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GENERAL INTRODUCTION

Total hip arthroplasty is considered to be the most successful surgical procedure

both clinically and in terms of cost-reduction.1 The effectiveness of the operation

for pain-relief and restoration of hip function,2 as well as the reduced dependence

on health care expenditures,3-5 can explain the continuously growing numbers of

this surgical intervention.6,7

In 2005 a number of 22,500 total hip prostheses were implanted in the

Netherlands,8 and 202,500 in the USA in 2003.9 In coming years as a result of a

projected growth of the older population and because of lowering thresholds for

surgical interventions, a dramatic increase in these numbers is foreseen.9-11 In 2020

the annual number of total hip arthroplasties (THA) in the Netherlands is predicted

to increase to 25,090,11 and in the United States to 572,000 in 2030.9

Considering the large number of patients involved, the impact of the

procedure on the quality of life, and the severe consequences of implant failure,

the monitoring of total hip prostheses has become mandatory to improve their

longevity. Therefore an important issue in total hip replacement nowadays is the

performance of quality assurance of both existing implants and new designs.

Nevertheless there is a long history of total hip prostheses put onto the market

without sound scientific research, preclinical testing or prospective clinical trials to

detect the risk of failure in an early stage. On most implants there are no published

data of good quality, and making a choice by the orthopaedic surgeon amongst

these implants therefore is insufficiently based on evidence.12 National hip implant

registers, like the Swedish,13,14 the Norwegian,15 the Finnish,16 and the Danish Hip

Arthroplasty Register,17 have shown that ultimately survival curves can reveal

failures and detect implant designs with unacceptable revision rates. However

most implants still perform well during the early postoperative years, so when the

first suspicion is raised that the design may be a failure, large numbers already may

have been implanted. It has been estimated that a trial of several thousands of

patients followed for at least a decade would be required to show a significant

improvement (30 %) of a new hip design if compared with a conventional one,

when the outcome would exclusively be measured in terms of an insensitive

parameter like failure.18 This is ethically not acceptable and may lead to many
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claims for the orthopaedic industry. In this way several disasters happened, while

insight in the relations between design changes and failure mechanisms was not

developed.19,20 Examples of such clinical ‘disasters’ in orthopaedic hip

arthroplasty, caused by a scientifically deficient introduction pathway, are the

Perfecta prosthesis (Wright Medical Technology, Arlington, TN, USA),21 the

Centralign prosthesis (Zimmer Inc, Warsaw, IN, USA),22 the Capital Hip prosthesis

(3M Health Care Ltd, Loughborough, UK),23-27 the matte version of the Exeter stem

(Howmedica, Mahwah, NJ, USA),28,29 the Boneloc cement (Polymers

Reconstructive, Farum, Denmark),30,31 and the ASR Hip Resurfacing system and

ASR XL Acetabular Hip system (de Puy Orthopaedics, Warsaw. IN. USA).32-35

Therefore there is an urgent need for diagnostic tools that can at least differentiate

between superior and inferior implants, and assist in the evaluation of new stem

(and cup) designs. They will allow clinical follow-up to be directed to patients at

risk, and identify factors that may adversely affect implant fixation. Preferably

however they should be able to detect potential future failures in an early

postoperative or even preoperative stage. This is of particular importance for the

fast growing group of young hip patients, for whom the future consequences of an

unnecessary early revision procedure will have a huge impact on remaining

operative solutions and their functional results.14,16,36,37

Tools in (early) postoperative assessment after THA, that have been attributed

in the literature to have a potential for prediction of long-term performance of total

hip prosthesis are:

• Harris Hip Score (HHS), Merle d’Aubigne score (MdA) or Lequesne index,

scores for functional hip results

• Oxford Hip Score (OHS), Western Ontario and McMaster Universities

Osteoarthritis Index (WOMAC), McMaster Toronto Arthritis scale (MACTAR)

and Hip disability and Osteoarthritis Outcome Score (HOOS), so called

disease-specific patient satisfactory scores

• Short Form 36 (SF-36), Short Form 12 (SF-12), Nottingham Health Profile

(NHP), Sickness Impact Profile (SIP) and the EQ-5D, as generic health patient

satisfactory scores

• radiological results

• radiostereophotogrammetric analysis (RSA) for migration

Chapter 1
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• dual energy X-ray absorptiometry (DEXA) for periprosthetic bone remodelling

• histology of early retrieved implants

• radionuclide imaging (bone scintigraphy)

• 18 Fluoride Positron Emission Tomography (18F-PET)

The longevity of joint prostheses depends on several conditions of which

mechanical stability and sound fixation of the implant to bone, cemented or

uncemented, are essential. Different factors interact on these conditions (Fig. 1), and

several diagnostic tools provide direct and indirect information on them (Fig. 2).38
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Fig. 1 Physiological and pathological processes interacting with periprosthetic bone, and

consequently affecting the longevity of the prosthesis. (Adapted from Marinoni et al.38)



Finite Element Analysis

As a tool with the preoperative potential for predicting future failures of new hip

implants, finite element analysis (FEA) has been suggested by biomechanics.

Finite Element Analysis (FEA) is a computer-assisted technique able to

estimate loads and stresses in periprosthetic bone and interfaces. This can be used

as a guideline for adaptations in implant design, choice of material, surface texture

and method of fixation (cemented or uncemented).39-45 With a related technique,

called numerical shape optimisation (NSO), starting from predefined goals in terms

of maximally acceptable strain energies in the bone and interface stresses, the

ultimate design is calculated.46,47 More recently FEA has evolved into a technique

not just for estimation of stresses in and around the bone-implant construct, but for

preclinical prediction of long-term implant failure. With the acquisition of more

knowledge on the failure scenarios of cemented and uncemented hip implants,

computer simulations could be performed of processes like interface

debonding,48,49 cement damage accumulation,50 and cement creep.51-53 In this
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way efforts were made to predict aseptic loosening of particular cemented implant

designs under specified loading conditions,54 muscle forces,55 and the

performance of daily tasks.56 Machine testing protocols were designed mimicking

these physiological circumstances to provide experimental failure data,57,58 and

retrospective clinical and survival data from the hip registers were used to validate

the predictions of certain implant designs. However this still remained a

retrospective in vitro computer technique that had to be validated through in vivo

prospective clinical data, to be able to apply it for newly developed implants. 

So far the limitation of simulation-based FEA is that it remains a computer

model that defines several assumptions concerning implant material properties,

bone properties 59 (isotropic/anisotropic), and bonded or debonded circumstances

of interfaces with their coefficient of friction.60 Furthermore estimations were made

of interface loading forces during daily activities (walking, stair climbing),56 hip

contact forces and muscle forces.55 From this, peak tensile stresses in cement and

interfaces were monitored by the software, and stem migration was calculated. It is

obvious that because of all these assumptions, the extent to which FEA can

realistically simulate the failure mechanisms, is limited. This probably explains the

discrepancy between in vivo clinical results of failed hip reconstructions and the in

vitro FE-calculations, and therefore these retrospective studies can only partially

validate the technique.60

In order to asses the value of FEA in prediction of future performance of new

hip implant designs, the question should be answered if there is a correlation

between the preoperatively estimated periprosthetic bone stresses by FEA, and the

resulting postoperative periprosthetic bone mineral density (BMD) changes as

measured by for example dual energy x-ray absorptiometry (DEXA). In other words

is there a prospective ‘in vivo’ clinical validation, in terms of periprosthetic bone

remodelling, of the ‘in vitro’ predicted behaviour of a particular stem design?

Surgeon-oriented Functional Hip Scores

There are several well-known outcome measures of hip surgery like the Harris Hip

Score (HHS),61 the Merle d’Aubigne score (MdA),62 the Charnley Score (CS),63 and

the Lequesne index (L-ISH).64 These are all surgeon-oriented measurement-

instruments and although considered objective, are often inaccurate and not
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reproducible.65 Furthermore issues like pain, range of motion, walking distance

and activities of daily living reflect more the surgeons interest than patients’

satisfaction,66-68 nowadays considered to be more important for outcome

measurement. Because the assessment of these functional parameters is not always

performed by an unbiased observer, let alone the operating surgeon or even the

(co)designer of the implant, the objectivity may be doubtful and therefore useless

as an early discriminating score between superior and inferior implant designs.69,70

Furthermore the high intraobserver variability that goes with the physician’s

physical examination, being a part of the HHS, limits its value.71 In most cases the

HHS or MdA are part of a randomised clinical trial (RCT). In order to come to a

sufficient amount of material to predict future failure or success, a critical number

of included cases with a substantial period of follow-up is demanded, which

excludes per definition the possibility of early characterization of future implant

performance.72,73

An important limitation of the HHS is the ceiling effect. At the time the HHS

was developed, the score had good content validity due to the variability in implant

quality, and consequently the ability of this functional score to distinguish between

their results was high.61 However with improvements in implant designs and

operating techniques most patients already score the maximum possible results (‘the

ceiling’), making this instrument unfit to detect an improvement of a new design.74,75

Because of frequent ceiling effects in trials of the HHS, it therefore has limited value

in exploring the added benefit of newer hip implants or surgical techniques.75

For the same reason hip registry results are a powerful instrument for

assessment of implant survival in mid- and long-term follow-up, but are less

suitable to differentiate between superior and inferior prostheses in the short term,

when only a small number of implantations are performed. These initial hip

replacements mostly will have been performed in highly specialised centres, that

may be related to the development of the implant and therefore are not unbiased

either. Although the registers are certainly a good tool for post-market surveillance

of new medical devices and technologies, they do not fulfil the need for an early

discriminative instrument. Furthermore even after longer follow-up, survivorship

analysis, which plays a crucial role in the hip registers, can be a very crude and

insensitive instrument to detect failure, depending on the reason taken as an
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endpoint for failure. When exclusively revision is considered a confirmation of

failure, many loose but unrevised stems will be missed. This may be caused by

insufficient diagnosis, unavailability of sufficient surgical skills to perform the

revision-procedure, absence of necessary resources, or an unwilling patient.73

Another drawback can be the methodological and statistical problems in the

use of survival analysis, like small populations,73 and what to do with patients lost

to follow-up.76

Patient-oriented Outcome Scores / 

Patient Reported Outcome Measures (PROMs)

It has been recognized that more patient (than surgeon) oriented outcome scores

are, although considered subjective, more valuable to determine the success of a

therapeutic procedure or implant.67-69,77 Obtaining information about patient

satisfaction after hip surgery through questionnaires, or more in general concerning

perception of health and illness, is easier to organize, is less costly and shows

higher response rates than functional scores.73,78 There are several disease-specific

outcome instruments to evaluate patient satisfaction after hip arthroplasty, like the

Oxford Hip Score (OHS),79 the Western Ontario and McMaster Universities

Osteoarthritis Index (WOMAC),80 the McMaster Toronto Arthritis scale (MACTAR)81

and the Hip disability and Osteoarthritis Outcome Score (HOOS).73,82

The OHS is a hip scoring instrument specifically designed for outcome

measurement of hip arthroplasty and consisting of 12 questions focusing on pain,

hip range of motion and activities of daily life. Both Dawson et al.79 and Ostendorf

et al.83 showed a good reliability and correlation with clinical change, and the

score has been validated in Dutch.84

In the WOMAC-index patients score on multiple items focussing on pain,

stiffness and functional disability.80 These patient-relevant issues make it a widely

used disease-specific, health-related quality-of-life questionnaire for measuring

outcome after THA as well,2 but the OHS is considered to be more appropriate for

hip arthroplasty and more feasible in terms of user friendliness and

responsiveness.73,85 Like the OHS the WOMAC has proven to be valid, reliable,

and responsive,80 and the version translated in Dutch showed satisfactory cross-

cultural validity.86
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Recently the Short QUestionnaire to ASsess physical activity (SQUASH) has been

tested as a scoring system for activity levels of patients after THA, in an attempt to

determine their functional results.87,88 The questionnaire was originally developed

in the Netherlands to asses physical activity and monitor compliance with national

and international recommendations to improve the activity level in the general

population. It is composed of questions dealing with activities in household,

leisure-time, sports and at work and school. Although theoretically an alternative

for the WOMAC-score, it’s value for predicting long term outcome is questionable.

There may be a contradiction in the implication of good SQUASH-scores for the

short and longer term. Although a high score on physical activity presupposes a

good functioning THA, this does not necessarily correlate with good survival, and

up till now this relationship has not been investigated. The major concern with

respect to high activity levels after THA is the potential detrimental effect on the

longevity of the implant, due to higher wear of the bearing surfaces.89-91 Another

limitation in the use of these self-report instruments in general is the issue of bias,

lack of reproducibility and difficulty of comparison.88,92

Apart from the disease-specific satisfaction scores there are more generic

scores that relate to the patients’ feeling of health, illness and physical, mental and

social disability in general and are less focused on the result of a particular surgical

or non-surgical intervention. In orthopaedics the Short-Form 36 (SF-36) is the best-

known and most-used,93 as well as its’ shorter version the SF-12. Alternatives are

the Nottingham Health Profile (NHP)94 and the Sickness Impact Profile (SIP).95 In

the SF-36 there are 36 items scored concerning issues like physical and social

functioning, mental and emotional (dis)ability, pain and vitality, to asses the

patients’ general health and quality of life. This generic measurement instrument

has been translated in Dutch as well and shown to be valid and reliable.96

Another important PROM is the EQ-5D. EuroQol - 5 Dimension (EQ-5D) is an

instrument which evaluates the generic quality of life.97 It consists of one question

for each of the five dimensions of life that include mobility, self-care, usual

activities, pain/discomfort, and anxiety/depression. The answers given to EQ-5D

permit to find 243 unique health states or can be converted into an EQ-5D index, a

utility score anchored at 0 for death and 1 for perfect health. It also includes a Visual

Analog Scale (VAS), by which respondents can report their perceived health status
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with a grading from 0 (the worst possible health status) to 100 (the best possible

health status). This instrument can also be used to evaluate the cost-effectiveness of

different interventions, and may be used as a complementary consideration in

clinical priority assessment.98 This generic patient related outcome measure has the

advantage of being an internationally comparable score (for example with the

Swedish Registry and the National Joint Registry). It is designed to compare

diseases, disorders and their interventions in health care. It is validated in Dutch, is

short, can be used for international comparison of outcome measurement, and is

not subject to ceiling effects.99

It is generally accepted that a combination of a disease-specific and a generic

health score is most valuable to characterize the effect of a total hip or knee

replacement.73,100-102 The problems related to these subjective instruments

however remain in terms of validity, accuracy and precision. They should be

sensitive enough to detect a small but actual change in clinical result, be specific

enough to monitor what you want to measure, and do this in a reliable and

reproducible way.103 And most important in the light of the search for a

discriminating tool for implant design, there is no evidence that the patient scores

can fulfil this need. Apart from the intrinsic limitations related to these subjective

instruments which were mentioned earlier, this is caused as well by the fact that

changing comorbidity or even age, will strongly interfere with general health and

disability scores and cause ‘noise’ in the actual outcome of interest.104-107

Radiological results

From postoperative radiographs important information can be derived concerning

periprosthetic bone changes and implant fixation. Some of them may be predictive for

early or late failure of the implant although progressive migration is considered the

only pathognomonic.108-111 Nevertheless several radiological issues are consequently

and closely studied to recognize the behaviour of an implant and the periprosthetic

bone. The correspondence with future (early or late) failure in most cases however is

disappointing,112 and in most cases this relationship has not been established at all.

For uncemented hip stems phenomena like endosteal spotwelds, absence of

demarcation lines and physiological periprosthetic bone resorption through stress

General Introduction

19



shielding are considered signs of stable osseointegration, while pedestal formation,

calcar hypertrophy, radiolucent halo’s and areas of osteolysis on the other hand

may prove instability.113,114 However clinical correlation with radiographic

phenomena is usually low, and they do not consequently predict bad clinical

results and implant loosening.115,116 Above mentioned phenomena count for

extensively coated hip stems.113,114 However newer designs based on other

principles of fixation (only proximal and not uniform or distal) will behave

differently on X-ray follow up, and radiographic signs should be interpreted

accordingly. 

For cemented stems a fractured cement mantle will not be overlooked and is

pathognomonic for gross loosening, but in the majority of cases a late observation.

Radiolucent lines on the stem-cement interface mostly refer to failure as well.

However the meaning of more frequent and early radiolucencies at the bone-

cement interface is not clear, and may be related with inadequate cementing

technique with insufficient interdigitation or with debonding without clinical

consequences,117 or it may even be a late result of earlier debonding of the stem-

cement construct.118

Malpositioning of the component, particularly varus malalignement, has been

shown to be related with higher loosening risk probably due to an inadequate

cement mantle and peak stresses in a nonuniform mantle, resulting in debonding

with micromotion and migration.119-121 In summary, for several of these

radiographic phenomena there is no clear understanding of their meaning and the

way they should be interpreted, let alone any proof for their capacity to predict

later failure.

The main problem with conventional radiography for both issues, implant

migration and bone resorption, is that several studies have noted the potential for

variability in radiographs made after total hip arthroplasty, causing the reliability of

this tool to be questionable. This is due to intra- and interobserver variability,122-125

and errors that are associated with radiographic malalignment and image

magnification.126 Particularly precision is hampered by changes in the type of film

that is used, the exposure setting, the source-to-film distance, the variability of the

x-ray field, and the orientation of the limb during sequential radiographic follow-

up. Early postoperative bone changes usually are small and conventional
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radiographs are too insensitive to detect, let alone quantify them.127 Particularly

early implant micromotion, which has a proven predictive ability for later aseptic

loosening and revision,108,109 has a poor accuracy and reproducibility using

conventional x-rays, in spite of several attempts of standardizations.126,128 To

diminish variability, standardized radiographic protocols were developed with

uniformity of regions of interest, both in the acetabulum (according to DeLee and

Charnley 129) and in the femur (according to Gruen et al.130). Special attention was

payed to reproducible positioning of the patient, the distance of the patient to the

x-ray source and the film, and to precise centering of the x-ray beam. Furthermore

the application of digitisation,109 video-imaging of radiographs,131,132 the

introduction of extra reference points,133 or the use of mathematical corrections of

radiographs retrospectively,108 were all tried to overcome these imperfections.

Nevertheless quantification of bone and interface changes or migration remains

very difficult and hardly reproducible from x-rays.

Roentgen Stereophotogrammetric Analysis (RSA)

RSA was developed to cope with this lack of precision and accuracy, intrinsically

related to conventional radiographs, in determining implant migration. The

technique was developed by Selvik134 and since then applied for migration studies

of several implant designs.135-145 It determines the three-dimensional relative

orientation of an implant and bone with an accuracy of 0.2 mm for axial migration.

The conventional marker-based method involves insertion of tantalum markers in

the bone and attached on the prosthesis, followed by sequential radiographs made

simultaneously from two directions. The three-dimensional coordinates of the

tantalum markers are then measured in relation to fixed markers in a calibration

box, and thus movements of the implant relative to the bone can be determined

along three axes. The advantage over conventional X-ray techniques therefore is

that RSA can determine all changes in three-dimensional orientation, not just

vertical migration, but axial rotation, varus-valgus and flexion-extension migration

as well. 

Because of high accuracy and precision of the technique, relatively small

numbers of subjects (15-25 per patient group in a randomized clinical trial) during

a short follow-up (2 years) are needed to establish the correlation between
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migration outcome and long-term implant survival.110,146,147 There is a claim of

ability to predict later aseptic loosening within the first two years after

implantation. This relationship between initial subsidence (1.2 mm during the first

2 postoperative years) and high risk of future loosening, has until now been

established for only a small number of implant designs. 110,148-150 For most designs

however, migration thresholds that can discriminate good from bad predicted long-

term performance, are not known. And for some stem types it has become clear

that both early and late migration can be combined with good long-term

survivorship,148,151 illustrating that absolute stability is not a necessary condition

for good long-term implant survival. On the other hand it has been shown that

stems with subsidence within safe limits,110,150,152 and low early revision rates,153

nevertheless can present with inferior long-term survival.152,154 In conclusion,

initial stability is not invariably related to good long-term results, while the reverse

does not absolutely predict inferior survivorship.

From several RSA studies combined with long-term follow-up studies155,156

and reports from the registries,154,157 migration beyond ‘safe’ thresholds appeared

to be compatible with good long-term survivorship. Although this seems to be

related with particular stem designs (polished, double-tapered, collarless) and

should not be generalized for all implants, it is still unclear how early migration

patterns and late outcome for implants of different design are related. In other

words how valuable RSA is in predicting long-term outcome of implants with

different design philosophies. Nevertheless within the original protocol for

stepwise introduction of new implant designs onto the market,158 RSA has now

been given a more prominent role for early detection of inferior designs.159 In this

so called ‘phased innovation’ the sequence of steps for evidence-based

introduction is now preclinical in vitro testing, RSA studies in small cohorts, larger

randomized (multicenter) clinical trials, broader introduction onto the market and

ultimately evaluation through long-term follow-up in national implant registries.

This format gradually acquires broader support within the scientific field,160,161 and

has also been adopted by the Dutch Orthopaedic Society as a mandatory step in

the introduction pathway for new implant designs.162

There are some disadvantages of the RSA-technique as well; it is time-

consuming because of the manual definition of all markers. Nowadays automated
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measurements have accelerated the procedure of marker identification, and the

reconstruction of the 3D position of implant in relation to bone markers. This has

also eliminated observer variabilities and therefore improved accuracy and

precision.163

Furthermore RSA requires the implantation of tantalum markers in the bone

and on the implant component(s). However the tantalum markers attached to the

implant are often difficult to detect on stereoradiographs due to the high density of

the metal, which occludes the markers. This objection with conventional RSA

seems to be solved with newer RSA-techniques with contour recognition. In these

‘model-based’ RSA techniques no markers have to be attached to the prostheses,

and the radiographic position of the implant is recognized by matching it to a

virtual projection of a 3D- implant model.144,164,165

Another drawback of RSA is that it must be prospectively planned and cannot

be performed retrospectively on archived films. A further disadvantage of

radiostereometric analysis is that it is not available in a routine clinical setting, and

still reserved for research centres. And although already available for many years,

comparison of RSA-results between implant designs is difficult to interpret,

because they are still not reported in a standardized way, even though some

initiatives have been taken to realize this.147

Radionuclide bone imaging 

Three phase bone scans (scintigraphy) can reflect abnormal uptake of the

radionuclide technetium-99 demonstrating increased blood flow of an

inflammatory response or increased osteogenic activity due to abnormal stress or

bone repair by osteoblast activity. As such it is an established diagnostic tool in the

evaluation of a painful total hip, and has the potential to differentiate between

septic and aseptic reasons for implant loosening.166-168 However accuracy is not

very high.169,170 In a systematic review on the accuracy of imaging techniques in

the diagnosis of a loose acetabular component, bone scintigraphy had an overall

(cemented and uncemented) sensitivity of only 67% and a specificity of 75%.171 In

a meta-analysis on the diagnostic performance of bone scintigraphy for aseptic

loosening of the femoral component pooled sensitivity and specificity were

respectively 85% and 72%, while considerable interobserver variability was
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found.172 So although combined with clinical and radiographic examination bone

scans can be useful for detecting prosthetic problems, for early post market

surveillance the information is mostly unspecific and their role in prosthesis

monitoring and failure-prediction of new designs still has to be defined.173

A newer tool like 18Fluoride positron emission tomography (PET) may show

higher accuracy in revealing periprosthetic bone physiology. With this imaging

modality it is able to assess bone blood flow and bone metabolism through the

incorporation of the fluoride tracer into the hydroxyapatite crystals of bone.174-177

The technique has been validated for accurate assessment of bone formation with

histomorphometry.178 Although this modality has the potential for early follow-up

of periprosthetic bone remodelling, it’s role in predicting survival of total hip

prostheses has not yet been evaluated.

Dual Energy X-ray Absorptiometry (DEXA)

DEXA is one of many densitometry techniques for assessment of (periprosthetic)

bone remodelling. The underlying principle of the technique is analogous to dual

photon absorptiometry (DPA) but in DEXA the radioactive isotope as source for the

photon beam is replaced by an x-ray tube. The x-ray tubes provide a wide range of

photon energies that must be narrowed to produce 2 distinct photo-electric energy-

peaks (70kV and 140 kV for the Hologic system, Hologic Inc., Bedford, MA, USA,

and 40 kV and 70 kV for the Lunar system, GE Medical Systems, Madison, WI,

USA). These photon beams pass through bone and soft tissue, during which the

degree of attenuation is determined by the tissue density which in turn is

determined by the amount of mineral (≈ bone density) encountered by the beam.

Bone density can be qualified by subtracting the beam intensity after passage

through the intended region of interest (ROI) from the initial beam intensity. The

amount of photon attenuation is compared with a calibration standard, mostly a

phantom with known amount of bone mineral.179

There are many advantages of DEXA compared to DPA and earlier densitometry

techniques. Radiation exposure is extremely low for DEXA with 2 to 5 mrem for

proximal femoral studies, the biologically important effective dose or whole-body

equivalent dose being only 0.1 mrem.179,180 These values are negligible in the

context of natural background radiation of approximately 20 mrem per month.179
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Furthermore their scan times have shortened, image resolution has improved and

operation costs are lower than other densitometry techniques. 

There is a marked improvement in precision with a coefficient of variation

(CV) for short-term precision as low as 0.9 % for the AP lumbar spine and 1.4 %

for the femoral neck in case of osteoporosis assessment.181 For densitometry of

periprosthetic bone remodelling CV measured in vivo varies between 1.1 % and

7.5 % depending on the study and the region of interest (ROI).182-186 Although a

limitation of DEXA is it’s two-dimensional character instead of a true volumetric

measurement, the clinical value for assessment of periprosthetic bone remodelling

has been confirmed by the significant correlation between DEXA measurements

and the result of quadrant analysis of sectioned femora by calibrated

videodensitometry.187

For longitudinal follow-up measurements of periprosthetic bone remodelling

it is essential that these systems show high stability during follow-up. An advantage

of DEXA over DPA is the replacement of the isotope by an x-ray tube that produces

the photon beam. This prevents decay of the isotope in time with changing

densitometry results and lower precision, making DPA less suitable for detection of

longitudinal BMD-changes. It has been calculated that with a CV of 2 % a BMD

change of at least 5.5 % is necessary to detect with certainty within a 95 %

confidence interval.188 With a precision of 4 %, this figure increases to even 11.1

%.179 All now available densitometers, both using pencil beam geometry and fan

beam geometry have demonstrated good long term stability with generally good

accuracy (5-10 %) and high precision (CV 1-2 %), although precision realized in

clinical practice depends more on the skill and attention of the operator than on

machine performance.189-191 Generally speaking apart from accuracy and

precision, several other factors can influence densitometry results profoundly

during a longitudinal DEXA study on periprosthetic bone remodelling. From a

theoretical point of view they can be divided in three groups:

1. factors related to the densitometry machine itself, creating small variations

independent of the technician in every type of quantitative measurement;

2. factors related to the technician and the variability in performing the

densitometry measurements, mainly as a result of inaccurate positioning of

the femur during repeated assessments;
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3. factors related to the assessment of the raw scans and the effect of intra- (and

inter-) observer variability in analyzing the scans.

In short it can be said that machine related variability is checked, and if

necessary corrected, through daily automated internal quality controls (QC). The

densitometer is calibrated on regular basis on a more or less anthropomorphic

phantom (mostly made of aluminum of hydroxyapatite) which functions as an

internal reference, revealing a possible subtle ‘drift’ that may compromise

precision.192,193 These phantoms are made of materials that resemble the density

and X-ray attenuation characteristics of bone and surrounding soft tissue. Scanning

results are compared to historical data and checked against limits for acceptable

performance. For this purpose control tables and charts can be used, like so called

Shewart charts, Shewart rules and cumulative sum charts (CUSUM).192-197

Technician related variability can be of even larger influence on scan-results.

Mainly the non-identical / reproducible positioning by the operator of the leg that

is to be scanned, is held responsible for the lack of precision in repeated

measurements. It was shown that a change of leg rotation on the scan table can

disturb precision in repeated longitudinal assessment of periprosthetic remodelling

in such a way, that BMD changes should be ascribed to intra- or interobserver

variability in scanning procedure and not to remodeling itself.198-200 Therefore

several devices have been developed to fix the limb in identical rotation during

each scan.201 Also poor performance of the operator responsible for analyzing the

data is an important source for error and can attribute to artifacts more significantly

than the equipment itself.202

Although a clear correlation between periprosthetic BMD changes and long-

term clinical outcome and survival has not been proven, there are studies that

showed early excessive periprosthetic demineralization in combination with

disastrous loosening rates, suggesting that strong early BMD loss may be

considered as impending loosening,203,204 or at least potentially hazardous for

implant stability. In contrast, a stable course of periprosthetic femoral bone density

appeared to correlate with good clinical and radiologic results.204-207 Furthermore

the correlation between in vitro finite element calculated stress patterns and

predicted periprosthetic bone remodelling on one side, and the in vivo assessment

of bone mass redistribution with DEXA on the other, resulted in improved
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comprehension of stress-related changes in bone density.208-212 This may be useful

in evaluating the effect of stem design, choice of material, type of fixation, surface

treatments and implant coating.

OUTLINE AND AIM OF THE THESIS

The aim of this thesis is to study the tools that are recommended for evaluation of

performance of new and existing total hip prostheses, and their value in the

process of quality assurance and post market surveillance of these implants.

Particularly functional hip scores, radiographic results, assessment of implant

migration with roentgen stereophotogrammetric analysis, histomorphometry, and

bone densitometry are evaluated in clinical implant studies. Furthermore the

preclinical application of finite element analysis to predict long-term performance

of hip prostheses is reviewed.  

The role of functional hip scores and of radiographic assessment of

periprosthetic changes is dealt with in the long-term randomized clinical trial

comparing two cemented hips stems, the Scientific Hip Prosthesis (SHP®) versus

the Omnifit® (Chapter 2), and in the minimum 10 year follow-up of the

uncemented HA-coated Omnifit® stem (Chapter 4).

The use and potential added value of dual energy x-ray absorptiometry

(DEXA) is being studied for cemented stems in Chapter 2 and Chapter 3, and for

uncemented stems in Chapter 6. In chapter 2 it is tested if preclinical finite

element considerations on the SHP®-design can be validated with DEXA

assessment of periprosthetic bone remodelling. Chapter 3 focuses on the effect of

cement mantle inclusion within the region of interest on the results of

periprosthetic bone mineral density assessment. In chapter 6 bone remodelling is

studied of the newly introduced SymaxTM stem and compared to the uncemented

Omnifit® in a 2 year randomized clinical trial.

The value of radiostereometric migration analysis as a predictor of future

performance of total hip prostheses is investigated in the study of the SHP®-stem

(Chapter 2).   

Qualitative histology, quantitative histomorphometry and scanning electron
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microscopy are used in the assessment of the effect and behaviour of the new

electrochemically deposited biomimetic BONIT-hydroxyapatite coating (proximal

part) and the DOTIZE surface treatment (distal part) of the SymaxTM hip stem

(Chapter 5).

Finite element (FE) simulation studies are evaluated in Chapter 2, Chapter 7

and Chapter 8. It is examined to which extent a (preclinical) numerical simulation

of implant characteristics and bone properties can lead to reliable predictions on

periprosthetic bone adaptations in a clinical environment. In other words if

numerical shape optimization can contribute to improve implant designs with

predictable clinical outcome, and accurate anticipation of long-term implant

survival. In a historical and critical review of the technique attention is mainly

devoted to the integration of biological processes in computerized mechanical

models, and the inevitable simplifications that are introduced with it, that may

potentially compromise reliability of predictions on bone and implant behaviour.  
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ABSTRACT

Radiostereometry (RSA) of the cemented Scientific Hip Prosthesis (SHP®)

reported excessive migration and predicted high failure rates. In a prospective

randomized clinical trial we compared minimum 10 years results of the SHP®

(n=38) with the Omnifit®-stem (n=37). Two-year bone remodelling, compared

with dual energy x-ray absorptiometry and assessed in regions of interest A-D

based on the 7 Gruen zones, showed better periprosthetic bone preservation

around the SHP® in all but one regions (P<0.05). At 10 years Harris Hip Score

was better for the SHP® (P=0.0001) but Oxford Hip Score was the same (P=0.79).

There were no revisions in either group, but radiographic loosening was definite

in 1 SHP® and 1 Omnifit®. Based on earlier RSA studies, the rough surface finish

of the SHP® was expected to cause cement abrasion, osteolysis and inferior

survival. However our clinical and remodelling results could not confirm these

expectations, suggesting that the link of early migration and mid-term clinical

results is not sufficiently clear for the SHP®. 
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INTRODUCTION

Most improvements in cemented hip arthroplasty seem to be the result of

adaptations in surgical, and particularly cementing technique. However the effects

of changes in implant design, choice of materials, fixation principles, surface

coating and surface finish, although theoretically well motivated, appeared to be

less predictable. 

As a product of the ‘shape-closed’ fixation philosophy1, the Scientific Hip

Prosthesis® (SHP, Biomet, Bridgend, UK) was designed, and expected to remain

bonded to the cement2,3. Numerical shape optimisation (NSO) algorithms were

used to calculate the typical SHP® geometry, meant to minimize proximal and

distal stress peaks in the cement mantle and at the interfaces (Fig. 1 and 2)1,4,5.

Peters et al. confirmed with cement strain analysis that a similar reduction in

cement and interface stresses could be realized in vitro for the second version of

the SHP® as well, compared to the conventional straight Centralign® stem6. This

version was also used in our study.
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Fig. 1 Simulated strain energy density (SED) profile in cement mantle around the straight Omnifit

(left) and the anatomically shaped SHP (right). The optimal stem shape reduces the high

proximal and distal stress peaks in both the cement and at the interfaces. Numbers

represent SED distribution (×10−13 N mm−2) (Adapted from Huiskes et al. 8). Profiles have

been validated in vitro 10,19.



Although from these FE-studies it

could be expected that micromotions

would be minimal, already soon after

its introduction RSA studies reported

pronounced subsidence and rotational

instability of the SHP®-stem within the

cement mantle7,8. This would imply

debonding with a substantial risk of

abrasive wear, higher stresses in the ce-

ment mantle, and increased chance of

gross loosening and osteolysis. Because

experience with other matt cemented

stems had been associated with inferior

clinical results and survival9-11, Nivbrant

predicted bad survival and advised not

to use the implant until their concerns

would be contradicted by successful

long-term results7. As migration and

abrasive wear are early phenomena, one

would expect early loss of periprosthetic

bone in line with the ‘acculumulated

damage’ failure scenario12. On top of

this, according to FE-predictions, reduced

proximal cement stresses around the

SHP® would further result in lower stress

transfer to the bone with lower BMD

through increased stress shielding. 

In 1997 we started a prospective randomised clinical trial (RCT) comparing a

slightly adapted version of the SHP® with the in our clinic currently used cemented

Omnifit® prosthesis (Stryker-Osteonics®, Mahwah, NJ, USA), that reported well

documented, good long-term results13. Because the geometry and proximal surface

finish of the initial and adapted (second) version of the SHP® are identical, and the

cement strain profiles of both versions were also proven to be similar 4,6, the same
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Fig. 2 AP and Lat view of the collarless

anatomically shaped SHP stem with

PMMA cement spacers (distal spacer not

shown). Proximally a rigid part with rough

surface finish (Ra=3.8 μm), distally a

flexible taper with polished surface

(Rab0.05 μm). Reinforcement profile at

the lateral side of the stem to resist bending

forces and to reduce subsidence risk.



pattern of debonding and migration may be expected for this later version 7,14.

While comparing the SHP® with conventional straight stems, a different stress

distribution had been predicted (with FE modelling) and confirmed (with photo-

elastic and strain gauge techniques)4,6,15. In our study the effect of this stress profile

on bone remodelling was investigated, now comparing the SHP® with the straight

Omnifit®. Furthermore it was analyzed if the predicted inferior outcome of the

SHP®, based on early RSA migration results, could be validated in this clinical

study. It was hypothesized that periprosthetic bone loss around the SHP® and

survival of the design would be worse compared to the Omnifit®. This is the first

mid-to long-term RCT to report on the results of the SHP® prosthesis.

PATIENTS AND METHODS

Trial design and Patient selection

In this prospective RCT 75 total hip arthroplasties (THA) in 72 patients were

included. The study was approved by the local Institutional Review Board and

conducted by the department of orthopaedic surgery, of the Maastricht University

Medical Centre. It was carried out in line with the Helsinki declaration. Prior to

enrolment of the patients informed consent was signed. Patients were allocated at

random to one of either group in a 1:1 randomization ratio, receiving a Scientific

Hip Prosthesis® (SHP, Biomet, Bridgend, UK) or an Omnifit® prosthesis (Stryker-

Osteonics®, Mahwah, NJ, USA). The allocation sequence was generated by an

independent trial bureau and concealed from the operating surgeon. Participants

were enrolled from sequentially numbered, identical, opaque, sealed envelopes

just before the operation. The surgeon was unaware of the content and sequence of

the envelopes (allocation concealment). 

Eligibility for inclusion

Eligibility criteria were a diagnosis of osteoarthritis, post-traumatic arthritis or

avascular necrosis, 60 – 75 years of age, and physically and mentally willing and

able to comply with postoperative scheduled evaluations. Patients with a BMI > 40

kg/m
2

, previous surgery or an active infection to the affected hip joint, and a
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disease or drug use affecting bone metabolism before or during the study, were

excluded. 

Between 1997 and 2002 all patients were operated; 3 of them received

bilateral THA (1 with 2 SHP®s, 1 with 2 Omnifits, 1 with a SHP® and an Omnfit)

which were both included in the study protocol. Patient characteristics and

baseline demographic data are presented in Table 1. There was no significant

difference between the 2 study groups in terms of gender distribution, age, BMI,

diagnosis and preoperative HHS (see Table 1).

Implants

The SHP® is made of CoCrMo alloy and is collarless. It has a thin tapered distal tip

and a thick tapered proximal stem. It has an anatomic geometry with a double

curvature of the proximal stem, consisting of a femoral neck anteversion and a

posterior bow more distally. The stem has a roughened proximal surface (radius Ra

= 3.8 μm) and is polished distally (Ra < 0.05 μm). 4 proximal polymethyl

methacrylate (PMMA) spacers and a distal centralizer help to ensure an even

cement mantle, of minimum thickness 2 mm (Fig. 2). 

The Omnifit® has a small collar, and is a normalized (macroscopic surface

structures to convert shear forces on the cement into normal forces), forged cobalt-

chromium stem with a satin finish (roughness of 0.9 μm) over the entire surface (Fig. 3).
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Table 1 Patient Characteristics and Baseline Demographic Data; Parameters are Given in Mean and

Range.

SHP (N=38) Omnifit (N=37)

Male 10 11

Female 28 26

Age in years (range) 68.7 (60–76) 68.9 (61–76)

BMI in kg/m2 (range) 26.9 (20.1–37.5) 27.7 (20.1–35.0)

Diagnosis

Primary OA 38 37



The SHP® acetabular cemented

cup of ArCom® UHMWPE (Argon gas

packaged, direct compression moulded

polyethylene, Biomet, Bridgend, UK)

was used in all cases. All head compo-

nents were 28 mm in diameter.

Surgical protocol and postoperative

management

One of the authors (RtB) performed all

the operations. Both hip systems were

implanted according to standard or-

thopaedic procedures using a postero-

lateral approach. A third generation

cementing technique was applied, using

Gentamicin containing cement (Palacos

R + G, Heraeus, Wehrheim, Germany)

pressurized in both the acetabulum

and the femur. Patients were allowed

to full weight bearing from day 1. There

was no difference in physical activity

postoperatively between the 2 groups

as assessed with the HHS.

Evaluation of bone remodelling 

Our primary outcome measure was the effect on bone remodelling of the proximal

roughening and distal polishing of the SHP®-stem. Therefore the Regions of Interest

(ROI) are divided into 4 zones: A, B, C and D, based on the 7 Gruen zones16. ROI

A represents Gruen zone 1, ROI B corresponds with Gruen zones 2 and 3 together,

C with Gruen zone 7, and D with Gruen zone 5 and 6. Thus ROI A and C cover

the proximal roughened part of the SHP® stem, and B and D the distal polished

part. This delineation was copied exactly to the Omnifit® stem in order to generate
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Fig. 3 AP and Lat view of the normalized

Omnifit stem, showing a straight

geometry without cement spacers and

with a uniform surface texture (Ra=0.9

μm).



comparable ROIs for assessment of periprosthetic bone remodelling in stems with

differences in design, length and surface finish (Fig. 4).

DEXA-analysis was performed with the LUNAR DPX-L scanner (version 1.2,

Lunar Corp, Wisconsin, USA) and expressed as BMD in g/cm2 in the 4 ROIs. The

data were analyzed with special orthopaedic software provided by the

manufacturer, which automatically excludes soft tissues, metal and cement (using

offset and perimeter functions). Patients were placed supine on the scan table. The

legs were secured in similar rotation using special stabilizing devices for the knee

and foot.
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Fig. 4 Delineation of ROIs around the SHP and Omnifit based on the seven Gruen zones 16. Zone

A and C are corresponding with the roughened part of the SHP stem. This delineation is

exactly transferred to the Omnifit stem in order to generate comparable ROIs for

assessment of periprosthetic bone remodelling (further see text).



To detect abnormal systemic bone metabolism during study follow-up, DEXA

scanning was also determined of the lumbar spine, both preoperatively and

postoperatively (at 1 and 2 years follow-up). The preoperative lumbar scan served

as a baseline measurement for comparison to referenced normals. 

DEXA scans were made at 7 days post-operatively (base-line reference), and

at 6 weeks, 3 months, 6 months, 12 months and 2 years post-operatively. During

the entire follow-up all DEXA-scans were performed by 1 technician, not part of

the research team, and analysed by 1 member of the research staff blinded for the

radiographic and clinical results. 

Radiographic evaluation 

An A/P pelvis and lateral radiograph of the involved hip was taken, following a

standard protocol. Data points collected for the femoral side included: fracture of

the cement mantle, radiolucency at the cement-bone and the cement-prosthesis

interface (evaluated according to the Gruen zones), stem subsidence17, calcar

resorption, cementing quality (according to the method described by Barrack et

al.)18, heterotopic ossification and focal endosteal osteolysis. Migration of the

femoral implant was considered confirmed if there was a change of 5 mm or more

in the vertical distance measured between the most medial point of the lesser

trochanter and the centre of rotation17. Radiographic loosening was determined

according to the criteria described by Harris19. Resorption and hypertrophy were

judged at 10-year follow-up and were considered positive if 2 observers agreed on

the presence of these periprosthetic bone changes in any region of interest

compared to immediate postoperative x-rays20. Polyethylene wear was determined

from the largest cranial or medial femoral head eccentricity in the socket according

to the modified Livermore technique of Rokkum and Reigstad21, and annual linear

wear rate was calculated between the first and latest post-operative X-ray.

Radiographs were made pre-operatively, within the first week post-

operatively, at 6 weeks, 3 months, 6 months, and 12 months post-operatively, and

from then on yearly. 
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Clinical Evaluation

Clinical results were registered according to the AAOS-guidelines22, and evaluated

by use of the Harris Hip Score (HHS)23. Patient satisfaction was scored by the

Oxford Hip Score (OHS)24, of which a validated Dutch translation was used25, and

by the Dutch validation of the Rand-36 score26. 

Statistical analysis

Longitudinal BMD results per ROI are expressed as relative values with the

immediate postoperative DEXA measurement of the operated femur being the

reference value, set at 100 %. Absolute and relative BMD values are described by

mean and standard deviation, demographic parameters by mean and range.

Differences within the group are tested with the paired Student’s t- and between

groups with the unpaired Student’s t-test. Differences with p-values lower than 0.05

are described as significant. To take into account the correlation of the observations

within 1 patient, a multilevel linear regression model was used with BMD loss as

dependent variable and time interval, type of prosthesis and the interaction

between time interval and prosthesis as covariates. This interaction term was used

to test the difference in slope between the SHP® and the Omnifit®. To prevent

multiplicity issues, and to reduce the number of calculations, the outcome

variables (BMD-results at 2 year follow-up, and survival of the stem with revision

for aseptic loosening as the endpoint at minimum 10 year follow-up) have been

predefined as primary and secondary, and the sample size (and thus the power) to

reject each null hypotheses at the same significance level (0.05) was determined.

Evaluations were already planned at pre-specified visits at the start of the study, and

no interim analysis was planned nor executed.

The statistically required sample size is based on a power-analysis performed

on the minimally to detect mean difference of BMD-results between stem designs

(δ), which were only known from uncemented stems at the time this study was

initiated. Based on these studies we assumed this difference to be 25 %. By

convention, an a-error rate of 0.05 was adopted, and the β-error was set at 0.20

(power 1- β = 80 %). We were planning a study of a continuous response variable

from independent control and experimental subjects with 1 control(s) per
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experimental subject. In a previous study the response within each subject group

was normally distributed with standard deviation 30 %. If the true difference in the

experimental and control means was 20 %, we would need to study 36 subjects in

the SHP® arm and 36 subjects in the Omnifit® arm to be able to reject the null

hypothesis that the population means of these groups were equal with probability

(power) 0.8. 

RESULTS

At 10-13 years follow-up 5 patients (3 SHP® and 2 Omnifit®, all unilateral cases)

had died. 11 patients were lost to follow-up (7 SHP® and 4 Omnifit®, all unilateral

cases); 4 of them became mentally too disabled to join the rest of the study, 3 were

lost due to serious physical illness, 3 patients refused further participation for

various non-hip related reasons, and 1 patient moved. Available follow-up data

and retrospective inquiry (patients, family or general practitioner) learned that at

10+ years none of the 11 patients lost to follow-up had hip-related complaints. 

The median follow-up of the remaining 56 study patients (with 59 THAs) was

11 years (range 10-13 years in both groups). Since for both groups survival was

100% for the endpoint revision for loosening of both stem and cup, as well as for

the endpoint revision for any reason, the Kaplan-Meier analysis was only

performed for definite radiographic loosening at minimum 10-year follow-up as

the endpoint, being 96.4% (1/28 loose) for the SHP® and 96.8% (1/31 loose) for

the Omnifit®.

Changes in periprosthetic bone density 

All 72 patients (=75 hips) but 1 (patient with unilateral SHP®, deceased at 18

months because of myocardial infarction), completed the entire DEXA follow-up of

2 years. There was no statistical difference in either group between pre- and

postoperative (both at 1 and 2 years) lumbar spine BMD. 

The mean slope of the BMD-curve in zone A showed a loss of 1.80 % per

follow-up interval for the SHP® stem, while this was 2.71 % for the Omnifit®. The

difference in slope between the curves was 0.91, which was significant (P=0.012)
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with a 95 % confidence interval between -1.61 (lower bound) and -0.21 (upper

bound). For zones B, C and D results are summarized in Table 2. BMD-curves are

shown in Fig. 5.

Clinical outcome

Pre-operatively there was no significant difference in Harris Hip Score, Oxford Hip

Score and Rand-36 scores between the 2 groups. With respect to the HHS there is

a better outcome post-operatively for the SHP® group during the entire follow-up
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Table 2 Difference in BMD-Slope Per Time Interval Between SHP and Omnifit.

Difference 95%

Slope SHP – Slope Omnifit – SHP-Omnifit Significance Confidence

ROI curve in % curve in % in % (P value) Interval

Zone A −1.80 −2.71 −0.91 0.012 −1.61 to −0.21

Zone B −0.95 −1.63 −0.67 0.009 −1.18 to −0.16

Zone C −5.08 −5.95 −0.86 0.020 −1.59 to −0.13

Zone D −2.75 −3.23 −0.47 0.061 −0.97 to −0.21
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Fig. 5 Graphs showing BMD course of the zones A - D in a longitudinal DEXA-study for 2 years,

comparing the mean values (±standard error of the mean) for the SHP group (◆) and the

Omnifit group (■), with the immediate postoperative BMD set at 100% (=baseline reference).

% BMD bone zone A % BMD bone zone B

% BMD bone zone C % BMD bone zone D



of 10 years. This difference is statistically significant at 24 months (P=0.019) and 10

years (P=0.0001) (see Table 3). Patient satisfaction measured by the Oxford Hip

Score also tends to be more positive for the SHP® group, although not statistically

significant compared to the Omnifit® (see Table 3). 

Overall there is a better outcome for the SHP® than for the Omnifit® group,

looking at the Rand-36 scores. Pain related questions show no significant

difference, while ADL-scores at 1 year follow-up are significantly better in favour

of the SHP® (P-value=0.035). 

Radiographic evaluation 

Both in the SHP® and in the Omnifit® group 1 stem showed migration within the

cement mantle (at least 5 mm)17. Although in these patients also a fracture of the

cement mantle near the tip was seen, they were asymptomatic. Incomplete

radiolucent lines (> 1 mm) at the prosthesis-cement interface were seen in 1 patient

(Gruen zone 3 and 5) in the SHP® group, and 3 patients (Gruen zones 3, 4 and 5)

in the Omnifit® group. There were no radiolucent lines in Gruen zone 1 or 7 in

either group. Neither were there continuous or progressive radiolucencies > 2 mm

in any zone in either group at the cement-bone interface. In conclusion, according

to the criteria of Harris, there was proof of definite radiographic loosening of 1

patient in both groups, but no further probable or possible loosenings. Other

radiographic findings are summarized in Table 4. 
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Table 3 Mean Results for Harris Hip Score (HHS) at 9 and 10 Years Follow-Up, and Oxford Hip

Score (OHS) at 8 Years Follow-Up for SHP and Omnifit.

SHP Omnifit Difference 95% Confidence Significance

SHP-Omnifit Interval for SHP- (p-value)

Omnifit difference

HHS 9 yrs 96,05 88,05 8,00 0,936 to 15,059 0,028

HHS 10 yrs 96,00 87,17 8,83 4,279 to 13,387 0,000

OHS 8 yrs 17,54 18,14 0,60 -5,269 to 4,074 0,794



At the acetabular side there were no radiographic signs of loosening in terms of

progressive radiolucencies at the cup-cement or cement-bone interface. None of the

cups demonstrated focal or linear osteolysis in DeLee-Charnley zones I-III. This was

the case for the patients that could be assessed until 10+ years, as well as for the last

taken X-ray of the patients lost to follow-up. Linear wear rate of the PE cups was in the

range of 0.0 - 0.2 mm per year for both study groups. The pathological threshold (for

28 mm heads) of an annual 0.2 mm was exceeded in 2 Omnifit® and 1 SHP®hips27,28. 

DISCUSSION

Background and key findings

This study was performed to investigate if preclinical considerations on hip design

optimisation and early migration patterns can predict periprosthetic bone

remodelling, clinical outcome and implant survival. Although pronounced

subsidence and rotational instability of the SHP® stem within the cement mantle

were reported7,8, our results showed no revisions for any reason within 11 years and

signs of radiographic loosening of only 1 patient in both groups. And while from

both RSA and preclinical FE-analysis increased osteolysis and stress-induced bone

resorption were expected, DEXA-analysis showed less instead of more bone loss

around the SHP® compared to the Omnifit® in all regions of interest (statistically

significant in zone A, B and C). Clinically outcome was better for the SHP® in terms

of functional scores (HHS) but the same for patient satisfaction (OHS and Rand 36). 
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Table 4 Radiographic Results of SHP Versus Omnifit.

Broken Radiolucency Radiolucency   

Migration Cement Stem – Cement Cement – Bone    

SHP 1 1 1 1     

Omnifit 1 1 3 No     



Explanation and interpretation 

We do not have a clear explanation for these results that seem to contradict

expectations based on earlier RSA and FE studies. However cemented implants are

complex constructs where stability, fixation, and periprosthetic bone remodelling is

dependent on implant geometry, interface characteristics, and on materials with

variable elasticity modulus and surface finish. The translation of mutual influences

between these features into mathematical formulas for FE-calculations, may

insufficiently represent real biology. Consequently it is probably too complicated to

predict long term fixation and bone remodelling, let alone implant survival.

Recently it was suggested there may be an increased risk of revision with stems

combining higher offset with a rough stem surface29. The SHP®, having a CCD

angle of 120° versus 135° for the Omnifit®, may therefore cause earlier debonding

due to increased lever arm, resulting in abrasive particle wear between the

roughened stem and cement. However a lower CCD-angle also reduces the joint

reaction force, making the net effect of this design difficult to predict. The same

authors compared 3 different surface finishes of the Lubinus SP2 (Waldemar Link,

Hamburg, Germany), and showed that the polished version subsided more but had

smaller initial BMD loss30. They suggested that the stem motion could have

contributed to favourable loading of the proximal femur. However this would

contradict FE prediction because the SHP® was not expected to enlarge but to

diminish the stresses on periprosthetic tissues.

Notwithstanding the proximal roughening and known detrimental effect of

debonding (that is ultimately supposed to occur in all stems)12,14,31, results are
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Resorption/

 Calcar Resorption Hypertrophy Endosteal Ectopic Greater Trochanter

    (=ROI C) Shaft (=All ROI's) Cavitation Ossification Osteotomy

     1 No No 6 No

     9 1 1 9 No



better than could be expected from RSA studies7,8,32, and studies that compared

stems with essentially the same geometry but different surface finish1,9,11. Possibly

the design (high E-modulus, large proximal dimensions and a stabilizing lateral

flange, all aimed at less flexibility) provides maximal resistance against instability

even after debonding. Furthermore the distal tip of the stem, being much thinner

and therefore more flexible with higher risk of debonding5, was polished as a

‘second line of defence’ to prevent cement abrasion and particle wear in case of

migration.

A further explanation may be that a more even cement mantle through

spacers and a third generation cementing technique, may prevent gross loosening

and osteolysis in case of debonding. This was also suggested in studies that

illustrated greater probability of revision in case of early subsidence, but also

acknowledged that failure may be different for a different design30,33. In addition

micromovements of the stem within a strong intact cement mantle may be

compatible with prolonged survival of the implant, provided that the amount of

wear is within a certain limit33. Also in our study no accelerating PE-wear was seen

in either group, suggesting that third-body wear was not substantial, which is in

line with the absence of osteolysis at long-term follow-up34. Hence the good

results of the SHP® may therefore also be explained by our ‘case mix’ mostly

consisting of low demand elderly females. Although this case mix is representative

for the patient group being treated with cemented hip arthroplasty in most

countries, it is known from extensive experience in Sweden with other rough

cemented stems (i.e. the Spectron EF Primary; Smith and Nephew, Memphis, TN),

that the potentially detrimental effect of the rough surface may appear after even

longer follow-up, especially in high demand comparatively young males29,35. On

the other hand a recent study showed good initial (2 year) RSA-performance of the

Spectron EF, while this appeared to be no guarantee for good long-term results36,

stressing the importance of clinical studies to evaluate the predictions of these

migration studies. 

In conclusion our study may indicate the relative value of preclinical FEA-

predictions on remodelling, and predictions on survival from earlier RSA. It

remains necessary to validate these tools by assessment of bone changes and by

clinical trials. 
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Limitations and strengths 

We acknowledge the potential limitations of this study in the relatively small

number of patients. This may harm the possibility to detect a clinically relevant

difference or a difference in risk of revision. Therefore the study may seem

underpowered. However our primary outcome variable was difference in BMD

loss, and the standard deviation of the difference between direct postoperative

BMD and BMD at 2 years in each group appeared to be 10 times smaller than the

assumed 30 %, making the analysis sufficiently powered and reveal statistically

significant differences between the groups. The small SD probably is the result of

a more homogeneous study population compared to earlier studies and the fact

that all patients have been operated by 1 surgeon, diminishing the influence of

these variables.

With 14 % at 11 years, the overall loss to follow up in our study is relatively

high37. This inevitably is the fate of a long term follow up study that includes an

elderly population, with increasing comorbidity. Vigorous attempts to acquire

information about the patients lost to follow up learned that there were no hip

related pain or mobility problems in this group and no revisions. Until their last

recorded assessment, all non-attenders showed good clinical scores (HHS), no

signs of deterioration on X-rays, and were equally satisfied (OHS) as those who

continued to attend. 

Theoretically, bilateral cases should not be regarded as independent

observations, and analysis with the unpaired Student’s t-test may render invalid

results38. To determine the effect of deleting the second hip on our results, we

performed a sensitivity analysis which showed that this had minimal effect and did

not influence our conclusions.This was also concluded in other studies39,40. 

It could be argued that long-term BMD-measurements would have provided

better insight in ultimate bone effects of these 2 designs. However densitometry

was limited to 2 years because the main changes due to implant driven strain-

adaptive bone remodelling are seen within this period, and changes in BMD after

that are mostly not more than 1% per year, and are attributed to physiological

ageing41,42.

Blinding for the choice of implant was not possible for outcome assessor and

patient. However evaluators of DEXA and radiography were strictly blinded for
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clinical results. Both other ways to limit bias (randomization and concealment of

treatment allocation) were correctly performed. 

External validity of our results may be expected as similar outcome was

shown in another series, supporting generalisability5. Sybesma reported 97.6%

survival for aseptic loosening (97.4% for all reasons) in a prospective clinical trial

evaluating 137 SHP® hips with mean follow-up of 5.6 years (range 5-7). This

outcome was in line with the 5-year results of ten frequently used cemented hips

reported by Espehaug43.

We used the Gruen zones as our regions of interest for bone densitometry.

Whether bone adaptations are due to stem specific characteristics can only be

recognized if unequal stem or coating lengths are taken into account to determine

the zones for comparison44. Because the Omnifit® stem is longer than the size

matched SHP®, the zones 1 and 7 would be longer for the Omnifit® as well,

containing relatively more cortical bone compared to the SHP®. As cortical bone

remodels less than cancellous bone, it would seem that bone preservation around

the Omnifit® would be superior, while this should be also attributed to

incomparable composition to regions of interest in terms of cancellous or cortical

bone. Therefore Gruen zones 1 and 7 around both stems were taken identical in

length, corresponding with the length of the roughened part of the SHP®. Gruen

zones 2 to 6 were divided around the rest of the stem. As only minor BMD changes

were expected in these mainly cortical bone areas45, these zones were taken

together as zone B and D.

Finally it has to be acknowledged that the design used in our study is not

entirely the same as the one used in the reported RSA study, which therefore does not

allow strong conclusions concerning Nivbrant’s work. Nevertheless the geometry

and proximal roughness are identical, so from the newer version with distal polishing

one should expect even more instead of less subsidence, as was also seen in other

polished stems30,46. The effect of the rough proximal surface on cement abrasion and

resulting bone loss could then consequently be expected at least as strong. 

Previous literature

Comparing our results with the literature of the SHP®, others reported more

migration and higher bone loss compared to other stem designs, but without
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information on BMD changes during the important first year7,8. Patient populations

were small (Nivbrant n=20; Li n=13), and a comparison was made between

collarless and collared stems, which difference obviously influences migration. The

value of their RSA and DEXA results could not be established because there was no

correlation with clinical, radiographic or survival scores at short term follow-up (2

and 5 years respectively). There are several explanations for the difference in

migration as assessed between the studies. Nivbrant7 and Li8 performed migration

analysis using RSA, while we assessed implant stability with conventional

radiography, which is associated with lower accuracy17. Secondly all patients

within our study were over 60, while Nivbrant’s included patients starting from 50,

and Li from 56. The male to female ratio was 10/28 for our study, 8/12 for Nivbrant

and 4/9 for Li. In other words our study involved a larger majority of elderly

females, known to be less demanding with lower risk of implant instability. Thirdly

there may also have been a difference in quality of the cement mantle, as poorer

cementing was associated with subsidence for the SHP®7. In our study we

classified 29 SHP® stems (76%) grade A and 9 grade B18. For Nivbrant this was 11A

(58%), 7B and 1C while this was not specified in Li’s study. 

CONCLUSION

This first mid-to-long term prospective randomized study of the SHP® suggests the

incorrectness of earlier expectations, at least for our case mix. Considering the

available data (1 proven loosening after a minimum FU of 10 years), we found no

arguments in our study population to support the negative outlook for the SHP®, as

based on initial RSA data. Furthermore DEXA-results show a different remodelling

pattern around the SHP® than was expected from preclinical FE considerations.

Migration results of implant designs should not stand alone. For interpretation

of their clinical relevance, they need correlation with long-term clinical results,

radiographic scores or implant survival. Consequent follow-up is obligatory and

will be performed to clarify the link between early predictions and real long term

outcome. 
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ABSTRACT

The effect of the cement mantle in the regions of interest (ROI) on the results of

bone mineral density (BMD) after total hip arthroplasty (THA) is still debated. 

In a prospective randomized clinical trial we analyzed 2 year results of

dual-energy x-ray absorptiometry of 2 stem designs, SHP® (Biomet, UK) and

Omnifit® (Stryker, USA), in 75 THA’s. We compared results after inclusion and

exclusion of the cement mantle using software of the densitometer.

Measurements were made in the offset containing the cement (‘BMD-cement’),

in the perimeter outside the cement mantle (‘BMD-bone’) and in the combined

area (‘BMD-total’).

In proximal Gruen zones 1 and 7 and medial distal zones 5 and 6, results for

BMD-total at 2 years for both stems were consequently higher than for BMD-

bone. This difference was statistically significant (P-value<0.005 ). These

differences were not seen in the lateral distal ROI’s (Gruen zones 2 and 3). 

Our observations show that inclusion of the cement mantle erroneously

suggests less BMD loss after cemented THA. This can be corrected using

automated cement exclusion by densitometer software. We advocate

measurements outside the cement mantle for more realistic assessment of bone

changes after THA.
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INTRODUCTION

For total hip arthroplasty (THA), dual energy X-ray absorptiometry (DEXA) has

shown to be a precise and accurate, and therefore useful tool for assessment of

periprosthetic bone remodelling1-5. An important improvement for standardization

of regions of interest (ROI) was the application of the Gruen-zones, which were

originally designed for analysis of stem loosening on conventional radiographs 6.

Since then many authors have adopted these ROIs for bone densitometry around

uncemented7-18 and cemented stems1,19-25.    

However in earlier studies on changes in bone mineral density (BMD) around

cemented THA, it was not clear whether for correct assessment of periprosthetic

bone remodelling, the cement mantle should or should not be included in the

chosen area of interest1,19,21-24,26-29. Although the cement induced an artefactual

increase in periprosthetic BMD, no attempts were made to distinguish between

cement mantle and bone, because it was assumed that the density of the cement

does not change with time30. 

The theoretical advantage of including the entire periprosthetic area in the

ROI is that it will represent all bone changes including those immediately next to

the prosthesis. However the effect of the cement mantle on densitometry is so

dominant that discrete implant-driven bone adaptations will be concealed.

Furthermore the long-term stability of contemporary bone cements in terms of their

content of contrast agents (zirconium dioxide and barium sulphate) has never been

investigated. Consequently it is uncertain if and how much this may affect x-ray

opacity of the cement during longitudinal densitometry analysis of periprosthetic

bone remodelling. Therefore the aim of this study was to examine the influence of

the cement layer on the results of periprosthetic BMD assessment. It was

hypothesized that there would be a significant difference between DEXA results

with inclusion and exclusion of the cement mantle, and that exclusion of the

cement would better reveal bone losses due to the prosthesis. For this study the

data were used of a prospective randomised clinical trial (RCT) comparing the

cemented SHP® (Biomet, Bridgend, UK) with the cemented Omnifit® prosthesis

(Stryker, Mahwah, NJ, USA), to determine if this effect of the cement mantle was

different for stems with different geometry.
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PATIENTS AND METHODS

Study design and Patient selection

In this prospective randomized comparative study 75 total hip arthroplasties (THA)

in 72 patients were included. The study was approved by the local Medical Ethical

Committee of the Maastricht University (registration nr: 94-030), and conducted by

the department of orthopaedic surgery of the Maastricht University Medical Centre,

in line with the Seoul amendment (2008) of the Helsinki Declaration of 1975. 

Prior to enrolment of the patients, informed consent was signed. Patients were

allocated at random in a 1:1 randomization ratio to one of either group receiving a

Scientific Hip Prosthesis® (SHP, Biomet, Bridgend, UK) or an Omnifit® prosthesis

(Stryker, Mahwah, NJ, USA), after a sealed envelope was drawn by an independent

trial bureau just before the operation. The surgeon was unaware of the content and

sequence of the envelopes (allocation concealment). Inclusion criteria were a

diagnosis of osteoarthritis, post-traumatic arthritis or avascular necrosis, 60 – 80

years of age, and physically and mentally willing and able to comply with

postoperative scheduled clinical, radiographic and DEXA evaluations and

rehabilitation. Patients with a weight classified as morbidly obese (BMI > 40

kg/m2), previous surgery or an active infection to the affected hip joint, and a

disease or drug use affecting bone metabolism before or during the study, were

excluded. Also patients with severe bone destruction of the affected hip joint which

would require bone grafting and prevent full weight bearing, were considered non

eligible. 

Three patients received bilateral THA which were both included in the study

protocol. Patient characteristics and baseline demographic data are presented in Table

1. There was no significant difference between the 2 study groups in terms of gender

distribution, age, BMI, diagnosis and preoperative HHS (see Table 1).

Implants

The SHP® is made of CoCrMo alloy and is collarless. It has a thin tapered distal tip and

a thick tapered proximal stem. It has an anatomic geometry with a double curvature

of the proximal stem, consisting of a femoral neck anteversion and a posterior bow

more distally. The stem has a roughened proximal surface (radius Ra = 3.8 μm) and is
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Table 1 Patient characteristics and baseline demographic data; parameters are given in mean and

range, or mean and standard deviation

SHP (n=38) Omnifit (n=37)

Male 10 11

Female 28 26

Age in years (range) 68,7 (60-76) 68,9 (61-76)

BMI in kg/m2 (range) 26,9 (20,1-37,5) 27,7 (20,1-35,0)

Diagnosis

Primary OA 38 37

Preoperative HHS (±SD) 49.9 (±13,1) 49.5 (±11.0)

Fig. 1a AP and Lat view of the collarless anatomically shaped SHP® stem with PMMA cement

spacers (distal spacer not shown) to guarantee a minimal cement thickness of 2 mm. Proxi-

mally it shows a rigid part with rough surface finish (Ra=3.8 μm), distally it has a flexible

taper with polished surface (Ra<0.05 μm) to prevent abrasive wear in case of debonding



polished distally (Ra < 0.05 μm). 4 proximal polymethylmethacrylate (PMMA)

spacers and a distal centralizer help to ensure an even cement mantle, of minimum

thickness 2 mm (Fig. 1a and 3). 

The Omnifit® has a small collar, and is a normalized (macrostructures to

improve force transmission to bone and cement), forged cobalt-chromium (Co-Cr)

stem with a satin finish (roughness of 0.9 μm) over the entire surface (Fig. 1b).

The SHP® acetabular cemented cup of ArCom® UHMWPE (Argon gas

packaged, direct compression moulded polyethylene, Biomet, Bridgend, UK) was

used in all cases. 

Surgical protocol and postoperative management

One of the authors (RtB) performed all the operations. The stem size was templated

on antero-posterior (AP) radiographs, aiming at a minimal cement mantle thickness

of 2 mm in all Gruen zones 1 to 7. Both hip systems were implanted according to
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cement spacers and with a uniform surface texture (Ra=0.9 μm)



standard orthopaedic procedures for total hip arthroplasty using a posterolateral

approach without trochanteric osteotomy. A third generation cementing technique

was used including distal femoral plugging (without metal marker to prevent

artefacts during DEXA-analysis)31, high pressure pulsatile lavage, drying of the

bone of the femur before cementing, vacuum mixing of cement and retrograde

filling of the medullary cavity with a cement gun. Gentamicin containing cement

(Palacos R + G, Heraeus, Wehrheim, Germany) was used with pressurization with

a silicon seal in both the acetabulum and the femur. 

Patients were treated with 24 hours intravenous antibiotic prophylaxis

(Augmentin®), DVT prophylaxis with an oral anticoagulant (Acenocoumarol) until 3

months after surgery, and prophylaxis against heterotopic ossifications with an NSAID

(Indocid®) for 14 days. Patients were allowed to full weight bearing from day 1. There

was no difference in physical activity postoperatively between the two groups. 

Evaluation of bone remodelling 

In order to determine whether inclusion or exclusion of the cement mantle within

the ROI influences DEXA results, densitometry was performed in 3 different ways.

The first was scanning within a standardized offset of 3 mm from the implant

including most if not all of the cement (called ‘BMD-cement’), corresponding with

the minimal thickness of the cement mantle of 2 mm guaranteed by the cement

spacers32. The size of the offset was adjusted using software-applications of the

densitometer. The second analysis was performed in the perimeter outside this

offset where no cement was present anymore (called ‘BMD-bone’) (Fig. 2). The last

scanning technique included the entire ROI (offset + perimeter called ‘BMD-total’),

corresponding with the way it is performed in most DEXA studies of cemented

THA. Our method was chosen to investigate if significant differences could be

measured in BMD-results between the techniques, and to which extent BMD-

changes are masked by the dominating density of the cement.

Because of our special interest in the effect on bone remodelling of the proximal

roughening and distal polishing of the SHP®-stem, the Regions of Interest (ROI)

were divided into four zones: A, B, C and D, based on the seven Gruen zones6. ROI

A represents Gruen zone 1, ROI B corresponds with Gruen zones 2 and 3 together,

C with Gruen zone 7, and D with Gruen zone 5 and 6 (ten Broeke et al., unpublished
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work). Thus ROI A and C cover the proximal

roughened part of the SHP® stem, and B and

D the distal polished part. This delineation was

copied exactly to the Omnifit® stem in order

to generate comparable ROIs for assessment

of periprosthetic bone remodelling in stems

with differences in design, length and surface

finish (Fig. 3)33.

DEXA-analysis was performed with the

LUNAR DPX-L scanner (version 1.2, Lunar

Corp, Wisconsin, USA) and expressed as BMD

in g/cm2 in the 4 ROIs. The data were analyzed

with special orthopaedic software provided by

the manufacturer. This software automatically

excludes soft tissues, metal and cement (using

offset and perimeter functions), allowing an ac-

curate measurement of periprosthetic bone

density. Patients were placed in a supine posi-

tion on the scan table. The legs were secured

in a similar degree of rotation to bring the patel-

lae in neutral position using special stabilizing

devices for the knee and foot.

To detect abnormal systemic bone me-

tabolism during study follow-up, DEXA scan-

ning was also determined of the lumbar spine,

both preoperatively and postoperatively (at 1

and 2 years follow-up). The preoperative lumbar

scan served as a baseline measurement for

comparison to referenced normals. The DEXA

scan was obtained in the antero-posterior plane

of the lumbar region and the operated proximal

femoral region. 
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Fig. 2 Illustration showing the defini-

tion of offset (containing the

cement mantle = 'BMD ce-

ment') and perimeter (con-tai-

ning exclusively bone = 'BMD

bone'). Both zones together

form 'BMD total'. This can be

adjusted by the densitometer

software (further see text). In

this fig. the SHP is shown. Den-

sitometry around the Omnifit

was performed in an identical

fashion



DEXA scans were made at 7 days post-operatively (base-line reference), and

at 6 weeks, 3 months, 6 months, 12 months and 2 years post-operatively. All

patients had all their scans made during follow-up, except for 1 patient (SHP®) who

deceased after 1 year (myocardial infarction). During the entire follow-up all

DEXA-scans were performed by 1 technician, and analysed by 1 member of the

research staff blinded for the radiographic and clinical results, and who was not

involved with the surgical procedures. None of the authors was related to the

development of either implant. 

Bone densitometry in cemented total hip arthroplasty

79

Fig. 3 Delineation of ROIs around the SHP® and Omnifit® based on the seven Gruen zones6. Zone

A and C are corresponding  with the roughened part of the SHP® stem. This delineation is

exactly transferred to the Omnifit® stem in order to generate comparable ROIs for assessment

of periprosthetic bone remodelling (further see text). PMMA cement spacers and distal cen-

tralizer on the SHP® are shown, as well as the bioresorbable cement restrictor31



Radiography

After randomization preoperative templating was performed on standardized

antero-posterior (AP) radiographs to determine the implant size in order to

guarantee a minimum cement mantle thickness of 2 mm. Postoperative AP

radiographs were again taken at the first day after surgery to calculate stem

alignment, using a calibrated ruler. Stem axis positions within -2 and +2 degrees

from the longitudinal femoral axis were considered neutral. Outside these

thresholds stem position was marked as respectively valgus or varus. 

Statistical analysis

Longitudinal BMD results per ROI are expressed as relative values with the immediate

postoperative DEXA measurement of the operated femur being the reference value, set

at 100 %. Absolute and relative BMD values are described by mean and standard error

of the mean, demographic parameters by mean and range. Differences within the

group are tested with the paired Student’s t-test and between groups with the unpaired

Student’s t-test. Differences with P-values lower than 0.05 are described as significant. 

The statistically required sample size was based on a power-analysis

performed on the potential mean difference of BMD-results between stem designs

(δ), which were only known from uncemented stems at the time this study was

initiated. Based on these studies we assumed this difference to be 25 %. By

convention, an a-error rate of 0.05 was adopted, and the β-error was set at 20

(power 1-β = 80%). If the true difference in the experimental and control means

was 20 %, we would need to study 36 subjects in the SHP® arm and 36 subjects in

the Omnifit® arm to be able to reject the null hypothesis that the population means

of these groups were equal with probability (power) 0.8.

To prevent multiplicity issues, and to reduce the number of calculations, the

BMD-result at 2 year follow-up has been predefined as primary outcome variable,

and the sample size (and thus the power) to reject the null hypotheses at the same

significance level (0.05) was determined. Evaluations were already planned at pre-

specified visits at the start of the study, and no interim analysis was planned nor

executed. Microsoft Office Excel 2003 (Microsoft Corporation, Redmond,

Washington, USA) and SPSS software version 15.0 for Windows (SPSS Inc.,

Chicago, Illinois, USA) was used for data analysis.
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RESULTS

At 2 years follow-up 1 patient (with unilateral SHP®) had died, all other 71 patients

(with 74 hips) had all their DEXA scans performed within the planned time frame

(see flow diagram Fig. 4). There was no statistical difference in either group

between pre- and postoperative (both at one and two years) lumbar spine BMD. 

Looking at the effect of inclusion or exclusion of the cement mantle on density

assessment of periprosthetic bone, in the more cancellous zones A and C the

BMD’s for both the SHP® and the Omnifit® were always higher when measured in

the offset-area containing the cement mantle (BMD-cement), compared to

measurements outside the cement mantle (BMD-bone) or when taking offset and

perimeter together (BMD-total). This difference between BMD-total and BMD-bone
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) 

Fig. 4 Flow chart of the prospective randomized controlled trial comparing 2 year DEXA-results

between the Scientific Hip Prosthesis® and the Omnifit®



was statistically significant for both stems (P-value<0.005). Although this effect was

smaller, it also applied for zone D (medial distal zone) and B (lateral distal zone),

except for the SHP® in zone B (P=0.48) (see Table 2 and Fig. 5). 
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Table 2 BMD percentages (with standard error of the mean  -SE-, and 95% confidence interval -CI)

at 24 months of the the SHP® and the Omnifit® are given per Roi (A-D). Measurements are

specified for the 3 mm offset adjacent to the prosthesis (Cement) , the perimeter outside the

offset (Bone), and in the combined area (offset + perimeter = Total). 

P-values are given for the difference between BMD-bone and BMD-total.

BMD values at 24 months

Roi A Roi B

Omnifit SHP Omnifit SHP

Mean (SE) 95%CI Mean (SE) 95%CI Mean (SE) 95%CI Mean (SE) 95% CI

Bone 86,41 (2,25) 81,84-90,98 91,52 (2,11) 87,2-95,8 91,50 (1,71) 88,02-94,97 95,80 (1,11) 93,54-98,05

Cement 92,14 (1,84) 88,40-95,89 95,14 (1,89) 91,28-99,0 89,19 (1,49) 86,16-92,22 94,29 (0,87) 92,52-96,06

Total 88,67 (1,99) 84,61-92,72 92,56 (1,99) 88,50-96,62 90,32 (1,51) 87,25-93,39 95,07 (0,99) 93,05-97,09

P-value

bone vs 0,000 0,001 0,042 0,48

total

BMD values at 24 months

Roi C Roi D

Omnifit SHP Omnifit SHP

Mean (SE) 95%CI Mean (SE) 95%CI Mean (SE) 95%CI Mean (SE) 95%CI

Bone 71,49 (2,09) 67,25-75,74 76,34 (1,61) 73,05-79,62 83,98 (1,52) 80,90-87,06 87,08 (1,21) 84,61-89,55

Cement 86,23 (2,28) 81,60-90,86 90,43 (1,51) 87,36-93,50 87,55 (1,27) 84,97-90,14 92,11 (0,82) 90,43-93,79

Total 75,81 (1,96) 71,82-79,80 81,08 (1,32) 78,40-83,76 85,39 (1,33) 82,69-88,08 89,66 (1,08) 87,46-91,85

P-value

bone vs 0,000 0,000 0,001 0,001

total
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Fig. 5 Graphs showing BMD course of the zones A-D in a longitudinal DEXA-study for 2 years,

comparing the SHP® and the Omnifit® stem, with the immediate postoperative BMD set at 100

% (= baseline reference). The figures show BMD in total zones (= offset + perimeter), in bone

zones (= perimeter) and within the cement zones (= offset containing the cement mantle).



Considering the difference in bone remodelling between the stem designs,

the BMD measured in all zones (A-D) decreased more in the Omnifit® group than

in the SHP® group, irrespective of whether the assessment was performed in the

cement-layer, the total-layer or the bone-layer (Fig. 5). 
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Fig. 5 continued



Radiography showed no statistically significant difference in stem alignment

between the SHP® and the Omnifit® group. In the SHP® group there were 3 out of

38 stems in varus, in the Omnifit® group this was 2 out of 37. In both groups there

was 1 stem in valgus alignment. This resulted in a homogeneous thickness of the

cement mantle in 89% of the SHP® stems and 91% of the Omnifit® stems, which

is in line with results in the literature34.

DISCUSSION

Background 

This study was performed to investigate the effect of the cement mantle on DEXA-

assessment of periprosthetic densitometry, in order to determine to which extent

this would mask bone remodelling after total hip replacement.

Key findings

Considering the BMD results it is clear that in all regions of interest BMD-bone is

lower than BMD-total, being lower again than BMD-cement, which can be

explained by the dominating effect of the cement layer on density measurements.

This effect was independent of stem design, hence independent of shape of the

cement mantle. Therefore measuring in the area directly adjacent to the implant

suggests better bone preservation than is actually true. In zones A and C this

difference in bone loss between the ‘total’-area, the ‘bone’-area and the ‘cement’-

area is largest compared to zone B and D. In the femur metaphysis (≈ zone A and

C), which contains mostly cancellous bone, the effect of the implant on bone

remodelling can therefore best be detected outside the cement mantle. This bone-

area is wide enough to get a realistic representation of bone changes when

scanning the perimeter (containing bone) and excluding the effects seen in the

offset immediately next to the implant (containing mostly cement). Although bone

adaptation (bone loss) theoretically is largest close to the implant35, at the same

time this is mainly masked by the effect of the cement. Scanning the entire zone

together, as is done in most other bone remodelling studies of cemented hip

prostheses1,5,22-24, therefore creates a flattering picture of real bone loss. 
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In zones B and D the difference in detected bone loss between the total-area, the

bone-area and the cement-area is only minor. These zones, being mainly cortical,

hardly contain cancellous bone outside the cement mantle, so there will be only

small differences between perimeter and offset results. Bone adaptations in this

diaphyseal area will not be reflected by ‘internal remodelling’ resulting in BMD-

change, but by ‘external modelling’ representing structural bone changes that can

be recognized as adaptations in bone area but without changed BMD17. 

Previous literature

The way how to deal with the cement mantle has been discussed in other studies

as well. In cadavers it was found that PMMA-bone cement artificially increases the

apparent BMD of periprosthetic ROIs in the femur with up to 29%36. In clinical

studies this was estimated to be 20%22 and 23%30. Sheperd showed that the

prominent presence of PMMA-bone cement and its influence on apparent BMD in

the ROI may mask the more discrete longitudinal changes in bone density 37.

Therefore Marchetti et al.19 excluded the cement mantle to compare femoral bone

mass between cemented and uncemented total hip arthroplasty. However attempts

to exclude the cement mantle manually from the femoral ROIs gives poorer

precision22. Others as well considered it impossible to recognize the boundary,

both manually as well as automatically through software applications, between

bone and cement and included the cement in the ROI1,5,20,23,24. Nevertheless both

this and other studies show that the presence of cement adversely affects the

measurement of BMD of periprosthetic bone22,30,36. Cement is not eliminated by

the automatic software used to exclude metal, because the attenuation coefficient

of PMMA is not large enough to be considered metal. Therefore exclusion of pixels

containing cement was always executed manually. Partial volume effects or

incomplete elimination of pixels that incorporate cement then may cause an

increased BMD. This may contribute to higher precision errors associated with

BMD assessment around cemented hip prostheses 20. For comparison between two

stem designs however this effect would contribute in a similar way to this lower

precision. Therefore for DEXA-analysis of bone remodelling around cemented

stems, we recommend automated and reproducible exclusion of the cement

mantle using offset and perimeter while scanning in Gruen zone 1 and 7 (≈ zone

Chapter 3

86



A and C), to avoid the masking effect of cement on real bone changes caused by

the prosthesis.

Limitations

A limitation of this technique is that thickness of cement mantles may vary between

different studies. This makes comparison of bone remodelling between studies

more difficult. However modern third generation cementing techniques and the

design of reamers and broaches aim at, and usually result in, a cement mantle

thickness of generally 2-3 mm at the femoral side in most Gruen zones 1 to 738-41.

Furthermore the cement mantle can be uneven in thickness because of the

inevitable mismatch between the implant geometry and the intramedullary femoral

cavity40,42. As a consequence the cement mantle will be asymmetric, and can be

thicker in particular Gruen zones. This is also illustrated in the case of the SHP® in

the distal diaphyseal zones (3-5), where the thickness of the cement layer increases

as the stem tip gets slimmer. However maintaining the same automated offset of 3

mm on both the medial and lateral side will still exclude most of the mantle. Under

particular circumstances however BMD assessment may be executed after

adjustment of a wider offset to exclude thicker cement mantles, as long as this is

consequently continued during follow-up. 

Cement mantles can also be variable around stems depending on stem design

(anatomical or straight), stem size, femoral canal entry and bone preparation, the

use of proximal and/or distal centralizers, and pressurizations of the cement34,43.

Particularly straight stems without centralizers can result in thin cement mantles in

Gruen zones 8, 9 and 12, as we have also seen in the Omnifit® group44,45.

However this does not influence cement mantle thickness in the AP view, and will

consequently not harm the possibility to exclude the entire mantle, while

performing bone densitometry in the AP view outside the chosen offset. Therefore

external validity and high generalisibility may be expected. Summarizing,

automated standardized exclusion of the cement mantle is advocated to prevent

the predominant effect of the cement on bone density assessment. This technique

can better reveal real bone changes due to adaptive remodelling after cemented

THA in the important Gruen zones 1 and 7.
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ABSTRACT

We examined the hypothesis that the circumferential osseous apposition

around a HA-coated implant forms a protective barrier against articular wear

debris. Sixty-five hydroxyapatite-coated total hip arthroplasties in 57 patients

(age < 50 years) with polyethylene-metal articulation were evaluated regarding

PE-wear, osteolysis, and clinical outcome at a minimum of 10 years follow-up. 

There was no correlation between PE-wear and osteolysis of the femoral

zones or cup zones I and III. A strong Pearson correlation was found between

polyethylene wear and osteolysis around cup zone II, where the cup only

consisted of polyethylene (P<0,01). The aseptic failure rate was 1,5% for the

femoral component and 4.5% for the cup after 10 years of follow–up. The

average Harris Hip Score was 90 and the average Engh score for fixation was 23

after 10 years. Around HA-coated parts of the prosthesis bone formation

remained stable, regardless of the degree of polyethylene wear. The average

linear polyethylene wear was 0,16 mm/year. 

The circumferential osseous apposition of the HA-coated implants possibly

formed a protective barrier against articular wear debris. The use of cups with a

backside gap resulted in PE-wear associated osteolysis in cup zone II and may

be considered to be best avoided.
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INTRODUCTION

The main purpose of a total hip arthroplasty (THA) is to relieve pain. Reduction of

disability and correction of deformity are important secondary goals. A THA in the

young patient should achieve a strong, permanent, stable bond with bone.

Preservation of femoral and acetabular bone stock in these patients is especially

important because of the higher risk of future revision operations. 

The use of hydroxyapatite (HA) is attractive since it is well established that

HA–coated implants encourage osteoconduction1-4. Contrary to most porous

metallic coatings towards which gaps larger than 0,3 mm are not bridged, with

HA–coated implants bone deficiencies up to 2 mm are bridged3, 5, 6. In addition

HA–coated implants achieve a very strong bond with living bone in a short period,

even under loaded conditions. These are considered ideal features for the hip

prosthesis in younger patients. Following the introduction of HA-coated THA,

critics believed the coating might delaminate leading to loosening, PE wear and

osteolysis7-9. However, an association between HA loss and detrimental effects on

long term fixation was never established10. Osteolysis caused by articular wear

debris is a major long – term problem in both cemented and uncemented hip

prostheses, and has been observed in mid – to long – term studies11, 12. 

In this prospective study we examine the hypothesis that the circumferential

osseous apposition around a HA–coated implant forms a barrier against migration

of articular wear debris13, 14 and present the clinical and radiographic results of 65

primary HA–coated total hip arthroplasties in patients younger than 50 years of age

with a follow–up of at least 120 months. 

MATERIALS AND METHODS

Between 1986 to 1996, 65 hips (57 patients) were treated with a primary HA –

coated THA. Informed consent was obtained in all cases. The indication was

osteoarthritis (OA) in 44, avascular necrosis in 10, rheumatoid arthritis (RA) in 5,

post-traumatic joint damage in 5, and deep joint infection in one. There were 26

female and 39 male patients. At the time of surgery all patients were younger than
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50 years of age (average 40 years, range 18-50 years). Several surgeons including

residents performed the operations. 

Routine post-operative management included 24 hours of antibiotic

prophylaxis (cephalosporins) and peri– and post-operative anticoagulation using

coumarin for three months. No prophylactic treatment against heterotopic

ossification was given. Immediate full weight bearing was usually allowed post-

operatively, using a cane or crutches for comfort during the first four to six weeks. 

All patients were classified according to Charnley’s categories: Category A

(unilateral hip) 42, Category B (bilateral hip) 8 and Category C 7 patients (unilateral

or bilateral with medical problems). Associated problems of patients in Charnley

category C were neurological disease in 4 patients (5 hips), juvenile RA in 2

patients (3 hips), and bilateral knee osteoarthritis in one patient (1 hip). 

Prosthesis 

In all cases the titanium alloy

(Ti6Al4V) Omnifit® stem (Osteonics,

Allendale, New Jersey. now: Stryker,

Mahwah, New Jersey) with a plasma

spray HA-coating on 40% of the

proximal stem length and a stainless

steel taper-head was used. The

titanium threaded Omnifit® Cup

(Osteonics) with HA-coating over

one half of the outer sphere area

with a backside gap was used for the

acetabular component combined

with an ultrahigh molecular weight

PE insert (10 degree gamma in air

sterilized, bevelled insert) (Figure 1).

Clinical evaluation 

Clinical evaluation was performed by means of the Modified Harris Hip Score

(HHS)6,15 starting pre-operatively and then post-operatively at 3, 6, 12 months, and
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Fig. 1a Evident PE-wear and osteolysis in cup

zone II. 

Fig. 1b Omnifit HA-coated titanium femoral stem

and cup.



yearly there after. Pre-operatively the average Body Mass Index (BMI) of this group

was 24 (range 16,1 to 35,2).

Radiological evaluation

For radiological evaluation an anteroposterior (AP) view of the lower pelvis was taken

with a lateral view of the involved hip. For evaluation of the stem Gruen zones16 and

for the cup the zones as described by DeLee and Charnley (1976) were evaluated for

signs of reactive line formation, spotwelds (endostal bone formation), pedestal

formation and periosteal bone reactions. The appearance of the calcar was graded as

described by Engh et al.17. The PE wear was detected by head and liner eccentricity

as measured by the technique of Livermore18. Heterotopic bone formations were

graded according to the Brooker classification19. The implants were also graded

according to Engh�s radiological fixation and stability score for cementless implants20. 

Statistical methods. 

Survival rates were determined according to the method of Kaplan–Meier and the

Pearson correlation test was used to detect a relation between clinical results and

osteolysis, PE wear or reactive line formation using SPSS version 12.0.1 (SPSS,

Chicago, Illinois) software. P values < 0,05 were considered significant.

RESULTS

Seven patients had incomplete follow-up after an average follow–up of 70 months

(range 60 – 96 months) because they moved or would not participate anymore.

Therefore, 58 hips had a complete and 7 hips an incomplete clinical and radiological

follow–up. Survival of the different components could be verified in 3 of these 7

patients by an AP and lateral radiograph. At the last assessment the remaining 4 had

excellent clinical scores and no signs of loosening or excessive PE wear.

Complications 

Complications are listed in Table I. One patient had a deep joint infection. The

infection was a flare up of the same organism that caused the indication for this hip
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arthroplasty (a septic destruction of the hip). The prosthesis was removed, the

infected area was treated successfully with gentamicin beads and systemic

antibiotics and a new prosthesis was implanted, this time with more success.

Excision of peri-articular ossications was performed in 2 cases.

Survival of the different components is summarized in Figure 2 a-c. Causes of

loss of different components are listed in Table I. The aseptic mechanical loosening

rate of the femoral stem is 1,5% and the aseptic mechanical loosening rate of the

acetabular component was 4,5%. PE wear was the major cause for revision surgery
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Table I Complications and revision of components in the HA – Coated THA in the young patient.

Complication (n) Treatment (n)

Infection 1 THA revision/antibiotics 1

Stem and cup loosening 1 THA revision 1

Cup loosening 2 Cup revision 2

Dislocation of hip 4 Closed reduction 4

Exchange PE liner 3

Severe heterotopic bone formation 4 PAO excision 2

None 2

Intraoperative fracture 4 Partial weight bearing 4

Post operative fracture 1 Revision stem 1

Revision of component (n) Cause (n)

Stem and cup 2 Infection 1

Aseptic mechanical failure 1

Stem 1 Traumatic fracture 1

Cup 2 Aseptic mechanical failure 2

PE liner 8 PE wear 5

Traumatic fracture 1

Impingement against stem 1

Deep groove after dislocation 1
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Fig. 2 Kaplan Meier survival curves of different components; 2a - Four HA-coated stems were lost

to follow-up. Mechanical failure was the cause for revision of the first stem, the second

revision was caused by an infection and the third stem was revised because of a traumatic

femoral fracture. 2b - Four HA-coated cups were revised. Infection was the cause of one

revision. Cup loosening was the cause of three cup revisions, extreme PE-wear caused one

of these loosenings. 2c - Survival of the PE insert. Eight inserts were revised. Polyethylene

wear was the major cause for revision (n=5). Other causes were; a fracture of the insert, a

deep groove after dislocation, and impingement.

Fig. 3a Harris Hip Score (0 to100). 

Fig. 3b Engh score ( -31 to 27) of 65 hips, with

an interval of confidence of 95%.

Seven hips were lost to follow-up for

clinical and radiological evaluation after

an average follow-up of 70 months.



of the insert. One case (after a follow – up period of 24 months) had to be revised

because of a periprosthetic fracture of the femur and loosening of the cup caused by

an incident during mountain climbing. 

Clinical results 

Clinical results are shown in Figure 3. This figure shows the average Harris Hip

Score with an interval of confidence of 95%. The average preoperative HHS was

34, three months after surgery the HHS increased to an average of 89. After ten

years 2 patients had a poor (< 70) HHS, 5 patients had a fair (70 -79) HHS, the rest

of the patients had a good (80 – 89) to excellent (> 90) HHS (average 90). 

Radiological results

Bone - reactive lines. 

Most of the reactive lines were seen after 6 to 12 months in Gruen zones 3, 4 and

5. During follow–up these lines gradually diminished. In 10% of the patients a

reactive line was seen near the HA–coated part of the stem. This was only observed

for Gruen zone 1 but no reactive lines were observed in Gruen zone 7. At four
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Table II Reactive line formation per Gruen zone of HA–coated femoral stems (percentage of stems)

by follow–up period

Percentage reactive line formation per Gruen zone

Gruen 3 6 1 2 3 4 5 6 7 8 9 10

zone mth mth yr yr yr yr yr yr yr yr yr yr

1 0 0 2 7 6 12 12 9 14 15 8 12

2 0 2 5 7 6 15 22 17 18 13 8 5

3 0 10 36 50 48 58 57 57 58 57 51 43

4 4 37 71 89 87 92 83 80 72 70 64 55

5 0 20 38 36 33 52 48 48 44 40 36 27

6 0 2 7 11 17 33 24 15 18 9 6 7

7 0 0 0 0 0 0 0 0 0 0 0 0

% stems 4 49 79 95 88 96 84 85 78 77 68 63



years follow-up reactive line formation around the distal stem zone was observed

along 96% of the stems. After six years this type of reactive line formation

decreased in all the affected Gruen zones and approached 60% of the stems at ten

years of follow up (Table II). 

Endosteal bone apposition. 

The development of endosteal bone formation (spotwelds) is shown in table III. A

typical pattern of bone formation starting at the medial distal part (Gruen zone 6) up

to Gruen zone 7 was seen. The same pattern appeared between the sixth and 12th

month at the lateral side. Between 6 and twelve months, the medial spotwelds

expanded into Gruen zone 7. Gradually the medial spotwelds also merged to form a

bigger “weld area” on the complete medial coating area. The same pattern was seen

in a later period at the proximal lateral side. All of the HA–coated stems showed

positive signs of bony ongrowth after a follow–up of two years. The area of bone

ongrowth expanded with time. After a maximum follow–up of more than 13 years the

bone ongrowth area has expanded to virtually the whole non–coated area (Table III).
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Table III Percentage bone formation per Gruen zone of HA–coated femoral stems (percentage of

stems) by follow–up period.

Percentage bone formation per Gruen zone

Gruen 3 6 1 2 3 4 5 6 7 8 9 10

zone mth mth yr yr yr yr yr yr yr yr yr yr

1 9 37 48 73 85 81 84 89 92 92 89 85

2 15 63 75 100 100 100 100 98 98 100 100 98

3 0 0 0 13 27 17 33 44 4 53 62 65

4 0 2 0 0 2 2 9 9 14 17 26 28

5 0 0 2 13 38 33 53 63 54 72 66 78

6 32 73 89 96 98 96 100 100 98 100 98 100

7 26 65 79 93 98 98 100 98 98 100 100 100

% stems 45 80 93 100 100 100 100 100 100 100 100 100



Calcar resorption. 

The first definite calcar remodeling was seen between three and six months (Table IV).

However, after ten years no severe resorption of the calcar or bone distal to level

of the lesser trochanter were observed in any case. 

Heterotopic bone formation. 

Four patients suffered from grade IV heterotopic bone formation. Two cases

required excision of the mass, one after a follow-up of 126 months. Both hips

regained a good range of motion. 
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Table IV Osteolysis and calcar resorption of HA–coated femoral stems (percentage of stems) by

follow–up period

Gruen 3 6 1 2 3 4 5 6 7 8 9 10

zone mth mth yr yr yr yr yr yr yr yr yr yr

%Osteolysis

1 0 0 0 0 2 6 2 9 8 9 8 10

2 0 0 0 0 0 0 0 0 0 0 0 0

3 – 5 0 0 0 0 2 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 2 6 8 11 10 7 9 12

% stems 0 0 0 0 6 10 12 16 12 13 15 17

%Calcar 3 6 1 2 3 4 5 6 7 8 9 10

Resorption mth mth yr yr yr yr yr yr yr yr yr yr

None 98 92 88 75 60 50 33 33 24 38 17 35

Slight 2 8 8 21 25 44 55 50 54 42 49 35

Moderate 0 0 4 4 15 6 12 17 22 20 34 30

Severe 0 0 0 0 0 0 0 0 0 0 0 0



Osteolysis. 

Osteolysis became evident after 5 years of follow–up in Gruen zones 1 and 7 in

about 10% of the cases (Table IV). The percentage and degree of osteolysis around

the stem remained stable up to 10 years follow–up. For the cup most of the

osteolysis could be observed in zone II (Figure 1B), and up to 29% of the cups had

osteolysis after 10 years of follow–up (Table V). 
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Table V Bone formation, reactive line formation, osteolysis around HA–threaded cups (percentage

cups), and PE wear by follow–up period.

DeLee and 3mth 6 mth 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr

Charnley zone

%Bone formation

I 9 57 70 88 94 10 97 94 94 96 96 90

II 0 2 0 2 0 0 0 2 0 0 0 0

III 9 35 59 88 96 96 97 93 92 91 94 90

%Reactive 

line formation

I 0 0 5 4 2 0 3 4 6 6 4 7

II 0 0 5 7 8 8 19 13 14 13 13 12

III 0 0 0 2 2 0 2 2 8 11 4 8

%Osteolysis

I 0 0 0 0 2 4 4 6 2 2 5 3

II 0 0 0 0 6 15 9 13 11 11 20 29

III 0 0 0 0 0 0 2 0 0 4 3 9

% cups 0 0 0 0 6 15 11 15 13 13 20 29

PE wear

% of cases 0 0 0 0 4 10 22 37 46 53 55 55



Engh�s radiological score. 

The scores (Engh et al (1990)) are based on the radiological features that indicate

fixation and stability20. The maximum score is 27 points. Scores above 5 points are

asymptomatic and have a definite bone ingrowth, scores between 0-5 have equally

good clinical results but fewer signs of ingrowth, and scores below minus 5 have

multiple negative signs of loosening and are likely to be symptomatic. From 3

months onwards none of our patients had a score lower than 5 points. The average

Engh scores are listed in figure 3, the scores remain between 20 and 25 points with

an interval of confidence of 95% (Figure 3).

Acetabular cup ingrowth 

Bone formation around the cup appeared to be a slower process than around the

stem. Between 6 months and 1 year of follow–up the bone formation became

evident in DeLee and Charnley zones I and III. In 70% of the cases in zone I and

in 59% in zone III, radiological evidence of bone formation was found after 1 year

follow–up. Even after long term follow–up there was minimal bone formation in

zone II, (the non–metallic area of the cup), and radiolucent lines were mostly seen

in zone II. In a few cases reactive line formation was seen in zone III, which is

known to be a critical area for threaded cups. Details can be found in Table V. From

three years on all the HA–coated cups showed radiological evidence of bone

ongrowth. One case showed cup loosening after a follow-up of 118 months. The

cup was revised with cemented impaction grafting.

PE wear. 

In five cases the PE liner was replaced because of PE wear and late recurrent

dislocations. The HHS in these five patients decreased to an average of 85,2. After

exchange of the PE liner the average HHS was 97,8. Generally PE wear became

radiological evident after a follow –up of 5 years. In more than 50% of the cases

PE wear was found after 10 years of follow-up (Table V). Average linear wear was

1,6 mm and the average wear rate was 0,16 mm/year. Individual cases with more

than 2mm PE wear and the percentage of contact surface area osteolysis per

different stem (Gruen Zone 1 and 7) and cup zone (cup zone 1-3) are shown in

table VI.
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Statistical results. 

A significant Pearson correlation was found between the degree of PE wear and

osteolysis around the cup (P < 0,01). Cup zone II was particularly associated with

osteolysis and a strong Pearson correlation with PE wear (P < 0,01). No correlation

was found between PE wear and osteolysis around other cup or stem zones. No

relationship was found between the degree of PE wear and clinical scores. There was

also no correlation between a diminishing reactive line formation in Gruen zones 3,

4 and 5 and osteolysis in Gruen zones 1 and 7. 
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Table VI Individual cases with more than 2mm PE wear and the percentage of contact surface area

osteolysis per different stem (Gruen Zone 1 and 7) and cup zone (cup zone 1-3):

Case PE wear (mm) Stem zone 1 Stem zone 7 Cup Zone 1 Cup Zone 2 Cup Zone 3

1 5 0 10 25 100 10

2 3 0 0 25 75 0

3 4 0 20 0 50 0

4 2,5 0 10 0 50 25

5 3 0 0 0 75 25

6 4 0 0 0 50 0

7 2,5 0 0 0 75 0

8 3 0 0 25 74 0

9 3,5 0 10 0 50 0

10 4 0 0 0 50 0



DISCUSSION

In this study long-term results of HA-coated total hip arthroplasties in young patients

are described with emphasis on PE wear and its correlation with osteolysis. 

For the polyethylene liner, the rate of failure caused by PE wear was 9%. After

a follow-up of 10 years, over 50% of the cases showed evidence of PE wear. Both

average linear PE wear and average wear rate were comparable to other studies

using cemented and uncemented THA 21-25. PE wear was the cause of re-operations

in five cases (Table II). Our group previously reported on the possibility of late

failure of well fixed implants as a consequence of biological reactions to PE wear

debris in the young patient26. In the present study we found a considerable

incidence of PE wear and no evidence for loosening of the femoral component due

to this wear, and no correlation was found between PE wear and osteolysis around

femoral stem. These findings and the early onset of bone formation around the HA

coating of the stem support the hypothesis that the circumferential osseous

apposition around a HA–coated implant forms a barrier against distal migration of

articular wear debris, especially on the femoral side13,14. The relationship between

PE wear and osteolysis around the cup, especially around zone II, leaves several

hypotheses open. Some authors suggested that wear debris from the modular

interface might be pumped through the backside gap and the insert and metal

backing may act as a piston pump for PE wear particles towards cup zone II causing

osteolysis27-29. Others suggest that backside wear is not the main cause for

osteolysis and that a gap may even protect the insert against wear30. Due to high

failure rates of cups with backside holes, there is a tendency to avoid the use of

screw holes and backside gaps in acetabular cup shells31,32. In addition, younger

patients have a bigger range of motion. The use of 10° beveled inserts may

encourage impingement and dislocations in these patients. 

The problem of PE wear in THA can be resolved by replacing the PE

components with ceramic components. The tribological properties of ceramic to PE

articulations are superior to those of metal to PE and result in significant lower PE

wear33-35. Since 1994 we use an alumina ceramic head and an alumina ceramic

liner (ceramic on ceramic). In future, the use of the recently available highly cross

– linked polyethylene may reduce PE wear, and results thus far are promising36-38. 
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PE wear has become the major issue in THA for the young patient. The

circumferential osseous apposition towards the HA–coating of both the stem and

the cup appears to form a protective barrier against distal migration of articular

wear debris. The use of cups with a backside gap resulted in PE wear-associated

osteolysis in cup zone II and may be best avoided. The design of the cup we

employed was changed in 1994. The first results of harder materials replacing the

first generation PE are very promising and may reduce the number of re-operations.
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ABSTRACT

Four uncemented Symax hip stems were extracted at three weeks and nine, 13

and 32 months, respectively, for reasons other than loosening. The reasons for

implant removal were infection in two cases, recurrent dislocation in one and

acetabular fracture in one. They were analysed to assess the effect and behaviour

of an electrochemically deposited, completely resorbable biomimetic BONIT®-

hydroxyapatite (HA) coating (proximal part) and a DOTIZE® surface treatment

(distal part) using qualitative histology, quantitative histomorphometry and

scanning electron microscopy (SEM). Early and direct bone-implant bonding with

signs of active remodelling of bone and the HA coating were demonstrated by

histology and SEM. No loose BONIT®-HA particles or delamination of the coating

were observed, and there was no inflammation or fibrous interposition at the

interface.

Histomorphometry showed bone-implant contact varying between 26.5%

at three weeks and 83.5% at 13 months at the HA-coated implant surface. The

bone density in the area of investigation was between 24.6% at three weeks and

41.1% at 32 months. The DOTIZE® surface treatment of the distal part of the

stem completely prevented tissue and bone apposition in all cases, thereby

optimising proximal stress transfer.

The overall features of this implant, in terms of geometry and surface

texture, suggest a mechanically stable design with a highly active biomimetic

coating, resulting in rapid and extensive osseo-integration, exclusively in the

metaphyseal part of the stem. Early remodelling of the HA coating does not

seem to have a detrimental effect on short-term bone-implant coupling. There

were no adverse effects identified from either the BONIT®-HA coating or the

DOTIZE® surface treatment.
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INTRODUCTION

Since the introduction of cementless designs for total hip arthroplasty the greatest

step forward to true osseointegration was made with calciumphosphate coatings

for early bone apposition and biological fixation. Of these, hydroxyapatite is the

most used and documented, both in basic research1-8 as well as in short-term9-14

and long-term clinical experience,15,16 illustrating good clinical performance and a

stable bone interface. Implant retrievals have shown superior bone apposition on

the implant and consistent evidence of osseointegration.17-22

The majority of the experience is associated with HA-coated implants using a

(‘first generation’) plasmaspray technique,23 because of its established technology,

cost effectiveness and reproducibility. This so called ‘line-of-site’ coating technique

has the disadvantage of coating only the outermost layer of the implant surface like

paint-spray technique, which occludes deeper layers of the more open three-

dimensional surface textures. This will result in only bone apposition to the

superficial comparatively thicker coating but not the underlying titanium, creating

an extra interface. This unfavourable situation may exist for a long time owing to

the relatively insoluble, highly cristalline plasmaspray coatings. Although there is

no clear evidence in the literature that loss of plasmasprayed HA-coating affects

the long-term performance of the implant, there is concern about deterioration of

the bone-implant coupling (BIC) after degradation of the HA-coating.21,24,25 Another

issue has always been that the degradation of plasmaspray HA coatings might

generate so called ‘third body wear’-particles which could initiate the

differentiation of macrophages into osteoclasts, eventually leading to deterioration

of the bone-implant bond and subsequent loosening.26-28 

Newer techniques such as electrophoretic deposition, ion-beam-assisted

deposition (IBAD) and solution deposition have the capability of uniformly coating

superficial and deeper layers of implant surface structures, as well as the open

pores of materials such as tantalum with extreme porosity, resulting in a deeper

bioactive layer applied onto and particularly into the more open surface structure

of the implant. This provides a larger surface area for osteoconduction and creates

a deeper and tighter anchorage to bone. The so called ‘biomimetic’ (nature-like)

coatings such as BONIT®-HA (DOT GmbH, Rostock, Germany) are based on the
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deposition and growth of microcrystalline calciumphosphate-molecules from

supersaturated calcifying solutions (simulated body fluids – SBF).29-33 Usually these

coatings are much thinner (2-20 μm) than the 50-200 μm thick plasma-sprayed

coatings. This diminishes the risk of fatigue-fracture and delamination, which were

early concerns with thicker and more brittle coatings. These thinner and more

evenly and controllably deposited coatings can be better regulated in terms of

purity, cristallinity and hence resorbability, because of a better control of the

physicochemical circumstances (pH, temperature, saturation and calciumphosphate

composition of the SBF) under which they are produced.34 The advantage of low
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Detail of Symax stem with SEM photos for closer look at coating layer (Titanium Plasma Spray -TPS -

with BONIT HA coating) at increasing magnification; (b) x 40, (c) x 190, (d) x 500, (e) x 1000, and

(f) x 2000. Typical efflorescent, needle-like structure of  BONIT HA crystals on irregular 3D-open

surface texture of high porosity Titanium plasmaspray layer.  

Fig. 1d Fig. 1e Fig. 1f

Fig. 1a Fig. 1b Fig. 1c



temperature processing provides a more predictable and controlled environment

for coating deposition which results in more crystallographically consistent

coatings without creating undesired calcium phosphates than compared to the

high temperatures (up to 20,000° C) of plasma spraying. Although there are some

pre-clinical studies with biomimetic coatings showing promising outcome,32,33,35

there is little clinical experience.

In this study 4 retrieved uncemented SymaxTM hip stems were analyzed, by

qualitative histology, quantitative histomorphometry and scanning electron

microscopy (SEM). Special attention was devoted to local tolerance, potential

adverse effects, bioactivity and durability of the BONIT® HA coating, thereby

recording their capacity for direct implant-bone bonding and the rate of

remodelling and degradation (resorption) of the coating, and the possible

consequences of this process for the bone coupling of the underlying hip stem.

Furthermore the effect was analyzed of the DOTIZE® treatment on the distal part of

the stem, a process of anionic oxidation, which was developed to diminish bone

apposition and osseointegration, in order to optimise stress transfer from the

prosthesis to the bone in the proximal HA-coated area.
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Fig. 2a Fig. 2b Fig. 2c

Cross-sections of implant-sample embedded into PMMA but prior to histological staining, showing

Ti6Al4V of implant substrate, TPS layer and BONIT® HA coating; fig.2b showing magnified detail of

fig. 2a. Maximum thickness of 10 mm of  BONIT® HA coating with deep penetration into TPS layer.



MATERIALS AND METHODS

Implants

In this study the first retrieved SymaxTM stems (Stryker®, Montreux, Switzerland) are

documented. The design is based on close geometrical analysis of the human

femoral anatomy through conventional radiography and CT. It aims at optimal fit

and fill with loading of the proximal femur (data of design studies held on file at

Stryker), thereby allowing more natural stress distribution and less stress-shielding.

Furthermore a uniform interface stress pattern is pursued for maintenance of

optimal interface bonding. The achievement of both goals was preclinically

confirmed by finite element analysis. 

The SymaxTM stem is forged from Ti6Al4V alloy (complying with specifications of

ASTM F 136 and F 620, IMS 0070, ISO 5832-3)36. It features a proximal plasma-sprayed

CP Titanium coating (ASTM F 67 and ASTM F 1580) to enhance initial stem fixation,

and a biomimetic electrochemically deposited BONIT® HA coating (ISO 13779-2,

ASTM F1088-87 and ASTM F 1609-95)36,37, proprietary to DOT GmbH, Rostock,

Germany (Fig. 1 and 2). Distally the stem is treated with the DOTIZE® surface process,

an electrolytic conversion of titanium surfaces in which the thin native oxide film is

replaced by a thicker oxidised conversion

layer that reduces protein adsorption and

hence distal bone apposition and osseo-

integration38,39 (Fig. 3).
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Fig. 3 Symax hip stem with proximal TPS-

layer and BONIT® HA coating and

distal DOTIZE® surface treatment.



The roughened, plasma-sprayed titanium surface has an open porosity of 20-40 %

and an average pore size between 50 and 200 μm. The Ca/P - ratio of the BONIT®

HA coating is 1.6 ± 0.1. It is described as ‘nano-crystalline’-HA40 and the X-ray

diffraction (XRD) and Infra-red spectroscopy (IRS) pattern demonstrate a

composition and crystalline structure very similar to bone.35 The initial

electrochemically deposited coating at room temperature, is a composite of

brushite (CaHPO4.2H2O) converted to hydroxyapatite by NaOH-treatment.33,35 It

has a fine crystalline structure where CaP crystals are fixed on the TPS surface in

the shape of platelets and pins of 15-20 μm long (Fig. 1),41 and has a high porosity

of 60 %. This creates an exceptional capillary effect which enables complete

moistening by bone marrow with early adhaesion and proliferation of osteoblast-

like cells.33,35 The adhesion strength of the BONIT® HA coating on TPS (which

should not be less than 15 MPa according to ISO 13779-4) is 61.29 Mpa (s.d. 6.26

Mpa) (ASTM F 1147-99).

Patients

Between november 2004 and august 2006, 4 uncemented stems were extracted

from the femur for different reasons and from different hospitals but after retrieval

treated according to the same protocol. Details about these 4 cases are summarized

in Table I. There were no clinical or radiological signs of loosening and at the time

of extraction they all appeared to be extremely well fixed, so that in 3 cases an

extended femoral osteotomy (EFO) was needed to remove them (Fig. 4).

Cases 1 to 3 were implanted in another hospital, case 4 was implanted at our

own department. Reason for implant removal in case 1 was an acetabular fracture.

During repair the femoral component was taken out for better exposure of the

acetabulum. In cases 2 and 3 there was a deep infection of the prosthesis with

Staphyloccus Aureus resistant to several debridements and antibiotic treatment..

During revision of case 4 for recurrent dislocations in a non-compliant patient, as

well as improving the anteversion of the acetabular component, it was decided to

replace the stem as well for a design with more offset.
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Table I. Details of patients who generated the four retrieved Symax® hip stems

Case 1 2 3 4

Age (yr) at THR* 74 78 64 61

Gender F M M M

Weight (kg) 64 81 78 84

Height (m) 1.65 1.71 1.70 1.74

Diagnosis at 

primary THR OA OA OA OA

Previous hip surgery None None None None

Activity level Not rehabilitated Semi-sedentary Normal activity Light labor 

with THR after THR due to comorbid. Light labor Occasional sports

Reason for Acetab. fracture Deep infection Deep infection Recur. dislocation 

extraction after THR (Staph. Aureus) (Staph. Aureus) (cup-malpos/offset)

Clinical signs 

of loosening Not applicable None None None

Radiograph. 

signs of loosen Not applicable None None None

Survival of 

THR (yrs/mnths) 0/ ¾ 0/9 1/1 2/8

Surgeon’s comments Press fit; Well fixed    Well fixed    Well fixed

on fixation quality not yet (ETO† necessary) (ETO necessary) (ETO necessary)

osseointegrated

THR, total hip replacement

OA, osteoarthritis

ETO, extended trochanteric osteotomy



The specimens were fixed in 3.7-4.0 % formalin, buffered with zinc sulphate

acetate at pH 5.6-5.8. 
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Intra-operative photographs of case 2. Figure 4a showing extended femoral osteotomy with lateral

cortical bone  separated from the implant. Clearly visible no bone attached to distal (DOTIZE®) part

of the stem. Figure 4b showing the explant with bone coming with the BONIT® HA coated anterior

and medial part of the implant-surface. Figure 4c and 4d with magnifications illustrating extensive

bone attachment.

Fig. 4a Fig. 4b

Fig. 4c Fig. 4d
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Fig. 5 Macroscopic photographs of ex-

tracted implants showing hip

stems of retrieval cases 1 to 4.

Cases 1 and 3 showing discolo-

ration caused by preliminary

fixation in formalin, cases 2 and

4 immediately after extraction.

Case 1 - although not yet os-

seointegrated after 3 weeks of

implantation – still presenting

some bone apposition (see de-

tail). Cases 2, 3 and 4 showing

abundant bone coming with

and strongly attached to the ex-

tracted implant. In all cases there

is a complete absence of bone

attachment on the distal stem

treated with DOTIZE®�.

Case 1

Case 2

Case 3

Case 4



Specimen preparation and analysis

Analysis was performed by an independent institute (Biomatech, Chasse-sur-

Rhône, France).

Histology

On the day of receipt, pictures of the specimens were taken prior to storage in the

10% buffered formalin (pH 7.2-7.4) (Fig. 5). After complete fixation, gross sections

(approximately 1.5 cm thick according to the Gruen zones) were performed on the

stem to isolate the investigated areas using the EXAKT microcutting system.

(Apparatebau GmbH & Co., Norderstedt, Germany) Each stem segment was

dehydrated in ethanol of increasing concentration, cleared in xylene and

embedded in polymethylmethacrylate (PMMA) resin. 

From the stem, one to five cross-sections (approximately 30 µm thick) were

prepared in the Gruen zones 1A-7A, 1B-7B, 1C-7B, 2-6 and 3-5 (Fig. 6).

The sections were obtained by a microcutting and grinding technique

adapted from Donath.42 These sections were stained with a modified Paragon

staining for qualitative histology and

quantitative histomorphometry (Fig 7).

For the qualitative microscopic analysis,

a Nikon microscope, Eclipse E600 (Nikon)

(Nikon France, Champigny-sur-Marne, France)

fitted with x5, x10, x20 and x40 objectives

and coupled with a digital camera (DN 100;

Nikon France) was used.
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Fig. 6 Drawing showing delineation of Gruen

zones 1 to 7 in the AP view. The

metaphyseal zones 1 and 7 are subdivided

in smaller segments A to C. At these levels

cross sections were prepared for further

qualitative histology and quantitative

histomorphometry (see text and fig. 7).



Histomorphometric analysis

For the quantitative analysis, the sections were evaluated using a Zeiss microscope

(Axioskop; Carl Zeiss France S.A.S., Le Pecq, France) fitted with x5, x10, x20 and

x40 objectives and equipped with a color image analyzing system (SAMBA®,

SAMBA Technologies, France).

The quantitative histomorphometric evaluation of the surrounding bone tissue

(bone to implant contact - BIC, and bone area density - BD) was performed on

seven standardised areas of investigation around the stem sections (1A-7A, 1B-7B

and 1C-7B) and on four areas around the distal sections 2-6 and 3-5 (29 areas in

total). Surfaces of the individual areas of investigation varied from 10 to 12 mm²

and were located at the tissue-implant interface (Fig. 7; Case 4).

Within the area of investigation, the bone surface was divided by the surface

of the entire area to calculate the relative bone density in the vicinity of the implant

(= bone density, BD). The length of the implant's interface having direct bone

contact was divided by the length of the entire interface within the area of

investigation in order to provide the percentage of the implant covered by bone

(bone-implant contact). Means and standard deviations were calculated for each

section and for the whole metaphyseal segment of the stem.

SEM analysis

The samples (blocks from the proximal part of the stem) for scanning electron

microscopy were dehydrated in acetone solution, submitted to critical point for

desiccation (optimal dehydration for optimized SEM pictures) and sputtered with

gold palladium before observation. The analysis was conducted with an HITACHI

S800 Scanning Electron Microscope (Hitachi High-Technologies Europe GmbH,

Krefeld, Germany) set at 15 KeV. Any significant event was recorded and

photographed.
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Case 1

Case 2

Fig. 1a7a

Fig. 2-6 Fig. 3-5

Fig. 1a7a Fig. 1b7b Fig. 1c7b
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Case 3

Case 4

Fig. 1a7a Fig. 1b7b Fig. 1c7b

Fig. 1a7a Fig. 1b7b Fig. 1c7b

Fig. 2-6 Fig. 3-5

Fig. 7 Low-magnification photomicrographs of the cross sections after Paragon-staining at subdivided
Gruen zones 1A-7A, 1B-7B, 1C-7B from cases 1 to 4. Extensive and direct bone apposition
without fibrous interface in areas where the bone was not separated from the implant for
the purpose of extraction. Cases 2 and 4 further showing cross sections at Gruen zones 2-6
and 3-5 to illustrate complete absence of bone, as intended by the DOTIZE® treatment. In
case 4 the 29 standardized areas of investigation for quantitative histomorphometry are
shown. Distances are marked in centimeters.



RESULTS

Qualitative histology.

The retrieved specimens showed successive changes during prospective periprosthetic

bone remodelling and the effects of coating loss on bone-implant coupling. Although

in case 1 there was bone over only a small surface of the explant due to the short time

of implantation, in all other cases there was extensive and qualitatively sound bone-

implant bonding defined as a continuum of mineral from the implant to the mineralized

bone matrix, without fibrous tissue interface.21 Histological examination consistently

showed trabecular bridges from the surrounding host bone to the implant surface. The

trabecular bridges were mainly characterized by mature lamellar bone with osteoblasts

and osteocytes, at the exception of the early retrieval (case 1) showing woven bone

(Fig. 8 Picture 1a). Active remodelling of bone was overall frequently observed, with

coexisting osteoid lines as a sign of new bone formation (Fig. 8).

In all specimens the BONIT® HA coating had completely disappeared

reflecting a fast degradation of this thin biomimetic and highly bioactive coating.

There was, however, direct bone apposition onto and deep into the open surface

structure of the exposed TPS layer, without any fibrous interface (Fig. 8 and 9). 

Histological slides did not reveal any toxic effect of coating or TPS substrate

material, nor any inflammatory reaction or histiocytic proliferation, as would have

occurred with polyethylene particles. There were no signs of (polyethylene or

metal) particulate debris or coating delamination. Furthermore no fibrosis or ‘third

body wear’- induced osteolysis was recognized. These observations suggested a

good ‘sealing’ effect of the BONIT® HA coating. Surprisingly in the infectious cases

(2 and 3) no neutrophil polymorphonuclear or lymphocytic tissue reactions at the

bone-implant interface could be identified. There was no osteonecrosis or

increased osteoclastic activity, nor was a fibrous coupling seen between implant

and host bone, Thus, it seems that persistent deep infection did not severely

compromise osseointegration when treated surgically.

In contrast to retrieval reports of other proximally or entirely HA-coated

stems18,19,37 which showed signs of progressive osseointegration in distal Gruen zones

2 - 6 and 3 - 5, our material did not show any unintended bone apposition, either

macro- (Fig. 5 and 7) or microscopically (Fig. 8), in the non-HA-coated stem areas.
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Fig. 8 showing histological photomicrographs of cases 1 to 4 (details see below). Extensive parts of the

prosthesis surface were directly covered with mature lamellar and actively remodelled bone. No

signs of inflammatory reaction were observed and no abnormal bone marrow was seen. The

density of the trabecular bone tissue was marked and there was consistenly good osseous

anchorage of the implant. At sites where the stem was separated from the host bone for sake of

extraction there was still marked bone implant contact, but at several spots a gap was observed

between bone tissue and the material, due to the retrieval procedure. No HA coating was

identified after these survival periods, but the homogeneous TPS layer (200 µm thick) was seen,

well fixed to the Ti6Al4V alloy (Ti), showing a rough surface with deep ingrowth of bone. At distal

sites (Gruen zones 2 & 6 and 3 & 5) there was no bone or fibrous tissue visible and sections

showed a smooth surface. The DOTIZE® treatment seems to prevent tissue attachment of any kind,

and around the distal implant there were no signs of inflammation, macrophage reaction or any

other adverse effect on the material. No histological signs of infection were seen in case 2 and 3.

Case 1a showing the immature woven bone (WB) but in good contact with the implant after only

3 weeks survival, as well as crushed bone with artefacts due to the retrieval procedure. In other

regions of case 1, although macroscopically not visible (see Fig. 5, case 1), still a thin layer of bone

apposition (white arrows, case 1b) was noted and mineralization of interfacial fibrous tissue (black

arrow, case 1b). Cases 2a/3a: marked bone (B) attachment on metal surface (M), and in

continuity with the surrounding trabecular bone. Cases 2c/2d/3b showing osteoid line (OL) with

osteoblasts (OB in Case 2d) in close contact with TPS, as signs of active bone generation. Cases

2d/3a/4a: consistenly physiologically normal bone marrow (BM) was seen. Cases 2b/2c/4a/4b

with the typical aspect of mature lamellar bone (LB) with osteocytes (OC). Cases 2e, 3c and 4b

with development of Haversian canals (HC; black arrows, x 4) possibly reflecting biomechanically

driven corticallization, a sign of strain adaptive bone remodelling. Gruen zones 2 and 6 (Cases 2f

and 4d) and zones 3 and 5 (Cases 2g and 4e) confirming complete absence of bone and soft

tissue attachment. Cases 3d and 4c illustrating detachment of bone, originally in direct contact with

the implant (judging from identical contours of bone and implant surface) but separated due to the

retrieval procedure. This may lead to underestimation of BIC % and BD % in histomorphometry. 
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Fig. 8
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Fig. 8 continued



Quantitative histomorphometry.

As these were not post mortem retrievals at autopsy and instead of collecting the

entire femur with the stem, most of the bone had to be separated from the stem to

extract it. Therefore quantitative histomorphometry (expressed as percentage bone-

implant length contact and percentage bone area density) was calculated in

investigated areas where bone came with the explant (referred to as ‘relevant areas

of interest’), for reasons of comparison with other published post mortem retrieval

reports. Otherwise quantitative results would be extremely underestimated as a

result of the extraction-procedure. Dividing these results over the entire implant

surface, as if it were a post-mortem retrieval, is called the ‘mean area of interest’

(results see Table II). 

In case 1 after a survival of only 3 weeks already 26.5 % direct bone-implant

contact (BIC %) was seen in zone 1A-7A in the part macroscopically covered with

bone, and 21.5 % over the entire zone, illustrating the strong osteoconductive

character of the BONIT® HA coating. The BD % in this zone was 24.6 % (mean 6.4

%). For case 2, BIC % was between 33.4 % and 79.1 % in the relevant a.o.i. (mean

51.7 %) and BD % varied between 16.3 % and 39.0 % (mean 27.2 %). Case 3

presented a relevant BIC % varying between 51.2 % and 83.5 % (mean 68.1 %)

and a relevant BD % between 26 % and 39.3 % (mean 32.5 %). Considering the

impressive amount of bone attached to the explant (Fig. 5), and the fact that case 4

had the longest survival compared to the other retrievals, the relatively low

percentage of BIC (22.3 ± 0.3 %) in the relevant a.o.i. and 14.7 % overall in the

metaphyseal area, was less than might be expected. These numbers however are an

underestimation because, judging from its contour, the bone initially seemed to

have been in close contact with the implant over a larger area, and a thin gap

without fibrous tissue was believed to be a consequence of bone detachment due

to the retrieval procedure (Fig. 8, case 4c)

SEM analysis

There were clear signs of direct bone-TPS contact confirming the findings of

histology (Fig. 9). Bone trabeculae spread over the TPS layer without fibrous

interface. A complete resorption of BONIT® HA coating was seen, apparently not

being detrimental for bone-implant coupling.
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Table II Histomorphometric results of  retrieval cases 1 to 4; percentage bone to implant contact 

(BIC %) and bone density (BD %) per relevant and mean area of interest 

Case 1 Case 2   

Survival ¾ mnth 9 mnths   

Indication for extraction Acet. fracture Deep infection   

Relevant a.o.i. Mean a.o.i. Relevant a.o.i. Mean aoi     

BIC % 1A-7A 26.5 21.5 42.7 16.0

1B-7B n.a. n.a. 33.4 21.4

1C-7B n.a. n.a. 79.1 40.4

Metaphyseal mean n.a. n.a. 51.7 25.9

Stand. dev. n.a. n.a. 19.7 -

2-6 n.a. n.a. 0.0 0.0

3-5 n.a. n.a. 0.0 0.0

Diaphyseal mean n.a. n.a. 0.0 0.0

Stand. dev. n.a. n.a. 0.0 0.0

BD % 1A-7A 24.6 6.4 26.5 7.2

1B-7B n.a. n.a. 16.3 5.9

1C-7B n.a. n.a. 39.0 16.4

Metaphyseal mean n.a. n.a. 27.2 9.9

Stand. dev. n.a. n.a. 9.3 -

2-6 n.a. n.a. 0.0 0.0

3-5 n.a. n.a. 0.0 0.0

Diaphyseal mean n.a. n.a. 0.0 0.0

Stand. dev. n.a. n.a. 0.0 0.0

Histomorphometry results. Relative bone-implant length contact (BIC %) and bone density (B.D. %) within the area 

of investigation. Mentioned are the values for the stem-surface with bone still attached (relevant area of investigation) 

and averaged over the entire surface (mean area of interest), which value should be considered as an underestimation 

when compared with post-mortem retrievals. The values highlighted in bold represent the areas with macroscopic 

bone attached, the ones highlighted in italics represent the mean over the entire metaphyseal part of this area. 

Further see text.

n.a. = not analysed 
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  Case 3 Case 4

  13 mnths 32 mnths

    Deep infection Recurrent dislocation

    Relevant a.o.i. Mean a.o.i. Relevant a.o.i. Mean a.o.i.

 51.2 17.7 22.5 18.7

69.7 28.6 22.6 18.3

83.5 48.0 21.8 7.1

 68.1 31.5 22.3 14.7

 13.2 12.5 0.3 -

n.a. n.a. 0.0 0.0

n.a. n.a. 0.0 0.0

 n.a. n.a. 0.0 0.0

 n.a. n.a. 0.0 0.0

 39.3 10.4 23.9 10.5

26.0 9.3 41.1 14.8

32.2 19.3 1.6 0.4

 32.5 13.0 22.2 8.6

 5.5 4.5 16.2 -

n.a. n.a. 0.0 0.0

n.a. n.a. 0.0 0.0

 n.a. n.a. 0.0 0.0

 n.a. n.a. 0.0 0.0
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Fig. 9a Fig. 9b Fig. 9c

Fig. 9d Fig. 9e Fig. 9f

Fig. 9 Scanning Electron Microscopy (SEM) pictures of case 2 and 4. Fig. 9a showing 3D contour

of trabecular bone (open white arrows) in close contact with TPS surface covered with

bone marrow (TPS + BM). Fig. 9b with magnification of one bone trabecula (open white

arrows) tightly anchored with the TPS layer. Osteocytic lacunae (OL; closed white arrows)

as a sign of active bone remodelling. Fig. 9c with magnification  of a fractured trabecula

(open white arrow) and globular morphometry of TPS covered with erythrocytes in the

bone marrow cavities. Fig. 9d with cross-section SEM-micrograph illustrating metal (M), TPS

layer and direct ingrowth of bone trabeculae (B) into the implant surface without fibrous

tissue interface. Further ultrastructural magnifications (Fig. 9e and f) with bone closely

following the implant surface as proof of  direct bone-implant coupling (OL=osteocytes

lacunae). The black line in between represents an electronic beam effect (= artefact, but no

fibrous tissue interface). 



DISCUSSION

This is the first retrieval study that shows that the SymaxTM stem due to the high

bioactivity of the BONIT® HA coating is capable of a fast and extensive bone

ingrowth, both qualitatively and quantitatively, deep into the open 3D surface texture

of the stem. In spite of the inherent swift remodelling of the coating, both histology as

well as scanning electron microscopy show that there is no negative effect on the

short term bone anchorage of the implant, and there is a high degree of sealing of the

implant-bone interface. This supports the expectation that the rough and porous

surface texture of the biocompatible TPS-layer and the geometry of the SymaxTM stem-

design for optimal fit and fill, will be able to maintain long term osseointegration and

implant stability. We found no adverse effects or signs of local intolerance on the

coating, and there was no HA debris with third body wear either in isolation or

phagocytosed at the interfaces or in the bone attached to the explants. The study

demonstrates that the DOTIZE® treatment as intended can prevent bone apposition

and osseointegration of the distal part of the stem, creating optimal stress transfer

characteristics to the bone, thereby reducing stess shielding of the proximal femur. 

Debate on HA-coatings focuses mainly on the following controversies; Firstly

should coatings be highly bioactive and consequently more resorbable, or should

they be stable to enhance bonding more permanently?40-43 Secondly, does HA

resorption affect the bonding strength between implant and bone?27,44,45 Thirdly,

can coatings be thin or should they be thicker? 

Although stable coatings may reinforce bonding for a longer period, they are

intrinsically less bioactive, while more bioactive coatings deliver a high local ion

source of calcium and phosphate ions for rapid contact osteogenesis, and therefore

inherently tend to disintegrate faster.32,46,47 Resorbability of coatings is determined

by chemical factors (pH, crystal composition) and material structure (surface area,

porosity), which also influence adhesion and activity of osteoblastic (precursor)

cells.37,48-53 Resorption of the coating depends strongly on osteoclastic activity,

ruled by these physicochemical characteristics.54-56 Research on newer HA-

coatings should therefore be directed towards finding the combination of coatings

with sufficient bioactivity to encourage bone ingrowth, but which do not dissolve

before mechanical stability has been achieved through ingrowth.
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Degradation of HA coatings forms an essential part in the remodelling of the bone-

implant interface. Thinner coatings (i.e. BONIT® HA 2-20 µm), applied to metallic

substrates achieve the strength properties of the underlying material resulting in a

better mechanical stability of the coating on the implant. Being transformed

through osteoclastic activity, they can prevent heavy burdens of particulate

material. Thicker ‘first generation’ coatings however (Furlong ± 200 µm 70 um) and

to a lesser extent the ‘second generation’ intermediate coatings (Omnifit and ABG,

± 60 µm), because of their brittleness, may delaminate and theoretically release

apatite particulate material with ‘third body wear’ and osteolysis.27,28 That this has

not been shown to be a real clinical problem is possibly related to the ‘sealing’

capacity of the implant-bone interface through early osseointegration.57,58 During

this process, particularly in thin bioactive coatings, degradation of the Ca-P layer

does not seem to initiate histiocyte or giant cell proliferation and wear-induced

osteolysis as polyethylene particles do. This is probably because this HA does not

behave as an abrasive or foreign body particle but as a natural calciumphosphate

graft that is more naturally remodelled by osteoclasts, or phagocytosed by

macrophages and dissolved within their acid environment. For these and other

reasons it therefore seems advantageous to apply biomimetic coatings instead of

conventional plasma-spray HA coatings. Processing is possible under better control

of the physico-chemical environment (neutral pH, low-/body-temperature) with

improved regulation of crystallinity and Ca/P ratio, along with the rate of

bioactivity and degradation. Then thinner coatings can be applied with

theoretically a lower chance of delamination, and a better and deeper coating of

the 3D-open surface texture of the implant. Depending of the surface

characteristics of the implant (roughness and porosity) this will improve bone-

implant anchorage and guarantee long-term osseointegration even after complete

disappearance of the HA coating. Faster osseointegration will support early

biological stability of the implant, thereby preventing migration and the

development of a fibrous and unstable interface. This may be particularly useful in

patients with poor bone quality such as those with osteoporosis. Theoretically these

coatings and their way of application offer the possibility to use them as a drug

delivery system for bioactive proteins (BMP’s, growth factors), antibiotics or even

tissue engineered bone.59-61 In the long term these deposition techniques may
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create more complete sealing of the bone-implant interface as a protection against

particle ingress and subsequent wear induced periprosthetic osteolysis.

From other proximally or completely coated titanium stems it is known that,

to some extent, initial proximal osseointegration is followed by progressive distal

osseointegration62,63. This will cause stress shielding of the femur metaphysis with

bone resorption in Gruen zones 1 and 7 as can be recognized radiologically and

from periprosthetic densitometry (DEXA). This potentially detrimental effect of

distal stem integration may be prevented by the DOTIZE® treatment, as retrieval

results show complete absence of distal bone apposition. (Fig 2f, 2g, 4d, 4e)

Comparison of histomorphometric results of this BONIT® HA coating, being

one of the first clinically applied biomimetic coatings on hip stems, with plasma-

sprayed coatings shows good BIC % and BD %. Porter et al.21 compared post

mortem retrievals with entire femora of plasma-sprayed HA coated implants

(Bimetric – Biomet, UK), with implants of the same design but showing exposed

titanium after degradation of HA, and porous coated implants without HA. The BIC

% in these groups was respectively between 40 and 50 % (HA-coating still

present), 24 ± 5 % (exposed titanium after HA degradation) and 21 ± 14 % (non

HA-coated porous stems), suggesting a decline in bone bonding with HA loss. The

porous coated stems showed large regions with fibrous tissue interface and barely

adherent bone with trabecular bridges to surrounding cancellous host bone.

Tonino et al.19 showed that the mean bone ongrowth in Gruen-zones 1 and 7 of

femur retrievals with the plasma-spray HA coated ABG stems (Stryker – Newbury,

UK) varied between 22 and 56 % of the total surface, with minimal and maximal

values 6 resp. 67 %. Coathup et al.22 compared bone ingrowth (~ BD %) and

attachment (~ BIC %) in post-mortem retrievals of one hip design (Bimetric –

Biomet, Bridgend, UK) proximally coated with either a plasmaspray HA porous

coating, a plain plasmaspray porous coating or only grit-blasted (Interlok). Bone

attachment was respectively 37.3 ± 2.5 % (porous HA), 18.9 ± 2.0 % (plain

porous) and 22.6 ± 3.7 % (Interlok). Bone ingrowth in the pores was 29.1 ± 2.0 %

versus 21.8 ± 2.1% (Interlok not mentioned). Bauer et al.18 assessed the amount of

bone apposition on post-mortem Omnifit retrievals (Osteonics, Allendale -

NewJersey, USA) with proximal plasmaspray HA coating, and found that it varied

between 32 and 78 % without further specification. For comparison Cook et al.62
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quantified bone ingrowth on porous coated hip stems of different designs and saw

bone growth into the available pore volume of less than 10 % in all cases, whereas

the rest of the stem surfaces showed fibrous encapsulation. 

All these results involve post mortem retrievals in which a more representative

osseo-integration for a particular stem design in all Gruen zones could be analysed

without disruption by the extraction procedure. For  the relatively new Symax stem

for which there are as yet no post mortem retrievals, we are restricted to 'relevant

areas of interest'. Otherwise, the positive quantitative results of the Symax would

be extremely underestimated because of the extraction procedure.

Although the amount of bone-implant contact and bone density within the

relevant a.o.i. is promising, the sample size of 4 cases imposes obvious limitations

on the generalizability of the results. Further investigations of retrieved cases,

evaluating long-term osseointegration, are recommended.
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ABSTRACT

For assessment of bone remodelling around total hip arthroplasty using dual-

emission x-ray absorptiometry (DEXA), a variety of different systems to identify

regions of interest (ROI) have been used, making comparisons between stem

designs difficult. The Gruen zones are now widely used for this purpose. We

present the results of a randomised clinical trial comparing 2 uncemented stem

designs with proximal coating, using a modification of the Gruen zones to allow

improved representation of the effect of the implant on bone mineral density

(BMD) over time.

DEXA-data were used in a randomised trial with 2 years follow up,

comparing the uncemented SymaxTM (n=25) and Omnifit® (n=24) stems. The

effect on BMD was determined using the ‘standard’ adapted Gruen zones, and a

modification which studied an equal length and position for zones 1 and 7

around both stems, assuring that the same regions in terms of cancellous and

cortical bone were compared.

The ‘modified’ regions of interest give lower BMD values around the

Omnifit® than using the ‘standard’ Gruen zones (3.6 % in zone 7, P<0.05). The

difference with the Symax   TM BMD values, which had been concealed using the

standard Gruen zones, became statistically significant in favour of the SymaxTM

implant. 

This adaptation can detect a statistically significant difference in bone

preservation in zone 7 between stems that would otherwise not have been

revealed. We recommend the use of ‘modified’ Gruen zones for more valid

comparison of remodelling caused by different implant designs.
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INTRODUCTION

Preservation of periprosthetic bone around hip prostheses is important. Following

uncemented total hip arthroplasty (THA), dual energy X-ray absorptiometry (DEXA)

has been shown to be a precise and accurate, and a useful tool for assessment of

periprosthetic bone remodelling1-5. However since the introduction of bone

densitometry for this purpose, many different classifications of regions of interest (ROI)

have been applied, making comparison of BMD results between implant designs

difficult. Some of these ROIs were based on implant-related landmarks2,6-8, and

others on various anatomic landmarks on the femur1,4,9.

An important improvement for standardization of ROIs was the application of

the Gruen zones, which were originally designed for analysis of stem loosening on

conventional radiographs10. Since then many authors have adopted these ROIs for

bone densitometry around uncemented and cemented stems11-22. For uncemented

stems with porous or HA proximal coating, these zones were changed to the

‘adapted Gruen-zones’; zones 1 and 7 representing the coated area, and zones 2-3

and 5-6 respectively the lateral and medial

zones, equally divided around the non-

coated part of the stem (Fig. 1). However,

for comparing implants with differences in

design, stem length and coating-area, using

these adapted Gruen-zones may generate

spurious conclusions, because compared

regions are incomparable in terms of their

relative content of cancellous and cortical

bone.

DEXA results of a RCT comparing two hip stems are dependent of ROI choice
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Fig. 1 Drawing showing delineation of ‘adapted

Gruen zones’ 1 to 7 in the AP view around

an uncemented stem with proximal

coating (in this case the SymaxTM ).  



Although it is well accepted that bone preservation after stem insertion is mainly

driven by biomechanical factors such as stress distribution, the extent of

remodelling is also related to the rate of bone metabolism. Cancellous bone is

characterised by a higher bone turnover than cortical bone, which is partly due to

better vascularisation23. Therefore, it may be expected that zones that mainly

contain cancellous bone will show more postoperative bone loss than zones

containing more cortical bone (Fig. 2). This makes comparison of bone density

changes between stems with different proximal coating lengths (zone 1 and 7)

potentially invalid, because the composition of the compared ROI in terms of

cancellous and cortical bone is essentially different22. 

For this reason we performed DEXA-analysis of bone remodelling around two

stem designs with different coating length. We compared results using the original

‘adapted Gruen-zones’ (further referred to as ‘standard’ zones) with those after

adjustment of the ROIs (the ‘modified’ zones), with the objective of assessing

comparable bone areas around both stems. It was hypothesised that there would

be a significant difference in DEXA-results in zone 7 between the two methods,

which would influence the conclusions of a comparison between two stem

designs. We propose ‘modified’ regions of interest that more correctly attribute

remodelling changes to the implant . 
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Fig. 2 DEXA-pictures of the SymaxTM

(left) and Omnifit® (right)

stems of comparable sizes

illustrating how the application

of the original (or ‘standard’)

adapted Gruen zones’ will

result in inclusion of more

cortical bone in zone 7 in case

of the Omnifit®. 



PATIENTS AND METHODES

Patient selection 

An individually randomised, two group, parallel controlled trial comparing bone

remodelling between the uncemented SymaxTM (n=25) and the Omnifit®-HA stem

(n=24) was performed. The indication for total hip arthroplasty (THA) was

osteoarthritis (OA) of the hip in all cases. There were no fractures and no cases of

osteonecrosis of the femoral head. Exclusion criteria were a history of hormonal

therapy, any medication or illness known to affect bone metabolism, and a body

mass index (BMI) higher than 35 kg/m2. After obtaining signed informed consent,

participants were allocated at random to the type of prosthesis by sequentially

drawing sealed opaque envelopes stipulating choice of implant. The surgeon was

unaware of the content and sequence of the envelopes (allocation concealment). 

The original trial was approved by the local Medical Ethics Committee and

performed at the Orthopaedic department of the Maastricht University Medical

Centre (registration nr. 02-072). It was carried out in line with the Seoul

amendment (2008) of the Helsinki declaration.

Implants

The SymaxTM stem (Stryker® EMEA, Montreux, Switzerland) is forged from Ti6Al4V

alloy. It features a proximal plasma-sprayed, commercially pure (CP) Titanium

coating, and a biomimetic electrochemically deposited BONIT® HA coating

(proprietary to DOT GmbH, Rostock, Germany)24,25. Distally the stem is treated

with the Dotize® surface process, which reduces protein adsorption and

consequently distal bone apposition and osseointegration26-28. 

The Omnifit® HA stem (Stryker®, Mahwah, New Jersey, USA) is made of the

same alloy, has a macrotextured surface and a plasma-spray HA-coating on the

proximal 40 % of the stem (Fig. 3). 

Surgical protocol and Postoperative management

All operations were performed by 2 experienced orthopaedic surgeons (R.t.B. and

R.G.) according to identical and standardised orthopaedic procedures using the

postero-lateral approach without osteotomy of the greater trochanter. Patients were

DEXA results of a RCT comparing two hip stems are dependent of ROI choice
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treated with 24 hours intravenous antibiotic prophylaxis (Augmentin®), DVT

prophylaxis with low molecular weight heparin (Fraxiparin®) for 6 weeks and

prophylaxis against heterotopic ossification with non-steroidal anti-inflammatory

medication (Indocid®) for 14 days. Full weightbearing was allowed from day 1. 

DEXA protocol and Regions of Interest 

The primary outcome measure was periprosthetic BMD from baseline to 2 years

follow up. In the first postoperative week the baseline BMD measurement was

performed with the fan-beam Hologic QDR 4500A densitometer (Hologic Inc.,

Waltham, MA, USA) with exact positioning of the leg by stabilizing rotation using

standard knee and foot support devices. A dedicated software programme was

used for removal of the metal hip stem area. Quality control of the densitometer

was executed through daily automatic self-calibration. There was no significant

drift during the study period. All DEXA-scans were made by the same experienced

independent analyst. 

Follow-up evaluations were performed at 6 weeks, 3 months, 6 months, 1

year and 2 years. Analysis of the raw scans was carried out by one member of the

research group (R.H.) who was not part of the surgical staff and blinded for clinical

and radiographic results. 

When comparing implant sizes, the HA-coating is somewhat longer on the

Omnifit®-stem than on the SymaxTM (Fig. 3). Bone density around the SymaxTM was

analysed in one way. BMD around the Omnifit® was assessed in two ways. The

‘standard’ Gruen zones define the length of Gruen zones 1 and 7 by the length of

HA coating, resulting in different lengths for these zones according to prosthesis

selection. Using ‘modified’ Gruen zones, zones 1 and 7 around the Omnifit® are

identical in length to those of the size-matched SymaxTM. In this way comparable

bone areas were analysed for both stems. Gruen zones 2 to 6 were equally divided

around the rest of the stem (Fig. 3). The appropriate matching of SymaxTM and

Omnifit® sizes was confirmed with templating on the preoperative X-ray. 

Preoperative and (one and two year) postoperative DEXA scanning was also

performed of the AP-lumbar spine, to detect abnormal systemic bone metabolism

during study follow-up. The preoperative lumbar scan served as a baseline

measurement for comparison. 
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Radiological and clinical evaluation

Anteroposterior (AP) pelvis and lateral radiographs of the involved hip were taken

at the same follow-up as the DEXA-scans, following a standard protocol. They were

scored according to Engh’s criteria for implant ingrowth29. Clinical results and

physical activity were assessed using the Harris Hip Score (HHS).

DEXA results of a RCT comparing two hip stems are dependent of ROI choice
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Fig. 3 Illustration of the SymaxTM (left) and Omnifit® (right) illustrating the small difference in

coating length between comparable stem sizes.  Good comparison of bone remodelling in

zone 7 makes adjustment of the ‘standard adapted Gruen zones’ around the Omnifit® to the

‘modified adapted Gruen zones’ necessary. 



Statistics

Longitudinal BMD results per Gruen zone are expressed as relative values with the

immediate postoperative DEXA measurement of the operated femur being the

reference value (baseline), set at 100 %. Absolute and relative BMD values are

described by their means and standard deviations, demographic parameters by

mean and range. Deviations from the normal distribution were tested by the

Kolomogorov-Smirnov test. Since no deviations could be observed, the unpaired

Student’s t-test for 2 independent samples was used for comparing the SymaxTM

and Omnifit® group for all ROIs. For the Omnifit®, differences between the

‘standard’ and the ‘modified’ Gruen zones were tested per region with the paired

t-test. Differences with one-sided P-values equal or lower than 0.05 were

considered statistically significant. Microsoft Office Excel 2003 (Microsoft

Corporation, Redmond, Washington, USA) and SPSS software 15.0 for Windows

(SPSS Inc., Chicago, Illinois, USA) was used for data analysis.

RESULTS

Demographic details and initial lumbar BMD (preoperative) between patient

groups showed no important differences (Table I). There was no difference in level

of physical activity among patients postoperatively according to HHS recordings.

At one year follow-up all stems showed radiological evidence of stable bone

ingrowth29, and none of the patients complained of hip pain at the final evaluation.

At two years the lumbar spine BMD did not show a decrease when compared to the

start of the study (t0) in either group. Due to a deviation of protocol and based on

anatomical considerations, one patient received a SymaxTM instead of an Omnifit®.

This same patient was withdrawn from the study because of an intra-operative

fracture requiring revision and preventing full weightbearing. All other patients

consequently had all their scans performed during the entire follow-up and within

the predefined timeframe. All patients who underwent randomization received the

treatment to which they were originally allocated (intention to treat principle).

Results of absolute and relative BMD around the Omnifit® were different

dependent on the use of ‘standard’ or ‘modified’ Gruen zones (results are shown in

Chapter 6

152



Table II and graphically represented in Figure 4). For the Omnifit®, absolute BMD

was consistently lower at every follow-up using the ‘modified’ zones instead of the

‘standard’ zones. In ROI-1 this difference varied between 0.16 g/cm2 (=1.5%) at 6

weeks, and 0.12 g/cm2 (=1.1%) at 2 years. In ROI-7 the difference in BMD was

0.05 g/cm2 (=1.1 %) at 6 weeks, and 0.07 g/cm2 (= 3.1%) at 2 years (P≤0.05). As

can be expected, in the more cortical areas this effect was much smaller. In ROI-2

differences varied between 1.2 % (6 wks.) and 0.1 % (2 yrs.), for ROI-6 this was -

1.2 % and -0.7 %, for ROI-3 this was 0.6 % and 1.2 %, for ROI-4 this was 0 % and

0 %, and for ROI-5 this was -0.6 % and 0 %. All these differences are not

statistically significant.

The difference in BMD between SymaxTM and Omnifit® became more evident

using the ‘modified’ Gruen zones. For ROI-1 the difference increased from 1.3% at

6 weeks to 2.1% at 2 years, and for ROI-7 the difference increased from 1.5% at 6

weeks (P=0.38) to 5.8% at 2 years (P=0.04). At 2 years the difference between the

groups in zone 7 was 2.7% (P=0.20) using the ‘standard’ zones and became 5.8 %

by adapting the ‘modified’ zones (P=0.04). The results show consistently higher

BMD values for the SymaxTM. The differences in zone 7 became statistically

significant from one year onward (Table III).

DEXA results of a RCT comparing two hip stems are dependent of ROI choice
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Table I Patient characteristics and baseline demographic data; Values are given as mean (and

range) or frequencies (and percentage)

Omnifit (24) Symax (25)

Age at operation in yrs, mean (range) 60,4 (39-71) 60,2 (46-72)

Weight in kg, mean (range) 78,5 (60-96) 82,2 (54-105)

Body Mass Index in kg/m2, mean (range) 27,2 (22-32) 27,8 (22-37)

Sex: Male (%) 15 (62.5 %) 12 (48 %)

Baseline BMD spine: normal 16 (66.6 %) 17 (68.0 %)

osteopenic 7   (29.2 %) 7   (28.0 %)

osteoporotic 1   (4.2 %) 1   (4.0 %)
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Table II Perisprosthetic BMD around Omnifit® (N=24) and SymaxTM (N=25) stem during 2 year

prospective follow-up; presenting absolute values per roi, with standard deviation, and

expressed as percentage of baseline reference. For the Omnifit® both ‘standard’ and

‘modified’ Gruen zones are analysed (see Fig. 3 and text)

BMD Omnifit standard adapted Gruen zones
post-op 6 wks 3 mnths 6 mnths 1 yr 2 yrs

ROI 1 1,04 + 0,17 1,02 + 0,16 0,98 + 0,18 0,94 + 0,17 0,92 + 0,17 0,90 + 0,18
100,0% 98,1% 94,2% 90,4% 88,5% 86,5%

ROI 2 1,70 + 0,27 1,69 + 0,28 1,64 + 0,27 1,64 + 0,28 1,63 + 0,26 1,64 + 0,26
100,0% 99,4% 96,5% 96,5% 95,9% 96,5%

ROI 3 1,69 + 0,18 1,66 + 0,21 1,62 + 0,22 1,65 + 0,19 1,68 + 0,19 1,70 + 0,21
100,0% 98,2% 95,9% 97,6% 99,4% 100,6%

ROI 4 1,78 + 0,21 1,77 + 0,21 1,76 + 0,23 1,76 + 0,21 1,77 + 0,25 1,78 + 0,23
100,0% 99,4% 98,9% 98,9% 99,4% 100,0%

ROI 5 1,73 + 0,26 1,72 + 0,27 1,72 + 0,28 1,72 + 0,27 1,77 + 0,29 1,77 + 0,23
100,0% 99,4% 99,4% 99,4% 102,3% 102,3%

ROI 6 1,65 + 0,24 1,63 + 0,26 1,62 + 0,27 1,64 + 0,28 1,66 + 0,29 1,68 + 0,28
100,0% 98,8% 98,2% 99,4% 100,6% 101,8%

ROI 7 1,20 + 0,23 1,13 + 0,20 1,06 + 0,21 1,02 + 0,20 0,99 + 0,20 1,00 + 0,22
100,0% 94,2% 88,3% 85,0% 82,5% 83,3%

BMD Omnifit modified adapted Gruen zones
post-op 6 wks 3 mnths 6 mnths 1 yr 2 yrs

ROI 1 0,89 ± 0,17 0,86 ± 0,16 0,83 ± 0,17 0,80 ± 0,17 0,79 ± 0,17 0,78 ± 0,19
100,0% 96,6% 93,3% 89,9% 88,8% 87,6%

ROI 2 1,67 ± 0,28 1,64 ± 0,26 1,60 ± 0,27 1,61 ± 0,28 1,60 ± 0,28 1,61 ± 0,27
100,0% 98,2% 95,8% 96,4% 95,8% 96,4%

ROI 3 1,70 ± 0,18 1,66 ± 0,22 1,62 ± 0,21 1,65 ± 0,19 1,68 ± 0,19 1,69 ± 0,20
100,0% 97,6% 95,3% 97,1% 98,8% 99,4%

ROI 4 1,78 ± 0,22 1,77 ± 0,21 1,75 ± 0,22 1,74 ± 0,21 1,78 ± 0,25 1,78 ± 0,24
100,0% 99,4% 98,3% 97,8% 100,0% 100,0%

ROI 5 1,72 ± 0,25 1,72 ± 0,26 1,70 ± 0,27 1,67 ± 0,39 1,77 ± 0,29 1,76 ± 0,23
100,0% 100,0% 98,8% 97,1% 102,9% 102,3%

ROI 6 1,60 ± 0,27 1,60 ± 0,28 1,57 ± 0,29 1,59 ± 0,30 1,61 ± 0,31 1,64 ± 0,30
100,0% 100,0% 98,1% 99,4% 100,6% 102,5%

ROI 7 1,16 ± 0,23 1,08 ± 0,20 1,01 ± 0,21 0,97 ± 0,20 0,93 ± 0,20 0,93 ± 0,22
100,0% 93,1% 87,1% 83,6% 80,2% 80,2%

BMD Symax adapted Gruen zones
post-op 6 wks 3 mnths 6 mnths 1 yr 2 yrs

ROI 1 0,96 + 0,17 0,95 + 0,18 0,92 + 0,19 0,89 + 0,18 0,87 + 0,19 0,87 + 0,19
100,0% 97,9% 94,8% 91,8% 89,7% 89,7%

ROI 2 1,74 + 0,29 1,71 + 0,31 1,67 + 0,30 1,65 + 0,29 1,67 + 0,29 1,68 + 0,30
100,0% 98,3% 96,0% 94,8% 96,0% 96,6%

ROI 3 1,76 + 0,21 1,70 + 0,21 1,70 + 0,20 1,69 + 0,22 1,73 + 0,20 1,73 + 0,19
100,0% 96,6% 96,6% 96,0% 98,3% 98,3%

ROI 4 1,85 + 0,22 1,82 + 0,21 1,82 + 0,23 1,84 + 0,21 1,87 + 0,21 1,89 + 0,21
100,0% 98,4% 98,4% 99,5% 101,1% 102,2%

ROI 5 1,77 + 0,22 1,74 + 0,22 1,72 + 0,23 1,76 + 0,23 1,80 + 0,24 1,83 + 0,24
100,0% 98,3% 97,2% 99,4% 101,7% 103,4%

ROI 6 1,66 + 0,18 1,63 + 0,20 1,62 + 0,20 1,64 + 0,20 1,67 + 0,21 1,71 + 0,20
100,0% 98,2% 97,6% 98,8% 100,6% 103,0%

ROI 7 1,29 + 0,20 1,22 + 0,18 1,17 + 0,19 1,13 + 0,21 1,12 + 0,22 1,11 + 0,22
100,0% 94,6% 90,7% 87,6% 86,8% 86,0%
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Fig. 4 Graphs showing mean relative BMD of the ROIs 1 to 7 during 2 year follow-up, comparing

the SymaxTM (◆) with both the ‘standard Gruen zones’ (■) and the ‘modified Gruen zones’

(▲▲) around the Omnifit® stem, with the immediate postoperative BMD set at 100 % (=

baseline reference). BMD = bone mineral density



DISCUSSION

Background

As a result of the modification of Gruen zones we observed a difference in BMD

around the Omnifit®t between the original (‘standard’) and the ‘modified’ Gruen

zones varying between 0 and 3.1 % in ROI 1 and 7, being higher using the

‘standard’ zones. Because the more distal zones are mainly cortical, their relative

compositions do not change much when using the ‘modified’ Gruen zones.

Consequently there is no clear difference in BMD between the two methods in

zones 2 to 6. The improved preservation of bone stock around the SymaxTM stem

compared to the Omnifit® became clearer using ‘modified’ zones, and also

statistically significant. This difference was not revealed using the ‘standard’ zones.

The difference between the SymaxTM and Omnifit® in proximal coating length,

and consequently the difference in length of zone 1 and 7 using ‘standard’ zones,

is small. Nevertheless the effect on BMD results is evident, and emphasises the

value of the modification. In case of larger differences in coating length this

phenomenon might be even more important because the ‘standard’ zones might

reveal more prominent differences in proximal BMD. This would (superficially)

suggest remodelling differences between the implants, but in fact would simply

represent incomparable ROIs. A clear example of this is seen in the study of Rahmy

et al22. He compared a Mallory Head (MH) (Biomet, Warsaw, Indiana, USA) with

an Anatomique Benoist Girard (ABG) (Stryker, Newbury, UK), both uncemented

stems made of titanium alloy with a proximal HA coating. The authors mainly

attributed the difference in remodelling to design-related loading patterns.

However the large stem and coating length in combination with the use of

Chapter 6

156

Table III P-values of differences in BMD between the Symtax® and the Omnifit® using ‘standard’ and

‘modified’ zones.

6 weeks 3 months 6 months 1 year 2 year

Symax versus Omnifit standard 0.47 0.26 0.28 0.10 0.20

Symax versus Omnifit modified 0.38 0.08 0.11 0.01 0.04



‘standard’ Gruen zones as an important cause for the relatively small bone loss

around the MH (- 6.2 % versus – 16.5 % for the ABG), was not recognised. Because

of the length of the proximal coating on the MH stem, the adapted Gruen zones 1

and 7 are much larger compared to the same ROIs around the shorter ABG stem. As

a result these larger ROIs contain more cortical bone, which undergoes less

remodelling and therefore suggests better preservation of bone stock. In their study

it remains unclear whether prosthetic properties or the choice of ROIs contributes

most to the apparent difference in remodelling between the compared implants. 

In our study there were no differences in lumbar spine BMD between the

implant groups at the start of the study and at 2 years follow-up, illustrating that

differences in bone remodelling between the groups could not be explained by

metabolic bone disease in either group, or by difference in age-related bone

density changes. 

Bone remodelling can be considered as a surface phenomenon, as the

remodelling cycle is initiated by osteoclastic removal of bone from the bone surface.

Therefore, the remodelling potential of bone is dependent on the amount of internal

pore surface in the bone for bone apposition or resorption, as observed by Martin et

al30. This may explain why cancellous bone tends to remodel more extensively than

cortical bone, and stress shielding will have more effect in the proximal metaphysis

than in the diaphysis of the femur31. At the same time the cancellous bone in Gruen

zones 1 and 7 is characterised by better vascularisation responsible for higher bone

metabolism, and consequently stronger remodelling effects23. Muller et al21

discriminated between quantitative bone loss, expressed as relative change of bone

mineral content (BMC) compared to the initial value at operation, and qualitative

bone changes, to stress the geometrical adaptations in terms of bone volume and

shape. The first, also called ‘internal remodelling’, is responsible for changes in

periprosthetic bone density (BMD), and can be compared with what is measured in

most other studies. It can be considered as the way in which cancellous bone reacts

to loading, explaining the changes in Gruen zones 1 and 7. Qualitative modelling or

‘external modelling’ represents structural bone changes that mainly take place in

cortical bone. They are recognised as adaptations in bone area (like cortical

hypertrophy) without a change in BMD, seen in zones 2 to 6.
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It can be argued that for correct comparison of periprosthetic bone remodelling,

the regions of interest should be exclusively related to anatomic landmarks on the

femur, independent of implant or coating dimensions1,4,9, leading to fixed sizes of

ROIs for all compared stems. However, this would prevent assessment of the

remodelling effects of bioactive coatings, applied to variable parts of the surface.

Whether bone adaptations are due to implant specific characteristics can only be

judged if Gruen zone differences, caused by unequal stem or coating lengths, are

taken into account but not allowed (on their own) to determine the zones of

comparison. 
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ABSTRACT

This study assessed whether the SymaxTM implant, a modification of the

Omnifit® stem (in terms of shape, proximal coating and distal surface treatment),

would yield improved bone remodelling in a clinical DEXA study, and if these

results could be predicted in a finite element (FE) simulation study. 

In a randomized clinical trial, 2 year DEXA measurements between the

uncemented SymaxTM and Omnifit® stem (both n = 25) showed bone mineral

density (BMD) loss in Gruen zone 7 of 14% and 20%, respectively (P< 0.05). In

contrast, the FE models predicted a 28% (SymaxTM) and 26% (Omnifit®) bone

loss. When the distal treatment to the SymaxTM was not modelled in the

simulation, bone loss of 35% was predicted, suggesting the benefit of this

surface treatment for proximal bone maintenance. 

The theoretical concept for enhanced proximal bone loading by the

SymaxTM, and the predicted remodelling pattern were confirmed by DEXA-

results, but there was no quantitative match between clinical and FE findings.

This was due to a simulation based on incomplete assumptions concerning the

yet unknown biological and mechanical effects of the new coating and surface

treatment.

Study listed under ClinicalTrials.gov with number NCT 01695213.

Chapter 7

164



INTRODUCTION

Successful biologic fixation of uncemented total hip prostheses is inevitably

associated with resorptive bone remodelling, because of load sharing and stress

protection of bone by the implant. This has been a concern in the early generations

of stems where proximal femoral bone loss up to 62 % was detected, both

experimentally as well as clinically1,2. This bone resorption may in the long term

compromise implant support, cause periprosthetic bone fracture and challenge

revision procedures. Therefore in the development of new total hip designs, a need

is felt for diagnostic tools that can discriminate between superior and inferior

implants. Such tools should be able to predict unacceptable clinical outcome like

excessive bone loss, high risk of loosening and revision, in an early postoperative

or even preoperative stage. 

For this purpose finite element analysis (FEA) has been used to estimate loads

and stresses in periprosthetic bone and interfaces3,4. Through Numerical Shape

Optimization (NSO) the optimal geometry and material of an implant were

calculated, based on predefined goals in terms of maximally acceptable strains and

stresses in the bone and interfaces5. 

The major limitation of the FE-technique is that it remains a computer model

that makes several assumptions on implant material properties, bone properties6,

implant-bone interface conditions7, and loading-boundary conditions (interface

loading forces during daily activities, hip and muscle forces)8. It is obvious that

because of all these assumptions, the extent to which FE-models can realistically

simulate failure mechanisms, is uncertain. 

Despite these limitations, it is generally accepted that FEA can adequately

predict qualitative bone remodelling around implants as these FE-models are

suitable to address the relationship between mechanical stimuli and bone

remodelling9. Bone remodelling is often expressed as the postoperative change in

periprosthetic bone mineral density (BMD) as measured by dual energy X-ray

absorptiometry (DEXA). In recent years several studies have been performed to

retrospectively correlate 2-D and 3-D FEA predictions with the effects on bone

density10-12. Attempts were focused on finding a quantitative relationship between

absolute values of stress in the bone at implantation, and subsequent remodelling
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changes in terms of BMD-values. By analyzing bone remodelling around a known

implant one can propose changes to its design in order to improve the load transfer

between implant and bone and reduce bone resorption. 

As an example the SymaxTM stem has been developed from the Omnifit®

design in order to modify the press fit characteristics of the proximal stem

geometry. A more bioactive biomimetic BONIT®-HA coating, applied to the

proximal part of the stem, should also result in faster, deeper and more extensive

bone-implant contact, as could be confirmed from a recent human retrieval

study13, and from experimental studies in animals14. It has been shown that

osteoconductive coatings like hydroxyapatite may be used to promote proximal

stress transfer, diminishing effects of stress shielding1,15,16. Furthermore the Dotize®

treatment on the distal part of the stem was used to prevent bone apposition in that

area, and enhance loading of the proximal femur13. 

In this study periprosthetic bone stock preservation around the two stem

designs was compared in a prospective randomized clinical trial (RCT). Secondly it

was assessed whether the results of the clinical trial could have been predicted by

the FE simulations.

MATERIAL AND METHODS

Implants 

The Omnifit® HA stem (Stryker®, Mahwah, New Jersey, USA) is forged from

Ti6Al4V alloy, has a macrotextured surface and a plasmaspray HA-coating on the

proximal 40 % of the stem (Fig. 1). The HA coating has a thickness of 50 µm (45 -

65) with a porosity of < 3 %. The HA after spraying has a relatively high crystalline

phase of 65 %. The implant is a successful and well documented uncemented HA-

coated stem17-19. 

The uncemented SymaxTM hip stem (Stryker® EMEA, Montreux, Switzerland)

was based on shape optimization of the Omnifit® stem. Preclinical design studies

consisted of CT-investigations combined with finite element analyses to optimize

fit and fill with even stress distribution without peak stresses in the bone and at the

interface. It is also made of Ti6Al4V, features a proximal plasma-sprayed CP
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Titanium coating with an open porosity of 20-40 % to enhance initial stem fixation,

and a biomimetic electrochemically deposited BONIT®-HA coating with a high

porosity of 60 %, and 10-20 µm thick (proprietary to DOT GmbH, Rostock,

Germany) (Fig. 2)20. The adhesion strength of both HA-coatings is comparable and

about 65 MPa. 

Improving Peri-Prosthetic Bone Adaptation around Cementless Hip Stems

167

Fig. 1 The HA Omnifit® hip stem, geometri-

cally a straight double wedge design,

is made of Ti-alloy, has a macro-textured

surface of which the proximal 40 % is

plasma sprayed HA-coated, and has a

distal matte finish, all aimed at proximal

fixation. The HA-coating is highly crys-

talline (65%) explaining slow resoba-

bility.

Fig. 2 Illustrations of the SymaxTM stem in AP

(left) and lateral (right) vue, showing a

straight stem with the neck in an ante-

verted position. It features a proximal

plasma-sprayed CP Titanium layer, with

a biomimetic electrochemically deposited

BONIT®-HA coating of very high porosity

of 60%, and only 10-20 μm thick. Distally

the stem is treated with the Dotize®

surface process, which reduces distal

bone apposition and osseointegration.



Distally the stem is treated with the Dotize® surface process, an electrolytic

conversion of titanium surfaces in which the thin native oxide film is replaced by a

thicker oxidized surface layer that reduces protein adsorption and consequently

distal bone apposition and osseointegration20.

CLINICAL TRIAL STUDY

Design and patient selection 

A prospective, individually randomized, two group, parallel comparative trial was

performed between the uncemented SymaxTM (n=25) and the Omnifit®-HA stems

(n=25). The indication for total hip arthroplasty (THA) was in all cases osteoarthritis

(OA) of the hip. Exclusion criteria were a history of hormonal therapy, any

medication or illness known to affect bone metabolism, and a Quetelet index (BMI)

higher than 35. After signing the appropriate informed consent forms, patients were

allocated at random to one of either group in a 1:1 randomization ratio. The allocation

sequence was generated by an independent trial bureau and concealed from the

operating surgeon. Participants were enrolled from sequentially numbered, identical,

opaque, sealed envelopes just before the operation, the surgeon being unaware of the

content and sequence of the envelopes (allocation concealment). Both groups were

comparable in terms of patient demographics (see Table 1). The study was approved

by the local Institutional Review Board prior to the start of the study (registration no.:
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Table 1 Patient characteristics and baseline demographic data

Omnifit® SymaxTM

Mean age at operation in years (range) 60.4 (39-71) 60.2 (46-72)

Weight in kg (range) 78.5 (60-96) 82.2 (54-105)

Body Mass Index (range) 27.2 (22-32) 27.8 (22-37)

Male/Female 15/9 12/13

Normal start BMD 16 17

Osteopenic/osteoporotic start BMD 7/1 7/1



02-072), is listed in the Clinical Trials Registry (ClinicalTrials.gov identifier: NCT

01695213), and was carried out in line with the Seoul amendment (2008) of the

Helsinki declaration. 

Surgical protocol and postoperative management 

All operations were performed randomly by the same 2 staff surgeons (R.t.B. or

R.G.) according to completely identical and standardized orthopaedic procedures

using the postero-lateral approach. Patients were treated with 24 hours intravenous

antibiotic prophylaxis (Augmentin®), DVT prophylaxis with a small molecular

heparin (Fraxiparin®) during 6 weeks and standard prophylaxis against heterotopic

ossifications with an NSAID (Indocid®) for 14 days. Patients were allowed to full

weightbearing from day 1. 

DEXA protocol 

In the first postoperative week the baseline

BMD measurement was performed with the

Hologic QDR 4500A densitometer (Hologic

Inc., Waltham, MA, USA) according to the

protocol, including exact positioning of the

leg with stabilizing rotation using standard

knee and foot support devices. Quality control

of the densitometer was executed through daily

automatic self-calibration, not showing any

significant drift during the study period. Con-

sidering a difference in length of HA-coating

between the stem-designs, the periprosthetic

regions of interest (ROI) were placed around

the stem according to adapted Gruen zones in

such a way that ROI 1 and 7 covered compa-

rable bone areas, and ROIs 2 - 6 were equally

divided around the rest of the stem (Fig. 3).

DEXA scans were taken from the AP lumbar

spine in the first postoperative week, serving
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Fig. 3 Drawing showing delineation of

Gruen zones 1 - 7 in the AP view

around the SymaxTM stem.



as a baseline measurement for comparison to referenced normals. This was repeated

at 24 months follow-up to monitor any systemic changes in bone, not related to the

effect of the THA. All DEXA-scans were done by the same independent analyst. 

Follow up evaluations were performed at 6 weeks, 3 months, 6 months, 1

year and 2 years, and analysis of all raw scans was independently done by one

member of the research staff (R.H.) without involvement of the operating surgeon.

Statistics of the clinical trial

Longitudinal BMD results (in g/cm2) per Gruen zone are expressed as relative

values with the immediate postoperative DEXA measurement of the operated

femur being the reference value, set at 100 %. Absolute and relative BMD values

are described by mean and standard deviation, demographic parameters by mean

and range. Since no deviations from normal distribution could be observed,

comparing the SymaxTM and Omnifit® group in any of the ROIs, the one-sample t-

test in cases of paired data (comparisons within a group) and the two-sample t-test

in cases of unpaired data (comparisons between groups) was used. 

The statistically required sample size is based on a power-analysis performed on

the ability to detect a minimal mean difference of BMD-results between stem designs

(δ). Based on earlier studies we assumed this difference to be 25 %. By convention,

an a-error rate of 0.05 was adopted, and the β-error was set at 0.20 (power 1- β = 80

%). We were planning a study of a continuous response variable from independent

control and experimental subjects with 1 control(s) per experimental subject. In a

previous study the response within each subject group was normally distributed with

standard deviation 25%. If the true difference in the experimental and control means

was 20%, we would need to study 25 subjects in the SymaxTM arm and 25 subjects in

the Omnifit® arm to be able to reject the null hypothesis that the population means of

these groups were equal with probability (power) 0.8. The type I error probability

associated with the test of this null hypothesis was 0.05. 

Microsoft Office Excel 2003 (Microsoft Corporation, Redmond, Washington,

USA) and SPSS software 15.0 for Windows (SPSS Inc., Chicago, Illinois, USA) was

used for data analysis. 
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Finite element bone remodelling study

Finite element model

We used a validated FEM-model of CT data of a human femur21. The bone was CT

scanned along with a calibration phantom (solid, 0, 50, 100, 200 mg/ml calcium

hydroxyapatite, Image Analysis, Columbia, KY, USA). The data was processed using a

medical imaging software package (MIMICS 11.0). Subsequently, we created two

uncemented THA reconstructions implanted with the Omnifit® and the SymaxTM stem.
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Fig. 4 The reconstruction was subjected to the loading

condition of normal walking (toe off and heel strike)

and the peak force during stair climbing.

Table 2 Details of joint contact and muscle force vector directions and magnitudes

Loadcase Walking (toe off) Walking (heel strike) Stair climbing

Direction Fx Fy Fz Fx Fy Fz Fx Fy Fz

Hip Contact -432N -263N -1833N -342N 29N -1575N -475N -485N -1890N

Abductors 518N 122N 646N 375N 6N 369N 664N 237N 618N

Vastus lateralis -7N 148N -743N 0 0 0 -18N 179N -1081N

Vastus medialis 0 0 0 0 0 0 -70N 317N -2137N

Superior-inferior / Fz

Anterior-posterior / Fy

Lateral-medial / Fx



The stems were positioned in the virtual bone by an experienced surgeon (R.t.B.), using

in-house software (DCMTK MFC 10.8), which allows manipulation of a solid (stem)

model within the visualized CT-data of the femur21. The models of the reconstructions

were solid meshed using an FEA preprocessor (Mentat 2007r1, MSC Software), and

they consisted of ~97.000 and ~18.000 linear four-noded tetrahedral elements for the

bones and stems, respectively22. The isotropic properties of cortical and trabecular

bone were derived from the calibrated CT data. The calibration phantom was used to

convert Hounsfield Units (HU) to calcium equivalent densities (ρCHA ). An in-house

software package was used to assign a calcium equivalent density (ρCHA ) to each

element, based on the average ρCHA value of all pixels in the element volume. The ash

density was computed using relationships specific to the type of phantom used (ρash =

0.0633 + 0.887 ρCHA). The elastic modulus (E, MPa) was computed for each element

from ash density (ρash) using correlations for trabecular and cortical bone23. The elastic

modulus of the stems was set to 105 GPa. The Poisson’s ratio for the bone and implant

was set to 0.324. The reconstructions were fixed distally and subjected to an alternating

loading history of normal walking and stair climbing (Fig. 4 and Table 2)25.

Bone remodelling and DEXA simulation

We used the strain adaptive remodelling theory to simulate changes in bone mineral

density in time (dρ/dt)26. The size of ‘dead zone’ and computer time unit were

determined in our previous remodelling study in which we utilized the same bone

model21. In that study the FE remodelling prediction around the EPOCH FullCoat

stem was fitted to 2 year clinical DEXA data in order to define the adequate ‘dead

zone’ and to determine the time unit in the simulation27. The best fit was obtained

for dead zone value 0.35 and time unit 60 (meaning that 60 computer time units

correspond to 2 year clinical reality). A further description of the remodelling theory

used is given in our previous remodelling study21. These previously determined

values of ‘dead zone’ and time unit were used here when performing the

remodelling prediction in the reconstructions with the Omnifit® and SymaxTM

stems. To allow for clinically relevant interpretation of the remodelling results, we

used an in-house software package (DCMTK MFC 10.8) to project the FE results of

bone remodelling onto 2D virtual DEXA images. This in-house algorithm maps a 3D

voxel mesh onto the FE reconstruction. Each pixel in 2D DEXA image has a calcium
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equivalent value corresponding to the summation of the calcium equivalent values

of 3D voxels along the chosen DEXA scan axis. Detailed description of the in-house

algorithm used here is also given in our previous study21. 

We defined the seven Gruen zones according with the guidelines28, adapted

for uncemented stems with proximal coating, and computed bone density (BMD)

(g/cm2) and local bone mineral content (BMC) (g) at one and two years

postoperatively for each implant composition. The bone loss predicted by our

simulations was defined as a percentage of the pre-operative bone mass. 

Cases analyzed

The design changes of SymaxTM relative

to the Omnifit® stem concerned three

aspects: the shape, proximal coating and

treatment of distal stem with Dotize®

surface process. The geometry and distal

surface treatment were modelled in our

FE study, but the differences between

proximal coatings of both stems were not

simulated as both stems were assumed to

be bonded at the coated locations. The

difference in design (geometry, offset and

stem length) was modelled based on

CAD-files provided by the manufacturers.

Equal loading conditions were applied to

both stems. The radiography findings in

the reconstruction with SymaxTM reveal

reactive lines around the anodized

surface of the stem (Fig. 5). However, the

actual effect of the distal surface

treatment of the SymaxTM stem would be difficult to predict pre-clinically. Therefore,

we simulated two extreme cases for the SymaxTM stem (with a gap of 0.5mm around

the distal part of the stem, and without a gap assuming a frictional contact (µ=0.3)

between implant and bone distally). While, in the reconstruction with Omnifit® stem
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Fig. 5 X-rays showing reactive lines in Gruen

zone 2 up to and including zone 6

(AP view, left), and zone 9 up to and

including zone 13 (lateral view, right)

around a SymaxTM stem. This is a sign

of absence of bone attachment in the

distal anodized part of the stem.



the distal implant-bone interface was modelled by assuming a frictional contact (µ=0.3)

between implant and bone29. Hence, we simulated one case for the Omnifit® stem

and two cases for the SymaxTM stem (either with or without a distal gap). 

RESULTS

Clinical DEXA results 

There was no statistical difference in the demographic details and initial bone quality

between patients in either group, confirming that preoperative conditions between

the two groups were comparable (Table 1). There was one patient (Omnifit®)

withdrawn from the study because of protocol violation, no further patients were lost

to follow-up (see flow chart Fig. 6). There was no difference in physical activity

among patients postoperatively, as assessed with the Harris Hip Score. 

All patients had all their scans performed during the entire follow-up and within

the predefined timeframe. At one year follow-up all stems showed radiological

evidence of stable bone ingrowth according to the classification of Engh et al.30. At one

and two years the lumbar spine BMD did not show significant difference between the

implant groups, nor between t0 and t2 years values. This illustrates that differences in

bone remodelling could not be explained by metabolic bone disease in one or either

group, nor by activity or age-related differences in bone density between the groups.

Evolution of BMD in both implant groups is represented graphically in Fig. 7.

A decrease in BMD was detected with both stems in all Gruen zones except zone 4,

at 3 months after surgery, varying between –1.9% and – 9.5% for the SymaxTM

prosthesis and between – 1.0% and – 13.0% for the Omnifit® prosthesis. Starting

between 3 and 6 months postoperatively, complete recovery of bone loss was

initiated in zones 2, 3, 5 and 6. In zone 1 and particularly zone 7 however there was

additional bone loss, increasing to – 20.3% for the Omnifit®, and –14 % for the

SymaxTM. Only in zone 7 the difference in bone loss between the two stem designs

was statistically significant during the entire follow-up, starting from 6 weeks and in

favour of the modified stem, with P-values of 0.05 (at 1 year) and 0.01 (at 2 years). In

all other zones (1 – 6) there was no statistically significant difference in remodelling,

although BMD values were consequently higher in the modified stem group.
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Remodelling prediction versus clinical findings

There were considerable differences in predicted bone loss between the simulated

SymaxTM reconstructions with and without direct distal contact between stem and

bone (Fig. 8). In the reconstruction without a distal gap (= simulating frictional

stem-bone contact), bone resorption was considerably greater especially in Gruen

zone 6 and 7. Bone loss at 2 years postoperatively was 35% in the Gruen zone 7

for the SymaxTM reconstruction without a gap and 28% in the reconstruction with
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Fig. 6 Patient enrolment flow diagram
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Fig. 7 Graphs showing BMD course of the ROIs 1 to 7 and net average in a longitudinal study for

2 years, comparing the SymaxTM (◆) and the Omnifit® (▲) stem, with the immediate

postoperative BMD set at 100 % (= baseline reference). Only for the differences in ROI 7

statistical significance (P< 0.05) was seen at all postoperative time points.



a distal gap. FE remodelling prediction for the SymaxTM reconstruction with a gap

was better correlated with clinical findings than the prediction for the SymaxTM

reconstruction without a distal gap. Thus, the SymaxTM reconstruction with a distal

gap was more suitable for FE remodelling prediction, especially as the clinical and

retrieval findings confirmed no direct contact between implant and bone distally

for the SymaxTM reconstructions.
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Fig. 8 Clinical DEXA data per Gruen zone (with standard deviation) around the Omnift® and

SymaxTM stem at 1 year (top) and 2 years (bottom) postoperatively, combined with the FEM

predictions on remodelling. For the SymaxTM predictions are given with a gap around the

distal stem (no friction at the interface) and without a simulated gap around the distal stem

(in other words with friction at the interface).



There were differences in FE-predicted bone loss between the Omnifit® stem and

the SymaxTM stem. In Gruen zone 7 slightly greater bone loss at 2 years was

predicted for the reconstruction with the SymaxTM stem with a distal gap (-28% for

SymaxTM versus -26% for the Omnifit® stem, see Fig. 8). However, in zones 1 - 6 the

SymaxTM stem was expected to cause less bone resorption than the Omnifit® stem. 

This FE-predicted pattern of bone remodelling matched the clinical findings

only partially. The correlation between clinical data and FE-predictions was rather

poor for the SymaxTM in zone 7, and for the Omnifit® in zone 6 (both at 2 years).

In Gruen zone 7 DEXA-measured bone loss at 2 years was significantly smaller for

the SymaxTM (-14% versus -20.3% for the Omnifit®, P=0.01), while FE simulations

had predicted a slightly larger bone loss (-28 % for the SymaxTM versus -26% for

the Omnifit®). 

DISCUSSION

In the clinical part of this study it was tested if the design changes implemented in

the modified (SymaxTM) stem would result in less bone resorption (DEXA) in the

proximal Gruen zones when compared to the Omnifit®. Secondly, we investigated

if a FE model would yield similar results as seen clinically for both stems.

Considering the DEXA-findings of successive generations of uncemented

stems with bone loss varying between 15% and 70%, we found the results of the

modified stem promising, with regard to preservation of bone quantity. There was

only a modest maximal bone loss (calcar area 14%, greater trochanter 10.4%),

which is a normal representation of proximal osseointegration, but it illustrated

improved metaphyseal bone loading compared to several other designs. More

distally there was hardly any BMD loss at all indicating excellent preservation of

bone in the regions where no osseointegration was intended. It could therefore be

confirmed that the geometry of the modified stem, based on the proximal „fit and

fill“ principle, in combination with the proximal BONIT®-HA coating and the

distal Dotize® surface treatment, were able to improve stress transfer from the

implant to bone in the important zone 7. DEXA results for the Omnifit® in our

clinical trial were similar with earlier assessment performed by Sluimer et al. (16%
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and 20% at 2 years for zone 1 and 7 respectively, versus 13% and 20% in the

present study)31. This confirmed reliability and validity of our clinical DEXA data. 

In contrast to the clinical findings, the FE simulation calculated greater bone

loss in Gruen zone 7 for the SymaxTM stem. Furthermore, in the other Gruen zones

FE simulation showed greater bone loss for the Omnifit® when compared to the

SymaxTM (reconstruction with a distal gap), while clinically no considerable

differences were found. Even though the FE remodelling prediction did not yield

the same results in individual Gruen zones as the clinical DEXA study, the effect of

design changes in the SymaxTM stem could be seen in the reduction of bone loss

around this stem in the reconstruction with a distal gap. 

Given that the same bone model was used for two stems designs, our FE

simulations allowed us to make comparisons considering the effect of shape and

interface conditions on remodelling. In the present study we showed that the

simulation was capable of capturing gross differences in bone remodelling between

two THA reconstructions, but was likely not suitable for prediction of minor changes

in load transfer patterns. There are several explanations for the discrepancy between

these clinical findings and our FE calculations. Firstly, there are differences in bone

quality and loading condition between the group of patients and the model.

Secondly, we simulated remodelling around only one bone model implanted with

one implant size, while the clinical results were averaged over data of 25 patients

with variable bone quality and implant size. Thirdly, the loading condition in our

simulation was not changed between the pre and postoperative situation. In reality

after the post-surgery rehabilitation period patients become more active, which may

reduce the resorption rates around both stems. 

There are more variables that influence DEXA changes than exclusively those

incorporated in the strain adaptive bone remodelling concept. As stimulus to drive

the bone remodelling we used the strain energy density, although some authors

have suggested to include other stimuli as well such as micro-damage at areas

where bone may be overloaded32. Inclusion of other stimuli will obviously alter the

outcome, although with the types of stems analyzed in this study the amount of

micro-damage due to overload would probably have been modest. Furthermore, an

immediate stimulus affecting bone remodelling can be expected from the surgical

trauma of the reaming and implantation. This causes a catabolic reaction as a result
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of the inflammatory changes and degradation of bone33. This has to be repaired and

neutralized before the (bio)mechanically induced bone apposition and resorption

can exclusively be held responsible for further DEXA changes34. Therefore during

the first three to six months there are more disturbing factors than exclusively

biomechanical ones that determine DEXA results. This may explain why the match

between FE predictions and DEXA results is not high during the first postoperative

year. However, at two years the remodelling balance between apposition and

resorption is restored and considered to be mainly mechanically determined. At that

moment correlation between predicted and real bone density should be higher. 

Another limitation of the FE remodelling simulation is the fact that it neglects

the dynamic process of osseointegration. Huiskes recognized that the degree of

stress shielding is indeed affected by the bonding conditions of the implant-bone

interface35. Therefore knowledge about the extent of osseointegration of a new

uncemented implant, from retrieval analysis and histomorphometry, is paramount

for generating realistic FE-remodelling predictions. As bone remodelling is a

longer-term process (in the order of a few years), it is common in FE simulations to

assume that coated areas can be considered as bonded11,36,37. Hence, in this study

we also assumed that the surface area with the proximal coating was fully bonded

in both stem cases. However, from retrieval studies this ideal situation has been

shown not to be realistic. Porous coated prostheses usually show a bone-implant

contact (BIC) of less than 20%38,39. BIC of HA-coated stems varies between 20%

and 78% depending on the design18,38,39. Furthermore osseointegration is not a

static but dynamic process in time and will depend on implant geometry, stem

stiffness, surface treatment, type of coating and their degradation characteristics.

The retrieval study of the SymaxTM hip stem illustrated a progressive direct bone-

implant contact in time increasing from 26.5% (at 3 weeks) to 83.5% (at 13

months)13, which was different from that of the Omnifit®18. Due to the plasmaspray

technique the relatively thick (> 50 μm) HA-coating occluded the low porosity

surface of the Omnifit®, resulting in only superficial ongrowth of bone. However in

case of the SymaxTM the electrochemical deposition of the highly bioactive Bonit-

HA created a thin (10-20 μm) coating of the entire pore depth of the highly (60%)

porous TPS layer, leading to accelerated and deep bony ingrowth. This progressive

bonding and osseointegration will have an effect on the amount of migration and
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load transfer from implant to bone, and on the resultant remodelling process, but

this is typically not incorporated in finite element models. Furthermore it was

found that normal contact stiffness and the friction coefficient increase several

times as bone grows into the rough surface of the implant and mineralises, thus

providing a changing interface with improving secondary stability40. At this point,

the effect of a gradually fixating bone-implant interface is difficult to estimate. On

the one hand a debonded interface transfers higher local loads and therefore triggers

more local bone apposition; on the other hand a proximally fixed interface

promotes more proximal load-transfer on a more global scale. In any case, the

assumption of a bonded interface at coated areas is over-simplified and probably

should incorporate a time-dependent change of stem-bone bonding41. Dickinson et

al. have proposed a FE based algorithm which combined implant–bone interface

healing with bone remodelling and confirmed that a more clinically realistic bone

remodelling is obtained when these two processes are simulated in concert42. 

Compared to the Omnifit®, the SymaxTM is distinctly different in two ways; the

geometry and the surface and coating characteristics. Literature has shown that the

effects of geometry and material changes can be simulated reliably with the FE-

technique. Amongst the many features held responsible for stress shielding, the

mismatch in elasticity modulus between hip stems and bone is considered most

important in causing stress mediated disuse atrophy of bone. Therefore focus has

been on creating more flexible stems43. The metaphyseal fit-and-fill design of the

SymaxTM, showing larger cross-sectional dimensions, and therefore being stiffer,

was expected to cause more stress-shielding26,44. However this stem proves to

preserve periprosthetic bone at least as good as flexible stems45,46, and better than

almost all proximally and entirely porous or HA coated stems2,31,47. This illustrates

that interactions between various determinants of stress shielding and resulting bone

remodelling are still not completely understood and hard to capture in an

exclusively mechanical model. The same applies for the effect of the distal Dotize®

treatment. The effects of new coatings on interface properties appear to be even

more difficult to predict. To improve predictions, simultaneous ingrowth simulation

and remodelling simulation should be performed. This would require quantification

of the mechano-biological aspects of coatings after which this can be implemented

in FE simulations. Subsequently, these studies need to be validated with results of
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retrievals and measurements of qualitative and quantitative bone changes. Various

scenarios can then be simulated, and it can be tested how sensitive the FE-models

are for changes in bonding conditions and for the dynamics of the osseointegration-

process in time. 

Several attempts have been conducted to simulate and predict adaptive

periprosthetic bone remodelling in computer models that combine bone remodelling

theories with finite element analysis. Validation of these FE-simulations were mostly

based on animal experiments48,49, post mortem retrieval studies10, and retrospective

clinical densitometry studies with DEXA12,50 or 3D-volumetric CT-analysis51.

Although correlation between predicted density changes and clinical data was

mostly low, it was nevertheless concluded that bone remodelling after THA could be

explained by a mechanical model10,37. Other studies have found higher clinical-

modelling correlations, but these were obtained only after retrospective fitting of the

model on DEXA results available from earlier studies11,12,47. 

This implies that preclinical FE-predictions in new designs triggering

unquantified biological processes may be hazardous, because it remains difficult

(as in our study) to anticipate on how biological tissues (like bone) will react on, for

example, new implant properties (surface treatment, coating morphology, release

of Ca-ions). In a recent review it was recognized that in models incorporating

biological processes, the number of model parameters that have to be identified

and translated into measurable physical or physiological quantities is high.

Furthermore these parameters may show considerable variation between subjects

of the research population. Therefore several levels of quantification and validation

are required to improve the accuracy with which the model can predict physical

phenomena52. 

We conclude that, based on the clinical DEXA results, the theoretical concept

for improved proximal bone loading of the femur by the SymaxTM stem is correct,

and that the effect of distal stem treatment preventing bone ingrowth appears to

have a positive effect on proximal bone maintenance. However, likely due to only

partial modelling of differences in implant-bone interface conditions between both

reconstructions, the FE-model could not completely match the clinical findings.

Further quantitative data about biological phenomena are required to feed the FE-

models in order to advance from case-specific simulations to reliable preclinical
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predictions of bone remodelling (or even implant survival) of new designs in

averaged patient populations, particularly if multiple biological aspects are

changed in a prosthetic design. Only then recommendations for multifaceted

design changes of implants can be reliable.
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ABSTRACT

Finite element (FE) simulations play an increasing role in design optimization of

orthopaedic implants. Bone remodelling after total joint arthroplasty and failure

scenarios are simulated in mathematical equations, and it is claimed FE-models

can predict implant failure.

However properties of living dynamic tissues, like bone, are inherently

complex, and difficult to represent in physical quantities. To integrate biological

processes in computerized principally mechanical models, assumptions have to be

made on variables of implant, bone, their interfaces, and the way they behave in

mechano-biological algorithms under loading and (un)bonded circumstances. This

introduces simplifications that may follow biomechanical principles, but of which it

is uncertain if it represents physiological strain adaptive bone remodelling, and

consequently how realistic predictions of bone and implant behaviour can be.

Refinements in FE-meshes, and more realistic translations of dynamic bone

properties and biochemical interface interactions are necessary. Better

understanding of clinical failure scenarios, and improved assessment of bone

changes are imperative. Finally realistic validations of the FE-technique are needed,

particularly through prospective comparison of computational simulations with

clinical results, to establish the additional value of the FE-method in improving

implant designs. 
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INTRODUCTION

The success of total hip arthroplasty both clinically and socio-economically can

explain the continuously growing number of this surgical operation worldwide.1-3

Considering these large numbers and the potential impact of implant failure on the

quality of life, monitoring of total hip prostheses has become mandatory to improve

their longevity. Quality assurance of existing and new designs has become a core

issue, seen in the light of old,4-7 and recent clinical disasters.8-11 There is a need for

tools that can identify factors that contribute to adverse implant and periprosthetic

bone behaviour. Preferably these tools should be able to detect inferior designs in

the preclinical phase, to prevent implantation of high volumes before first suspicion

of implant failure arises.12

Finite element analysis (FEA) has frequently been used in combination with

bone remodelling theories, to simulate periprosthetic adaptive bone remodelling after

total hip arthroplasty (THA) in computer models. Strains and stresses in joint implants,

bone and interfaces were calculated, and combined with mathematical models of

biological processes related to adaptive bone remodelling. By incorporating these

mathematical translations of feed-back mechanisms of biological processes in these

models, it is claimed that long-term behaviour of orthopaedic implants fixed to bone,

can be calculated and predicted as far as mechanical influences are concerned.13

Bone is a complex non-homogeneous, anisotropic, visco-elastic material that

can adjust its structure by resorption (through osteoclast activity) or apposition

(through osteoblast activity). Adaptations are driven by environmental stimuli, of

which mechanical loading is an important one. One of the first to recognize this

was the surgeon Julius Wolff, who observed that the organization of trabecular bone

corresponds to the mechanical load transfer (1892).14 The idea that ‘form follows

function’ is based on the assumption that bone can detect mechanical stimuli and

deformations as a result of loading, and react on it with adapting bone turn over by

adjusting the balance between osteoblastic and osteoclastic activity. After

introduction of a hip stem in the femoral shaft, a reduction of bone stresses and

strains in the bone, called ‘stress shielding’, leads to a new equilibrium between

bone apposition and resorption, adapting its structure in accordance with the

changed mechanical environment. Efforts have been made to describe this process,
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referred to as ‘adaptive bone remodelling’, in mathematical equations, relating the

input (a mechanical signal) to the output (resulting bone loss or gain). In this way it

was tried to predict these morphological changes in a quantitative manner, in order

to prevent adverse bone remodelling through improvements in the orthopaedic

implants, with the goal to prolong their survival.15-18 In this overview we will discuss

what computerized simulations have contributed to improvements of implant

designs, and how reliable predictions based on this technique have proven to be.

Recommendations are made to enhance the added value of this tool for the clinical

practice of the orthopaedic surgeon.

The FE-technique in orthopaedic implant design 

Contemporary finite element studies on hip prostheses essentially consist of four

steps; 1) image processing, 2) importation of CAD data, 3) FE mesh generation and

4) model analysis with FE software and post-processing. 

Originally in the first step two-dimensional (conventional radiography) or three-

dimensional (CT or MRI) imaging was performed of bone morphology of the

proximal femur and the acetabulum. Cross-sectional morphology was digitized of

both cortical dimensions and the endosteal envelope (= medullary dimensions).

From this and from backscattered scanning electron microscope images of the femur,

the area of cortical and cancellous bone at different sections was determined.19

Nowadays mostly CT-voxels are used and converted into tetrahedral or hexahedral

brick elements that constitute the FE-mesh of the femur. 

In the same way the space taken by the prosthesis can be calculated, after

digitizing prosthetic contours. An improvement for contemporary FE-based

simulations is that physical prototypes of the implants are no longer required. Instead

of manual or computerized digitization nowadays mostly CAD files from the hip

implants, derived from the manufacturer or from the Medical Device Agency, are

used to export the prosthetic geometry into the FE mesh. 

During the process of mesh generation the digitized contours of the cross-

sectioned slices of the implant are plotted on the digitized femurs with the use of

computers. Using a finite element pre-processor, the cortical and implant contours

are divided into a finite element mesh, originally consisting of 2D-surface meshes

(with or without side-plate) but at present mostly of 3D-volumetric meshes. For this
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step of mesh generation, which should preferably be patient-specific, many

commercially available software packages are capable of bridging the gap between

3D imaging and CAD files on one hand, and simulation technologies on the other.

Mesh parameters are assigned to the elements representing bone or implant.

Assumptions are made on material properties like the elastic or Young’s modulus,

the Poison’s ratio, yield and ultimate strength, and the degree of anisotropy. Values

for the Young’s modulus of cortical and cancellous bone are usually taken from the

literature, as well as for the bone density, and for the direct relation between density

and Young’s modulus.20,21 Alternatively from known elasticity moduli, the density of

cortical and cancellous brick elements can be calculated and is considered uniform

throughout the entire bone compartment. In later models apparent density per brick

element is ‘calculated’ from the measured Hounsfield Units from CT-pictures of the

femur, assuming that the highest true bone density corresponds with the maximal

value as illustrated on CT-scans.22 Particularly in earlier studies these relationships

between bone morphology and bone elastic properties were inaccurate, because

inhomogeneities in trabecular bone architecture were not accounted for and

resolutions of CT-reconstructions were too low.23 Later CT-based stereomorphometric

bone parameters showed higher correlations with apparent elastic properties of bone

samples, provided however that anisotropy would have negligible effects on these

apparent properties. For the orientation, magnitude and points of application of the

loads and relevant muscle forces on both operated and contralateral femur, values

are also mostly taken from the literature.24

The fourth step is the actual analysis of the model in a FE-software package for

the computational evaluation of a variety of experimental conditions, for which

purpose also several formats are available. With this software it is possible to simulate

mechanical tests and/or physiological loading and calculate the associated stresses,

strains and energy densities in the bone and at their interface, and predict the

resulting bone behaviour in terms of remodelling.

FE-theory and periprosthetic bone remodelling

After implantation of the femoral component, the strain energy density in the bone

changes, creating altered mechanical signals in its tissue. It is assumed that these

signals are detected by sensors in the bone, most likely osteocytes, as changes in
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stress or strain, and translated in a biochemical signal that induces remodelling.

Mechano-regulation models have been introduced in FE-analysis to provide for the

(missing) link between these mechanical stimuli (tissue shear strain and interstitial

fluid flow) and their biological effect (proliferation and differentiation of mesenchymal

stem cells).25-28 In these mechano-biological algorithms assumptions are made on the

number and diffusion-coefficient of cells into the interface, their proliferation rate,

the deformation of these precursor cells as a result of the mechanical stimuli, their

subsequent differentiation into either fibroblasts, chondroblasts or osteoblasts as a

function of predefined thresholds of these stimuli, and their cell death rate.26,28 As a

consequence the amount of bone ingrowth and bony or fibrous implant fixation are

then simulated. The mechanical stimulus itself is calculated from variables as shear

strain, fluid velocity and some empirical constants.

Current remodelling theories are based on the idea that the bone tries to

equalize this signal by adapting periprosthetic bone density through resorption or

apposition to such an extent that a new equilibrium is achieved between bone

mineral density (with related elasticity modulus) and strains, so that strain energy

per unit of bone mass (SED) is brought back to a preset reference value. This direct

relationship between the remodelling signal S, the strain energy per unit of bone

mass (= strain energy density U) and the bone density � is represented in the

mathematical equation:29

A schematic representation of this hypothetical chain of steps in the adaptive

remodelling process is given in figure 1, and adapted from Weinans.22

Validation of the FE-technique

Whether FE-calculations, and the predictions derived from them, are realistic has to

be tested and depends on the agreement between the model, experimental responses

and clinical results. This will determine whether virtual processing can sufficiently

and reliably simulate in vivo conditions. 

The predicted results of bone remodelling after implantation of hip stems were

initially validated by animal experiments, in which bone changes were studied on
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micrographs of femoral cross-sections of the same animal cadavers that were used

to create the FE-model.18,19,30,31 Because initial experiments showed satisfactory

similarity between calculations of the model and morphological changes of the bone

around the experimental prostheses, it was concluded that the latter could indeed

be explained as an effect of a mechanical adaptive process, and could be predicted

by the strain adaptive bone-remodelling theory. Consequently the computer-

simulation models were considered versatile tools for pre-clinical testing of

prosthetic designs, and realistic enough to substitute animal experiments entirely, in

other words to predict bone behaviour around new designs prospectively.22,32-34

However in the early years of FE-predictions of bone density after THA in

simulated human femora, the resulting density distributions proved to be unrealistic,

and could only show bone morphology remotely similar with known human femora

from X-rays and retrievals.22,29,32,35,36 Later, validation of FE-predictions of periprosthetic

bone density was performed through analysis of conventional radiographs after

implantation of the analyzed component.37 In this retrospective way it was

investigated whether resorption patterns of periprosthetic bone were consistent with

computer simulations. This proved to be an inaccurate method, as from several studies

it had already been shown that visual processing of roentgenograms could only detect

periprosthetic bone loss with sufficient reproducibility when it exceeded at least 25

to 30 %,38-40, due to change of parameters of conventional X-ray imaging during

follow-up.41
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An important step in quantitative measurement of bone mass was the introduction

of dual energy X-ray absorptiometry (DEXA) which, compared to earlier techniques

of bone density measurement, improved image resolution resulting in higher

precision and accuracy.42 Since the availability of periprosthetic densitometry, several

studies have been performed to correlate computed FE-stresses in two- and three-

dimensional models of implanted femora (in vitro), with the effects on bone density

as measured with DEXA (in vivo). Attempts were focused on finding a quantitative

relationship between absolute values of stress in the bone at implantation, and

subsequent remodelling changes in terms of BMD-values.43 Patient-specific 3D FE-

models of retrieved bone specimens from earlier bone densitometry studies were

constructed and bone remodelling simulations performed. Because patterns of

predicted bone loss corresponded well with the DEXA-measurements on the

retrievals, it was concluded that the applicability of numerical pre-clinical testing of

the interaction between implant design and bone could be extended.44 More recently

3D FE-models were developed retrospectively to analyse the mechanical loading of

bone by a known design (uncemented ABG-I, Stryker), and the correlation with BMD

changes as detected in earlier,45-46 and new DEXA studies of the same implant.47

Nowadays software packages are available to allow for conversion of results of

remodelling simulation into DEXA images (Fig. 2). This enables a clinical interpretation

of the in vitro periprosthetic remodelling process, and a direct comparison with in

vivo DEXA studies. Hence it provides retrospective information on how realistic the

chosen FE model could simulate in vivo bone adaptations, and consequently if it

may prospectively predict bone changes around new hip designs.48 A different

concept for validation was a computerized visualization of postoperative trabecular

bone adaptation based on a different remodelling algorithm, design space

optimization (DSO).49,50 The 3-D finite element simulation was validated through

comparison of the computational results with simulated radiographs, and with

radiographic (conventional x-rays) and densitometry (DXA) results from the literature.

This however showed large discrepancies between predicted magnitude of these

effects and clinical results.50

Another way to further validate the FE-model was to perform a retrospective

simulated-based analysis of an already failed hip design (cemented Capital Hip, 3M),

to investigate whether the simulation was able to detect the cause for limited survival.
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The agreement between the reconstructed failure scenario from FEA, with the

findings of the loosened retrievals was considered a support for the method.51

Although these studies have suggested that the improved FE-models are able

to predict bone adaptations following THA, on theoretical grounds there is reason

for doubt if this claim is sustainable.
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for conversion of 3D remodelling

simulation onto 2D DEXA images.

Figure reprinted from 'Balancing

incompatible endoprosthetic design

goals: A combined ingrowth and bone

remodelling simulation'. 
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Critical appraisal of the FE-technique 

I. Static versus dynamic.

Validation and verification of bone adaptation theories has been a problem, due to

some intrinsic imperfections of the method. The finite element method is principally

based on calculations in which static information on several variables is used as

input for mathematical equations that should represent biological processes playing

a role in bone remodelling. However these bone adaptations are a continuous

sequence of changes and therefore are intrinsically dynamic. From DEXA-analysis

it is clear that BMD after THA, particularly in the important proximal femoral areas,

changes constantly for at least 2 years, and to a lesser extent thereafter. So the starting

point for these bone parameters should therefore be adapted continuously. In an

attempt to deal with this, more recent and advanced FE-models of the femur consist

of many more brick elements (> 60000 for macro-FE models and > 10 million for

micro-FE models) than the early ones.47,48,50-52 In this way distinction between cortical

and cancellous bone is possible, with their own properties (elastic modulus, Poisson

ratio, compression and tension stress). In order to adjust the mechanical properties

of the bone along the course of time, they were estimated by the correlation between

measured bone mass values and apparent bone density. Starting with a known

relationship between bone mass, elasticity modulus and bone density at t0, the

change in Young’s modulus with the passing of time is concluded from the change

in BMD. In this way adjustments are made for the changing mechanical properties

of bone during follow-up to mimic reality as much as possible.47

Another dynamic process concerns osseointegration itself. The original finite

element models for uncemented hips were based on porous-coated designs,30,31 and

assumed complete bonding of the stem to bone.43,53 Even modern computational

simulation algorithms assume immediate postoperative fully ingrown implants with

full friction, which resist all interface shear and traction forces.50 However from

retrieval studies this ideal situation has been shown not to be realistic, and

furthermore it is not a static but dynamic process in time and will depend on implant

geometry, stem stiffness, surface treatment, type of coating, and degradation

characteristics of biological coatings.54-59 The retrieval study of the Symax hip stem

illustrated a proximal direct bone-implant contact in time increasing from 26.5 %
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(at 3 weeks) to 83.5 % (at 13 months), while distally bonding was prevented by a

particular surface treatment.60 This progressive proximal osseointegration without

distal osseointegration may be expected to have an effect on the amount of load

transfer from implant to bone and resultant remodelling. In a recent study the extent

of these coating effects were not yet known. Therefore they could not be correctly

incorporated in the FE model, resulting in inaccurate simulations of bone

remodelling (Fig.3).61

From several FE studies it was found that normal contact stiffness and the friction

coefficient increases several times as bone grows into the rough surface of the implant

and mineralises, thus providing a changing interface with improving secondary

stability.62 So for computational models of remodelling to be realistic, an ongoing

synchronization of interface conditions during the process is indispensable.63 In the

light of this, modelling of biochemical interactions at the implant surface also is still

a missing link. Particularly the role of cells (osteoblast adhesion properties and

osteoblast activity) and the influence of growth factors may be important to simulate
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(Omnift®) and newly designed (SymaxTM) stem at 2 years, combined with the FEM

predictions on remodelling. For the new stem predictions are given with a gap (simulating

no friction at the distal interface) and without a gap (simulating friction at the interface).

Illustration shows discrepancy between predicted and real bone loss around the new stem.



in a mechanobiological model that describes biochemical interactions between the

implant and its environment. In this way it may be theoretically possible to estimate

the amount of mineralized tissue on the implant surface and to predict

osseointegration itself. Consequently predictions on time-dependent changes in

related parameters (like friction coefficient) will be more reliable.64 At the same time

it has to be recognized that, depending on the choice of mechanoregulation model,

the predicted influence of several parameters on the tissue differentiation around

loaded implants appeared to be qualitatively and quantitatively different.25,65,66

II. Bonded versus unbonded. 

It was illustrated with FE-analysis that stem-cement debonding was responsible for

high stresses in the cement mantle. Therefore it was predicted that increased surface

roughness of the stem would reduce these stresses, and should result in better

survival of these implants.67 For this reason the Scientific Hip Prosthesis® (SHP®) was

designed accordingly. However clinical and registry results of other cemented stems

with rough finish showed the contrary.68,69 In retrospect this could be explained by

the incapacity of the models to predict debonding at the stem-cement interface. 

Later attempts to create a FE-model in which partial bonding or an intermediate

fibrous tissue layer was simulated, were again based on an expected load-transfer

mechanism with assumptions concerning (the magnitude and relevance of) several

variables, to be able to represent them in mathematical equations.70 Examples of

variables that had to be simulated were the normal (=tensile or compression) stresses,

shear stresses, bending stresses, Youngs (elastic) modulus, stiffness and Poisson’s ratio

of the fibrous layer, strain in the layer, and bonded or loose interface connection

with transfer of respectively all forces or only normal compressive forces, and simple

uni-directional loading protocols etc.. For some of these discrepancies between

complex biological processes and their mathematical representation, more or less

‘artificial’ solutions have been created like defining contact conditions between

implant and bone with friction (and an estimated friction coefficient) instead of

considering the real union between them.47 However this static coefficient of friction

between the implant and the bone (or bone cement), necessary to characterize the

interface conditions in the numerical models, is not reproducibly provided in the

literature, and there is no consensus on the method of measurement.71,72 And when
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available, it is known only for the completely debonded stem.

From studies on the mechanical properties of the fibrous tissue at the bone-cement

interface it was shown that in compression the membrane was relatively compliant,

but the resistance against shear stresses was very low. Both tensile forces and shear

forces were not transmitted to the bone, but were responsible for debonding and

slip of the implant.73

Huiskes recognized that the degree of stress shielding is indeed affected by the

bonding conditions of the implant-bone interface.74 Therefore knowledge about the

extent of osseointegration or fibrous anchorage of a new uncemented implant, from

retrieval analysis and histomorphometry, is paramount for generating realistic FE-

calculations and remodelling predictions. The same applies for the distal part of

proximally integrating uncemented stems. Although intended to remain unbonded

distally (through polishing or other surface treatments to prevent protein absorption

and osseointegration), some of these designs gradually still lead to bony fixation in

the distal part as well. Pedestal formation and diaphyseal cortical hypertrophy may

also result in altered load transfer than theoretically expected and integrated in the

FE model. 

For FE-simulations of cemented THA on the other hand, often from the start of

the calculations the cement-bone interface is assumed to be completely bonded and

the cement-stem interface to be debonded.51,75,76 Dependent on the surface finish of

the stem (polished, satin or rough) friction coefficients of the interfaces are then

chosen accordingly. However from revision surgery it is known that these

assumptions do not represent the direct postoperative in vivo situation.

III. Bone density. 

A simplification of early FE models seems to be the choice of initial bone density at a

fixed and uniform value for the entire periprosthetic femur.22 Although by some authors

it is supposed an unimportant determinant for the end result of the remodelling

process,77 there are indications from hip replacements in osteoporotic patients that the

amount and rate of postoperative periprosthetic BMD loss – and perhaps even the

chance of aseptic loosening - is related to the initial bone density.45,78-84 It could be

illustrated that varying quality and modulus of cortical and cancellous bone has an

effect on initial implant osseointegration and stability, and as such influences interface
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bone strains as well.85 This suggests that for FE studies to be truly predictive, a range of

bone qualities must be examined to study the performance envelope of a particular

implant. From a theoretical point of view the remodelling potential of bone is

dependent on the amount of internal pore surface for bone apposition or resorption,

as was also assumed earlier by Martin.86 This may explain why osteoporotic bone tends

to remodel more extensively, and bone resorption due to stress-shielding can

compromise implant support and fixation more easily in these patients. Besides the

issue of osteoporosis, also other metabolic, hormonal and genetic factors that play a

role in remodelling, are difficult to incorporate in the biomechanical model. 

IV. Bone elasticity & (an)isotropicity.

In FE-calculations bone is mostly characterized as an (at least transversely) isotropic

material.13,51,76 For this the elastic properties of bone should not depend on the

orientation of the material with respect to the loading condition, and are characterized

by a single elasticity modulus (Young’s modulus). The other parameter to fully

characterize the elastic behaviour of an isotropic material is Poisson’s ratio. This is a

measure for the amount of transverse bulging during compression, or contraction

during stretching of the material. In general the elastic properties of anisotropic

materials depend on their orientation with respect to the loading direction. This is

particularly true for bone.

Apart from the elastic behaviour of bone, the strength properties of bone also

depend on the loading direction (in tension, compression or torsion). Typical stress-

strain curves for uni-axial loading of cortical bone, both in the longitudinal and

transverse directions, show for example that cortical bone is stronger in compression

than in tension.87-89 This implies that strength as well as elasticity properties of bone

are rather complex and should therefore not be characterized as entirely isotropic.

The implicit assumption that tissue anisotropy has a negligible effect on the elastic

properties of cancellous bone has been tested in micro-FE models. The insufficient

correlation between predicted Young’s moduli or Poisson’s ratio and experimental

results however did not support the assumption of isotropy.90 The recognition that

cancellous bone architecture and mechanics are intimately related, led to the

understanding that at least some measure of architectural anisotropy is needed.91 At

the same time the degree of anisotropy seems to decrease, and tends to a more
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isotropic behaviour after total hip replacement, particularly in the proximal femur. The

reason for this is probably that bone microstructure and local stiffness tend to align

with the stress principal directions. So while originally cancellous bone should be

considered as anisotropic, this property changes through adaptations after THR.92

Furthermore the elasticity modulus of bone not only varies according to the

type of bone, but also with age and the region in the skeleton. Cortical bone has a

modulus of approximately 17,000 MPa. The modulus of trabecular bone however

can vary from approximately 10 MPa to 2,000 MPa, depending on the anatomic site

and age. It has been demonstrated that the modulus E of trabecular bone is related

to its apparent density ρ by a power-law relationship of the form E = a + ρb�c  , where

a, b and c are constants that depend on the architecture of the tissue.89 This illustrates

that modulus E is, besides by bone density ρ, largely affected by the shape and

orientation of trabecular bone. Important variables are the general connectivity of

the trabeculae, their mean thickness and the mean spacing between them. In

conclusion, the different and heterogeneous architectures that exist for trabecular

bone result in a dynamic anisotropy of elastic properties, and therefore make it

difficult to generalize about its properties in FE-equations.

V. Muscle forces.

Natural loading of the proximal femur is a complex of combined forces in different

directions   and changing magnitudes, caused by weightbearing and hip muscle

forces.20,93 The effects of hip musculature on bone remodelling were not considered

in early FE models, that consisted merely of simple, two-dimensional static loading

protocols. In later two-dimensional models all included loading cases acted in the

mid-frontal plane, thus excluding torsional components and muscle loads that acted

out of this plane.24 In nowadays three-dimensional models there is still controversy

over which muscle groups around the hip should be included in pre-clinical tests,

in order to ensure an adequate representation of the in vivo loading of the

reconstruction.94,95 Recent simulations confirmed that results of FE-models for peri-

implant remodelling are considerably different depending on the chosen force

loading configurations.96,97 Many data on the role of muscle forces are available in

the literature, but for the majority they are derived from mathematical models. Only

some of them were validated by comparison of predicted mathematical estimates
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derived from gait laboratory observations made in a patient with an instrumented

hip implant,98,99 or comparison with in vitro strain gauge measurements performed

on composite hip reconstructions.13

There is particularly no agreement on the issue if load-transfer to the bone is

mainly generated by the hip joint force alone, or if hip muscles play an additional

role, and if so whether this is confined to exclusively abductors, or also to the

iliotibial tract, the adductors, the quadriceps femoris, the iliopsoas and the quadratus

femoris. Furthermore there is no clear consensus on during which phase of the

walking gait cycle (heel strike, mid stance, toe off) which muscles are active, and

how their origin and insertion are positioned at that moment, in other words along

which vector the muscle forces will act.98,100,101 Stolk found that for cemented THR

besides the hip joint contact force, a loading configuration including abductor forces

can realistically reproduce in vivo loading in FE testing, and that other muscle groups

had relatively small effects.13 It was concluded that only including the abductors in

the loading protocol of pre-clinical tests would be sufficient. This choice was in

accordance with previous and later works.37,44,47,102 However others showed the

effect of the iliotibial tract to be important for simulating the in vivo bone loading

more accurately.103,104 In addition there is no consensus on how large the

contribution of the muscle groups actually is in terms of percentage bodyweight and

how this varies during the gait cycle.105,106 For the iliotibial tract values between 4%

and 76% bodyweight are mentioned, depending on the way this muscle is modelled

in the FE-analysis (as a tension band or otherwise).13,95,101,107,108 Furthermore, due to

computational limitations, often only the effects of the proximal part of the muscles

are modelled, excluding the forces of distal attachments, which may decrease the

realistic value of the simulation. In conclusion there is still much debate about which

muscle groups should be incorporated in normal hip loading simulations, and during

which part of the gait cycle. Therefore it is unclear which amount of bone change

can realistically be explained by this factor, and which part by the implant. 

VI. Generalizability versus individuality.

FE-models of the femur are nowadays based on the bony dimensions taken from CT-

analysis of one chosen cadaver femur or a reconstructed mean of several femurs,

mostly elected from a database of femurs on the consideration that it/they approache(s)
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the average closely.13 But from microfinite element models of healthy and osteoporotic

human femora it was demonstrated that strain levels in the osteoporotic bone were

much higher and less uniformly distributed than those in the healthy one.109

Theoretically the relationship between bone changes and mechanical stimuli is

typical for a particular case, and cannot be generalized to all hip reconstructions. It

has been demonstrated that results of FE-simulations vary strongly dependent on

chosen initial bone quality, cortical and cancellous bone modulus, subject-specific

femoral geometry, initial implant positioning, and patient-specific loading conditions.

Biological properties, and the effect of internal and external factors influencing them,

may vary so much between individuals, that the outcome of FE models to study them

will be extremely sensitive for these subject dependent variations. Therefore for FE

studies to be truly predictive, patient-specific modelling, creating individual meshes,

is essential. This will generate individually calculated stress distributions, and hence

determine individual instead of generalized changes in bone mineral density.85,110

Therefore it is uncertain if an intrinsically simplified model, based on several

assumptions, can predict quantitative changes for individual cases or merely indicate

a qualitative trend. Attempts have been made to make predictions of migration of

cemented stems in individually designed computational models, and in this indirect

way predict implant failure. In the process, simulations were created for the cement

creep, fatigue damage, and long term loading equivalents. Although this may result in

conclusions about migration risk in the individual case, it will not provide information

on the loosening risk of an implant in a broader population.111 Retrospective validations

in well-described cases do not guarantee the value of the model for prospective

predictions of new hip designs in a wide variety of femoral anatomies, with different

initial bone properties, and under different and changing loading conditions. The value

of future simulations may be in subject-specific modelling of geometry and loading

conditions which may provide us with more accurate input for the analysis of bone

stresses after total hip replacement. This could prove clinically useful in supporting

surgeons to optimize the preoperative plan for the individual patient.

Conclusion and suggestions for improvement

Over the years the FE-method for pre-clinical testing and optimising of orthopaedic

hip implants has become a useful tool for analysis of implant behaviour and
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remodelling of the periprosthetic bone. This is due to validation of the technique

and verification of its predictions through methods more and more approaching in

vivo circumstances; coming from in vitro measurements on artificial implant-femur

composites, through animal experiments, human retrievals and ultimately in vivo

assessment of related outcome variables (BMD). In recent studies high correlations

were found between computer calculations of strains and stresses in implant, bone

and interfaces, and the end results of adaptive bone remodelling. This knowledge

was retrospectively used to further adapt the technique.

In physics and engineering the FE-technique was successful, due to the

application of clear guidelines and to the fact that only physical materials with stable

material properties had to be considered. In mechanobiology the properties of living

dynamic tissues may inherently be too complex to be correctly represented in

physical quantities. Their behaviour is variable, changes in time and depends on

patient-specific characteristics. The complexity of these biological processes has

made it clear that attempts to represent them in mathematical models is based on a

series of abstractions and assumptions, making the FE-simulations per definition less

realistic. Furthermore the lack of uniformity between FE studies up to date, and the

absence of validation with real prospective patient series, illustrates the many

questions that still remain unsolved. Because of dynamic changes so characteristic

for living tissues, accurate predictions inherently may not be possible, and FE models

should not be guiding if the clinical consequence of being incorrect is too riskful. 

Considering the completely mechanical character of contemporary models and

the exclusively mechanical simulations of the failure mechanisms held responsible

for limited survival, we probably cannot predict failure of total hip replacements.

Strong recommendations for or against the use of new orthopaedic implants, only

based on the results of current FE simulations, should therefore be considered with

care. Although there is growing insight in some failure mechanisms in which mainly

material properties are involved (i.e. cement damage accumulation), not all failure

scenarios of total hip replacements are well understood, let alone well incorporated

in the computer models (i.e. the role of debonding, the effect and behaviour of a

fibrous tissue interface during micro-instability, the role of wear products, the effects

of normal versus excessive interface loading, and the direct and indirect influence

of these factors on bone biology). 

Chapter 8

208



Furthermore the role of biological variables (like -stem- cell differentiation, the role

of growth factors, BMP’s  and cytokines, and cell mobility, activity and decay of

osteoblasts, osteocytes and osteoclasts) in the process of bone apposition and

resorption, is dependent of many factors (hormonal, genetic, metabolic and

environmental). This needs further study to improve translation into mathematical

equations. 

Improvements can be realised by generating FE meshes of higher quality.

Particularly the extraction of FE models from high-resolution computed datasets (CT

or MRI), like the modelling of the cortical shell from 2D or 3D digitised geometrical

contours, and the trabecular bone from voxel based information on bone density,

contains some challenging steps. A multi level refinement is necessary to increase

and resample the number of elements. This will create high density meshes that

allow more detailed translation of anatomical characteristics and physiological and

biomechanical properties. These models have to be validated to clinical data, and

retrospective validation from experimental studies should be replaced by prospective

trials to really asses their predictive value. 

A next step may be to better define an ingrowth model for uncemented implants.

Interface bonding, mesenchymal cell migration and tissue differentiation should be

better translated into mechanical equations. The relationship between interface

micromotions and the threshold values that determine osseointegration or fibrous

fixation, have to be more accurately analysed. Emphasis must therefore be on models

that describe factors that influence differentiation to either osteoblasts, fibroblasts or

chondroblasts, and their translation in time dependent properties of the elements of

the FE mesh. In this way it should be able to calculate the effects on bone and implant

fixation as a result of this adaptive remodelling. Assumptions on material and bone

properties that remain necessary for the translation into biomechanical quantities,

must be validated with clinically relevant biological values that can accurately be

assessed. Otherwise it will not be possible to determine if the numerical model

predicts the physical phenomenon it was designed to replicate, and if predictions

concerning this phenomenon are indeed in line with in vivo results.

In conclusion, growing knowledge has become available on the links between

mechanical stimuli, material and coating properties, bone properties and (normal

and pathological) bone biology. However further research concerning these issues
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is necessary to fully understand and predict implant failure. Then it may be possible

to influence clinical performance of existing and new implants with design-

adaptations or drugs that can influence bone metabolism, in a more rationale way,

and prevent the disastrous complication of implant failure. Currently the value of

the technique is mainly in individually computational simulations, with personalized

and not generalized predictions on implant performance. To improve the accuracy

with which computer simulations can predict physical phenomena around

orthopaedic implants in larger patient groups, more complex models and prospective

validations are indispensable through randomized clinical trials. For this a more

intense collaboration between biomechanics and orthopaedic clinicians should be

encouraged. Of course the reverse of this process will inevitably be an increase in

computational costs. The balance between the potential improvements of the implant

and the risk of design failure should be considered to determine if these costs are

justified.
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SUMMARY AND CONCLUSIONS

Total hip arthroplasty has brought both patients and society an extremely

successful and cost-effective treatment for degenerative , traumatic and congenital

destructions of the hip joint. Consequently many manufacturers and designers have

not been able to restrain themselves from the introduction of a continuous flow of

new designs. Too many of them failed, mainly due to a hasty and widespread

introduction onto the market, driven by a sometimes opportunistic motivation

without proper preclinical research and sound consideration concerning the need

for yet another implant. This left the orthopaedic community with a tremendous

loss of good will, a burden of legal claims, and the need for a reorientation on the

original values of scientific integrity and patient safety. Rules for a sound pathway

for stepwise introduction of new prostheses were redefined and gradually adopted,

as well as the choice of diagnostic and imaging modalities for monitoring the

performance of innovative designs. 

The success of both cemented and uncemented hip stems is related to their

mechanical stability in, and sustainable fixation to the periprosthetic bone. In this

way the longevity of the prosthesis may possibly be predicted by acquiring direct and

indirect information on these implant-bone interface properties. The most valuable

tools to study them currently are functional hip scores, patient reported outcome

measures, conventional radiography, scintigraphy, densitometry, histology and

migration analysis. In this thesis we have presented several studies in which we tried

to evaluate the additional value of these techniques, their correlation with clinical

change, and their contribution to early recognition of (ultimate) implant failure.

Furthermore it was attempted to validate the role of computerized simulations of

implant driven strain adaptive bone remodelling, as a guideline for adaptations in

implant design. 

In Chapter 1 several scoring systems, both surgeon dependent functional

scores and patient dependent outcome measures, were evaluated for their capacity

to detect clinical change and predict prosthetic survival. Because of the strong

variability within patient populations, and the subjectivity in surgeon and patient

scoring, the necessity to follow-up a vast number of patients for a substantial
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period, with scores that are characterized by ceiling effects, sensitivity is low for

identifying factors that adversely affect implant fixation. Consequently these tools

are not suitable to detect inferior designs in an early stage. High scores on PROM’s

have not shown to correlate well with good survival either, and probably score

high on issues that may even be inversely related to good long term performance.

Lack of sensitivity and specificity, and the trend to be influenced by ageing and

changing co-morbidities, make them unfit for this purpose. 

For the same reason hip registries are a very blunt instrument that play an

important role in long term post market surveillance, but are insensitive for early

discrimination between designs.

Postoperative radiography can only in some cases provide information on

bone changes and implant fixation that refer to or are even pathognomonic for

(a)septic loosening. For most radiographic phenomena however, clinical

correlation is low and implant loosening cannot be reliably predicted from them.

In addition the meaning and relevance of these radiographic signs should be

interpreted differently dependent on the design philosophy of the implant. Finally

the interpretation of x-rays is subject to intra- and interobserver variability, and to

precision issues making the instrument too insensitive to detect or quantify

discriminative phenomena.

Bone scintigraphy also suffers from limited sensitivity and specificity in the

diagnostic assessment of phenomena known to correlate with early failure.

Furthermore bone physiology around implants with new surface and coating may

behave differently, without correlating to clinical performance. Consequently the

technique will prove unreliable for judging long-term effects of new implant

features.

Bone densitometry as a tool for assessment of periprosthetic bone remodelling

has shown good accuracy and precision, but changes in postoperative BMD do not

correlate clearly to clinical results or long-term survival. Only extreme bone loss

will obviously be related to compromised implant fixation and loosening risk, while
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on the other hand stable bone density appeared to correlate with well fixed and

well performing stems. Although DEXA is a sensitive diagnostic tool, discrete early

bone changes alone have not proven to be predictive for long-term performance

and can therefore not recognize superiority of one implant over the other. 

Currently the two instruments that are supposed to correlate with clinical

outcome and (self) proclaim to have predictive capacity for long-term performance

and survival, and are supposed to have discriminative power between implants, are

finite element simulations and migration assessment with radiostereometry.

However the number of studies in which this has been established is only small

and mostly retrospective in nature. Real prospective confirmation of predicted

outcome in long-term follow-up has hardly been presented. Therefore blindly

relying on early RSA results seems too naive, even though renowned RSA

researchers have expressed an almost absolute believe in the technique and it’s

capacity to determine if a new implant should or should no longer be used, based

only on migration characteristics during the first two years after implantation. It has

become clear however that migration patterns vary between stem designs, and may

not uniformly correlate with long-term clinical results.

In Chapter 2 we have described the results of a prospective randomized

comparative study between the cemented SHP® and Omnifit® hip stem. The study

was performed to evaluate if preclinical considerations on implant optimization

and early migration patterns could predict bone remodelling, clinical outcome and

implant survival. From an earlier RSA study on the SHP® stem it was predicted that

due to the combination of the rough surface of the stem and early debonding and

migration, the implant would cause abrasive wear and osteolysis, and higher

failure rates than for most used cemented stems. In addition the numerical

optimization of the stem shape was aiming at minimizing periprosthetic stresses,

from which lower stress transfer to the bone with again lower BMD could be

expected. However the 2-year DEXA study showed higher BMD in the proximal

femur for the SHP®, migration of only 1 stem on conventional radiography, 100%

survival at minimum 11 year follow-up and only 1 radiographic loosening for both

the SHP® and Omnifit®. Furthermore clinical scores were significantly better for
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the SHP® during the entire follow-up. It was concluded that predicted inferior

outcome of the SHP®, both in terms of clinical performance, survival and bone

remodelling, could not be validated in this long-term study. This indicates the

importance of clinical trials to determine the value of these ‘predictive’ tools, and

validate their use in early quality assessment of new prostheses.

In the SHP® versus Omnifit® study it was decided to assess bone remodelling

in a standardized perimeter outside the cement mantle, in an attempt to reveal the

real bone changes and prevent the masking effect of the cement. To illustrate this,

the influence of inclusion of the cement mantle in the region of interest (ROI) on

periprosthetic BMD measurement using DEXA was evaluated in Chapter 3. The

study was performed to determine the artefactual increase in BMD while including

the cement layer, which might erroneously suggest less bone loss after cemented

total hip arthroplasty. Using the data of the SHP® versus Omnifit® study (see Chapter

2), BMD was assessed within a 3 mm offset zone including the cement mantle

(‘BMD-cement’), secondly in the perimeter outside the offset, including only bone

(‘BMD-bone’), and thirdly in the entire ROI including both the cement layer and

bone (‘BMD-total’). It was observed that including the cement mantle consistently

resulted in significantly higher BMD, suggesting better bone preservation. However

this result should be ascribed to the density effect of the radiopaque cement, but it

does not realistically represent the implant driven adaptive bone remodelling.

Therefore we recommend automated and precise exclusion of the cement mantle

for which tools are available in the densitometry software.

In Chapter 4 we shifted to uncemented total hip arthroplasty and used

conventional radiography and functional scores to investigate the effect of a

hydroxyapatite coating on particle wear driven periprosthetic osteolysis in a young

and active patient group. In addition it was evaluated if hip scores and

radiographic results correlated to the survival of the implant. It could be shown that

although the higher activity level of these young patients could potentially lead to

higher particle wear, the hydroxyapatite coating was able to seal the implant-bone

interface, protect against osteolysis, and guarantee long-term implant fixation.

Particularly the presence of spotwelds and the absence of radiolucent and reactive
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lines in the HA-coated Gruen zones 1 and 7 confirmed sound osseointegration,

and appeared to have predictive value for persistent fixation, in other words

absence of loosening in the long-term. This strong correlation was illustrated with

survival of the stem in 98.5% and the cup in 95.5% of cases at minimum 10 year

follow-up. We have learned that the more extensive osteolysis in de Lee-Charnley

zone 2 of the acetabulum at longer follow-up, correlated strongly with inferior

survival of this particular cup design and lead to relatively high revision rates. This

initiated a change in cup design to prevent backside wear through a central gap.

Chapter 5 introduced the SymaxTM hip stem that features an improved

geometry and a more bioactive biomimetic hydroxyapatite coating on the proximal

part of the stem (Bonit-HA®), and a Dotize® surface treatment on the distal part.

Histology, histomorphometry and scanning electron microscopy were applied to

qualitatively and quantitatively assess the effect and behaviour of the new,

electrochemically deposited Bonit-HA® coating and Dotize® surface treatment, on

4 retrieved SymaxTM stems. Rapid and extensive osseointegration was seen around

the HA-coated part of the stem. Bone-implant surface contact progressed from

26.5% at three weeks to 83.5% at 13 months, with increasing bone density per

ROI from 24.6% at three weeks to 41.1% at 32 months. The coating appeared to

remodel rapidly but without negative effect on bone-implant coupling. This deep

and extensive ingrowth of bone into the open surface texture of the SymaxTM stem,

leads to optimal sealing of the bone-implant interface and stable bony anchorage.

Based on the experience from stems with first and second generation plasmaspray

HA coatings, persistent long-term osseointegration may be anticipated for this new

design with predictable results in terms of survival. 

The Dotize® surface treatment on the other hand could completely prevent

bone apposition on the distal part of the stem. This combination guarantees an

exclusive proximal stem ingrowth, contributing to an optimal proximal stress

transfer to bone, which was expected to diminish stress shielding of the femur

metaphysis. 
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This effect was confirmed in Chapter 6, where bone remodelling of the SymaxTM

stem was studied with DEXA, and compared to the Omnifit® stem in a 2 year

randomized clinical trial. For a more valid comparison of remodelling around

stems with different design, a modification of the Gruen zones as regions of interest

was introduced, to allow for improved representation of implant effects on bone

mineral density (BMD). Results showed consistently higher BMD values for the

SymaxTM stem, which difference became statistically significant in zone 7 from one

year onward. This improved preservation of bone around the SymaxTM stem,

together with the enhanced osseointegration as proven with histological

investigation, can be predictive for good long-term performance.

Finally we wanted to determine whether the finite element method has the

potential of reliable preclinical simulation, and has valid predictive properties for

anticipating in vivo clinical results. Therefore the remodelling study of chapter 6

was compared with a numerical simulation study in Chapter 7, to decide the

accuracy of the finite element technique, and the value of this tool in the process

of improving implants. DEXA measurements showed BMD-loss in Gruen zone 7 of

14% and 20% (P<0.05) for the SymaxTM and Omnifit® stem respectively, while FE

models predicted a 28% (SymaxTM) and 26% (Omnifit®) bone loss. When the

Dotize® surface treatment was not modeled in the simulation, the bone loss in

Gruen zone 7 was even predicted to be 35%. Although numerical simulation

showed a trend of enhanced proximal bone loading by the SymaxTM design, which

was confirmed by the DEXA results, there was no quantitative match, implying that

FE remodelling prediction was poorly correlated with clinical findings in larger

patient groups, and is likely not suitable for accurate prediction of minor changes

in load transfer patterns. This is probably due to incomplete assumptions

concerning the biological and mechanical effects of the new coating and surface

treatment, and to the incapacity of the FE technique to adequately translate

dynamic interface variables into pure mechanical equations.

Summarizing it can be said that the phased innovation with the stepwise testing

and evaluating procedure of new total hip prostheses, has provided the orthopaedic

community undoubtedly with a protocol for a safer introduction of new designs. The
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trial and error method has proven to be irrational and intrinsically risky. The chance

of being confronted with yet another orthopaedic disaster may be expected to be

diminished following this adapted pathway. However the assumption of complete

safety of any diagnostic modality to detect future failures in an early phase, is

unrealistic and still unproven. Most techniques are too insensitive, indecisive and

irrelevant to discriminate (small) improvements or potential failures. Even for RSA the

link between the migration patterns and future loosening is not established for most

implants. And the finite element translation of dynamic biologic processes at the

interface between implant and bone is still too abstracted from reality, so that

numerical simulations can represent natural physiology only to some extent. 

Therefore the clinical value of RSA could benefit from a larger number of

studies that should focus on recognizing aberrant migration patterns from the most

used implants, and prospectively link them to clinical outcome and survival

studies. For the finite element method, dynamic biochemical interface interactions

have to be better understood and translated into mechanical algorithms, and

subsequently validated with prospective clinical results. 

Nevertheless at this stage we are still more or less in the dark, and quality

assurance is dependent of the combined information from several available

diagnostic techniques, instead of one decisive tool. These modalities play a role in

different stages of the pre-clinical and clinical testing of the prosthesis (Fig. 1).

Recent orthopaedic disasters have learned us once again that in the modern

orthopaedic world there is no place for unsubstantiated believe in potential

superiority of any new design. Orthopaedic surgeons are obliged to follow up any

new implant with great scrutiny, consider ‘studies’ performed by manufacturers

with professional suspicion, and feel personal responsibility for the patients that

they include in any trial of a new implant or surgical technique. There is an

important task for the national scientific orthopaedic societies to play the role of

supervisor with surveillance of their members, to improve the professional standard

and prevent further loss of goodwill. However this task should be balanced with

the intrinsic drive for innovation that also justifies the existence of the very same

scientific societies.
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SAMENVATTING EN CONCLUSIES

De totale heup arthroplastiek heeft zowel de patiënt als de samenleving een zeer

succesvolle en kosteneffectieve behandeling gebracht voor degeneratieve,

traumatische en congenitale destructies van het heupgewricht. Als gevolg hiervan

konden vele producenten en ontwerpers de verleiding niet weerstaan een continue

stroom aan nieuwe designs te genereren. Te veel van deze designs faalden,

voornamelijk ten gevolge van een te haastige en breed verbreide introductie op de

markt, gedreven door een soms opportunistische motivatie zonder degelijk

preklinisch onderzoek en zonder overweging betreffende de behoefte aan wederom

een ander implantaat. Dit heeft geresulteerd in een groot verlies van goodwill voor

de orthopaedische gemeenschap, een enorme last aan juridische claims, en een

behoefte aan heroriëntatie op de oorspronkelijke waarden van wetenschappelijke

integriteit en patiëntveiligheid. Regels voor een betrouwbare en stapsgewijze

introductie van nieuwe prothesen werden geherdefinieerd en geleidelijk

geadopteerd, alsmede richtlijnen voor de keus van diagnostische en beeldvormende

modaliteiten voor het monitoren van de kwaliteit van innovatieve designs. 

Het succes van zowel gecementeerde als ongecementeerde heupstelen is

gerelateerd aan hun mechanische stabiliteit in, en hun blijvende fixatie aan het

periprosthetische bot. Derhalve zou de levensduur van een prothese mogelijk

voorspeld kunnen worden middels directe en indirecte informatie omtrent deze

implantaat-bot interface eigenschappen. De meest waardevolle hulpmiddelen om

deze eigenschappen te bestuderen zijn functionele heupscores, patiënt

gerelateerde uitkomstmaten (PROM’s), conventionele radiografie, scintigrafie,

botdichtheidmetingen, histologie en migratie onderzoek. In dit proefschrift hebben

we verschillende studies gepresenteerd waarin we probeerden de toegevoegde

waarde van deze technieken te evalueren, hun correlatie met klinische

veranderingen vast te stellen, en hun bijdrage aan de vroege herkenning van

(uiteindelijk) implantaatfalen. Bovendien werd geprobeerd de rol van

computersimulaties van implantaat gestuurde ‘strain adaptive bone remodelling’,

als een leidraad voor aanpassingen in implantaat design, te valideren.
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In hoofdstuk 1 werden verschillende scoringssystemen, zowel chirurg afhankelijke

functionele scores als patiënt afhankelijke uitkomstmaten, geëvalueerd op hun

vermogen om klinische veranderingen te detecteren en de overleving van prothesen

te voorspellen. Vanwege grote variabiliteit in patiëntenpopulaties, de subjectiviteit

in chirurg- en patiëntenscores, de noodzaak om grote aantallen patiënten te

vervolgen gedurende een lange follow-up, met scores die bovendien gekenmerkt

worden door ‘plafond-effecten’, is de sensitiviteit laag voor het identificeren van

factoren die implantaatfixatie negatief kunnen beïnvloeden. Dientengevolge zijn

deze scores niet geschikt om inferieure designs vroegtijdig te identificeren. Hoge

scores bij PROM’s bleken eveneens niet te correleren met goede prothese survival,

en PROM’s scoren zelfs hoog op kenmerken die juist omgekeerd evenredig zijn met

goede lange termijn prothesesurvival. Een relatief lage sensitiviteit en specificiteit,

en de trend om beïnvloed te worden door veroudering en veranderende co-

morbiditeiten, maken hen ongeschikt voor dit doel.

Vanwege dezelfde reden zijn (inter)nationale heupregisters een weinig gevoelig

instrument. Zij spelen weliswaar een belangrijke rol in lange termijn ‘postmarket’

bewaking, maar zijn ongevoelig voor vroege discriminatie tussen designs. 

Postoperatieve radiografie kan in beperkte mate informatie verschaffen over

botveranderingen en implantaatfixatie welke correleren met, of zelfs

pathognomonisch zijn voor, (a)septische loslating. Voor de meeste radiografische

bevindingen echter is deze correlatie met de kliniek laag en kan

implantaatloslating op grond daarvan niet betrouwbaar worden voorspeld.

Bovendien dient de betekenis en relevantie van deze röntgenbevindingen

verschillend geïnterpreteerd te worden afhankelijk van de ontwerpfilosofie van het

implantaat. Tot slot is de interpretatie van röntgenfoto’s onderhevig aan intra- en

interobserver variabiliteit, en derhalve aan zaken als reproduceerbaarheid, welke

dit instrument te ongevoelig maken voor het vaststellen of kwantificeren van

criteria die onderscheidend kunnen zijn tussen designs. 

Botscintigrafie heeft ook te leiden onder beperkte sensitiviteit en specificiteit

in de diagnostiek van fenomenen welke correleren met vroegtijdig falen van
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heupprothesen. Bovendien kan de botremodellering alleen al verschillen tussen

implantaten door toepassing van andere oppervlakte- en coatingeigenschappen,

zonder dat dit hoeft te correleren met klinische resultaten. Derhalve blijkt deze

techniek onbetrouwbaar voor het beoordelen van lange termijn effecten van

nieuwe ontwerpen.

Botdensitometrie als een middel voor het onderzoeken van periprosthetische

botremodellering, is een accurate en precieze techniek gebleken, maar (kleine)

veranderingen in bot minerale dichtheid (BMD) correleren niet duidelijk met

klinische resultaten of lange termijn survival. Alleen extreem botverlies is

vanzelfsprekend gerelateerd aan een gecompromitteerde implantaatfixatie en een

verhoogd risico op loslating, terwijl aan de andere kant een stabiele botdichtheid

blijkt te correleren met goed gefixeerde en functionerende stelen. Hoewel DEXA een

sensitieve diagnostische techniek is, zijn discrete vroege botveranderingen alleen

niet een goede voorspeller gebleken voor lange termijn resultaten, en ook niet voor

het aantonen van de superioriteit van het ene boven het andere implantaat. 

Op dit moment zijn de twee instrumenten die verondersteld worden te

correleren met klinische resultaten en een voorspellende waarde te hebben voor

lange termijn survival, en bovendien een discriminerend vermogen tussen

implantaten, de techniek die gebruik maakt van eindige elementen simulaties, en

migratie metingen met radiostereometrie (RSA). Echter het aantal studies waarin dit

vastgesteld is kunnen worden is slechts beperkt en voornamelijk retrospectief van

aard. Een werkelijk prospectieve bevestiging van voorspelde resultaten in een

lange termijn follow-up onderzoek is nog nauwelijks gepubliceerd. Daarom lijkt

het vooralsnog voorbarig om blind te vertrouwen op vroege RSA resultaten, ook al

hebben vermaarde RSA onderzoekers een bijna absoluut geloof in de techniek en

zijn capaciteit om te bepalen of een nieuw implantaat wel of niet gebruikt zou

moeten worden, dit alles gebaseerd op alleen migratie karakteristieken gedurende

de eerst twee jaar na implantatie. Het is echter duidelijk geworden dat

migratiepatronen variëren tussen steel designs, en niet eenduidig hoeven te

correleren met lange termijn klinische resultaten.
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In hoofdstuk 2 hebben we de resultaten beschreven van een prospectieve

gerandomiseerde studie waarbij de gecementeerde SHP® en Omnifit® steel worden

vergeleken. De studie werd uitgevoerd om te evalueren of preklinische

overwegingen over implantaat optimalisatie enerzijds en vroege migratiepatronen

anderzijds gebruikt kunnen worden om botremodellering, klinische resultaten en

implantaat survival te kunnen voorspellen. Op basis van een vroegere RSA studie

met de SHP® steel werd voorspeld dat door de combinatie van het ruwe

steeloppervlak en de vroege ‘debonding’ met migratie, het implantaat ‘abrasive

wear’ met osteolyse zou veroorzaken, en dientengevolge een hogere faalratio zou

vertonen dan de meest gebruikte gecementeerde stelen. Bovendien beoogde de

numerieke optimalisatie van de steelgeometrie verminderde periprosthetische

stresses, op grond waarvan lagere stressoverdracht naar het bot met als gevolg een

lagere BMD kon worden verwacht. Echter de 2-jaars DEXA-studie toonde een hogere

in plaats van lagere BMD in het proximale femur voor de SHP®, migratie van slechts

1 steel bij conventionele radiografie, 100 % survival op minimaal 11 jaar follow-up,

en slechts 1 radiografische loslating voor zowel SHP® als Omnifit®. Verder waren

klinische scores significant beter voor de SHP® gedurende de hele follow-up. Er werd

geconcludeerd dat de voorspelde inferieure uitkomst van de SHP®, zowel op gebied

van klinische resultaten, survival en botremodellering, niet kon worden gevalideerd

met deze lange termijn studie. Deze uitkomst geeft het belang aan van klinische trials

om de waarde van deze ‘voorspellende’ technieken te bepalen, en hun gebruik te

valideren ten behoeve van vroege kwaliteitsbepaling van nieuwe prothesen. 

In de SHP® versus Omnifit®studie werd besloten om botremodellering te

bestuderen in een gestandaardiseerde perimeter buiten de cement mantel, in een

poging de werkelijke botveranderingen te detecteren en het maskerend effect van

cement te voorkomen. Om dit te illustreren werd in hoofdstuk 3 de invloed

geëvalueerd van inclusie van de cementmantel in de ‘region of interest’ (ROI) op

periprosthetische BMD metingen met behulp van DEXA. De studie was gericht op

het bepalen van de toename in BMD ten gevolge van cement inclusie, welke ten

onrechte minder botverlies zou suggereren in geval van gecementeerde totale heup

arthroplastieken. Gebruik makend van de data van de SHP® versus Omnifit® studie

(zie hoofdstuk 2), werd de BMD gemeten in een 3 mm offsetzone welke de
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cementmantel bevatte (‘BMD-cement’), op de tweede plaats in de perimeter buiten

deze offsetzone, alleen bot bevattend (‘BMD-bone’), en ten derde in de gehele ROI

met zowel de cementlaag als het periprosthetische bot samen (‘BMD-total’). Het

includeren van de cementmantel resulteerde consistent in een significant hogere

BMD, hetgeen beter botbehoud suggereerde. Dit resultaat dient echter te worden

toegeschreven aan het effect van het radiopaque cement op de dichtheidsmetingen,

en is geen realistische weergave van de door het implantaat veroorzaakte adaptieve

botremodellering. Daarom is het advies om bij densitometrie rond gecementeerde

heupprothesen gebruik te maken van de software mogelijkheden ten behoeve van

geautomatiseerde en precieze exclusie van de cementmantel.

In hoofdstuk 4 verschoof de aandacht naar ongecementeerde totale heup

arthroplastieken, in het bijzonder de Omnifit®HA prothese, en werd gebruik

gemaakt van conventionele röntgenfoto’s en functionele heupscores om het effect

te bestuderen van een hydroxyapatiet (HA) coating op door partikel wear

veroorzaakte periprothetische osteolyse bij jonge actieve patiënten. Verder werd

geëvalueerd of heupscores en radiografische resultaten correleerden met de

survival van het implantaat. Er kon worden aangetoond dat hoewel het hogere

activiteitenniveau van deze jonge patiënten potentieel zou kunnen leiden tot een

hogere mate van partikel wear, de hydroxyapatiet coating in staat was de

implantaat-bot interface af te dichten, te beschermen tegen osteolyse, en een lange

termijn implantaatfixatie te garanderen. Met name de aanwezigheid van spotwelds

en de afwezigheid van radiolucente en reactieve lijnen in de HA-gecoate Gruen

zones 1 en 7, bevestigden goede osseointegratie, en blijken van voorspellende

waarde te zijn voor blijvende fixatie, met andere woorden het uitblijven van

loslating op de lange termijn. Deze sterke correlatie werd geïllustreerd door een

steel survival van 98,5 % en cup survival van 95,5 % na een minimale follow-up

van 10 jaar. We constateerden dat de meer omvangrijke osteolyse in de Lee-

Charnley zone 2 van het acetabulum bij langere follow-up, sterk correleerde met

een inferieure survival van dit specifieke cupdesign en oorzaak was voor een

relatief hoge revisie-ratio. Dit was de aanleiding voor een verandering in cup

design om ‘backside wear’ door een centraal gat in de cup-shell te voorkomen.



Hoofdstuk 5 introduceerde de Symax TM steel die gekenmerkt wordt door een

verbeterde geometrie en een meer bioactieve, biomimetische hydroxyapatiet

coating op het proximale deel van de steel (Bonit-HA®), alsmede een Dotize®

oppervlaktebehandeling op het distale deel. Histologie, histomorphometrie en

scanning electronen microscopie werden toegepast om kwalitatief en kwantitatief

het effect en gedrag te bestuderen op 4 geretrievde Symax TM stelen van deze

nieuwe, electrochemisch gedeponeerde Bonit-HA®coating en de Dotize®

oppervlaktebehandeling. Snelle en uitgebreide osseointegratie werd gezien rond

het HA-gecoate deel van de steel. Bot-implantaat oppervlakte contact verbeterde

van 26,5 % na drie weken tot 83,5 % na 13 maanden, met een toenemende

botdichtheid per ROI van 24,6 % (drie weken), tot 41,1 % (32 maanden). De

coating bleek snel te remodelleren maar zonder dat dit resulteerde in een negatief

effect op de bot-implantaat koppeling. Deze diepe en uitgebreide ingroei van bot

in de open oppervlakte structuur van de Symax TM steel leidt tot een optimale

afdichting van de bot-implantaat interface en een stabiele benige verankering.

Gebaseerd op de ervaring van stelen met eerste en tweede generatie plasmaspray

HA-coatingen, mag blijvende lange termijn osseointegratie worden verwacht voor

dit nieuwe design, met voorspelbare resultaten ten aanzien van survival.

Anderzijds bleek de Dotize® hoppervlakte behandeling botappositie op het distale

deel van de steel volledig te kunnen voorkomen. Deze combinatie garandeert een

uitsluitend proximale steelingroei, bijdragend aan een optimale proximale stress

overdracht op bot, met een verwachte vermindering van de stress shielding van de

femur metaphyse.

Dit effect kon worden bevestigd in hoofdstuk 6, waarin de botremodellering

rondom the Symax TM steel werd bestudeerd met behulp van DEXA, en werd

vergeleken met de Omnifit®steel in een 2 jaar gerandomiseerde klinische trial. Ten

behoeve van een verbeterde weergave van het implantaateffect op de bot minerale

dichtheid (BMD) werd een modificering van de Gruen zones als ‘regions of interest’

geïntroduceerd. Hiermee werd een correctere vergelijking van remodellering rond

stelen met een verschillend design beoogd. De resultaten toonden consistent

hogere BMD-waarden voor de Symax TM steel, welk verschil statistisch significant
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werd in zone 7 vanaf 1 jaar follow-up. Deze verbeterde botpreservatie rond de

Symax TM steel, in combinatie met de verbeterde osseointegratie zoals aangetoond

met histologisch onderzoek, werd geacht een goed lange termijn resultaat te

kunnen voorspellen.

Tot slot wilden we nagaan of de eindige elementen methode (Finite Element,

FE) de mogelijkheid heeft om een betrouwbare preklinische simulatie te verrichten,

en valide eigenschappen heeft om klinische in vivo resultaten te kunnen

voorspellen. Daartoe werd de remodelleringstudie van hoofdstuk 6 vergeleken met

een numerieke simulatie studie in hoofdstuk 7, om de nauwkeurigheid van de

eindige elementen techniek te bepalen, alsmede de waarde van deze techniek in

het verbeteringsproces van implantaatdesigns. DEXA metingen toonden een BMD

verlies in Gruen zone 7 van 14 % en 20 % (P<0.05) voor respectievelijk de Symax
TM en Omnifit®steel, terwijl de FE-modellen een botverlies voorspelden van 28 %

(SymaxTM) en 26 % (Omnifit®). Wanneer de Dotize® oppervlaktebewerking niet in

de simulatie werd gemodelleerd, werd er zelfs een botverlies van 35 % voorspeld

in Gruen zone 7. Alhoewel de numerieke simulatie weliswaar een trend van

verbeterde proximale botbelasting toonde door het Symax TM ontwerp, welke werd

bevestigd door DEXA resultaten, was er geen kwantitatieve match. Dit impliceert

dat de FE-voorspelling van botremodellering onvoldoende correlatie vertoonde

met klinische bevindingen in grotere patiëntengroepen, en waarschijnlijk niet

geschikt is voor nauwkeurige voorspelling van discrete veranderingen in

belastingspatronen. Dit moet worden toegeschreven aan incomplete aannames

betreffende de biologische en mechanische effecten van de nieuwe coating en

oppervlaktebewerking, en het onvermogen van de FE-techniek om de dynamische

interface variabelen adequaat te vertalen in puur mechanische, mathematische

vergelijkingen.

Concluderend kan worden gezegd dat de gefaseerde innovatie van nieuwe

totale heupprothesen met de daaraan gekoppelde stapsgewijze test- en evaluatie

procedure, de orthopaedische gemeenschap ongetwijfeld een protocol heeft

verstrekt voor een veiligere introductie van nieuwe designs. De ‘trial en error’

methode is niet rationeel gebleken en is intrinsiek riskant. De kans om opnieuw
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met een orthopaedische ramp geconfronteerd te worden zal kleiner zijn indien dit

aangepaste traject wordt gevolgd. Echter de aanname van volledige veiligheid van

welke diagnostische modaliteit dan ook om toekomstige mislukkingen in een

vroege fase te detecteren, is onrealistisch en vooralsnog niet bewezen. De meeste

technieken zijn te weinig sensitief, niet discriminerend genoeg en irrelevant om

(kleine) verbeteringen of potentiële failures te detecteren. Ook voor RSA is de link

tussen het migratiepatroon en toekomstige loslating niet vastgesteld voor de meeste

implantaten. En de eindige elementen vertaling van dynamische biologische

processen op de interface tussen implantaat en bot is nog te ver geabstraheerd van

de realiteit, zodanig dat numerieke modellen de natuurlijke fysiologie slechts ten

dele kunnen simuleren.

Derhalve zou de klinische waarde van RSA kunnen toenemen door een groei

in het aantal studies waarbij het focus dient te liggen op het herkennen van

afwijkende migratiepatronen in vergelijking met die van de meest gebruikte

implantaten, en deze vervolgens prospectief te correleren aan klinische resultaten

en survival studies. Voor de eindige elementen methode dienen dynamische

biochemische interface interacties beter begrepen en vertaald te worden in

mechanische algoritmes, en vervolgens gevalideerd met behulp van klinische

resultaten uit prospectieve studies.

Niettemin tasten we nog steeds enigszins in het duister, en blijft

kwaliteitonderzoek vooralsnog afhankelijk van de combinatie van meerdere

beschikbare diagnostische technieken, in plaats van één enkele methode. Deze

modaliteiten spelen een rol in verschillende fasen van de preklinische en klinische

testprocedure van de prothese (Fig. 1).

Recente orthopaedische mislukkingen hebben ons andermaal geleerd dat er in

de moderne orthopaedische wereld geen plaats is voor ongefundeerd geloof in de

potentiële superioriteit van welk nieuw design dan ook. Orthopaedisch chirurgen

hebben de verplichting ieder nieuw implantaat met grote zorgvuldigheid op te

volgen, ‘studies’ uitgevoerd door producenten en/of designers te beschouwen met

professionele achterdocht, en een persoonlijke verantwoordelijkheid te ervaren voor
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de patiënten die door hen worden geïncludeerd in elk onderzoek van een nieuw

implantaat of chirurgische techniek. Er is tevens een belangrijke taak voor de

nationale wetenschappelijke orthopaedische verenigingen om de rol van supervisor

op zich te nemen en toezicht op haar leden te houden, met het doel de professionele

standaard te verbeteren en verder verlies aan goodwill te voorkomen. Deze taak dient

echter in balans te blijven met het stimuleren van de intrinsieke drang tot innovatie,

welke tegelijkertijd het bestaan van dezelfde wetenschappelijke verenigingen

rechtvaardigt. 
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Uiteindelijk is het dan zover. Het is mooi geweest, ik zet er een punt achter. En

ach, eigenlijk was het best leuk. Dat de ‘s’ er nu van af is maakt me niet heel veel

gelukkiger, maar dat ik dit kan nalaten als dank voor allen die mij hierin hebben

gesteund, wel.

In de meeste dankwoorden wordt begonnen met de promotor, maar wat mij

betreft komen anderen eerst. 

Lieve Annet, al 24 jaar mijn Zeeuwse maatje, mijn steun en toeverlaat. Jou

komt de meeste dank toe. Je hebt me de vrijheid gegeven om me steeds weer terug

te trekken op mijn kamer, in een jong opgroeiend gezin dat eigenlijk de aandacht

verdiende die de wetenschap opeiste. Deze spagaat is van alle tijden en

waarschijnlijk moeilijk te omzeilen, maar toch. Je was en bent de motor die bij ons

alles draaiend houdt, zorgzaam en liefdevol, moeder en vader tegelijk. Dit alles

terwijl ik schitterde door ‘afwezigheid’, en zat te worstelen achter de computer, of

weer zo nodig een verhaaltje moest vertellen in binnen- of buitenland. Maar je

vond het goed, dank je. En soms ook niet, en dan had je gelijk, Annet, je bent een

kanjer, ik zou dit vaker moeten zeggen ...

Lieve Charlotte en Juliëtte, jullie zijn het mooiste dat ik heb, en kleuren

dagelijks mijn leven. Ik heb veel niet meegemaakt van jullie jonge jaren, en het

moment dat jullie er op uittrekken is al zo dichtbij. Ik zie op tegen het moment dat

Annet en ik onze dochters niet dagelijks meer om ons heen hebben, maar goed zo

moet het gaan, zegt men. Lot ik vind het geweldig dat je in mijn voetsporen wilt

treden, ondanks dat je hebt gezien hoeveel je voor dit vak ook moet opgeven. Je

zult een goede dokter zijn, rustig en begripvol. Je patiënten zullen van je houden.

En Juul, mijn eeuwige plaaggeest, maar ook mijn kleine meid, want dat zul je

blijven. Ik bewonder je volharding en de groei die je doormaakt, van een onzeker

meisje naar een zelfbewuste jonge vrouw. Ik denk niet dat ik daar veel aan

bijgedragen heb, het is voornamelijk mama’s werk. Maar ik ben ontzettend trots op

jullie, ook dat zou ik vaker moeten zeggen. We gaan een feestje vieren, er komen

nog wat mensen, maar het is voor ons vieren.

Lieve pa en ma, ik ben ontzettend blij dat jullie deze dag beide nog mee

kunnen maken. Door mijn ‘gedegen’ voorbereiding had het zomaar anders kunnen

zijn. Jullie interesse in mijn werk en onderzoek was altijd hartverwarmend, en ma je

zorgen over dat ik zo hard moest werken, aandoenlijk. Het verheugt me dat ik langs
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deze weg jullie nog kan danken voor de mogelijkheid die jullie al jullie kinderen

hebben geboden om vanuit een warm nest de weg te kiezen die we wilden, ook al

duurde hij lang en was hij kostbaar. Het verdriet mij dat Henriëtte niet meer bij ons

is, zij zou van deze dag genoten hebben. Ergens feest ze wel met ons mee, denk ik.

Prof. Dr. R.G.T. Geesink, beste Ruud. Hoewel je als co-promotor in mijn

boekje staat, ben jij toch eigenlijk mijn promotor. Jij was voor mij het voorbeeld

van hoe een begaafd clinicus en begenadigd operateur die kwaliteiten kon laten

samengaan met het doen van innovatief wetenschappelijk onderzoek. Veel van

mijn werk ligt in het verlengde van waar jij onze vakgroep internationaal mee op

de kaart hebt gezet. Toen je hoogleraar werd heb je mij gevraagd om jouw werk

over te nemen en toe te treden tot de staf, ik ben je daar nog altijd dankbaar voor.

Het meest erkentelijk ben ik je echter voor de wijze waarop je mij de schoonheid

van de revisiechirurgie hebt bijgebracht, en de overtuiging dat ieder probleem

oplosbaar is. Beschouw dit boekje een beetje als een terugbetaling daarvoor.

Prof. Dr L.W. van Rhijn, beste Lodewijk, toen duidelijk werd dat Ruud reeds

te lang met emeritaat was om nog mijn promotor te kunnen zijn, nam jij die rol

voortvarend op je en begeleidde het laatste stuk van de reis. De tijd evolueert snel,

in 1997 startten we samen in de staf, een aantal jaar geleden mocht ik jouw

paranimf zijn, nu ben je mijn promotor. Dank voor je interesse in mijn werk en de

stimulans die je mij en vele andere promovendi geeft en in de toekomst zult geven.

Je verstaat de kunst om in iedere ‘uitdaging’ een kans te zien en zo heb je van onze

groep een groeimodel gemaakt dat gezien wordt in binnen- en buitenland. Het is

goed dat we als hoofd en waarnemend hoofd af en toe eens stevig kunnen sparren,

maar ons ook met enige ironie kunnen amuseren over het betrekkelijke van de

academische wereld.

Dr. J.J.C. Arts, beste Chris als tweede co-promotor raakte je pas in een later

stadium bij mijn onderzoek betrokken. Dank voor de energieke wijze waarop je

hebt bijgedragen aan het leveren van commentaren en verbeteringen van mijn

manuscripten. Als wetenschappelijke duizendpoot stuiter je op de afdeling op en

neer, en het is goed dat je Tim als bedachtzame tegenhanger hebt. Samen vormen

jullie een goed tandem waar in de toekomst nog vele originele onderzoeksideeën

aan zullen ontspruiten. Ik vertrouw erop dat jullie enthousiasme Maastricht steeds

prominenter op de kaart zal zetten.
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Drs. L Jutten-Brouwer, beste Liesbeth, jij verdient een belangrijke plaats in dit

dankwoord. Bijna vanaf het begin van mijn onderzoek, ben je er bij betrokken en je

hebt er bijzonder veel werk voor geleverd. Klinische studies zonder jouw accurate

en toegewijde ondersteuning zijn op onze afdeling eenvoudigweg niet mogelijk.

Jouw grote verantwoordelijkheidsgevoel en integere onderzoeksmentaliteit blijkt

iedere keer weer een garantie voor een kwalitatief hoogwaardige follow-up, en dit

wordt inmiddels ook erkend buiten onze kliniek. Je zorgvuldige data-management

(ondersteund door Margareth), het verzorgen van tabellen, grafieken, kortom de

‘hardware’ van mijn onderzoek was bij jouw in veilige handen. Dank voor je hulp. 

Beste Steffie (Harings), Pieter (Emans), Alfons (Kessel), Jeroen (van Mulken),

Roel (Kuijer), Pieter (Leffers), Nico (Verdonschot), Dennis (Janssen), gewaarde

overige co-auteurs . Jullie allen leverden een bijdrage aan de onderzoeken die aan

de basis stonden van mijn manuscripten. Dank voor jullie inzichten, meningen,

adviezen, correcties en vooral jullie geduld en doorzettingsvermogen. En Nico,

dank dat je jouw nek hebt uitgestoken en het aangedurfd hebt om met open vizier

mijn kritische blik tegemoet te treden. Je hebt samen met Maria en Dennis van

mijn complexe onderzoeksvoorstel een coherent geheel weten te maken. Ik hoop

dat de Nijmeegs-Maastrichtse as in de toekomst meer mooie projecten op gaat

leveren.

Dear Maria (Tarala), Antoine (Alves), Axel (Baumann), dear co-authors I am

very grateful for your contributions to my research. Your expertise in the field of

biomechanics, histological techniques and coating technology was indispensable.

Antoine and Axel thank you very much for taking the effort to join the meetings at

Amsterdam airport to discuss the histological slides and help me understand what

I was actually looking at. 

Prof. Dr. A.J. van der Linden, beste Ton. Ik herinner me mijn sollicitatiegesprek

in de barakken van het oude Annadal nog als een bijzondere gebeurtenis. Met het

aannemen van mij voor de opleiding tot orthopaedisch chirurg bepaalde je voor

een belangrijk deel mijn levensloop. Ik ben je daar dankbaar voor, het heeft mij

veel gebracht. Met wijsheid, humor, gezond relativeringsvermogen en soms niet

mis te verstane duidelijkheid, wist je sturing te geven aan de opleiding van een

diverse schakering assistenten. De oprechte belangstelling van Lida en jou voor het

thuisfront werd door ons zeer gewaardeerd. Helaas kunnen Annet en ik niet bij de
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viering van je 85ste verjaardag zijn, maar we wensen jullie beide een mooie dag
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overtuigd dat we ze prima het hoofd zullen kunnen bieden.

Beste André, fijn dat je op deze dag aan mijn zijde wilt staan. Het is goed je

op zo’n moment gesteund te weten door iemand van eigen vlees en bloed. Onze

levenslijn kent vele parallellen; een mooie gemeenschappelijke jeugd, samen

gestudeerd, beide een opgroeiend gezin en een hectische baan. Het doet me ook

goed deze dag met mijn dierbaren te kunnen vieren, mijn familie en

schoonfamilie. Dank voor de belangstelling die jullie altijd voor mijn werk getoond

hebben, en het geduld, het vele geduld. Het is nu klaar, ik kom weer eens wat

vaker langs.

Tot slot wil ik ook mijn collega oud-stafleden (Geert Walenkamp, André van

Ooij, Jan Verhaar, Sjoerd Bulstra, Henk Arens, Jan Willem Duyzings †, Mike van

Steijn en Patrick Deckers) en huidige stafleden (Paul Willems, Heleen Staal, Jan

Geurts, Peter Feczko, Pieter Emans, Joris Hermus, Mark van den Boogaart en

Adhiambo Witlox) danken voor de gelegenheid om mij door de jaren heen te

wijden aan dit onderzoek, en voor de mogelijkheid ons vak op inspirerende en

saamhorige wijze uit te oefenen. ‘The future is ours.”

Ik heb gezegd. 
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