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Abstract: 

Impaired cerebral autoregulation (CA) in moderate/severe traumatic brain injury (TBI) has 

been identified as a strong associate with poor long-term outcomes, with recent data 

highlighting its dominance over cerebral physiologic dysfunction seen in the acute phase 

post injury. With advances in bedside continuous cerebral physiologic signal processing, 

continuously derived metrics of CA capacity have been described over the past two 

decades, leading to improvements in cerebral physiologic insult detection and 

development of novel personalized approaches to TBI care in the intensive care unit (ICU). 

This narrative review focuses on highlighting the concept of continuous CA monitoring and 

consequences of impairment in moderate/severe TBI. Further, we provide a 

comprehensive description and overview of the main personalized cerebral physiologic 

targets, based on CA monitoring, that are emerging as strong associates with patient 

outcomes. CA-based personalized targets, such as optimal cerebral perfusion pressure 

(CPPopt), lower/upper limit of regulation (LLR/ULR), and individualized intra-cranial 

pressure (iICP) are positioned to change the way we care for TBI patients in the ICU, 

moving away from the “one treatment fits all” paradigm of current guideline-based 

therapeutic approaches, towards a true personalized medicine approach tailored to the 

individual patient. Future perspectives regarding research needs in this field are also 

discussed. 

Keywords:  Autoregulation, Digital Medicine, Individualized Care, Personalized Medicine, 

TBI 
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Introduction to Cerebral Autoregulation in TBI: 

Cerebral autoregulation (CA) impairment in moderate/severe traumatic brain injury (TBI) 

has emerged in the past two decades as a critical aspect of secondary injury to consider 

during care provision.1–6 First characterized in detail in felines in the 1930’s by Fog,7 and 

then in humans by Lassen in the 1950’s,8 static CA refers to the innate ability of the 

cerebral pre-capillary arterioles to maintain a relatively constant cerebral blood flow (CBF) 

over a range of mean arterial pressures (MAP) or cerebral perfusion pressures (CPP). 

Figure 1 provides an overview of the general shape of the static cerebral autoregulatory 

curve, highlighting a lower and upper inflection point, referred to as the lower limit of 

autoregulation (LLA) and upper limit of autoregulation (ULA), respectively. Between the 

LLA and ULA, there is a relative plateau of the relationship between MAP/CPP and CBF, 

where slow CBF variations caused by changes in MAP/CPP are actively supressed.7,8 Values 

of MAP/CPP beyond the LLA/ULA expose the brain to pressure-passive CBF, where 

MAP/CPP values below the LLA lead to hypoperfusion and ischemia, and pressures above 

the ULA cause hyperperfusion states with hyperemia, cerebral edema and blood-brain-

barrier disruption as potential consequences.7–9 Though one must acknowledge, the 

plateau between the LLA and ULA described may not be a true plateau, and may in fact 

have a slight slope,10 depending on individual biological and genetic differences and 

presence/absence of medical co-morbidities.  Figure 1 highlights some of the changes in 

the shape of the static CA curve, based on different physiologic states. 

*Figure 1 here 

Since the original seminal works of the 1930’s and 1950’s on static CA7,8, various studies in 

moderate/severe TBI have described the presence of CA impairment and failure in this 

population, using intermittent measurement techniques.11 Such intermittent methods 

evaluated CBF pre- and post-perturbation and included enhanced neuro-imaging methods, 

such as xenon computed tomography of the brain, or intermittent transcranial Doppler 

(TCD) insonations of the middle cerebral artery (MCA).11–14 Perturbations classically 

included alterations in MAP through both non-invasive methods, such as thigh-cuff 

deflation or orthostatic challenge techniques, and invasive methods, through direct 

manipulation of MAP with intra-venous vasoactive pharmaceuticals. Such early works 
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formed the foundation of our understanding of CA impairment in TBI,11 though given their 

intermittent nature, had limited bedside utility in clinical care. The intermittent methods 

have been replaced by continuously derived dynamic CA indices, using modern biomedical 

signal processing.1–3 

Continuous Bedside Measurement of CA in TBI – Pressure Reactivity Index (PRx): 

With the acknowledgment of the role that CA impairment may play in secondary insult 

burden after moderate/severe TBI, the neurocritical care community has pursued the 

development of continuously derived measures.1–4 The development of these dynamic 

metrics has focused on utilizing available continuous physiologic data streams in 

moderate/severe TBI care, those being MAP and ICP.4,15–17 Through evaluating the phase-

shift between a driving pressure for flow, such as MAP or CPP, and a surrogate measure of 

pulsatile CBF or cerebral blood volume (CBV) (such as ICP), one can make comment on CA 

capacity if focused on the frequency range associated with active cerebral vasomotion. 

Slow changes in driving pressure, ~between 0.05 to 0.005 Hertz (Hz) are actively 

counteracted by cerebral vasoconstriction and vasodilatation while faster chances are 

passively led through (high pass filter principle of dynamic CA).18,19 However, due to 

relative complexities of frequency-domain signal transfer function analysis (TFA), use of 

metrics such as angular phase-shift, coherence and gain, was recognized by many as a 

limitation to clinical end-user uptake at the bedside. 

As such, time-domain analysis was adopted in the late 1990’s for the creation of the 

current form of continuous CA metrics for bedside monitoring and care.2 Using the moving 

Pearson correlation between a driving pressure for flow, such as MAP/CPP, and a 

surrogate measure of pulsatile CBF/CBV, such as ICP, the pressure reactivity index (PRx) 

was created.2 Now commonly derived using 30 consecutive 10-second mean values of 

MAP and ICP, updated every minute, PRx has emerged as a relatively simple yet efficient 

and understandable method for CA trend assessment in a continuous fashion at the 

bedside.1,3,5 This index ranges from +1, indicating impaired CA, to close to -1, indicating 

intact CA, with numerous studies on PRx documenting the strong association between 

impaired CA and poor long-term outcome in moderate/severe TBI patients.2,20–23 Figure 2 
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provides an example of continuous cerebral physiology in TBI at the bedside, including the 

derivation of PRx in real-time. 

*Figure 2 here 

However, it must be acknowledged, despite the many advances made with the 

development of the PRx metric, there are some known limitations. PRx is an inherently 

noisy parameter, influenced by artifact in both the parent ICP and MAP waveforms, which 

must be considered during real-time bedside interpretation. In addition, the presence of 

decompressive craniectomy has a known impact on the ICP waveform and it’s 

representation of changes in CBV, leaving unclear implications for the accuracy of PRx data 

in this setting.20,21,24 Though, recent time-series analytics using data from the Collaborative 

European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) highlights that 

previous concerns with craniectomy patients and the MAP/ICP relationship, may not 

necessarily be warranted.25  Furthermore, the method of ICP measurement carries major 

implications for the derivation of PRx. Use of external ventricular drains for ICP 

measurement in TBI may limit the ability to derive PRx continuously, particularly when the 

drain is utilized in the therapeutic management of ICP.26–28 In addition, regardless of the 

ICP measurement technique, we assume that the ICP measure represents a global 

measure of pressure, and thus PRx represents a global measure of CA, ignoring potential 

regional variation in CA capacity.1,3,5 These concerns mean that despite a large volume of 

statistical, retrospective, evidence for the benefits of adding of PRx to the battery of 

neuromonitoring tools, its incorporation into routine clinical practice requires further 

work.5 

Pre-Clinical Validation of Continuous CA Metrics: 

The development of any new physiologic metric necessitates some degree of validation. 

With continuous CA measures, like PRx, validation of its ability to measure aspects of the 

static CA curve is critical, particularly the LLA and ULA. Given such validation is not possible 

in human studies, pre-clinical validation is required. Over the past decade, pre-clinical 

validation of PRx, and other continuous multi-modal monitoring (MMM) based CA 

measures, has occurred.29–33 In healthy neonatal piglets, using both elevated ICP and 
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arterial hypotension as drivers of MAP/CPP change, PRx has been demonstrated to respect 

and detect the LLA in multiple studies.29–31,33  Similarly, in a rabbit model of intracranial 

hypertension, PRx has also been confirmed to detect and measure the LLA.32,34 These 

findings provide a degree of confidence in the ability of PRx to measure important aspects 

of CA. Unfortunately, to date, the same cannot be said regarding the ULA. Attempts to 

drive MAP above the ULA in piglet models have been unsuccessful due to early 

cardiovascular failure. It has been hypothesized that CA might be better adapted to 

compensate for increasing, rather than for decreasing, MAP/CPP.35–37 Though some 

preliminary data from these works suggests the potential for PRx to detect the ULA,38 

further pre-clinical validation of this aspect is required, ideally utilizing techniques that can 

directly assess changes in cerebral blood flow and blood volume.36  

Cerebral Autoregulation and Outcomes in TBI: 

As mentioned previously, impaired CA in moderate/severe TBI exposes an already 

damaged brain to potential ongoing secondary insult. The relationship between impaired 

CA and poor patient outcomes in TBI has been highlighted since the original PRx study was 

published in the late 1990’s.2 Those with more positive mean PRx values have been noted 

to have higher rates of unfavourable functional outcomes and increased mortality at 6 and 

12 months post-TBI.2,20–23,39,40 Critical thresholds for outcome associations for PRx have 

been documented in moderate/severe TBI cohorts.20,21 The PRx threshold of +0.05 and 

+0.25 are associated with favourable/unfavourable outcome and mortality respectively, in 

mixed TBI cohorts5,20.  Evaluating those TBI patients without decompressive 

hemicraniectomy, the PRx threshold of +0.35 for both unfavourable outcome and death 

has been documented.21  Similarly, evaluating the insult burden or dose exposure of PRx 

above these defined critical thresholds has also recently been demonstrated to correlate 

with 6-month Glasgow Outcome Score, in various single and multi-center analyses.41–45 

Recent data from the CENTER-TBI High-Resolution Intensive Care Unit (HR ICU) sub-study 

has confirmed these outcome associations,22,46 relevance of the defined thresholds,22,46–48 

and independence of PRx to predict outcome in moderate/severe TBI (multi-variable 

model AUC’s of up to 0.825, p<0.0001).23 Further, the addition of PRx to current prognostic 

models in moderate/severe TBI, appears to improve upon the accounted variance in 
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patient outcomes of between 7.5 to 19.3% (delta Nagelkerke’s pseudo-R2, p<0.0001), 

depending on the core model used.23 Finally, it appears that using current MMM 

techniques in TBI, that impaired CA dominates the majority of patients’ acute-phase ICU 

stay, with over 50% of any given day spent with impaired CA (Figure 3).46–49  Further, it 

appears that this impairment in CA overshadows ICP, CPP and PbtO2 derangements in 

terms of physiologic insult burden during current guideline-based care provision,49 

highlighting the importance of CA impairment in moderate/severe TBI.  Yet, our 

knowledge of what drives impaired CA is currently limited.1,9  Some preliminary data 

supports the association between diffuse intracranial injury patterns50–53 and poorly 

controlled ICP,2,39,41,48 with worse CA. Thus, much further research into drivers of CA 

dysfunction are required. 

*Figure 3 here 

Management of Cerebral Autoregulation Impairment in TBI: 

Despite impairment of CA appearing to dominate the ICU-phase of care of 

moderate/severe TBI patients,39,41,43,46–49 we unfortunately have limited therapeutic 

options currently.54 Evaluation of the impact of current TBI guideline-based therapeutic 

interventions on CA has demonstrated little-to-no influence on PRx, despite changes in 

these approaches over a 25-year period.41,54  CENTER-TBI data has confirmed that there 

appears to be no impact of current treatments on the % of time with impaired PRx, with 

treatments and therapeutic intensity quantified using the Therapeutic Intensity Level 

(TIL)55 composite and sub-scores collected daily (Figure 4).47  Single center time-domain 

analytics of the influence of various sedative agents (propofol and fentanyl) and 

vasopressors (norepinephrine, phenylephrine and vasopressin) have confirmed limited 

impact of dose manipulations (off-on drug state, increase dose, decrease dose, or on-off 

drug state) on measured PRx in high temporal frequency.56,57 Though, it must be 

acknowledged, such previous works have not been able to account for individual 

pharmacodynamics profiles of patients. The only positive impact seen by current TBI 

therapeutic strategies, has been with the administration of hyperosmotic/hypertonic 

agents for ICP reduction.58,59  However, the reduction in PRx seen with 

hyperosmotic/hypertonic agent administration is short-lived, and likely a function of ICP 
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reduction, as ICP elevation is a known driver of impaired PRx values in TBI patients.2,48  

Thus, moving forward with CA management in TBI requires the development of novel 

therapeutics aimed at the molecular pathways driving its dysfunction. As such, given 

limited therapeutic options, the current paradigm of CA management in TBI is the 

targeting of CPP values where PRx is the “least bad” (ie. the lowest value). This concept, 

utilizing the continuous relationship between CPP and PRx at the bedside has developed in 

the derivation of personalized ‘optimal’ CPP (CPPopt).60–64 We will touch in this in more 

detail within the sections to follow. 

*Figure 4 here 

Personalized Physiologic Targets using Cerebral Autoregulation: 

Aside from monitoring CA using PRx at the bedside, such data streams have been utilized 

to derive new personalized physiologic targets in moderate/severe TBI patients, with 

CPPopt as the most well-known exemplar. Below, we provide a brief overview of: CPPopt, 

lower limit of autoregulation (LLA)/upper limit of autoregulation (ULA), and individualized 

ICP (iICP) thresholds. 

A. ‘Optimal’ CPP (CPPopt) 

Optimal CPP is an attractive proposition for a CA oriented approach to management of TBI 

patients. As outlined above, being able to measure CA continuously does not by itself 

translate easily to clinical actions. However, knowledge of the value of CPP that has been 

in the recent hours associated with the best state of CA provides an indication for 

management of CPP, the individualised CPP target to aim for.61 This concept was originally 

proposed nearly two decades ago, along with an example protocol taking advantage of this 

new metric.60 When mean PRx was plotted against corresponding CPP (binned into 5 

mmHg intervals), across the whole cohort of TBI patients, it revealed a U-shape curve 

indicating that both high and low CPP values should probably be avoided (Figure 5).  

*Figure 5 here 

The location of the nadir of this curve was interpreted as pointing to the CPP values 

optimizing CA and termed CPPopt.  It also turned out that these CPPopt values when 
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examined within patients varied considerably, thus pointing to the individual nature of this 

metric and the necessity for its estimation for each patient.         

*Figure 6 here 

However, not until an algorithm for continuous automated derivation of CPPopt became 

available61 and further improved to ensure better coverage65 and robustness,63 it became 

possible to apply this technique in clinical settings to inform management of CPP in TBI 

patients (Figure 6). Several retrospective studies demonstrated that when CPP remained 

close to the dynamically adjusted CPPopt value throughout the observation period (over 

several days post injury) the 6 months outcome was significantly better.61,65–68  

Furthermore, it was also demonstrated that patients treated at CPP values below CPPopt 

had lower rate of survival while those with high CPP, well above CPPopt, tended to end up 

with more disabilities.61 These statistical findings eventually prompted a randomized, 

phase II, trial of CPPopt in 60 TBI patients, the COGITATE study.69 This has recently been 

completed, showing feasibly and safety of this paradigm, paving the way for the next step, 

the outcome benefit trial.  

However many questions and concerns still remain, as articulated by the Delphi consensus 

meeting in 2019.5 The reality of TBI is that its presentation is highly heterogenous, in time 

as well as in space, across the whole brain. PRx provides an inherent spatial averaging, as it 

relates global (in the first approximation) changes in CBV to changes in systemic MAP. The 

PRx-CPP relationship summary on which CPPopt is calculated on the other hand injects 

time averaging.  In order to estimate the nadir of this relationship there needs to be 

enough of CPP variability captured to ‘probe’ a wide range of possible CPP values. And this 

often necessitates a long observation window of many hours, during which the ability of 

the cerebral vasculature to autoregulate might be modulated by the pathological 

biochemical storm occurring within the acute phase of TBI, independent of CPP.  These 

problems are further exacerbated by the properties of PRx metric, which relies on clear 

transmission of spontaneous, pronounced, slow waves in MAP for accurate reflection of 

the vascular reactivity of the brain arterioles. The result of all of those effects together is 

that often the character of the PRx-CPP relationship within individual calculation windows 

can be far from conclusive. The COGiTATE study attempted to overcome those difficulties, 
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with some success, by including certain algorithmic adjustments. However, a robust clinical 

protocol for implementing this otherwise highly appealing and physiological plausible 

concept into the standard clinical practice is yet to be proposed.                          

It will likely not be until the phase III trial is conducted that a definitive confirmation of 

clinical benefits of this methodology may be obtained. Until then use of the CPPopt 

methodology for TBI management will likely continue to be limited to specialized 

centers.67,68,70,71         

B. Lower Limit of Regulation (LLR)/Upper Limit of Regulation (ULR) 

CPPopt, despite the appeal of its relatively simplistic, conceptual nature, has one 

fundamental limitation. It provides one value, at which the vascular reactivity is best 

preserved, or least impaired. It does not differentiate between different potential 

scenarios giving the same CPPopt value. That is one could imagine a case where the 

reactivity is lost almost completely across the entire range of observed CPP values except 

for a small focal spot at the CPPopt where it shows signs of recovery. Attempting to adjust 

the CPP to values close to that spot may be therefore justified. On the other hand if, for 

the same CPPopt value, the underlying PRx-CPP relationship shows a very wide range of 

fully functional reactivity there is clearly no need to ‘optimise’ the reactivity any further by 

manipulating the MAP, as long as PRx is already in the ‘working (i.e. intact) zone.  This 

concept was well presented using a CPPopt landscape visualisation,72,73 with CPP plotted 

against the colour coded CPP-time map of vascular reactivity (Figure 7) showing a zone of 

CPP values associated with intact CA over time.  

*Figure 7 here 

The practical essence of this landscape visualisation can be well represented by the notion 

of upper and lower limit of autoregulation, LLA and ULA respectively. That is if these limits 

were monitored and plotted alongside with the current CPP values the clinician would be 

presented with a lot more information than if only a single CPPopt value is provided, 

allowing the two scenarios described above to be easily separated. Such concepts of the 

LLA and ULA have been recently objectively validated in large pre-clinical models.74 
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Fortunately the algorithm that allows to produce CPPopt values can also be extended to 

estimate the LLA and ULA values (Figure 8). 

*Figure 8 here 

The theoretical benefits of taking into account the limits of CA is that it can potentially 

allow to bridge two different schools of thoughts when it comes to managing CPP in TBI 

patients: A. keeping the CPP up to ensure proper brain perfusion, and B. keeping the CPP 

down to minimize the risks of disruption to the brain-blood barrier in a fragile environment 

of severely injured brain.75  With dynamically estimated LLA one could aim to keep CPP just 

above that value turning to other priorities of TBI management. As with CPPopt, there is 

statistical evidence from retrospective studies that doing so might insure better 

outcome,76 although a lot more work in this area needs to be done.  The two additional 

points of difficulty is that estimation of LLA often requires extrapolation of the PRx-CPP 

curve, which increases uncertainty of estimation, and the fact that the ‘average’ LLA 

returned by the algorithm might just not be enough for some more vulnerable parts of the 

brain. In this situation the CPPopt value – located in the safer middle of the CA curve - 

might be preferred. All in all, the LLA-ULA and CPPopt concepts should be considered 

together, going forward toward the large outcome trial, to maximize on the benefits of 

and facilitate better integration of CA oriented management with the current treatment 

protocol in TBI. 

C. Individualized ICP (iICP) Thresholds 

Current guidelines for TBI management reference a population-wide ICP threshold target 

of 22 mmHg.15–17 Such an approach ignores patient-specific heterogeneity in physiologic 

response post-injury. A relatively recent concept has emerged, utilizing the relationship 

between ICP and PRx, referred to as the individualized ICP (iICP) threshold.77,78 This 

concept defines the iICP threshold as the ICP value above which PRx remains above the 

threshold of +0.20, as defined in the previous literature.77,78 Figure 9 demonstrates an 

example of iICP derivation (data from representative patients from CENTER-TBI publication 

on iICP – figures not included in original publication).78 The initial single center work 

highlighted the stronger association with poor outcome for patients with ICP above their 
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individual iICP threshold, compared to the guideline-based threshold of 20 mmHg at that 

time.77 Recent multi-center validation using CENTER-TBI data has confirmed that the time 

spent with ICP above iICP (AUC = 0.678, p = 0.029), compared to above current guideline 

target of 22 mmHg (AUC = 0.492, p = 0.035), displayed a stronger association with 

mortality at 6 months post-injury and was maintained while controlling for admission 

demographics.78  

*Figure 9 here 

However, despite the promising nature of iICP thresholds in TBI care, the findings should 

be considered entirely exploratory in nature at this time.  To date, only two studies have 

been published on the personalized physiologic target in TBI,77,78 necessitating further 

validation.  Further, both studies have utilized the entire recording period for derivation, 

with no work to date on continuously updating derivation of iICP.  The recent CENTER-TBI 

work had some improvements,78 creating a semi-automated algorithmic derivation of iICP 

in place of the original work’s manual inspection/derivation from plots. However, both 

previous works demonstrated that only ~60-70% of patients have an identifiable iICP 

threshold, with some iICP thresholds documented well below 20 mmHg.  Thus, much 

future work in this area of iICP thresholds is required for validation of outcome association, 

improvement of algorithmic derivation, development of continuous derivation pipelines, 

and assessment of potential patient factors which may influence yield of iICP calculations. 

This is particularly made difficult by the complexity of interaction between the thresholds 

of ICP, the state of CA, modulated by the duration, and number of ICP hypertension 

events, as demonstrated by the ICP insults intensity maps, stratified by PRx (Figure 10).44–46  

*Figure 10 here 

Cerebral Autoregulation Monitoring and “Other” Multi-Modal Monitoring: 

While not the focus of this narrative review, it is necessary to understand continuous CA 

monitoring in the context of “other” MMM data streams commonly encountered in 

bedside TBI care. For interested readers, we direct them to the referenced literature 

sources in the subsection, where various systematic reviews on MMM in TBI have recently 

been conducted3,79–82.  Continuous CA monitoring and its associations with other MMM 

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
A

A
ST

R
IC

H
T

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
8/

30
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Page 14 of 48 
 
 
 

14 

Jo
u

rn
al

 o
f 

N
eu

ro
tr

au
m

a 

C
er

eb
ra

l A
u

to
re

gu
la

ti
o

n
 M

o
n

it
o

ri
n

g 
in

 T
ra

u
m

at
ic

 B
ra

in
 In

ju
ry

: A
n

 O
ve

rv
ie

w
 o

f 
R

ec
en

t 
A

d
va

n
ce

s 
in

 P
er

so
n

al
iz

ed
 M

ed
ic

in
e

 (
D

O
I:

 1
0

.1
0

8
9

/n
eu

.2
0

2
2

.0
21

7
) 

Th
is

 p
ap

er
 h

as
 b

ee
n

 p
ee

r-
re

vi
ew

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
e

rg
o

 c
o

p
ye

d
it

in
g 

an
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

continuous data streams has, to date, only been discussed in a limited number of small, 

typically retrospective studies.  We refer the readers to the following systematic reviews, 

highlighting the current knowledge gaps.79–81   

With respect to cerebral oxygen delivery, there is some preliminary data to suggest that 

impaired CA is associated with increased episodes of low PbO2.48,49,83–85 However, both 

impaired CA and low PbtO2 are not mutually inclusive, with recent data suggesting that the 

landscape of physiologic insult burden seen by patients with moderate/severe TBI is 

dominated by impaired CA, often in the absence of low recorded PbtO2 values.48,49  

Similarly, CA indices derived from PbtO2 monitoring (ie. oxygen reactivity index; ORx) have 

been shown to not behave in a similar fashion to standard ICP-based CA metrics (like 

PRx).3,86,87  This likely stems from the inherent differences in the input signal, with PbtO2 

being based on a slow response extra-cellular O2 diffusion measure using a Clark 

electrode.88 Further analysis in the time-domain is required to fully understand the 

temporal relationship between PbtO2 changes and CA capacity, derived CPPopt and 

LLR/ULR. 

Similarly, literature assessing the association between continuous CA metrics and NIRS-

based rSO2 delivery is underdeveloped.79,89–94  In general, studies assessing the utility of 

NIRS in moderate/severe TBI are limited, as highlighted in a recent systematic review on 

the topic.79 NIRS-based CA metrics do closely co-vary with standard ICP-derived 

versions.86,94  However, direct high-frequency time-series assessments of the temporal 

relationships between rSO2 and CA measures has not been conducted to the author’s 

knowledge. Preliminary data from small cohort studies suggests a positive relationship 

between rSO2 and both CPP and CBF measures.79  Yet, much further analysis is required, 

including the development of high-resolution commercial NIRS platforms for bedside 

monitoring in moderate/severe TBI care (given current monitors are limited to 20 Hz max 

(typically 1Hz for most) data sampling frequency – limiting the extent of waveform analysis 

that can be performed).89 

Data on invasive CBF assessments, using Hemedex thermal diffusion or Laser Doppler 

methodologies, and their associations with continuous CA monitoring remain scarce.  This 

is a function of the cost and expertise needed for such concurrent monitoring and data 
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collection. A recent systematic review on the topic highlighted the rarity of such 

monitoring in general within the moderate/severe TBI populations.3,80 Such limited data 

suggests a temporal relationship between CBF measures and CA, with worse CA metrics 

values associated with poor CBF.  However, it must be acknowledged, that such studies 

have been small heterogeneous cohorts, with limited long-term outcome data collection 

and no high-frequency time-series analysis. 

Finally, cerebral micordialysis analytes have been explored in relation to continuous CA 

measurements, though in only a few studies to date.95–100  A recent large systematic 

review on microdialysis in moderate/severe TBI highlights the overall knowledge gap.81  

However, exploratory analysis does currently suggest a temporal link between impaired CA 

and elevated lactate:pyruvate ratio (LPR), glycerol and glutamate,96,97 with potential sex-

based disparities in CA and metabolic dysfunction after moderate/severe TBI.99 However, 

the true temporal-causal relationship between the two entities remains unclear.  Meaning, 

does impaired CA drive elevated LRR? Or is the build-up of metabolic by-products of 

anaerobic metabolism/secondary brain injury (as denoted by elevated LPR) which drive 

subsequent impairment of CA?  Such data sets with serial microdialysis analytes remain 

scarce, given expertise and costs associated with deployment of such monitoring in 

bedside care.  Similarly, the sampling rate of current bedside microdialysis has been 

classically limited to hourly assessments.  As microdialysis technology improves with lab-

on-chip developments, we expect sampling frequency to improve, which will facilitate 

better assessments of the temporal relationships between CA monitoring and 

microdialysate measures. 

Future Directions: 

Widespread adoption of continuous CA monitoring in moderate/severe TBI will require 

additional research. At the moment, PRx and other continuously derived CA metrics, have 

mainly be studied/employed by specialized academic centers, where biomedical 

engineering and signal processing expertise is present and bedside interpretation is 

frequently practised.5 Thus, the true clinical end-user uptake of continuous CA monitoring 

for the derivation of personalized medicine targets in TBI has mainly be relegated to 

research purposes to date, with recent progress into randomized trials (as mentioned 
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above).63,69  Some progress has been made with increased clinician knowledge surrounding 

the importance of CA assessments in moderate/severe TBI, with both recent MMM 

consensus statements4,5 and updated treatment guidelines.17 These are the closest to 

“best practice” guidelines on the topic we have to date.  As such, generalizability of the 

method still suffers from various outstanding issues such as: method of CA metric 

derivation (ie. which MMM device is best for CA index calculation), sampling frequency of 

data required, outcome vs. physiologically relevant thresholds, and algorithm optimization 

for improved calculation yield for personalize targets based on CA monitoring.  Similarly, 

cost-effectiveness of continuous CA monitoring has yet to be quantified.  Such work would 

need to evaluate method of derivation and have a better understanding of MMM 

implications of impaired CA (ie. if we have CA monitoring, do we need other devices 

present? Or does CA monitoring (and aiming for personalized targets based on CA 

monitoring) help us avoid other MMM assessed brain injury?). 

Future adoption to the wider clinical end-user in the ICU will necessitate improvement in 

signal acquisition software/interfaces, such that minimal involvement of the clinical team 

would be required to set-up and utilize. Part of this improved accessibility will involve 

investigation of lower-resolution physiologic data streams for CA metric derivation.  Many 

commercially available ICU monitors have limited data export frequency (i.e. one-minute-

based resolution or worse).101–103 As such, derivation of CA metrics with such data leads to 

the creation of low-resolution metrics which contain information below the lower 

frequency range classically associated with CA and difficulty with automated recognition of 

artefacts. Some preliminary works on these low-resolution metrics have occurred, 

documenting associations with long-term outcomes in moderate/severe TBI.102–105 In a 

large single centre TBI study, as well as in the CENTER-TBI dataset it was recently argued 

that in the absence of the high resolution based PRx its low resolution (minute-by-minute) 

version, LPRx, show similar, even if inferior, patterns of association with outcome and 

could potentially be used to track the CA status.66,106 However, such work remains 

preliminary at this time. With increased accessibility, future larger phase III trials of 

individualised CPPopt vs. guideline CPP therapeutic targeting would be feasible.  To date, 

the only prospective phase II study comparing these two CPP strategies was relegated to a 
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few specialized centers.63,69 Thus, despite this study demonstrating safety and feasibility of 

targeting CPPopt in severe TBI, future widespread adoption/trials need proper preparation 

and education for the participating centers. Such trials would also benefit from a 

widespread consensus on what is “high resolution” monitoring in the ICU for 

moderate/severe TBI.  The academic literature surrounding CA and MMM has classically 

referred to this as full-waveform sampled data streams (ie. typically 50 Hz or much higher). 

Moving forward with further validation and clinical investigation in CA and other MMM 

techniques, it would be prudent for a general consensus to be obtained regarding what 

would be considered the minimum sampling frequency for high resolution studies, and a 

clear rationale for its need (ie. Fourier and wavelet analytics, etc.).  Though, such future 

consensus must understand limitations of current commercially available bedside patient 

monitors with regards to data export frequency, where many vendors only allow low-

frequency export that limits high resolution data analytics and metric derivation. With 

future consensus, we may be able to set the future expected industry standard for such 

monitors, facilitating an “even playing field” for all ICU’s globally and access to true high 

resolution MMM in TBI care. 

Aside from PRx, as the exemplar continuously derived CA metric for TBI, many other 

MMM-based CA measures have been described to varying degrees in the 

literature.1,3,5,86,104  Utilizing the same concept in PRx derivation, Pearson correlation 

coefficient based metrics have been derived between MAP/CPP and other surrogate 

measures of CBF (ie. TCD-based cerebral blood flow velocity (CBFV),107 parenchymal 

thermal diffusion based CBF (TD-CBF) or near infrared spectroscopy (NIRS) based regional 

oxygen saturation (rSO2)108) or surrogate measures of cerebral blood volume (i.e. NIRS 

derived changes in total haemoglobin concentration).109 Such novel metrics have varying 

associations with PRx, with recent literature highlighting that they do not all behave 

similarly when evaluating using multi-variate co-variance techniques.86 However, those 

derived from TCD and NIRS appear to be promising, as they seem to show significant 

association with PRx,86,109–114 with both having varying degrees of pre-clinical validation in 

their ability to measure aspects of the CA curve.29,31,38 Further, the ICP waveform can be 

processed for additional ICP-based CA metrics, using the fundamental amplitude of ICP 
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(AMP) to derive the pulse amplitude index (PAx; correlation between AMP and 

MAP)21,22,115 or RAC (correlation (R) between AMP (A) and CPP (C)).116 The utility of PAx 

and RAC remains unclear, though preliminary data suggests superiority in detecting 

impaired CA in patients where ICP remains low.115 All of these MMM-based continuous CA 

metrics require focused research to determine their clinical utility. 

To date, continuous characterization of CA impairment in moderate/severe TBI patients 

has been relegated to the acute-phase of ICU care, given the requirement of MMM of 

cerebral physiology in concert with invasive arterial line MAP monitoring. Reliance on such 

data streams has prevented such continuous data collection in the subacute or outpatient 

follow-up phases of care.  If NIRS/TCD metrics are proven as close surrogates for PRx, 

generating these metrics with full waveform arterial blood pressure (ABP) data from 

finger-cuff based methods has been demonstrated to be feasible for the derivation of 

entirely non-invasive CA metrics. With this advent, we now have the ability to evaluate the 

association between acute-phase CA behavior and long-term CA, using similar measures.  

Further, such non-invasive metrics produce the capacity to perform CA follow-up 

assessments at the bedside or in the clinic setting, negating the need for expensive and 

poorly tolerated intermittent CA assessments using magnetic resonance imaging 

techniques.117  Future investments in this emerging area is required to demonstrate 

ongoing feasibility and utility of such non-invasive continuous techniques. 

Finally, as highlighted above, we currently do not have specific therapeutics for impaired 

CA.54  Development of such precision interventions aimed at prevention and treatment of 

impaired CA will required extensive research into the molecular pathways driving 

dysfunction.  Our current understanding around CA control mechanisms is predominantly 

focused on long-existing theories, where we refer the interested reader to the referenced 

literature for more details.9,13,118–127 However, in short, current theorized mechanisms of 

CA control hinge on four main areas: myogenic, endothelial, neurogenic and metabolic.  

The myogenic theory focuses on tunica media calcium-mediated stretch response to 

changes in CBF, and is the most simplistic of current theories. The endothelial theory is 

predicated on CBF mediated shear-stress on cerebrovascular endothelial cells sparking 

vasoactive pathways, mediated through nitric oxide and endothelin driven vaso-motion. 
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While the neurogenic theory rests on direct mono-amine based neural input on cerebral 

vessels, facilitating rapid changes in tone and diameter.  Finally, the metabolic theory 

focuses on metabolic by-product build-up leading to alterations in vessel tone. However, 

the metabolic theory doesn’t explain the rapidity of response seen in the cerebral vessels, 

given the time is takes for by-product build-up.  Aside from these four existing core 

theories on CBF regulation, other aspects have emerged in TBI as potential modifiers of 

the above, including: host cerebral inflammatory response,128–130 cortical spreading 

depression131 and autonomic mediation.132–135  In short, it is unlikely that a single theory 

explains all aspects of CBF/CA control, and the truth likely involved a combination of the 

above mechanisms.   

As such, future work in this area will require integrating the MMM cerebral physiome, with 

genome/epigenome, protoeome and metabolome data with comprehensive patient 

demographics, injury, treatment and outcome data sources to uncover such molecular 

pathways and develop personalized therapeutic strategies.9 As such, multi-disciplinary 

expertise in genomics/epigenomics, proteomics, metabolomics, cerebral physiomics and 

clinical epidemiology will be required in order to make progress.  Further, integrative 

neuroinformatic approaches will be critical to make sense of such complex data streams, 

assuredly requiring application of artificial intelligence approaches.136 Information gleamed 

from this approach may then be utilized in a “top-down” fashion to inform both 

cellular/small-animal and large animal pre-clinical platforms for precision pharmaceutical 

development directed at various pathways of CA dysfunction/failure. Work is currently 

underway to develop such comprehensive clinical data collection schemes and pipelines, 

as well as the pre-clinical infrastructure, for such future precision medication approaches 

in moderate/severe TBI care.136–139 
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Figure Legends: 

 

Figure 1: Theoretical Depiction of the Cerebral Autoregulatory Curve in Humans 

CBF = cerebral blood flow, gm = gram, LLA = lower limit of autoregulation, MAP = mean 

arterial pressure, min = minute, mL = milliliters, mmHg = millimeters of Mercury, ULA = 

upper limit of autoregulation. Figure depicts the theoretical representation of the CBF vs. 

MAP relationship during normal and various physiology/pathophysiologic states. Note the 

change in shape of the curve based on different situations, with alterations in the position 

of the LLA, ULA, plateau and shape of plateau. 
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Figure 2: Example of High-Frequency Cerebral Physiology in TBI Patient 

au = arbitrary units, CPP = cerebral perfusion pressure, CPPopt = optimal CPP (personalized 

CPP target based on real-time relationship between PRx and CPP), ICP = intracranial 

pressure, mmHg = millimeters of Mercury, PbtO2 = brain tissue oxygen, PRx = pressure 

reactivity index (correlation between ICP and mean arterial pressure (MAP)). Figure 

displays an example of real-time multi-modal cerebral physiology in TBI seen at the 

bedside, including continuous cerebral autoregulation measurement by deriving PRx. 

Patient data for this figure generation was utilized under existing research ethics approval 

at the University of Manitoba (REB #’s: H2017:181 and B2020:118). 
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Figure 3: Daily Rates of Impaired PRx in Moderate/Severe TBI Patients 

a.u. = arbitrary units, CI = confidence interval, PRx = pressure reactivity index (correlation 

between intracranial pressure (ICP) and mean arterial pressure (MAP)). Panel A - highlights 

that over the first 7 days of ICU stay over 50% of a patient’s day is spent with PRx >0, 

based on a population of 249 patients (total of 1230 days of ICU stay). Figure is adapted 

(with permission of corresponding author) from open access CENTER-TBI publication of 

Zeiler et al. Acta Neurochir (Wein). 2019.47 Panel B – represents the variation in daily mean 

PRx values based on time from injury in both those with fatal outcome (red) and those 

with functional outcomes (blue) at 6-months (based on cohort 601 moderate/severe TBI 

patients). Figure adapted with permission of authors from open access publication Adams 

et al.39 
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Figure 4: Daily Therapeutic Intensity and Impact of % Times with PRx Above 0 

NS = not significant (Kruskal-Wallis testing), PRx = pressure reactivity index (correlation 

between intracranial pressure (ICP) and mean arterial pressure (MAP)), TTIL = total 

cumulative therapeutic intensity level score. Figure highlights that there is no association 

between daily therapeutic intensity and daily % time with PRx above zero, indicating 

treatment independence of PRx to current guideline-based therapeutic approaches in 

moderate/severe TBI (based on a population of 249 patients (total of 1230 days of ICU 

stay). Figure is adapted (with permission of corresponding author) from open access 

CENTER-TBI publication of Zeiler et al. Acta Neurochir (Wein). 2019.47  
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Figure 5: Population-Wide CPP vs PRx Relationship - 500 TBI patients 

CPP = cerebral perfusion pressure, mmHg = millimeters of Mercury, PRx = pressure 

reactivity index (correlation between intracranial pressure (ICP) and mean arterial pressure 

(MAP)). Plot of over 500 patients reveals a U-shaped relationship between the vascular 

reactivity index (PRx) and CPP. Data used to generate this figure was obtained from the 

prospectively maintained cerebral physiology database at the University of Cambridge, 

where data is collected and entered in an entirely de-identified format for research 

purposes. Within this institution, patient data may be collected with waiver of formal 

consent, as long as it remains fully anonymized, with no method of tracing this back to an 

individual patient. Such data curation remains within compliance for research integrity as 

outlined in the Governance Arrangements for Research Ethics Committees (GAfREC) in the 

United Kingdom, September 2011 guidelines, section 6.0. 
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Figure 6: ICM+ Screen Shot – Patient Example of ICP, PRx, CPP and CPPopt Time Trends 

CPP = cerebral perfusion pressure, CPPopt = optimal CPP, ICP = intracranial pressure, 

mmHg = millimeters of Mercury, PRx = pressure reactivity index (correlation between ICP 

and mean arterial pressure (MAP)). ICM+ screen shot showing trends of CPP, ICP, colour 

coded PRx (green and red), and the calculated CPPopt, in red in the bottom panel. 

Informed consent was obtained for observational data collection (study approval by 

medical ethical committee Maastricht number 16-4-243) 
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Figure 7: Concept of CPPopt Landscape Visualization 

CPP = cerebral perfusion pressure, CPPopt = optimal CPP, mmHg = millimeters of Mercury, 

PRx = pressure reactivity index (correlation between intracranial pressure (ICP) and mean 

arterial pressure (MAP)). The vertical PRx-CPP colour gradient represents the colour-

mapping scheme for PRx values. The blue line drawn on that colour map denotes the 

trajectory of the CPPopt curve fitted at that time point, and is coded in the PRx-CPP 

landscape map (horizontal), according to the colours it covers in the colour gradient 

(vertical). Figure adapted with permission from authors of Ercole et al. 2018.74 
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Figure 8: Patient Example of Time Trend of CPPopt, LLA and ULA Concepts 

CA = cerebral autoregulation, CPP = cerebral perfusion pressure, CPPopt = optimal CPP, 

ICM+ = intensive care monitoring plus software, LLA = lower limit of autoregulation, mmHg 

= millimeters of Mercury, PRx = pressure reactivity index (correlation between intracranial 

pressure (ICP) and mean arterial pressure (MAP)), ULA = upper limit of autoregulation. 

Figure depicts a screenshot of ICM+ showing the trends of the upper and lower limits of 

autoregulation (the green band) and the CPPopt in the middle (red line) with the actual 

patients’ CPP superimposed (yellow line). The second panel from the bottom shows an 

overall CPPopt chart (PRx vs CPP) over the total monitoring period, displaying a clear U-

shaped character. The vertical, red bands, on both side of the curve denote CPP zones 

(ULA/LLA) with impaired reactivity using a threshold of +0.20 to define impaired CA 

(horizontal white line). Informed consent was obtained for observational data collection 

(study approval by medical ethical committee Maastricht number 16-4-243) 
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Figure 9: Examples of iICP Derivation in TBI 

ICP = intracranial pressure, iICP = individualized ICP threshold, PRx = pressure reactivity 

index (correlation between ICP and mean arterial pressure (MAP)). Figure highlights two 

examples of iICP derivation in TBI patients, with Panel A demonstrating iICP threshold 

below 20 mmHg (*red line), and Panel B demonstrating iICP threshold of above 22 mm Hg 

(* red line). iICP is derived using the intersection between the locally weighted scatterplot 

smoothing ((LOWESS)  function of PRx vs. ICP and the line PRx = +0.20. LOWESS function is 

depicted with 95% confidence intervals in grey. Data example from CENTER-TBI HR ICU 

cohort and adapted with permission of authors (figures not previously published).79 Data 

used in these analyses were collected as part of the CENTER-TBI study which had individual 

national or local regulatory approval; the UK Ethics approval is provided as an exemplar: 

IRAS No: 150943; REC 14/SC/1370).  The CENTER-TBI study (EC grant 602150) has been 

conducted in accordance with all relevant laws of the EU if directly applicable or of direct 

effect and all relevant laws of the country where the Recruiting sites were located, 

including but not limited to, the relevant privacy and data protection laws and regulations 

(the “Privacy Law”), the relevant laws and regulations on the use of human materials, and 

all relevant guidance relating to clinical studies from time to time in force including, but 

not limited to, the ICH Harmonised Tripartite Guideline for Good Clinical Practice 

(CPMP/ICH/135/95) (“ICH GCP”) and the World Medical Association Declaration of Helsinki 

entitled “Ethical Principles for Medical Research Involving Human Subjects”. Informed 

Consent by the patients and/or the legal representative/next of kin was obtained, 

accordingly to the local legislations, for all patients recruited in the Core Dataset of 

CENTER-TBI and documented in the e-CRF. 
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Figure 10: Example of Population Based ICP Insult Intensity Maps – Stratified by PRx Status 

ICP = intracranial pressure, mins = minutes, mmHg = millimeters of Mercury, PRx = 

pressure reactivity index (correlation between ICP and mean arterial pressure (MAP)). 

Panel A – ICP insult intensity and duration in those with intact PRx (PRx <= +0.30), Panel B 

– ICP insult intensity and duration in those with impaired PRx (PRx > +0.3). Heat maps 

demonstrate the correlation (ranging from -1 (red) to +1 (blue) with Glasgow Outcome 

Score. Red areas indicate poor outcome, while blue areas indicate good outcomes. Figures 

demonstrate that with intact autoregulation, patients can tolerate longer duration and 

intensity of ICP elevations compared to those with impaired autoregulation. Reprinted 

with permission from open access publication corresponding author, Akerlund et al.46  
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