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Abstract
Objective The number of radiomics studies in gastroenteropancreatic neuroendocrine tumours (GEP-NETs) is rapidly increas-
ing. This systematic review aims to provide an overview of the available evidence of radiomics for clinical outcome measures in
GEP-NETs, to understand which applications hold the most promise and which areas lack evidence.
Methods PubMed, Embase, and Wiley/Cochrane Library databases were searched and a forward and backward reference check
of the identified studies was executed. Inclusion criteria were (1) patients with GEP-NETs and (2) radiomics analysis on CT,MRI
or PET. Two reviewers independently agreed on eligibility and assessed methodological quality with the radiomics quality score
(RQS) and extracted outcome data.
Results In total, 1364 unique studies were identified and 45 were included for analysis. Most studies focused on GEP-NET grade
and differential diagnosis of GEP-NETs from other neoplasms, while only a minority analysed treatment response or long-term
outcomes. Several studies were able to predict tumour grade or to differentiate GEP-NETs from other lesions with a good
performance (AUCs 0.74–0.96 and AUCs 0.80–0.99, respectively). Only one study developed a model to predict recurrence
in pancreas NETs (AUC 0.77). The included studies reached a mean RQS of 18%.
Conclusion Although radiomics for GEP-NETs is still a relatively new area, some promising models have been developed.
Future research should focus on developing robust models for clinically relevant aims such as prediction of response or long-term
outcome in GEP-NET, since evidence for these aims is still scarce.
Key Points
• The majority of radiomics studies in gastroenteropancreatic neuroendocrine tumours is of low quality.
• Most evidence for radiomics is available for the identification of tumour grade or differentiation of gastroenteropancreatic
neuroendocrine tumours from other neoplasms.

• Radiomics for the prediction of response or long-term outcome in gastroenteropancreatic neuroendocrine tumours warrants
further research.
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Abbreviations
AP Arterial phase
DL Deep learning
G1/2/3 Grade 1/2/3
GEP-NET Gastroenteropancreatic neuroendocrine tumour
IBSI Image Biomarker Standardisation Initiative
LASSO Least absolute shrinkage and selection operator
LR Logistic regression
ML Machine learning
NEC Neuroendocrine carcinoma
PDAC Pancreatic ductal adenocarcinoma
PFS Progression-free survival
pNETs Pancreatic neuroendocrine tumour
PRISMA Preferred Reporting Items for Systematic

Reviews and Meta-analysis
PVP Portal venous phase
RF Random forest
RFS Recurrence-free survival
ROI Region of interest
RQS Radiomics quality score
SVM Support vector machine
WHO World Health Organization

Introduction

During the past decades, it has been established that tumours
are heterogeneous entities [1] and it is widely accepted that
this heterogeneity has implications for tumour development,
treatment outcome and survival [2]. Gastroenteropancreatic
neuroendocrine tumours (GEP-NETs) are a rare group of het-
erogenous tumours with neuro-endocrine differentiation with-
in the gastrointestinal tract or pancreas [3], excluding the poor-
ly differentiated neuroendocrine carcinoma (NEC). Even with
available biomarkers and imaging, it remains a challenge to
predict the clinical course of an individual patient and select
the optimal treatment, because of the heterogeneity between
and within tumours [4, 5].

Over the past years, it has been established that medical
imaging contains more data than is visible to the naked eye
[6, 7] and can be converted to innumerable features and there-
by quantify tissue heterogeneity [6, 8, 9]. This technique,
radiomics, can describe the relationship between the intensity
and position of voxels within an image. Promising results
have been achieved for diagnosis, response assessment and
prediction of long-term outcome in several tumour types [9,
10]. For GEP-NETs, the potential of radiomics for several
aims has been investigated: predicting tumour grade, distin-
guishing NET from other tumours, and prediction of response
and long-term outcomes. However, radiomics has only recent-
ly been introduced to GEP-NETs and the number of studies is
rapidly increasing, yet with conflicting results. Hence, it is
unclear which specific applications of radiomics in the field

of GEP-NETs hold the most promise and what areas lack
evidence. The radiomics quality score (RQS) is a tool that
has been developed specifically to assess the methodological
quality of radiomics studies and has not yet been used in GEP-
NETs [8, 11, 12]. This systematic review aims to provide an
overview of the available literature regarding the use of
radiomics in GEP-NETs based on the main aims and to iden-
tify promising research directions for future radiomics studies.

Methods and materials

Search strategy

This study was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) statement [13]. The review protocol is available
through PROSPERO (CRD42021226844). The search strate-
gy was conducted by a medical information specialist (E.W.).
PubMed, Embase and Scopus were searched until August
2021 (Fig. 1). The following terms, including synonyms and
closely related words, were used: ‘GEP-NET’ AND
‘radiomics’. A detailed search strategy is described in the sup-
plement. Citations and references of eligible studies were
searched using Scopus to identify further studies for inclusion,
until no more new eligible articles were identified.

Study selection

Two reviewers independently reviewed titles and abstracts for
eligibility. The first reviewer (F.S.) reviewed all studies and the
role of the second reviewer was fulfilled by two reviewers
(D.v.d.V. or E.A.). All radiomics analyses were considered for
inclusion (i.e. texture analysis, machine learning and deep learn-
ing [DL] methods). Articles that met the following criteria were
included: (1) patients with GEP-NETs, and (2) radiomics ana-
lysis on computed tomography (CT), magnetic resonance imag-
ing (MRI) or positron emission tomography (PET). Reviews,
case series (n < 10), letters to the editor, conference abstracts
and studies with no English text were excluded. Disagreements
were resolved by discussion and consensus.

Data collection

Two reviewers independently extracted from the included
studies, using a pre-defined data extraction form: study popu-
lation, clinical outcome, primary tumour, intervention, imag-
ing modality, reference standard, region of interest (ROI), de-
tails about the radiomics workflow (including feature extrac-
tion, selection, and statistical analysis) and most relevant re-
sults. Disagreements were resolved by discussion and consen-
sus. Results were grouped according to three categories based
on the main aims: (1) predicting tumour grade, (2)
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distinguishing GEP-NETs from other tumours and (3) re-
sponse and long-term outcome measures.

Quality assessment

The risk of bias and methodological quality of the studies
were assessed independently by two reviewers, using the
RQS [8]. This tool was developed to assess the quality of
radiomics research. The RQS has 16 components that are
rated resulting in a total score ranging from –8 to 36, which
is then converted into a percentage score (0–100%). Since the
RQS and its components were not developed for DLmethods,
these were excluded from the RQS evaluation. Disagreements
between reviewers were resolved by discussion until
consensus.

Statistical analyses

Subgroup analyses were performed to assess the differences in
total RQS according to the study aim (predicting tumour
grade, distinguishing NET from other tumours and response
and long-term outcome measures) and imaging modality (CT,
MRI or PET), using the Kruskal-Wallis test. If a study

evaluated multiple aims, it was taken into account for each
aim. Statistical analyses were performed with Statistical
Package for the Social Sciences (SPSS, v27.0). A p value <
0.05 was considered statistically significant.

Results

Study selection

The initial search identified 193 relevant studies; 128 were
excluded based on title and abstract screening. Full-text ver-
sions of the remaining 65 manuscripts were reviewed and 25
studies were excluded. The backward- and forward reference
check of the 40 included studies identified another 5 studies
for inclusion. Finally, 45 studies were included for analysis
(Fig. 1).

Included studies

The study characteristics, details about radiomics workflow
and main results are summarised in Tables 1 and 2. The in-
cluded studies were published between 2015 and 2021 (Fig.
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2). Forty-three studies focused on patients with pancreas
(p)NETs [14–55], two studies on GEP-NETs [56, 57], and
one study on rectum NETs [58]. Thirty-one studies analysed
CT [14–16, 18, 21–25, 28, 29, 31–33, 35–38, 40, 42, 43, 46,
48, 50, 52–56, 58], thirteen MRI [19, 20, 26, 27, 30, 34, 37,
40, 41, 44, 45, 47, 49], four [68Ga]Ga-DOTATOC or
[68Ga]Ga-DOTATATE PET/CT [17, 39, 51, 57], and one
[18F]FDG PET/CT [39]. Differentiation of GEP-NETs from
other lesions was investigated by 13 studies [14, 31, 32, 34,
36, 43–45, 47–50, 53, 59], while 25 explored GEP-NET grade
[15–25, 27–30, 35, 37–40, 42, 52, 54, 55, 58], and 6 response
to treatment or long-term outcome [21, 39, 46, 51, 56, 57].
The median number of included GEP-NET patients was 61
(range 11–157). A median of 58 (range 2–2126) radiomics
features were extracted, excluding two DL studies [27, 38].
More than half (n = 27) of the studies adjusted for multiple
testing or used feature reduction. Forty-one (91%) studies
[14–30, 32–38, 40, 42–56, 58] used manual segmentation.
Thirty (67%) studies delineated the entire tumour volume,
yet it was not specified in 2 studies [22, 42]. Thirteen studies
[14–16, 23, 25, 26, 34, 36, 40, 41, 45, 56, 57] analysed indi-
vidual radiomics features (univariate), while thirty-two
[17–22, 24, 27–33, 35, 37–39, 42–44, 46–55, 58, 60]

developed models with multiple features. Seventeen studies
performed multivariable analysis with non-radiomics features
[18–21, 28, 29, 32, 34, 35, 37, 42, 44, 46, 47, 50, 53, 58].

Quality assessment

The included studies reached a median score of 2.0 points
(range 4–19, Table 1 and S1), excluding two DL studies.
The median total RQS was 2 (IQR 0–14), with a correspond-
ing percentage of 5.6% (IQR 0–38.9%), due to a lack of pro-
spective design, validation and open-access data. Noteworthy
is that nineteen studies had a score of 0%. Most studies had a
well-documented image protocol, included biological corre-
lates, discussed potential clinical utility and compared results
to a gold standard. Only one study employed a phantom to test
the robustness of features [51]. Neither study had a prospec-
tive design, assessed cost-effectiveness or presented open-
source scans or code. Only 11% of the studies externally val-
idated their results, whereas 53% did not use any validation.
Results of the subgroup analyses did not show a significant
difference in neither aim nor imaging modality (Table 3). The
RQS% distribution across the years is shown in Fig. 3.

Fig. 2 Included radiomics studies
in GEP-NETs, sorted by number
of publications per year (until
August 2021)
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Predicting tumour grade

Computed tomography

Four studies constructedmodels to predict tumour gradewith CT
(G1/2 vs G3, including poorly differentiated NECs) on arterial
phase (AP) with a good performance (AUC 0.74–0.96 [22, 29,
38] and accuracy of 69% [42]). Seven studies constructedmodels
for the prediction of G2/3 [18, 21, 24, 28, 35, 37, 38, 52]. Three
radiomics models were able to predict G2/3 pNETs with a good
performance (AUC 0.86–0.96, RQS 28–44%) [18, 52, 55]. One
study compared different methods of feature selection and ML
and found that distance correlation (feature selection) combined
with AdaBoost (ML) had the best performance (G1vsG2: AUC
0.82, G2vsG3: AUC 0.70 and G1vsG3: AUC 0.85) [54].
Another study used LR to classify grades in rectal NETs (AUC
0.93) [58]. Three studies combined radiomics with non-
radiomics features (e.g. size, vascular invasion, tumour margin)
to create a good predictivemodel for G2/3 (AUC0.75–0.90) [28,
35, 37]. In general, combined models yielded higher

performance than models based on radiomics features only [21,
28, 35, 37], yet one study reported that performance was not
improved by adding conventional radiographic features [42].
DL and traditional ML approaches had a similar performance
to distinguish pNET grades [38]. Several radiomics features were
selected as predictive variables in the constructedmodels [15, 21,
24, 28, 29, 35]. Both 2D- and 3D-rendered radiomics features on
the portal venous phase (PVP) were predictive for G2/3 [24, 52].
First-order features were frequently selected, yet with conflicting
results. Three studies found a lower entropy in high-grade tu-
mours on AP [15, 29] with higher uniformity in G3 tumours
[15], while a higher entropy was reported in G2/3 on PVP
[21]. The abovementioned studies had a low sample size and
were of low quality (RQS < 10%). Studies with a high RQS
developed promising models, and predominantly higher-order
features were selected for the prediction of pNET tumour grade
[18, 28, 35, 37, 54, 55]. Only the features skewness [18, 37],
GLRLM_GLV [28, 35], GLSZM_GreyLevelVariance [28, 35],
and SizeZoneNonUniformity [28, 37] (with different filters or
transformation methods) were selected in > 1 models.

Table 3 Subgroup analysis
according to the study aim and
imaging modality

Group Studies (n) RQS RQS-percentage p value

Study aim 0.81

Differentiate 15 2.0 (0.0–10.0) 5.6 (0.0–27.8)

Grade 25 1.0 (0.0–16.0) 5.6 (0.0–44.4)

Response and long-term outcome 5 0.0 (0.0–7.0) 0.0 (0.0–19.4)

Modality 0.46

CT 29 2.0 (0.0–12.5) 5.6 (0.0–34.7)

MRI 12 5.0 (0.0–16.8) 15.3 (0.0–46.5)

PET 4 0.0 (0.0–9.8) 0 (0.0–27.1)

Values are expressed as number or median (interquartile range)

RQS radiomics quality score

Fig. 3 Line plot of the RQS%
scores of the included articles per
year
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Individual radiomics features were frequently tested in uni-
variate analysis. A majority analysed first-order features, in-
cluding mean [14, 23–25, 29, 40, 52, 56], entropy [14, 21, 23,
25, 40, 52, 56, 58], uniformity [15, 29], skewness [14, 23, 24,
52, 56], kurtosis [24, 25, 29, 40, 52, 56], sphericity [24] and
asphericity [16]. Kurtosis was higher in G2/3 on AP [25, 29,
40, 56], yet conflicting results were reported for PVP [24, 40,
52, 56]. A higher skewness was reported in G2/3 tumours on
different phases [23, 24, 52], while no differences between G1
and G2 pNETs were reported [14]. Conflicting results were
reported for entropy [14, 21, 23, 25, 40, 52, 56] and mean [14,
24, 25, 29, 40, 52, 56].

Magnetic resonance imaging

Eight studies used MRI for grade prediction [19, 20, 26, 27, 30,
37, 40, 41], predominantly for G2/3. Several studies were able to
G2/3 based on radiomics features only (AUC0.74–0.91) [19, 20,
27]. Two higher-quality studies constructed a combined model
with a good performance to predict G2/3 (AUC 0.71–0.88) [19,
37]. One lower-quality study was able to predict G3 tumours
with a high performance (AUC0.99) [30]. Several features were
selected as independent predictors in the constructed models.
Kurtosis was frequently reported as a predictor of tumour grade
[19 , 20 , 26 , 41 ] , ye t wi th conf l i c t ing resu l t s .
Squareroot_glszm_SmallAreaLowGreyLevelEmphasis was se-
lected in two studies as a relevant predictor of G2/3 [19, 37].
Various features were selected in a single study only (Table S2).

Predominantly first-order features were analysed in univariate
analysis. Kurtosis was not predictive of tumour grade on ADC
[41,42] or T2w imaging [26]. A higher skewness was reported
between G3 and G1, but no differences were found between G1
and G2 onADC [41]. Conflicting results were reported for mean
[40, 41], entropy [26, 30, 40], uniformity [26] and percentiles
[26, 41] on different sequences (T1/T2/ADC/DWI).

PET/CT

One study used PET/CT-based radiomics and reported a high
performance to predict pNET grade (G1vsG2, AUC 0.90–
0.92) [17].

Distinguishing NET from other tumours

Computed tomography

Five studies constructed a model to differentiate pNET from
pancreatic ductal adenocarcinoma (PDAC) on CT [32, 33, 43,
50, 53]. Overall, combined models achieved a better perfor-
mance than radiomics-only models (AUC 0.83–0.88 vs.
AUC0.79–0.87, respectively) [32, 50]. A LR model based
on PVP-based features had a higher performance to distin-
guish pNETs from PDAC compared to an AP-based model

(AUC0.93 vs AUC0.86, respectively) [53]. A comparable
performance for LASSO, SVM and RF models was reported
in a high-quality study[32]. A lower-quality study was able to
distinguish pNET from PDAC (AUC 0.89) [33]. First-order
radiomics features [33, 43, 50] and GLRLM features [32, 53]
were most frequently selected as predictive features. Specific
combinations of feature selection and ML methods (distance
correlation, Xgboost+RF) had the best performance to differ-
entiate pNET from pancreatic cystadenoma on PVP
(AUC0.997 and AUC0.989) [31].

Predominantly first-order and GLCM features were analysed
in univariate analysis [33, 43, 50, 53, 59]. pNETs had a higher
mean [33], higher median [43, 50], higher minimum [43, 50],
higher percentiles [33, 43, 50], higher entropy [50], and lower
skewness [33], compared to PDAC. Similarly, a higher mean
and lower skewness were reported when pNETs were compared
with non-pNETs [56]. Other features were selected in a single
study only (Table S2). Two studies compared pNETs to tumours
from another origin [36, 48] and found that several first-order
radiomics features were able to distinguish pNET from renal cell
carcinoma (RCC) [48] or SPN [36].

Magnetic resonance imaging

MRI was used for differentiation of pNET in 5 studies [34, 44,
45, 47, 49]. Three studies developed a model for the differen-
tiation of pNET from other pancreatic tumours [34, 44, 49]. A
LR-model was able to differentiate pNETs from PDAC on
Intravoxel Incoherent Motion (IVIM), yet was of low quality
(AUC 0.93) [49]. Three studies constructed a radiomics model
to differentiate pNET from solitary pseudo-papillary neo-
plasms (SPN) of the pancreas [34, 44, 47]. Significantly better
performance of a radiomics model was reported, compared to
subjective evaluation by a radiologist (accuracy 86–92% vs
65–78%, respectively) [34, 44]. An AP-based model had the
best performance to differentiate pNET from SPN, compared
to T1, PVP and delayed phases (AUC 0.91 vs. AUC 0.77–
0.85, respectively) [47]. In the constructed models, first-order
features were most predictive on T1W [34] and T2W [44],
GLCM features for DWI [34], and GLRLM and NGTDM
features were most predictive on the apparent diffusion and
apparent kurtosis [44].

Two studies analysed individual radiomics features be-
tween pNET and PDAC [45, 49] on different sequences.
Predominantly, first-order features were studied. A lower en-
tropy [45], lower skewness [45] and lower kurtosis [45] were
reported in pNET compared to PDAC on ADC. Likewise, a
lower entropy was found in pNET on IVIM [49].

Response and long-term outcome measures

In 6 studies, response to treatment or long-term outcome was
analysed [21, 39, 46, 51, 56, 57].
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A higher skewness and kurtosis were found in non-
responders to PRRT in univariate analysis, based on 68Ga-
SSA PET/CT [57]. A DLmodel based on CT-based radiomics
features had a higher performance to predict recurrence in
pNETs (AUC 0.77) compared to traditional ML methods, or
DL including clinical features [46]. A higher entropy was
reported in patients with better PFS and OS [51] on 68Ga-
SSA PET/CT in patients treated with PRRT, while on
contrast-enhanced CT, a lower entropy was found in patients
with a better PFS [21, 56]. No features were predictive of
recurrence-free survival (RFS) based on [68Ga]Ga-
DOTATOC PET/CT [39]. Regarding OS, a higher skewness
on CTwas reported in patients with a better OS [56]. Different
radiomics features were predictive of vascular invasion on CT
and [68Ga]Ga-DOTATOC PET/CT (Table S2) [16, 39].

Discussion

Because radiomics in GEP-NETs is still in its early stages,
methodology is less standardised and studies are more explor-
ative compared to radiomics studies in other fields. A majority
of the included studies investigated GEP-NET grade and dif-
ferentiation of GEP-NETs from other neoplasms, while a mi-
nority analysed the response to treatment or long-term out-
comes. Strikingly, 43 studies analysed pNETs, while only 2
studied other GEP-NETs, underlining the lack of evidence of
radiomics studies for GEP-NETs other than in the pancreas. A
majority of the included studies were of low quality (RQS <
30%), mainly due to explorative and univariable analyses with
a lack of (external) validation, feature reduction, calibration
and/or bootstrapping. Radiomics reviews in other tumours
show a similar trend [11, 12, 61], with regard to the lack of
(external) validation, calibration and comprehensive models
including non-radiomics features in their models. The predic-
tive power of radiomics may be overestimated in these lower-
quality studies, as there is a risk of false positives if no feature
selection is used or only univariable analyses are performed,
because of the high feature-to-patient ratio. In addition, the
risk of overfitting is high if no validation is employed.
Studies with a higher quality (RQS > 30%) were all published
quite recently (2019 or later) [17–19, 28, 32, 35, 37, 44, 46,
47, 50, 54, 55, 62]. In these studies, the best predictive models
were constructed for the prediction of tumour grade, in which
combined models achieved the best performance. A minority
showed promising results for radiomics in the differentiation
of pNETs from other tumours, yet these results still need to be
reproduced in larger cohort studies to ensure reliability. Thus,
for the aforementioned outcomes, some promising models
were developed, yet none performed a prospective validation.

Overall, prediction of tumour grade was mainly studied in
pNETs with promising results on different modalities [17–22,
24, 27–30, 35, 37, 38, 52, 54]. First-order features were

predominantly studied with conflicting results, but in general,
an increased heterogeneity (higher entropy, kurtosis, max in-
tensity and lower energy) was associated with higher-grade
tumours. This is in line with biological studies that report that
heterogeneous tumours, in general, have a worse outcome [63,
64]. It is noteworthy that the included studies used different
versions of the World Health Organization (WHO) classifica-
tion of NETs of i.e. 2010 [65], 2017 [66] and 2019 [67], which
could have biased the results, since G3 well-differentiated
tumours were only distinguished from poorly differentiated
NECs in WHO 2017 and later.

Regarding the differentiation of GEP-NETs from other
neoplasms, the best performance was achieved when
radiomics features were combined with clinical features.
Some studies even showed that a radiomics model performed
better than a radiologist in differentiating pNETs from other
lesions [34, 44]. The strongest evidence is available for distin-
guishing pNETs from PDACs on CT [32, 50, 53]. First-order
statistics [33, 43, 45, 49, 50] and GLRLM features [32, 44, 53]
were the best predictors in multivariable models.

From a clinical point of view, prediction of response or
long-term outcome would be more relevant to explore, where-
as only 13% studied these outcomes [21, 39, 46, 51, 56, 57]
with conflicting results. Entropy was frequently reported as a
predictor and might be worth further exploring. Nevertheless,
evidence for the prediction of these outcomes with radiomics
is still weak. An accurate prediction tool would allow for a
timely adjustment of treatment strategy in GEP-NETs, and
therefore, there is a need for further research exploring a more
robust method for these outcomes.

An important prerequisite to enable high-quality reproduc-
ible radiomics research is to standardise the methodology as
much as possible when a new model is constructed, according
to guidelines suggested by the Image Biomarker
Standardisation Initiative (IBSI) [68, 69]. One of the limita-
tions that is harder to overcome in GEP-NET radiomics stud-
ies lies in the fact that GEP-NETs are quite rare and it is
difficult to achieve a large homogeneous sample and validate
studies. The lack of large samples could explain why the
number of DL studies is low in this group of patients
(n = 2), since this is a prerequisite for DL. Another limitation
is the fact that in 98% of the included studies positive results
were highlighted, while only one study did not find any pre-
dictive features for the studied outcomes. This is in line with a
previous radiomics review (including 553 studies on GEP-
NETs and other tumours) [70] and is likely to be a reflection
of publication bias. The publication of negative findings in the
field of radiomics is equally important to that of positive re-
sults to understand the directions for meaningful research that
will bring the field to the next level. Future studies should
focus on performing multicentre studies to develop integrated
models, to be able to externally validate their models and
explore DL.
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In conclusion, the majority of radiomics studies in GEP-
NETs is of low quality, which warrants new studies with a
better methodology. Even though radiomics for GEP-NETs is
still in its infancy, some robust and promising models have
been developed.

However, these models predominantly focus on the identifi-
cation of tumour grade or differentiation of GEP-NETs from
other tumours and only few have externally validated their re-
sults. Finally, the quality of the studies that used radiomics for the
prediction of response or long-term outcome, clinically more
relevant endpoints, was quite low and more robust analyses are
warranted before any definitive conclusions can be drawn.
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