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A B S T R A C T   

This paper examines the dependence between Artificial Intelligence (AI) and eight energy-focused sectors 
(including renewable energy and coal) across different market conditions and investment horizons. This paper 
adopts both linear and non-linear models such as quantile regressions and quantile cross-spectral coherency 
models. Evidence from the linear model suggests that the performance of energy-focused corporations, especially 
those in the renewable energy sector depends strongly on the performance of AI. Results from the non-linear 
model indicate that dependence varies across both energy sectors, market conditions as well as investment 
horizons. By considering both negative and positive shocks on AI, we demonstrate that the dependence of energy 
corporations on AI also varies according to the direction of shocks on AI. Interestingly, negative and positive 
shocks on AI impact differently on the performance of energy corporations across different sectors and market 
conditions. Besides, we found that the dependence became stronger during the first wave of the COVID-19 
pandemic. Our findings hold profound implications for portfolio managers and investors, who may be inter
ested in holding the assets of AI and those of energy corporations.   

1. Introduction 

In this paper, we focus on the dependence structure between the 
stock returns of AI and those of energy-focused firms. This paper 
particularly aims to provide empirical evidence (if any) on the potential 
hedging and portfolio diversification opportunities AI assets may hold 
for those of energy-focused sectors across different investment horizons 
and market conditions. Following the seminal paper by Henriques and 
Sadorsky (2008), expansive literature examining the interdependence 
and connectedness between technology stocks, oil price changes, clean 
energy stocks has emerged. Among others, this literature has examined 
the market responses and volatility spillovers among crude oil prices, 
clean energy and technology stocks across different times and market 
conditions (Kumar et al., 2012; Sadorsky, 2012; Managi and Okimoto, 
2013; Inchauspe et al., 2015; Bondia et al., 2016; Ahmad, 2017; Ferrer 
et al., 2018; Maghyereh et al., 2019; Nasreen et al., 2020; Niu, 2021). So 
far, results emerging from this literature show significant evidence of 
dependence, causality, and spillovers among these variables, although 

the strength of the correlation and directional predictability varies 
across these studies. 

For instance, Henriques and Sadorsky (2008) employed the Vector 
Autoregressive (VAR) model and found that technology stock prices are 
influenced by changes in oil prices, while technology shocks exact more 
significant impact on clean energy stock prices compared to oil price 
shocks. Taking into account the time-dependent dynamics, Managi and 
Okimoto (2013) used a Markov-switching VAR model and found that in 
the post-structural break period, oil prices and technology stock prices 
impact positively on clean energy stock prices, whilst their pre- 
structural break period results are consistent with Henriques and 
Sadorsky (2008). Inchauspe et al. (2015) used a state-space multifactor 
model and found that the impact of oil prices on clean energy stock 
returns increased since 2007. They also found evidence of stronger ef
fects of technology stocks on clean energy stocks compared to the effect 
of oil prices. Bondia et al. (2016) found that while the stock prices of 
clean energy companies are impacted by technology stock and oil prices 
in the short run, there is no causality running towards clean energy stock 

* Corresponding author. 
E-mail address: sainturom@gmail.com (C. Urom).  

Contents lists available at ScienceDirect 

Technological Forecasting & Social Change 

journal homepage: www.elsevier.com/locate/techfore 

https://doi.org/10.1016/j.techfore.2022.121842 
Received 11 December 2021; Received in revised form 20 June 2022; Accepted 23 June 2022   

mailto:sainturom@gmail.com
www.sciencedirect.com/science/journal/00401625
https://www.elsevier.com/locate/techfore
https://doi.org/10.1016/j.techfore.2022.121842
https://doi.org/10.1016/j.techfore.2022.121842
https://doi.org/10.1016/j.techfore.2022.121842
http://crossmark.crossref.org/dialog/?doi=10.1016/j.techfore.2022.121842&domain=pdf


Technological Forecasting & Social Change 183 (2022) 121842

2

prices in the long-run. Ferrer et al. (2018) found evidence of pairwise 
connectedness between clean energy and technology stock prices, but 
mainly in the short-term. Ahmad (2017) found that there is a bilateral 
interdependency between clean energy and technology stocks, while 
crude oil exhibits limited interdependence with clean energy and tech
nology. Maghyereh et al. (2019) used the wavelet and multivariate 
GARCH (MGARCH) techniques and found significant bidirectional re
turn and risk transfer from oil and technology to the clean energy 
market. Results from the time-scale analysis further revealed that risk 
transmissions are more pronounced at longer time horizons. 

While the above studies provide important insights on the nature of 
the relationship between technology and energy stocks, due consider
ation of the type of technology in question has remained unexplored in 
the literature. AI is one of the technologies that characterize modern 
technological advancement. It is the main driver of emerging technol
ogies like big data, blockchain technologies, robotics, cloud computing, 
and the Internet of Things (IoT). Koroteev and Tekic (2021) note that AI 
is the most important general-purpose technology of today. Although AI 
has diverse applications across different industries and spheres of 
human life, the dependence of energy-focused sectors on AI has evolved 
with prominence (see Kalogirou, 2007; Zahraee et al., 2016; Hanga and 
Kovalchuk, 2019; Li et al., 2021; Gupta and Shah, 2021; Koroteev and 
Tekic, 2021; Jha et al., 2017; Boza and Evgeniou, 2021). For instance, 
while the growing application of AI in energy is interlaced within the 
recent concerns about fossil fuels depletion and climate change, Kor
oteev and Tekic (2021) note that the first applications of AI in a sector 
such as in oil and gas were as far as in the 1970s. Further, the overly 
reliance of clean energies on technological innovations as well as the 
entire energy sector’s innate characteristic of being quicker to adopt 
new technologies than to experiment with and change their business 
models has strengthened this link in recent times. 

Anecdotal evidence lends credence to the application of AI in both 
the production and distribution of energy across different energy sec
tors, with Lyu and Liu (2021) arguing that AI is probably the leading 
general-purpose technology adopted in the energy sector. As Lyu and Liu 
(2021) noted further, the characteristic of AI has made it possible for it 
to be applied easily to energy demand forecasting, generation and 
conservation, price forecasting, and the integration of more renewable 
energy, among others. Indeed, anecdotal evidence lends credence that 
AI has been widely applied in energy supply, trade, and consumption 
(Ahmad et al., 2021) and particularly in the Oil and Gas industry to 
minimize the cost of lifting, and strengthen the modeling of reservoirs 
and maintenance prevention (Rahmanifard and Plaksina, 2019; Gupta 
and Shah, 2021). It has also been used for predictive maintenance in the 
clean energy sector (Shin et al., 2021), and monitoring and risk assess
ment in the coal industry (Kuang et al., 2001; Zhu and Zhu, 2012; You 
et al., 2021). There is also available evidence suggesting that the 
application of AI in the energy sector leads to improved performance of 
the sector (Ahn and Cho, 2017; Fathi et al., 2020; Lyu and Liu, 2021; 
Zhang et al., 2021). However, whether AI as a tradable asset offers 
hedging and/or portfolio diversification opportunities to those of 
energy-focused sectors has remained unexplored. This is surprising 
given the well-established literature on the interdependence and 
connectedness between the stock returns of technology-intensive firms 
and energy-focused firms, on the one hand, and that AI is both the most 
important contemporary general-purpose technology and one of the 
major technologies that characterize modern technological advance
ment in AI, on the other hand. At best, the few extant studies that 
examined the hedging and portfolio diversification opportunities of AI 
have only focused on carbon prices, conventional and alternative asset 
classes such as bonds and cryptocurrencies (Huynh et al., 2020; Tiwari 
et al., 2021; Demiralay et al., 2021). 

This study, therefore, advances the literature on the nexus between 
the stock returns of technology-intensive and energy-focused sectors/ 
firms by paying particular attention to AI. Our paper particularly 

examines the dependence structure between AI and different energy- 
focused sectors across different market conditions and investment ho
rizons. In an extended analysis, we also examine how asymmetric pos
itive and negative shocks on AI as well as the recent COVID-19 pandemic 
affect the pattern of this relationship. Evidence from erstwhile literature 
on the nexus between energy and technology stocks, indicate hetero
geneous relationships with stock returns of technology sectors/firms, 
with stronger positive co-movement and correlation with clean energy 
sector than dirty energy sector. The popular explanation for this finding 
is that investors consider clean energy stocks to be similar to those of 
technology as the success of clean energy companies depends upon the 
successful breakthrough or adoption of specific technologies (Bondia 
et al., 2016). Hence, technology stock prices would drive those of clean 
energy. Whereas this view cannot be entirely discredited such that one 
may expect the dependence between AI and energy-focused sectors is 
stronger for the clean energy sector, the application of AI across energy 
sectors in a bid to ensure environmental sustainability has become 
common. Hence, the strength and direction of the dependence between 
AI and the different energy-focused sectors becomes a matter of 
empirical question. One of the objective of our study is therefore to 
provide evidence on the structure of this dependence. 

To address our research objectives, we use daily data covering the 
period from December 18, 2017 to June 14, 2021. As an empirical 
measure of AI, we rely on the NASDAQ AI price index following Huynh 
et al. (2020), Tiwari et al. (2021), and Demiralay et al. (2021). As noted 
by Huynh et al. (2020), The NASDAQ AI index was established to track 
the performance of firms that are active in AI and robotics, including 
technology, industrial, medical, and other economic sectors. Hence, it 
sufficiently reflects the industry and market dynamics associated with 
AI. Regarding the energy-focused sectors, on the other hand, we follow 
Corbet et al. (2020) that used eight energy-focused sectors defined based 
on their related TRBC Sector Code in the Datastream international. The 
eight sectors considered include Oil & Gas Exploration and Production, 
Oil & Gas Refining and Marketing, Integrated Oil and Gas, Oil-related 
Services and Equipment, Oil and Gas Transportation Services, Oil and 
Gas Drilling, Coal, and Renewable Energy. It suffices to note that by 
focusing on these different energy-focused sectors, our analysis offers 
substantial information on how the broad energy market dynamics are 
dependent on and predictable from the AI, thereby providing crucial 
information for potential portfolio diversification across these energy 
sectors. 

Regarding our methodology, we employ both linear and non-linear 
models including the Ordinary Least Square (OLS), quantile regression 
(QR), and the quantile cross-spectral coherence (QCS) models, respec
tively. As we show in the next section, the latter two approaches enable 
us capture some interesting dynamics regarding the dependence be
tween AI and each of the energy-focused sectors. In particular, whereas 
the linear model (OLS) allows us to capture the average level of 
dependence among these markets only, the flexible framework of the QR 
enables us to examine how this dependence differs across different 
quantiles of these markets’ return distribution. These return quantiles 
are decomposed into bearish (i.e., left/lower tails), normal (i.e., shoul
ders of the distribution) and bullish (i.e., right/upper tails) market 
conditions. While the QCS method as developed by Baruník and Kley 
(2019) offers somewhat similar insights as the QR, it offers some addi
tional advantages that enable us to explore the dependence between 
return quantiles across frequencies, which correspond to short, medium 
and long-term investment horizons. In line with our research objectives, 
therefore, we employ these research approaches jointly, although our 
preferred method is the QCS due to a more comprehensive results it 
presents. 

The rest of the paper is structured as follows. The next section pre
sents the data and the methods used for the empirical analysis. Section 3 
presents and discusses the empirical results, while Section 4 concludes. 
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Fig. 1. Plots of return series.  
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2. Data and empirical methods 

2.1. Data 

Our analysis relies on the NASDAQ AI price index as a measure of AI 
following two recent papers including Huynh et al. (2020) and Tiwari 
et al. (2021). The dataset covers the period from December 18, 2017 to 
June 14, 2021 and were retrieved from the Thomson International 
Datastream. The data begins from December 18, 2017 mainly because 
the NASDAQ AI price index is only available from this date. The NAS
DAQ AI index is established to track the performance of firms that 
actively apply artificial intelligence and robotics across technology, in
dustrial, medical, and other economic sectors. Hence, the index captures 
the innovation level of the market as well as the performance of artificial 
intelligence and robotics industry. Regarding the energy-focused sec
tors, we follow Corbet et al. (2020) which used eight energy-focused 
sectors defined based on their related TRBC Sector Code in the Data
stream international. The eight sectors considered include: (i) Oil & Gas 
Exploration and Production (OGEXP); (ii) Oil & Gas Refining and Mar
keting (OGREF); (iii) Integrated Oil & Gas (INTOG); (iv) Oil-related 
Services and Equipment (OGSEQ); (v) Oil & Gas Transportation 

Services (OGTRA); (vi) Oil & Gas Drilling (OGDRI); (vii) Coal (COAL); 
and (viii) Renewable Energy (REN). 

Fig. 1, Panel a - i displays the evolution of the energy-focused sectors 
and AI price returns over the sample period. Following past studies, we 
compute the daily returns as rt = 100 × (lnpt − lnpt− 1). As expected, the 
plots show that across all energy sectors and AI, there is notable level of 
increased return volatility following the large drop in stock prices 
around the period of COVID-19 pandemic. Further, in Table 1, we pro
vide the basic descriptive statistics for all the series. Table 1 shows that 
among the variables, renewable energy sector has the highest mean 
return while the Oil & Gas Transport sector has the least. It also shows 
that Oil & Gas drilling sector is the most volatile while AI is the least as 
implied from the standard deviation. Also, Table 1 indicates that all the 
series depart from normality conditions, as shown by the significant 
Jarque-Bera test for normality in the return distributions. Moreover, all 
the variables are negatively Skewed as shown by the Skewness co
efficients. Basically, negative skewness conforms to the presence of 
asymmetry in return distributions. Additionally, all the return series 
exhibit excess Kurtosis, suggesting fatter tails than those of normal 
distribution. 

Lastly, as shown in Table 1, we examine the presence of unit roots 

Fig. 1. (continued). 
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using the Augmented Dickey-Fully (ADF) test statistic. The ADF co
efficients indicate that all the return series are stationary at the first 
difference. The unit roots feature of the variables is particularly crucial 
given econometric techniques adopted in this study. Specifically, prior 
to implementing the quantile spectral approach, it is also necessary to 
test whether the energy sectors as well as AI exhibit nonlinear charac
teristics. Following this, Table 2 shows the results of BDS test proposed 
by Broock et al. (1996) on the VAR model’s filtered residuals for all the 
time series in different dimensions (m = 2, 3, …, 6). For all the variables, 
the null hypothesis of linearity is rejected, suggesting that the residual 
series of the selected energy sectors and AI exhibit nonlinear features. 
Hence, nonlinear models are more appropriate for examining the in
teractions between AI and energy-focused sectors. 

2.2. Empirical methods 

2.2.1. Quantile regression model (QR) 
The first phase of our empirical analysis focuses on the effects of AI 

performance on the returns of different energy-focused sectors across 

different return distributions. To proceed with this objective, we adopt 
the QR analysis of Koenker and Bassett (1978). Although the QR follows 
a similar structure to linear regression analysis, it permits us to explore 
the existence of non-uniform effects of the independent variables on 
multiple quantiles of the outcome variable. Indeed, QR analysis offers 
several advantages as highlighted in previous studies that have 
employed this approach. Among others, Conyon and He (2017) argue 
that whereas the traditional OLS model predicts the average or condi
tional mean association between an independent variable X and the 
explained variable Y, the QR technique permits the prediction of specific 
parts of the distribution of the explained variable, including the condi
tional median effect on Y of a change in the independent variable X. 

Beyond predicting the conditional median (50th percentile) effect, 
the QR can also be used to predict different quantiles of the distribution 
of the explained variable including both the right and left tails of the 
distribution, which offers richer insights into the nature of effects during 
bullish (higher quantiles) as well as bearish (lower quantiles) market 
conditions. Therefore, the QR offers a comprehensive characterization 
of the data by enabling the effects of covariates to evolve throughout the 
entire distribution of the explained variable. For instance, using a simple 
case of one covariate, β0.1 > 0 denotes that an increase on the inde
pendent variable has a positive effect on the 10th percentile of the 
explained variable while β0.9 < 0 implies that the effect of the same 
increase becomes negative on the 90th percentile of the explained var
iable (Kaza, 2010). Further, as noted in Gallego-Álvarez and Ortas 
(2017), unlike the classical OLS model that may be inefficient if errors 
are non-normal, the QR approach is robust to non-normal errors and 
outliers. Besides, Baur (2013) argue that QR analysis permits changes in 
the degree of dependence to be tested across different quantiles of the 
distribution. Regarding the objectives of our study, the QR approach 
enables us to uncover potential non-monotonic effects of AI on the 
returns of energy-focused sectors across its different return quantiles. 

Our QR model evolves from a baseline OLS specification as follows: 

rt = β0 + β1rt− 1 + β2γt +ψDt + νt (1)  

where rt is the return of each energy sector at time t while rt− 1 is the 
return at time t − 1. γt is the return of AI at time t while Dt represents a 
crisis dummy associated with the period of the first wave of the COVID- 
19. Specifically, the dummy variable is defined as Dt = 1 if the obser
vation t falls within December 1, 2019 to July 1, 2020 and Dt = 0 if 
otherwise. νt is a random error term. 

In Eq. (1), we assume that the relationship between the performance 
of AI and the energy-focused sectors are linear and that both increasing 
and declining changes in the performance of AI have symmetric effects 
on the performance of energy-focused sectors. However, there are 
several reasons to assume that this relationship may exhibit asym
metric/nonlinear tendency. For instance, increasing performance of AI 
is expected to lead to increasing application of AI in a wide range of 

Table 1 
Descriptive statistics of AI and energy-sectors.  

Variable Mean Min. Med. Max. Std. Dev. Skew. Ex. Kurt. JB ADF 

AI  0.074  − 10.480  0.177  9.101  1.391  − 0.985  10.194  3979.8***  − 17.99*** 
OGDRI  − 0.113  − 35.429  − 0.075  14.498  2.989  − 1.838  24.046  21,845.3***  − 25.90*** 
OGEXP  − 0.034  − 35.144  − 0.007  13.639  2.557  − 2.909  43.439  70,907.7***  − 19.10*** 
OGREF  − 0.021  − 14.512  0.006  12.857  1.755  − 0.987  17.152  11,004.5***  − 18.95*** 
INTOG  − 0.025  − 18.103  0.012  14.882  1.904  − 1.354  23.159  20,071.2***  − 18.65*** 
OGSEQ  − 0.082  − 30.650  − 0.081  14.242  2.629  − 1.756  24.599  22,794.1***  − 19.03*** 
OGTRA  − 0.001  − 19.976  0.069  13.033  1.860  − 2.696  36.636  50,622.7***  − 20.11*** 
COAL  − 0.033  − 13.202  0.000  8.737  1.796  − 0.661  5.639  1238.3***  − 18.85*** 
REN  0.117  − 12.129  0.156  11.412  2.043  − 0.318  5.681  1206.4***  − 17.61*** 

Note: Artificial Intelligence (AI); Oil & Gas Exploration and Production (OGEXP); Oil & Gas Refining and Marketing (OGREF); Integrated Oil & Gas (INTOG); Oil- 
related Services and Equipment (OGSEQ); Oil & Gas Transportation Services (OGTRA); Oil & Gas Drilling (OGDRI); Coal (COAL); and Renewable Energy (REN). 
***, **, * indicate significance at the 1 %, 5 %, and 10 % levels. 

Table 2 
BDS test for non-linearity from the vector autoregression (VAR) model filtered 
residuals.  

Variable Dimension 

m = 2 m = 3 m = 4 m = 5 m = 6 

AI 0.0215*** 0.0456*** 0.0640*** 0.0761*** 0.0813*** 
(7.0618) (9.4545) (11.124) (12.686) (14.055) 

OGDRI 0.0199*** 0.0353*** 0.0432*** 0.0467*** 0.0478*** 
(6.5544) (7.2882) (7.4906) (7.7617) (8.2188) 

OGEXP 0.0166*** 0.0327*** 0.0422*** 0.0476*** 0.0493*** 
(5.3121) (6.5900) (7.1253) (7.7059) (8.2683) 

OGREF 0.0325*** 0.0630*** 0.0843*** 0.0948*** 0.0978*** 
(9.9651) (12.159) (13.662) (14.737) (15.765) 

OGTRA 0.0331*** 0.0642*** 0.0853*** 0.0992*** 0.1044*** 
(9.88411) (12.014) (13.404) (14.961) (16.331) 

INTOG 0.0266*** 0.0490*** 0.0618*** 0.0676*** 0.0678*** 
(8.3151) (9.6178) (10.172) (10.676) (11.101) 

OGSEQ 0.0204*** 0.0379*** 0.0484*** 0.0540*** 0.0566*** 
(6.4572) (7.5753) (8.1301) (8.7014) (9.4631) 

COAL 0.0161*** 0.0277*** 0.0338*** 0.0362*** 0.0339*** 
(5.9319) (6.4252) (6.5992) (6.7948) (6.6321) 

REN 0.0197*** 0.0444*** 0.0625*** 0.0731*** 0.0784*** 
(6.4927) (9.2054) (10.876) (12.215) (13.587) 

Note: Artificial Intelligence (AI); Oil & Gas Exploration and Production 
(OGEXP); Oil & Gas Refining and Marketing (OGREF); Integrated Oil & Gas 
(INTOG); Oil-related Services and Equipment (OGSEQ); Oil & Gas Trans
portation Services (OGTRA); Oil & Gas Drilling (OGDRI); Coal (COAL); and 
Renewable Energy (REN). ***, **, * indicate significance at the 1 %, 5 %, and 10 
% levels. 
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processes, including the development of alternative energy sources. This 
may have adverse effects on the performance of corporations in the fossil 
energy industry if the adoption of AI improves the efficiency of alter
native energy sources. 

To accommodate possible asymmetries in the relationship between 
the performance of AI and the considered energy-focused sectors, γt is 
decomposed into positive γt

+ and negative γt
− changes, where γt

+ = max 
(γt,0) and γt

− = min (γt,0). Thus, Eq. (1) becomes: 

rt = β0 + β1rt− 1 + β+γ+t + β− γ−t +ψDt + νt (2) 

Eqs. (1) and (2) permit us to examine the extent to which the per
formance of AI may influence the returns of each energy sector. It also 
reveals whether positive and/or negative shocks on the performance of 
AI influence the performance of each energy sector differently. How
ever, these models do not reveal whether this influence varies across 
different market conditions. That is, these models do not reveal whether 
the influence of the performance of AI on the energy sector is different 
during low market returns (bearish market) than during high market 
returns (bullish market). The models also do not show whether positive 
and negative shocks on the performance of AI impact differently on 
energy sector depending on whether market returns are low or high. The 
QR is very useful in determining whether the influence of a variable on 
another changes across different market conditions. 

The QR technique expresses the conditional τth quantile of the 
dependent variable for some value of τ ∈ (0,1). Thus, the conditional 
quantile model for qt, given xt, may be expressed as: 

Qqt (τ/xt) = ατ + x′

tβ
τ (3)  

where Qqt(τ/xt) denotes the conditional τth quantile of the dependent 
variable qt; ατ represents the intercept, which is set to depend on τ. Also, 
βτ is the vector of coefficients associated with τth quantile while x’ is a 
vector of explanatory variables (which includes: one period lag of 
returns of the concerned energy-focused sector, AI, and the COVID-19 
dummy). As noted in Koenker and Bassett (1978) and Nusair and 
Olson (2019), the coefficients of the τth quantile of the conditional 
distribution are expressed as a solution to the minimization problem 
below: 

This may be re-written as a minimization of the weighted deviations 
from the conditional quantile as follows: 

min
β̂ ∈ ℜk

∑

t
ρτ
(
qt − ατ − x′

t β̂
τ)

(5)  

where ρτ represents a weighting factor known as a check function, 
expressed for any τ ∈ (0,1) as: 

ρτ(ξt) =

{
τξt, if ξt ≥ 0
(τ − 1)ξt, if ξt < 0 (6)  

where ξt = qt − ατ − xt
′βτ. Hence, as noted by past studies, quantile 

regression represents a weighted regression with different weights 
assigned to data points, depending on whether the points fall above or 
below the line of best fit (e.g. Binder and Coad, 2011; Nusair & Olson, 
2019). Put differently, quantile regression technique minimizes the sum 
of residuals, given that the weight of τ is assigned to positive residuals 

while the weight of 1 − τ is assigned to negative residuals. 
To examine the effects of the performance of AI on the returns of 

energy-focused sectors using the QR approach, we specify the following 
models, inspired by the standard OLS framework: 

Qqt (τ/xt) = ατ
0 +ατ

1rt− 1 +ατ
2γt + ατ

3Dt (7)  

Qqt (τ/xt) = βτ
0 + βτ

1rt− 1 + βτ+γ+t + βτ− γ−t + βτ
2Dt (8) 

We estimate the QR models in Eqs. (7) and (8) following past studies 
by specifying nine quantiles (e.g. Tiwari et al., 2018; Nusair & Olson, 
2019; Qin et al., 2020). The nine quantiles are (τ = 0.10, 0.20, …, 0.90), 
which enables us to capture three market regimes, including low (τ =
0.10, 0.20, 0.30), which corresponds to bearish market state; medium (τ 
= 0.40, 0.50, 0.60), which is associated with normal market state; and 
high (τ = 0.70, 0.80, 0.90), which corresponds to bullish market state. In 
this paper, bearish(bullish) market regime denotes periods of rapid 
decline(increase) in the performance of firms that are into AI, as implied 
by decrease(increase) in their stock prices. 

2.2.2. Quantile cross-spectral (coherency) approach 
In addition to determining the dependence between AI and energy- 

focused sectors across market conditions, an important aspect of our 
study is to determine the dependence structure across different invest
ment horizons. To this end, the second phase of our analysis involves the 
quantile cross-spectral dependence technique proposed by Baruník and 
Kley (2019). This method permits us to examine the dependence 
structure of the quantile in the tails of the joint distribution and across 
frequencies. As posited by Maghyereh and Abdoh (2021), this technique 
captures the existence of dependence at different market conditions (e.g. 
lower quantiles, intermediate quantiles and upper quantiles) and across 
various investment horizons such as the short and long-term. Therefore, 
this methodology is a novel approach to measure the dynamic interde
pendence under different market conditions and varying investment 
horizons. 

As in Baruník and Kley (2019), suppose that (Rt)t∈Z denotes a set of 
variables that are two strictly stationary process, with components Rt =

(Rt, j1,Rt, j2), the quantile coherency between these two processes 
denoted as (Rj1j2) may be represented as follows: 

ℜj1 j2 (ω; τ1, τ2) :=
f j1 j2 (ω; τ1, τ2)

(
f j1 j1 (ω; τ1, τ1)f j2 j2 (ω; τ2, τ2)

)1/2 (9)  

where ω is the time-frequency corresponding to ωξ2π1/5; 1/22; 1/250 
respectively. Indeed, the coherency (co-dependence) across these three 
frequencies correspond to the short-run (one week), the intermediate 
run (one month) and the long run (one year). π denotes the periodic 
intervals of ωξ(− π < ω < π); τ1 and τ2 are the τth quantiles of Rt, j1 and Rt, 

j2 (i.e. 0.5, 0.05 or 0.95), consecutively, where (τ1, τ2) ∈ [0,1], fj1j2, fj1j1 

and fj2j2 represent the quantile cross-spectral density and the quantile 
spectral densities of processes Rt, j1 and Rt, j2, respectively generated from 
the Fourier transform of the matrix of quantile cross-covariance kernels 
denoted by Γ(τ1,τ2) := (fω;τ1τ2)j1j2, where 

γj1 j2 := Cov
(

I
{

Xt+k,j1 ≤ qj1(τ1)

}
, I
{

Xt+k,j2 ≤ qj2(τ2)

})
(10) 

min
β̂ ∈ ℜk

[ ∑
τ∣qt − ατ − x′

t β̂
τ
∣ +

∑
(1 − τ)∣qt − ατ − x′

t β̂
τ
∣

t : qt ≥ ατ + x′

t β̂
τ

t : qt < ατ + x′

t β̂
τ

]

(4)   
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For j1, j2 ∈ {1,⋯,d}, k ∈ Z, τ1, τ2 ∈ [0,1], and I{A} denote the in
dicator function of event A. To generate information about serial and 
cross-sectional dependence, we vary K while restricting j1 ∕= j2. Further, 
the matrix of quantile cross-spectral density kernels f(ω;τ1,τ2) := (f 
(ω;τ1,τ2))j1j2, is realized from the frequency domain where: 

f j1 j2 (ω; τ1, τ2) := (2π)− 1
∑∞

k=− ∞
γj1 ,j2

k (τ1, τ2)e− ikω (11) 

Quantile coherency is estimated by the smoothed quantile cross- 
periodogram as expressed below: 

Ĝ
j1 ,j2
n,R (ω; τ1, τ2) :=

2π
n

∑n− 1

s=1
Wn

{

ω −
2πs
n

}

Ij1 ,j2
n,R

{
2πs
n
, τ1, τ2

}

(12)  

where In, R
j1 , j2 represents the matrix of rank-based copula cross perio

dograms (CCR-periodograms) while Wn is a sequence of weigth func
tions. Then, the estimator for the quantile coherency may be expressed 
as: 

ℜ
j1 j2
n,R (ω; τ1, τ2) :=

Ĝ
j1 ,j2
n,R (ω; τ1, τ2)

{
Ĝ

j1 ,j1
n,R (ω; τ1, τ1)Ĝ

j2 ,j2
n,R

(
ω ; τ2, τ2)

}1
2

(13) 

Following past studies including Maghyereh et al. (2019) and 
Maghyereh and Abdoh (2021), we examine the coherence matrices for 
three quantiles (0.05, 0.5 and 0.95) which correspond to lower, inter
mediate and upper quantiles respectively. We also consider the combi
nations of quantile levels of the joint distribution (0.05|0.05, 0.5|0.5, 
0.95|0.95), which enable us to explore dependence under the left, 

intermediate and right tails of the distributions, respectively. Lastly, as 
detailed in Baruník and Kley (2019), the quantile cross-spectral density 
kernels {fj1j2(ω;τ1,τ2)} in Eq. (9) may be decomposed into real and 
imaginary parts. As noted in Maghyereh and Abdoh (2021), the real part 
represents the co-spectrum of the following processes: (I{Rt, j1 ≤

qj1(τ1)})t∈Z and (I{Rt, j2 ≤ qj2(τ2)})t∈Z, while the imaginary part corre
sponds to the quadrature spectrum that circumvents several sources of 
noise coherence. To improve readability and clarity in presentation, we 
follow past studies including Baruník and Kley (2019), Maghyereh et al. 
(2019) and Maghyereh and Abdoh (2021) by presenting only the real 
part of the quantile coherence estimates. 

3. Results and discussion 

3.1. Quantile regression results 

3.1.1. The linear model 
The discussion of our empirical results begins with the linear model 

as presented in Table 3 and Fig. 2. Table 3 displays the estimated co
efficients from the baseline model. Following Nusair and Olson (2019), 
we first estimated both the standard OLS model as represented by Eq. (1) 
and QR model as represented by Eq. (7). We follow past studies that have 
adopted this empirical model in the interpretation of the estimated co
efficients (see e.g., Mensi et al., 2014; Nusair & Olson, 2019). With the 
exception of Coal, results from the standard OLS model show that AI has 
statistically significant positive effect on all the energy-focused sectors. 
This suggests a positive co-movement between AI and energy-focused 
sectors. The results indicate that co-movement is weakest with 

Table 3 
Dependence Structure between AI and Energy-focused Sectors.  

Sector Variable OLS Bearish market Normal market Bullish market    

Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6 Q0.7 Q0.8 Q0.9 

OGEXP Constant 0.011 − 2.199*** − 1.286*** − 0.794*** − 0.358*** − 0.018 0.372*** 0.763*** 1.286*** 2.053*** 
OGEXP(− 1) 0.033 0.114* 0.081** 0.067*** 0.041 0.019 − 0.017 − 0.011 0.013 − 0.024 
γ 0.143** 0.197* 0.044 − 0.038 − 0.033 0.018 − 0.014 − 0.026 0.038 − 0.079 
D − 0.331 − 2.598*** − 0.816*** − 0.352** − 0.111 0.013 − 0.021 0.316 0.753** 1.587*** 

OGDRI Constant − 0.028 − 2.923*** − 1.791*** − 1.099*** − 0.471*** − 0.016 0.418*** 0.983*** 1.583*** 2.762*** 
OGDRI(− 1) 0.101*** 0.106** 0.053 0.072** 0.036 0.074*** 0.061* 0.047 0.041 0.112** 
γ 0.133* 0.279*** 0.191* 0.053 0.066 0.031 0.073 0.088 − 0.04 − 0.067 
D − 0.501* − 2.581*** − 1.419*** − 0.594** − 0.322 − 0.340* − 0.114 0.131 0.734** 2.014*** 

OGREF Constant 0.012 − 1.327*** − 0.863*** − 0.452*** − 0.209*** 0.024 0.247*** 0.502*** 0.896*** 1.370*** 
OGREF(− 1) − 0.02 0.026 0.044 − 0.012 0.001 − 0.018 − 0.054* − 0.011 0.032 − 0.011 
γ 0.126*** 0.071 0.082** 0.018 0.013 0.036 0.014 − 0.028 − 0.054 − 0.013 
D − 0.261* − 1.540*** − 1.259*** − 0.426*** − 0.246** − 0.148* − 0.123 0.351*** 0.975*** 1.552*** 

INTOG Constant 0.02 − 1.505*** − 0.873*** − 0.471*** − 0.164*** 0.029 0.305*** 0.597*** 0.939*** 1.485*** 
INTOG(− 1) 0.095*** 0.158*** 0.045 0.046* 0.018 0.034 0.049* 0.042* 0.054* 0.133*** 
γ 0.088* 0.133*** 0.095** 0.076** 0.076** 0.073** 0.071** 0.025 − 0.065 − 0.109** 
D − 0.289* − 1.805*** − 0.947*** − 0.618*** − 0.526*** − 0.121 − 0.039 0.301** 0.706*** 1.437*** 

OGSEQ Constant − 0.023 − 2.294*** − 1.448*** − 0.864*** − 0.417*** − 0.066 0.292*** 0.772*** 1.315*** 2.308*** 
OGSEQ(− 1) 0.008 0.057 0.057 0.026 − 0.004 0.003 0.001 0.022 − 0.018 0.019 
γ 0.133** 0.167** − 0.018 − 0.042 − 0.082* − 0.052 − 0.041 − 0.022 0.049 0.002 
D − 0.414* − 2.505*** − 1.015*** − 0.526** − 0.227 − 0.044 − 0.168 0.168 1.000*** 2.034*** 

OGTRA Constant 0.032 − 1.304*** − 0.762*** − 0.429*** − 0.174*** 0.048 0.292*** 0.541*** 0.834*** 1.272*** 
OGTRA(− 1) − 0.125*** 0.001 − 0.044 − 0.017 − 0.060*** − 0.057** − 0.060** − 0.046** − 0.023 − 0.089*** 
γ 0.122*** − 0.04 − 0.022 0.006 0.024 0.035 0.042 0.056** 0.088** 0.031 
D − 0.253 − 1.986 − 0.608 − 0.083 0.13 0.138 0.213* 0.262*** 0.537*** 1.558*** 

COAL Constant 0.0001 − 1.952*** − 1.181*** − 0.695*** − 0.309*** − 0.009 0.284*** 0.649*** 1.224*** 1.921*** 
COAL(− 1) 0.044 0.141** 0.125*** 0.076* 0.063* 0.031 0.024 0.039 0.024 0.017 
γ 0.046 0.134 0.120** 0.094* 0.057 0.022 − 0.0003 − 0.008 − 0.035 − 0.097 
D − 0.21 − 1.345*** − 0.628*** − 0.531*** − 0.254 − 0.009 0.087 0.087** 0.439** 1.175*** 

REN Constant 0.098 − 1.984*** − 1.110*** − 0.638*** − 0.202*** 0.072** 0.401*** 0.845*** 1.328*** 2.175*** 
REN(− 1) 0.061* 0.052 0.106*** 0.080*** 0.086*** 0.060*** 0.019 0.022 0.043 0.121*** 
γ 0.161*** 0.305*** 0.251*** 0.175*** 0.075* 0.038 0.047 − 0.007 − 0.038 − 0.083 
D 0.001 − 1.134*** − 0.403* 0.028 0.285* 0.364*** 0.194 0.352** 0.595** 0.386* 

Note: ***, **, * indicate significance at the 1 %, 5 %, and 10 % levels. We choose nine quantiles (τ = 0.1,0.2, …,0.9) and divide them into three regimes: low (τ =
0.1,0.2,0.3), medium (τ = 0.4,0.5,0.6), and high (τ = 0.7,0.8,0.9), which denote a bearish, normal, and bullish market, respectively. Also note that Artificial Intel
ligence (AI); Oil & Gas Exploration and Production (OGEXP); Oil & Gas Refining and Marketing (OGREF); Integrated Oil & Gas (INTOG); Oil-related Services and 
Equipment (OGSEQ); Oil & Gas Transportation Services (OGTRA); Oil & Gas Drilling (OGDRI); Coal (COAL); and Renewable Energy (REN). 
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Integrated Oil and Gas sector while it is strongest with renewable en
ergy. This suggests that the dependence between AI and energy corpo
rations is strongest with those in renewable energy sector. This result is 
in line with erstwhile literature that document stronger dependence 
between the returns of technology and clean energy firms (see e.g., 
Henriques and Sadorsky, 2008; Kumar et al., 2012; Sadorsky, 2012). As 
noted in the introduction, this is expected since technology is a crucial 
input in renewable energy generation and deployment. Further, evi
dence in the result also shows significant and negative effects of the past 
COVID-19 crisis on the performance of conventional energy sectors 
including Oil and Gas Drilling, Oil and Gas Refining, Integrated Oil and 
Gas as well as Oil and Gas Servicing and Equipment. However, this effect 
is statistically insignificant for both coal and renewable energy sectors. 

We proceed to examine the level of co-movement across the nine 
conditional quantiles for each energy sector using the QR model as 
described in Eq. (7). Fig. 2 plots the QR coefficient estimates for AI with 
95 % confidence interval along with the OLS estimates. The OLS esti
mates of the conditional mean effect, given by the blue solid line with 

95 % confidence interval (dashed lines), does not vary. As for the esti
mates of quantile coefficients, for each energy sector, we plot the nine 
QR estimates for τ = 0.1, ...,0.9 as the solid black curve with 95 % 
confidence interval (shaded area). The QR model provides a quite 
different picture from the OLS model. This enables us to explore possible 
changes in dependence across the bearish, normal and bullish market 
conditions. Results from the QR model shows some interesting patterns 
of co-movement across the three market states. Particularly, results 
show that when the market is bearish, the effects of AI on the coal sector 
become significant but insignificant across all the quantiles with Oil and 
Gas Transport services. Also notable is the fact that dependence remains 
strongest with the renewable energy sector but least with Oil and Gas 
Refining. The strength of dependence with renewable energy sector, 
however, declines as we increase the quantiles. This suggests that during 
financial market downturns, the co-movement between the performance 
of AI stocks and those of energy corporations becomes stronger, espe
cially those into renewable energy generation and deployment. The 
positive co-movement also suggests an absence of potential for 

Fig. 2. Quantile regression coefficient estimates for AI returns in the linear model. Estimates for τ = 0.1, …,0.9 are given by the solid black curve with 95 % 
confidence intervals (shaded area) for the effects of AI returns on returns of energy sectors. The OLS estimates of the conditional mean effect are given by the blue 
solid line with 95 % confidence interval (dashed lines). Vertical axis displays the coefficient estimates of AI return changes over energy sectors’ return distribution 
while horizontal axis shows the quantiles of the concerned energy sector (the dependent variable). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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diversification benefits from the inclusion of AI stocks with those of the 
energy sectors considered. However, the non significant co-movement 
with Oil and Gas Transport services suggests a likelihood that AI 
stocks may offer some diversification benefits for Oil and Gas Transport 
services stocks. 

Furthermore, dependence under the normal and bullish market 
conditions appears to be weaker compared to the bearish market. In 
particular, the results show that AI has a statistically significant positive 
effects on Integrated Oil and Gas across all quantiles, but only the first 
quantile (Q0.4) for renewable energy sector under the normal market 
state. In contrast, for Oil and Gas Services and Equipment, this effect is 
negative for the Q0.4 but statistically insignificant for the remaining 
energy sectors across all quantiles under the normal market condition. 
These results imply that during calm market periods, there is positive co- 
movement between AI and Integrated Oil and Gas as well as renewable 
energy while the dependence is negative with Oil and Gas Services and 
Equipment. The absence of significant co-movement suggests some ev
idence of diversification benefits from the inclusion of AI stocks with 
energy stocks, except Integrated Oil and Gas stocks during normal 
market periods. The negative and significant co-movement with Oil and 
Gas Services and Equipment suggest that AI stocks has the potential of 
acting as safe-haven for Oil and Gas Services and Equipment during 

normal market times. Similarly, under the bullish market period, co- 
movement is positive and significant with Oil and Gas Transport ser
vices only. Similarly, this suggests that AI stocks may offer diversifica
tion benefits to the concerned energy sectors, except Oil and Gas 
Transport services when market condition become very bullish. 

3.1.2. The asymmetric model 
To allow for asymmetric co-movement between AI and the sampled 

energy-focused sectors, we decompose AI shocks into positive (γ+) and 
negative (γ− ) changes. Then, the standard OLS model as represented in 
Eq. (2) and QR model as represented in Eq. (8) are estimated. Table 4 
displays the estimated results from both models, while Fig. 3 presents 
the graphs of asymmetric QR coefficients along with the OLS estimates 
with 95 % confidence intervals. As with the previous results, the OLS 
estimates of the conditional mean effect, given by the blue solid line 
with 95 % confidence interval(dashed lines), do not vary. As for quantile 
coefficient estimates, for each energy sector, we plot the nine QR esti
mates for τ = 0.1, ...,0.9 as the solid black curve with 95 % confidence 
interval(shaded area). Indeed, introducing asymmetry in our analysis by 
differentiating between positive (γ+) and negative (γ− ) shocks on AI 
provides slightly different results. 

Specifically, the effects of negative shocks on AI (γ− ) is positive and 

Fig. 2. (continued). 
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statistically significant for all the energy-focused sectors while the ef
fects of positive shocks on AI is not statistically significant across all the 
sectors. The effects are strongest on the renewable energy sector but 
weakest for the coal sector. Taken together, these results suggest that on 
average, there is significant positive co-movement between negative 
shocks on AI and the sampled energy-focused sectors. This implies that 
negative shocks on AI performance entail significant implications for the 
performance of investments in the energy sectors, especially investment 
in renewable energy. Regarding the results from the QR model, some 
interesting patterns evolve. First, across the three quantiles that depict 
the bearish market condition, both positive (γ+) and negative (γ− ) 
shocks on AI exhibit significant effects on the energy-focused sectors, 
except for the coal, where the effect of positive shocks on AI is not sig
nificant. In particular, positive (γ+) and negative (γ− ) shocks on AI have 
negative and positive effects across the energy-focused sectors. This 
implies that positive shocks on AI performance exhibit negative co- 
movement with the performance of energy investments while negative 
shocks on AI performance is associated with positive co-movement with 
the performance of energy investments when the financial market is 
bearish. However, the negative dependence between positive shocks on 

AI performance and those of renewable energy and Integrated Oil and 
Gas investment is only significant at the lowest quantile (Q0.1). 

Regarding the normal market condition, generally, the level of 
dependence is weaker relative to those of lower and upper tails of the 
distribution. Here, it is interesting to note that there are changes in the 
direction of dependence, positive and negative shocks on AI exhibit 
positive and negative effects on Oil and Gas Exploration as well as Oil 
and Gas Refining. This suggests that during normal market periods, the 
performance of investments in these two energy sectors may move in the 
same direction, showing no potential for diversification benefits. How
ever, for Oil and Gas Drilling, Integrated Oil and Gas and the alternative 
energy sectors (coal and renewable energy), negative shocks on AI 
performance exhibit positive co-movement with their performance, 
suggesting a potential for diversification benefits. Lastly, both positive 
and negative shocks on AI performance have no significant effects on 
Oil-related Services and Equipment while positive AI shock has signifi
cant negative effects on coal at the median quantile (Q0.5). 

More so, when the market condition is bullish, results for the asso
ciated quantiles show that dependence strengthens significantly relative 
to those of normal market quantiles. For the renewable energy sector, 

Table 4 
Dependence Structure between AI and Energy-focused Sectors: Asymmetric Shocks on AI.  

Sector Variable OLS Bearish market Normal market Bullish market    

Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6 Q0.7 Q0.8 Q0.9 

OGEXP Constant 0.178 − 1.716*** − 1.023*** − 0.714*** − 0.333*** − 0.037 0.215** 0.626*** 1.144*** 1.872*** 
OGEXP(− 1) 0.034 0.117** 0.110*** 0.057** 0.036 0.031 0.002 − 0.023 0.023*** − 0.01 
γ+ − 0.078 − 0.525*** − 0.328*** − 0.119 − 0.116 0.035 0.173* 0.164 0.242* 0.252 
γ− 0.311*** 0.664*** 0.572*** 0.048 − 0.021 − 0.02 − 0.148** − 0.126 − 0.136 − 0.433*** 
D − 0.212 − 1.364*** − 0.809*** − 0.411** − 0.007 0.034 0.081 0.22 0.574* 1.218*** 

OGDRI Constant 0.115 − 2.475*** − 1.363*** − 0.903*** − 0.394*** − 0.022 0.360** 0.827*** 1.293*** 2.433*** 
OGDRI(− 1) 0.101** 0.108* 0.075** 0.081*** 0.035 0.073*** 0.056* 0.036 0.059* 0.130** 
γ+ − 0.057 − 0.247 − 0.356*** − 0.196* − 0.018 0.036 0.175 0.241* 0.336** 0.262 
γ− 0.278*** 0.612*** 0.650*** 0.259*** 0.152* 0.007 − 0.04 − 0.285*** − 0.484*** − 0.446** 
D − 0.398 − 2.339*** − 1.104*** − 0.478** − 0.330* − 0.344 − 0.224 0.036 0.351 1.868*** 

OGREF Constant 0.136* − 0.969*** − 0.665*** − 0.337*** − 0.187*** 0.015 0.169*** 0.298*** 0.667*** 1.115*** 
OGREF(− 1) − 0.017 0.119*** 0.045 − 0.014 0.002 − 0.018 − 0.038 0.014 0.027 0.011 
γ+ − 0.038 − 0.597*** − 0.172** − 0.150** − 0.0003 0.045 0.109* 0.282*** 0.265*** 0.236** 
γ− 0.251*** 0.566*** 0.269*** 0.176*** 0.031 0.013 − 0.103** − 0.272*** − 0.270*** − 0.294*** 
D − 0.171 − 1.372*** − 1.039*** − 0.334** − 0.259** − 0.151 − 0.153 0.273** 0.596*** 1.357*** 

INTOG Constant 0.209** − 1.187*** − 0.746*** − 0.404*** − 0.073 0.107* 0.282*** 0.546*** 0.780*** 1.371*** 
INTOG(− 1) 0.099*** 0.198*** 0.052 0.056* 0.021 0.029 0.046* 0.027 0.082*** 0.126 
γ+ − 0.163* − 0.454*** − 0.076 − 0.044 − 0.039 − 0.017 0.093 0.085 0.128* 0.014 
γ− 0.278*** 0.484*** 0.283*** 0.185*** 0.191*** 0.139*** 0.059 − 0.06 − 0.230*** − 0.238*** 
D − 0.152 − 1.690*** − 0.904*** − 0.599*** − 0.513*** − 0.143 − 0.024 0.283** 0.605*** 1.339*** 

OGSEQ Constant 0.105 − 2.002*** − 1.076*** − 0.630*** − 0.404*** − 0.095 0.235** 0.392*** 1.089*** 2.085*** 
OGSEQ(− 1) 0.009 0.081 − 0.003 0.016 − 0.009 0.004 0.007 0.016 − 0.012 − 0.0001 
γ+ − 0.037 − 0.325* − 0.297** − 0.273*** − 0.103 − 0.015 0.051 0.388*** 0.321*** 0.078 
γ− 0.263*** 0.758*** 0.541*** 0.272*** − 0.063 − 0.079 − 0.101 − 0.327*** − 0.264*** − 0.212 
D − 0.321 − 2.090*** − 1.031*** − 0.505*** − 0.255 − 0.046 − 0.117 0.326* 0.505** 1.852** 

OGTRA Constant 0.215** − 0.919*** − 0.534*** − 0.349*** − 0.174*** 0.017 0.206*** 0.431*** 0.703*** 1.112*** 
OGTRA(− 1) − 0.122*** 0.012 − 0.011 − 0.034 − 0.060*** − 0.047** − 0.048** − 0.032 − 0.043 − 0.149*** 
γ+ − 0.121 − 0.509*** − 0.405*** − 0.095 0.022 0.087 0.168*** 0.152*** 0.252*** 0.255** 
γ− 0.306*** 0.367*** 0.236*** 0.132** 0.024 − 0.004 − 0.063 − 0.066 − 0.027 − 0.261*** 
D − 0.122 − 1.592*** − 0.431*** − 0.027 0.13 0.171 0.223** 0.309*** 0.553*** 1.226*** 

COAL Constant 0.115 − 1.796*** − 1.050*** − 0.537*** − 0.155* 0.112* 0.319*** 0.618*** 1.201*** 1.793*** 
COAL(− 1) 0.049 0.182*** 0.101** 0.098** 0.090** 0.049* 0.012 0.042 0.025 0.048 
γ+ − 0.107 0.017 − 0.062 − 0.072 − 0.123 − 0.124* − 0.032 0.047 − 0.017 0.068 
γ− 0.161** 0.213* 0.302*** 0.256*** 0.219*** 0.116** 0.023 − 0.04 − 0.066 − 0.274*** 
D − 0.126 − 1.133*** − 0.585*** − 0.451** − 0.156 − 0.05 0.152 0.318* 0.389* 1.111*** 

REN Constant 0.295*** − 1.426*** − 0.808*** − 0.455*** − 0.123* 0.086* 0.401*** 0.885*** 1.251*** 2.039*** 
REN(− 1) 0.061* 0.038 0.078* 0.107*** 0.095*** 0.058*** 0.019 0.017 0.036 0.113** 
γ+ − 0.1 − 0.532*** − 0.189 − 0.059 − 0.015 0.032 0.047 − 0.037 0.085 0.067 
γ− 0.358*** 0.718*** 0.672*** 0.524*** 0.212*** 0.082** 0.053 0.089 − 0.101 − 0.147 
D 0.141 − 0.338 0.144 0.124 0.393*** 0.353*** 0.194 0.486*** 0.558** 0.476* 

Note: ***, **, * indicate significance at the 1 %, 5 %, and 10 % levels. γ+ and γ− correspond to positive and negative changes in AI returns, respectively. Similarly, the 
three regimes: low (τ = 0.1,0.2,0.3), medium (τ = 0.4,0.5,0.6), and high (τ = 0.7,0.8,0.9) denote the bearish, normal, and bullish markets, respectively. Also note that 
Artificial Intelligence (AI); Oil & Gas Exploration and Production (OGEXP); Oil & Gas Refining and Marketing (OGREF); Integrated Oil & Gas (INTOG); Oil-related 
Services and Equipment (OGSEQ); Oil & Gas Transportation Services (OGTRA); Oil & Gas Drilling (OGDRI); Coal (COAL); and Renewable Energy (REN). 
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both positive and negative shocks on AI performance have no significant 
effects while for coal, the negative effect of negative shocks on the 
performance of AI is only significant at the highest quantile. For the 

remaining energy sectors, positive and negative shocks on the perfor
mance of AI have positive and negative effects on their performance, 
respectively. This suggests that when market conditions are bullish, 

Fig. 3. Quantile regression coefficient estimates for γ+ and γ− returns in the asymmetric model. Estimates for τ = 0.1, …,0.9 are given by the solid black curve with 
95 % confidence intervals (shaded area) for the effects of AI returns on returns of energy sectors. The OLS estimates of the conditional mean effect are given by the 
blue solid line with 95 % confidence interval (dashed lines). Vertical axis displays the coefficient estimates of positive and negative AI return changes over energy 
sectors’ return distribution while horizontal axis shows the quantiles of the concerned energy sector (the dependent variable). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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there is positive(negative) co-movement between positive(negative) 
shocks on AI performance, suggesting no potential for diversification 
benefits from the inclusion of AI stocks in the portfolio of these con
ventional energy stocks. In contrast, non significant co-movement with 
the renewable energy sector across all the relevant quantiles is an 

indication that AI stocks has the potential of offering some diversifica
tion benefits to portfolios of renewable energy stocks, when market 
condition is very bullish. Similar conclusion could be reached for the 
coal sector, however, this is only possible at the 70th and 80th percen
tiles of the return distribution. 

Fig. 3. (continued). 
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It is also interesting to note that when we consider asymmetries in 
the interactions between AI and these energy sector, the dummy vari
able associated with the COVID-19 crisis period becomes insignificant in 
the standard OLS model but becomes significant across different quan
tiles under the asymmetric model. In particular, for all the considered 
energy-focused sectors, the effect of the crisis is negative and strongest 
during the bearish market, except for the renewable energy sector, 
where the effect is not significant for under bearish market condition. 
Lastly, following past studies such as Nusair and Olson (2019), Table 5 
Panel A - B displays the critical values obtained from the F-test for 
quantile slope equality. The null hypothesis is that slope parameters are 
equal across the various quantiles. Thus, the rejection of the null hy
pothesis suggests that associated slope parameters are significantly 
different across quantiles. Also, we tested the slope equality of the 
decomposed positive and negative AI shocks (γ+ = γ− ) across all the 
quantiles as shown in Table 5 Panel B. The tests are repeated for every 
two quantiles (e.g., Q0.1 = Q0.2) and for lower quantile against the me
dian (Q0.1 = Q0.5) and higher quantile against the median (Q0.5 = Q0.9). 
Generally, results mostly favour the rejection of the null hypothesis of 
slope equality across the different quantiles for all the energy sectors. 
The results confirm that the estimated coefficients are not constant but 
vary across the chosen quantiles. 

3.2. Quantile coherency results 

In Figs. 4–6, we present the estimates of quantile coherency realized 
from the quantile cross-spectral. Following past studies such as 
Maghyereh and Abdoh (2021) and Maghyereh et al. (2019), horizontal 
axis displays the daily cycles over the interval while the measures of co- 
dependence of AI and the return of each of the energy sector is presented 
on the vertical axis. The weekly (W), monthly (M) and yearly (Y) fre
quency cycles in the upper label of the horizontal axis show how each 
pair of the return series are dependent across quantiles of the joint 
distribution. For instance, a sample frequency of 0.2 implies that there is 
0.2 cycles per day, corresponding to a 5 days period. First, we present 
and discuss results for the full sample before proceeding with results for 
the COVID-19 sub-sample. 

3.2.1. Quantile coherency for the full sample 
In Fig. 4 panel a - i, for all pairs of co-dependence between AI and 

each of the energy sectors, we use plots in (i), (ii) and (iii) to display the 
0.05|0.05; 0.5|0.5 and 0.95|0.95 quantiles of the joint distribution, 
respectively. Fig. 5 presents the dependence between the 0.05|0.95 
quantiles of joint distribution for the full sample. As may be seen in Fig. 4 
panel a - i, results generally indicate that the level of coherency between 
AI and the energy sectors varies across both return quantiles and time 
scales. Basically, this suggests that dependence varies according to 

Fig. 3. (continued). 
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market situations and investment horizons. Particularly, during normal 
market condition as shown by the 0.5|0.5 return quantile in plot (ii), 
results indicate that dependence is mostly negative and strongest with 
renewable energy sector, but weakest with Oil and Gas Exploration and 
Production sector in the weekly horizon. However, dependence with 
Integrated Oil and Gas is mainly positive under this horizon. These re
sults suggest that portfolios consisting of AI and the assets of the sampled 
energy sectors exhibit negative dependence, with high probability of 
short-term diversification benefits, except for Integrated oil and gas 
sector during normal market condition. Moreover, dependence is 
generally positive across monthly and yearly frequency cycles; strongest 
with renewable energy sector in the monthly cycle but with Oil and Gas 
Drilling in the yearly cycle. However, dependence is negative in the 
yearly cycle only with Oil and Gas exploration and production. These 
positive co-movements between AI and energy sectors generally suggest 
the absence or reduced potential for portfolio diversification opportu
nities in the mid- and long-term investment horizons. 

Furthermore, notable differences may be seen across the left and 
right tails of the return distributions as shown by the 0.05|0.05 in plots 
(i) and the 0.95|0.95 in plots (iii). Specifically, results for the left tail 
(0.05|0.05) suggest that when market condition is bearish, similar to the 
normal market condition, dependence between AI and Coal, Oil and Gas 
Drilling, Integrated Oil and Gas, Oil-related Services and Equipment as 

well as Oil and Gas Transportation Services is mainly negative while 
dependence varies from positive to negative for the remaining energy 
sectors in the weekly cycle. In particular, towards the end of the weekly 
cycle, dependence becomes negative and strongest between AI and Oil 
and Gas Drilling, followed by the renewable energy sector. However, 
while dependence is generally positive and strongest with Oil and Gas 
Refining and Marketing in the yearly frequency cycle, in the monthly 
frequency cycle, results are mixed. For instance, dependence with Coal, 
Oil and Gas Exploration and Production, Integrated Oil and Gas, Oil and 
Gas Refining and Marketing and Oil and Gas Related Services are mostly 
positive while dependence with Oil and Gas Drilling, Renewable Energy 
and Oil and Gas Transport Services switches from positive to negative. 

Regarding the upper tail of the return distribution as shown by the 
0.95|0.95 in plots (iii), results indicate that when the market condition is 
bullish, in the weekly frequency cycle, the dependence between AI and 
Oil and Gas Refining and Marketing is positive while it is negative with 
Coal, Oil and Gas Exploration and Production as well as Oil and Gas 
Transportation Services. Besides, there are periods of positive and 
negative dependence between AI and the remaining energy-focused 
sectors across this cycle. Results for the monthly frequency cycle sug
gest that dependence is positive with Oil and Gas Drilling, Oil and Gas 
Exploration and Production, Renewable energy as well as Oil and Gas 
Transportation Services. However, dependence between AI and the 

Table 5 
Quantile slope equality test.  

Sector Variable Q0.1 =

Q0.2 

Q0.2 = Q0.3 Q0.3 =

Q0.4 

Q0.4 =

Q0.5 

Q0.5 =

Q0.6 

Q0.6 =

Q0.7 

Q0.7 =

Q0.8 

Q0.8 = Q0.9 Q0.1 = Q0.5 Q0.5 =

Q0.9 

Q0.1 = Q0.9 

Panel A 
OGEXP γ+ 0.04 1.47 2.66* 0.7 3.18** 0.07 0.61 0.08 6.21*** 0.77 4.32** 

γ− 0.01 4.04** 0.45 0.12 9.31*** 0.09 0.01 1.94 7.60*** 3.65** 11.13*** 
D 0.29 0.62 6.08** 0.06 0.21 0.29 1.1 1.44 2.13* 3.06* 9.25*** 

OGDRI γ+ 0.04 1.59* 0.42 0.96 1.22 0.48 0.54 0.28 3.43** 0.17 1.34* 
γ− 0.05 2.25** 0.86 0.85 0.21 2.09* 0.51 0.01 7.50*** 1.45 6.69*** 
D 0.72 2.79** 0.24 0.03 0.01 1.79 0.65 5.12** 2.64*** 7.98*** 6.44** 

OGREF γ+ 7.15*** 0.07 7.41*** 0.19 2.59** 9.03*** 0.02 0.06 12.9*** 12.9*** 18.2*** 
γ− 1.14 1.03 3.34** 0.02 1.82 3.50** 0.04 0.2 3.78** 5.45** 7.39*** 
D 0.5 4.49** 1.01 1.23 0.15 3.67** 2.13* 5.08** 11.0*** 15.3*** 25.1*** 

INTOG γ+ 4.93** 0.04 0.04 0.96 0.66 0.29 0.14 0.03 3.48* 0.26 3.46* 
γ− 1.11 0.8 0.08 1.94* 1.57 1.37 2.07* 0.67 2.46* 12.7*** 11.6*** 
D 3.06* 5.14** 0.18 6.06** 0.71 3.61* 0.99 5.56** 8.81*** 9.80*** 22.1*** 

OGSEQ γ+ 0.11 0.01 3.08* 1.53 0.33 5.12** 0.19 0.88 0.96 0.21 2.05 
γ− 0.48 1.95* 6.54** 0.01 0.12 2.86* 0.02 0.05 4.37** 2.26** 4.74** 
D 2.32** 2.09* 1.2 0.86 0.36 2.69* 0.52 1.61 7.17*** 2.34** 9.81*** 

OGTRA γ+ 0.62 5.93** 3.04* 0.08 2.77* 0.18 1.71 0.81 12.99*** 2.54** 14.43*** 
γ− 0.61 0.51 1.93* 0.63 0.93 0.2 0.3 1.49 1.33 2.49** 3.93*** 
D 4.98** 2.58* 0.21 1.3 0.07 3.03* 2.93* 2.15* 12.79*** 4.04** 12.6*** 

COAL γ+ 2.18* 0.03 2.33* 0.14 0.16 2.73** 0.22 2.01* 1.74* 0.45 3.07** 
γ− 0.54 0.19 0.1 7.12*** 2.83** 2.37** 0.01 2.69** 0.09 3.02** 2.83** 
D 2.87* 1.11 2.23* 1.73 2.84* 1.12 0.06 3.84** 5.85** 14.7*** 6.44** 

REN γ+ 2.08* 0.63 1.64 0.52 0.08 1.03 2.32* 1.12 4.01** 2.45** 2.32** 
γ− 0.01 2.27* 7.76*** 3.30** 3.01** 0.05 1.99* 0.04 16.5*** 10.8*** 4.94** 
D 2.56** 0.41 2.15* 0.02 2.97** 2.39* 0.16 3.46** 1.17 1.38 0.01  

Panel B   
Q0.1 =

Q0.1 

Q0.2 = Q0.2 Q0.3 =

Q0.3 

Q0.4 =

Q0.4 

Q0.5 =

Q0.5 

Q0.6 =

Q0.6 

Q0.7 =

Q0.7 

Q0.8 = Q0.8 Q0.9 = Q0.9 Q0.1 =

Q0.9 

Q0.1 = Q0.5 

OGEXP γ+ = γ− 9.38*** 8.03*** 0.73 0.06 0.01 1.7 2.04* 2.18** 5.46** 2.04** 5.05** 
OGDRI γ+ = γ− 2.85* 4.30** 1.94* 0.25 0.05 1.94* 4.46** 11.53*** 3.54** 0.06 2.76** 
OGREF γ+ = γ− 7.12*** 2.81* 1.6 0.04 0.01 0.58 5.48** 10.86*** 8.93*** 1.65 6.52** 
INTOG γ+ = γ− 3.89** 3.30* 2.98* 2.73* 1.05 0.03 2.46* 1.87 2.76* 2.17* 2.97* 
OGSEQ γ+ = γ− 4.33** 12.78*** 4.16** 0.08 0.25 3.55** 21.1*** 5.91** 0.22 0.01 2.38* 
OGTRA γ+ = γ− 2.25* 2.80* 0.73 0.02 3.33** 3.10* 4.16** 2.89* 3.05* 1.43 3.86** 
COAL γ+ = γ− 0.02 2.26* 2.59** 2.14* 0.73 0.14 2.27* 0.03 2.12* 2.76** 4.07*** 
REN γ+ = γ− 9.26*** 20.8*** 8.47*** 1.28 0.01 0.02 2.27* 2.14* 0.05 2.43** 4.18** 

Note: Reported are the critical values from the F-test of quantile slope equality, with the null hypothesis that slope parameters are equal across the various quantiles. 
***, ** and * indicate the rejection of the null hypothesis of slope equality at the 1 %, 5 % and 10 % significance levels, respectively. Also note that Artificial Intelligence 
(AI); Oil & Gas Exploration and Production (OGEXP); Oil & Gas Refining and Marketing (OGREF); Integrated Oil & Gas (INTOG); Oil-related Services and Equipment 
(OGSEQ); Oil & Gas Transportation Services (OGTRA); Oil & Gas Drilling (OGDRI); Coal (COAL); and Renewable Energy (REN). 
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Fig. 4. Quantile coherency estimates for the 0.05|0.05, 0.5|0.5 and 0.95|0.95 of the joint distribution across the different frequencies for the full sample. 
Note: Plots of the real part of the quantile coherency estimates of Baruník and Kley (2019) for 0.05, 0.5, and 0.95 quantiles together with 95 % confidence intervals. 
W, M, and Y denote weekly, monthly, and yearly periods, respectively. The —, − — and …… line corresponds to the 0.5, 0.05 and 0.95 quantiles, respectively. 
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Fig. 4. (continued). 
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remaining energy sectors switched from positive to negative under this 
frequency cycle. Concerning the yearly cycle, dependence between AI 
and all the considered energy-focused sectors is positive and strongest 
with Renewable energy, followed by Oil and Gas Drilling. However, 
dependence is weakest between AI and Oil-related Services and 
Equipment. 

Fig. 5 presents the quantile coherency for the 0.05|0.95 quantiles of 
the joint distribution between AI and each of the energy-focused sectors. 
Indeed, this enables us to examine the evolution of dependence 
assuming that either AI or each of the eight energy-focused sectors is in a 
bearish market state while the other is in a bullish condition. Specif
ically, we study the dependence between a negative return (0.05 
quantile) of AI and a high positive return (0.95 quantile) of each of the 
energy-focused sectors across the three frequency cycles. Results in 
Fig. 5 indicate that during the weekly cycle, extreme dependence (0.05 
for AI and 0.95 for energy sectors) is strongest with Coal. In terms of 
direction, dependence is mostly positive with Coal and Integrated Oil 
and Gas while it is negative with Oil-related Services and Equipment. 
However, for the remaining energy-focused sectors, extreme depen
dence switches from positive to negative. 

Moreover, as the time frequency increases to monthly, extreme 

dependence becomes weaker between AI and Oil-related Services and 
Equipment, Oil and Gas Exploration and Production as well as Oil and 
Gas Drilling. However, dependence becomes positive with Oil and Gas 
Drilling and Oil-related Services and Equipment; negative with 
Renewable energy and Oil and Gas Exploration and Production while it 
changes between positive and negative for the remaining energy- 
focused sectors. When the time frequency is further increased to the 
yearly cycle, extreme dependence becomes strongest with renewable 
energy. However, extreme dependence at this time frequency is mostly 
negative, indicating that there is a likelihood of high positive returns for 
most energy-focused sectors following a negative return on AI. Partic
ularly, dependence is negative between AI and Coal, Oil and Gas 
Refining and Marketing, Renewable energy, Oil and Gas Explorations 
and Production as well as Oil-related Services and Equipment. However, 
dependence is positive with Oil and Gas Drilling as well as Integrated Oil 
and Gas Services while it switches from negative to positive with Oil and 
Gas Transportation services. 

3.2.2. Quantile coherency during the COVID-19 pandemic 
In this subsection, we are concerned with examining the changes in 

the strength and direction of dependence between AI and the energy- 

Fig. 4. (continued). 
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focused sectors due to changes in the global financial market during the 
COVID-19 pandemic. The results are shown in Fig. 6 panel a - i. To save 
space, in each panel, plot (i) contains the evolution of dependence across 
the weekly, monthly and yearly time frequency cycles while plot (ii) 
displays the dependence for the extreme quantiles (0.05 for AI and 0.95 
for energy sectors). As may be seen, results indicate that across all the 
return quantiles joint distributions, dependence between AI and energy- 
focused sectors became generally stronger during the peak of the 
pandemic, especially during the weekly and monthly time frequencies. 
This suggests a stronger short-term and mid-term dependence between 
AI and energy-focused sectors. In particular, under normal market 
condition, dependence between AI and energy-focused sectors is mostly 
negative with most sectors while it changes from negative to positive 
with only three sectors including Coal, Oil and Gas Transportation 
Services as well as Renewable energy in the weekly time frequency. With 
regards to diversification benefits, the observed increase in negative 
dependence suggests that during a health-induced financial market 
crisis, the inclusion of AI stocks in a portfolio of energy stocks may offer 
some portfolio risk reduction, especially in the short- and mid-terms. 

However, for the monthly time frequency, dependence becomes 
positive with Oil and Gas Transportation Services, Renewable energy as 
well as Oil and Gas Refining and Marketing. For the remaining sectors, it 
switches from negative at the beginning of the cycle to become positive 
towards the yearly cycle. Besides, at the monthly cycle, dependence is 
strongest with the renewable energy sector. Similarly, when time fre
quency is further increased to the yearly cycle, results indicate that 
dependence remains positive and strongest with renewable energy. 
Dependence is also positive with Coal, Oil and Gas Transportation Ser
vices, Oil and Gas Drilling as well as Oil and Gas Exploration and Pro
duction. Hence, for portfolio optimization, the inclusion of AI stocks in 
portfolios of some energy sectors such as Oil and Gas Transportation 
Services, Renewable energy and Oil and Gas Refining and Marketing 
may lead to medium-term increase in portfolio risk and market losses 
during crisis periods such as the COVID-19 pandemic due to increase in 
positive dependence. This situation may also hold for the remaining 
energy sectors in our sample, but only for longer-term investment po
sitions. However, dependence becomes negative with Oil-related Ser
vices and Equipment while it changes from positive to negative with 
Integrated Oil and Gas Services towards the end of the yearly cycle. In 
sum, these results underscore the short-term effects of the COVID-19 
pandemic on the dependence between AI and energy sectors. Results 
posit a similar pattern in the direction of dependence, with AI exhibiting 
the strongest dependence with the renewable energy sector. Also, there 
is a general increase in the level of short-term dependence with all the 
energy sectors under the normal market condition. 

Regarding the level of dependence under the bearish market condi
tion (0.05 quantiles), the dependence between AI and more energy 
sectors become negative. For instance, dependence with Oil and Gas 
Transportation Services sector becomes also negative while only the 
dependence with Renewable energy and Coal sectors change from 
negative to positive towards the end of the weekly cycle. However, as 
the time frequency increases towards the monthly cycle, the dependence 
between AI and renewable energy, Oil and Gas Transportation Services 
and Coal becomes positive while dependence with the remaining sectors 
changes from negative to positive towards the end of the monthly cycle. 
Furthermore, as the time frequency increases to the yearly cycle, unlike 
in similar time frequency under the normal market condition, 

dependence remains positive but becomes strongest between AI and the 
Oil and Gas Exploration and Production sector. These results suggest 
that although AI exhibited negative short-term dependence with most 
energy-focused sectors during the high volatile and low return market 
condition at the peak of the COVID-19 pandemic, dependence changed 
to positive from the intermediate-term towards the long-term. This 
corroborates our earlier findings in support of short-term diversification 
benefits of AI stocks in portfolios of energy stocks and suggests that this 
benefit may be higher during a high volatile and low return market 
situation created by a health crisis. 

However, these results change when we consider the upper tail of the 
joint distribution (0.95 quantile). Specifically, at the weekly time fre
quency, dependence with AI mainly changed from negative to become 
positive before the end of the cycle, except the dependence with Oil and 
Gas Exploration and Production sector which is negative. As the time 
frequency is increased to the monthly cycle, dependence becomes pos
itive with the renewable energy, Integrated Oil and Gas Services as well 
as Oil and Gas Transportation Services while it changed mainly from 
negative to positive with the remaining sectors towards the end of the 
cycle. Besides, as the time frequency is further increased to the yearly 
cycle, dependence between AI and all the energy sectors becomes pos
itive and strongest with renewable energy sector, except with Oil-related 
Services and Equipment which changes from positive to become nega
tive at the end of the cycle. In sum, these results show that across all the 
time frequencies and market conditions, the dependence between AI and 
energy-focused sectors increased substantially during the peak of the 
COVID-19 pandemic and was mainly positive, especially in the inter
mediate- and long-terms. Also, while dependence was positive and 
strongest with renewable energy sector, both during the normal and 
bullish market conditions, it was positive and strongest with Oil and Gas 
Exploration and Production during the bearish market condition. 

Similar to the full sample, we also examined the extreme dependence 
between AI and energy sectors using 0.05|0.95 quantiles of the joint 
distribution. Results in plots (ii) of panels a - i in Fig. 5 suggest that 
extreme dependence is positive between AI and renewable energy, In
tegrated Oil and Gas as well as Coal while it changes from negative to 
positive with the remaining sectors in the weekly cycle. However, under 
the monthly cycle, only the dependence between AI and Oil-related 
Services is negative while dependence with other sectors changed 
from negative to positive before the end of the cycle. Besides, when the 
time frequency is increased to the yearly cycle, results become mixed. In 
particular, dependence between AI and Oil and Gas Exploration and 
Production, Oil and Gas Drilling, Oil and Gas Transportation Services 
becomes positive. However, dependence is negative with renewable 
energy and Oil-related Services but changes from positive to negative 
with the remaining sectors. Generally, the strongest extreme depen
dence is exhibited by AI and renewable energy under the yearly cycle, 
followed by Integrated Oil and Gas Services in the monthly cycle. In the 
weekly cycle, this may be found between AI and the renewable energy 
sector. 

3.2.3. Dependence between the 0.05/0.95 joint distributions   
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Fig. 5. Dependence between the 0.05|0.95 quantiles of joint distribution for full sample. 
Note: Plots of the real part of the quantile coherency estimates of Baruník and Kley (2019) for the 0.05|0.95 quantiles together with 95 % confidence intervals. W, M, 
and Y denote weekly, monthly, and yearly periods, respectively. The — line corresponds to the 0.05|0.95 quantiles of the joint distribution. 
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Fig. 6. Quantile coherency estimates for the 0.05|0.05, 0.5|0.5, 0.95|0.95 and the 0.05|0.95 of the joint distribution across the different frequencies for the COVID- 
19 period. Note: Plots of the real part of the quantile coherency estimates of Baruník and Kley (2019) for 0.05, 0.5, and 0.95 quantiles together with 95 % confidence 
intervals. W, M, and Y denote weekly, monthly, and yearly periods, respectively. The —, —— and …… line corresponds to the 0.5, 0.05 and 0.95 quantiles, 
respectively. 
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4. Conclusion 

This paper relies on both linear and non-linear (including the OLS, 
quantile regression and quantile cross-spectral coherency) models to 

examine the dependence of eight energy-focused sectors on the perfor
mance of AI across different market conditions and investment horizons. 
The energy-focused sectors include: Oil and Gas Exploration and Pro
duction; Oil and Gas Refining and Marketing; Integrated Oil and Gas; 

Fig. 6. (continued). 
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Oil-related Services and Equipment; Oil and Gas Transportation Ser
vices; Oil and Gas Drilling; Coal and Renewable energy. Overall, the 
linear model estimates show that the market returns of energy-focused 
sectors, especially those of renewable energy, depend strongly on the 
performance of AI. On the other hand, estimates from non-linear models 
indicate that the nature of this relationship varies across energy-focused 
sectors, market conditions and investment horizons. Further analysis 
also shows that the dependence of energy-focused sectors on AI became 
stronger during the COVID-19. Dependence also varies depending on 
whether there are positive or negative shocks on AI. In particular, when 
we do not consider negative or positive shocks on AI, results from the 
quantile regression model indicate that under a bearish market state, AI 
has a significant positive effect across the considered energy-focused 
sectors except for the Oil and Gas Transport sector. Regarding the 
bullish market condition, AI has a significant effect on only Integrated 
Oil and Gas and Oil and Gas Transport sectors. Besides, the effects on the 
former is negative while it is positive on the latter. When the market is in 
a normal state, AI has a positive effect on Renewable and the Integrated 
Oil and Gas sectors. For other sectors, it has a non-significant effect. 

However, when we account for asymmetric positive and negative 
shocks on AI, we find that under a normal market condition, positive and 
negative shocks on AI exert significant negative and positive effects, 
respectively, on the stock returns of the Coal sector. Whereas we obtain 
opposite results for the Oil and Gas Exploration and Production as well 

as Oil and Gas Refining and Marketing, our results on the Oil and Gas 
Drilling, Integrated Oil and Gas, and Renewable energy sectors show 
that only negative shocks on AI exert significant (positive) effect on their 
returns. For Oil-related Services and Equipment sector, neither positive 
nor negative shocks exert any significant effect on their performance. 
Under the bullish market condition, we find that except for the Coal and 
Renewable energy sectors, positive and negative shocks on AI exert 
statistically significant positive and negative effects, respectively, across 
the considered energy-focused sectors. For Coal, only negative shocks on 
AI exert a significant (negative) effect on the returns of the sector whilst 
neither positive nor negative shocks on AI have any significant effect on 
the returns of Renewable energy sector. Under the bearish market 
condition, positive and negative shocks on AI have significant negative 
and positive effects, respectively, on the returns of the considered 
energy-focused sectors. As an exception, for the Coal sector, negative 
effects of positive shocks on AI are not significant. 

Regarding the results from the quantile cross-spectral analysis, dur
ing normal market condition, we document evidence of negative 
dependence between AI and all energy-focused sectors in the weekly 
frequency, except for the Integrated Oil and Gas sector, which exhibit a 
positive dependence in this frequency. The negative dependence is 
strongest with the renewable energy sector but weakest with Oil and Gas 
Exploration and Production sector. However, under the monthly and 
yearly frequencies, except for the Oil and Gas exploration and 
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production sector that shows negative dependence in the yearly fre
quency, other sectors show positive dependence across both time scales. 
Under bearish market condition, there is negative dependence in the 
weekly frequency, except for renewable energy, Oil and Gas Exploration 
and Production, and the Oil and Gas Refining and Marketing sectors. In 
the yearly frequency, however, dependence is generally positive while 
in the monthly frequency, results are mixed. As for the bullish market 
condition, we find that in the weekly frequency, dependence is positive 
for Oil and Gas Refining and Marketing sector; negative for Coal, Oil and 
Gas Exploration and Production, and Oil and Gas Transportation Ser
vices sectors but switches between positive and negative dependence for 
the remaining sectors. Results for the monthly frequency indicate that 
dependence is positive for the Oil and Gas Drilling, Oil and Gas Explo
ration and Production, Renewable energy, and the Oil and Gas Trans
portation Services sectors, while those of the remaining sectors switches 
from positive to negative. Concerning the yearly frequency, dependence 
is generally, positive. 

Our findings hold profound and diverse implications for investors 
and portfolio managers. For instance, focusing on the quantile cross- 
spectral analysis, where weekly, monthly and yearly time scales 
approximated to short, medium and long-term investment horizons, our 
findings indicate that in the short-term under normal market condition, 
AI offers short-term diversification benefits to assets of the sampled 
energy-focused sectors, excluding those of the Integrated oil and gas 
sector. However, during the intermediate- and long-term, these benefits 
accrue only to Oil and Gas Exploration and Production. In the short- 
term, under bearish market condition, AI only offers diversification 
benefits to Coal, Oil and Gas Drilling, Integrated Oil and Gas, Oil-related 
Services and Equipment, and Oil and Gas Transportation Services. In the 
intermediate- and long-term, under bearish market condition, such 
diversification benefits hardly exist. During bullish market condition, 
our findings indicate that AI only offers diversification benefits to Coal, 
Oil and Gas Exploration and Production as well as Oil and Gas Trans
portation Services in the short term, while such diversification benefits 
hardly accrue across the energy-focused sectors both in the intermedi
ate- and long-term. From a portfolio manager perspective, therefore, our 
findings imply that while AI may play a diversification role to the assets 
of energy-focused sectors, hedging decisions by portfolio managers 
should be sector as well as market condition specific. 

Regarding investors, our findings also hold specific implications for 
traders and speculators that are more concerned with the short- and 
intermediate-term investment horizons, and institutional investors that 
are more concerned with the long-term investment horizon. For 
instance, our findings would imply that the diversification role of AI to 
energy-focused sectors only materializes during normal market condi
tion, and is only beneficial to institutional investors who are interested 
in holding the assets of Oil and Gas Exploration and Production sector. 
Intuitively, our results also hold profound implications for the managers 
of portfolios containing stocks of AI and energy corporations during 
similar future financial market crisis periods like the situation created by 
the COVID-19 pandemic. In particular, our results show that dependence 
with AI stocks varies across energy sectors and investment horizons, 
suggesting the use of dynamic portfolio design during similar future 
health-induced crisis periods. Finally, our study opens up different av
enues for further studies. For instance, whilst we focused on the 
dependence structure between the returns of AI and energy-focused 
sectors, future studies can focus on measuring and managing their 
cross-market risk transmission. Future studies could also examine the 
volatility dependence structure of the studied assets, which should be a 
direct extension of the current study while holding different implica
tions, especially in the areas of portfolio risk monitoring and managing. 
Last but not the least, as indices for other types of technologies such as 
blockchain and Internet of Things (IoT) become available, it may also be 
interesting to see their dependence structure with the energy-focused 
sectors and compare how they vary with AI. 
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