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General discussion and impact 

  The overarching goal of this thesis is to provide insights into the 

relations between heart sound characteristics and hemodynamics in 

heart failure, and test feasibility of measuring heart sounds on a large 

scale using mobile phones.     

We investigated the use of heart sounds for estimation of 

interventricular (VV) delay in Chapter 2, and for optimization of 

atrioventricular (AV) delay in Chapter 3. In Chapter 2, a novel 

algorithm was proposed for automatic calculation of VV delay from 

second heart sounds (S2) measured in open-chest porcine experiments. 

A close relation was observed between algorithm-estimated S2 splitting 

and invasively measured VV dyssynchrony. In Chapter 3, we 

investigated optimization of AV delay in a combined experimental-

clinical study. In the experimental study, heart sounds were collected 

from pigs under baseline and myocardial depression. In the clinical 

study, heart sounds were collected from the patients using a 

microphone incorporated in a pulse generator of a cardiac 

resynchronization therapy (CRT) device. Both studies indicated close 

relations between heart sound-derived systolic time intervals (STIs) 

and left ventricular (LV) contractility indicators during varying paced AV 

delays. Loss of hemodynamics at optimal AV delays determined by 

heart sounds was minor. Thus, heart sound-derived STIs can probably 

serve as useful indicators for optimization of AV delay in CRT.  

While CRT is indicated for patients with severely reduced ejection 

fraction, heart failure with preserved ejection fraction (HFpEF) is faced 

with a scarcity of treatments. Close monitoring of these patients is 

nonetheless important to identify symptoms at an early stage so that 

drugs can be utilized to relieve the patients’ symptoms. In Chapter 4, 

we conducted a pilot study with a handheld digital stethoscope to 

explore associations between phonocardiography (PCG) and 

echocardiography in patients suspected of HFpEF. The study showed 

that heart sound frequency, STIs and occurrence of fourth heart sound 

were linked to the ratio of early diastolic mitral inflow to mitral annulus 

velocity (E/e’), a common echocardiographic indicator of elevated LV 

filling pressure and diastolic dysfunction. Furthermore, we proposed a 

combined score based on heart sound features to differentiate E/e’ 

below and above 9, which showed good performance in both matched 

patients and all enrolled patients. The study may provide novel non-

invasive markers for evaluation of HFpEF patients. 
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One major bottleneck in the widespread application of heart sounds 

for home monitoring is the lack of an affordable device to measure heart 

sounds. In Chapter 5, we tested the feasibility of using the microphone 

of smartphones as an electronic stethoscope. Nearly 80% of the users 

were able to record heart sounds by themselves, and around 3 out of 4 

recordings were visually labelled as good quality. The quality of 

recorded heart sounds did not significantly differ by sex or phone 

version but tended to be lower in patients with an advanced age and a 

high body mass index. The study was the first in investigating factors 

affecting heart sound quality among general users. It provided evidence 

and confidence to further develop smartphone for daily remote 

monitoring of the patients, as one of basic components of mobile health 

(mHealth).  

In this chapter, we will discuss our findings from a broader 

perspective. To do so, we first present a brief review of history of heart 

sound research, together with evolution of device for measurement of 

heart sounds. Then alterations of heart sounds in heart failure are 

analyzed, and the novelty of our research results is evaluated. The past 

two decades have seen emergence of novel tools for measurement and 

algorithms for analysis of heart sounds. These advancements will be 

discussed in the broad context of mHealth. This chapter is wrapped up 

with discussion on scientific and social impacts of the findings of this 

thesis. 

 

1. Three waves of heart sound research 

Literature search for publications on heart sounds has clearly shown 

three waves of research enthusiasm (Figure 1). The first wave started 

from early 19th century and spanned across the whole 20th and 

beginning of the 21th century. Early days of heart sound research were 

centered on how to develop a simple tool for auscultation. History of 

auscultation is generally thought to start from an accidental finding by 

René Laennec who was able to listen to sounds of the heart by rolling 

a squire of paper to a cylinder and applying it to the patient’s precordial 

area in 1816 [1]. Since then, the instruments for auscultation have 

greatly evolved. An important landmark is the invention of the binaural 

stethoscope by Arthur Leared in 1851, which has been the prototype 

for all stethoscopes used nowadays [2]. However, human ears may not 

serve as the best detector of low-frequency vibrations like heart sounds. 

Boosted by progresses in electronic engineering, PCG machines were 

developed that used electronic modules for sensing vibrations and an 
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oscillograph for displaying signals [3]. Indeed, the first wave of heart 

sound research was initiated by the popularity of the PCG machine in 

1950s, contributing to most (88%) of all publications on heart sounds. 

During this first wave, two major research topics were origin of heart 

sounds and applications of heart sounds to diagnosis of diseases. 

Investigations on the first topic resulted in several theories on the 

origin of heart sounds. While early studies hypothesized that sudden 

tensing of ventricular muscles or cardiac valves gives rise to heart 

sounds, later studies tended to support the idea of vibrations of the 

whole cardiohemic system including valves, myocardia, blood mass and 

adjacent tissues as origin of heart sounds [4-7]. The recent simulation 

study in our group, based on the cardiohemic hypothesis, appeared 

quite consistent with previous observations of heart sounds in normal 

condition, heart failure and exercise [8]. Chapter 4 showed a higher 

frequency of heart sounds in patients with elevated LV filling pressure. 

This was likely caused by the vibrations of a blood column encapsulated 

in a stiffened structure consisted of myocardia, valves and adjacent 

tissues.  

The second distinctive feature of the first wave of heart sound 

research is the large number of observations on heart sounds in various 

diseases. The study on alterations of heart sounds in heart failure is an 

example and will be discussed below in Section 2.  

The first wave of heart sound research waned at the emergence of a 

novel imaging technique, echocardiography. The first course dedicated 

to cardiac ultrasound was in 1968 and the first book on 

echocardiography in 1972 [9]. Virtually in parallel, researchers’ interest 

in heart sounds has faded from the 1970s to 2000, with the number of 

annual publications drastically decreasing from over 400 to less than 

40.  
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In the first two decades of the 21st century, the second wave of heart 

sound research occurred because of advancements in signal processing 

techniques. The most important progress is the development and 

enhancement of multiple time-frequency representation algorithms for 

heart sound analysis, including short-time Fourier transform, wavelet 

transform, Hilbert-Huang transform and Wigner distribution, which are 

still widely used nowadays [10-13]. These time-frequency 

representation algorithms allow to project one-dimensional time-series 

signals such as heart sounds to a two-dimensional map for better 

observations of changes of frequency and energy with time. One of 

important applications of time-frequency projection is for estimation of 

heart sound splitting. In Chapter 2, S2 was projected to a time-

frequency map using S-transform to allow automatic tracking of aortic 

and pulmonic components. The S2 splitting interval was calculated from 

the timing difference between the two components. The algorithm was 

validated in simulated conditions and showed a close relation to the 

invasively-measured “gold standard” of VV dyssynchrony. In contrast, 

previous studies on S2 splitting using time-frequency representation 

algorithms were neither validated in simulation nor shown to be related 

to ventricular activities in experiments [14-18]. 

The past 5 years have seen the commencement of a third wave of 

heart sound research, boosted by open-access heart sound datasets 

and machine learning algorithms. The most-cited heart sound dataset 

is the PhysioNet Heart Sound Database released in 2016 which contains 

over 2400 heart sound recordings from nearly 1300 healthy volunteers 

and patients [19]. The dataset has stimulated studies on algorithms for 

automatic segmentation, feature extraction and classification of heart 

sounds [20-22]. All these three tasks can be achieved using machine 

learning, which is discussed in Section 3.  

  The above-mentioned progress on heart sound research has benefited 

from continuous evolutions of heart sound measurement tools. This 

topic will also be covered in Section 3.  

 

2. Heart sounds in heart failure 

The origin of heart sounds dictates that any alterations of cardiac 

mechanical activities during diseased conditions may affect 

morphologies and timing of heart sounds. In this thesis, we focus on 

the alterations of heart sounds in heart failure in Chapters 2, 3 and 4. 

Heart failure may be caused by either systolic or diastolic dysfunction, 

or both. The former is also referred to as heart failure with reduced 
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ejection fraction, while the latter is called HFpEF [23]. This section will 

discuss the relations of various heart sound features including STIs, 

dominant frequency and splitting interval to heart failure. Furthermore, 

values of heart sounds in predicting heart failure patients’ outcomes are 

discussed. 

 

2.1 STIs 

STIs are time intervals within the cardiac systole that can be derived 

from simultaneous heart sound and electrocardiogram (ECG) 

measurements, including time interval from onset of QRS to onset of 

S1 (QS1) and time interval between onsets of S1 and S2 (S1S2). 

Several studies reported a longer QS1 in heart failure patients 

compared with normal subjects [24-28]. Findings regarding S1S2 in 

heart failure were inconsistent [26, 28]. This was likely caused by 

differences in confounding factors between the studies, such as heart 

rate, gender and body mass index of the patients. Chapter 3 

circumvented these factors by using animals as their own controls while 

varying paced AV delays with a fixed heart rate. The study found close 

relations between STIs (QS1 and S1S2) and myocardial contractility 

evaluated using invasive pressure indicators including the maximal rate 

of rise of LV pressure.  

  In addition to myocardial contractility, atrial pressure also seems to 

play a crucial role in determining QS1. Chapter 4 shows that patients 

with an enlarged left atrial volume and elevated LV filling pressure tend 

to have a longer QS1. It is likely that elevated atrial pressure at a given 

rate of rise of LV pressure delays the timing of atrio-ventricular pressure 

cross-over and thus the onset of S1 [29]. Overall, QS1 and S1S2 may 

serve as useful timing indicators of ventricular systolic and diastolic 

(dys)function.  

 

2.2 Frequency of heart sounds 

  Little is known about changes of heart sound frequency in heart failure. 

This may have been caused by complexity of frequency calculation 

during the first wave of heart sound research when computers were 

either unavailable or primitive. From a physics perspective, frequency 

of a harmonic oscillator is equal to the square root of material elasticity 

divided by the mass of the system. An early observational study 

reported S1 energies shifted toward low-frequency range in patients 

with cardiomyopathy [30]. The authors hypothesized that decreased 

myocardial elasticity and volume overload together may have resulted 
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in reduced S1 frequency. However, myocardial elasticity is also likely 

increased in these patients due to more stretched myocardium by 

enlarged LV end-diastolic volume. This idea is supported by data from 

a recent porcine study showing that the dominant frequency of S1 

increases with end-diastolic volume [31]. In patients suspected of 

HFpEF, S1 frequency tends to increase with elevated LV filling pressure 

(Chapter 4). The structural cause may come from LV hypertrophy, as 

evidenced by a heavier LV mass in patients with a higher E/e’ ratio.  

Our study is the first to demonstrate relationship between heart 

sound frequencies and echocardiographic parameters. In addition to S1 

frequency, S2 and S4 frequencies have also been found higher in 

patients with elevated LV filling pressure, suggesting a stiffened 

cardiohemic system in these patients. However, these findings still need 

to be confirmed in more extensive studies.  

 

2.3 Splitting of heart sounds 

Heart sounds are initiated by valve closure, with S1 containing mitral 

and tricuspid components, while S2 containing aortic and pulmonic 

components. Measuring this heart sound splitting may be of value for 

evaluation of VV dyssynchrony which is not uncommon in heart failure 

patients. A pulsed-wave Doppler imaging study in patients with reduced 

LV ejection fraction (< 35%) showed that up to 72% of patients with 

left bundle branch block and QRS duration over 150 ms have a 

mechanical VV delay greater than 40 ms, which remained above 50% 

in patients with a QRS duration between 120 – 150 ms [32]. The 

benefits of correcting for VV dyssynchrony in these patients have been 

widely validated in large clinical trials, but the selection of eligible 

candidates for CRT is mainly based on electrical dyssynchrony assessed 

using ECG criteria such as QRS duration and LBBB morphology [23]. 

Addition of heart sounds to current criteria may provide an extra layer 

of information on mechanical dyssynchrony. In the Markers and 

Response to CRT (MARC) study, mechanical VV delay was shown to 

contribute to patient selection [33]. Following CRT implantation, 

splitting of heart sounds may also be useful for regular evaluation of VV 

contraction. The Cardiac Resynchronisation in Heart Failure (CARE-HF) 

study showed that CRT significantly reduced VV mechanical delay by 21 

ms during 3 months follow-up, which persisted up to 18 months [34]. 

While the study had to rely on echocardiography for follow-up of the 

patients, heart sounds can be regularly recorded by the patients at 
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home, or using a microphone in the implanted device in combination 

with automated adjustment, as is the case in the SonR system. 

Moreover, computer simulation studies in our group showed that S2 

splitting is a promising tool for evaluation of type and evolution of heart 

failure. S2 splitting interval is prolonged as LV function worsens at 

constant RV function, while shortened or even reversed as only RV 

function worsens [8]. Therefore, S2 splitting interval, used alone or 

combined with other heart sound components such as third heart sound, 

may be helpful for titration of drugs such as diuretics and beta-blocker, 

as well as optimization of pacemaker therapy in heart failure patients.  

The findings in Chapter 2 confirm that S2 splitting can be determined 

reliably. Several aspects of this experimental study are noteworthy. 

Firstly, signal-to-noise ratio of S2 in our study is much higher than 

previous studies because heart sounds were measured epicardially on 

the right ventricular outflow tract close to the pulmonic and aortic 

valves. In comparison, most previous studies collected heart sounds on 

the chest and thus might have suffered from interference by noises 

such as respiratory sounds. Moreover, the pulmonic component was 

likely poorly recorded in previous studies due to its low amplitude and 

damping during its transmission to the chest. Secondly, an advanced 

automatic signal processing technique was utilized to calculate splitting 

interval of S2, while previous studies had to rely on eyeballing to 

identify heart sound components. Each of S2 components (aortic or 

pulmonic) consists multiple peaks and nadirs before the signal gradually 

damps, creating challenges for visual inspection of heart sound 

components. Lastly, S2 splitting interval showed a close relation to VV 

mechanical dyssynchrony measured invasively with catheter, which has 

not been reported in any previous studies.  

In Chapter 2, we only investigated splitting of S2 rather than S1 

because the epicardial sensor on right ventricular outflow tract was 

assumed to optimally record S2. Nonetheless, S1 splitting may similarly 

provide useful information on VV dyssynchrony, as indicated in previous 

roentgenkymographic and echophonocardiographic studies in patients 

with left and right bundle branch block [35-37]. The most distinctive 

advantage of evaluation of S1 splitting compared to S2 splitting is the 

close proximity of S1 with the time to ventricular contraction, which is 

crucial for evaluation of cardiac function. Future studies are warranted 

to study in more detail the relationship between S1 splitting and VV 

dyssynchrony. 
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2.4 Relations between heart sounds and patient outcome 

  The close relationship between heart sounds and hemodynamics 

makes it reasonable to hypothesize that heart sounds can serve as 

useful prognosticators in heart failure. Several studies have 

investigated the relationship between heart sounds and patient 

outcome. The third heart sound (S3) detected during physical 

examination on hospital admission is associated with higher in-hospital 

all-cause mortality and cardiac death in acute heart failure [38]. During 

a mean follow-up of 32 months, S3 is an independent predictor of 

hospitalization for heart failure and death from pump failure [39]. 

Recently, an S3 score calculated automatically from timing, duration, 

intensity and frequency of S3 has been reported as prognosticator of 

all-cause mortality in patients with chronic heart failure [40]. In 

contrast, S4 is only reported in a study as an indicator of favourable 

outcomes in patients with hypertrophic cardiomyopathy plus sinus 

rhythm [41]. The finding seems contrary to most previous studies 

reporting S4 as a specific marker of elevated end-diastolic pressure 

[42-44]. Our findings in Chapter 4 also demonstrated that S4 is more 

frequently observed in patients with increased LV filling pressure. The 

contradiction likely arises from small sample size (only 9 patients 

enrolled in the S4-absent group) and composite outcome (a 

combination of cardiac death, stroke, hospitalization for worsening  

heart  failure,  and  newly  developed  atrial  fibrillation) of the 

hypertrophic cardiomyopathy study [41]. Interestingly, no reports have 

been found on the impacts of  S1 and S2 properties on patient outcomes, 

though they are the most distinctive parts of a heart sound recording. 

The results obtained on the relations between hemodynamic factors and 

S2 splitting (Chapter 2), STIs (Chapters 3 and 4) and dominant 

frequency (Chapter 4) indicate that studies on how S1 and S2 relate 

to patient outcome may be worthwhile to perform. 

 

3. Heart sounds in the 21st century 

  The past two decades have seen increasing interest in research of 

heart sounds, as demonstrated in Figure 1. These studies are driven 

by a few key factors including emergence of new tools for recording 

heart sounds, advancements of digital signal processing and popularity 

of artificial intelligence. Furthermore, the coronavirus disease 2019 

(COVID-19) pandemics in the past two years have greatly accelerated 

the adoption of mHealth techniques in clinical practice. The possibility 
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of using heart sounds for mHealth purposes in post-COVID era is also 

discussed in this section. 

 

3.1 Evolution of tools for measurement of heart sounds 

In the past two decades, miniaturization of sensors and data 

processing units gives rise to portable, implantable and wearable digital 

stethoscopes for recording heart sounds [28, 45, 46]. Various ways of 

measuring heart sounds have been explored in this thesis. In Chapter 

2, heart sounds were measured using a miniaturized accelerometer that 

can be further incorporated in a pacing lead like the SonR system [46]. 

In Chapter 3, heart sounds were measured by a microphone 

implemented in a pulse generator. In Chapter 4, a handheld digital 

stethoscope was utilized for simultaneous measurements of heart 

sounds and ECG on the skin. In Chapter 5, a smartphone was turned 

into an electronic stethoscope to enable a large-scale collection of heart 

sounds. All these measurement techniques are considerably better than 

the early studies with PCG machine. An important feature of all the 

newly developed tools is that they allow data collection both at hospital 

and at home, enabling continuous monitoring of patients’ conditions. 

This may have implications for reducing healthcare costs and hospital 

visits in the future. 

 

3.2 Advancements of digital signal processing 

  Digital signal processing aims to enhance features of a given signal 

using mathematical calculation. It is crucial for heart sound analysis 

because heart sounds are noisy (often mixed with lung sounds and 

baseline noise), impulsive (all heart sound components occurring within 

tens of millisecond) and low-frequency (most energies < 100 Hz). 

Human ears are not well adapted to listen to heart sounds.  

In the past two decades, three central tasks of signal processing are 

heart sound denoising (Chapters 2, 3, 4 and 5), splitting identification 

(Chapter 2), and frequency analysis (Chapters 2 and 5). Bandpass 

filtering is the most commonly and earliest used technique for denoising 

heart sounds with a frequency range between 20 – 250 Hz [6, 47]. 

Recently, wavelet transform has been proposed to better suit to 

impulsive signals such as heart sounds. However, no consensus has 

been reached on selection of mother wavelet, level of decomposition or 

thresholding type during wavelet denoising [48, 49]. Since heart 

sounds are mixed with relatively stable sources of noises such as 
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respiratory sounds, a technique named harmonic regeneration noise 

reduction was applied to remove baseline noises in Chapter 3 [50].  

Splitting detection of heart sounds has been performed with 

eyeballing in early studies [51, 52]. The drawbacks of this approach are 

obvious: it is subject to human judgements and vulnerable to noise 

interference. To better observe heart sound splitting, the one-

dimensional time-series signals must be projected to a two-dimensional 

time-frequency map. An example is provided in Chapter 2 in which S2 

is projected to a time-frequency spectrum using S-transform. The 

results showed that heart sound splitting can be automatically traced 

on time-frequency spectrum and the algorithm is robust to factors such 

as baseline noises. A recent progress on time-frequency analysis is the 

development of synchrosqueezing techniques which squeeze time-

frequency components to their ridges, like our proposed S-transform 

amplitude ridge tracking algorithm [53, 54]. While time-frequency 

analysis provides better observations of signals, frequency analysis 

alone such as Fast Fourier analysis also provides valuable information 

including dominant frequency of signals. In Chapter 4, dominant 

frequencies of S1 and S2 are higher in patients with elevated LV filling 

pressure, suggesting increased myocardial stiffness. Overall, 

advancements of signal processing have greatly enhanced our abilities 

to extract useful information from heart sounds.  

 

3.3 Machine learning for heart sound 

Machine learning is a statistical method that “learns” implicit patterns 

of given data mostly based on prespecified features [55]. It has been 

reported for heart sound-based classification of cardiovascular diseases 

including aortic stenosis, heart failure and various congenital heart 

diseases [56-60]. The first step of machine learning is usually to identify 

heart sound features for training the classification model. Though many 

features including timing, frequency and amplitude may be calculated 

using heart sounds, some of them are heavily influenced by 

confounding factors (e.g., gender, body mass index and heart rate) 

rather than by the disease of interest. To minimize the effect of 

confounding factors, we obtained patients of similar baseline 

characteristics by “matching” these confounding factors (Chapter 4). 

Then these patients were divided by echocardiographic parameter of 

interest such as E/e’ ratio into low and high groups. Heart sound 

features were compared between these two groups, and only features 

that significantly differed between the two groups were eligible for our 
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combined diagnostic score of E/e’. This “match-and-compare” strategy 

quickly shrinks the number of heart sound features to those relevant to 

research question of interest. Our proposed procedures may contribute 

to “explainability” of machine learning by fine-tuning selection of 

features for training the model, which is crucial for high-stakes decision-

making scenarios in health care where machine learning has been 

criticized for its nature of “black box” [61]. In addition to heart sound 

features, patients’ baseline characteristics such as age and sex may be 

directly fed into machine learning algorithm, but this has not been 

applied in most current heart sound classification algorithms which have 

solely been based on heart sound signals [56-60]. Inclusion of this 

information may help to further fine-tune the algorithms to assess the 

patients’ status more precisely. Furthermore, the algorithms have the 

chance to become more powerful as more data become available for 

training during their use. The fact that automatic speech recognition is 

probably one of the most successful applications of machine learning 

indicates that similar success may also be achieved for “speech 

recognition” of the heart in the near future [62]. 

 

3.4 Heart sound for mHealth 

Driven by rapidly expanding number of phone users in the past 

decades, mHealth has been proposed to take the advantage of mobile 

phone for health care purposes. In the past two years, a crucial driving 

force of mHealth is the need for remote and/or large-scale monitoring 

of patients during the COVID-19 pandemics. The power of even a simple 

mHealth approach was demonstrated by us in a study performed during 

the first few weeks of the COVID-19 outbreak in China. In order to 

assist the general population, we designed and released an online 

questionnaire for surveillance of COVID-19 (see Appendix) [63]. A 

total of 18161 questionnaires were returned, including 6% (1171) from 

Wuhan City in around 3 weeks. This first surveillance study of COVID-

19 showed that the percentage of users reporting fever peaked in 2 

weeks following the governmentally-enforced lockdown, consistent with 

official daily monitoring of COVID-19 confirmed cases. While the study 

only collected data via an online questionnaire, more data can be 

obtained by utilizing built-in sensors of mobile phone.   

The applications of mHealth can be roughly divided by the type of 

sensor for data collection into camera-, inertial measurement unit-, and 

microphone-related. Camera-related applications, usually termed 

photoplethysmography, make use of pulsatile blood flow-caused subtle 
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colour changes of skin on sites such as finger and face [64, 65]. The 

inertial measurement unit is a built-in element of smartphone that 

combines accelerometer, gyroscope, and sometimes magnetometer. To 

measure heart rate, the user is required to lay down and put the 

smartphone on the chest so that any body vibrations can cause 

movements of the phone [66]. Drawbacks of this approach are: 1) the 

low-energy vibrations caused by cardiac mechanical activities might not 

induce visible movements of the phone, and 2) built-in inertial 

measurement unit generally has a low sampling rate (≤ 100 Hz) and 

signal resolution.  

These two drawbacks are avoided by using the smartphone 

microphone for heart sound measurement. After nearly 150-year 

development, the microphone equipped in mobile phones has a high 

sampling rate (mostly 44100 Hz) and signal resolution (16 bit or higher). 

In comparison, most energies of heart sound lie in the range below 250 

Hz. The ability of smartphone microphones to record heart sounds has 

also been confirmed in Chapter 5 that shows nearly 3/4 of all 

recordings collected by participants from the general public are 

identifiable for S1 and S2. These findings have clinical implications for 

turning smartphone microphone into a digital stethoscope for daily 

monitoring of patients. More importantly, heart sounds provide more 

information than only heart rate and rhythm compared with either 

camera- or inertial measurement unit-based applications. As discussed 

above, long before the invention of the mobile phone (since 1973), 

heart sounds have been widely used as a simple tool for evaluation of 

cardiovascular diseases such as congenital heart disease, valvular 

abnormalities, arrhythmias and heart failure. Ongoing studies on heart 

sounds for mHealth will greatly benefit from these previous findings.  
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Impact 

Scientific: revival of an old art for new applications 

  Auscultation is a technique with a history of over 200 years but has 

been overlooked in the past decades. One of the reasons is probably 

the unreliability of human ears to discern subtle changes of heart 

sounds. While this issue can be addressed by registering heart sounds 

on paper for visual analysis, PCG machines in early days were mostly 

clumsy and limited to hospital use. A key innovative feature of this 

thesis is the multiple ways we could measure digital recordings of heart 

sounds using implantable (Chapters 2 and 3) and portable (Chapters 

4 and 5) devices. These studies provided preliminary experience for 

future researchers to work on heart sounds using new tools. 

  Revival of the old auscultation technique has also benefited from 

advancements of digital signal processing which enables detailed 

analyses of heart sounds. For example, the time-frequency 

representation algorithm utilized in Chapter 2 showed clearly two 

components of S2 with different timing, frequencies and energies when 

VV dyssynchrony occurs. Algorithms for analysis of heart sounds may 

be automated to avoid biases introduced by conventional auscultation 

by humans. Furthermore, these algorithms may be deployed using 

mHealth techniques for automatic monitoring of heart sounds in real-

time. 

Findings from this thesis also show that heart sounds may provide 

useful information for evaluation of less consistently defined diseases 

such as HFpEF. For the first time, we demonstrated the potential link 

between elevated LV filling and dominant frequency of heart sounds in 

HFpEF (Chapter 4). Moreover, a combined score was proposed to 

differentiate E/e’ below and above 9, which may serve as a novel tool 

for non-invasive screening of patients suspected with HFpEF.  

 

Societal: remote monitoring for reducing healthcare cost 

Heart failure affected 33.5 million people worldwide in 1990, which 

nearly doubled to 64.3 million in 2017 [67]. An economic estimation 

showed the global cost of heart failure in 2012 to be 108 billion US 

dollars [68]. For hospitalizations with first-time heart failure, the 

estimated mean cost was 11 552 dollars per patient in 2014, totaling 

an estimated 11 billion dollars in the United States alone [69]. The 

situation is worsened by the fact that as a chronic disease, heart failure 

recurs frequently in patients with a poor management. Around 24% of 

cases are rehospitalized within 30 days of discharge, which rises to over 
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50% within 6 months [70]. To reduce rehospitalization, closely 

monitoring the patients’ conditions is necessary to detect and manage 

early signs of disease worsening at home.   

To enable remote monitoring of heart failure, the patients have to be 

given a simple tool so that they can collect daily data. Chapter 5 

provides a low-cost tool for measuring heart sounds on a daily basis by 

turning smartphone to digital stethoscope. Considering the wide use of 

mobile phone nowadays, this finding will generate considerable societal 

impacts by combining patients’ self-monitoring with doctors’ remote 

guidance. A similar example is the use of mobile phone camera for 

assessment of heart rhythm during teleconsultations between patients 

and doctors in TeleCheck-AF project, which reduced hospital visits of 

the patients during COVID-19 pandemics [65]. These mHealth 

techniques have been reported to reduce cost of healthcare in most 

economic studies [71]. However, whether remote monitoring using 

heart sounds measured from mobile phone helps reduce the cost of 

healthcare remains to be clarified in the future. 

 

Heart sounds for the public 

  Our studies have drawn the public’s interest in heart sounds and more 

broadly on medicine, as evidenced by the large number of users (over 

1100) who used our Apps named Echoes with only a few advertisements 

via social media of the universities in less than 5 months (Chapter 5). 

The fact that around 4/5 of general users were able to record good-

quality heart sounds justifies the use of smartphone as a tool for 

measuring heart sounds on a large scale. Thus, the public can not only 

actively gain knowledge about their health but also contribute to 

scientific research. The solution of using smartphone for health 

monitoring may be particularly valuable for underdeveloped and/or 

remote areas with insufficient healthcare resources. 

  Medical education can also benefit from turning smartphone into 

digital stethoscope. For example, medical students can use the App to 

record and replay heart sounds of typical cases to learn heart sounds 

of diseased conditions. Since some components of heart sounds such 

as S3 and S4 are low-frequency and low-amplitude and difficult to be 

heard by human ears in some cases, recorded heart sounds allow 

visualizing these components so that they are more easily identified. 

Similar advantages also apply to S2 splitting which generally occurs in 

tens of millisecond. The use of smartphones for measuring heart sounds 

is also a cost-effective solution for medical students.  
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Conclusions 

     This thesis contributes to the revival of heart sound measurements 

for evaluation of patients with cardiovascular diseases. Features like 

systolic time intervals, frequency and splitting of heart sounds proved 

to contain important information. These features can be measured by 

a range of techniques from implanted sensors to “ordinary” mobile 

phones. As also evidenced in this thesis, with the progress in 

measurement tools, signal processing and machine learning, heart 

sounds are likely to become important tool in the mHealth era. 
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