer cells regulate 
nerve recruitment, we need to better understand which 
cells secrete which neural factors and which receptor is 
targeted. Interestingly, this nerve dependence in can-
cer follows a long-​reported nerve dependence during 
tissue regeneration and tissue remodelling, and com-
mon cellular and molecular mechanisms have been 
described. Here, outgrowth and infiltration of nerves 
have also been observed, and the release of transferrin100, 
neuregulin101 and the neurotransmitter substance P102 by 
nerve endings can rescue the regeneration capacity in 

several experimental degeneration models; factors for 
which also an oncogenic potential has been described. 
Although the concept of neoneurogenesis during can-
cer development and/or progression is discussed in 
several papers, this aspect remains mainly a ‘black box’ 
in gastrointestinal cancers. It has been described in vivo 
that neural progenitor cells from the brain escape the 
blood–brain barrier to colonize prostate cancer28 and 
that cancer stem cells have the potential to differenti-
ate into neural-​like cell populations both in vitro and 
in vivo25,26. However, these findings need more in-​depth 
investigation, particularly in the context of gastroin-
testinal cancers. In fact, as the cancerous gastrointes-
tinal tract contains cells with neurogenic potential103, 
future studies need to define whether they contribute to 
neoneurogenesis in gastrointestinal cancers.

Neural cells, the TME and hallmarks of cancer
In 2000, Hanahan and Weinberg introduced the hall-
marks of cancer, a rationalizing set of six acquired biolog-
ical properties that govern neoplastic transformation104. 
A decade later, they revised this list, resulting in ten 
hallmarks: “sustaining proliferative signalling”, “evad-
ing growth suppressors”, “resisting cell death”, “ena-
bling replicative immortality”, “inducing angiogenesis”, 
“activating invasion and metastasis”, “tumor-​promoting 
inflammation”, “genome instability and mutation”, 
“deregulating cellular energetics” and “avoiding immune 
destruction”6. As reasoned earlier, the interaction 
between nerves and their environment clearly influences 
the survival, growth and dissemination of tumour cells. 
Based on these findings, Senga and Grose recommended 
appending “neuronal signalling” to the hallmarks, in 
addition to “dedifferentiation and transdifferentiation”, 
“epigenetic dysregulation” and “altered microbiome” 
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(discussed later)105. Although limited data are available 
on how the nervous system influences cancer hallmarks 
with respect to gastrointestinal cancers, in the following 
sections, we discuss studies that provide evidence on the 
role of neural signalling in this context (Figs. 2–4).

Angiogenesis and the neuroendothelial unit
In 1971, Folkman reported angiogenesis as an impor-
tant trait of tumours as it enables the supply of neces-
sary nutrients to ensure tumour cell survival106. This 
tumour-​associated neovasculature was initially thought 
to be vital only for aggressive and rapidly growing 
tumours. Yet, nowadays, angiogenesis has a full-​standing 
status within the hallmarks of cancer as it also contrib-
utes to the initial cancer stages6. Neuroangiogenesis 
refers to the process wherein nerves bundle along blood 
vessels, which is key for organ development and wound 
healing but also seems to contribute to the carcinogenic 
process107–110. Within this partnership, endothelial cells 
are partially guided by neural signals and vice versa; 
that is, angiogenic factors promote neural growth79,111,112. 
During prostate cancer, it is well established that adr-
energic cues (such as noradrenaline), induce an ‘angi-
ogenic switch’ in endothelial cells, thereby tuning the 
initiation and patterning of angiogenesis in vivo113. 
Such mechanism is not well defined for gastrointestinal 
cancers yet is supported by the fact that activation of 
either β-​adrenergic receptors or exogenous administra-
tion of (nor)adrenaline upregulate levels of angiogenic 

factors such as VEGF, MMPs and IL-8 in CRC and 
gastric cancer both in vivo and in vitro — an effect 
that is abolished by blocking the β2-​adrenoceptor79,114. 
Similarly, the inhibition of β1-​adrenergic receptors sup-
presses endothelial cell proliferation via inhibition of the 
glycolytic flux, which limits tumour formation of CRC 
cells orthotopically injected in the caecum of immuno-
compromised mice111. Again, this current knowledge is 
restricted to extrinsic innervation; however, exogenously 
added serotonin could also exert pro-​angiogenic effects 
by activating endothelial cells directly115 or by inhibit-
ing expression of the angiogenic inhibitor MMP12 in 
tumour-​infiltrating macrophages within colon cancer 
allografts116. By contrast, dopamine has an antiangio-
genic effect by binding D2 receptors on endothelial cells, 
leading to the suppression of VEGFR2 phosphorylation 
and downstream MAPK and FAK signalling in colon and  
gastric cancer-​bearing rodents, thereby inhibiting 
endothelial cell proliferation and migration whilst pro-
moting tumour cell apoptosis117–120. Thus, specific studies 
of the ENS in this regard are needed.

Activating invasion and metastasis
Structural and compositional changes of the ECM 
scaffold within the TME have a leading role in tumour 
growth and metastasis4. Initially, the ECM provides a 
physical barrier that limits tumour development and 
prevents immune cell infiltration4,121. Several neuro-
trophic factors, neurotransmitters and neuropeptides 
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upregulated during carcinogenesis can introduce 
changes within this scaffold in favour of tumour progres-
sion and spreading, in particular by directly activating 
MMPs or indirectly triggering TME cells that actively 
produce and remodel the ECM (Figs. 2 and 3).

In accordance with its overexpression in human gas-
tric cancer and CRC cells and tissues23,63,122, expression 
levels of M3R have been shown to correlate with cancer 
stage as well as lymph node metastasis in gastric cancer64. 
Activation of M3R on cancer cells in vitro results in the 
upregulation of several MMPs, including MMP1, MMP7 
and MMP10, which facilitate CRC cell migration and 
invasion; this effect can be reversed by blocking MMP1 
activation74,75,122–124. Additionally, MMP2, MMP7 and 
MMP9 levels are increased in human gastric cancer 
and oesophageal cancer tissues125–127 but their potential 
regulation by neural factors is currently not established. 
Furthermore, (nor)adrenaline can also stimulate migra-
tory capacities of gastric cancer xenografts79 and colon 
cancer cells in vitro, respectively, which can be inhibited 
by the β-​adrenergic blocker propranolol128. Interestingly, 
dependent on which receptor NGF activates, contradic-
tory effects on ECM remodelling have been reported. 
TrkA activation facilitates CRC cell migration and inva-
sion in vitro via MAP–ERK signalling and enhances 
MMP2 and MMP9 activity129. By contrast, NGF signal-
ling via p75NTR suppresses gastric cancer cell metastasis 
by attenuating urokinase-​type plasminogen activator  
(a cell motility factor) and MMP9 levels, whilst increas-
ing levels of the tissue inhibitor of matrix metallo-
proteinase 1 (TIMP1)130. This finding is reflected by 
upregulated p75NTR levels in non-​metastatic compared 
with metastatic human gastric cancer tissues130. During 
gastric and colon cancer, the BDNF–TrkB pathway 
promotes invasion and suppresses anoikis in vitro and 
in vivo (intravenously injected), presumably by boosting 
the epithelial–mesenchymal transition94,95,131. Finally, in 
gastric xenografts, inhibition of TrkB receptors proved 
sufficient to abrogate this effect131.

Besides MMPs, noradrenaline can cause an increase in  
type I collagen fibres via activation of cancer-​associated 

fibroblasts (CAFs)2,132. According to evidence in exper-
imental models, this step favours tumour progression, 
in part by supporting migration of blood vessels and 
nerve fibres and paving the way for tumour cells to 
invade4,133. CAFs are one of the most dominant members 
of the TME, representing a heterogeneous group of acti-
vated fibroblasts that are involved in several hallmarks 
of cancer. Their extensive functions in gastrointestinal 
cancers are comprehensively reviewed elsewhere134–136. 
Importantly, in addition to CAFs, enteric neurons 
themselves are also capable of synthetizing and secret-
ing ECM molecules as first evidenced by the Goldstein 
group137,138. In 2021, Vaes et al. also uncovered that 
mature enteric neurons can secrete ECM molecules, such 
as Nidogen 1 and Fibulin 2, thereby promoting colorec-
tal carcinogenesis139. Furthermore, myenteric denerva-
tion by benzalkonium chloride administration has been 
shown to be associated with an increased frequency of 
reticular and elastic fibres within the non-​cancerous gas-
tric mucosa, whereas it shifts the fibrillary component 
towards more elastic fibres in gastroadenocarcinomas 
(benzalkonium chloride plus MNNG rat model)140. 
Such observation correlates with increased expression 
of elastin in human colorectal tumour tissues and can-
cer cells141. This finding suggests that, in this situation, 
elastic fibres have protective effects and that degrada-
tion of these fibres, as observed in non-​denervated gas-
tric adenocarcinomas in MNNG-​treated rats, supports 
aggressive tumour growth140,142.

Genome instability and epigenetics
Tumour formation represents a multistep process 
driven by (epi)genomic alterations in non-​neoplastic 
cells6. It has been described that various neurotrans-
mitters can influence the cellular genome mainly 
via pathways involved in DNA damage and repair. 
For instance, via its β1-​adrenoceptor, noradrena-
line protects DNA in CRC cell lines from oxidative 
stress111,143,144. Similarly, serotonin protects the colonic 
epithelium against carcinogen-​induced DNA damage 
in tumorigenic mouse models145. On the other hand, 
adrenaline has been shown to stimulate degradation of 
p53 and the production of reactive oxygen species via 
β2-​adrenergic receptors in vitro, thereby leading to DNA 
damage in stem cells and cancer cells146–149. Next to the 
genome, the cellular epigenome can also be regulated 
by several neuropeptides and neurotransmitters such as 
gastric-​releasing peptide (GRP) and serotonin (Fig. 4).  
In cultured human colon cancer cells, GRP-​induced sig-
nalling enhances the expression of the heterochromatin 
protein 1β (HP1β)150,151. Even though HP1β is a known 
epigenomic reader and modulator with critical effects 
on chromatin structure152, the exact consequences on 
heterochromatin status in gastrointestinal cancers are 
currently unknown and warrant further investigation150. 
Nevertheless, antagonizing GRP-​induced signals in 
CRC cells in vitro reduces HP1β levels and the con-
comitant invasive characteristics as well as cell growth 
via EGF signalling153–156. Importantly, when combined 
with 5-​fluorouracil, an anti-​metabolic drug widely used 
in cancer chemotherapy, GRP antagonists synergisti-
cally inhibit CRC cell growth in vitro157. Serotonin has 
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been shown to bind the glutamine residue on histone 3 
(H3Q5) next to the critical lysine residue (H3K4). The 
H3K4 residue represents a major methylation site that is 
known for its global effects on gene expression in normal 
and cancer cells158. This so-​called ‘serotonylation’ of Q5 
stabilizes H3K4 methylation158. Moreover, serotonyla-
tion can influence the functioning of proteins such as 
the mTORC1 oncoprotein. Inhibiting this serotonylation 
leads to diminished cancer cell proliferation in vitro and 
reduced tumour size in an ectopic CRC mouse model159. 
Again, with most data being derived from in vitro 
experiments, it cannot be deduced where the neuronal  
messengers are derived from.

Reprogramming energy metabolism
To fuel their own growth and survival, cancer cells 
adapt their metabolism to comply with the high ener-
getic demand of carcinogenic processes. Oncogenic 
mutations and subsequent mitochondrial dysfunction 
render tumour cells, including gastrointestinal cancer 
cells, dependent on glutamine metabolism160–164. In 
2021, Rabben et al. uncovered that vagal innervation 
of gastric tumours maintains glutaminolysis in mice, 
whereas vagotomy re-​established energy production by 
oxidative phosphorylation160. This innervation-​induced 
metabolic reprogramming effect is mediated by modi-
fying functions of metabolic regulators such as HIF1A 
and SIRT1 (ref.165). Besides, adrenergic signalling affects 
cancer cell metabolism as it has been implicated in 
mitochondrial respiration of (colon) cancer cell lines 
that express the β1-​adrenoceptor. More specifically, 
nebivolol, a common β1-​receptor blocker, inhibited 
mitochondrial respiration and subsequent ATP synthe-
sis in several cancer cell types (including colon cancer) 
in vitro by upregulating ATPase inhibitory factor 1 (IF1) 
levels and impairing the phosphorylation of components 
of respiratory complexes I and V. Additionally, in vivo, 
when colon cancer cells were injected subcutaneously 
in nude mice, nebivolol impaired energy production 
and proliferation of colon cancer cells, while enhancing 
their apoptotic rate111, thereby pinpointing towards the 
glycolytic-​inducing capacities of noradrenaline.

Inflammation and immune evasion
Even though the neuroimmune crosstalk is increasingly 
recognized as a crucial regulator of digestive function 
and gastrointestinal homeostasis166, mechanistic under-
standing of neuroimmune interactions in the context 
of gastrointestinal cancers is limited. Although, so far, 
the focus has been on innate macrophages as well as 
on adaptive T cells, a role for neural signalling to other 
types of immune cells is also likely as these cells express a 
variety of neurotransmitter receptors that interfere with 
their ability to attack tumour cells167–169. However, here, 
we only focus on established neuroimmune interactions 
during gastrointestinal carcinogenesis.

Neural signals and innate immune cells. For breast, pros-
tate and pancreatic cancer, extensive evidence depicts 
the opposing effects of sympathetic (enhancive) and par-
asympathetic (suppressive) innervation on the recruit-
ment of tumour-​associated macrophages (TAMs)170. 

However, this process is less well established for gas-
trointestinal cancers. Chronic restraint stress79,85 and 
unresolved inflammation represent an important risk 
factor for the development of gastric cancer, causing 
immune cell infiltration and subsequent promotion of 
epithelial proliferation. As a result, the TME of patients 
with gastric cancer is usually characterized by high levels 
of inflammation and recruited TAMs171,172. Importantly, 
stress and infection-​induced inflammation activate  
β-​adrenergic signalling, to which TAMs and muscularis 
macrophages can respond. Thus, sympathetic signalling 
modulates macrophage infiltration turning the TME into 
a tumour-​promoting environment, an aspect observed 
in different cancer types173. β-​Adrenoceptor signalling 
also results in suppressed immune activity, potentially 
via transformation of M1 (pro-​inflammatory) to M2 
(anti-​inflammatory) macrophages, and the subsequent 
production of polyamines166,174–177. This process rep-
resents a plausible mechanism given the observation 
that the presence of polarized M2 macrophages (anti-​
inflammatory) correlates with tumour progression in 
patients with gastric cancer (n = 113)178 and CRC (n = 30 
(refs.179,180), n = 205 (ref.181)). Still, the role of TAMs in 
CRC is rather conflicting, partly dictated by their posi-
tion within the TME. In fact, TAMs are considered 
oncogenic because they can promote cancer cell invasion 
and metastasis while suppressing antitumour immune 
responses. At the same time, their absence can induce 
similar effects, probably through a compensatory mech-
anism. Given that the presence of TAMs within tumour 
stroma negatively correlates with survival of patients 
with CRC and their position at the tumour front has the 
opposite effect, it could well be that their location within 
the TME determines their eventual antitumorigenic or 
protumorigenic capacity182.

Neural signs and adaptive immune cells. Infiltration of 
CD8+ effector T cells (or cytotoxic T lymphocytes) in the 
TME is associated with improved survival for patients 
in many types of cancer, including gastrointestinal 
cancers183–185. In human CRC tissues (n = 39), perineural 
invasion was associated with decreased effector memory 
T cells186. This finding is supported by the observation 
that β2-​adrenergic-​mediated signalling controls lympho-
cyte trafficking in mice and blocks effector CD8+ T cell 
activation both in vivo187,188 and in vitro181. Such an effect 
can be reversed by blocking β2-​adrenergic signalling, 
resulting in T cell activation and tumour shrinkage in 
mice168,189,190. Interestingly, Tavazoie et al. observed that 
liver X receptor (LXR) agonists reduce the abundance 
of innate, myeloid-​derived suppressor cells, which trig-
gers CD8+ T cell responses and tumour regression, in 
both mouse and humans with colon cancer191. In human 
gastric cancer, increased CD8+ T cell density combined 
with elevated PDL1 expression correlates with metastatic 
and more advanced disease stages, which, according to 
research from other cancer types, can be induced by 
tumour innervation192–194. Adrenergic signalling, for 
instance, is associated with an increase in PDL1 expres-
sion in pancreatic cancer cells in vitro195 and nerve fibres 
themselves can produce PDL1 in prostate cancer196. 
Interestingly, work published as a preprint by Kuol et al.  
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suggests that expression of PDL1 ligands in CRC cell 
lines can be induced by cholinergic signalling197. Based 
on these data, a combined treatment effect of neuro-
modulators and immune-​checkpoint inhibitors warrants 
future investigation. Nerves have similar tumour-​
supporting effects via T helper cells. Hou et al. revealed 
a shift from T helper 1 (TH1) to TH2 cytokine production 
in a mouse stress model of CRC198, whereas suppression 
of β-​adrenergic signalling redirected the balance towards 
the TH1 side199. Similarly, Mitsui et al. showed that trun-
cal vagotomy in mice limited TH1 and TH2 cytokine 
levels within the small intestine200.

Although it is apparent from the studies highlighted 
already that neural signalling can influence cancer 
hallmarks, there is still a largely undiscovered field of 
investigation with huge potential to better understand 
gastrointestinal cancer pathogenesis and to identify 
novel targets for proper gastrointestinal cancer man-
agement. As it is already known that various sub-
types of immune cells have different effects on cancer 
hallmarks201, future studies should also investigate the 
influence of different neuronal subtypes on cancer hall-
marks and further distinguish local and systemic influ-
ences. In experimental animal models of melanoma and 
pancreatic cancer, it is described that sensory neurons 
are also involved in tumour initiation and progression, 
whereas, to our knowledge, this is not studied in other 
gastrointestinal cancers187,202. Interesting, but not dis-
cussed within this Review, is the role of stress on gas-
trointestinal cancers, especially as we know that stress 
hormones can also affect cancer hallmarks as discussed 
earlier. For more information on this matter, we would 
like to refer to other reviews covering this topic146,188.

Finally, we would like to address that, despite an increas-
ing body of literature showing that glial cells are vital  
for nervous system function and homeostasis203, glial 
cells are not specifically considered in the neuronal sig-
nalling hallmark. Enteric glia are the non-​neuronal cells  
within the ENS that not only provide structural support 

to neurons but also regulate several tasks important for 
gut function such as intestinal motility and epithelial 
barrier integrity103,204,205. Enteric glia are active partners 
in ENS activity and possess the required machinery to 
integrate and transmit information along enteric neural 
circuits206,207. Although the exact role of enteric glia is 
not clear, the ENS is involved in several mucosal func-
tions, including the maintenance of epithelial integrity 
and the gastrointestinal stem cell niche in the so-​called 
neural–glial–epithelial unit208,209. During gastrointesti-
nal carcinogenesis, these neuroglial networks exhibit 
structural abnormalities, with a denser and more 
branched network towards cancer cells as well as a 
changed cellular subtype distribution with increased 
levels of neuroprotective messengers like PGE2, TGFβ 
and galanin, as observed in vitro and in mouse and 
human tissues210–213. Additionally, when activated by 
colon cancer cells, enteric glial cells, at least in vitro, 
stimulate stem cell expansion and tumour formation 
via the EGFR–ERK pathway, highlighting the reciprocal 
communication within the TME210. Also, depletion of 
GFAP+ enteric glia prior to the induction of CRC in mice 
(azoxymethane–dextran sodium sulfate and ApcMin/+) 
markedly reduces tumour burden (about 80–90% and 
30%, respectively), whereas GFAP+ glial cell depletion 
after tumour formation does not affect tumour growth 
or number214. This finding supports the notion that 
enteric glial cells mainly contribute to the initial phases 
of colorectal carcinogenesis — a finding that is further 
evidenced by Baghdadi et al., who revealed that GFAP+ 
enteric glia regulate the regeneration of the intestinal 
stem cell niche via WNT signalling215,216. Together, even 
though there is much to uncover, also in the context 
of their possible contribution to neoneurogenesis217, 
these data pinpoint to the addition of glial cells to the  
cancer hallmarks.

Neural relationship with the microbiota
Together with the enteric nervous, immune and endo-
crine systems, the multifaceted intestinal microbial 
community (Box 3) orchestrates intestinal responses to 
pathophysiological challenges3,218,219. Even though thor-
ough experimental evidence linking the nervous system, 
microbiota and gastrointestinal cancers is currently 
lacking, the findings discussed next suggest functional 
associations between these three components, as the 
ENS and microbial community are both altered during 
gastrointestinal cancers and reciprocally communicate 
and modulate each other’s composition and functioning 
during health and disease.

Using a sox10 mutant zebrafish line, a Hirschsprung 
model characterized by absence of the ENS, Rolig et al. 
described profound alterations in the microbiota with an 
excess of pro-​inflammatory microorganisms and a lack 
of anti-​inflammatory lineages218. Vice versa, the microbi-
ota influences the structural organization of enteric neu-
ron–glial networks as well as ENS and gut functioning 
(for example, intestinal permeability and ion transport) 
in a region-​specific fashion220–224. However, whether 
these are direct or indirect effects remains to be investi-
gated. Notwithstanding possible links with gut innerva-
tion, the importance of a diverse yet balanced microbial 

Box 3 | the gut microbiota

The complex ecological system of microorganisms colonizing our digestive system 	
— the gut microbiota — has a long-​standing reputation of preserving our intestinal 
health232,309. As early as 1901, enriched levels of bacteria within the gastrointestinal 	
tract were discovered310; thereafter, the presence of viruses, fungi and archaea was 
confirmed, with increased density whilst moving along the gastrointestinal tract311. 
Together, these species, both commensal and pathogenic, account for more than 100 
trillion microorganisms, forming the largest reservoir of microorganisms communal 	
to humans. This reservoir has co-​evolved with its host to establish a sophisticated and 
mutually favourable relationship.
The gut microbiota is mostly established at birth but its composition changes 	

swiftly over the first couple of years of life, reaching a diverse, adult-​like microbial 
composition at ~2.5 years of age312. In humans, this system comprises three primary 
phylae, Bacillota (synonym Firmicutes), Bacteroidota (synonym Bacteroidetes) and 
Actinomycetota (synonym Actinobacteria)313, and offers benefits to the host by 
strengthening intestinal epithelial barrier integrity314, regulating host immunity315 	
and protecting against pathogens316. Despite its relatively constant composition, gut 
microbiota can be influenced and/or disrupted by environmental factors, including 
diet, lifestyle and antibiotic use. This disruption can lead to an imbalance between 
intestinal microorganisms, or ‘dysbiosis’, which impairs intestinal homeostasis and 
could set the stage for the development of several intestinal diseases such as 
inflammatory bowel disease and cancer232.
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community and the fact that imbalances herein might 
have deleterious consequences are evidenced by various 
experimental models225. Disruptions of the commensal 
microbial community in mice have been shown to be 
associated with the development of (gastrointestinal) 
diseases, including gastrointestinal cancer226–228. In this 
regard, the gut microbiota has been proposed as a novel 
hallmark of cancer105.

Microbiota influence intestinal health by produc-
ing a diverse metabolite repertoire from dietary prod-
ucts within the gut, which, amongst other functions, 
strengthen the intestinal epithelial barrier and immune 
defence mechanisms229. However, upon intestinal dys-
function and/or carcinogenic transformation, the intes-
tinal epithelial barrier gets compromised, providing 
microorganisms with the opportunity to infiltrate the 
internal environment, thereby setting the stage for dis-
ease progression230–233. One of the best-​characterized 
commensal microorganisms residing in the gastric and 
duodenal lumen is H. pylori226,234. However, this strain, 
alone or in combination with other aetiological fac-
tors, also represents one of the main risk factors for the 
development of gastric cancer and potentially increases  
the risk of CRC235. Infection with H. pylori can affect the  
release of different neurotransmitters, such as vagal 
acetylcholine, which influences ENS morphologically 
(for example, neuronal and axonal degeneration) and 
functionally (for example, changes in neuropeptide 
levels such as vasoactive intestinal peptide and c-​fos) 
as well as the composition of the gut microbiota236,237. 
Likewise, during Citrobacter rodentium infection in 
DMH-​induced and ApcMin/+ mouse models of CRC, 
adrenergic signalling via the β2-​adrenoceptor leads to 
recruitment of ChaT+ T cells, thereby promoting colonic 
tumour development238. Additionally, gut microbiota 
have the ability to influence CRC susceptibility and 
progression by producing protumorigenic, neuroactive 
metabolites and modifying cancer hallmarks (for exam-
ple, inflammation and genome instability) as evidenced 
by human-​derived microorganism screenings239,240. This 
phenomenon is further reflected by the observation 
that the gut microbiome of patients with CRC displays 
prominent differences compared with healthy individ-
uals, including reduced butyrate-​producing bacterial 
lineages and enriched levels of pathogenic bacteria such 
as Escherichia coli, Salmonella and Shigella. Such bacteria 
have been shown to strongly adhere to colonic epithelial 
cells and induce DNA damage in vitro (rat cell lines) and 
in vivo (CRC mouse models)3,241–243. Patients with CRC 
also display an altered virome (such as presence of cyto-
megalovirus) and mycobiome (for example, abundance 
of fungal Malassezia), when compared with healthy indi-
viduals, but no link with neural messengers has been 
established yet228.

Neural stemness and signatures in cancers
Cancer biology represents an intriguing process that 
seems to combine the fundamentals of embryonic 
development and organogenesis. Embryonic stem cells 
have the ability to differentiate into all three germ layers. 
However, their native identity is neural as they differ-
entiate into a neural lineage (ectoderm) in vitro in the 

absence of external cues, that is, under minimal cultur-
ing conditions244,245. It is arguable that the neural-​default 
state of embryonic stem cells goes along with their 
tumorigenic ability because it is well established that 
embryonic stem cells are capable of forming 2D col-
onies and 3D teratomas, that is, tumours, when prop-
agated in vitro and in vivo, respectively246. Analogue 
observations have been described for neural precursor 
cells. With increased potential for tumorigenesis — 
in terms of the required number of injected cells and 
tumour size, when compared with embryonic stem cells 
— neural precursor cells could be regarded as ‘potent’ 
tumorigenic cells247,248. Some derivatives of the neural 
precursor lineage, like neural crest cells, also display 
potent disseminating capacities as they can undergo an 
epithelial–mesenchymal transition and migrate away 
through xeno-​environments to their destinations249. 
Interestingly, both embryonic stem cells and neural 
precursor cells lose their tumorigenicity when forced 
to differentiate by retinoic acid in vitro248. In most 
common gastrointestinal cancer types, cancer cells are 
primarily restricted to an epithelial lineage identity 
yet they still express potency markers such as MYC, 
OCT4 and SOX2 (ref.250). Key effectors crucial for neu-
ral stemness (for example, nervous system polycomb 1  
and Musashi 1) have also been shown to be impor-
tant for colon and gastric cancer cells251–254. Advances 
in multi-​omics have highlighted that neural-​related 
genes are more prone to DNA hypermethylation and, 
subsequently, are more often downregulated in human 
gastrointestinal cancers255–258. Although this finding 
seems counterintuitive, these downregulated pathways 
are related to neuron formation and functions255–258. In 
this regard, it is tempting to suggest that cancer cells 
hijack neural reprogramming pathways to promote 
their tumorigenicity and potency. As described earlier, 
gastrointestinal cancer stem cells are able to generate a 
neuron-​like phenotype, mimicking neuronal cells both 
in vitro and in vivo, as indicated by the protein expres-
sion of neural markers such as Tuj1 (ref.26). However, 
functional neuronal properties, such as action poten-
tial firings, have not been evaluated and are needed to 
further identify the functional role of these cells during 
gastrointestinal carcinogenesis. Similar to embryonic 
stem cells and neural precursor cells, gastrointestinal 
cancer cell lines treated with retinoic acid to stimu-
late neuronal differentiation have less tumorigenic 
capacities259,260. Altogether, these findings propose a 
connection between neural identity and pluripotency 
as well as tumorigenicity.

Therapeutic potential
In view of the importance of the nervous system and 
neural signalling pathways in gastrointestinal cancer 
development, progression and dissemination, the modu-
lation of neural–cancer crosstalk as well as of neural and 
neural stemness pathways in cancer cells is gaining more 
ground in the approach against gastrointestinal cancers. 
These strategies mainly comprise antagonizing para-
sympathetic and sympathetic activity and modulation 
of other neurotrophic signalling mechanisms, though 
they are not yet aimed at targeting the ENS.
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Targeting sympathetic signals
Blocking sympathetic β-​adrenergic receptors has shown 
promise in lowering the recurrence and long-​term mor-
tality of several (gastrointestinal) cancer types261,262, but 
failed to reduce short-​term mortality in patients with 
oesophageal cancer263,264. Moreover, a meta-​analysis 
of the observational studies in CRC have shown no 
improvement in overall survival (HR 0.90, 95% CI 
0.93–1.10)265. Based on the involvement of β-​adrenergic 
signalling in gastrointestinal carcinogenesis and the 
ability of β-​blockers to enhance radiation efficacy in 
colon tumours in vivo266,267, intervention-​designed 
clinical trials in patients with gastric cancer and CRC 
are currently being conducted. Such trials assess the 
potential benefits of these beta-​blockers either preoper-
atively (gastrointestinal cancer268), in combination with 
chemotherapy and/or radiotherapy (gastric cancer269, 
oesophageal adenocarcinoma270), or perioperatively 
with a prostaglandin inhibitor, aiming to ameliorate 
stress-​inflammatory responses (CRC271).

Targeting parasympathetic signalling
Inhibition of the acetylcholine pathway (botulinum toxin 
injection) weakens colonic tumour growth and invasive-
ness and sensitizes gastric cancer cells to chemotherapy. 
This process results in prolonged survival of mice with 
gastric cancer64,69,272,273. As it has been shown that surgical 
denervation and botulinum toxin suppresses gastric can-
cer and recurrence in mice and humans23,31, botulinum 
toxin was tested in a pilot phase II trial consisting of six 
patients with gastric cancer274. Despite promising safety, 
its application to treat gastric cancer still needs broader 
investigations160.

Targeting neurotrophic receptors
Owing to the well-​described role of neurotrophins and 
their Trk receptors in tumorigenesis, they represent pos-
sible targets in the treatment of gastrointestinal cancers. 
Blocking NGF–TrkA or BDNF–TrkB signalling reduces 
innervation and the size of gastric tumours in genetic 
mice models63 and suppresses gastric cancer growth 
in vitro and in vivo131. In this respect, larotrectinib 
and entrectinib, two potent small-​molecule inhibitors 
of Trk, have been approved by the FDA to treat Trk 
fusion-​positive tumours275. Clinical trials and devel-
opment of second-​generation Trk inhibitors are also 
ongoing to overcome resistance issues (phase I276–278 and 
phase II279,280).

Neural stem cells as drug transporters
Neural stem cells are known for their tropism towards 
cancer cells in  vitro and in  vivo281. Consequently, 
they have been used as vehicles to specifically express 

anticancer drugs and prodrug-​activating enzymes at 
the tumour site, thereby reducing potential adverse 
effects282,283. This approach is under phase I clinical trials 
for brain cancer284,285 but has not yet been explored in the 
context of gastrointestinal cancers.

Conclusions
The multifaceted characteristics of carcinogenesis mir-
ror the essential processes that drive the development, 
growth and survival of multicellular organisms. Within 
these processes, cells are in close and permanent contact 
with their neighbourhood, with every cell, even cancer 
cells, expressing similar messengers and receptors to 
communicate. During carcinogenesis, cancer cells utilize 
nearby and remote resources to serve their increasing 
energy demand. It has been established that neurons 
reside within the TME and communicate with cancer 
cells as well as with other TME members. Nerves not 
only provide a ‘railway’ for dissemination but are also 
deployed by cancer cells to constantly send out a vari-
ety of signals that favour their growth and survival. As 
a consequence, manipulating the nervous system shows 
promise in the treatment of gastrointestinal cancers. 
However, within the reciprocal neural–cancer crosstalk, 
many enigmas still have to be unravelled before proper 
therapies can be designed. This situation is complicated 
by the fact that several messenger molecules have dual 
roles, being either protumorigenic or antitumorigenic, 
depending on the cell type, receptor and intracellular 
targets they influence as well as the tissue wherein they 
exert their actions. In addition, the complex gastro-
intestinal environment in which several other tissue 
components, such as the immune system and intestinal 
microbiota, are implicated, complicates the development 
of neural-​oriented treatment strategies for gastrointesti-
nal cancers. Finally, the findings in this field are mainly 
established using in vitro and in vivo assays, whereas 
translation to the human situation is often missing. 
Nerves are identified in the tumour stroma of patients 
with gastrointestinal cancer and affect patient outcomes 
but in-​depth molecular profiling of tumour-​associated 
neurons in humans is lacking. This research might be 
hindered as neurons represent a rare intestinal cell pop-
ulation that is difficult to capture, and long-​lived culture 
potential is restricted. Altogether, these aspects empha-
size the need to adopt technologies and tools from the 
neuroscience field and to establish strong collaborations 
between neuroscientists and cancer biologists. Further 
in-​depth basic and translational research is warranted 
to understand the role of neurons in gastrointestinal 
cancers and to identify the best therapeutic targets.
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