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Abstract

The general public increasingly adopts smart wearable devices to quantify sleep characteristics and dedicated devices for sleep assessment. The
rapid evolution of technology has outpaced the ability to implement validation approaches and demonstrate relevant clinical applicability. There
are untapped opportunities to validate and refine consumer devices in partnership with scientists in academic institutions, patients, and the
private sector to allow effective integration into clinical management pathways and facilitate trust in adoption once reliability and validity have
been demonstrated. We call for the formation of a working group involving stakeholders from academia, clinical care and industry to develop
clear professional recommendations to facilitate appropriate and optimized clinical utilization of such technologies.
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Background clinical settings for diagnosing sleep apnea (home sleep apnea
tests). With the evolution of technology and increased public
awareness and interest in sleep, there has been a remarkable
growth in the numbers and types of electronic devices, including

While sleep studies were traditionally performed in controlled
laboratory settings for diagnosis or management of sleep dis-
orders, home-based assessments are increasingly used in
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wearables and nearables, marketed directly to consumers for
use for monitoring sleep; consumer sleep technologies range
from smart mattresses and EEG headbands using dry electrodes
[1] or entirely contact-less systems measuring body motions,
heart rate and respiration through radiofrequency Doppler tech-
nology. Most prominently, over the past five years, the number of
wearable fitness trackers and smartwatches shipped worldwide
has grown from 89 to 232 million units each year and is expected
to reach over 379 million devices in 2025 [2]. While original smart
wearable devices focused on fitness tracking, sleep assessment
modules were soon integrated into many devices. The currently
available sleep assessment ranges from tracking sleep duration
to sleep schedules and sleep stages, or even respiratory disturb-
ances. The technology was geared initially toward “wellness”
(achieving personalized “sleep goals”) of the “quantified-self”
community by self-tracking lifestyle applications (Apps). Now, in
parallel, the self-tracked lifestyle components, including sleep
duration and the detection of suspected sleep disorders, provide
metrics that have potential clinical implications. Although lon-
gitudinal sleep tracking might yield personalized insights and
temporal patterns, it is currently impossible to objectively inter-
pret and compare sleep patterns/architecture provided by the
different devices [3]. In addition, most algorithms are not de-
scribed in detail in the literature; the majority of data reported
by these wearables are computed by artificial intelligence algo-
rithms with a “black box” effect [4,5], and lack of comprehensive
validation studies are limiting wider acceptance by patients and
clinicians.

Sleep Assessment in the Clinic

Sleep is a complex phenomenon that has traditionally been as-
sessed with overnight polysomnography (PSG). It requires an
array of sensors, including, most importantly, an electroenceph-
alogram (EEG), to provide a detailed picture of processes charac-
terizing sleep and its disorders. Established approaches to scoring
PSG recordings are used according to available guidelines by the
American Academy of Sleep Medicine (AASM) [6]. The interpret-
ation of PSG is challenging and requires expert knowledge by
specifically trained physicians and allied health specialists, pro-
ducing a range of metrics capturing different aspects of sleep
[7]. The most widely used metrics include the duration, stages
and fragmentation of sleep, hypoxemic burden representing the
time spent with low oxygen saturation, the apnea-hypopnea
index (AHI) (representing the number of hypopneas and apneas
per hour of sleep to assess sleep-disordered breathing), periodic
limb movements (to assess periodic limb movement disorder),
and ECG (for overnight cardiac arrhythmias). Some of these
metrics, particularly the AHI and hypoxemic burden have been
linked to an increased cardiovascular outcome risk [7-10] aside
from a reduced quality of life, including poor daytime perform-
ance. However, there is less utility of PSG for understanding vari-
ations in sleep duration or timing, or to diagnose insomnia.

Sleep Tracking by Smart Wearable Devices

“Smart” wearable devices are convenient because they col-
lect data unobtrusively, potentially over days or longer, via a
limited number of sensors directly integrated into a device
worn on the wrist or finger and do not require specific ac-
tions by the consumer. Many devices perform actigraphy and

photoplethysmography, yielding information on movement and
pulse rate from which secondary data can be derived, such as
pulse rate variability and respiratory modulation of the pulse
amplitude. These data streams are combined to estimate sleep
and wake times, and some have been used to perform sleep sta-
ging via proprietary algorithms without the use of gold standard
EEG. Intuitively, movement detection can be used to detect
wakefulness. At the same time, the amount and regularity of
pulse rate variations aids the separation of REM from non-REM
sleep and light from deep non-REM sleep, where REM sleep is
typically associated with more irregular heartbeats and deep
sleep by pronounced respiratory sinus arrhythmia [11]. The
addition of skin temperature measurement appears to improve
sleep onset detection [12]. While these surrogate measures cor-
relate with some EEG-based sleep metrics, there is variability in
accuracy for specific parameters (e.g. REM vs light sleep), with
misclassification also influenced by person-specific factors (e.g.
underlying sleep disorders, movement disorders, and depres-
sion). Therefore, the optimal use of metrics from these devices
requires a thorough understanding of the meaning and pre-
dictive value of these metrics, and in some cases may require
population-specific thresholds for defining normative values
(e.g. percentage of time in N3 or average sleep duration). In other
cases, some metrics may prove to have little value for predicting
impairment or risk of disease. In contrast, in other instances,
such metrics may prove superior to existing clinical tools. The
ability to use data collected over long periods as well as an em-
phasis on heart rate measures capturing autonomic cardiac
control, which is usually not considered in current clinically per-
formed sleep tests, for example, may prove to yield novel pre-
dictive data for cardiovascular outcomes [13].

Oxygen saturationis of growingimportance as an integrative
signal for health, as well as being useful for predicting sleep-
disordered breathing-related health outcomes. Pulse oximeters
are becoming more widely integrated into smartwatches, and
some are approved by regulatory bodies as diagnostic devices
for measuring oxygen saturation [14]. Advanced algorithms
detect episodic desaturations indicative of sleep-disordered
breathing [15] and can be used as surrogate parameters to es-
timate the presence and severity of sleep apnea [16]. However,
FDA-approved pulse oximeters being used widely in the clinic
have been criticized for overestimating oxygen saturation
levels in certain situations (critical care), with differential
misclassification in minorities (presumably due to the im-
pact of skin pigmentation on photoplethysmography) [17]. It
is important to understand whether these concerns apply to
smart wearable devices. In addition, as is true for home sleep
apnea tests (HSAT) that do not record EEG, wearable devices
may overestimate total sleep time and underestimate sleep
onset latency and wake after sleep onset [18], thereby likely
underestimating the presence and severity of common sleep
disorders, for example, the number of oxygen desaturations
per hour of sleep. For these reasons, the current generation of
smart wearable devices cannot replace a full PSG but are more
similar to a conventional type IV test for obstructive sleep
apnea, i.e. an unattended sleep recording of 1-2 channels,
typically including pulse oximetry [19]. While the sensitivity
of limited channel tests used alone have been found to vary
from insufficient to adequate [20, 21], combining them with a
pretest clinical score or repeated measurement may improve
sensitivity. Indeed, as sleep-disordered breathing testing and
diagnosis is increasingly performed by HSAT, a key question
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is whether smart wearable devices could substitute for cur-
rent HSAT, while PSG would be primarily used for evaluating
complex disorders and following up on negative tests in cases
where there is still a high pretest probability or unexplained
sleep-related symptoms. Incorporation of portable EEG signals,
such as with a headband (and possibly in the future with in-ear
sensors), may further improve the information from oximetry-
based devices, addressing some of the concerns pertaining to
the current generation of HSAT [22].

A major strength of wearables is to allow multiple-night
recordings with a limited cost and in ecologic conditions.
Many studies underscore that a single night PSG results in a
20%-50% misclassification regarding sleep apnea diagnosis
[23]. Multiple nights’ data will reduce misclassification due to
nonrepresentative sleep on a single night and allow monitoring
of changes in the environment and health to be considered, po-
tentially resulting in improved health outcomes on a large scale.
Characterizing night-to-night variability can identify triggers
or conditions that modulate severity of OSA. Multiple-night re-
cordings may also help reduce measurement inaccuracies of the
wearable device if these errors are random and uncorrelated to
the signal, improving the signal-to-noise ratio.

Where to go from Here?
Educating consumers about wearable technology

Typically, software provided by the device manufacturers or
third-party apps condense data collected through the night and
produce a (simplified) hypnogram, overnight respiration rate re-
cording and overnight oximetry recording using deep learning.
Additionally, most smart wearable devices provide a simple ag-
gregate sleep metric for the end-user, conventionally referred
to as the “sleep score”. Usually expressed in a fixed range, e.g.
from 0 to 100, high sleep scores refer to better sleep, while lower
scores suggest possible sleep issues. The definitions of what the
sleep score incorporates vary between devices and often remain
opaque, mainly without any account of correlation to patient-
reported outcomes. It may include information on sleep dur-
ation, sleep cycle, and respiratory disturbances. Complicating
matters further, the sleep score may be modified by personal-
ized sleep goals, e.g. by an individual setting their “ideal” sleep
time, further reducing its objectiveness and comparability.

Despite not being officially classified or labelled as a diag-
nostic tool, it is fair to assume that people longitudinally probing
their sleep by wearables may draw some conclusions and change
their sleep patterns and lifestyle according to this. The potential
implications are profound. If only 10% of people who bought a
smart wearable device in 2021 will use it to assess their sleep,
perhaps due to concerns about their sleep quality, 23.2 million
people will pay attention to their’ sleep score’ globally.

With increasing accuracy and uptake of sleep-tracking
Apps, the detection of existing and yet undiagnosed sleep
disorders will likely increase. Consumers using these “sleep
scores” need to be educated about the relevance and import-
ance of sleep disorders, the possible treatment options, and the
best way to access appropriate medical advice if further action
is required as well as when to consult clinicians regardless of
the output of such devices. Additionally, as observed in other
consumer-led scenarios of mobile health use, self-monitoring
may sometimes be counter-productive [24]. Also, not all poten-
tial consumers who may benefit from self-monitoring can use

Baumertetal. | 3

or access digital technology, contributing to a digital “divide”
and digital inequality. Some devices may perform variably
across groups, eg, underestimating wake time in individuals
with depression or underestimating oxygen saturation in indi-
viduals of color, thus potentially aggravating health inequities.
Finally, in addition to improvement and standardization of the
performance of the Apps, improved information and education
are required to support the consumers’ and patients’ involve-
ment and engagement in data interpretation and the triggering
of presentation to a physician to seek medical help and advice.
Sleep apps must deliver a positive user experience, engaging
and educating consumers if their use is to persist. Chat-bot
coaches that guide users through the complexities of sleep
data and make a recommendation based on currently available
evidence may be one promising approach for improving user
benefit [25]. Data-driven decision-support systems will likely
play an increasing role in clinical and consumer environments.
The line between personalized “wellness” recommendations
and providing clinical advice is increasingly blurred but does
carry liability issues for both the technology developer and the
physician. Sleep apnea diagnosis and management recom-
mendations and guidelines must take this topic seriously, and
offer strong, evidence-based consensus statements to guide
clinical decision making.

Raising awareness in the clinical community

Physicians and allied health specialists should be prepared
to be confronted with “sleep scores” from smart wearable de-
vices collected by patients. While academia and sleep phys-
icians rely on the precise definition, measurement, and cut-off
values of sleep metrics obtained with validated PSG or HSAT
devices [6], the “sleep score”, existing primarily outside the
sleep laboratory, has mainly emerged as an output of self-
tracking lifestyle Apps for smart wearable devices without
any systematic validation and testing. Aside from the mis-
classification of metrics contributing to the sleep score due
to inaccuracies inherent in deep learning strategies, poten-
tially providing misleading results at the individual level, the
lack of specificity of information content of the sleep score
to guide follow up presents significant challenges. Until the
interpretation of aggregate sleep scores is better understood,
the clinical value of wearables may better focus on optimal
use of conventional sleep metrics, defined clearly and char-
acterized according to their measurement properties. Such
metrics may capture features of sleep architecture (total sleep
time, time spent in various sleep stages), subcortical arousals
via pulse wave amplitude and heart rate changes [26, 27] and
sleep-disordered breathing, for example by means of oxygen
desaturation index or other measures of hypoxemic burden
[9, 28]. As methods for calculating summary indices of multi-
dimensional sleep health from research tools are further val-
idated and shown to predict health outcomes [29], there may
opportunities to use this research to inform the development
of scores using simpler consumer technology.

While wearables have also demonstrated new research cap-
abilities in characterizing changes in sleep health occurring
during major societal changes such as the COVID-19 pandemic
and associated social restrictions [30, 31], the usefulness of aug-
menting sleep awareness with devices at the level of the in-
dividual is not yet understood. Does self-tracking using these
new, sometimes poorly validated, measures improve health
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Figure 1. Integration of sleep tracking by wearables into the healthcare framework.

behaviors, or do they lead to anxiety over meeting metrics that
may or may not reflect optimal sleep? Do they result in over-
utilization of health care by physician consultation to follow up
on findings? Do they cause under-diagnosis due to the failure
of devices to identify a clinically significant problem or by indi-
viduals attempting to improve sleep scores without appropriate
clinical support?

Integrating sleep data from wearables into clinical
workflow

Effective strategies must be found to make sleep data from
wearables useful to clinical care and to empower patients to be
involved in data collection, which can finally be integrated into
clinical management pathways (Figure 1). The widespread use
of heart rate and rhythm monitoring by several mobile Apps
within the cardiology setting may provide an example of how
sleep tracking metrics continuously collected by smart wearable
devices may soon enter the clinical field [32, 33]. Similarly to
sleep assessment, most heart rate and rhythm assessment Apps
were initially developed for consumer-initiated self-tracking of
health and lifestyle but subsequently rapidly found their way
into the clinical setting [32]. Recently, Cardiology societies have
been provided up-to-date practical guidance on the use of
digital devices for arrhythmias, from early detection through
the management and clinical implementation. Potential bar-
riers and side effects concerning patient engagement or digital
literacy as well as several challenges, including the definition of
useful clinical scenarios and integration of actionable data in
treatment pathways learned in the Cardiology field, should be
considered for sleep management as well. Specific challenges in
the sleep use case may be the involvement of multiple special-
ties. There is a potential that the implementation of digital tech-
nology and cloud-based analysis and data sharing may improve
healthcare fragmentation [34].

The accuracy of wearable-derived sleep metrics and the best
way to integrate these findings into clinical decision making and
treatment pathways remain unclear. Although specific guidance

is not available, a general statement from the AASM indicates
that consumer sleep technologies are not substitutes for med-
ical evaluations, given the unknown accuracy of these devices.
However, they may be used as an adjunct to an appropriate clin-
ical evaluation [35].

The sleep community recognizes the importance of
achieving data transparency [36]—European Data Format, de-
veloped by a few biomedical engineers as the result of the 1987
international Sleep Congress in Copenhagen, has become the
de-facto industry standard and is now widely adopted by PSG
and EEG equipment. Yet, implementation details may differ,
and minimum data requirements, for example, were not speci-
fied. To facilitate the transition of wearable-derived sleep data
from the lifestyle-tracking consumer-led setting to the clinical
physician-led setting and to allow the integration of these new
sleep metrics into the decision-making process by physicians
and other health professionals, future consensus documents
should focus on establishing minimum requirements for trans-
parency, documentation, and independent validation of these
tools [36]. Manufacturers of smart wearable devices that pro-
vide sleep assessment should understand of the critical needs
to adopt approaches for improving data transparency when
developing testable, actionable and clinically valuable met-
rics- which will be essential for the clinical implementation of
wearable-derived sleep tracking and release its true potential
to society. The business case of these wearables developed in
wellness is completely different from medical device pathways
targeting reimbursement [37]. Novel means are needed to en-
gage manufacturers of smart wearable devices to incentivize
transparency and validation, eg by providing “certification” en-
dorsed by professional societies for those products that meet
minimum requirements established by consensus guidelines.
The fluidity of algorithm development and continuous system
updates, in particular those using deep learning remains a
challenge. To address these issues, professional societies may
curate large open-access benchmark training databases and
offer in-house performance assessments using blinded test
datasets [36].
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Several other aspects currently prevent the broad integra-
tion of consumer wearables into clinical workflows, such as the
inflexible IT infrastructures, privacy issues, concerns regarding
data protection and ongoing discussion about data ownership.
Additionally, the large amounts of data for healthcare personnel,
unsolicited recordings and recordings sent out of hours can in-
crease workload and open up areas of legal uncertainty. Also,
wearables and related software for maintaining or encouraging
a healthy lifestyle unrelated to the diagnosis, cure, mitigation,
prevention, or treatment of a disease or condition are not con-
sidered medical devices. While FDA does not currently regulate
these devices, new bodies may be needed other than profes-
sional societies to ensure public needs are met.

Conclusions

Technological advancements of wearables detecting sleep char-
acteristics and dedicated devices for sleep assessment are rap-
idly progressing along with fast adoption by the general public.
However, these advances and uptake have outpaced the ability
to implement approaches to validate these data and provide
relevant clinical applicability. There are untapped opportun-
ities for a partnership of scientists in academic institutions, pa-
tients, and the private sector to validate and refine consumer
devices to allow effective integration of these data into clinical
management pathways and facilitate trust in adoption once re-
liability and validity have been demonstrated. Professional so-
cieties may set guidelines for the standardization of reported
data, a unified validation framework for device and software
components, and offer minimal “certification” for products that
meet these standards. We call for the formation of a working
group comprising stakeholders from academia, clinical care
and industry to develop clear professional recommendations to
facilitate appropriate and optimized clinical utilization of such
technologies. Key points that need to be established include:

e A minimum set of clearly defined sleep metrics to be re-
ported by the device,

e Minimum performance evaluation requirements against
PSG and accuracy reporting of sleep metrics [38],

e Ensuring a rigorous approval procedure of sleep diagnostic
capabilities by regulatory agencies, eg oxygen desaturations
for diagnosing obstructive sleep apnea,

e A transparent interface for data download and IT infrastruc-
ture integration.

Conflict of interest statement. None declared.
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