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  The heart is responsible for pumping blood to peripheral tissues to 

provide oxygen and nutrition and to remove waste products. Normally, 

the heart’s electrical activation signals initiate from the sinoatrial node 

and spread through the right and left atria. After converging at the 

atrioventricular (AV) node, their propagation velocity is markedly 

slowed down. This AV delay allows the atria to contract to propel blood 

for additional ventricular filling. Once the electrical signals pass through 

the AV node, they quickly spread through the His-Purkinje fibers in both 

right ventricle (RV) and left ventricle (LV), resulting in electrical 

activation of the myocardial cells and synchronous contraction of the 

ventricles. Such coordinated electrical activation is important for 

maintaining normal cardiac pump function. Abnormalities such as left 

bundle branch block and AV block reduce pump function and cause or 

aggravate heart failure [1, 2].  

The present thesis describes studies that explored the use of heart 

sounds to assess heart failure in both animals and humans. We also 

investigated the feasibility of using a smartphone to record heart 

sounds, which may have the potential to improve remote monitoring of 

patients and reduce costs of hospital visit.  

 

1. Basic concepts 

1.1 Heart sounds 

  Sounds are mechanical vibrations propagating through a medium such 

as air, water or solids. To be perceived by humans, sounds are required 

to have a minimal energy and a frequency range within 20 Hz – 20 kHz 

[3]. Heart sounds are audible vibrations of the cardiohemic system 

including blood, myocardium and valves [4-6].  

Heart sounds are categorized by the phase of occurrence within the 

cardiac cycle: 1) the first heart sound (S1) occurring at end-diastole 

following closure of the atrioventricular valves; 2) the second heart 

sound (S2) occurring at end-systole following closure of the semilunar 

valves; 3) the third heart sound occurring during the early phase of 

ventricular filling; and 4) the fourth heart sound occurring during the 

late phase of ventricular filling following atrial contraction [7, 8]. S1 can 

be further divided into a mitral component following mitral valve closure 

and a tricuspid component following tricuspid valve closure. Similarly, 

S2 can be divided into an aortic and a pulmonic component. 

Splitting of S1 and S2 occurs when closure of right- and left-sided 

valves is not synchronous. Physiological splitting occurs in normal 

subjects during respiration and changes in posture [9, 10]. Pathological 
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splitting is a sign of interventricular (VV) dyssynchronous contraction 

and relaxation such as occurs, among others, in patients with 

conductance disturbances like left bundle branch block [11, 12]. 

Though heart sound splitting may be useful for evaluation of ventricular 

contraction, its detection has long been challenging because of the short 

interval (20 ~ 60 ms) between the two components [13]. While early 

studies mainly relied on human ears or eyeballing (in the case of 

recorded heart sound signals) to identify the two components, recent 

researchers have adopted more advanced digital signal processing 

algorithms to obtain the splitting interval. Methods based on spectral 

observation, wavelet analysis, blind source separation, respiratory 

modulation, nonlinear dechirping modelling and smoothed Wigner-Ville 

distribution have been proposed [14-19]. However, their value in 

identifying VV dyssynchrony remains unclear because of the lack of 

validation against invasive hemodynamic parameters. In this thesis, we 

hypothesize that an automatic algorithm based on S-transform may 

help identify invasively-measured VV dyssynchrony in an animal model.  

 

1.2 Systolic time intervals (STIs) 

  STIs are timing indicators of ventricular systole, including pre-ejection 

period (PEP) from QRS onset to aortic valve opening and ejection time 

(ET) from aortic valve opening to closure [20, 21]. The sum of PEP and 

ET is called QS2 which indicates the period from the onset of ventricular 

electrical activation to the end of ventricular mechanical contraction. 

STIs have been shown to relate to cardiac function [20, 22-25]. PEP 

indicates the time required for the electrically activated ventricles to 

accumulate sufficient force to close AV valves. The weaker the 

myocardial force is, the longer the PEP will be. At a constant contractile 

force and mean arterial pressure, a shortened ET will result in a lower 

stroke volume and stroke work. If the contractile force is also reduced, 

ET will shorten more as the myocardial contraction cannot generate a 

sustained pressure to keep the aortic valves open.  

Recent studies have shown that STIs relate to patients’ outcomes. 

Every 10-ms shortening of LV ET is related to 6% increase of all-cause 

mortality in patients with ventricular systolic dysfunction [26]. In a 

community-based cohort, ET was an independent predictor of incident 

heart failure with a hazard ratio of 1.07 per 10 ms decrease during a 

median follow-up of 17.6 years [27]. In an ambulatory heart failure 

population, a shorter ET was related to a higher risk of composite 

endpoint of death and heart failure hospitalization during 1-year follow-
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up in patients with systolic dysfunction [28]. However, in these studies, 

STIs were measured using echocardiography which requires the 

patients to visit hospital and thus cannot be used for daily management 

of heart failure patients, especially in community-based cohorts. Heart 

sounds may prove to be a simple continuous method for the purpose. 

The PEP can be approximated using QS1, the interval from QRS onset 

to S1 onset, to reflect myocardial contractility before AV valve closure; 

while the LV ET can be approximated using S1S2, the interval from S1 

onset to S2 onset, to reflect ventricular systole duration [25]. Similar 

to PEP and LV ET, heart sound-derived STIs have been shown to relate 

to cardiac function assessed using echocardiographic parameters such 

as LV ejection fraction and velocity time integral [29, 30]. Whether 

heart sound-derived STIs are related to invasively measured standards 

of myocardial contractility such as the maximal LV pressure, the 

maximal rate of rise of LV pressure and stroke work remains unclear. 

We hypothesize that heart sound-derived STIs are related to invasively 

measured indicators of myocardial contractility and likely serve as 

useful indicators for AV delay optimization.  

 

1.3 Heart failure 

  Heart failure occurs when the heart cannot efficiently contract and/or 

relax due to structural and/or functional abnormalities, resulting in 

reduced stroke volume and/or elevated intracardiac pressures [31]. 

Heart failure is divided by LV ejection fraction to heart failure with 

reduced (≤ 40%, HFrEF), mildly reduced (41~49%, HFmrEF) and 

preserved (≥ 50%, HFpEF) ejection fraction [32].  

Diagnosis of heart failure requires a comprehensive evaluation of the 

patient’s symptoms such as dyspnea and reduced physical activities, 

signs such as lower-extremity edema and elevated jugular venous 

pressure, and risk factors such as cardiomyopathy and myocardial 

infarction. Serological markers including B-type natriuretic peptide and 

N-terminal pro-B-type natriuretic peptide can serve as a useful tool to 

reflect ventricular overload and to exclude acute heart failure [33]. 

Noninvasive assessment of heart failure patients mainly relies on 

imaging techniques such as echocardiography. Echocardiography 

provides an evaluation of cardiac structural and functional 

abnormalities including chamber volume, myocardial thickness, tissue 

velocity and blood flow. In this thesis, we investigate the relationship 

between echocardiography and heart sounds in outpatients suspected 
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of HFpEF, and hypothesize that heart sounds may serve as a useful 

indicator of ventricular diastolic dysfunction. 

Treatments of heart failure are classified into pharmacological and 

device approaches. Pharmacological approach aims to modulate the 

renin-angiotensin-aldosterone and sympathetic nervous systems to 

reduce patients’ mortality and hospitalization and to alleviate symptoms 

and signs [34]. Drugs including angiotensin-converting enzyme 

inhibitors or an angiotensin receptor-neprilysin inhibitor, beta-blockers, 

and mineralocorticoid receptor antagonists are the cornerstones of 

pharmacotherapy. Device therapy mainly contains implantable 

cardioverter-defibrillator and cardiac resynchronization therapy (CRT) 

[35]. The implantable cardioverter-defibrillator has been shown to 

reduce all-cause mortality and hospitalization in patients recovered 

from a ventricular arrhythmia (secondary prevention) and in patients 

with ischemic heart failure and a severely reduced LV ejection fraction 

(primary prevention) [36]. CRT aims to restore electrical and 

mechanical synchronies of atria and ventricles so that the heart can 

pump in an optimal condition. It is mainly recommended for 

symptomatic HFrEF patients with an LV ejection fraction ≤ 35% and a 

QRS duration of 130-149 ms in the presence of LBBB or an QRS 

duration of ≥ 150 ms in the absence of LBBB [32].  

 

1.4 CRT optimization 

  Large clinical trials have shown the beneficial effects of CRT on 

reducing all-cause mortality and heart failure hospitalization [37]. 

Three major factors determined the amount of CRT benefit: patient 

selection, pacing electrode position and timing of atrial and ventricular 

stimulation [38]. Post-implantation optimization involves adjustments 

of AV delay and VV delay in a non-invasive way by programming the 

pacemaker. Conventionally, such optimization has been performed 

using electrocardiographic and echocardiographic techniques [39-41]. 

However, these methods may be time-consuming and subject to inter-

operator variability. In this thesis, we hypothesize that measurement 

of heart sound splitting may indicate VV dyssynchrony and has the 

potential to guide CRT optimization. We also hypothesize that AV delay 

may be optimized by using heart sound-derived STIs.   

 

1.5 Mobile health (mHealth) 

  mHealth refers to the use of mobile phone technologies such as audio 

calling, video calling, message texting and Apps for health purposes 
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including diagnosis and monitoring [42]. While the concept and its 

applications have only emerged recently, it has rapidly expanded in the 

past two decades thanks to the technological advancements of mobile 

phones and the drastic increase of mobile phone users. By 2021, there 

were 6.4 billion mobile phone users around the world, and the trend of 

using mobile phone for health purposes has been gaining its momentum 

in the past two years with the emergence of the coronavirus disease 

2019 (COVID-19) [43-46]. Compared with conventional methods of 

patient management, mHealth has the advantages of wider user 

coverage, quicker/real-time data collection and feedbacks, daily home 

monitoring and cost effectiveness [47, 48]. An example is the use of 

the phone camera to obtain photoplethysmography for monitoring of 

heart rate and rhythm in patients with atrial fibrillation during 

teleconsultations [49].  

  Regardless of the diversity of mHealth applications, it consists of a few 

essential elements: phone sensor, user interface, algorithm and 

application scenario [50]. In a given application scenario, users interact 

with user interface and algorithms with or without the use of sensor(s). 

Frequently used phone sensors include camera, touch screen and 

microphone. In this thesis, we investigate the hypothesis that the 

smartphone built-in microphone can be used to collect heart sounds 

from general users.  

 

2. Aims of the thesis 

  The ultimate goal of this thesis is to investigate the relation between 

heart sounds and hemodynamics in heart failure and the feasibility of 

turning the smartphone microphone into a digital stethoscope for heart 

sound measurements in the general public. To this end the following 

general aims are formulated: 

1) Develop a novel algorithm to automatically identify the S2 splitting 

interval for evaluation of VV dyssynchrony; 

2) Investigate the relations between heart sound-derived STIs and 

myocardial contractility and whether STIs can be applied to AV delay 

optimization; 

3) Improve the evaluation of diastolic dysfunction using heart sounds 

in patients suspected of HFpEF; 

4) Test the feasibility of using a smartphone microphone as digital 

stethoscope for heart sound measurement in the general public, and 

explore potential factors affecting heart sound quality. 
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3. Outline of the thesis 

  This thesis describes studies starting with animal experiments, 

followed by measurements in patients from HFrEF to HFpEF, and 

finalized with the possible application of heart sounds to mHealth 

(Figure 1).  

In Chapter 2, we describe acute experiments in pigs with AV block, 

paced at varying VV delays. The relationship between VV dyssynchrony 

and S2 splitting was investigated using a novel automatic algorithm 

based on a time-frequency analysis algorithm called S-transform. The 

S2 splitting interval was then related to the invasively measured 

indicator of VV dyssynchrony.  

In Chapter 3, we investigated the possibility of using heart sound-

derived STIs for AV delay optimization in CRT. The study utilized data 

from both acute porcine experiments and a human study named Sensor 

Optimization of Cardiac Resynchronization Therapy Response (SOCR) 

Study. STIs including QS1 and S1S2 were measured and their relations 

to LV hemodynamics including maximal LV pressure, maximal rate of 

rise of LV pressure and stroke work were investigated. Using a parabolic 

curve fitting technique, we explored the feasibility of using heart sound-

derived STIs for AV delay optimization in CRT. 

In Chapter 4, the association between heart sounds and LV diastolic 

dysfunction was explored in HFpEF patients using a digital stethoscope. 

We obtained a series of heart sound features including amplitude, 

frequency and timing intervals, and compared them between patients 

with high and low ratios of early mitral inflow velocity over mitral 

annular early diastolic velocity (E/e’). Diagnostic performance to 

identify an E/e’ ratio > 9 of these heart sound indicators, both used 

alone or combined, was investigated. From this data a heart sound 

score was proposed for noninvasive evaluation of diastolic dysfunction 

in HFpEF patients. 

Nowadays, the wide applications of smartphones provide a unique 

opportunity for health monitoring in the general population. In Chapter 

5, a smartphone was used as an electronic stethoscope for heart sound 

measurement in the general public. In collaboration with King’s College 

London, we developed an App named Echoes for collecting heart sounds. 

In a preliminary analysis of this technique in > 1000 individuals, we 

focused on hardware (i.e., phone version) and users’ characteristics 

(time of heart sound measurement, gender, age and body mass index) 

as potential determinants of heart sound quality.  
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Chapter 6 integrates the major findings of above-mentioned 

chapters and discusses them in a broader scientific and clinical 

perspective. 

 

  
Figure 1. Overview of this thesis 

AV, atrioventricular; HFrEF, heart failure with reduced ejection fraction; 

HFpEF, heart failure with preserved ejection fraction; mHealth, mobile 

health; VV, interventricular. 

  



General introduction 

17 

 

1 

References: 

1. Zannad F, Huvelle E, Dickstein K, van Veldhuisen DJ, Stellbrink C and Køber 

L, et al. Left bundle branch block as a risk factor for progression to heart failure. Eur J 

Heart Fail 2007; 9(1):7-14. [doi:  10.1016/j.ejheart.2006.04.011 ]  
2. Michaelsson MRTJ. Natural history of congenital complete atrioventricular 

block. Pacing and clinical electrophysiology 1997; 20(8):2098-2101. [doi:  

10.1111/j.1540-8159.1997.tb03636.x ]  
3. Gray L. Properties of sound. J Perinatol 2000; 20(8 Pt 2):S6-S11. [doi:  

10.1038/sj.jp.7200442 ]  
4. Piemme TE, Barnett GO and Dexter L. Relationship of heart sounds to 

acceleration of blood flow. Circ Res 1966; 18(3):303-315. [doi:  10.1161/01.res.18.3.303]  
5. Kupari M. Aortic valve closure and cardiac vibrations in the genesis of the second 

heart sound. Am J Cardiol 1983; 52(1):152-154. [doi:  10.1016/0002-9149(83)90086-3 ]  
6. Sabbah HN and Stein PD. Investigation of the theory and mechanism of the origin 

of the second heart sound. Circ Res 1976; 39(6):874-882. [doi:  10.1161/01.res.39.6.874 ]  
7. Luisada A, Mendoza F and Alimurung M. The duration of normal heart sounds. 

Br Heart J 1949; 11(1):41-47. [doi:  10.1136/hrt.11.1.41 ]  
8. Van de Werf F, Minten J, Carmeliet P, De Geest H and Kesteloot H. The genesis 

of the third and fourth heart sounds. A pressure-flow study in dogs. J Clin Invest 1984; 

73(5):1400-1407. [doi:  10.1172/JCI111344 ]  
9. Boyer S and Chisholm A. Physiologic splitting of the second heart sound. 

Circulation 1958; 18(5):1010-1011. [doi:  10.1161/01.cir.18.5.1010 ]  
10. Breen W and Rekate A. Effect of posture on splitting of the second heart sound. 

JAMA 1960; 173:1326-1328. [doi:  10.1001/jama.1960.03020300038012 ]  
11. Wolferth CC and Margolies A. Asynchronism in contraction of the ventricles in 

the so-called common type of bundle-branch block: Its bearing on the determination of the 

side of the significant lesion and on the mechanism of split first and second heart sounds. 

Am Heart J 1935; 10(4):425-452. [doi:  10.1016/S0002-8703(35)90213-7 ]  
12. Xiao HB, Faiek AH and Gibson DG. Re-evaluation of normal splitting of the 

second heart sound in patients with classical left bundle branch block. Int J Cardiol 1994; 

45(3):163-169. [doi:  10.1016/0167-5273(94)90161-9 ]  
13. Castle R and Jones K. The mechanism of respiratory variation in splitting of the 

second heart sound. Circulation 1961; 24:180-184. [doi:  10.1161/01.cir.24.2.180 ]  
14. Al-Naami B, Al-Nabulsi J, Amasha H and Torry J. Utilizing wavelet transform 

and support vector machine for detection of the paradoxical splitting in the second heart 

sound. Med Biol Eng Comput 2010; 48(2):177-184. [doi:  10.1007/s11517-009-0548-7 ]  
15. Chen L, Wu SF, Xu Y, Lyman WD and Kapur G. Blind separation of heart sounds. 

Journal of Theoretical and Computational Acoustics 2018; 26(01):1750035. [doi:  

10.1142/S2591728517500359 ]  
16. Tang H, Chen H and Li T. Discrimination of aortic and pulmonary components 

from the second heart sound using respiratory modulation and measurement of respiratory 

split. Applied Sciences 2017; 7(7):690. [doi:  10.3390/app7070690 ]  



General introduction 

18 

 

1 

17. Xu J, Durand LG and Pibarot P. A new, simple, and accurate method for non-

invasive estimation of pulmonary arterial pressure. Heart 2002; 88(1):76-80. [doi:  

10.1136/heart.88.1.76 ]  
18. Yildirim I and Ansari R. A robust method to estimate time split in second heart 

sound using instantaneous  frequency analysis. Annu Int Conf IEEE Eng Med Biol Soc 

2007; 2007:1855-1858. [doi:  10.1109/IEMBS.2007.4352676 ]  
19. Mckusick V, Reagan W, Santos G and Webb G. The splitting of heart sounds; A 

spectral phonocardiographic evaluation of clinical significance. Am J Med 1955; 

19(6):849-861. [doi:  10.1016/0002-9343(55)90152-2 ]  
20. Alhakak AS, Teerlink JR, Lindenfeld J, Böhm M, Rosano GMC and Biering 

Sørensen T. The significance of left ventricular ejection time in heart failure with reduced 

ejection fraction. Eur J Heart Fail 2021; 23(4):541-551. [doi:  10.1002/ejhf.2125 ]  
21. Newlin DB and Levenson RW. Pre-ejection period: Measuring beta-adrenergic 

influences upon the heart. Psychophysiology 1979; 16(6):546-553. [doi:  10.1111/j.1469-

8986.1979.tb01519.x ]  
22. Reant P, Dijos M, Donal E, Mignot A, Ritter P and Bordachar P, et al. Systolic 

time intervals as simple echocardiographic parameters of left ventricular systolic 

performance: Correlation with ejection fraction and longitudinal two-dimensional strain. 

European journal of echocardiography 2010; 11(10):834-844. [doi:  

10.1093/ejechocard/jeq084 ]  
23. Martin CE, Shaver JA, Thompson ME, Reddy PS and Leonard JJ. Direct 

correlation of external systolic time intervals with internal indices of left ventricular 

function in man. Circulation 1971; 44(3):419-431. [doi:  10.1161/01.cir.44.3.419 ]  
24. Nakamura Y, Wiegner AW, Gaasch WH and Bing OH. Systolic time intervals: 

Assessment by isolated cardiac muscle studies. J Am Coll Cardiol 1983; 2(5):973-978. 

[doi:  10.1016/s0735-1097(83)80248-4 ]  
25. Weissler AM, Harris WS and Schoenfeld CD. Systolic time intervals in heart 

failure in man. Circulation 1968; 37(2):149-159. [doi:  10.1161/01.cir.37.2.149 ]  
26. Alhakak AS, Sengeløv M, Jørgensen P, Bruun NE, Abildgaard U and Iversen A, 

et al. Left ventricular systolic ejection time is an independent predictor of all-cause 

mortality in heart failure with reduced ejection fraction. J Am Coll Cardiol 2020; 75(11, 

Supplement 1):1776. [doi:  10.1016/S0735-1097(20)32403-7 ]  
27. Biering-Sorensen T, Querejeta RG, Hegde SM, Shah AM, Claggett B and Mosley 

TJ, et al. Left ventricular ejection time is an independent predictor of incident heart failure 

in a community-based cohort. Eur J Heart Fail 2018; 20(7):1106-1114. [doi:  

10.1002/ejhf.928 ]  
28. Patel PA, Ambrosy AP, Phelan M, Alenezi F, Chiswell K and Van Dyke MK, et 

al. Association between systolic ejection time and outcomes in heart failure by ejection 

fraction. Eur J Heart Fail 2020; 22(7):1174-1182. [doi:  10.1002/ejhf.1659 ]  
29. Zuber M, Toggweiler S, Quinn-Tate L, Brown L, Amkieh A and Erne P. A 

comparison of acoustic cardiography and echocardiography for optimizing pacemaker 

settings in cardiac resynchronization therapy. Pacing Clin Electrophysiol 2008; 31(7):802-

811. [doi:  10.1111/j.1540-8159.2008.01094.x ]  



General introduction 

19 

 

1 

30. Shah SJ and Michaels AD. Hemodynamic correlates of the third heart sound and 

systolic time intervals. Congest Heart Fail 2006; 12 Suppl 1:8-13. [doi:  10.1111/j.0889-

7204.2006.05767.x ]  
31. Kemp CD and Conte JV. The pathophysiology of heart failure. Cardiovasc Pathol 

2012; 21(5):365-371. [doi:  10.1016/j.carpath.2011.11.007 ]  
32. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A and Bohm M, et 

al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. 

Eur Heart J 2021; 42(36):3599-3726. [doi:  10.1093/eurheartj/ehab368 ]  
33. Roberts E, Ludman AJ, Dworzynski K, Al-Mohammad A, Cowie MR and 

McMurray JJ, et al. The diagnostic accuracy of the natriuretic peptides in heart failure: 

Systematic  review and diagnostic meta-analysis in the acute care setting. BMJ 2015; 

350:h910. [doi:  10.1136/bmj.h910 ]  
34. Iacoviello M, Palazzuoli A and Gronda E. Recent advances in pharmacological 

treatment of heart failure. Eur J Clin Invest 2021; 51(11):e13624. [doi:  10.1111/eci.13624 ]  
35. Hussein AA and Wilkoff BL. Cardiac implantable electronic device therapy in 

heart failure. Circ Res 2019; 124(11):1584-1597. [doi:  

10.1161/CIRCRESAHA.118.313571 ]  
36. Santini M, Lavalle C and Ricci RP. Primary and secondary prevention of sudden 

cardiac death: Who should get an ICD? Heart 2007; 93(11):1478-1483. [doi:  

10.1136/hrt.2006.095190 ]  
37. Cleland JG, Abraham WT, Linde C, Gold MR, Young JB and Claude Daubert J, 

et al. An individual patient meta-analysis of five randomized trials assessing the effects of 

cardiac resynchronization therapy on morbidity and mortality in patients with 

symptomatic heart failure. Eur Heart J 2013; 34(46):3547-3556. [doi:  

10.1093/eurheartj/eht290 ]  
38. Vernooy K, van Deursen CJ, Strik M and Prinzen FW. Strategies to improve 

cardiac resynchronization therapy. Nat Rev Cardiol 2014; 11(8):481-493. [doi:  

10.1038/nrcardio.2014.67 ]  
39. Gold MR, Niazi I, Giudici M, Leman RB, Sturdivant JL and Kim MH, et al. A 

prospective comparison of AV delay programming methods for hemodynamic 

optimization during cardiac resynchronization therapy. J Cardiovasc Electr 2007; 

18(5):490-496. [doi:  10.1111/j.1540-8167.2007.00770.x ]  
40. Boriani G, Muller CP, Seidl KH, Grove R, Vogt J and Danschel W, et al. 

Randomized comparison of simultaneous biventricular stimulation versus optimized  

interventricular delay in cardiac resynchronization therapy. The Resynchronization for the 

HemodYnamic Treatment for Heart Failure Management II implantable cardioverter 

defibrillator (RHYTHM II ICD) study. Am Heart J 2006; 151(5):1050-1058. [doi:  

10.1016/j.ahj.2005.08.019 ]  
41. Jansen AH, Bracke FA, van Dantzig JM, Meijer A, van der Voort PH and 

Aarnoudse W, et al. Correlation of echo-Doppler optimization of atrioventricular delay in 

cardiac resynchronization therapy with invasive hemodynamics in patients with heart 

failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 2006; 

97(4):552-557. [doi:  10.1016/j.amjcard.2005.08.076 ]  



General introduction 

20 

 

1 

42. Fiordelli M, Diviani N and Schulz PJ. Mapping mHealth research: A decade of 

evolution. J Med Internet Res 2013; 15(5):e95. [doi:  10.2196/jmir.2430 ]  
43. Statista.Number of smartphone users from 2016 to 2021.  URL:  

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/  

[accessed  2021-11-29 ]  
44. Almalki M and Giannicchi A. Health apps for combating COVID-19: Descriptive 

review and taxonomy. JMIR mHealth uHealth 2021; 9(3):e24322. [doi:  10.2196/24322 ]  
45. Giansanti D. The role of the mHealth in the fight against the covid-19: Successes 

and failures. Healthcare (Basel) 2021; 9(1). [doi:  10.3390/healthcare9010058 ]  
46. Ming LC, Untong N, Aliudin NA, Osili N, Kifli N and Tan CS, et al. Mobile 

health apps on COVID-19 launched in the early days of the pandemic: Content analysis 

and review. JMIR mHealth uHealth 2020; 8(9):e19796. [doi:  10.2196/19796 ]  
47. Tate EB, Spruijt-Metz D, O'Reilly G, Jordan-Marsh M, Gotsis M and Pentz MA, 

et al. MHealth approaches to child obesity prevention: Successes, unique challenges, and 

next directions. Transl Behav Med 2013; 3(4):406-415. [doi:  10.1007/s13142-013-0222-

3 ]  
48. Iribarren SJ, Cato K, Falzon L and Stone PW. What is the economic evidence for 

mHealth? A systematic review of economic evaluations of mHealth solutions. Plos One 

2017; 12(2):e170581. [doi:  10.1371/journal.pone.0170581 ]  
49. Pluymaekers N, Hermans A, van der Velden R, Gawalko M, den Uijl DW and 

Buskes S, et al. Implementation of an on-demand app-based heart rate and rhythm 

monitoring infrastructure for the management of atrial fibrillation through teleconsultation: 

TeleCheck-AF. Europace 2021; 23(3):345-352. [doi:  10.1093/europace/euaa201 ]  
50. Baxter C, Carroll JA, Keogh B and Vandelanotte C. Assessment of mobile health 

apps using Built-In smartphone sensors for diagnosis  and treatment: Systematic survey of 

apps listed in international curated health app libraries. JMIR mHealth uHealth 2020; 

8(2):e16741. [doi:  10.2196/16741 ]  

 



General introduction 

21 

 

1 

  



  

 



 

 
 

Chapter 2 

Second heart sound  

splitting as an indicator of 

interventricular mechanical 

dyssynchrony using a novel 

splitting detection algorithm 

 

Hongxing Luo 1, Philip Westphal 1, 2, Mehrdad Shahmohammadi 3, Luuk I.B. Heckman 1, 

Marion Kuiper 1, Richard N. Cornelussen 1, 2, Tammo Delhaas 3, Frits W. Prinzen 1 

 

Physiol Rep. 2021 Jan; 9(1):e14687. doi: 10.14814/phy2.14687. 

 
1 Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), 

Maastricht University, the Netherlands 
2 Bakken Research Centre Medtronic, plc, Maastricht, the Netherlands 
3 Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht 

(CARIM), Maastricht University, the Netherlands 



Heart sound splitting and dyssynchrony 

24 

 

2 

 

 

 

 

 

 

 

  

Abstract 
Second heart sound (S2) splitting results from non-simultaneous 

closures between aortic (A2) and pulmonic valves (P2) and may be 

used to detect timing differences (dyssynchrony) in relaxation 

between right (RV) and left ventricle (LV). However, overlap of A2 

and P2 and the change of heart sound morphologies have 

complicated detection of the S2 splitting interval. This study 

introduces a novel S-transform amplitude ridge tracking (START) 

algorithm for estimating S2 splitting interval and investigates the 

relationship between S2 splitting and interventricular relaxation 

dyssynchrony (IRD). Firstly, the START algorithm was validated in 

a simulated model of heart sound. It showed small errors (< 5 ms) 

in estimating splitting intervals from 10 to 70 ms, with A2/P2 

amplitude ratios from 0.2 to 5, and signal-to-noise ratios from 10 to 

30 dB. Subsequently, the START algorithm was evaluated in a 

porcine model employing a wide range of paced RV-LV delays. IRD 

was quantified by the time difference between invasively measured 

LV and RV pressure downslopes. Between LV pre-excitation to RV 

pre-excitation, S2 splitting interval significantly decreased from 47 

ms to 23 ms (P < 0.001), accompanied by a decrease in IRD from 

8 ms to -18 ms (P < 0.001). S2 splitting interval was significantly 

correlated with IRD in each experiment (P < 0.001). In conclusion, 

the START algorithm can accurately assess S2 splitting and may 

serve as a useful tool to assess interventricular dyssynchrony.  
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Introduction 

  Heart sounds, originating from vibrations of valves and adjacent 

tissues following valve closure, contain information of timing differences 

(dyssynchrony) of contraction and relaxation between the ventricles [1-

3]. Physiological splitting of the second heart sound (S2) occurs during 

inspiration when the difference between timing of aortic and pulmonic 

valve closure is accentuated because the right ventricular (RV) ejection 

period is extended with a temporary increase in central venous return. 

Wide splitting is seen in conditions that delay RV emptying like right 

bundle branch block. Reverse splitting, i.e., splitting during expiration, 

is associated, amongst others, with left bundle branch block. Because 

of these relations between S2 splitting behaviours and ventricular 

activation patterns, quantification of S2 splitting might help to assess 

the degree of dyssynchrony in patients eligible for cardiac 

resynchronization therapy (CRT) and also to specify the settings of 

pacemakers that aim at minimizing dyssynchrony. However, currently 

heart sound indicator and algorithm to monitor interventricular 

dyssynchrony in these patients are lacking [4-8]. 

Estimating heart sound splitting interval has long been a challenge 

because of the overlap of heart sound components. Auscultatory 

detection of S2 splitting is possible at intervals of at least 40 ms, 

whereas detection of intervals of 20 - 40 ms is only feasible with low 

ambient noise and extensive listener’s experience [9]. Importantly, this 

borderline area is where normal/physiological heart sound splitting 

occurs. Digital recording of heart sounds and subsequent analyses 

obviously avoid the limitations of human ear and brain. Existing heart 

sound splitting detection algorithms can be mainly divided into three 

categories: 1) mathematical modeling of heart sound morphologies and 

inferring splitting interval by comparing morphology similarity between 

simulated and real heart sounds; 2) blind source separation using 

multiple-channel simultaneous recordings; and 3) time-frequency 

analysis followed by visual identification of splitting heart sound 

components [9-19]. Modeling approaches have been dampened by the 

lack of a unified model of heart sound genesis [15, 17]. Blind source 

separation requires multi-sensor recordings, hypothesis of heart sound 

transmission and complicated mathematical calculation [11, 14]. Time-

frequency analysis approaches, such as continuous wavelet transform 

(CWT) and smoothed Wigner-Ville distribution (SWVD), have been 

popular in recent years [9, 10, 12, 13, 16, 18, 19]. However, CWT 

decomposes heart sounds into various scales, making further signal 
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processing required to translate CWT results into a time-frequency 

spectrum. SWVD is undermined by its cross-terms which may heavily 

interfere with the real heart sound components. As one of time-

frequency analysis methods, S-transform has been proposed as an 

energy-concentrated signal processing approach which has a more 

direct relation with frequency compared with CWT and which has no 

cross-terms interference compared with SWVD [20].  

It is the aim of the present study to develop a single-heartbeat S2 

splitting method that may be applied to CRT. Our S2 splitting 

measurement is based on S-transform. We first validated the algorithm 

using a chirp model of simulated heart sound and subsequently applied 

the algorithm to an animal model of varying interventricular delays.  

 

Methods 

S-transform for signal analysis 

S-transform is a signal processing technique used to analyze time-

frequency features of a signal [20]. It slides a mother wavelet of a given 

frequency along the raw signal (Figure 1A). Note that the width of the 

mother wavelet decreases with increasing frequency and height 

increases with frequency. For each time point, the wavelet is multiplied 

with the raw signal, and the resultant values are summed as an 

amplitude value. Similar to the principle of fast Fourier transform, this 

amplitude value would be high if the raw signal has a similar shape to 

the mother wavelet, and vice versa. This enables to extract the 

frequency contents of a signal using wavelets of a given range of 

frequencies, resulting in a matrix of amplitude values with time as 

horizontal axis and frequency as vertical axis, or an S-transform 

amplitude spectrum (Figure 1B). For our purpose, we used the 

frequency range of 50 - 250 Hz.   
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Figure 1. Demonstration of S-transform for signal analysis using 

an S2 from an animal experiment. Panel A shows (from bottom to 

top) 1) the S2 during biventricular pacing with the right atrium to RV 

(A-RV) paced interval 150 ms and A-LV 50 ms, 2) a mother wavelet of 

100 Hz and the resulting amplitude values with time, and 3) a mother 

wavelet of 200 Hz and the resulting amplitude values with time. Panel 

B shows the complete S-transform amplitude spectrum. In panel A, the 

mother wavelets of various frequencies slide along the heart sound 

signal, convolve with the signal, and result in amplitude values. In panel 

B, amplitude values of frequencies from 50 Hz to 250 Hz are plotted as 

an intensity map. 

 

S-transform amplitude ridge tracking (START)-based detection 

of S2 splitting interval 

The START-based detection of S2 splitting interval was performed on 

the S-transform amplitude spectrum. It consists of two steps: ridge 

identification on the amplitude spectrum, and calculation of splitting 

interval from these ridges (Figure 2). 1) Ridge identification: A 50-Hz 

highpass filter was applied to an S2, after which it underwent an S-

transform using mother wavelets with frequencies of 50 to 250 Hz, 

resulting in an amplitude spectrum. Local adjacent maxima of the 

amplitude spectrum were connected as a ridge. A ridge was used for 

further analysis if its frequency range covered more than 50 Hz. Doing 

so, in the example of Figure 2, 5 ridges were detected. 2) 

Subsequently, the importance of each ridge was graded using a weight 

factor which is the sum of products of amplitude and frequency of each 

ridge. This weight factor was indicative of the energy contained in each 
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ridge. After finding all ridges, the weight factors were normalized to the 

highest one. Then two strongest ridges were considered to stem from 

A2 and P2. The A2-P2 splitting interval was calculated as the median 

time between common frequencies of the two ridges. 

 

 
Figure 2. START algorithm for estimating A2-P2 splitting 

interval  A) A segmented S2 from animal experiment No.1 with A-RV 

delay 150 ms and A-LV delay 50 ms. B) S-transform amplitude 

spectrum and 5 ridges (solid yellow lines). Red number indicates the 

rank of each ridge. White number indicates weight factor of each ridge. 

The raw heart sound signal in the panel A was processed with S-

transform to obtain a time-frequency-amplitude map in the panel B, 

then the ridges of this map were identified and ranked according to 

their energies. The two ridges with the highest energies were used for 

calculating heart sound splitting interval. In this example, the START-

estimated S2 splitting interval is 44 ms.  

 

Validation of START algorithm in S2 simulation model 

The START algorithm was validated using artificial heart sounds, 

generated by a widely used nonlinear transient chirp signal model of S2 

[21]. It first simulates A2 and P2, and then sums them up to obtain the 
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entire S2. The A2 and P2 are simulated by the following equations, 

respectively:  

A2(t) = 𝐴𝐴(𝑡) sin(𝜑𝐴(𝑡))          (1) 

𝑃2(𝑡) = 𝐴𝑃(𝑡) sin(𝜑𝑃(𝑡))         (2) 

The duration of each component, t, is defined as 0 ≤ t ≤ 60 ms. A 

and φ represent the amplitude and phase function of A2 and P2, 

respectively: 

𝐴𝐴(𝑡) = ampA ∗ (1 − 𝑒
−𝑡
8 ) ∗ 𝑒

−𝑡
16 ∗ sin (

πt

60
)          (3) 

𝐴𝑝(𝑡) = ampP ∗ (1 − 𝑒
−𝑡
8 ) ∗ 𝑒

−𝑡
16 ∗ sin (

πt

60
)          (4) 

𝜑𝐴(𝑡) =  24.3 ∗ t +  451.4 ∗ √𝑡 + 1          (5) 

𝜑𝑝(𝑡) =  21.8 ∗ t +  356.3 ∗ √𝑡 + 1          (6) 

ampA and ampP represent the normalized amplitude of A2 and P2, 

respectively. In this study, we used a constant normalized amplitude of 

P2, so ampP = 1. Phase functions (5) and (6) control the frequency 

range of A2 and P2, respectively. To validate the START algorithm, we 

varied the splitting interval from 10 ms to 70 ms; ampA from 0.2 to 

5.0; and signal-to-noise ratios (SNRs)from 10 to 30 decibels (dB).  

 

Animal experiments 

Open-chest sacrifice pig experiments were performed in accordance 

with the Dutch Law on Animal Experimentation and the European 

Directive for the Protection of Vertebrate Animals Used for Experimental 

and Other Scientific Purposes. The protocol was approved by the 

Central Committee for Animal experiments (CCD) in The Netherlands 

and the Animal Experimental Committee of Maastricht University.  

Five male adult pigs (weight: 64 ± 1 kg) were premedicated with 

prophylactic antibiotics (ampicillin 1000 mg I.V.) and thiopental (5-15 

mg/kg, I.V.) for induction of general anesthesia [22]. Subsequently, 

they were intubated and mechanically ventilated, followed by 

maintenance of general anesthesia using rocuronium (0.1 mg/kg/h 

I.V.), sufentanyl (4-8 μg/kg/h I.V.) and propofol (2.5-10 mg/kg/h, I.V.). 

A left thoracotomy through the fifth intercostal space was performed to 

completely expose the epicardial surface. LV and RV pressure signals 

were acquired by using 7F catheter-tip manometers, inserted into the 

carotid artery and jugular vein, respectively. Pacing electrodes were 

transvenously placed in the right atrium, RV apex and epicardially on 

the basal posterolateral wall of LV. Complete atrioventricular (AV) block 

was induced by radiofrequency ablation. 



Heart sound splitting and dyssynchrony 

30 

 

2 

Heart sounds were collected by a triaxial accelerometer with a sample 

rate of 1000 Hz, positioned on the anterior RV base. This position was 

chosen because it was close to the pulmonic and aortic valves. After 

creation of AV-block, biventricular pacing was used with a fixed atrial 

(A) to RV (A-RV) pacing delay (150 ms) and varying A to LV (A-LV) 

pacing delays (50 ms to 250 ms), using 25 ms in the 1st experiment or 

50 ms per step in the remaining 4 experiments.  

During each pacing setting, ECG and hemodynamic signals were 

collected for 20 - 30 seconds using the IDEEQ data acquisition system 

(IDEE Maastricht University / Maastricht Instruments BV). 

Accelerometer signals were collected using a custom-made data 

acquisition system. Hemodynamic signals and accelerometer signals 

were aligned using a synchronous pulse signal. Hemodynamic analysis 

was performed using the IDEEQ software, developed at Maastricht 

University. 

 

Calculation of interventricular relaxation dyssynchrony (IRD) 

IRD was defined as the time difference between the downslopes of LV 

and RV pressure curves (Figure 3). Pressure data were filtered using 

a second-order Butterworth bandpass filter with the range of 0.5-40 Hz. 

After normalizing both pressure curves to the range of 0 to 1, IRD was 

determined as the time shift between LV and RV pressure, required to 

achieve the highest correlation coefficient. Positive IRD indicates the LV 

downslope being earlier than the RV downslope. This approach is similar 

to that used in our previous study to determine interventricular 

mechanical dyssynchrony during isovolumic contraction phase [23]. 
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Figure 3. Demonstration of interventricular relaxation 

dyssynchrony calculation A) Raw LV and RV pressures from animal 

experiment No.1 at A-RV delay 150 ms and A-LV delay 50 ms. B) 

Normalized LV and RV pressure, with their downslopes used for 

correlation calculation. C) Correlation coefficient curve indicating an 

interventricular relaxation dyssynchrony of 11 ms. Raw LV and RV 

pressures in the panel A were normalized in the panel B. The 

downslopes of the normalized pressures were cross-correlated to obtain 

the correlation coefficients in the panel C. The time when the correlation 

coefficient was the highest was used as an estimate of interventricular 

relaxation dyssynchrony. 

LVP, left ventricular pressure; RVP, right ventricular pressure. 

 

Heart sound signal processing 

From data acquired during the animal experiments, a combined 

accelerometer signal was calculated from the raw signals of X, Y and Z 

directions, and double integrated to obtain a displacement signal. A 

second-order Butterworth bandpass filter of 50-250 Hz was applied. 

Locations of S1 and S2 were identified with reference to lead II 

electrocardiogram (ECG). To reduce the effect of any sudden vibrations 

and background noises on manual identification, we overlapped all 

heartbeats and calculated a median heart sound signal as a reference. 

Premature ventricular contraction beats and their 2 subsequent 

heartbeats as well as heartbeats with too much noise were discarded. 

Finally, the resulting S2 signal was processed with the START algorithm 

to obtain splitting interval.  

 

Comparison with existing heart sound splitting detection 

algorithms 

  To clarify the role of our START algorithm in comparison with other 

existing heart sound splitting detection algorithms, we searched the 
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PubMed database using terms of “heart sound” and “split*” on October 

27, 2020. Date of publication was from the year 1970. Each publication 

was first judged by title and abstract. Publications including reviews, 

letters and case reports were excluded. Potential articles were further 

screened for full text. The search approach was complemented by 

consulting experts of the field for potential related studies. We included 

original studies which described heart sound splitting detection 

algorithms. The following information was extracted from each eligible 

article: first author name, year of publication, brief description of the 

algorithm, whether the algorithm works on a single heartbeat, and 

whether validation study was performed. Validation study could be any 

of the following: 1) validation of the algorithm in various splitting 

intervals; 2) validation of the algorithm in various A2/P2 amplitude 

ratios; or 3) validation of the algorithm in various SNRs.   

 

Statistical analysis 

Hemodynamic data and summary of correlation data were expressed 

as mean and standard deviation. S2 splitting interval and IRD were 

expressed as median (25th percentile, 75th percentile) to reduce the 

potential effect of respiration on our analysis. Pearson’s correlation was 

calculated between START-estimated splitting interval and simulated 

splitting interval as well as between estimated splitting interval and IRD 

during animal experiment. Spearman’s rank correlation was calculated 

between splitting interval and A-LV delay as well as between IRD and 

A-LV delay. A P value less than 0.05 was assumed to indicate a 

statistically significant difference. All statistical analyses were 

performed using MATLAB R2018b and Stata/MP 14.0.  

 

Results 

Validation of START algorithm in simulated signals 

When using the simulated heart sound signals, the START algorithm 

had a high accuracy at a wide range of splitting intervals (10 - 70 ms; 

R2 = 1, P < 0.001) (Figure 4A). Mean estimation error was 0.5 ms in 

this range. When fixing the normalized P2 amplitude at 1 and varying 

the A2 amplitude from 0.2 to 5, the splitting estimation was stable for 

the ampA/ampP ratios below 4 and slightly increased by 1 ms at 

ampA/ampP ratio of 5 (Figure 4B). From SNRs of 10 dB to 30 dB, the 

estimated splitting values fluctuated around the expected value by 1 to 

2 ms (Figure 4C).  
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Figure 4. START algorithm in simulated second heart sounds. 

Red solid line indicates line of identity in panel A and 30 ms in panels B 

and C. Red dash lines are 5-ms upper and lower boundaries of the 

expected values. Panel A (in blue) demonstrated three representative 

simulated heart sounds of splitting intervals 10 ms, 40 ms and 70 ms, 

while the bottom figure showed the relationship between simulated and 

START-estimated splitting intervals from 10 ms to 70 ms. Pearson’s 

correlation was calculated. Panel B (in green) demonstrated three 

representative simulated heart sounds with normalized A2 amplitudes 

of 0.2, 2.0 and 4.0 when the normalized P2 amplitude was fixed at 1.0. 

In all these cases, the simulated splitting intervals were fixed at 30 ms, 

and the bottom figure showed the errors of splitting interval estimation 

using our proposed START algorithm. Panel C (in magenta) 

demonstrated three representative simulated heart sounds of signal-

to-noise ratios of 10, 20 and 30 dB. In all these cases, the simulated 

splitting intervals were fixed at 30 ms, and the bottom figure showed 
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the errors of START-based splitting interval estimation for signal-to-

noise ratios from 10 dB to 30 dB at step of 1 dB.   

ampA, normalized amplitude of aortic component of S2; dB, decibel; 

RMSE, root mean square error; SNR, signal-to-noise ratio.  

 

Animal experiments 

Table 1 summarizes the hemodynamic data of the 5 pigs with AV 

block, measured during simultaneous RV and LV pacing with an AV 

delay of 150 ms.    

 

Table 1. Summary of hemodynamics (n = 5) * 

Variables Values 

Heart rate (bpm) 94 ± 23 

Systolic blood pressure (mmHg) 99 ± 21 

Diastolic blood pressure (mmHg) 71 ± 19 

LV dP/dtmax (mmHg / sec) 1337 ± 206 

LV dP/dtmin (mmHg / sec) -1685 ± 447 

RV dP/dtmax (mmHg / sec) 337 ± 25 

RV dP/dtmin (mmHg / sec) -358 ± 75 

bpm, beats per minute; LV, left ventricle; RV, right ventricle. 

* Data were measured during biventricular pacing with AV delay of 150 

ms. 

 

The left panels of Figure 5 show examples of the measurements of 

RV and LV pressure as well as heart sounds at three A-LV delays (75 

ms, 150 ms and 225 ms) when A-RV delay was fixed at 150 ms. Note 

that at an A-LV of 75 ms LV pressure rises before RV pressure and that 

this is accompanied by a clear S2 splitting. S2 splitting becomes smaller 

with longer A-LV delays, i.e., more simultaneous LV and RV activation 

(A-LV 150 ms) and earlier RV activation (A-LV 225 ms). Note that the 

amplitudes of S2 also became higher as A2 and P2 merged. The most 

significant changes of A2 and P2 occurred from A-LV delay of 100 ms 

to 200 ms. This is further demonstrated in all five experiments in 

Figure 6. S2 splitting interval significantly decreased from low to high 

A-LV intervals (representing changes from LV preexcitation to RV 

preexcitation) (all P < 0.001). 
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Figure 5. Representative examples of second heart sound 

splitting at various paced interventricular delays. When A-RV 

delay was fixed at 150 ms, A-LV delays were varied from 50 ms to 250 

ms with 25 ms per step. Representative heart sounds from experiment 

No.1. In the left panels, three situations with A-LV delays of 75, 150 

and 225 ms are shown with recordings of electrocardiogram, LV 

pressure (blue), RV pressure (red) and heart sounds. In the right panel, 

S2 is shown at higher temporal resolution. Note that S2 splitting 

decreases from A-LV delays of 50 ms to 150 ms, but remains virtually 

constant at longer A-LV delays. 

S1, the first heart sound; S2, the second heart sound; LV, left ventricle; 

RV, right ventricle; A-LV, right atrium to left ventricle paced delay. 
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Figure 6. Second heart sound splitting interval as a function of 

atrio-left ventricular stimulation interval (A-LV). Each colour 

represents a different animal. Median values and 25-75% percentiles of 

all beats at each A-LV interval are presented (A-RV delay was fixed at 

150 ms). From experiments No. 1 to 5, the median number of 

heartbeats was 38, 43, 34, 29 and 33, respectively, for each A-LV delay 

group. From A-LV delay of 50 ms to 250 ms at step of 50 ms, the overall 

S2 splitting interval was 47 (41, 52) ms, 44 (39, 47) ms, 32 (27, 37) 

ms, 25 (17, 30) ms and 23 (16, 28) ms, respectively. Data were 

presented as median (25 percentile to 75 percentile). For all 5 

experiments, Spearman’s rank correlation was calculated. R2 value was 

0.71, 0.41, 0.63, 0.64 and 0.72 from experiment 1 to 5, respectively, 

and all P values were < 0.001.  

S2, second heart sound. 
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Figure 7A showed decreasing IRDs as A-LV delays changed from 50 

ms to 250 ms, when A-RV delay was fixed at 150 ms (all P < 0.001). It 

is noteworthy that like S2 splitting interval in the Figure 6, the most 

significant changes of IRD occurred from A-LV delay of 100 ms to 200 

ms. Figure 7B demonstrated that for each animal experiment, there 

was a strong correlation between START-estimated S2 splitting 

intervals and invasively measured IRDs (all P < 0.001). Table 2 

presented a summary of results of linear curve fitting and correlation 

coefficient between S2 splitting and IRD.  

 

 
Figure 7. A: Changes of interventricular relaxation 

dyssynchrony (IRD) as a function of A-LV delay (n = 5). A-RV 

delay was fixed at 150 ms. From A-LV delay of 50 ms to 250 ms at step 

of 50 ms, the overall IRD was 8 (4,12) ms, 2 (-2,8) ms, -14 (-24, -5) 

ms, -20 (-39, -11) ms and -18 (-28,-11) ms, respectively. Data were 

presented as median (25 percentile, 75 percentile). For all 5 

experiments, Spearman’s rank correlation was calculated. R2 value was 

0.72, 0.73, 0.75, 0.64 and 0.82 from experiment 1 to 5, respectively, 

and all P values were < 0.001. B: Correlation between IRD and S2 

splitting. Each point represents a heartbeat. Each colour represents an 

experiment, the same as in Figure 6. Equations and Pearson’s 

correlation coefficients of the correlation plots are summarized in Table 

2). A-LV, right atrium to left ventricle paced delay; S2, the second heart 

sound. 
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Table 2. Pearson’s Correlation of second heart sound splitting 

interval with interventricular relaxation dyssynchrony 

Exp. No. of heartbeats Slope Intercept R2 P value 

1 346 0.90 -31 0.72 < 0.001 

2 172 0.96 -53 0.54 < 0.001 

3 163 0.61 -33 0.56 < 0.001 

4 143 0.55 -3 0.49 < 0.001 

5 150 0.77 -42 0.63 < 0.001 

Exp., Experiment; No., total number. 

 

Comparison of START algorithm with other splitting detection 

algorithms 

Searching the PubMed database using “heart sound” and “split*” 

resulted in 120 publications. After excluding 6 reviews, 3 letter and 35 

case reports, the remaining 76 publications were checked for 

description of heart sound splitting detection algorithm. Two 

publications were recommended by experts of the field [11, 24]. Finally, 

13 publications on 12 splitting detection algorithms were included for 

analysis (Table 3). 

Early efforts were focused on using modeling approaches to simulate 

heart sound morphologies and further to extract splitting interval [15, 

17]. Blind source separation was proposed only for multiple-channel 

simultaneous recordings [11, 14]. Many later studies employed CWT 

and SWVD to identify A2 and P2 on time-frequency spectrum [9, 10, 

12, 13, 16, 18, 19]. However, both methods relied on visual 

identification of two well separated components of heart sound on time-

frequency spectrum, making the detection threshold exceeding 20 ms. 

Moreover, the SWVD method was complicated by cross-terms which 

interfered with the identification of A2 and P2. Validation of splitting 

detection algorithm in various splitting intervals was provided only in 4 

studies [13, 14, 16, 24]. Validation of algorithm in various SNRs was 

provided only in 1 study [16]. No studies provided validation on various 

A2/P2 amplitude ratios.  
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Table 3. Summary of publications of heart sound splitting 

detection algorithm 
Author 

[Ref.] 

Year Description DT 

(ms) 

Detect single 

heartbeat? 

Validation? 

Xu J [17] 2002 Nonlinear transient chirp 

signal modeling 

-- Y N 

Popov B [15] 2004 Gaussian chirplet modeling -- Y N 

Nigam V [14] 2006 Blind source separation ≥ 0 N Y 

Debbal SM 

[12, 18] 

2006 Continuous wavelet transform -- Y N 

Yildirim I 

[16] 

2007 Smoothed Wigner-Ville 

distribution 

≥ 20 Y Y 

Al-Naami B 

[9] 

2010 Continuous wavelet transform 

and support vector machine 

-- Y N 

Hamza Cherif 

L [25] 

2013 Hilbert transform envelope -- Y N 

Djebbari A 

[13] 

2013 Reassigned smoothed pseudo 

Wigner-Ville distribution 

≥ 30 Y Y 

Thiyagaraja 

SR [19] 

2014 Continuous wavelet transform -- Y N 

Barma S 

[10] 

2015 Hilbert vibration 

decomposition and reassigned 

smoothed pseudo Wigner-

Ville distribution 

≥ 20 Y N 

Tang H [24] 2017 Respiration-modulated 

splitting measurement 

≥ 25 N Y 

Chen L [11] 2018 Blind source separation -- N N 

Proposed 

method 

2020 S-transform ≥ 10 Y Y 

DT, detection threshold; N, no; Y, yes. 

  

Discussion 

We introduced a time-frequency-based START method to estimate S2 

splitting, validated it with simulated heart sounds, and employed it to 

observe S2 splitting in porcine experiments. Major findings of our study 

are: 1) the START algorithm for estimating S2 splitting interval is 

accurate in a wide range of splitting intervals, A2/P2 amplitude ratios, 

and SNRs; and 2) START-estimated S2 splitting interval is significantly 

correlated with paced interventricular delays and IRD, though no 

correlations are observed for long A-LV delays in porcine models 

probably because of the fact that the LV is activated even before the 

moment of pacing. To our knowledge, our study is the first to 

investigate the possibility of using a heart sound indicator to monitor 

interventricular dyssynchrony in CRT-like settings. As a simple 

measurement, heart sound is likely to serve as a promising real-time 

monitoring approach for patients with interventricular dyssynchrony. 
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Comparison of START algorithm with other splitting detection 

methods 

Distinguishing the time difference between the two components of S2, 

i.e., A2 and P2,  has long been a challenge because of their overlap 

within a short period of time. Our proposed algorithm works for a small 

splitting interval down to 10 ms, for various A2/P2 amplitude ratios and 

for low SNRs. Previous studies using modeling approaches to extract 

splitting interval assumed a standard template of heart sound which 

remains debatable [15, 17]. Blind source separation method required 

at least 4 simultaneous recordings to obtain a satisfactory splitting 

estimation [14]. Respiration-modulated splitting measurement method 

required a continuous recording of at least 200 heartbeats to obtain a 

relatively robust estimation [24]. Our proposed START algorithm does 

not rely on theories about genesis, transmission or statistical 

characteristics of heart sound, making it adaptable for heart sounds of 

various shapes from different individuals. This is supported by the 

consistency of decreasing trends of S2 splitting during varying paced 

interventricular delays in the 5 pigs. The START algorithm works on a 

single-sensor single heartbeat, enabling it to be applicable to a short 

heart sound recording. Though previous time-frequency algorithms 

including CWT and SWVD could also work on a single heartbeat, they 

relied on two well separated components on time-frequency spectrum 

to label A2 and P2 [9, 10, 12, 13, 16, 18, 19]. Moreover, for SWVD 

method, the clear identification of A2 and P2 on time-frequency 

spectrum was interfered by the unavoidable introduction of cross-terms 

during signal processing. Our proposed START algorithm improves the 

efficiency and accuracy of existing time-frequency algorithms by 

automatically tracking the ridges of A2 and P2 on time-frequency 

spectrum. This avoids the bias of identifying A2 and P2 by human 

eyeballs, especially for low splitting intervals.  

Furthermore, lack of validation is likely to render many existing 

splitting detection algorithms to be unclear for challenging conditions 

such as extremely low or high A2/P2 amplitude ratios, or low SNRs. 

Among the various algorithms proposed to assess S2 splitting, our 

algorithm is unique also in the sense that it has been evaluated not only 

in simulated heart sounds of various conditions, but more importantly, 

in heart sounds acquired from an in-vivo porcine model of varying VV 

delays. In animal studies, the proposed method captured all the 

decreasing trends of S2 splitting within a narrow range from around 40 

ms to around 20 ms during changing paced interventricular intervals.  
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Relationship between S2 splitting and IRD 

Our study demonstrates a good correlation between S2 splitting 

interval and IRD, confirming its value as a non-invasive indicator of 

interventricular dyssynchrony. Using a highly accurate splitting 

detection algorithm and an animal model with adjustable paced 

interventricular delays, our study for the first time provides direct 

experimental evidence to an old assumption that S2 splitting is 

associated with synchronism at the end of the ejection period of the 

two ventricles [26]. Current methods of evaluating IRD mainly rely on 

echocardiography which is time-consuming, operator-dependent and is 

commonly performed in the recumbent position [27]. Moreover, the 

echocardiography-derived IRD is confined to a few cardiac cycles and 

thus cannot be used for continuous monitoring of the patient’s status. 

In contrast, S2 splitting interval derived from heart sounds may be 

collected continuously using sensors on the chest or incorporated in 

implantable devices.  

One initially surprising observation of this study is that while there 

was a clear S2 splitting during LV preexcitation, no reverse splitting was 

observed during RV preexcitation. At long A-LV delays, the LV was 

already activated by means of myocardial conduction coming from the 

paced RV. The explanation for this observation may also be found in 

the fact that in general, ejection time is shorter in the LV than in the 

RV. In the synchronously activated heart, this leads to earlier aortic 

than pulmonic valve closure and consequently an earlier onset of A2 

than P2. LV pre-excitation most likely increases the time interval 

between aortic and pulmonary valve closure and thus S2 splitting. RV 

pre-excitation on its turn shifts the pulmonic valve closure to earlier 

time points, but apparently not before aortic valve closure in our porcine 

animal model. This finding implies that S2 splitting interval is more 

sensitive to detect LV than RV preexcitation. This is further supported 

by findings of Xiao et al. who showed that 88% (21/24) of patients with 

RV pacing did not show any reversed splitting of S2 [28]. In CRT the 

aim is to synchronize contraction of the two ventricles. As part of this 

approach, pacemaker settings can be adjusted to vary the activation 

time of RV and LV. The data of the present study show that S2 splitting 

can be used to detect LV preexcitation associated with pacing. Though 

respiration may also affect the detection, in the current experimental 

setting, with open chest and mechanical ventilation, respiratory 

variations were negligible.  
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Comparison with other heart sound measures 

Several other heart sound-based indicators have been used for CRT 

optimization. These include electromechanical activation time (time 

between onset of electrical activation and onset of S1), left ventricular 

systolic time (time difference between S1 and S2), and S3 strength [4-

7]. The only heart sound approach that has progressed to clinical 

application is the SonR algorithm, which uses the amplitude of S1 as an 

indicator. This algorithm is used for repetitive and automated 

optimization of CRT. The SonRtip Lead and Automatic AV-VV 

Optimization Algorithm in the Paradym RF SonR CRT-D (RESPOND CRT) 

Trial showed that SonR-guided optimization of atrioventricular and 

interventricular timings significantly improves CRT responder rate and 

reduces risk of heart failure hospitalization as compared with the 

conventional, inconsistently applied optimization [8, 29].  

 While these parameters mainly reflect contractility, the START-based 

S2 splitting is the only indicator of interventricular dyssynchrony from 

heart sound so far and may therefore be of additional value on top of 

the aforementioned indicators. It can be imagined that S2 splitting can 

be used to guide pacing lead location during CRT implantation as well 

as in CRT optimization during follow-up, either manually during 

outpatient visits or, when accelerometers are incorporated in pacing 

leads and or pacemakers, in ambulatory fashion.  

 

Limitations:  

Translating results from animal experiments to clinical applications 

should be done with caution. First of all, the conduction system in the 

pigs differs to some extents from that of humans, resulting in narrower 

QRS complexes during ventricular pacing. This likely also results in 

smaller interventricular dyssynchrony. The fact that START algorithm 

can detect the small S2 splitting intervals in pigs suggests therefore, 

that this certainly will be possible in humans. Secondly, the pigs had 

normal cardiac function, while humans eligible for pacing treatments 

may have depressed cardiac function. Thirdly, the number of 

experiments was small and measurements were performed during 

anaesthesia and with open chest.   

 

Conclusions 

The proposed START algorithm is accurate in estimating S2 splitting 

under a wide range of conditions as shown by heart sound simulation. 
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Our pilot animal experiment in the AV block porcine model 

demonstrates that the START-estimated S2 splitting interval can be 

used as an indicator of interventricular dyssynchrony. The estimated S2 

splitting is well correlated with paced interventricular delays and with 

invasively measured IRD.  
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Abstract 
Introduction: 

Phonocardiography (PCG) can be used to determine systolic time 

intervals (STIs) like the interval between ventricular pacing spike 

and the first heart sound (VS1) and the interval between the onsets 

of S1 and second heart sound (S1S2). We investigated the relations 

between PCG-derived STIs and hemodynamics during optimization 

of atrioventricular (AV) delay of biventricular pacing (BiVP) in 

animals and patients. 

Methods:  

Animal studies were performed in 5 pigs with complete AV block 

during BiVP under various hemodynamic conditions while PCG was 

determined from an epicardially positioned accelerometer. In 21 

patients undergoing CRT device implantation, PCG was measured 

using a microphone embedded in a pulse generator. Optimal AV 

delay was identified at the shortest VS1 and longest S1S2, and 

compared with the largest values of hemodynamic variables.  

Results: 

In the animal study, VS1 and S1S2 predicted the AV delay 

associated with highest LV pressure, maximal rate of rise of LV 

pressure and stroke work, with median errors ranging from 2 ms to 

28 ms, resulting in < 2% underestimation of the maximal values of 

these variables. In the entire patient cohort, VS1 and S1S2 

underestimated the optimal hemodynamics-based AV delay by 32.5 

ms and 37.5 ms, respectively, which was reduced to 21 ms and 24 

ms in the 8 patients with full BiVP capture at AV delays ≥ 180 ms. 

PCG-derived optimal AV delay related to a 0.2%-0.9% loss in 

optimal hemodynamics. 

Conclusions: 

During BiVP at varying AV delays, close relations exist between 

PCG-derived STIs and hemodynamic variables. These relations are 

particularly clear during full capture. PCG predictions of optimal AV 

delays cause only minimal losses in optimal hemodynamics. 
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Introduction 

Systolic time interval (STI) is the period from the onset of ventricular 

depolarization to the end of ventricular systole [1]. It can be divided 

into two phases: pre-ejection period (PEP: interval from QRS onset to 

opening of aortic valves), and left ventricular (LV) ejection time (LVET: 

interval from opening to closure of the aortic valves). Both PEP and 

LVET have been proposed as temporal indicators of ventricular systolic 

function [2, 3]. A prolonged PEP indicates more time required for the 

ventricles to develop sufficient forces to open the aortic and pulmonic 

valves, thus implying impaired contractility. A shortened LVET indicates 

an abbreviated period of the LV to eject blood, indicating low myocardial 

forces relative to the afterload. Previous echocardiographic studies have 

shown short LVET to be an independent predictor of all-cause mortality 

and heart failure hospitalization in heart failure with reduced ejection 

fraction [4, 5]. In a community cohort, every 10 ms decrease of LVET 

was associated with an increment of 7% of risk of incident heart failure 

[6].  

STIs can also be obtained using the first (S1) and second heart 

sounds (S2) on phonocardiography (PCG). Both S1 and S2 are the 

result of abrupt cessation of blood flow by valve closure which sets the 

viscoelastic cardiovascular system including valve leaflets, myocardial 

tissues and blood columns into vibrations [7]. The PEP can be 

approximated using QS1, the interval between the onsets of QRS 

complex and S1, while LVET can be approximated using S1S2, the 

interval between the onsets of S1 and S2. Prolonged QS1 interval and 

shortened S1S2 interval are indicative of reduced stroke volume and 

cardiac output in heart failure patients [8]. The QS1 interval (also 

referred to as electromechanical activation time (EMAT)) has been 

proposed as a measure to guide optimization of cardiac 

resynchronization therapy (CRT). A feasibility study showed high 

correlations between QS1- and echocardiography-guided optimization 

of AV delay and interventricular (VV) delay [9].  

This study aimed to comprehensively investigate whether heart 

sound-derived STIs are related to invasively measured hemodynamics 

in animals and humans, and further whether they can be used for AV 

delay optimization in CRT. To this purpose, measurements were 

performed in a preclinical porcine model where an epicardially 

positioned accelerometer was used to measure myocardial vibrations 

during normal and depressed myocardial contractility, while we 

analyzed the data from a previously performed clinical study where a 
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pulse generator-integrated microphone was used to measure heart 

sounds in various paced AV delays. 

 

Methods 

Study approvals and ethics 

This study consisted of both animal and human investigations. The 

animal study was an acute sacrifice porcine study approved by the 

Central Committee for Animal experiments (CCD) in the Netherlands 

and the Animal Experimental Committee of Maastricht University. A part 

of the study results has already been reported in a study on using 

second heart sound splitting as an indicator of VV dyssynchrony in CRT 

[10]. The human study was a multicentre, prospective, non-randomized 

acute feasibility study named Sensor Optimization of Cardiac 

Resynchronization Therapy (CRT) Response (SOCR) Study [11]. The 

study was sponsored by Medtronic Cardiac Rhythm and Heart Failure 

group and conducted in four countries (Canada, Hong Kong, United 

Kingdom and United States) between 2013 and 2016.  

 

Animal study and data collection 

  Five male adult pigs (weight: 64 ± 1 kg) were used. The animals were 

injected with antibiotics (ampicillin 1000 mg IV), followed by thiopental 

(5-15 mg/kg IV) for induction of general anesthesia. After intubation, 

the animals were mechanically ventilated. General anesthesia was 

maintained by continuous IV infusion of rocuronium (0.1 mg/kg/h), 

sufentanyl (4-8 μg/kg/h) and propofol (2.5-10 mg/kg/h). A left 

thoracotomy through the fifth intercostal space was performed to 

expose the heart. A triaxial accelerometer with a sampling frequency of 

1000 Hz was positioned on the anterior RV base to record heart sounds.  

Two 7F catheter-tip manometers were inserted through the carotid 

artery and jugular vein to measure LV and RV pressures, respectively. 

LV volume was measured using the conductance catheter technique 

[12]. Pacing electrodes were transvenously placed in the right atrium 

and RV apex, and epicardially on the basal posterolateral wall of LV. 

Radiofrequency ablation of the atrioventricular (AV) node was 

performed to induce complete AV block. Immediately after creation of 

AV block, biventricular pacing was configured with an AV delay of 100 

ms, which condition served as a reference in this study. To investigate 

the effect of varying AV delay on heart sounds, AV delay was increased 

from 50 ms to 250 ms, in steps of 50 ms. After obtaining these data, 

isoflurane was added to the ventilatory gases to reduce myocardial 
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contractility as indicated by a reduction of LV dP/dtmax by at least 30%. 

Subsequently, the aforementioned pacing protocol was repeated. 

During each pacing setting, ECG and hemodynamics were recorded 

for 20 to 30 seconds using the IDEEQ data acquisition system (IDEE 

Maastricht University / Maastricht Instruments BV). Heart sounds were 

collected using a custom-made data acquisition system [10]. The 

hemodynamic data and heart sound signals were synchronized using 

pulse signals that appeared on both systems.  

 

Human SOCR study and data collection 

The SOCR study was conducted to determine whether heart sounds 

obtained subcutaneously via a piezoelectric microphone incorporated in 

a pulse generator could be used to determine the optimal paced AV 

interval in CRT patients [11]. The included patients underwent implant 

of a new or replacement/upgrade Medtronic CRT-P or CRT-D device. A 

patient was excluded if one or more of the following conditions were 

met: 1) ECG quality was too low to visually identify QRS complexes or 

pacing spikes; 2) heart sound recordings were too noisy to visually 

identify any S1 and S2; or 3) LV ejection fraction was above 35%.  

Baseline cardiac function data (e.g., LV ejection fraction, end-diastolic 

and end-systolic LV volume) were obtained using echocardiography 

before CRT implantation. During the implant procedures, a modified 

CRT device was temporarily placed in the pacemaker pocket. The circuit 

of this device was specifically designed to contain the Biopac Data 

Acquisition System  (BIOPAC Systems Inc, CA, USA) for measurements 

of heart sounds and single-lead ECG. Heart sounds were resampled 

from 128 Hz to 1000 Hz and stored together with ECG at 1000 Hz. The 

CRT device was connected to standard right atrial and right ventricular 

(RV) pacing leads. LVP was measured using a Millar catheter (Millar, TX, 

USA) introduced through the femoral artery. ECG, heart sound and LVP 

were measured during biventricular pacing with an AV delay ranging 

from 60 ms to 330 ms, in steps of 30 ms. After the end of the measuring 

protocol, the modified device was removed and a regular device was 

implanted.  

 

Data processing 

For both animal and patient studies, ten consecutive heartbeats at 

the end of each paced AV delay were used for analysis. Systolic and 

diastolic blood pressures were obtained from the aortic pressure tracing 

in animal study. The maximal LV pressure (LVP max) was calculated 
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from the LVP tracing. The maximal rates of rise (LV dP/dtmax) and fall 

(LV dP/dtmin) of LVP were calculated from the first derivative of LVP 

which was first filtered using a series of mean filters with window size 

from 2 ms to 40 ms. This smoothing process was performed to reduce 

the potential effect of high-frequency intracardiac pressure fluctuations 

caused by valve closures on calculation of dP/dtmax or min. SW was 

calculated from the LV pressure-volume loop area.  

In the animal experiments, the epicardially measured heart sounds 

were bandpass-filtered using a second-order Butterworth filter between 

20 Hz and 250 Hz. For the patient study, heart sounds were more noisy 

because they were collected by the pulse generator on the chest. 

Therefore, a signal processing algorithm called harmonic regeneration 

noise reduction was utilized to remove the baseline noises of the heart 

sounds [13]. The algorithm firstly manually sets a level of background 

noise based on the signal envelope, and then removes the background 

noise from the data.  

Denoised heart sounds were plotted to visually identify S1 and S2, 

with reference to the synchronously recorded ECG. The onsets of S1 

and S2 were identified as the first deflection whose absolute height was 

over 1/3 of the maximal amplitude of S1 or S2, respectively. RR interval 

was calculated from the interval between two consecutive ventricular 

pacing spikes on ECG.  

The following systolic intervals were calculated: 1) VS1: interval 

between ventricular pacing spike and S1 onset; 2) S1S2: interval 

between onsets of S1 and S2; 3) VS2: interval between ventricular 

pacing spike and S2 onset (= VS1 + S1S2). 

In this study, only AV delays with full capture of BiV pacing were 

analyzed. In the animal experiments, these comprised all AV delays, 

because of the AV-block that was performed prior to starting the 

protocol. In the patient study, the number of AV delays with full capture 

of BiV pacing was variable. AV delays with fusion pacing were not used 

for this study in order to focus on the relation between PCG-derived 

STIs and AV dyssynchrony and excluding an effect of VV dyssynchrony. 

Full capture was identified from the QRS morphology on ECG.  

 

Determination of optimal AV delay 

Optimal AV delay was determined for each of hemodynamic indicators 

(LVP max, LV dP/dtmax and SW) and PCG-derived STIs (VS1 and S1S2). 

To improve accuracy of determining the optimal AV delay, a parabola 

was utilized to fit the measured median values of each indicator for AV 
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delays ranging from 50 ms to 250 ms [14]. The optimal AV delay was 

identified as the lowest vertex for VS1 and the highest vertex for the 

remaining indicators. If the fitted parabola was monotonous, the value 

at the shortest or the longest AV delay was used. With optimal 

hemodynamics determined using LVP max, LV dP/dtmax and SW as 

“gold standards”, loss of cardiac pump function using STIs-derived 

optimal AV delays for CRT optimization was also calculated.  

 

Statistical analysis 

  Normally distributed data were expressed as mean and standard 

deviation. Skewed data were expressed as median (25th percentile, 

75th percentile). Count data were expressed as absolute number. 

Continuous variables were compared using an independent sample t 

test between groups. A two-sided P value < 0.05 was assumed to 

indicate a statistically significant difference. All statistical analyses were 

performed using MATLAB R2018b (The MathWorks, Inc., MA, USA).  

 

Results 

Animal study 

Hemodynamics and PCG at reference AV delay 

  Table 1 summarizes the hemodynamic and PCG characteristics during 

biventricular pacing at the reference AV delay of 100 ms during baseline 

and isoflurane-depressed myocardial contractility. Isoflurane 

ventilation significantly reduced myocardial contractility as evidenced 

by 41% reduction in LV dP/dtmax. VS1, S1S2 and VS2 did not 

significantly change between baseline and isoflurane. 
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Table 1. Hemodynamics and PCG in the porcine study* 

 Baseline 

(n = 5) 

Isoflurane 

(n = 5) 

P value 

Hemodynamics    

Heart rate (bpm) 91 ± 24 108 ± 24 0.31 

RR interval (ms) 694 ± 175 577 ± 116 0.25 

SBP (mmHg) 99 ± 19 67 ± 15 < 0.001 

DBP (mmHg) 71 ± 17 41 ± 12 < 0.001 

LVP max (mmHg)  102 ± 17 67 ± 16 < 0.001 

LV dP/dtmax (mmHg / sec) 706 ± 94 419 ± 128 < 0.001 

LV dP/dtmin (mmHg / sec) -754 ± 143 -464 ± 140 < 0.001 

SW (mmHg·mL)  4534 ± 441 1678 ± 591 < 0.001 

Systolic time intervals    

VS1 (ms) 76 ± 15 75 ± 23 0.76 

S1S2 (ms) 292 ± 42 292 ± 26 1.00 

VS2 (ms) 369 ± 46 367 ± 39 0.89 

Values are mean ± SD. 

* Data during biventricular pacing with an AV delay of 100 ms. 

bpm, beats per minute; DBP, diastolic blood pressure; LV, left ventricle; 

LVP max, maximal LV pressure; S1S2, interval from S1 onset to S2 

onset; SBP, systolic blood pressure; SW, stroke work; VS1, interval 

from ventricular pacing spike to S1 onset; VS2, interval from ventricular 

pacing spike to S2 onset. 

 

Changes of heart sound with AV delay 

  Figure 1 shows a representative example of heart sound and ECG 

signals during paced AV delays ranging from 50 to 250 ms. With 

prolonging AV delays, VS1 monotonously increased from 66 ms to 76 

ms, while S1S2 firstly increased from 272 ms to 278 ms and then 

gradually decreased to 265 ms. LVP max and SW were the highest at 

an AV delay of 100 ms, when the S1S2 was the longest. LV dP/dtmax 

peaked at an AV delay of 150 ms. Using parabolic curve fitting, optimal 

AV delay was calculated to be 118 ms based on the longest S1S2 and 

128 ms based on the highest LVP max (Figure 1, lower panels). 
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Figure 1. An example of heart sounds and hemodynamics at 

varying AV delays 

Units of LVP max, LV dP/dtmax and SW are mmHg, mmHg/sec and 

mmHg·mL, respectively. 

Optimal AV delay was identified at the vertex of each fitted parabola 

(red curve). S1S2-determined optimal AV delay (lower left panel) was 

compared with the LVP-determined optimal AV delay (lower right 

panel), showing negligible “loss” of hemodynamics in this example 

(105.11 mmHg vs. 105.14 mmHg).  
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LVP max, maximal LV pressure; S1S2, interval from S1 onset to S2 

onset; SW, stroke work; V, position of ventricular pacing spike; VS1, 

interval from ventricular pacing spike to S1 onset. 

 

Figure 2 shows STIs and hemodynamic variables during the paced 

AV delays in 2 experiments. The first experiment (A) showed a clear 

parabolic curve for all variables, indicating an optimal AV delay for 

highest LVP max of 126 ms, for LV dP/dtmax of 129 ms  and for SW of 

122 ms, while VS1 and S1S2 indicated an optimal AV delays of 103 ms 

and 131 ms, respectively. The second experiment (B) showed 

monotonous parabola resulting in the estimation of the optimal AV 

delay at 50 ms, based on both STIs and hemodynamics.  

 

 
Figure 2. Changes of systolic intervals and hemodynamics with 

AV delay in two representative experiments 

Y-axis shows the percent difference from the value of AV delay of 100 

ms. Each point represents the median value of 10 heartbeats for a given 

AV delay. Parabolic curve fitting and optimal AV delay were indicated in 

each panel. 

LVP max, maximal LV pressure; S1S2, timing interval from S1 onset to 

S2 onset; VS1, timing interval from ventricular pacing spike to S1 onset. 

 

Prediction of optimal AV delay using STIs 

  Table 2 summarizes the deviations of the PCG-predicted optimal AV 

delay from the optimal delays obtained using LVP max, dp/dtmax and 

SW. VS1 and S1S2 intervals  underestimated LVP max-based optimal 

AV delay by median values of -10 ms and -13 ms, respectively. The 
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underestimation appeared to be more pronounced for LV dP/dtmax, 

with median differences being -27 ms and -28.5 ms using VS1 and S1S2, 

respectively. The optimal AV delay according to SW was slightly 

overestimated by VS1 (8 ms) and S1S2 (2 ms). These deviations in 

optimal timing of pacing resulted in loss of maximal hemodynamic 

function (“Loss” in table 2) normalized to that of AV delay of 100 ms. 

Median loss was below 1% for LVP max and below 2% for LV dP/dtmax 

and SW. 

 

Table 2. Prediction of optimal AV delay using systolic time 

intervals 

 LVP max LV dP/dtmax SW 

VS1 (ms) -10 (-34, 17)  -27 (-66, 6)  8 (-82, 21)  

Loss (%) -0.8 (-1.2, -0.3)  -1.9 (-2.4, -0.2)  -2.0 (-5.6, -0.6)  

S1S2 (ms) -13 (-34, 34)  -28.5 (-64, 2)  2 (-58, 37)  

Loss (%) -0.5 (-1.0, -0.1)  -1.2 (-2.5, -0.1)  -1.0 (-5.6, -0.2)  

Presented are the differences between PCG- and hemodynamics-

determined optimal AV delays, expressed as median values and the 25 

and 75 percentiles. In the rows of VS1 and S1S2, a positive value 

indicates overestimation of the optimal AV delay by PCG, while a 

negative value indicates underestimation. Loss indicates the % 

reduction in the value of the hemodynamic between the actual maximal 

value and the one obtained at the optimal AV delay according to PCG 

variables, normalized to the value of AV delay of 100 ms.  

LV, left ventricle; LVP max, maximal LV pressure; S1S2, timing interval 

from S1 onset to S2 onset; SW, stroke work; VS1, timing interval from 

ventricular pacing spike to S1 onset.  

 

Human study 

Baseline characteristics 

Of the 30 patients enrolled in the SOCR study, we excluded 4 patients 

without usable ECG, 3 patients with bad-quality heart sound recordings 

and 1 patient with an ejection fraction above 35%. In addition, 1 patient 

without at least two consecutive paced AV delays of full capture judged 

by QRS morphology was also excluded. Finally, 21 patients were 

included for our analysis, of whom 15 had left bundle branch block. 

Table 3 summarizes the patients’ baseline characteristics measured 

during biventricular pacing with a reference AV delay of 90 ms.   
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Table 3. Baseline characteristics (n = 21) 

 Values 

Patient  

Male (n) 14 

Age (yrs.) 59 ± 15 

Heart rate (bpm) 81 ± 11 

RR interval (ms) 755 ± 106 

LBBB 15 

Ischemic heart disease 4 

Hypertension 6 

LV lead location  

Posterior lateral vein 9 

Anterior lateral vein 5 

Lateral marginal vein 3 

Unknown 4 

Hemodynamics  

LVP max (mmHg)* 109 ± 19 

LV dP/dtmax (mmHg / sec)* 563 ± 117 

LV dP/dtmin (mmHg / sec)* -599 ± 104 

LVEF (%) 24 ± 6 

EDV (ml) 232 ± 101 

ESV (ml) 171 ± 80 

Phonocardiography*  

VS1 (ms) 231 ± 33 

S1S2 (ms) 324 ± 35 

VS2 (ms) 555 ± 33 

Values are mean ± SD or n. 

* Values during biventricular pacing with an AV delay of 90 ms. 

bpm, beats per minute; DBP, diastolic blood pressure; EDV, end-

diastolic volume; ESV, end-systolic volume; LBBB, left bundle branch 

block; LV, left ventricle; LVEF, left ventricular ejection fraction; LVP max, 

maximal LV pressure; S1S2, interval from S1 onset to S2 onset; VS1, 

interval from ventricular pacing spike to S1 onset; VS2, interval from 

ventricular pacing spike to S2 onset. 

 

Changes of heart sounds and hemodynamics with AV delay 

 Figure 3 illustrates the changes of heart sounds and hemodynamics 

with AV delay in a representative patient. With paced AV delay 

increasing from 60 ms to 180 ms, VS1 progressively shortened from 

257 ms to 166 ms, accompanied by a progressive lengthening of S1S2 
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from 315 ms to 401 ms. Note that between AV delays of 120 ms and 

150 ms, an inversion of the main QRS axis occurred, along with a 

marked change of S1 morphology, indicating significant changes of 

electrical activation patterns and ventricular contraction pattern, 

respectively. As explained in the method section, only AV delays with a 

full ventricular capture, in this case AV delays 60, 90 and 120 ms, were 

used for further analysis. The right columns of Figure 3 indicate that 

the optimal LVP max and LV dP/dtmax occurred at an AV delay of 150 

ms and 120 ms, respectively.  

 

 
Figure 3. Changes of heart sounds (black), ECG (blue) and 

hemodynamics with AV delay    ECGs were aligned at ventricular 

pacing spikes (“V”) at 200th ms. Note the marked changes of QRS 

complex between AV delays of 120 and 150 ms. 

Units of LVP max and LV dP/dtmax are mmHg and mmHg/sec, 

respectively. 

A, position of atrial pacing spike; LVP max, maximal LV pressure; S1S2, 

interval from S1 onset to S2 onset; V, position of ventricular pacing 

spike; VS1, interval from ventricular pacing spike to S1 onset. 

 

Prediction of optimal AV delay using parabolic curve fitting 

  Figure 4 shows the parabolic curve fitting results of PCG-derived STIs 

and hemodynamics in two representative patients, having short (60-

120 ms) and long (60-180 ms) ranges of AV delays of full ventricular 

capture. In patient A, the predicted optimal AV delays using VS1 (110 

ms) and S1S2 (120 ms) underestimated the AV delays providing the 

highest LVP max (207 ms) and LV dP/dtmax (221 ms). This was 
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because the LVP max and LV dP/dtmax continued to rise beyond the AV 

delay where fusion pacing started. However, the data also show that 

VS1 and S1S2 captured the steep rising part of the hemodynamics 

curve. In patient B, with a wide range of full capture AV delays, the 

optimal AV delays predicted by VS1 (145 ms) and S1S2 (153 ms) were 

close to the values judged by LVP max (152 ms) and LV dP/dtmax(143 

ms).   

Table 4 summarizes the differences between PCG- and 

hemodynamics-predicted optimal AV delays, stratified by whether a full 

capture occurred after an AV delay of 180 ms. Overall, both VS1 and 

S1S2 underestimated the real optimal AV delays and were better in 

predicting the optimal LV dP/dtmax than LVP max. The median 

underestimation of the optimal AV delay was 20~30 ms for LVP max, 

and around 13 ms for LV dP/dtmax. Comparing AV delays of ≤ 150 ms 

and ≥ 180 ms showed a decreasing prediction error by ~ 1/3 when full 

capture occurred at a longer AV delay, though the improvement was 

less pronounced for LV dP/dtmax. The median percent underestimation 

of LVP max and LV dP/dtmax (Loss%) using PCG was within 1% in all 

cases, and mostly around 0.3%. Consistent with the observations of 

the optimal AV delays, the loss was also lower for LV dP/dtmax than 

LVP max.  

 

 
Figure 4. Optimal AV delays judged by systolic time intervals 

and hemodynamics    Panels A and B represent data of two patients. 

Each parabolic line connects the median values of 10 heartbeats. The 

optimal AV delay is also indicated by a dashed line in each panel. On 
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the Y-axis, “%” showed the percent change relative to the value at AV 

delay of 90 ms.  

LVP max, maximal LV pressure; S1S2, interval from S1 onset to S2 

onset; VS1, interval from ventricular pacing spike to S1 onset. 

 

Table 4. Prediction of optimal AV delays using systolic time 

intervals 

  
Full capture ≤ 150 ms (n = 13)  Full capture ≥ 180 ms (n = 8) 

LVP max LV dP/dtmax  LVP max LV dP/dtmax 

VS1 (ms) -32.5 (-58, -22) -13.5 (-22.5, 4)  -21 (-26, -7) -10 (-14, 2) 

Loss (%) -0.7 (-1.1, -0.4) -0.3 (-1.0, -0.1)  -0.3 (-0.4, -0.2) -0.2 (-0.7, -0.1) 

S1S2 (ms) -37.5 (-59, -22.5) -13.5 (-22.5, 1.5)  -24 (-28, -6) -14 (-20, 10) 

Loss (%) -0.9 (-1.3, -0.4) -0.3 (-1.1, -0.1)  -0.3 (-0.6, 0) -0.2 (-0.5, -0.1) 

Presented are the differences between PCG- and hemodynamics-

determined optimal AV delays, expressed as median values and the 25 

and 75 percentiles. In the rows of VS1 and S1S2, a positive value 

indicates overestimation of the optimal AV delay by PCG, while a 

negative value indicates underestimation. Loss was normalized to the 

value of AV delay of 90 ms.  

LVP max, maximal LV pressure; S1S2, interval from S1 onset to S2 

onset; VS1, interval from ventricular pacing spike to S1 onset. 

 

Discussion 

The main findings of this combined animal and human study are: 1) 

shortened VS1 and prolonged S1S2 are associated with improved 

myocardial contractility, evaluated by LVP max and LV dP/dtmax in both 

animal and human studies, 2) these relations between heart sound-

derived STIs (VS1 and S1S2) and invasively-measured hemodynamics 

(LVP max and LV dP/dtmax) are particularly clear at AV-delays with full 

capture of BiV pacing, and 3) the existence of these relations during 

protocols of AV-delay optimization in CRT indicates the potential use of 

PCG indicators for CRT optimization in a continuous and low-cost 

manner.    

 

Relationship between STIs and cardiac pump function 

Our findings support evidence from literature that a shorter VS1 and 

a longer S1S2 relate to better cardiac pump function during AV delay 

optimization [9, 15]. Furthermore, the animal study showed that these 

relations persist even when myocardial contractility is depressed by 

isoflurane. Since the ventricular electrical activities indicated by QRS 
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morphology were relatively unchanged throughout the paced AV delays 

for each study subject, changes in STIs can be attributed to the effect 

of changing diastolic ventricular filling when adjusting paced AV delay 

in our study. 

Diastolic ventricular filling affects VS1 in two ways: AV valve position 

at the moment of ventricular depolarization and myocardial contractility 

at the time of valve closure. The relationship can be expressed in an 

equation: t = d/v, in which t represents the VS1, d the distance that AV 

valves need to travel to be closed, and v the average velocity of AV 

valves driven by the blood column which derives its energy from 

ventricular contraction. At a short AV delay, the diastolic filling has not 

completed, thus the valves are still at a widely open position (a larger 

d in the equation) at the moment of ventricular depolarization. 

Moreover, the incompletely filled ventricles generate a lower contractile 

force according to the Frank-Starling relation, causing a lower velocity 

of valve movements (a lower v in the equation) [16]. As a result, t, 

representing VS1 in our study, becomes longer. As the paced AV delay 

prolongs, the valves are apposed to each other, thus d becomes 

gradually smaller. While the ventricles are better filled, the contractile 

force also becomes stronger, causing a higher velocity v of valve closure, 

leading to a shorter t. The proposed hypothesis is supported by 

observations in previous studies [17-20]. Regarding valve position, a 

previous study of patients with congenital AV block and right ventricular 

pacing showed that as PR interval increased from ~ 50 ms to ~ 500 ms, 

the time from Q wave to closure of the mitral valves (Q-MC) evaluated 

by echocardiogram progressively shortened [17]. In normal subjects, a 

linear negative relation is also found between Q-MC and PR intervals of 

100 ms to 220 ms [18]. Regarding contractile force, studies on patients 

with dilated congestive heart failure showed that LV dP/dtmax as a 

proxy for myocardial contractility was highest at optimal paced AV delay 

[19, 20]. Moreover, it is noteworthy that VS1 tended to prolong with 

AV delay in 3 of 10 conditions in our animal study. The reason might be 

that in these conditions the value at the shortest paced AV delay of 50 

ms was missing, leading to a monotonous increase of VS1 from AV 

delays of 100 ms. 

The S1S2 interval is the period from AV valve closure to semilunar 

valve closure, and thus includes two phases: isovolumic contraction 

phase (ICP) from the closure of AV valves to the opening of semilunar 

valves and the ventricular ejection phase (VEP) from opening to closure 

of semilunar valves. Previous tissue- and pulse-Doppler imaging studies 
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showed that ICP ranges between 60-80 ms and VEP between 280-400 

ms [6, 23, 24]. The much shorter ICP compared with VEP indicates a 

narrower potential range of change for ICP when hemodynamics 

fluctuates. This is important because ICP and VEP usually change in an 

opposite direction as myocardial contractility changes. Since S1S2 is 

the sum of ICP and VEP, in our study it was largely determined by the 

longer VEP. The potential of S1S2 to indicate ventricular ejection 

duration may provide an easy-to-use solution to monitor cardiac 

pumping function, compared with both tissue- and pulse-Doppler 

imaging techniques. 

 

Heart sound for CRT optimization 

Both animal and patient studies showed that the PCG-predicted 

optimal AV delay was close to that identified by the invasive 

hemodynamic measurements. Our study results are supported by a 

previous study which optimized AV delay from 60 ms to intrinsic 

conduction and reported a high correlation between QS1- and 

echocardiogram-predicted optimal AV delays [9].  

In the human study, the PCG-predicted optimal AV delay 

underestimated its hemodynamic equivalent by a median of 35 ms (LVP 

max) and 13.5 ms (LV dP/dtmax), when the patients with a full-capture 

AV delay less than 150 ms were considered. The underestimation was 

reduced by 1/3 when only the patients with the largest range of AV 

delays with full-capture of biventricular pacing (≥ 180 ms) were 

considered. The different findings in these two groups of patients can 

be explained by the fact that the AV delay with highest values of LVP 

max and LV dP/dtmax was in the range of 120-200 ms but that we 

limited our analysis to the range of AV delays with full capture. 

Consequently, the STI-derived optimum was shortened in patients with 

a smaller range of AV delays with full capture. However, even when the 

optimal AV delay was not identical with the PCG predictions, the loss of 

cardiac pump function was small (< 2% in animal studies and < 1% in 

human studies), because the parabolically shaped optimization curves 

were relatively flat around the optimum. Moreover, it is noteworthy that 

in our human studies, the improvements of hemodynamics during AV 

delay optimization seem to be smaller than previous studies. In the two 

examples in Figure 4, the ranges of change of LV dP/dtmax were around 

5% and 7%, respectively, in comparison to a mean increase of 12% 

during conventional CRT optimization [25]. This may be due to the 

selection of an AV delay of 90 ms as reference setting rather than the 
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baseline condition without any pacing where LV dP/dtmax is supposed 

to be lower and thus the percent change based on it becomes higher. 

Nevertheless, the fact that PCG performed well in the patients with less 

response of CRT indicates that it will also be applicable to super-

responders. 

Other heart sound parameters have also been proposed to optimize 

AV delay in CRT. S1 amplitude has been previously used for AV delay 

optimization. In a pilot study of 6 patients with AV block, heart sounds 

were recorded using an acceleration-type microphone on the cardiac 

apex when paced AV delay was set from 50 ms to 250 ms [26]. A cubic 

curve was applied to fitting S1 amplitudes, and the optimal AV delay 

was defined at the inflection point of the fitted curve. A high correlation 

was found between PCG- and echocardiography-determined optimal AV 

delays. The finding was later confirmed in another study of similar 

protocol in 12 CRT patients and 8 patients with dual-chamber 

pacemakers (R = 0.83; 161 ms vs. 148 ms) [27]. The randomized 

RESPOND-CRT trial extended this experience in CRT patients [28, 29]. 

The optimal AV delay was identified at inflection point of the sigmoid 

curve-fitted S1 amplitude during AV delay optimization. Randomization 

of 998 patients at a 2:1 ratio to either automatic and repeated CRT 

optimization with this “SonR” algorithm or a single conventional 

echocardiography-guided optimization showed a 35% risk reduction in 

heart failure hospitalization in the former. An advantage of our patient 

study is that heart sounds were collected in a pulse generator rather 

than from a pacemaker lead like in the SonR studies. This design avoids 

the complexity and bulkiness of implementing an accelerometer in the 

relatively slender pacing lead. The feasibility of measuring heart sounds 

from a pulse generator has been supported by a previous study in 30 

heart failure patients and 10 normal subjects [30]. The study used an 

accelerometer enclosed within a pulse generator which was taped to 

the skin surface over left and right pectoral regions to measure heart 

sounds. Fundamental heart sound components including S1, S2 and 

third heart sound were recorded using the device, with a higher signal-

to-noise ratio on the left pectoral region. In our human study, the pulse 

generator was subcutaneously implanted on the left pectoral region, 

thus providing sufficient quality of heart sounds for analysis of STIs. 

 

Future perspectives 

  In this combined animal and human study, we found that heart sound-

derived STIs like VS1 and S1S2 may serve as useful indicators for AV 
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delay optimization in CRT. An important next step will be to validate 

these findings in a larger study. This may be a non-inferiority study 

comparing STIs with conventional echocardiography. A larger sample 

size allows to identify potential confounding factors such as myocardial 

scar that may affect STIs. Secondly, long-term follow-up of patients is 

crucial to establish relations between STIs and patients’ outcomes. STIs 

estimated using conventional echocardiography have been shown to 

relate to the patients’ heart failure incident, heart failure hospitalization 

and all-cause mortality [4-6]. However, no similar findings have been 

reported for heart sound-derived STIs. Lastly, in the SOCR study, the 

sampling frequency of heart sounds was low (128 Hz). With the 

development of newer sensor technologies in recent years, more 

accurate and consistent results may be obtained. 

 

 

Conclusions 

  Heart sound-derived STIs may serve as useful indicators for AV delay 

optimization in CRT. Shortened interval between onsets of ventricular 

pacing and S1 (VS1) and prolonged interval between onsets of S1 and 

S2 (S1S2) are associated with better myocardial contractility evaluated 

by LVP max and LV dP/dtmax. 
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Abstract 
Aims: 

Heart failure with preserved ejection fraction (HFpEF) is 

associated with stiffened myocardium and elevated filling pressure 

that may be captured by heart sound. We investigated relationship 

between phonocardiography (PCG) and echocardiography in 

symptomatic patients suspected of HFpEF. 

Methods and results:  

Consecutive symptomatic patients with sinus rhythm and left 

ventricular ejection fraction > 45% were enrolled. Echocardiography 

was performed to evaluate the patients’ diastolic function, 

accompanied by PCG measurements. PCG features including heart 

sound amplitude, frequency and timing intervals were calculated. A 

PCG-based score was developed to stratify E/e’ ≤ or > 9 and its 

diagnostic performance was investigated. Of 45 patients, variable 

ratio matching was applied to obtain two groups of patients with 

similar characteristics but different E/e’. Patients with a higher E/e’ 

showed higher S1 frequency, S2 frequency and S4 occurrence and 

longer systolic time intervals. QRS onset to S1 (QS1) interval was 

the best feature for prediction of E/e’ > 9 (area under curve (AUC): 

0.72 (0.51 - 0.88)) in the matched patients. The PCG score showed 

an AUC of 0.85 (0.65 - 0.96) and 0.74 (0.59 - 0.86) in the matched 

and all patients, respectively, both of which were not significantly 

improved by adding N-terminal pro-B-type natriuretic peptide (NT-

proBNP, P > 0.05).  

Conclusions:  

PCG features can stratify E/e’ in symptomatic patients suspected 

of HFpEF at a diagnostic performance similar to NT-proBNP. Heart 

sound may serve as a simple non-invasive tool for prescreening 

HFpEF patients. 
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Introduction 

  Heart failure with preserved ejection fraction (HFpEF) accounts for 

approximately 50% of heart failure 1. It is associated with ageing, 

hypertension and obesity and characterized by an elevated left ventricular 

(LV) filling pressure 2. Current HFpEF diagnosis mainly relies on 

echocardiographic parameters such as the ratio between early mitral 

inflow velocity and early diastolic mitral annular velocity (E/e’) and 

serological biomarkers such as N-terminal pro-brain natriuretic peptide 

(NT-proBNP) 3. E/e’ has been recommended as a sensitive marker of LV 

filling pressure elevation in current European heart failure guideline 3. NT-

proBNP is a highly sensitive but moderately specific marker of heart failure 

in acute settings 4. Its level is affected by multiple factors such as patient’s 

age and kidney function. Neither E/e’ nor NT-proBNP can be used by 

patients at home, making early recognition of heart failure challenging.  

Heart sound may serve as a simple noninvasive tool for home 

monitoring of heart failure with the recent emergence of portable digital 

stethoscopes and wearable acoustic sensing devices 5, 6. The relationship 

between heart sound and heart failure has been widely investigated in both 

animal and human studies 7, 8. However, these studies have focused on 

the third heart sound (S3) in systolic ventricular dysfunction. The changes 

of heart sound in diastolic ventricular dysfunction remain incompletely 

understood. Recently, several  studies utilized machine learning to 

differentiate HFpEF from normal subjects by heart sound, but no relations 

between heart sound and echocardiography have been demonstrated 9-11. 

Considering the widespread use and importance of echocardiography 

nowadays, it may be valuable to link heart sound to echocardiographic 

parameters such as E/e’ for evaluation of LV filling pressure elevation. 

This pilot study is dedicated to exploration of the association between 

phonocardiography (PCG) and echocardiography in a patient cohort 

suspected of HFpEF. To this purpose, we used a three-step approach: 

- Investigate whether heart sound features differ between patients 

with low and high E/e’, irrespective of potential confounding factors; 

- Compose a heart sound score to predict E/e’ > 9, based on features 

significantly different between low- and high-E/e’ patients; and  

- Investigate the diagnostic performance of this score in a group of 

matched patients and in all patients. 
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Methods 

Study approval 

This prospective observational study was approved by medical ethics 

committee of Maastricht University Medical Center+ (MUMC+). Data were 

collected from consecutive patients suspected with HFpEF and referred to 

a diagnostic work-up including echocardiography in the MUMC+ between 

January 2020 and May 2021. All study participants provided a written 

consent. 

 

Patient inclusion and exclusion 

Patients meeting the following criteria were included: 1) symptoms 

and/or signs of heart failure such as dyspnea and lower-extremity edema, 

2) sinus rhythm, 3) a preserved LV ejection fraction (LVEF, > 45%) and 

E/e’ ratio evaluated by echocardiography, and 4) serum NT-proBNP test 

performed during the hospital visit.  

Clinical data was obtained from routine clinical care blinded for heart 

sound results (A.A., K.S., J.W). All patients underwent a systematic 

diagnostic work-up for HFpEF as described before, including 

echocardiography and extensive blood analysis 12. The final diagnosis of 

HFpEF was determined according to the European Society of Cardiology 

guideline in an expert panel meeting including heart failure cardiologists 

and echocardiographers 3.  

 

Echocardiographic examination 

  Echocardiographic examinations including 2-dimensional measurements, 

Doppler and tissue Doppler imaging were performed using a Philips iE33 

system (Philips Medical Systems, Andover, MA) with the patients in resting 

supine position. LV function and structure, peak mitral inflow velocity (E 

wave and A wave), deceleration time, isovolumic relaxation time, early 

diastolic mitral annulus velocity (e’) at the septal and lateral aspects, and 

left atrial volume were assessed according to the American Society of 

Echocardiography and the European Association of Cardiovascular 

Imaging recommendations during routine clinical care 13. All stored image 

data were analyzed by experienced sonographers using Philips 

IntelliSpace Cardiovascular echocardiographic analysis software during 

routine clinical care. The sonographers were blinded to the patients’ heart 

sound data. 
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Heart sound and electrocardiogram (ECG) collections 

Heart sounds were recorded on the left fourth intercostal space along 

midclavicular line while the patients were in sitting resting condition with 

the body leaning forward at the same day of the echocardiography. A 

digital stethoscope EKO DUO (frequency range: 20-2000 Hz; Eko Devices 

Inc., US) was used to simultaneously record heart sound and single-lead 

ECG for 15 ~ 30 seconds. The collected data were transferred via 

Bluetooth from the EKO device to the cloud, from which data could be 

downloaded for further offline analysis. Heart sounds were collected by 

researchers (A.B., S.L., A.A., K.S.) who were blinded to both 

echocardiographic and PCG features of the patients. 

 

Location of heart sound components 

Signal processing procedures are shown in Figure 1 and further 

described in the Supplementary Methods. In brief, both ECG and PCG 

recordings were resampled to 1000 Hz. Then ECG was used as a 

reference to find S1 and S2. To identify the low-frequency S3 and S4, the 

raw heart sound recordings were lowpass-filtered with a cut-off frequency 

of 50 Hz. Occurrences of S3 (S3%) and S4 (S4%) among the 10 to 15 

heart beats analyzed were calculated.  

 

Heart sound features 

 For each patient, heart sound features were calculated from median 

value of 10-15 consecutive heart beats. S1 and S2 features were 

calculated after lowpass-filtering the raw heart sound signals at 200 Hz, 

and S3 and S4 at 50 Hz. 

Amplitude: Amplitudes of S1 and S2 were automatically identified as 

the maximal value within 80 ms following their onsets. Amplitudes of S3 

and S4 were identified as the maximal value within 60 ms around their 

respective locations.   

Frequency: The dominant frequency was calculated for each heart 

sound component. For S1 and S2, a 60-ms segment after their onset was 

used for fast Fourier transform to avoid potential heart sound splitting 

occurring at a later time. For S3 and S4, the onsets were generally difficult 

to be identified due to the low amplitude, therefore a 60-ms segment 

around their envelope peaks was used for calculation of dominant 

frequency based on fast Fourier transform.  

Timing intervals: The following heart sound-derived systolic time 

intervals (STIs) were analyzed: 1) QS1: from the onset of the Q-wave to 
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the onset of S1; 2) S1S2: from S1 onset to S2 onset; and 3) QS2: from 

QRS onset to S2 onset. In analogy to QT, we also applied the Fridericia 

equation to correct QS2 for heart rate as follows: QS2c = QS2/RR1/3, in 

which QS2 and QS2c are in unit of ms and RR in sec 14, 15. 

 

 
Figure 1. Demonstration of signal processing procedures     

Upper panel: Reference points were identified for ECG QRS (blue dot), 

S1 (red dot) and S2 (red dot), respectively. Onsets of ECG QRS, S1 and 

S2 were identified using a median signal (in blue) calculated from all 

heartbeats (in grey) aligned at the reference points. Lower panel: Multiple 

heart sound features were calculated.  
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ECG, electrocardiogram; HS, heart sound; S1, first heart sound; S1S2, 

timing interval from S1 onset to S2 onset; S2, second heart sound. 

 

Statistical analysis 

The overarching goal of the statistical analyses was to investigate the 

relationship between PCG and echocardiography while reducing the 

effects of confounders as much as possible. To this purpose, a matching 

procedure was applied as described in literature 16. The steps are as 

follows (Figure 2):  

1) Each patient was matched to the other(s) if both had the same sex 

and similar body mass indexes (BMIs, difference ≤ 3 kg/m2) and heart rates 

(difference ≤ 5 beats per minute). Doing so a patient might be matched 

with multiple patients who satisfied the three conditions above 16. On the 

other hand, a patient might also not be matched with any other patients, 

and thus classified into “unmatched” group.  

2) Identification of E/e’-related PCG features: For each match, the two 

patients were assigned by E/e’ ratio to either low- or high-E/e’ group. After 

assigning all patients, the two groups were compared for the PCG features. 

The features showing a P value ≤ 0.10 in the comparison were defined as 

E/e’-related. 

3) Prediction of E/e’ > 9 using PCG features: The selected PCG features 

were tested for their performance to predict an E/e’ > 9 the matched, 

unmatched and all enrolled patients. The E/e’ cut-off was set at 9 because 

a higher value at rest generally indicates LV diastolic dysfunction and 

raised LV filling pressure according to current heart failure guideline 3. 

Receiver operating curve (ROC) analysis was performed and sensitivity, 

specificity and area under the curve (AUC) were calculated. The optimal 

cut-off value was identified at the maximal Youden's index (= sensitivity + 

specificity - 1) 17.  

4) Prediction of E/e’ > 9 using the PCG score: Each PCG feature was 

assigned a weight as follows: 

𝑊𝑒𝑖𝑔ℎ𝑡 =
𝐴𝑈𝐶 − 0.50

0.05
, 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 

The weight, ranging from 0 (AUC = 0.50) to 10 (AUC = 1.00), evaluated 

the diagnostic power of each feature as compared with an AUC of 0.50 

which indicates no discriminative power. To reduce the total number of 

features, only the features with a weight ≥ 2 were included in the 

calculation of a PCG score. Then the PCG score was applied to the 

unmatched patients and all patients to test its diagnostic performance.  
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Continuous and normally distributed data were expressed as mean ± 

standard deviation, and skewed data as median (interquartile range). 

Count data were expressed as number (%). Chi-squared test was 

performed to compare the difference in count data between two groups. 

Independent sample t test was used to compare normally distributed 

continuous variables, while Wilcoxon rank sum test was applied for 

comparison of skewed continuous data. The AUCs and 95% confidence 

intervals were calculated and compared with DeLong test using MedCalc 

(MedCalc Software Ltd, Belgium). Statistical significance was defined as 

a two-tailed P value <0.05. All analyses were performed using MATLAB 

R2018b (MathWorks Inc., US).  

 

 
Figure 2. Illustration of statistical analyses 

All patients were matched by sex, body mass index and heart rate and 

divided into low- and high-E/e’ groups. Phonocardiographic features were 

compared between the two groups, and the ones showing a significant 

difference were identified for prediction of E/e’ > 9. 

AUC, area under the curve; BMI, body mass index; bpm, beats per minute; 

E/e’, the ratio between early mitral inflow velocity and early diastolic mitral 

annular velocity; HR, heart rate; QS1, Q to S1 onset; QS2c, QS2 corrected 
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for RR interval; ROC, receiver operating curve; S1f, S1 dominant 

frequency; S4, fourth heart sound. 

 

Results 

Baseline characteristics 

A total of 61 patients were screened in our study. After excluding 11 

patients with AF during echocardiographic or phonocardiographic 

measurement, 2 patients without E/e’ data, 1 patient without NT-proBNP 

data, and 2 patients with too-noisy heart sound recordings, the remaining 

45 patients were matched according to sex, BMI and heart rate, resulting 

in 25 patients that gave rise to 32 matched pairs.  

Baseline characteristics of the low- and high-E/e’ groups did not 

significantly differ regarding age, sex, BMI, heart rate, blood pressure, 

history of hypertension, history of AF or PR interval (Table 1). One patient 

had heart failure with recovered LVEF. No patients had prior heart failure 

hospitalization. NT-proBNP was significantly higher in the high-E/e’ group. 

Significantly more patients were diagnosed with HFpEF in the high- than 

low-E/e’ group. Regarding echocardiographic parameters, mean E/e’ was 

8.3 and 13.9 in the low- and high-E/e’ group, respectively. E/A ratio was 

similar in both groups.  
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Table 1. Population and echocardiographic characteristics of the 

matched pairs 

 Low E/e’ High E/e’  

  (n = 32) (n = 32) P value 

Patient    

Age, years 72 ± 7 74 ± 5 0.11 

Female, n (%) 27 (84) 27 (84) 1.00 

BMI, kg/m2 27.5 ± 3.1 27.9 ± 3.0 0.63 

Heart rate, bpm 71 ± 9 71 ± 8 0.85 

PR interval, ms 185 ± 31 183 ± 26 0.75 

Systolic BP, mm Hg 146 ± 17 150 ± 18 0.30 

Diastolic BP, mm Hg 78 ± 14 76 ± 13 0.70 

NYHA class ≥ III, n (%) 16 (50) 9 (28) 0.07 

NT-proBNP, pg/ml 211 ± 172 367 ± 291 0.01 

Hypertension, n (%) 24 (75) 20 (63) 0.28 

History of AF, n (%) 14 (44) 12 (38) 0.61 

Diabetes, n (%) 2 (6) 6 (19) 0.13 

Chronic kidney disease, n (%) 1 (3) 5 (16) 0.09 

COPD, n (%) 4 (13) 2 (6) 0.39 

HFpEF diagnosis, n (%) 21 (66) 30 (94) 0.005 

Echocardiography  

LV mass, g 123 ± 33 158 ± 46 < 0.001 

LVMI, g/m2 67 ± 14 83 ± 17 < 0.001 

LAV, ml 60 ± 20 78 ± 19 < 0.001 

LAVI, ml/m2 33 ± 10 41 ± 9 < 0.001 

LVEF, % 58 ± 4 62 ± 5 < 0.001 

LVEDD, mm 44 ± 4 49 ± 5 < 0.001 

LVESD, mm 30 ± 5 31 ± 6 0.19 

Peak E-wave, cm/s 66 ± 19 87 ± 31 0.001 

Peak A-wave, cm/s 63 ± 21 83 ± 23 < 0.001 

E/A 1.15 ± 0.59 1.15 ± 0.62 1.00 

e' lateral, cm/s 10.0 ± 4.0 6.8 ± 2.6 < 0.001 

e' septal, cm/s 6.5 ± 2.1 5.9 ± 1.5 0.21 

E/e’ average 8.3 ± 2.2 13.9 ± 3.4 < 0.001 

E-wave DT, ms 212 ± 38 209 ± 30 0.81 

A-wave DT, ms 102 ± 19 118 ± 18 0.004 

IVRT, ms 96 ± 20 114 ± 24 0.007 
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AF, atrial fibrillation; A wave, peak velocity of mitral valve inflow after atrial 

contraction; BMI, body mass index; BP, blood pressure; COPD, chronic 

obstructive pulmonary disease; DT, deceleration time; e’, early diastolic 

mitral annulus velocity by Doppler tissue imaging; E wave, peak velocity 

of early diastolic mitral inflow; HFpEF, heart failure with preserved ejection 

fraction; IVRT, isovolumic relaxation time; LA, left atrium; LAVI, left atrial 

volume index; LV, left ventricle; LVEDD, left ventricular end-diastolic 

diameter; LVEF, left ventricular ejection fraction; LVESD, left ventricular 

end-systolic diameter; LVMI, left ventricular mass index; NT-proBNP, N-

terminal pro-brain natriuretic peptide; NYHA, New York Heart Association. 

 

Phonocardiographic characteristics 

  Figure 3 shows examples of heart sound and ECG recordings from 

patients of the low- and high-E/e’ groups. Though QS1 did not markedly 

differ between low and high E/e’, QS2 was longer in the latter (355 ms vs. 

424 ms), even after correcting for RR interval (QS2c: 405 ms vs. 461 ms), 

accompanied by an higher S1 frequency (39 Hz vs. 42 Hz) and S2 

frequency (42 Hz vs. 53 Hz) in the high E/e’ patient.  

 

 
Figure 3. Examples of ECG and heart sound in patients with low vs. 

high E/e’    Both examples were aligned at QRS onset at 250th ms. Note 

the sharper S1 and S2 morphologies in the lower than the upper panel, 

indicating higher frequencies at a higher E/e’ ratio.  

BP, blood pressure in unit of mmHg; ECG, electrocardiogram; EDT, E-

wave deceleration time; Q, QRS onset; QS1, Q to S1 onset; QS2, Q to S2 

onset; S1, first heart sound; S1f, S1 dominant frequency; S2, second heart 

sound; S2f, S2 dominant frequency. 
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Table 2 summarizes the phonocardiographic characteristics of the 

patients in the two groups. Heart sound amplitude was not significantly 

different between the two groups, except that S4 amplitude was 

significantly higher in the high-E/e’ group. Frequencies of S1, S2 and S4 

were significantly higher in the high- than the low-E/e’ group. The 

occurrence of S4 and combined S3 and S4 was higher in the high-E/e’ 

group, but the occurrence of S3 did not differ between the two groups. 

Regarding timing intervals, RR interval was nearly identical between the 

two groups. QS1 tended to be longer in the high-E/e’ group (P = 0.10). 

QS2 and QS2c were longer in the high than in the low-E/e’ group. 

 

Table 2. Phonocardiographic characteristics of the matched pairs 

 Low E/e’ High E/e’  

  (n = 32) (n = 32) P value 

Total heartbeat, n 410 390  

Avg. heartbeat, n 13 12  

Amplitude, x 10-4    

S1 243 (105 - 322) 184 (138 - 220) 0.14 

S2 101 (73 - 151) 100 (57 - 224) 1.00 

S3 16 (8 - 24) 16 (10 - 23) 0.99 

S4 6 (0 - 20) 15 (8 - 21) 0.03 

Frequency    

S1, Hz 42 ± 3 46 ± 8 0.003 

S2, Hz 48 ± 6 55 ± 14 0.008 

S3, Hz 34 (32 - 34) 33 (32 - 34) 0.17 

S4, Hz 28 (0 - 34) 34 (31 - 34) 0.02 

Occurrence    

S3, % 93 ± 18 91 ± 14 0.67 

S4, % 58 ± 34 78 ± 29 0.01 

S3 and S4, % 54 ± 34 71 ± 30 0.04 

Time interval    

RR, ms 860 ± 115 861 ± 104 0.98 

QS1, ms 69 ± 23 78 ± 19 0.10 

S1S2, ms 320 ± 36 333 ± 47 0.21 

QS2, ms 389 ± 42 412 ± 48 0.05 

QS2c, ms 410 ± 33 433 ± 41 0.01 

Avg., average; QS1, Q to S1 onset; QS2, Q to S2 onset; QS2c, QS2 

corrected for RR interval; S1, first heart sound; S1S2, S1 to S2 onset; S2, 

second heart sound; S3, third heart sound; S3%, percentage of heartbeats 

with S3; S3 and S4%, percentage of heartbeats with both S3 and S4; S4, 

fourth heart sound; S4%, percentage of heartbeats with S4. 
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Prediction of E/e’ using PCG features 

PCG features that differed between low and high E/e’ groups with a P 

value ≤ 0.10 in Table 2 were included in classification of E/e’ by 9. Of note, 

QS2c instead of QS2 was used to correct for heart rate. Table 3 

summarizes the optimal cut-off values, diagnostic performance and scores 

of the PCG features and NT-proBNP in predicting E/e’ > 9 in matched 

patients. The sensitivity was the same (0.83) for all S4-related features 

including S4 amplitude, S4 frequency, S4% and S3 and S4%, while the 

specificity was the highest for S4% (0.77). Both S4 amplitude and 

frequency were dependent on S4% because both were set to 0 when S4 

was undetected for a heartbeat. Hence, only the S4% was selected for the 

PCG score. S1 frequency was the highest specific feature for E/e’ 

prediction. QS1 had the highest sensitivity (0.83) and AUC (0.72) among 

all features. Each feature was assigned a score, and eligible features with 

an AUC ≥ 0.60 (in bold in Table 3) were included in the final PCG score. 

NT-proBNP showed a similar diagnostic performance to any eligible PCG 

features (P > 0.05). Addition of NT-proBNP increased the total PCG score 

to 18.  

The PCG score was applied to the matched, unmatched and all patients 

(Table 4). At the cut-off value of 152 pg/ml, NT-proBNP was a sensitive 

marker of E/e’ > 9 in all 3 groups. PCG score showed higher absolute 

AUCs than NT-proBNP in the matched and all patients, though the 

statistical significance was not reached (P > 0.05). Addition of NT-proBNP 

to the PCG score did not significantly improve the prediction of E/e’ as 

evidenced by comparisons of AUCs (P > 0.05). Of note, the absolute value 

of sensitivity increased by 0.15 - 0.30 from PCG only to PCG + NT-proBNP.   

Figure 4 shows the ROC curves for predicting E/e’ > 9 using PCG 

features alone (left panel) and with NT-proBNP (right panel). In both 

panels, the drop of AUC from the matched (blue curve) to all patients 

(orange curve) was insignificant (P > 0.05).  
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Table 3. Phonocardiography for prediction of E/e’ > 9 in matched 

patients (n = 25) 
 Cut-off value Sensitivity Specificity AUC Score* 

S4 amplitude 6.6 x 10-4 0.83 0.62 0.69 (0.47 - 0.86) 4 

S1 frequency 46.9 Hz 0.50 0.92 0.68 (0.47 - 0.85) 4 

S2 frequency 45.9 Hz 0.67 0.54 0.56 (0.35 - 0.76) 0 

S4 frequency 31.3 Hz 0.83 0.69 0.69 (0.48 - 0.86) 4 

S4% 73 0.83 0.77 0.69 (0.48 - 0.86) 4 

S3 and S4% 53 0.83 0.62 0.70 (0.48 - 0.86) 4 

QS1 64 ms 0.83 0.69 0.72 (0.51 - 0.88) 4 

QS2c 415 ms 0.67 0.77 0.67 (0.46 - 0.85) 3 

Total     15 

NT-proBNP 152 pg/ml 0.83 0.54 0.67 (0.46 - 0.85) 3 

Total     18 

AUC, area under the curve; NT-proBNP, N-terminal pro-brain natriuretic 

peptide; QS1, Q to S1 onset; QS2c, Q to S2 onset corrected for RR interval; 

S1, first heart sound; S2, second heart sound; S4%, percentage of 

heartbeats with S4. 

 

Table 4. Phonocardiography and NT-proBNP for predicting E/e’ > 9 

* Compared with matched patients: P > 0.05, DeLong test. 

AUC, area under the curve; NT-proBNP, N-terminal pro-brain natriuretic 

peptide; PCG, phonocardiography. 

 

Patients Matched (n = 25) Unmatched (n = 20) All (n = 45) 

NT-proBNP (cut-off: 152 pg/ml) 

Average score 1.8 ± 1.5 2.4 ± 1.2 2.1 ± 1.4 

Sensitivity 0.83 1.00 0.84 

Specificity 0.54 0.46 0.46 

AUC 0.67 (0.46 - 0.85) 0.78 (0.54 - 0.93)* 0.68 (0.52 - 0.81) 

PCG only (cut-off: 7) 

Average score 5.6 ± 4.8 7.1 ± 3.2 6.3 ± 4.1 

Sensitivity 0.75 0.57 0.79 

Specificity 0.77 0.46 0.55 

AUC 0.85 (0.65 - 0.96) 0.58 (0.34 - 0.79)* 0.74 (0.59 - 0.86) 

PCG + NT-proBNP (cut-off: 7) 

Average score 7.4 ± 5.4 9.5 ± 3.5 8.4 ± 4.6 

Sensitivity 0.92 0.86 0.95 

Specificity 0.62 0.38 0.31 

AUC 0.87 (0.67 - 0.97) 0.67 (0.43 - 0.86)* 0.76 (0.61 - 0.88) 
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Figure 4. PCG-only and PCG + NT-proBNP scores in prediction of 

E/e’ > 9 in matched (blue line) and all patients (orange line)    For each 

ROC curve, red dot indicates the sensitivity and specificity at a score of 7. 

 

Discussion 

  The main findings of this pilot study on the relationship between heart 

sound and echocardiography in patients suspected with HFpEF are: 1) an 

E/e’ ratio over 9 was related to higher heart sound frequencies (S1, S2 and 

S4), S4 amplitude and occurrence, and a longer QS2c; 2) QS1 was the 

best prediction marker for E/e’ > 9; and 3) PCG score showed a better 

prediction performance than any single feature, which was insignificantly 

improved by adding NT-proBNP. Our findings provide clues for using heart 

sound to screen and monitor HFpEF patients.  

 

Heart sound as a novel marker of HFpEF 

Our findings support heart sound as a novel simple marker of E/e’ 

elevation in patients suspected with HFpEF. The higher S1 and S2 

frequencies in the patients with an elevated E/e’ ratio are consistent with 

the idea that stiffened ventricles are linked to higher heart sound 

frequencies 18. Further evidence came from the more frequent occurrence 

of S4 which has been well established as a marker of less compliant 

ventricles 19-21.  

The reasons for the stiffened ventricles are multifaceted. Firstly, the 

structural cause may come from myocardial hypertrophy. In our matched 

patients, the LV mass and mass index were significantly higher in the 

patients with a high E/e’ ratio. Secondly, the higher stiffness may relate  to 
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an increased ventricular wall tension, as suggested by a larger end-

diastolic diameter and left atrial volume in the patients with a high E/e’. A 

high E/e’ per se also indicates an increased LV filling pressure 22. This 

relationship has been supported by a recent open-chest porcine study in 

which ventricular vibrations were collected using an epicardially attached 

accelerometer 23. The study demonstrated a close relation between 

changes in S1 frequency and changes in end-diastolic volume during fluid 

administration to alter ventricular preload and myocardial tension. 

Compared with hypertrophy, wall tension is likely reversed as the patients’ 

conditions are improved with treatments, indicating the value of heart 

sound frequency in monitoring the patients’ disease conditions, yet this 

idea awaits further investigation.  

 

Causes of longer QS1 and QS2 in high E/e’ 

Another finding of the present study was that HFpEF patients with a 

higher E/e’ also tended to have longer QS1 and QS2 intervals. QS1 

reflects the time required for the ventricles to build up sufficient intracardiac 

pressure to close the atrioventricular valves. Thus, prolongation of QS1 is 

associated with a slower myocardial force development and/or an elevated 

atrial pressure. Weakened myocardial force does not seem to be a major 

contributor of a longer QS1 in the high E/e’ group because this group had 

a higher LVEF compared with the low-E/e’ group (62% vs. 58%). Therefore, 

the prolonged QS1 interval in patients with high E/e’ is most likely related 

to an increased left atrial pressure. The elevated left atrial pressure not 

only increases the trans-atrioventricular-valve pressure gradient, but also 

widely separates the atrioventricular valves at the moment of ventricular 

electrical activation. Prolongation of QS1 may also come from a shortened 

PR-interval, but this possibility seems unlikely because the matched 

groups had similar PR intervals 24. Therefore, QS1 may be a marker 

tailored for differentiating HFpEF patients who are characterized by an 

increased LV filling pressure rather than a weakened myocardial force. 

This hypothesis is confirmed by the highest diagnostic performance of 

QS1 among all PCG features and NT-proBNP for prediction of E/e’ over 9.  

A longer QS2 in the high-E/e’ group indicates a delayed total electro-

mechanical systolic time. QS2 lengthening appears to be the results of 

both prolonged QS1 and S1S2 intervals. While the prolongation of QS1 

has been discussed above, the prolongation of S1S2 is likely caused by 

longer ejection time, supported by the higher LVEF in the high-E/e’ group. 
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Another cause of a longer QS2 and QS2c may be hypertrophy which has 

been shown to prolong QT interval on ECG 25. However, this relation needs 

to be further investigated.  

 

Perspectives for disease screening using heart sound 

Our findings show that PCG features are non-inferior to NT-proBNP in 

differentiating E/e’ ratios. In the matched patients, S4% and QS1 showed 

the same sensitivity as NT-proBNP. However, heart sound is 

advantageous in its noninvasiveness compared with serum NT-proBNP 

measurement. Secondly, heart sound measurement is time-efficient. In 

our study, a heart sound recording took 15 to 30 seconds. This short time 

enables a simple evaluation of E/e’ elevation in an acute setting feasible. 

Thirdly, heart sound measurement is cost-effective. The device used for 

heart sound collection such as the EKO digital stethoscope in the current 

study costs only a few hundreds of dollars and can be used as long as the 

device is charged. In comparison, NT-proBNP measurement requires 

buying the detection kit, while an echocardiography machine is generally 

sold at a much higher price than a digital stethoscope. Finally, the EKO 

device can be used by patients at home to record ECG and heart sound 

which may be remotely interpreted by the cardiologist/nurse, reducing 

hospital visits and thus healthcare cost. The above advantages make heart 

sound a promising tool for HFpEF evaluation. Hence, future studies 

focusing on implementing digital stethoscopes for HFpEF diagnosis are 

warranted. 

 

Current heart sound studies of HFpEF 

  Overall, studies of heart sound in HFpEF patients have been clearly 

overlooked considering the long history of studying heart sound in patients 

with ventricular systolic dysfunction. Recent popularity of machine learning 

has enabled the data-driven studies of heart sound for classification of 

heart failure by LVEF (i.e., normal, reduced and preserved) 9-11, 26. Early 

machine learning studies relied on manual extraction of heart sound 

features for training the algorithm. For example, extreme learning machine 

trained by heart sound features such as diastolic-to-systolic duration ratio 

showed high sensitivity (95%) and specificity (97%) in classification 

between HFpEF patients and healthy controls 9. Deep learning takes the 

advantage of automatic feature extraction from raw heart sound signals for 

training the model.  Gated recurrent unit has been used to automatically 

learn the deep features from the raw signals and shown an accuracy of 



Heart sound in HFpEF 

 
91 

 

4 

99% in classification among HFpEF, HFrEF and normal controls 11. 

Convolutional neural network trained with short-time Fourier transform 

spectrum is reported to show 99% of sensitivity and specificity in 

distinguishing LV diastolic dysfunction (n = 30) from healthy controls (n = 

41) in a small sample size study 10. The LV diastolic dysfunction group was 

a mixture of HFrEF and HFpEF patients (LVEF: 45% ± 16%) with a high 

E/e’ ratio ( 18.6 ± 6.7). 

Although machine learning is not investigated in our current study, given 

its high accuracy reported in other studies, it is conceivable that it will 

further improve the prediction power of our proposed heart sound score. 

Our findings on the relationship between heart sound and 

echocardiography provide interpretable PCG features which may be useful 

inputs for training the machine learning models. The fact that a simple 

linear combination of selected PCG features into a score already showed 

a relatively high AUC (0.85) provides a basis to utilize machine learning 

which is known for its classification of nonlinear relations inherent in the 

features. Deep learning may be another promising approach for prediction 

of E/e’ and classification of HFpEF from the normal. In this case, time-

frequency representation of heart sound may be useful to better visualize 

heart sound patterns and serve as an input to the deep learning model. 

However, deep learning requires a larger sample size in future studies.  

 

Limitations 

  Several limitations need to be addressed in the future. Firstly, this 

single-center pilot study had a small sample size which to some extent 

limited the validation of our proposed diagnostic score. It seems that the 

performance of the heart sound score was damped from matched to 

unmatched patients, though the DeLong tests did not show a significant 

difference. This is likely caused by difference in patients’ characteristics 

between the two groups. A larger sample size may help minimize this 

difference by enrolling a more representative group of patients in the 

matching cohort. A larger-scale study would also allow revealing the 

relationship between PCG features and patients’ outcomes. Secondly, a 

cut-off value of 45% rather than 50% was chosen for LVEF in this study to 

include patients suspected of HFpEF who, in the end, appeared to have 

heart failure with midrange EF in a borderline region with HFpEF. In fact, 

only 1 patient had an LVEF between 45% ~ 50% (48%). This patient did 

not differ from the other patients regarding baseline characteristics, 



Heart sound in HFpEF 

92 

 

4 

echocardiographic parameters or PCG features, and did not lead to 

notably different diagnostic performances. Thirdly, the patients included in 

the current study appeared to have a mild degree of diastolic dysfunction, 

while HFpEF patients of an advanced stage or during a decompensated 

state may present an E/e’ over 15 27. However, the fact that heart sound 

can differentiate “borderline” E/e’ values may also prove valuable for 

preliminary assessment of the patients. Moreover, considering E/e’ as a 

continuous variable rather than dichotomizing E/e’ may be more valuable 

to clinical practice, but also requires a larger sample size. Lastly, our 

diagnostic score was only based on measurements during resting status 

which may not be optimal for displaying diastolic dysfunction. Interventions 

such as exercise may help further uncover diastolic dysfunction in some 

patients suspected of HFpEF.  

 

Conclusions 

  PCG features such as heart sound frequency and timing intervals are 

related to E/e’ in patients suspected with HFpEF. Heart sound-derived 

score may help improve classification and monitoring of diastolic 

dysfunction among HFpEF patients.  
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SUPPLEMENTARY MATERIALS 

Location of heart sound components 

Signal processing procedures are shown in Figure 1 of the manuscript. 

The researcher (H.L.) analyzing heart sounds was blinded to the patients’ 

echocardiographic data until all heart sound features had been calculated. 

The raw EKO recordings had a sampling frequency of 500 Hz and 4000 

Hz for ECG and heart sound, respectively. Both recordings were 

resampled to 1000 Hz before further processing. Data from patients with 

too noisy heart sound recordings not showing clear S1 and S2 were 

excluded from analysis. 

ECG was used as a reference to find S1 and S2. S1 was defined as the 

major vibrations immediately following QRS onset, while S2 occurred 

around the end of T wave. To reduce noise, a reference point was first set 

for all 10 – 15 selected consecutive heart beats, and then a median signal 

was calculated after aligning all heart beats at the reference point. 

Subsequently, the onsets of the QRS complex, S1 and S2 were 

determined. For S1 and S2, their signal envelopes were calculated, their 

onsets being defined as the moment of the start of the rise of the envelopes. 

To identify the low-frequency S3 and S4, the raw heart sound recordings 

were lowpass-filtered with a cutoff frequency of 50 Hz. Subsequently, the 

signal envelope was calculated and S3 was automatically identified as the 

highest peak within 100-250 ms following the onset of S2 if its amplitude 

was >10% of S2 amplitude [1-5]. S4 was defined as the highest peak 

occurring 50-200 ms after the onset of the P wave on the ECG and at least 

50 ms before the onset of S1 and was only accepted as S4 if its amplitude 

was > 10% of the next S1. With the single-lead ECG used in this study, 

sometimes the P wave onset could not be identified with sufficient 

confidence. Therefore, for all patients, PR interval of ECG limb lead II was 

also obtained from clinical ECG recordings for identification of S4. If S3 or 

S4 was not detected, the corresponding amplitude and frequency were set 

to 0. Occurrences of S3 (S3%) and S4 (S4%) among the 10 to 15 heart 

beats analyzed were calculated.   
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Abstract 
Aims: 

Smartphones are equipped with a high-quality microphone which 

may be used as an electronic stethoscope. We aim to investigate 

the factors influencing quality of heart sound recorded using a 

smartphone by general users. 

Methods and results: 

An app named Echoes was developed for recording heart sounds 

using iPhone. Information on phone version and users’ 

characteristics including sex, age and body mass index (BMI) was 

collected. Heart sound quality was visually assessed and its relation 

to phone version and users’ characteristics was analyzed. A total of 

1148 users contributed to 7597 heart sound recordings. Over 80% 

of users were able to make at least 1 good-quality recording. Good-, 

unsure- and bad-quality recordings amounted to 5647 (74.6%), 466 

(6.2%) and 1457 (19.2%), respectively. Most good recordings were 

collected in the first 3 attempts of the users. Phone version did not 

significantly change the users’ success rate of making a good 

recording, neither was sex in the first attempt (P = 0.41) or the first 

3 attempts (P = 0.21). Success rate tended to decrease with age in 

the first attempt (P = 0.06) but not the first 3 attempts (P = 0.70). 

BMI did not significantly affect the heart sound quality in a single 

attempt (P = 0.73) or in three attempts (P = 0.14). 

Conclusions: 

Smartphone can be used by general users to record heart sounds 

in good quality. Age may affect heart sound recording, but 

hardware, sex and BMI do not alter the recording. 
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Introduction 

  The stethoscope has a history of over 200 years and still serves as a 

simple noninvasive tool to listen to patient’s sounds from lungs, heart  and 

intestines [1]. Conventional binaural stethoscopes comprise of a 

chestpiece and two earpieces. By putting the chestpiece against the 

patient’s skin, the doctor can listen to the patient’s sounds through the two 

earpieces. The electronic stethoscope was invented in the 1970s, allowing 

storage, replay and processing of sounds [2, 3]. However, the digital 

phonocardiogram has not been widely adopted, partly because of the 

emergence and popularity of novel imaging techniques such as 

echocardiography in the 1980s [4].  

  Recent research is creating new interest in cardiac sounds, thanks to the 

miniaturization of sound sensors, development of signal processing 

techniques and popularization of artificial intelligence algorithms [5]. The 

electronic stethoscope has now been shown to deliver a higher sensitivity 

to sound than its conventional counterpart [6]. Some handheld electronic 

stethoscopes allow simultaneous recordings of heart sound and 

electrocardiogram and are marketed to help in remote monitoring [7].  

  All electronic stethoscopes have the same mechanism of action that 

converts mechanical vibrations to digital signals. Since a decade the 

widely used smartphones are equipped with a high-quality microphone 

which may be used for recording heart sounds. This possibility will create 

some promising applications for the public to learn heart disease and for 

remote monitoring of patients at home. Several mobile App prototypes 

such as iStethoscope and CPstethoscope have been proposed to record 

heart sounds [8, 9]. Nevertheless, the central question to a large-scale 

deployment of a mobile phone as a digital stethoscope has not been 

answered: what are the factors that may affect the user’s experience on 

using the App for heart sound recording? These factors may come from 

hardware such as phone version and from user’s characteristics such as 

age, sex and body mass index (BMI).  

  To this purpose the Echoes app was designed for recording, processing 

and storage of heart sounds by means of an iPhone. The specific objective 

of this study is to investigate the effect of phone version as well as user 

characteristics  on the quality of recorded heart sounds.  
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Methods 

Echoes app 

  The Echoes app is the result of a primarily public-engagement study, 

aiming to convert a smartphone microphone into an electronic stethoscope 

so that general people can listen to their own heart sounds and learn more 

about cardiovascular disease. It does not provide any diagnosis or 

treatment information. The study has been approved by ethical committee 

of King’s College London (LRS-20/21-20985) and conforms to the 

European Union General Data Protection Regulation on data protection 

and privacy. Information sheet for participants is available online [10]. 

  The Echoes app, utilizing built-in microphone of smartphone to record 

heart sounds, is currently available for iPhone only. On launching the app, 

the users are asked to provide consent for data collection and 

management. Then a few tips pop up to guide the user to better record 

heart sounds. These tips include asking the user to remove phone case, 

finding one of four spots for recording, adjusting microphone amplification 

factor, placing the phone on the skin, taking a breath out, pressing start 

recording button, replaying to listen to heart sound, and if possible, retrying 

the recording. More details on the user’s instructions can be found in 

Figure S1 of Supplementary files. After the user’s completion of 

recording, the heart sounds are filtered using homemade signal 

processing algorithms to remove background noises. The filtered heart 

sounds are then replayed to allow the user to listen. Raw data stored 

in .wav audio format are uploaded through the Internet to Google Firebase 

database. The user is also asked to voluntarily provide anonymous basic 

demographics including age, sex, height, weight and if applicable any 

cardiac conditions. An illustration of data collection and storage is shown 

in Figure 1. 
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Figure 1. Demonstration of recording heart sound using Echoes app 

 

Data processing 

  The users’ demographic data and raw heart sound recordings were 

automatically downloaded using Python Firebase API called Pyrebase for 

offline analysis [11]. During the whole analysis, data were only accessible 

by a researcher (HL). 

 

Visual assessment of heart sound quality 

  All raw heart sound recordings were plotted using Python software to 

observe signal morphologies. Then the heart sound quality was visually 

assessed per recording by one observer (HL). Each recording was 

assigned to one of the following three categories: good quality, unsure 

quality and bad quality. Good-quality signal was defined by at least 1 

heartbeat where both the first (S1) and the second heart sound (S2) were 

clearly visible in the raw recordings. Bad-quality signal was defined by 

absence of any heartbeat with S1 and S2. Unsure-quality signal was 

defined if the observer deemed the signal to be in need of further 

processing for reliable identification of any heartbeats. To test the inter-

observer variability of this visual quality assessment approach, the second 

assessor (JL) independently evaluated a subsample of 1000 heart sound 
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recordings randomly selected from the heart sound database according to 

the criteria above.   

  For validation purpose, examples of good-, unsure- and bad-quality heart 

sounds were processed using a time-frequency analysis method called S-

transform [12]. The S-transform projects the one-dimensional heart sound 

signals to a two-dimensional time-frequency plane for better observations 

of signal components. S-transform was only used for representative heart 

sound examples of good, unsure and bad quality in order to confirm 

whether our proposed visual assessment of heart sound quality was 

consistent with the advanced signal processing technique.  

 

Factors affecting heart sound quality  

  Heart sounds classified as good quality were deemed interpretable for 

analysis. Success rate was defined by the proportion of users who made 

at least 1 good-quality recording within a given number of attempts. We 

analysed the factors affecting the users’ success rate, including hardware 

(i.e., iPhone version) and the users’ demographics including sex, age and 

body mass index (BMI, calculated by weight (kilogram) divided by height 

(meter) squared). We could not analyse the effect of recording location on 

heart sound quality because all recordings from those users who indicated 

recording location were at the same area (Spot 1 of the app) on the chest.    

  

Statistical analysis 

  Count data were expressed as number (percentage). Skewed data 

including number of recordings per user were expressed as median 

(interquartile range). Time-frequency analysis was performed using 

MATLAB R2018b (MathWorks). To reduce the effect of level of education 

on our analysis, all known users including university researchers, app 

programmers, app designers and intern students were excluded from the 

heart sound database. Relations between success rate and time of 

measurement, phone version, sex, age and BMI were analysed using 

Mann-Kendall trend test. Comparisons between two groups (male vs. 

female, age group and BMI group) were performed with chi-square test. 

When analysing the relations between iPhone version, sex, age, BMI and 

heart sound quality, we excluded groups with less than 10 users. All 

statistical analyses were performed using PyCharm 2021.2.2 (JetBrains 

s.r.o.). Statistical significance was defined as a two-tailed P value <.05. 
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Results 

Data processing 

  The Echoes app was officially released on 21 May 2021 and advertised 

through social media channels such as Twitter and several newsletters 

[13-16]. For the current analysis, data were collected between 21 May and 

4 October 2021. A total of 7597 recordings from 1148 users were obtained 

(Figure 2). The median number of recordings was 3 (IQR 2-6) per user. 

After excluding 27 recordings with a duration less than 5 seconds, 7570 

recordings were visually assessed for heart sound quality. 

 

 

 
Figure 2. Overview of data processing 

G, good-quality recording; U, unsure-quality recording; B, bad-quality 

recording. 

 

Visual heart sound quality assessment 

  Good-, unsure- and bad-quality recordings amounted to 5647 (74.6%), 

466 (6.2%) and 1457 (19.2%), respectively. A total of 80.1% (919/1148) 
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users were able to make at least 1 good-quality recording. Median number 

of attempts needed to make the first good-quality recording was 1 (IQR 1-

1) per user. Inter-observer agreement of heart sound quality was 84.7% in 

the 1000 randomly-selected subsamples (Table S1). For good-, unsure- 

and bad-quality recordings, the agreements of the second assessor with 

the first assessor were 89.1% (672/754), 41.0% (25/61) and 81.1% 

(150/185), respectively. Most (61.4%, 94/153) of disagreements occurred 

in the category of “Unsure-quality”.  

  Examples of good- (A), unsure- (B) and bad-quality (C) heart sounds are 

shown in Figure 3, including time-frequency spectrum (upper strip) and 

raw signals (lower strip). Audio files of these examples are also available 

online [17]. The good-quality recording (3A) clearly showed two major 

heart sound components (i.e., S1 and S2). Sound energies of S1 were 

preponderant below 100 Hz, while S2 had energies spreading beyond 100 

Hz.  In some heartbeats, the third (S3) and/or fourth heart sound (S4) that 

usually have a low signal amplitude, were also visible. The unsure-quality 

recording (3B) did not show clear S1 and S2 heart sound components in 

raw signals, though a few high-amplitude vibrations seemed to appear 

regularly. Using time-frequency analysis in these unsure-quality signals, 

S1 showed as low-frequency clusters occurring at a regular interval, 

followed by S2 in high-frequency regions. The bad-quality recording (3C) 

did not show any recurring components, neither in raw signals nor in the 

time-frequency spectrum.  

 

Time of measurement 

  The influence of increasing user experience on sound quality was 

evaluated using the Mann-Kendall trend test. The proportion of users who 

made a good-quality recording significantly increased with the number of 

attempts to measure heart sound (P < 0.001; Figure 4). For the first 

attempt, ~ 60% of new users made a good-quality recording, which 

percentage increased to ~ 75% in the subsequent two attempts. From the 

4th attempt and further, the success rate barely improved and approached 

~ 80%, indicating that most users “learned” how to use the app within the 

first 3 attempts.   
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Figure 3. Time-frequency colormap (upper strip) and raw signal 

(lower strip)of good- (A), unsure- (B) and bad-quality (C) raw heart 

sound recordings 

The time-frequency colormaps show how heart sound frequency (vertical 

axis) changes with time (horizontal axis), with heart sound energy ranging 

from low (in blue) to high (in red). In raw signals, locations of first- (S1), 

second- (S2), third- (S3), and fourth heart sound (S4) are labelled. 
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Figure 4. Change of success rate with number of attempts to record 

heart sound  

 

Phone version 

  The relationship between iPhone version and proportion of users who 

succeeded in making a good-quality recording in 1 attempt (orange line) 

and in 3 attempts (red line) is shown in Figure 5. The proportion 

significantly increased when more recent iPhones were used for the first 

attempt (P = 0.03), but not for the first 3 attempts (P = 0.29). However, the 

significance was mainly driven by the lowest success rate in the users of 

iPhone 7 in both the first attempt and the first 3 attempts. Actually, the 

success rate did not change markedly from iPhone versions 8 to 13, 

fluctuating within 10% (for the first attempt: 55~65%; for the first 3 attempts: 

70~80%). These numbers showed a good hardware support when using 

iPhone to record heart sounds.  
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Figure 5. Version of smartphone and success rate  

Orange line and dark blue boxes indicate the percentage of heart sound 

recordings rated with good quality in  the first attempt by the users, while 

red line and light blue boxes in the first 3 attempts.   

 

Sex and age 

  Sex was reported in 184 (16%) users, including 92 males and 92 females. 

Success rate did not differ between males and females in the first attempt 

(P = 0.41; Figure 6A) and in the first 3 attempts (P = 0.21). Compared with 

females, the users who did not report their sex had a significantly lower 

success rate in 1 attempt (P = 0.002) and in 3 attempts (P = 0.003). This 

might indicate that the ones who reported their sex and/or age might have 

done so because they were much more confident in their recordings (they 

had a higher success rate). 
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  Age (35 ± 14 years; range: 10-69 years) was reported in 194 users. When 

grouping the users’ age by every decade, in the first attempt, success rate 

of making a good-quality recording tended to decrease with age (P = 0.06; 

Figure 6B). However, this trend diminished when the first 3 attempts were 

taken into consideration, indicating good learning capability of more 

advanced-age users (P = 0.70).   

 

 
Figure 6. Changes of percentage of users having a good-quality heart 

sound recording with sex and age  

Orange line and dark blue boxes indicate the percentage of heart sound 

recordings rated with good quality in  the first attempt by the users, while 

red line and light blue boxes in the first 3 attempts.  

 

BMI 

  Body weight and height were reported in 154 (13%) users. BMI (23.6 ± 

4.2 kg/m2; range: 15.1-34.5 kg/m2) was calculated and grouped in 5 kg/m2 

bins (Figure 7). Success rate did not significantly decrease with BMI, 

neither in 1 attempt (P = 0.73) nor in 3 attempts (P = 0.14). However, 

success rate dropped for BMI >30 kg/m2. In fact, the success rate did not 

change from the first attempt to the first 3 attempts in the highest BMI 

group (56% vs. 56%).  
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Figure 7. Changes of percentage of users having a good-quality heart 

sound recording with body mass index 

Orange line indicates the values of the first recording. Red line indicates 

the values of the first 3 recordings.   

 

Discussion 

Principal findings 

  Three quarters of the participants from the general public can record 

good-quality heart sounds by means of a mobile phone. Principal findings 

of this study are that 1) it is feasible to use a smartphone microphone to 

record heart sounds in and by the general population; 2) approximately 3 

out of 4 raw unfiltered heart sound recordings are of good-quality and ~ 4 

of 5 users can finally manage to record a good-quality recording; 3) a 

maximum of 3 attempts is needed to obtain  a good-quality recording of 
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heart sound; and 4) iPhone version and sex do not affect heart sound 

recordings, but BMI > 30 kg/m2 and age > 60 years seem to lead to lower 

quality recordings. 

 

Can smartphone be used to record heart sounds? 

  Nowadays, most smartphones are equipped with a high-quality 

microphone having a frequency response of 20 Hz - 20 kHz. This range is 

more than sufficient to cover the frequency range of heart sounds (20-200 

Hz) [18]. A study tested the accuracy of smartphone sound measurement 

using signals between 20 Hz and 20 kHz, and found that even for the very 

early versions of iPhone (iPhone 3Gs to iPhone 5), the difference in sound 

pressure level recorded using a professional sound recorder and an 

iPhone microphone was not significant [19]. That finding was supported by 

a study that used an app (iStethoscope) to record heart sounds, though no 

data were shown regarding validity of each version of iPhone in recording 

heart sounds [8]. Our study extends these studies by showing that the 

more recent versions of iPhone from 7 to 13 also work for heart sound 

measurement. Therefore, it appears appropriate to conclude that the 

iPhone can be used for heart sound collection. The only study on Android 

phones for heart sound collection reported that heart sounds can be 

recorded in hospital settings using an app (CPstethoscope) on Samsung 

and LG phones [9]. Among the 46 patients enrolled, the researchers were 

able to distinguish among normal, third heart sound, fourth heart sound, 

systolic murmur and diastolic murmur. However, in this small-sample-size 

pilot study, the heart sounds were measured by researchers who had 

professional knowledge about cardiovascular anatomy. Our study was a 

large-scale study that distributed an app among over 1100 non-medical 

public users. The results showed that the smartphone could not only 

record the most distinctive components (S1 and S2) of heart sound, but 

also the low-amplitude and low-frequency extra heart sound components 

(S3 and S4) that are normally difficult to hear by experienced doctors using 

stethoscope. Moreover, our study shows good utilization of the app among 

the first-time users for heart sound measurement. Overall, smartphones, 

including both iPhone and Android, can be used to record heart sounds. 

 

Factors affecting heart sound quality 

  We found that despite a high success rate (~ 80%) of recording a good-

quality heart sound among the users, a few factors still affected the use of 
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our app. The fact that success rate increased with time of measurement, 

especially in the first 3 attempts, indicates the possibility of improving the 

app design to better guide the users to quickly learn how to use the app in 

the first few attempts in the future. For example, compared with the static 

user’s guidance in the current app, we may use a video to guide the users 

how to use the app properly. Regarding hardware, iPhone version doesn’t 

seem to relate to heart sound quality, indicating similar or even the same 

microphone sensor used in the series of products. Signal quality is not 

markedly different between sexes, showing a good understanding of the 

app in both sexes. The decreased proportion of users who were able to 

make a good-quality recording with age warranted a better design of the 

app to guide the old-age users to record heart sounds. However, despite 

the lower success rate among the elderly for the first attempt of the app, 

actually these users quickly learned how to correctly use the app in the 

next two attempts, as evidenced by the higher increase of success rate 

from the first attempt to the first 3 attempts compared to their younger 

counterparts. Yet this finding may need to be confirmed in a larger-scale 

study in the future.  

 

Advantages of using smartphone for recording heart sounds 

The huge amount of smartphone users (6.38 billion in 2021) provides a 

unique opportunity to turn the built-in microphone to an electronic 

stethoscope for both health education among the public and for medical 

purposes among the patients [20]. Since the solution does not incur any 

extra cost contrary to buying a professional electronic stethoscope, those 

who are living in underdeveloped or remote areas short of medical 

resources can use the app for health-related purposes. From this 

perspective, turning smartphone into an electronic stethoscope provides a 

solution to reduce health system costs in these areas. Our app may 

provide an immediate solution for auscultation in some urgent situations 

such as on a train or street, where a stethoscope may not be readily 

available but smartphones are likely to be present. 

When comparing with conventional stethoscope, the smartphone app 

also allows storage, replay, analysis and comparison of heart sounds. 

Clinically, identification of pathological heart sounds (e.g., S3 and S4) 

relies on well-trained doctors’ ears, and it is well known that a high 

interobserver variability exists in auscultation among doctors [21, 22]. 

Once heart sounds are recorded using our app, the signals may be 

analysed using more advanced signal processing techniques, like the 
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time-frequency spectrum analysis applied in this study, to better observe 

various heart sound components and to reduce the interobserver 

variability. Even for experienced doctors, it is challenging to assess 

differences in heart sounds from one day to another, making it difficult to 

track patient’s status on a daily basis. By storing heart sound data in the 

cloud, our app allows replaying previous heart sounds to better compare 

subtle heart sound features.  

The human ears’ abilities may further be enhanced by combining with 

automatic algorithms including machine learning algorithms. For example, 

the PASCAL Classifying Heart Sounds Challenge using heart sounds 

collected from the iPhone-based app (iStethoscope Pro) has stimulated 

the development of multiple algorithms including convolutional neural 

network, deep learning algorithm and artificial neural network for automatic 

segmentation and classification of heart sounds [23-26].  

 

Future perspectives 

  Our study was a preliminary analysis of an increasingly expanding heart 

sound dataset of the Echoes app. Our findings support further 

development of the app for not just public engagement purpose but also 

medical purposes. As a low-cost and easy-to-use solution, our app may 

be deployed on a large scale in areas with insufficient medical resources 

to help screen and monitor patients with cardiovascular diseases. An 

example is to use the app to screen for congenital and valvular heart 

diseases which mostly produce systolic and/or diastolic murmurs but 

which may be too late to be intervened at an advanced stage. Another 

potential application is to use the app for heart rate and rhythm 

managements in patients with chronic cardiovascular diseases such as 

atrial fibrillation. Atrial fibrillation creates the irregularities of not only 

rhythm but also amplitude of the heart sounds. In this respect, heart 

sounds may serve as a valuable tool in supporting electrocardiogram for 

evaluation of arrhythmias. In particular, our app enables the users’ self-

recording of transient arrhythmias in conditions like paroxysmal atrial 

fibrillation and premature ventricular contraction at home for further 

hospital consultation.  

  Since built-in microphone of smartphone is more sensitive to vibrations 

falling in audible frequency range (≥ 20 Hz), it may be combined with the 

built-in inertial measurement unit of the phone for a better measurement 

of lower-frequency vibrations such as seismocardiogram. For example, the 
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built-in accelerometer may be put on the chest of a patient in supine 

position to record seismocardiogram [27]. However, before applying the 

app to the patients, further preliminary tests in hospital settings may help 

improve the usability of the app and establish its role in conjunction with 

other existing monitoring methods such as electrocardiogram.  

 

Limitations 

Our study had a few limitations. Firstly, we assessed heart sound quality 

by eyeballing which might have introduced some subjective biases. 

However, currently there is no consensus on how to assess heart sound 

quality. It seems reasonable to state that a segment of heart sounds that 

looks noisy and bad-quality is also likely not be well heard by clinicians 

because human ears are more sensitive to high-frequency sounds (> 200 

Hz) while most heart sound energies are located at low-frequency range 

(< 100 Hz). On the other hand, this eyeballing labelling of signal quality 

provides a gold reference to develop automatic algorithms such as 

machine learning to classify heart sounds [23, 25]. Secondly, the Echoes 

app was only available for iPhone, and the advertisement channels might 

limit our abilities to cover users of all educational backgrounds. In the 

future, we need to develop the app for Android users who account for more 

than half of overall smartphone users. Also, promotion of the app through 

channels such as Google Ads may help cover more diverse users. 

Whether some other factors such as dimensions or weight of the phone 

would affect heart sound quality may also be worthy of investigation. Our 

third limitation came from the low proportion of users who filled in their 

personal information (e.g., sex and age) or indicated the specific location 

for recording heart sounds on the chest wall. Improvements of the user 

interface are necessary to guide the users to submit these data. 

Furthermore, some modifications including enlargement of font size and 

simplification of texts are crucial since the users with heart diseases are 

frequently old. Lastly, our current version of the Echoes app only allows to 

record up to 7 seconds of heart sounds. This may be extended to a longer 

period of time such as 30 seconds for more robust evaluation of heart 

rhythm and rate.  

 

Conclusions 

  A smartphone can be used to record heart sounds in general population. 

Users of older age and higher BMI are likely to have lower-quality heart 
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sound recordings. The app solution may be useful for monitoring heart 

health on a large scale in the future.  
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SUPPLEMENTARY MATERIALS 

Figure S1. Step-by-step user’s instructions on using the Echoes 

app 
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Table S1. Agreements of visual assessment of heart sound quality 

between two assessors (n = 1000) 

 Assessor 2  

Good Unsure Bad 

A
s
s
e

s
s
o

r 
1

 Good 672 65 17 754 

(75.4%) 

Unsure 8 25 28 61 (6.1%) 

Bad 6 29 150 185 

(18.5%) 

 686 

(68.6%) 

119 

(11.9%) 

195 

(19.5%) 

847 

(84.7%) 
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General discussion and impact 

  The overarching goal of this thesis is to provide insights into the 

relations between heart sound characteristics and hemodynamics in 

heart failure, and test feasibility of measuring heart sounds on a large 

scale using mobile phones.     

We investigated the use of heart sounds for estimation of 

interventricular (VV) delay in Chapter 2, and for optimization of 

atrioventricular (AV) delay in Chapter 3. In Chapter 2, a novel 

algorithm was proposed for automatic calculation of VV delay from 

second heart sounds (S2) measured in open-chest porcine experiments. 

A close relation was observed between algorithm-estimated S2 splitting 

and invasively measured VV dyssynchrony. In Chapter 3, we 

investigated optimization of AV delay in a combined experimental-

clinical study. In the experimental study, heart sounds were collected 

from pigs under baseline and myocardial depression. In the clinical 

study, heart sounds were collected from the patients using a 

microphone incorporated in a pulse generator of a cardiac 

resynchronization therapy (CRT) device. Both studies indicated close 

relations between heart sound-derived systolic time intervals (STIs) 

and left ventricular (LV) contractility indicators during varying paced AV 

delays. Loss of hemodynamics at optimal AV delays determined by 

heart sounds was minor. Thus, heart sound-derived STIs can probably 

serve as useful indicators for optimization of AV delay in CRT.  

While CRT is indicated for patients with severely reduced ejection 

fraction, heart failure with preserved ejection fraction (HFpEF) is faced 

with a scarcity of treatments. Close monitoring of these patients is 

nonetheless important to identify symptoms at an early stage so that 

drugs can be utilized to relieve the patients’ symptoms. In Chapter 4, 

we conducted a pilot study with a handheld digital stethoscope to 

explore associations between phonocardiography (PCG) and 

echocardiography in patients suspected of HFpEF. The study showed 

that heart sound frequency, STIs and occurrence of fourth heart sound 

were linked to the ratio of early diastolic mitral inflow to mitral annulus 

velocity (E/e’), a common echocardiographic indicator of elevated LV 

filling pressure and diastolic dysfunction. Furthermore, we proposed a 

combined score based on heart sound features to differentiate E/e’ 

below and above 9, which showed good performance in both matched 

patients and all enrolled patients. The study may provide novel non-

invasive markers for evaluation of HFpEF patients. 
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One major bottleneck in the widespread application of heart sounds 

for home monitoring is the lack of an affordable device to measure heart 

sounds. In Chapter 5, we tested the feasibility of using the microphone 

of smartphones as an electronic stethoscope. Nearly 80% of the users 

were able to record heart sounds by themselves, and around 3 out of 4 

recordings were visually labelled as good quality. The quality of 

recorded heart sounds did not significantly differ by sex or phone 

version but tended to be lower in patients with an advanced age and a 

high body mass index. The study was the first in investigating factors 

affecting heart sound quality among general users. It provided evidence 

and confidence to further develop smartphone for daily remote 

monitoring of the patients, as one of basic components of mobile health 

(mHealth).  

In this chapter, we will discuss our findings from a broader 

perspective. To do so, we first present a brief review of history of heart 

sound research, together with evolution of device for measurement of 

heart sounds. Then alterations of heart sounds in heart failure are 

analyzed, and the novelty of our research results is evaluated. The past 

two decades have seen emergence of novel tools for measurement and 

algorithms for analysis of heart sounds. These advancements will be 

discussed in the broad context of mHealth. This chapter is wrapped up 

with discussion on scientific and social impacts of the findings of this 

thesis. 

 

1. Three waves of heart sound research 

Literature search for publications on heart sounds has clearly shown 

three waves of research enthusiasm (Figure 1). The first wave started 

from early 19th century and spanned across the whole 20th and 

beginning of the 21th century. Early days of heart sound research were 

centered on how to develop a simple tool for auscultation. History of 

auscultation is generally thought to start from an accidental finding by 

René Laennec who was able to listen to sounds of the heart by rolling 

a squire of paper to a cylinder and applying it to the patient’s precordial 

area in 1816 [1]. Since then, the instruments for auscultation have 

greatly evolved. An important landmark is the invention of the binaural 

stethoscope by Arthur Leared in 1851, which has been the prototype 

for all stethoscopes used nowadays [2]. However, human ears may not 

serve as the best detector of low-frequency vibrations like heart sounds. 

Boosted by progresses in electronic engineering, PCG machines were 

developed that used electronic modules for sensing vibrations and an 
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oscillograph for displaying signals [3]. Indeed, the first wave of heart 

sound research was initiated by the popularity of the PCG machine in 

1950s, contributing to most (88%) of all publications on heart sounds. 

During this first wave, two major research topics were origin of heart 

sounds and applications of heart sounds to diagnosis of diseases. 

Investigations on the first topic resulted in several theories on the 

origin of heart sounds. While early studies hypothesized that sudden 

tensing of ventricular muscles or cardiac valves gives rise to heart 

sounds, later studies tended to support the idea of vibrations of the 

whole cardiohemic system including valves, myocardia, blood mass and 

adjacent tissues as origin of heart sounds [4-7]. The recent simulation 

study in our group, based on the cardiohemic hypothesis, appeared 

quite consistent with previous observations of heart sounds in normal 

condition, heart failure and exercise [8]. Chapter 4 showed a higher 

frequency of heart sounds in patients with elevated LV filling pressure. 

This was likely caused by the vibrations of a blood column encapsulated 

in a stiffened structure consisted of myocardia, valves and adjacent 

tissues.  

The second distinctive feature of the first wave of heart sound 

research is the large number of observations on heart sounds in various 

diseases. The study on alterations of heart sounds in heart failure is an 

example and will be discussed below in Section 2.  

The first wave of heart sound research waned at the emergence of a 

novel imaging technique, echocardiography. The first course dedicated 

to cardiac ultrasound was in 1968 and the first book on 

echocardiography in 1972 [9]. Virtually in parallel, researchers’ interest 

in heart sounds has faded from the 1970s to 2000, with the number of 

annual publications drastically decreasing from over 400 to less than 

40.  
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In the first two decades of the 21st century, the second wave of heart 

sound research occurred because of advancements in signal processing 

techniques. The most important progress is the development and 

enhancement of multiple time-frequency representation algorithms for 

heart sound analysis, including short-time Fourier transform, wavelet 

transform, Hilbert-Huang transform and Wigner distribution, which are 

still widely used nowadays [10-13]. These time-frequency 

representation algorithms allow to project one-dimensional time-series 

signals such as heart sounds to a two-dimensional map for better 

observations of changes of frequency and energy with time. One of 

important applications of time-frequency projection is for estimation of 

heart sound splitting. In Chapter 2, S2 was projected to a time-

frequency map using S-transform to allow automatic tracking of aortic 

and pulmonic components. The S2 splitting interval was calculated from 

the timing difference between the two components. The algorithm was 

validated in simulated conditions and showed a close relation to the 

invasively-measured “gold standard” of VV dyssynchrony. In contrast, 

previous studies on S2 splitting using time-frequency representation 

algorithms were neither validated in simulation nor shown to be related 

to ventricular activities in experiments [14-18]. 

The past 5 years have seen the commencement of a third wave of 

heart sound research, boosted by open-access heart sound datasets 

and machine learning algorithms. The most-cited heart sound dataset 

is the PhysioNet Heart Sound Database released in 2016 which contains 

over 2400 heart sound recordings from nearly 1300 healthy volunteers 

and patients [19]. The dataset has stimulated studies on algorithms for 

automatic segmentation, feature extraction and classification of heart 

sounds [20-22]. All these three tasks can be achieved using machine 

learning, which is discussed in Section 3.  

  The above-mentioned progress on heart sound research has benefited 

from continuous evolutions of heart sound measurement tools. This 

topic will also be covered in Section 3.  

 

2. Heart sounds in heart failure 

The origin of heart sounds dictates that any alterations of cardiac 

mechanical activities during diseased conditions may affect 

morphologies and timing of heart sounds. In this thesis, we focus on 

the alterations of heart sounds in heart failure in Chapters 2, 3 and 4. 

Heart failure may be caused by either systolic or diastolic dysfunction, 

or both. The former is also referred to as heart failure with reduced 
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ejection fraction, while the latter is called HFpEF [23]. This section will 

discuss the relations of various heart sound features including STIs, 

dominant frequency and splitting interval to heart failure. Furthermore, 

values of heart sounds in predicting heart failure patients’ outcomes are 

discussed. 

 

2.1 STIs 

STIs are time intervals within the cardiac systole that can be derived 

from simultaneous heart sound and electrocardiogram (ECG) 

measurements, including time interval from onset of QRS to onset of 

S1 (QS1) and time interval between onsets of S1 and S2 (S1S2). 

Several studies reported a longer QS1 in heart failure patients 

compared with normal subjects [24-28]. Findings regarding S1S2 in 

heart failure were inconsistent [26, 28]. This was likely caused by 

differences in confounding factors between the studies, such as heart 

rate, gender and body mass index of the patients. Chapter 3 

circumvented these factors by using animals as their own controls while 

varying paced AV delays with a fixed heart rate. The study found close 

relations between STIs (QS1 and S1S2) and myocardial contractility 

evaluated using invasive pressure indicators including the maximal rate 

of rise of LV pressure.  

  In addition to myocardial contractility, atrial pressure also seems to 

play a crucial role in determining QS1. Chapter 4 shows that patients 

with an enlarged left atrial volume and elevated LV filling pressure tend 

to have a longer QS1. It is likely that elevated atrial pressure at a given 

rate of rise of LV pressure delays the timing of atrio-ventricular pressure 

cross-over and thus the onset of S1 [29]. Overall, QS1 and S1S2 may 

serve as useful timing indicators of ventricular systolic and diastolic 

(dys)function.  

 

2.2 Frequency of heart sounds 

  Little is known about changes of heart sound frequency in heart failure. 

This may have been caused by complexity of frequency calculation 

during the first wave of heart sound research when computers were 

either unavailable or primitive. From a physics perspective, frequency 

of a harmonic oscillator is equal to the square root of material elasticity 

divided by the mass of the system. An early observational study 

reported S1 energies shifted toward low-frequency range in patients 

with cardiomyopathy [30]. The authors hypothesized that decreased 

myocardial elasticity and volume overload together may have resulted 
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in reduced S1 frequency. However, myocardial elasticity is also likely 

increased in these patients due to more stretched myocardium by 

enlarged LV end-diastolic volume. This idea is supported by data from 

a recent porcine study showing that the dominant frequency of S1 

increases with end-diastolic volume [31]. In patients suspected of 

HFpEF, S1 frequency tends to increase with elevated LV filling pressure 

(Chapter 4). The structural cause may come from LV hypertrophy, as 

evidenced by a heavier LV mass in patients with a higher E/e’ ratio.  

Our study is the first to demonstrate relationship between heart 

sound frequencies and echocardiographic parameters. In addition to S1 

frequency, S2 and S4 frequencies have also been found higher in 

patients with elevated LV filling pressure, suggesting a stiffened 

cardiohemic system in these patients. However, these findings still need 

to be confirmed in more extensive studies.  

 

2.3 Splitting of heart sounds 

Heart sounds are initiated by valve closure, with S1 containing mitral 

and tricuspid components, while S2 containing aortic and pulmonic 

components. Measuring this heart sound splitting may be of value for 

evaluation of VV dyssynchrony which is not uncommon in heart failure 

patients. A pulsed-wave Doppler imaging study in patients with reduced 

LV ejection fraction (< 35%) showed that up to 72% of patients with 

left bundle branch block and QRS duration over 150 ms have a 

mechanical VV delay greater than 40 ms, which remained above 50% 

in patients with a QRS duration between 120 – 150 ms [32]. The 

benefits of correcting for VV dyssynchrony in these patients have been 

widely validated in large clinical trials, but the selection of eligible 

candidates for CRT is mainly based on electrical dyssynchrony assessed 

using ECG criteria such as QRS duration and LBBB morphology [23]. 

Addition of heart sounds to current criteria may provide an extra layer 

of information on mechanical dyssynchrony. In the Markers and 

Response to CRT (MARC) study, mechanical VV delay was shown to 

contribute to patient selection [33]. Following CRT implantation, 

splitting of heart sounds may also be useful for regular evaluation of VV 

contraction. The Cardiac Resynchronisation in Heart Failure (CARE-HF) 

study showed that CRT significantly reduced VV mechanical delay by 21 

ms during 3 months follow-up, which persisted up to 18 months [34]. 

While the study had to rely on echocardiography for follow-up of the 

patients, heart sounds can be regularly recorded by the patients at 
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home, or using a microphone in the implanted device in combination 

with automated adjustment, as is the case in the SonR system. 

Moreover, computer simulation studies in our group showed that S2 

splitting is a promising tool for evaluation of type and evolution of heart 

failure. S2 splitting interval is prolonged as LV function worsens at 

constant RV function, while shortened or even reversed as only RV 

function worsens [8]. Therefore, S2 splitting interval, used alone or 

combined with other heart sound components such as third heart sound, 

may be helpful for titration of drugs such as diuretics and beta-blocker, 

as well as optimization of pacemaker therapy in heart failure patients.  

The findings in Chapter 2 confirm that S2 splitting can be determined 

reliably. Several aspects of this experimental study are noteworthy. 

Firstly, signal-to-noise ratio of S2 in our study is much higher than 

previous studies because heart sounds were measured epicardially on 

the right ventricular outflow tract close to the pulmonic and aortic 

valves. In comparison, most previous studies collected heart sounds on 

the chest and thus might have suffered from interference by noises 

such as respiratory sounds. Moreover, the pulmonic component was 

likely poorly recorded in previous studies due to its low amplitude and 

damping during its transmission to the chest. Secondly, an advanced 

automatic signal processing technique was utilized to calculate splitting 

interval of S2, while previous studies had to rely on eyeballing to 

identify heart sound components. Each of S2 components (aortic or 

pulmonic) consists multiple peaks and nadirs before the signal gradually 

damps, creating challenges for visual inspection of heart sound 

components. Lastly, S2 splitting interval showed a close relation to VV 

mechanical dyssynchrony measured invasively with catheter, which has 

not been reported in any previous studies.  

In Chapter 2, we only investigated splitting of S2 rather than S1 

because the epicardial sensor on right ventricular outflow tract was 

assumed to optimally record S2. Nonetheless, S1 splitting may similarly 

provide useful information on VV dyssynchrony, as indicated in previous 

roentgenkymographic and echophonocardiographic studies in patients 

with left and right bundle branch block [35-37]. The most distinctive 

advantage of evaluation of S1 splitting compared to S2 splitting is the 

close proximity of S1 with the time to ventricular contraction, which is 

crucial for evaluation of cardiac function. Future studies are warranted 

to study in more detail the relationship between S1 splitting and VV 

dyssynchrony. 
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2.4 Relations between heart sounds and patient outcome 

  The close relationship between heart sounds and hemodynamics 

makes it reasonable to hypothesize that heart sounds can serve as 

useful prognosticators in heart failure. Several studies have 

investigated the relationship between heart sounds and patient 

outcome. The third heart sound (S3) detected during physical 

examination on hospital admission is associated with higher in-hospital 

all-cause mortality and cardiac death in acute heart failure [38]. During 

a mean follow-up of 32 months, S3 is an independent predictor of 

hospitalization for heart failure and death from pump failure [39]. 

Recently, an S3 score calculated automatically from timing, duration, 

intensity and frequency of S3 has been reported as prognosticator of 

all-cause mortality in patients with chronic heart failure [40]. In 

contrast, S4 is only reported in a study as an indicator of favourable 

outcomes in patients with hypertrophic cardiomyopathy plus sinus 

rhythm [41]. The finding seems contrary to most previous studies 

reporting S4 as a specific marker of elevated end-diastolic pressure 

[42-44]. Our findings in Chapter 4 also demonstrated that S4 is more 

frequently observed in patients with increased LV filling pressure. The 

contradiction likely arises from small sample size (only 9 patients 

enrolled in the S4-absent group) and composite outcome (a 

combination of cardiac death, stroke, hospitalization for worsening  

heart  failure,  and  newly  developed  atrial  fibrillation) of the 

hypertrophic cardiomyopathy study [41]. Interestingly, no reports have 

been found on the impacts of  S1 and S2 properties on patient outcomes, 

though they are the most distinctive parts of a heart sound recording. 

The results obtained on the relations between hemodynamic factors and 

S2 splitting (Chapter 2), STIs (Chapters 3 and 4) and dominant 

frequency (Chapter 4) indicate that studies on how S1 and S2 relate 

to patient outcome may be worthwhile to perform. 

 

3. Heart sounds in the 21st century 

  The past two decades have seen increasing interest in research of 

heart sounds, as demonstrated in Figure 1. These studies are driven 

by a few key factors including emergence of new tools for recording 

heart sounds, advancements of digital signal processing and popularity 

of artificial intelligence. Furthermore, the coronavirus disease 2019 

(COVID-19) pandemics in the past two years have greatly accelerated 

the adoption of mHealth techniques in clinical practice. The possibility 
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of using heart sounds for mHealth purposes in post-COVID era is also 

discussed in this section. 

 

3.1 Evolution of tools for measurement of heart sounds 

In the past two decades, miniaturization of sensors and data 

processing units gives rise to portable, implantable and wearable digital 

stethoscopes for recording heart sounds [28, 45, 46]. Various ways of 

measuring heart sounds have been explored in this thesis. In Chapter 

2, heart sounds were measured using a miniaturized accelerometer that 

can be further incorporated in a pacing lead like the SonR system [46]. 

In Chapter 3, heart sounds were measured by a microphone 

implemented in a pulse generator. In Chapter 4, a handheld digital 

stethoscope was utilized for simultaneous measurements of heart 

sounds and ECG on the skin. In Chapter 5, a smartphone was turned 

into an electronic stethoscope to enable a large-scale collection of heart 

sounds. All these measurement techniques are considerably better than 

the early studies with PCG machine. An important feature of all the 

newly developed tools is that they allow data collection both at hospital 

and at home, enabling continuous monitoring of patients’ conditions. 

This may have implications for reducing healthcare costs and hospital 

visits in the future. 

 

3.2 Advancements of digital signal processing 

  Digital signal processing aims to enhance features of a given signal 

using mathematical calculation. It is crucial for heart sound analysis 

because heart sounds are noisy (often mixed with lung sounds and 

baseline noise), impulsive (all heart sound components occurring within 

tens of millisecond) and low-frequency (most energies < 100 Hz). 

Human ears are not well adapted to listen to heart sounds.  

In the past two decades, three central tasks of signal processing are 

heart sound denoising (Chapters 2, 3, 4 and 5), splitting identification 

(Chapter 2), and frequency analysis (Chapters 2 and 5). Bandpass 

filtering is the most commonly and earliest used technique for denoising 

heart sounds with a frequency range between 20 – 250 Hz [6, 47]. 

Recently, wavelet transform has been proposed to better suit to 

impulsive signals such as heart sounds. However, no consensus has 

been reached on selection of mother wavelet, level of decomposition or 

thresholding type during wavelet denoising [48, 49]. Since heart 

sounds are mixed with relatively stable sources of noises such as 
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respiratory sounds, a technique named harmonic regeneration noise 

reduction was applied to remove baseline noises in Chapter 3 [50].  

Splitting detection of heart sounds has been performed with 

eyeballing in early studies [51, 52]. The drawbacks of this approach are 

obvious: it is subject to human judgements and vulnerable to noise 

interference. To better observe heart sound splitting, the one-

dimensional time-series signals must be projected to a two-dimensional 

time-frequency map. An example is provided in Chapter 2 in which S2 

is projected to a time-frequency spectrum using S-transform. The 

results showed that heart sound splitting can be automatically traced 

on time-frequency spectrum and the algorithm is robust to factors such 

as baseline noises. A recent progress on time-frequency analysis is the 

development of synchrosqueezing techniques which squeeze time-

frequency components to their ridges, like our proposed S-transform 

amplitude ridge tracking algorithm [53, 54]. While time-frequency 

analysis provides better observations of signals, frequency analysis 

alone such as Fast Fourier analysis also provides valuable information 

including dominant frequency of signals. In Chapter 4, dominant 

frequencies of S1 and S2 are higher in patients with elevated LV filling 

pressure, suggesting increased myocardial stiffness. Overall, 

advancements of signal processing have greatly enhanced our abilities 

to extract useful information from heart sounds.  

 

3.3 Machine learning for heart sound 

Machine learning is a statistical method that “learns” implicit patterns 

of given data mostly based on prespecified features [55]. It has been 

reported for heart sound-based classification of cardiovascular diseases 

including aortic stenosis, heart failure and various congenital heart 

diseases [56-60]. The first step of machine learning is usually to identify 

heart sound features for training the classification model. Though many 

features including timing, frequency and amplitude may be calculated 

using heart sounds, some of them are heavily influenced by 

confounding factors (e.g., gender, body mass index and heart rate) 

rather than by the disease of interest. To minimize the effect of 

confounding factors, we obtained patients of similar baseline 

characteristics by “matching” these confounding factors (Chapter 4). 

Then these patients were divided by echocardiographic parameter of 

interest such as E/e’ ratio into low and high groups. Heart sound 

features were compared between these two groups, and only features 

that significantly differed between the two groups were eligible for our 
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combined diagnostic score of E/e’. This “match-and-compare” strategy 

quickly shrinks the number of heart sound features to those relevant to 

research question of interest. Our proposed procedures may contribute 

to “explainability” of machine learning by fine-tuning selection of 

features for training the model, which is crucial for high-stakes decision-

making scenarios in health care where machine learning has been 

criticized for its nature of “black box” [61]. In addition to heart sound 

features, patients’ baseline characteristics such as age and sex may be 

directly fed into machine learning algorithm, but this has not been 

applied in most current heart sound classification algorithms which have 

solely been based on heart sound signals [56-60]. Inclusion of this 

information may help to further fine-tune the algorithms to assess the 

patients’ status more precisely. Furthermore, the algorithms have the 

chance to become more powerful as more data become available for 

training during their use. The fact that automatic speech recognition is 

probably one of the most successful applications of machine learning 

indicates that similar success may also be achieved for “speech 

recognition” of the heart in the near future [62]. 

 

3.4 Heart sound for mHealth 

Driven by rapidly expanding number of phone users in the past 

decades, mHealth has been proposed to take the advantage of mobile 

phone for health care purposes. In the past two years, a crucial driving 

force of mHealth is the need for remote and/or large-scale monitoring 

of patients during the COVID-19 pandemics. The power of even a simple 

mHealth approach was demonstrated by us in a study performed during 

the first few weeks of the COVID-19 outbreak in China. In order to 

assist the general population, we designed and released an online 

questionnaire for surveillance of COVID-19 (see Appendix) [63]. A 

total of 18161 questionnaires were returned, including 6% (1171) from 

Wuhan City in around 3 weeks. This first surveillance study of COVID-

19 showed that the percentage of users reporting fever peaked in 2 

weeks following the governmentally-enforced lockdown, consistent with 

official daily monitoring of COVID-19 confirmed cases. While the study 

only collected data via an online questionnaire, more data can be 

obtained by utilizing built-in sensors of mobile phone.   

The applications of mHealth can be roughly divided by the type of 

sensor for data collection into camera-, inertial measurement unit-, and 

microphone-related. Camera-related applications, usually termed 

photoplethysmography, make use of pulsatile blood flow-caused subtle 
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colour changes of skin on sites such as finger and face [64, 65]. The 

inertial measurement unit is a built-in element of smartphone that 

combines accelerometer, gyroscope, and sometimes magnetometer. To 

measure heart rate, the user is required to lay down and put the 

smartphone on the chest so that any body vibrations can cause 

movements of the phone [66]. Drawbacks of this approach are: 1) the 

low-energy vibrations caused by cardiac mechanical activities might not 

induce visible movements of the phone, and 2) built-in inertial 

measurement unit generally has a low sampling rate (≤ 100 Hz) and 

signal resolution.  

These two drawbacks are avoided by using the smartphone 

microphone for heart sound measurement. After nearly 150-year 

development, the microphone equipped in mobile phones has a high 

sampling rate (mostly 44100 Hz) and signal resolution (16 bit or higher). 

In comparison, most energies of heart sound lie in the range below 250 

Hz. The ability of smartphone microphones to record heart sounds has 

also been confirmed in Chapter 5 that shows nearly 3/4 of all 

recordings collected by participants from the general public are 

identifiable for S1 and S2. These findings have clinical implications for 

turning smartphone microphone into a digital stethoscope for daily 

monitoring of patients. More importantly, heart sounds provide more 

information than only heart rate and rhythm compared with either 

camera- or inertial measurement unit-based applications. As discussed 

above, long before the invention of the mobile phone (since 1973), 

heart sounds have been widely used as a simple tool for evaluation of 

cardiovascular diseases such as congenital heart disease, valvular 

abnormalities, arrhythmias and heart failure. Ongoing studies on heart 

sounds for mHealth will greatly benefit from these previous findings.  
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Impact 

Scientific: revival of an old art for new applications 

  Auscultation is a technique with a history of over 200 years but has 

been overlooked in the past decades. One of the reasons is probably 

the unreliability of human ears to discern subtle changes of heart 

sounds. While this issue can be addressed by registering heart sounds 

on paper for visual analysis, PCG machines in early days were mostly 

clumsy and limited to hospital use. A key innovative feature of this 

thesis is the multiple ways we could measure digital recordings of heart 

sounds using implantable (Chapters 2 and 3) and portable (Chapters 

4 and 5) devices. These studies provided preliminary experience for 

future researchers to work on heart sounds using new tools. 

  Revival of the old auscultation technique has also benefited from 

advancements of digital signal processing which enables detailed 

analyses of heart sounds. For example, the time-frequency 

representation algorithm utilized in Chapter 2 showed clearly two 

components of S2 with different timing, frequencies and energies when 

VV dyssynchrony occurs. Algorithms for analysis of heart sounds may 

be automated to avoid biases introduced by conventional auscultation 

by humans. Furthermore, these algorithms may be deployed using 

mHealth techniques for automatic monitoring of heart sounds in real-

time. 

Findings from this thesis also show that heart sounds may provide 

useful information for evaluation of less consistently defined diseases 

such as HFpEF. For the first time, we demonstrated the potential link 

between elevated LV filling and dominant frequency of heart sounds in 

HFpEF (Chapter 4). Moreover, a combined score was proposed to 

differentiate E/e’ below and above 9, which may serve as a novel tool 

for non-invasive screening of patients suspected with HFpEF.  

 

Societal: remote monitoring for reducing healthcare cost 

Heart failure affected 33.5 million people worldwide in 1990, which 

nearly doubled to 64.3 million in 2017 [67]. An economic estimation 

showed the global cost of heart failure in 2012 to be 108 billion US 

dollars [68]. For hospitalizations with first-time heart failure, the 

estimated mean cost was 11 552 dollars per patient in 2014, totaling 

an estimated 11 billion dollars in the United States alone [69]. The 

situation is worsened by the fact that as a chronic disease, heart failure 

recurs frequently in patients with a poor management. Around 24% of 

cases are rehospitalized within 30 days of discharge, which rises to over 
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50% within 6 months [70]. To reduce rehospitalization, closely 

monitoring the patients’ conditions is necessary to detect and manage 

early signs of disease worsening at home.   

To enable remote monitoring of heart failure, the patients have to be 

given a simple tool so that they can collect daily data. Chapter 5 

provides a low-cost tool for measuring heart sounds on a daily basis by 

turning smartphone to digital stethoscope. Considering the wide use of 

mobile phone nowadays, this finding will generate considerable societal 

impacts by combining patients’ self-monitoring with doctors’ remote 

guidance. A similar example is the use of mobile phone camera for 

assessment of heart rhythm during teleconsultations between patients 

and doctors in TeleCheck-AF project, which reduced hospital visits of 

the patients during COVID-19 pandemics [65]. These mHealth 

techniques have been reported to reduce cost of healthcare in most 

economic studies [71]. However, whether remote monitoring using 

heart sounds measured from mobile phone helps reduce the cost of 

healthcare remains to be clarified in the future. 

 

Heart sounds for the public 

  Our studies have drawn the public’s interest in heart sounds and more 

broadly on medicine, as evidenced by the large number of users (over 

1100) who used our Apps named Echoes with only a few advertisements 

via social media of the universities in less than 5 months (Chapter 5). 

The fact that around 4/5 of general users were able to record good-

quality heart sounds justifies the use of smartphone as a tool for 

measuring heart sounds on a large scale. Thus, the public can not only 

actively gain knowledge about their health but also contribute to 

scientific research. The solution of using smartphone for health 

monitoring may be particularly valuable for underdeveloped and/or 

remote areas with insufficient healthcare resources. 

  Medical education can also benefit from turning smartphone into 

digital stethoscope. For example, medical students can use the App to 

record and replay heart sounds of typical cases to learn heart sounds 

of diseased conditions. Since some components of heart sounds such 

as S3 and S4 are low-frequency and low-amplitude and difficult to be 

heard by human ears in some cases, recorded heart sounds allow 

visualizing these components so that they are more easily identified. 

Similar advantages also apply to S2 splitting which generally occurs in 

tens of millisecond. The use of smartphones for measuring heart sounds 

is also a cost-effective solution for medical students.  
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Conclusions 

     This thesis contributes to the revival of heart sound measurements 

for evaluation of patients with cardiovascular diseases. Features like 

systolic time intervals, frequency and splitting of heart sounds proved 

to contain important information. These features can be measured by 

a range of techniques from implanted sensors to “ordinary” mobile 

phones. As also evidenced in this thesis, with the progress in 

measurement tools, signal processing and machine learning, heart 

sounds are likely to become important tool in the mHealth era. 
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Summary    

Heart sounds are a series of vibrations arising from impacts of blood 

on cardiovascular structures including valves, myocardium and blood 

vessels. The two most obvious heart sounds are: the first heart sound 

(S1) occurring at end-diastole and the second heart sound (S2) 

occurring at end-systole. S1 contains mitral and tricuspid components, 

while S2 contains aortic and pulmonic components. Splitting of heart 

sounds refers to a significant interval between the two components of 

S1 or S2. Systolic time intervals derived from combined 

electrocardiogram and heart sound analysis consist of QS1 (the interval 

between onsets of QRS on the electrocardiogram and S1) and S1S2 

(the interval between onsets of S1 and S2).  

  Heart sounds have been used in diagnosis for over two centuries, 

boosted by the emergence of the stethoscope 200 years ago. Novel 

developments like digital stethoscopes and advanced signal analysis 

create new opportunities for the use of heart sounds. Heart sound-

derived parameters are likely useful for evaluation of heart failure with 

reduced (HFrEF) and preserved ejection fraction (HFpEF).  

  HFrEF patients with interventricular dyssynchrony may need to be 

treated with cardiac resynchronization therapy. Selection of candidate 

and post-implant optimization of cardiac resynchronization therapy are 

likely improved by using splitting interval of heart sounds for 

adjustment of interventricular delay. In Chapter 2, a novel algorithm 

has been developed to automatically identify splitting interval between 

S2 components. The algorithm was tested in simulated signals and in 

experimental studies that showed a good relation between S2 splitting 

and an invasively measured indicator of interventricular mechanical 

dyssynchrony.  

  In Chapter 3, we analyzed data from a combined experimental-

clinical study aiming to find the relationship between heart sound-

derived systolic time intervals and myocardial contractility. Varying 

atrioventricular delays were induced using pacing and left ventricular 

(LV) pressure was invasively recorded. VS1, an indicator close to QS1, 

shortened as myocardial contractility improved during optimization of 

atrioventricular delay, associated with prolongation of S1S2. Using VS1 

and S1S2 to predict optimal atrioventricular delay resulted in a minor 

loss of optimal hemodynamics judged by maximal LV pressure and 

maximal rate of rise of LV pressure. These findings showed that heart 

sound-derived systolic time intervals may be useful for optimization of 
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atrioventricular delay in cardiac resynchronization therapy, possibly 

performed using a microphone in the implanted device. 

  HFpEF is becoming an increasingly prevalent disease in ageing 

population. However, discrepancies exist in current guidelines 

regarding evaluation of diastolic dysfunction and elevated LV filling 

pressure. In Chapter 4, we explored the relationship between heart 

sounds and echocardiographic parameters in a group of outpatients 

suspected of HFpEF. To reduce the confounding effects of sex, body 

mass index and heart rate, these factors were first matched to result in 

two groups of patients of similar baseline characteristics. Then heart 

sounds and echocardiographic parameters were compared between 

these two groups. The results showed that patients with a higher ratio 

between early mitral inflow velocity and mitral annular early diastolic 

velocity (E/e’) presented higher heart sound frequencies, a longer QS1 

interval and a more frequent occurrence of S4. By assigning a score to 

each of these factors, we proposed a combined score for differentiation 

of E/e’ below and above 9. The combined score demonstrated better 

performance than a common serological biomarker of elevated LV filling 

pressure. The association between heart sounds and echocardiography 

makes it likely to use heart sounds for simple non-invasive screening 

of patients with HFpEF. 

  With the recent progress in sensor and communication technologies, 

the smartphone becomes a potential candidate to help health 

evaluation of the patients. Mobile health (mHealth) is increasingly 

recognized as part of the healthcare system, boosted by the 

coronavirus-19 pandemic. To enable large-scale application of heart 

sounds for health purposes, we explored the feasibility of turning the 

smartphone microphone to an electronic stethoscope in Chapter 5. An 

App named Echoes was developed for iPhone and was distributed to 

general users, which resulted in >1100 respondents with limited 

advertisement. Heart sounds and basic information of the users were 

collected anonymously. Visual assessment of quality of heart sound 

showed that about 3 out of 4 recordings had clear S1 and S2. Most 

users were able to make a good-quality recording of heart sounds within 

the first 3 attempts. Factors that tended to negatively influence heart 

sounds quality were age and body mass index. The findings suggest the 

possibility of recording heart sounds by general users using their mobile 

phone.  

In Chapter 6, we summarized our findings and discussed the 

scientific and societal impacts. In a history of over 200 years, 
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auscultation has undergone three waves of research enthusiasm, along 

with rapid development of measurement tools. Heart failure is one of 

central research topics in heart sound, but little is known about how 

splitting and frequency of heart sounds change during disease evolution. 

More importantly, the relationship between heart sounds and patient 

outcome needs to be clarified in more extensive follow-up studies. 

Advancements in mobile phone technology enable turning the 

smartphone microphone to a digital stethoscope for recording heart 

sounds on a large scale, which has the potential to remotely monitor 

the patients’ status. In the 21st century, signal processing techniques, 

open-access heart sound datasets and machine learning algorithms are 

laying foundations for the third wave of heart sound research and 

applications. 

  In conclusion, this thesis explored the relationship between heart 

sounds and hemodynamics using animal and human studies, and 

preliminarily investigated the potential to use heart sound recordings 

for mHealth applications. These findings help facilitate the use of heart 

sounds as a simple, non-invasive and low-cost tool for monitoring 

patients remotely and in hospital. 
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中文摘要 

心音是血流冲击心血管相关组织包括瓣膜、心肌和血管引起的一系列振动。

心音的两个主要成分是第一心音（S1）和第二心音（S2）。前者发生在心室舒张

末期，后者发生在心室收缩末期。S1由二尖瓣和三尖瓣分量构成。S2由主动脉瓣

和肺动脉瓣分量构成。S1 或 S2 的两个分量如果发生时间相距较远，则产生心音

分裂。此外，心音可以联合心电图进行分析，其中最常见的指标是收缩时间参数。

它包含两个指标，分别是 QS1（从心电图 QRS 波起始至心音 S1 起始的时间差）

和 S1S2（心音 S1 起始至 S2 起始的时间差）。 

从二百余年前起，医生即开始用心音来协助诊断疾病。随后，听诊器的出现

更促进了心音在临床上的应用。新近出现的一些技术，比如电子听诊器和数字信

号处理技术，使得心音的采集和分析更为便捷。本论文主要探讨心音相关参数在

评估心力衰竭，包括射血分数降低的心力衰竭（HFrEF）和射血分数保留的心力

衰竭（HFpEF）中的应用。 

HFrEF 的患者如果被查出双心室收缩不同步，则有可能需要接受心室再同步

化治疗。在这种情况下，心音分裂间期可以反映双心室收缩不同步的时间，有助

于选择心室再同步化治疗的人群以及调整术后起搏器参数。在本书第二章中，我

们提出了一种新算法自动计算 S2 的分裂时间。信号仿真实验和动物实验结果均证

实了该算法得到的 S2 分裂时间和侵入性导管测得的双心室机械收缩不同步之间，

存在良好的相关性。 

在第三章中，我们联合了动物实验和临床研究，探讨心音收缩时间参数与心

肌收缩力的关系。我们通过起搏的方式逐步延长心房-心室耦合时间，并同时测量

左心室（LV）内压。通过联合心音和心电图，我们计算了 VS1 间期，即从心室刺

激电位开始至心音 S1 产生的时间差。结果表明，该指标随着起搏过程中，心肌收

缩力的改善而逐步缩短，同时伴随着 S1S2间期逐步延长。进一步分析表明，这两

个指标对心房-心室优化起搏治疗的最佳参数之估计误差较小，同时血流动力学参

数的预测吻合度较高。该发现有助于促进心音收缩时间参数在起搏器治疗参数优

化中的应用。 
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近些年，HFpEF 的流行率逐渐上升，特别是在老年群体中。但是，目前医学

指南对该病的相关评估，比如心室舒张功能障碍和 LV 内压升高均未达成共识。在

第四章中，我们初步探讨了心音和彩超在评估 HFpEF 疑似患者方面是否存在相关

性。为了减少性别、体重指数和心率这些混杂因素的影响，我们首先匹配了这三

个因素，从而获得两组基线数据相似的患者。通过比较这两组患者的心音和彩超

数据，我们发现若患者的舒张早期跨二尖瓣血流最大速度/二尖瓣环最大速度的比

值（E/e’比值）较高，则心音频率也较高，同时 QS1 间期延长，第四心音的发

生率升高。通过对这些因素进行加权，我们提出了一种基于积分的方法来区分 E/e’

比值是否大于 9。该方法比常规血清学检查更能反映 LV 灌注压力升高。该研究发

现的心音和彩超相关性，为进一步发展心音用于无创筛查 HFpEF 奠定了基础。 

随着近年传感技术和通信技术的快速发展，智能手机逐渐成为一个健康评估

的工具。移动医疗（mHealth）日益受到重视，特别是在过去两年新冠疫情的阴

霾下。为了将心音大规模应用于健康监测，我们初步探讨了用手机麦克风来测量

心音的可能性（第五章）。我们基于 iPhone 平台开发了一款 App（Echoes），

并将其分发给普通用户。我们让这些用户自己采集心音，并提供简单的个人数据。

随后，我们分析了超过 1100 名用户的 7500 条心音数据。结果表明，大约 3/4 患

者的心音数据质量较好，可以用于分析 S1 和 S2，而多数患者可以在前 3 次成功

采集心音。年龄较大和体重指数较高的患者，心音质量偏差。这些结果提示，普

通用户可以通过智能手机来采集心音。 

在第六章中，我们总结了本书的发现，并分析了这些发现的科学价值和社会

价值。心音听诊有着 200 多年的历史，并正在经历第三轮研究浪潮。这些发展得

益于近年飞速发展的心音测量技术。心力衰竭是心音研究的中心课题之一，但目

前对于心音分裂及心音频率如何随着心力衰竭变化，仍知之甚少。更重要的是，

目前缺乏随访研究来证实这些心音参数与患者预后之间的关系。随着移动技术的

发展，智能手机可以被用作电子听诊器，来帮助大规模采集心音数据，使远程监

测患者状况成为可能。在目前的第三波心音研究浪潮中，三大基石分别是电子信

号处理、开源心音数据库和人工智能算法。 
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总之，本书通过动物实验和人体研究，探讨了心音与血流动力学的关系，并

初步研究了心音在移动医疗方面的应用。在未来，心音有可能作为一种简单、无

创和廉价的工具，用于医院内和家庭患者监测。 
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Abstract 
Background: 

The recent outbreak of coronavirus disease 2019 (COVID-19) has 

become an international pandemic. So far little is known about the 

role of an internet approach in COVID-19 surveillance. 

Objective: 

We aim to investigate whether an online survey can provide 

population-level information for observing prevalence trends during 

early phase of outbreak and identifying potential risk factors of 

COVID-19 infection. 

Methods:  

A 10-item online questionnaire was developed according to 

medical guidelines and relevant publications. It was distributed 

between 24 January and 17 February 2020. Characteristics of 

respondents and temporal changes of various questionnaire-derived 

indicators were analyzed. 

Results: 

A total of 18161 questionnaires were returned, including 6% 

(1171) from Wuhan City. Geographical distributions of the 

respondents were consistent with population per province (R² = 

0.61, P < .001). History of contact significantly decreased with time, 

both outside Wuhan City (R² = 0.35, P = .002) and outside Hubei 

Province (R² = 0.42, P < .001). Percentage of fever respondents 

peaked around February 8 (R² = 0.57, P < .001) and increased with 

history of contact in the areas outside Wuhan City (risk ratio: 1.31, 

95% confidence interval: 1.13 - 1.52, P < .001). Male sex, advanced 

age, and lung diseases were associated with a higher risk of fever 

in the general population with history of contact. 

Conclusions: 

This study shows the usefulness of an online questionnaire for 

surveillance of outbreaks like COVID-19 by providing information 

about trends of the disease and aiding in identifying potential risk 

factors. 
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Introduction 

The recent outbreak of 2019 coronavirus disease (COVID-19) has 

caused over 752 thousand confirmed cases and 36 thousand deaths by 

March 30, 2020 [1-4]. Despite a proactive policy of identifying and 

treating patients with infected symptoms, it remains resource-intensive 

to screen the general population that is at risk of infection [5, 6]. 

Moreover, inequality of healthcare system among different areas also 

brings challenges to cover remote areas which are also at risk of the 

COVID-19 infection. Therefore, a new way to surveil the general 

population is likely to contribute to our understanding of COVID-19 [7]. 

The wide use of internet throughout China, and in the rest of the world, 

may be sufficient to provide such information. Participatory disease 

surveillance has been increasingly investigated in recent years as a 

promising tool to complement traditional facility-based surveillance 

platforms [8]. It has the advantage of quick coverage of a large 

population during disease outbreak. Because of this, an online survey 

may be valuable in monitoring disease trends in community and 

providing information for policy-making.  

  Here we report the results of the first online questionnaire of COVID-

19, released since 24 January and with data collected up to 17 February 

2020. Our study aims to investigate 1) how history of contact and fever, 

both defined according to relevant medical guidelines, have evolved 

during the early phase of government policy of lockdown, and 2) 

whether an online questionnaire can be used to identify certain risk 

factors related to fever among those reporting history of contact.   

 

Methods 

Questionnaire development and distribution 

The first version of questionnaire was developed on 24 January 2020. 

By that time, little evidence was known about COVID-19. Our 

anonymous questionnaire was primarily developed from the following 3 

sources: 1) the Diagnosis and Treatments of COVID-19 (Third Version) 

guideline; 2) clinical courses of the first 17 death cases, both of which 

released by the National Health Commission of China; and 3) an article 

which first analyzed the clinical features of 41 cases with COVID-19 [9-

11]. The guideline requires a suspected case to satisfy the following 

criteria: 1) any history of contact: living in Wuhan or having travelled 

to Wuhan within 2 weeks of disease onset; being in contact with any 

person with fever and respiratory symptoms from Wuhan within 2 

weeks of disease onset; belonging to a cluster of infected cases; 2) 
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clinical manifestations: fever, defined as body temperature ≥ 37.3 ℃ 

(99.1 ℉); imaging evidence of COVID-19; normal white blood cell count 

or leukopenia or lymphopenia. A confirmed case is further established 

by positive findings of real-time polymerase chain reaction or viral gene 

sequencing. The descriptions of the guideline are in good consistency 

with the clinical features of the first 17 death cases and later 41 infected 

cases reported on 24 January [9, 10]. Therefore, our questionnaire 

evaluated the risk of COVID-19 in general population from the following 

aspects:  

1) History of contact: living in Wuhan, or having travelled to Wuhan in 

the past 2 weeks; or had any close contact (lived, studied or worked 

together, or had any other close contact) in the past 2 weeks with a 

person with fever and cough who came from Wuhan; or workplace, 

school or family has at least 2 confirmed cases. Other history of contact 

with wildlife animals within 2 weeks of disease onset was also 

considered.  

2) Body temperature: having a fever with body temperature higher 

than 37.3 ℃ (99.1 ℉).  

3) Symptoms: We classified symptoms by their relative importance into 

the following 3 groups: 1. Chief symptoms related to pulmonary 

infection, i.e., cough without sputum or with little sputum, and 

shortness of breath; 2. Secondary symptoms related to systemic 

changes probably caused by viral infection, i.e., fatigue, headache, and 

myalgia; and 3. Probably unrelated symptoms, i.e., nasal obstruction, 

rhinorrhea, sneezing, sore throat, and diarrhea. 

4) Comorbidities: Lung diseases, cardiovascular diseases, hypertension, 

diabetes, stroke and chronic kidney dysfunction.  

5) Basic information: age and gender.  

We did not include laboratory examinations (e.g. real-time 

polymerase chain reaction, lymphopenia, white blood cell count) or 

thoracic imaging results (e.g., multiple patchy consolidation and 

interstitial changes) in our questionnaire because in general they are 

unlikely obtained by general population.  

By 17 February 2020 we had developed and released three versions 

of Chinese questionnaires to the public. They were essentially similar, 

with the following three major revisions: 1) We divided the age group 

of ≤ 40 years, used in the first version, into age groups of ≤ 30 years 

and 31 – 40 years in the following two versions for better risk 

stratification; 2) History of contact with wildlife animals was removed 

from the third version because we considered it to have a low value for 
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diagnosis in general population; and 3) the question, initially included 

for evaluating shortness of breath (“I feel extremely short of breath 

when climbing upstairs or walking at a fast speed”, modified from the 

Medical Research Council Breathlessness scale) was removed from the 

third version, and added as an item named “shortness of breath” to the 

question about symptoms of COVID-19. This was done, because we 

found an exceptionally high percentage of respondents reporting 

shortness of breath in the first 2 versions of questionnaires (26.5% and 

32.9%, respectively).  

  After completing the questionnaire, the respondents would be 

classified into one of the following 4 risk groups and given different 

suggestions: 1) High risk group having history of contact and fever: 

they were suggested to measure their body temperature after 30 

minutes and immediately visit hospital to screen for potential COVID-

19; 2) Moderate risk group having history of contact but without fever: 

they were suggested to daily monitor their body temperature and 

screen for potential COVID-19 if fever or respiratory symptoms occur; 

3) Low risk group without history of contact but with fever: this group 

probably had a common cold, and was suggested to make an 

appointment with general practitioner for help if necessary; 4) Very low 

risk group without history of contact or fever: they were unlikely to 

have COVID-19 at the time they completed the questionnaire and were 

suggested to take necessary measures such as putting on a facemask 

to prevent the infection.  

The questionnaire was developed using a professional online 

questionnaire website Wenjuanxing (Questionnaire Star) [12]. It is the 

most popular website for online survey in China with over 4.2 billion 

questionnaires recycled and over 59 million users by 21 February 2020. 

Questionnaires were distributed online by 1) WeChat, the most popular 

instant message application in China, and 2) sharing the link of the 

questionnaire. Since our aim was to have an overview of situations in 

China during COVID-19 outbreak, we did not target any specific groups 

of respondents of interest. Distribution and filling of the questionnaires 

were voluntary behaviors, making our study a convenience sampling 

study.  

According to the World Health Organization Guidelines on Ethical 

Issues in Public Health Surveillance, a surveillance study in emergency 

outbreak situations is clearly exempted from ethical review and 

oversight [13]. Indeed, our online questionnaire was designed on 23 

January when the lockdown of Wuhan City was officially announced and 
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released on the day followed, so it could not await the formal approval 

of an ethical review of committee. All users were informed at the 

beginning of the questionnaire that their questionnaire data would be 

used only for medical education and research purposes. If the informed 

consent was rejected by the users, they still could continue the 

questionnaire and obtain their results.  

 

Data collection 

The questionnaire was released on 24 January and recycled on 17 

February. All questionnaire results were downloaded from the website 

for our analysis. In addition to the items of the questionnaire, the 

downloaded data also included date of submission of all respondents as 

well as respondents’ location on city level.  

We also collected population data of each province from China 

Statistical Abstract 2019 published by the National Bureau of Statistics 

of China [14]. The number of confirmed cases was followed up on a 

daily basis since release of the questionnaire using the NetEase News 

website, the largest Chinese hub for real-time collection of COVID-19-

related data and news [15]. The statistics of confirmed cases per 

province used in this study were collected until midnight of February 11, 

because at that time also clinically diagnosed cases without positive 

real-time polymerase chain reaction results were included in the 

officially confirmed number of cases. 

 

Statistical analysis 

Count data were expressed as number (percentage). Skewed 

continuous data (time to complete questionnaire) were expressed as 

median (25th percentile – 75th percentile). Geographical distributions 

were drawn using Microsoft Excel Visual Basic. Pearson’s correlation 

analysis was used to analyze the relationship between two variables of 

interest (mainly between date and percentage of respondents of 

interest per day). Comparison of respondents’ basic characteristics 

between inside and outside Wuhan was performed using chi-squared 

test or Fisher’s exact test if sample size < 40. Risk of fever in 

respondents with history of contact was evaluated using risk ratio (95% 

confidence interval) [RR (95% CI)]. All statistical analyses were 

performed using Stata 14.0 and MATLAB R2018b. Statistical 

significance was defined as a two-tailed P value smaller than .05.  
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Results 

By 17 February 02:33 AM, a total of 19449 individuals completed the 

questionnaires, 97% from China. After removing 385 questionnaires 

from overseas countries, 575 lacking informed consent, 55 missing age, 

31 missing temperature, 38 missing comorbidities, and 4 missing 

symptoms information, 18161 anonymous questionnaires were 

analyzed. Overall, it took 52 (41 - 67) seconds to complete the 

questionnaire. Most questionnaires were accessed by clicking on the 

link of the questionnaire (11337, 62%) and by visiting WeChat miniApp 

(6800, 37%).  

 

Geographical distributions 

Figure 1A shows the geographical distributions of the questionnaire 

respondents in China. The questionnaire covered all 34 province-level 

administrative regions. For Hubei Province, 69% (1171) of respondents 

came from Wuhan City which was mostly affected by COVID-19. A 

positive relation was found between the number of respondents and the 

population size per province  (Figure 1B), demonstrating good 

coverage of the questionnaire across China.  

 

Basic characteristics 

  Table 1 summarizes the demographics and basic characteristics of 

respondents. The population in Wuhan had similar age and 

comorbidities to that of outside Wuhan. Age was negatively correlated 

with the number of respondents (R2 = 0.95, P < .001). As expected, 

history of contact was more frequent among the respondents living in 

Wuhan (all P < .001). The percentage of fever was significantly lower 

among respondents inside versus outside Wuhan. Symptoms were 

reported in a rather high percentage (65%) of respondents. When 

restricting the symptoms to at least 1 main symptom and 1 secondary 

symptom, the number of respondents with symptoms dropped to 13% 

(2292).  
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Figure 1 A) Geographical distributions of questionnaire 

respondents in China. B) A positive correlation between the 

number of respondents and the size of the population of each 

province.   
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Table 1. Demographics and basic characteristics of 

respondents 
 All respondents 

(n = 18161) 

Wuhan (n = 

1171) 

Outside 

Wuhan (n = 

16990) 

P value 

Women 10801 (59%) 762 (65%) 10039 (59%) < .001 

Age, years     

≤ 30 12504 (69%) 782 (67%) 11722 (69%) .11 

31 – 40 3757 (21%) 282 (24%) 3475 (20%) .003 

41 – 50 1154 (6%) 70 (6%) 1084 (6%) .59 

51 – 60 532 (3%) 28 (2%) 504 (3%) .26 

61 – 70 147 (0.8%) 6 (0.5%) 141 (0.8%) .24 

≥ 71 67 (0.4%) 3 (0.3%) 64 (0.4%) .51 

Any comorbidity 1593 (9%) 95 (8%) 1498 (9%) .41 

Hypertension 655 (4%) 38 (3%) 617 (4%) .49 

Lung diseases 468 (3%) 24 (2%) 444 (3%) .24 

Cardiovascular 

diseases 

375 (2%) 21 (2%) 354 (2%) .50 

Diabetes 223 (1%) 16 (1%) 207 (1%) .66 

Chronic kidney 

disease 

135 (0.7%) 5 (0.4%) 130 (0.8%) .19 

Stroke 34 (0.2%) 4 (0.3%) 30 (0.2%) .21 

Any history of 

contact 

2631 (14%) 1171 (100%) 1460 (9%) < .001 

Living in Wuhan 

now or having 

gone to Wuhan in 

the past 2 weeks 

1950 (11%) 1171 (100%) 779 (5%) < .001 

Contacts with a 

person with fever 

and cough from 

Wuhan in the past 

2 weeks 

938 (5%) 298 (25%) 640 (4%) < .001 

At least 2 

confirmed cases in 

workplace, school 

or family 

532 (3%) 122 (10%) 410 (2%) < .001 

Fever 1653 (9%) 56 (5%) 1597 (9%) < .001 

Any symptom 11796 (65%) 699 (60%) 11097 (65%) < .001 

Cough 5242 (29%) 314 (27%) 4928 (29%) .11 

Shortness of 

breath  

4393 (24%) 263 (22%) 4130 (24%) .15 

Nasal obstruction, 

rhinorrhea, or 

sneezing 

4376 (24%) 237 (20%) 4139 (24%) .001 

Sore throat 3397 (20%) 201 (18%) 3196 (20%) .16 

fatigue 3245 (18%) 148 (12%) 3097 (18%) < .001 

headache or 

myalgia 

2072 (11%) 87 (7%) 1985 (12%) < .001 

Diarrhea 1360 (8%) 70 (6%) 1290 (8%) .04 

 

History of contact 

  History of contact was reported in 2631 (14%) respondents. However, 

the high percentage might have been confounded by considering all 
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respondents living in Wuhan City as having history of contact according 

to the definition of official guideline, so we excluded these respondents 

from our analysis and divided the remaining respondents by every 8 

days into 3 phases: 1) phase 1: 24 to 31 January; 2) phase 2: 1 to 8 

February; and 3) phase 3: 9 to 16 February. Despite heterogeneous 

responses of different provinces, proportion of respondents reporting 

history of contact had markedly decreased over these 3 phases in most 

provinces (Figures 2A, B, C). This observation was further confirmed 

by correlation analysis between the proportion of respondents reporting 

history of contact and date in areas outside Wuhan City and Hubei 

Province (Figure 2D). These findings indicate the efficacy of current 

policies adopted to reduce the history of contact among general 

population since a lockdown in Wuhan and other areas on January 23. 

 

 
Figure 2. Geographic spread of the proportion of respondents 

reporting history of contact in three phases of the COVID-19 

outbreak (A, B, C) and its time course in all regions outside 

Wuhan City and outside Hubei Province (D).  
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Body temperature 

  Body temperature was measured in 77% (14073) of respondents, with 

a higher percentage in Wuhan City (85%, 990) and Hubei Province 

(84%, 1431), respectively. Overall, fever was reported in 9% (1653) of 

respondents. Unexpectedly, a lower percentage was found for Wuhan 

City and Hubei Province (5% for both). This might be due to that as 

COVID-19 developed to a further stage in Wuhan, fever cases were 

identified early and sent to hospitals without access to internet. We 

further analyzed how the percentage of respondents with fever evolved 

with time. The trend seemed to peak on around February 8 (Figure 3).  

 

 
Figure 3. Proportion of respondents reporting fever over time.  

 

Fever in respondents with history of contact  

  To analyze the relationship between fever and history of contact may 

help develop population-based strategies for prevention purpose. For 

the respondents living outside Wuhan, we found a significant relation 

between any history of contact and fever (RR: 1.31, 95% CI: 1.13-1.52, 

P < .001). Travelling to Wuhan, having any close contact with confirmed 

case, and having at least 2 confirmed cases at workplace in the past 2 

weeks conferred a significantly higher risk of fever (RR: 1.47, 95% CI: 

1.23-1.77, P < .001; RR: 1.98, 95% CI: 1.67 - 2.24, P < .001; and RR: 
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2.12, 95% CI: 1.74 – 2.58, P < .001, respectively). Moreover, there 

was a significant positive relation between the number of officially 

confirmed cases and the number of respondents reporting fever (R² = 

0.41, P < .001) or the number of respondents reporting fever plus 

history of contact (R² = 0.35, P < .001) on a province basis. Regarding 

risk stratification based on history of contact and fever, most 

respondents (14264, 79%) were classified to very low risk group, 

followed by moderate (1883, 10%) and low risk group (1428, 8%), 

whereas only 1% (225) to high risk group. 

Furthermore, comparison of fever rates among groups of various 

characteristics was likely to help identify risk factors (Figure 4). Males 

were at a higher risk of fever than females (P < .001). There was a 

positive trend between age and fever (P < .001). Respondents reporting 

fatigue and headache/myalgia were more likely to report fever (P 

< .001). Comorbidities showed various associations with fever, among 

which history of lung diseases seemed to confer a higher risk of fever 

than the others. However, the relationship needs to be further validated 

by larger-sample studies because of a relatively small number of 

respondents in each group.   

 

 
Figure 4. Fever in various subgroups of respondents with history 

of contact  
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Discussion 

  To the best of our knowledge, this is the first large-sample online 

surveillance of COVID-19 outbreak in general population. Our major 

findings are: 1) our questionnaire had a good coverage of all provinces 

of China in a relatively short period of time (~3 weeks); 2) history of 

contact among population outside Wuhan and Hubei Province 

significantly decreased during the early phase of government policy of 

lockdown; 3) fever reported by respondents significantly increased in 

short term of disease outbreak and levelled off in 2 to 3 weeks; and 4) 

among those with history of contact, some factors (male, an advanced 

age and history of lung diseases) seemed to be associated with a higher 

risk of fever.  

 

Values of online questionnaire 

An online questionnaire is likely to serve as a complementary way of 

disease surveillance in general population, especially during the 

emergent outbreak of an infectious disease [5]. It takes the advantage 

of low-cost and efficient delivery to all areas even the most remote 

areas where internet access is better than health care resources [16, 

17]. Our questionnaire included 3% (385) Chinese respondents from 

38 overseas countries, including developed (the United States, Japan, 

Canada, the United Kingdom), developing (Brazil, Russia, India, South 

Africa) and underdeveloped countries (Laos, Uganda, Cambodia). 

Translation of the questionnaire to other languages may further 

increase the coverage across the world and improve surveillance of 

COVID-19 outbreak and comparable epidemics.  

Compared with the conventional way of disease surveillance, the 

online questionnaire covers the population generally with less severe 

conditions but nevertheless is under risk of infection [7, 18]. Taking 

into account this population helps to establish the full spectrum of 

COVID-19 epidemiology. It may also facilitate the early triage and 

diagnosis of high-risk groups when combining with other digital health 

measures such as online physician consultation which has been widely 

adopted since COVID-19 outbreak in China. For the low-risk population, 

the questionnaire can also be adapted to reduce unnecessary anxiety 

and hospital visits and thus greatly relieve the workloads of healthcare 

facilities especially when an emergent public health event occurs [19].  

The questionnaire approach is advantageous compared with other 

approaches of online disease surveillance using data from the Google 

Trends, Twitter, or Facebook [20-22]. It provides richer information of 
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the respondents because most items can be designed according to 

medical guidelines and characteristics of target population. Therefore, 

it is a more active approach than other infosurveillance methods using 

social media. The information such as symptoms, history of contact and 

comorbidities provided by an online questionnaire can be further 

combined with vital data such as body temperature, heart rate, 

respiratory rate, oxygenation level and activity level obtained from 

wearable devices to have a more comprehensive and reliable estimation 

of respondent’s risk of disease [23]. For the high-risk group identified 

using an online questionnaire, a case can be further confirmed by 

sending a home testing kit and instructing the respondents to perform 

a rapid diagnostic test, as shown in the GoViral study [24]. Additionally, 

self-reported data from an online questionnaire can be linked with 

electronic medical records to build a long-term monitoring system [8].  

 

Use of questionnaire to observe trends 

An online survey is likely to be used to observe the trends of disease 

prevalence in community and thus support government policy 

evaluation. In our study, the date  February 8 when the percentage of 

fever respondents peaked was 16 days following lockdown of Wuhan 

City, close to the 14 days of the maximum incubation period of 

coronavirus [25]. The delay of fever peak might be associated with 

delayed quarantine policies in other cities in China. Overall, our data 

support the efficacy of current policies (quarantine, social distancing, 

and isolation of infected population) for containing the spread of COVID-

19 from Wuhan City to the other areas of China [6, 26, 27]. However, 

the period and efficacy of quarantine may differ by country [28]. It 

depends on not only government policies but also local culture and more 

importantly active supports from general population. For the other 

countries which may not have quarantine policies as strict as that of 

China the time to fever peak is probably longer among general 

population. Moreover, integration of survey data in a model for real-

time and long-term forecasting of disease trends is likely to provide 

richer information for policy-making [29]. Of note, our questionnaire is 

more applicable to those living in China than abroad. Definition of 

history of contact has been mostly relied on contact with a confirmed 

case from Wuhan. However, this can be further modified according to 

the earliest and generally most severely affected area of a country of 

interest, such as Lombardy in Italy.  
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Use of questionnaire to identify risk factors 

Our survey also indicates that some factors such as male, an 

advanced age and history of lung disease are likely to relate to a higher 

risk of infection and thus these groups should be under close 

observations. Indeed, these risk factors identified from our study are 

consistent with the clinical features of infected cases in previous 

publications [9, 30-33]. Opportunities are that with a quick 

dissemination of an online questionnaire during the early phase of 

disease outbreak, risk factors can be identified at a much earlier phase 

than when enough severe cases have been collected and analyzed using 

a conventional surveillance method. This further allows for an earlier 

protection of vulnerable groups from potential infection and thus 

reducing the number of cases. Internet-based surveillance approach 

based on Twitter has been demonstrated to detect Ebola, avian 

influenza and thunderstorm asthma at an early stage, even before the 

first official report [20-22].  

 

Limitations of the approach 

The approach undoubtedly has the bias of sampling primarily internet 

users and their relatives. As a consequence, the population included in 

our study is relatively young. Previous study demonstrated that both 

too young (age 0 – 10 years) and too old (age over 81 years) 

populations are under-represented in an internet-based monitoring 

survey [34]. A better coverage of general population with high 

representativeness generally requires a more complicated study design 

together with robust supports from an official institution [8]. The 

questionnaire can also be distributed through other web platforms such 

as Sina Weibo (the most popular microblogging website in China) and 

news media (NetEase and Xinhua) which have a wider reach of 

respondents in China. Also, this study does not include a follow-up of 

individual patients. This choice was made in order to respect the 

respondents’ privacy. However, in future studies it may be acceptable 

to allot an individual code to each individual, thereby allowing follow-

up, although systematic follow-up will remain a problem with internet 

questionnaires. Follow-up may be further compromised by the lack of 

internet access when the individual is hospitalized.  

Unlike hospitals which diagnose COVID-19  using a comprehensive 

set of laboratory and imaging examinations, we did not include 

diagnostic tests such as real-time polymerase chain reaction or lung 

computed tomography results in our questionnaire. Therefore, 
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evaluating the respondents’ risk of viral infection from history of contact, 

body temperature, symptoms and comorbidities may have the risk of 

underestimating some asymptomatic or presymptomatic patients who 

are not uncommon [35, 36].  

Based on this study, we have updated our fourth version of Chinese 

questionnaire [37] and released the English questionnaire [38] (also 

see the online appendix for Word format files). Both questionnaires 

follow the Attribution 4.0 International (CC BY 4.0) license, meaning 

that they are free to be shared and adapted under the condition that 

current work has been properly cited. Considering privacy purpose, the 

survey data of this study can be obtained from the corresponding 

author at request.  

 

Conclusions: 

In conclusion, this study shows that an online questionnaire may help 

monitor current prevalence, evaluate government policy and identify 

high-risk population during COVID-19 outbreak. The online 

questionnaire approach can also be adapted to monitor other types of 

infectious diseases depending on areas of interest.  
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