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CHAPTER 1 

GENERAL INTRODUCTION1 

1 Part of the paragraphs 1.1 and 1.2 has been extracted and adapted from an editorial by Perna, Grassi, and other Authors Perna, G., 
M. Grassi, D. Caldirola and C. Nemeroff (2018). "The revolution of personalized psychiatry: will technology make it happen sooner?"
Psychological medicine 48(5): 705-713.
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CHAPTER 2  

A CLINICALLY TRANSLATABLE MACHINE 
LEARNING ALGORITHM FOR THE 

PREDICTION OF AD CONVERSION IN 
INDIVIDUALS WITH MILD AND PREMILD 

COGNITIVE IMPAIRMENT 

Massimiliano Grassi1, Giampaolo Perna1,2,3,4, Daniela Caldirola1, Koen 
Schruers2, Ranjan Duara3,5,6, David A. Loewenstein3,6,7 

 
1 Department of Clinical Neurosciences, Hermanas Hospitalarias - Villa San Benedetto Menni Hospital, Italy. 
2 Research Institute of Mental Health and Neuroscience and Department of Psychiatry and 
Neuropsychology, Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, 
Netherlands.  
3 Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, FL, USA. 
4  Mantovani Foundation, Arconate, Italy. 
5 Department of Neurology, Herbert Wertheim College of Medicine, Florida International University, Miami, 
FL, USA. 
6 Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, USA. 
7 Center on Aging, Miller School of Medicine, University of Miami, FL, USA. 
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Abstract  

Background: available therapies for Alzheimer’s disease can only 
alleviate and delay the advance of symptoms, with the greatest impact 
eventually achieved when provided at an early stage. Thus, early 
identification of which subjects at high risk, e.g., with MCI, will later 
develop Alzheimer’s disease is of key importance. Currently available 
machine learning algorithms achieve only limited predictive accuracy or 
they are based on expensive and hard-to-collect information.  
Objective: the current study aims to develop an algorithm for a 3-years 
prediction of conversion to Alzheimer’s disease in MCI and PreMCI 
subjects based only on non-invasively and effectively assessable 
predictors.  
Methods: a dataset of 123 MCI/PreMCI subjects was used to train 
different machine learning techniques. Baseline information regarding 
sociodemographic characteristics, clinical and neuropsychological test 
scores, cardiovascular risk indexes, and a visual rating scale for brain 
atrophy was used to extract 36 predictors. Leave-pair-out-cross-
validation was employed as validation strategy and a recursive feature 
elimination procedure was applied to identify a relevant subset of 
predictors.  
Results: 16 predictors were selected from all domains excluding 
sociodemographic information. The best model resulted a support 
vector machine with radial-basis function kernel (whole sample: AUROC 
= 0.962, best balanced accuracy = 0.913; MCI sub-group alone: AUROC 
= 0.914, best balanced accuracy = 0.874).  
Conclusions: Our algorithm shows very high cross-validated 
performances that outperform the vast majority of the currently available 
algorithms although only non-invasive and effectively assessable 
predictors are used. Further testing and optimization in independent 
samples will warrant its application in both clinical practice and clinical 
trials. 
 
Keywords: Alzheimer’s disease, clinical prediction rule, machine 
learning, mild cognitive impairment, personalized medicine.  
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Introduction  

Alzheimer’s disease is a neurodegenerative disease characterized by 
progressive loss of memory and functional abilities that leads to severe 
dementia and eventually death. It is the most common 
neurodegenerative disease and currently affects 47 million people 
worldwide, being the top cause for disabilities in later life. The global cost 
of Alzheimer’s and dementia is estimated to be $818 billion, which is 
nearly the 1% of the entire world’s gross domestic product. These 
numbers are projected to increase, with a global expected cost of $2 
trillion by 2030 and more than 131 million people suffering from this 
disorder by 2050 (International 2016). 
No cure or disease modifying treatment is currently available for 
Alzheimer’s disease and current treatment regimens only provide 
symptomatic relief (Szeto and Lewis 2016). By the time Alzheimer’s 
disease is clinically diagnosed, there is considerable multi-system 
degeneration that has occurred within the brain. As such, emerging 
treatments will likely have the greatest impact when provided at an 
earliest possible stages of the disease process (Brooks and Loewenstein 
2010, Loewenstein, Curiel et al. 2017). 
Therefore, the prompt identification of subjects truly at high risk of 
developing Alzheimer’s disease is a crucial issue still without a solution. 
Mild Cognitive Impairment (MCI) is a condition characterized by changes 
in cognitive capabilities beyond what is expected for the subject’s age 
and education that are sufficiently mild that they do not interfere 
significantly with its daily activities. Individuals with such condition are at 
high risk of converting to dementia and especially Alzheimer’s disease in 
the next few years (20-40% of conversion rate by three years, with a 
lower rate evidenced in epidemiologic samples than in clinical ones 
(Petersen, Parisi et al. 2006, Roberts, Knopman et al. 2014).  
Furthermore, even subjects with an intermediate state between normal 
cognition and MCI, i.e., the so called Premild Cognitive Impairment 
(PreMCI) stage (Chao, Mueller et al. 2010), are more likely to progress to 
a formal diagnosis of MCI or dementia within a two- to three-year period 
and this might represent the earliest clinically definable stage of 
Alzheimer’s disease. (Loewenstein, Greig et al. 2012). 
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However, some subjects with MCI have shown to remain stable over 
years or even to recover to cognitively normal with no further progression 
to Alzheimer’s disease. This holds even more true for subjects with 
PreMCI than for those with MCI (Loewenstein, Greig et al. 2012). 
Different health problems other than neurodegenerative diseases can 
cause transient MCI and PreMCI conditions and these do not necessarily 
lead to Alzheimer’s disease (Breitner 2014). Thus, sole reliance on these 
precursor conditions is not enough to provide a precise identification of 
those subjects at true risk of later developing Alzheimer’s disease. 
Beyond MCI and preMCI, several attempts to identify subject’s 
characteristics that may improve the prediction of progression to 
Alzheimer’s disease have been done. Investigations have regarded a 
vast variety of potential predictors, such as sociodemographic and 
clinical characteristics, cognitive performances, neuropsychiatric 
symptomatology, cardiovascular indexes, dietary and life habits, 
structural and functional neuroimaging investigations, gene typization, 
and several bio-markers assessed both in the cerebrospinal fluid and 
peripherally (van Rossum, Vos et al. 2010, Klunk 2011, Forlenza, Diniz et 
al. 2013, Kang, Korecka et al. 2013, Sperling and Johnson 2013, Cooper, 
Sommerlad et al. 2015, Van Cauwenberghe, Van Broeckhoven et al. 
2016).  
It is increasingly recognized that better predictive capability can be 
achieved by models that simultaneously exploit the information coming 
from several predictors, and machine learning can be used to create 
such models. This is a fast-growing field at the crossroads of computer 
science, engineering, and statistics “that gives computers the ability to 
learn without being explicitly programmed” (Samuel 1959). Machine 
learning techniques use known training examples to create algorithms 
able to provide the best possible prediction when applied to new cases 
whose outcome is still unknown. Machine learning has been applied in 
the attempt to predict MCI-Alzheimer’s disease conversion in more than 
50 published studies. Different combinations of the above-mentioned 
predictors were applied to various machine learning techniques in the 
attempt to predict conversion from MCI to dementia from one year to 
even five years after the baseline assessment. The results achieved vary 
broadly among studies, ranging from some that achieved performances 
just above the chance to a few showing high accuracy levels (Plant, 
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Teipel et al. 2010, Apostolova, Hwang et al. 2014, Clark, Kapur et al. 
2014, Agarwal, Ghanty et al. 2015, Moradi, Pepe et al. 2015, Dukart, 
Sambataro et al. 2016, Hojjati, Ebrahimzadeh et al. 2017, Long, Chen et 
al. 2017, Minhas, Khanum et al. 2017). 
Despite this huge research effort, no gold-standard algorithm is available 
to predict progression in those at risk for Alzheimer’s disease and clinical 
translation is still lacking. All the “top performing” algorithms have not 
been tested in further independent samples thus far, and, in addition, 
certain predictors employed by some models may represent a significant 
barrier in their clinical adoption due to their high costs and/or 
invasiveness (e.g., fludeoxyglucose positron emission tomography 
scans or lumbar puncture).  
Considering all the above-mentioned issues, the current study aims to 
be the first step in the development of a clinically-translatable algorithm 
for the identification of the Alzheimer’s disease conversion in subjects 
with either MCI or PreMCI. To be quickly adoptable in clinical practice, 
the algorithm should include only non-invasive predictors that are either 
already routinely assessed or effectively introducible in clinical practice 
and achieve a high predictive accuracy. Considering the evidence 
available so far, we hypothesize that the information provided by 
sociodemographic characteristics, clinical and neuropsychological tests, 
cardiovascular risk indexes, and clinician-rated level of brain atrophy 
might allow for such predictive models. In this investigation, a series of 
machine learning algorithm will be developed and cross-validated within 
a sample of patients with either MCI/PreMCI whose diagnostic follow-up 
was available for at least three years after the baseline assessment. Out-
of-the-sample testing of the best algorithm in independent samples of 
MCI/PreMCI patients will be performed in a further phase. 

Materials and methods 

Subjects 

Data regarding 184 subjects with MCI or PreMCI at baseline and with 
available diagnostic follow-up assessments for at least three years were 
included in the study.  
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These are part of a dataset that collects several patients recruited in a 
study investigating longitudinal changes associated with MCI and normal 
aging that involved community volunteers as well as from the Memory 
Disorders Clinic at the Wien Center for Alzheimer’s disease and Memory 
Disorders at Mount Sinai Medical Center, Miami, Beach, Florida as well 
as subjects recruited from the community and memory disorders center 
at the University of South, Florida. All subjects at each of the sites had a 
common clinical and neuropsychological battery as described below. 
Considering the final aim of developing a predictive algorithm to be used 
in clinical practice, no other inclusion or exclusion criteria were applied 
beyond these diagnostic criteria. 
Subjects were classified as converters to probable Alzheimer’s disease 
(cAD; n = 48, 26,1%) if during at least one of the follow-up assessments 
occurred within three years from the baseline investigation, they 
presented a Dementia syndrome by DSM-IV-TR criteria (American 
Psychiatric Association 2000), and satisfied the National Institute of 
Neurological and Communicative Disorders and Stroke/Alzheimer's 
Disease and Related Disorders Association criteria for Alzheimer’s 
disease (McKhann, Drachman et al. 1984). Otherwise, they were 
classified as non-converters to Alzheimer’s disease (NC; n = 136, 
73,9%).  
The study was conducted with the ethical standards of the relevant 
national and institutional committees on human experimentation and 
with the Helsinki Declaration of 1975, as revised in 2008. All subjects 
gave their written informed consent to the use of their clinical data for 
scientific research purposes.  

Feature extraction 

Considering our aim to employ only predictors that are non-invasive and 
that are either already routinely assessed or cost-effectively introducible 
in clinical practice, we decided to focus on information available in our 
dataset that regard diagnostic subtypes, sociodemographic 
characteristics, clinical and neuropsychological test scores, 
cardiovascular risk indexes, and levels of medial temporal lobe brain 
atrophy in the Hippocampus (HPC), Entorhinal Cortex (ERC), and 
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Perirhinal Cortex (PRC) as assessed by a clinician-rated Visual Rating 
Scale (VRS) (Duara, Loewenstein et al. 2008). 
Among all the variables related to these domains, some of them were not 
assessed in all recruited subjects. Variables that had more than 20% of 
missing values in either the cAD or NC groups were discarded. The 
following pieces of information were finally used: 
 

• Sociodemographic characteristics: gender, age (in years) and 
years of education calculated by years of schooling and highest 
degree obtained.  

• MCI subgroups: Subjects were classified as MCI if they presented 
subjective memory complaints by the participant and/or or 
collateral informant, evidence of decline from clinical history and 
evaluation. All of the MCI patients had a global Clinical Dementia 
Rating (CDR) score (Morris 1993) of 0.5, and one or more memory 
measures (including the Hopkins Verbal Learning Test Revised, 
the Semantic Interference, Logical Memory Delay and Visual 
Reproduction of the WMS-IV, Trial Making Test, Category 
Fluency, Letter Fluency and Block Design of the Wechsler Adult 
Intelligence Scale - Version 3) 1.5 standard deviation or greater 
below expected normative values were defined as belonging to 
the amnestic Mild Cognitive Impairment (aMCI) subgroup. MCI 
subjects with non-memory impairment only were defined as non-
amnestic Mild Cognitive Impairment (non-aMCI).  

• PreMCI subgroups: As defined by Loewenstein and colleagues 
(Loewenstein, Greig et al. 2012), those individuals who had a 
global CDR of 0 but had memory or non-memory 
neuropsychological deficits as described above were diagnosed 
as Premild Cognitive Impairment - neuropsychological subtype 
(PreMCI-np). Participants who obtained a global CDR of .5 and 
had within normal limits performance on neuropsychological 
testing were classified as Premild Cognitive Impairment - clinical 
subtype (PreMCI-cl). 

• Clinical scales: The CDR (Morris 1993) is a 5-point scale (0 = none; 
0.5 = very mild, 1 = mild, 2 = moderate, 3 = severe) used to 
characterize six domains of cognitive and functional performance 
in Alzheimer disease and related dementias: Memory, Orientation, 
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Judgment & Problem Solving, Community Affairs, Home & 
Hobbies, and Personal Care. The rating is obtained through a 
semi-structured interview of the patient together with other 
informants (e.g., family members). The global score was used in 
the analyses. The memory sum score of a modified informant-
based version of CDR (ModCDR-M) was also available and used 
(range 0-12) (Duara, Loewenstein et al. 2010). The Geriatric 
Depression Scale (GDS) is a 30-item yes-no self-
report assessment used to identify depression in the elderly 
(Yesavage 1988) and the total score was included in the current 
analyses (range 0-30). 

• Visual Rating Scale for brain atrophy: HPC, ERC, and PRC atrophy 
levels were assessed with a 0-4 VRS (Duara, Loewenstein et al. 
2008). This is an adaptation from the original Scheltens’ VRS for 
the global assessment of medial temporal atrophy (Scheltens, 
Leys et al. 1992). VRS ratings for HPC, ERC, and PRC were 
performed in each hemisphere on a Magnetic Resonance Imaging 
(MRI) image of a standardized coronal slice, perpendicular to the 
line joining the anterior and posterior commissures, intersecting 
the mammillary bodies and on adjacent slices. All these 6 VRS 
measures were separately included as predictors in this study. 
Ratings are based on a five-point scale: 0 = no atrophy, 1 = 
minimal atrophy, 2 = mild atrophy, 3 = moderate atrophy, and 4 = 
severe atrophy. A computer interface provides a library of 
reference images defining the anatomical boundaries of each 
brain structure and depicting different levels of atrophy. The whole 
rating usually takes 5 to 6 minutes per subject (Urs, Potter et al. 
2009) and excellent inter-rater (kappa, 0.75 to 0.94) and intra-rater 
(kappa, 0.84 to 0.94) agreements have been reported (Duara, 
Loewenstein et al. 2008, Urs, Potter et al. 2009). VRS measures of 
HPC and ERC have already proved to be predictive of later 
conversion to Alzheimer’s disease in MCI patients (Varon, Barker 
et al. 2015) 

• Neuropsychological tests: The Hopkins Verbal Learning Test 
Revised  - Total Recall (HVLTR-R) and Hopkins Verbal Learning 
Test Revised - Delayed Recall (HVLTR-D) scores (Benedict and 
Zgaljardic 1998) measuring the verbal learning and memory, the 
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Semantic Interference Test - Total Retroactive (SIT-RT) and 
Semantic Interference Test – Total Recognition (SIT-RC) scores 
(Loewenstein, Acevedo et al. 2004) measuring memory function 
and interference, and the Trial Making Test - version A (TMT-A) 
and Trial Making Test - version A (TMT-B), both errors and time 
(Reitan 1958), measuring visual-motor coordination and attentive 
functions were considered. Moreover, the Digit-Symbol-Coding 
Test (DSC), Block Design (Raw Score) and Similarities tests of the 
Wechsler Adult Intelligence Scale - Version 3 (Wechsler 1997) 
investigating respectively associative learning, visuospatial 
function and verbal comprehension, and the Delayed Visual 
Reproduction Test (DVR) and Logical Memory Test - Immediate 
Recall (LM-I) and Logical Memory Test - Delayed Recall (LM-D) 
scores of the WMS-IV (Wechsler 1997) measuring visual and 
verbal memory were also included.  

• Cardiovascular risk indexes: Subjects were assessed by physician 
regarding heart rate, presence or absence of hypertension, high 
cholesterol levels, diabetes, history of tobacco use, history of 
myocardial infarction, history of coronary bypass/angioplasty and 
history of stroke/tia. 

 
Continuous variables were standardized, and categorical variables were 
coded in order di optimize the number of classes. Categorical 
cardiovascular risk indexes were re-coded dichotomously and the 
diagnostic variable was the only polytomous variable, indicating the four 
diagnostic subgroups (aMCI, non-aMCI, PreMCI-np, PreMCI-cl). In the 
end, 26 continuous, 9 dichotomous categorical and one four-class 
categorical features were used. The full list is available in Table 1.  
123 subjects have no missing data for all these variables (cAD = 30, 
24.39%; NC = 93, 75.61%) and constitute the final sample used in the 
current study. 

Machine learning techniques 

Several machine learning procedures exist to solve classification 
problems. In the current study, we decided to proceed with the following 
supervised techniques:  
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• Elastic Net: EN is a regression method that adds two types of 

penalties during the training process. These penalties are the L1 
norm of the regression coefficients, as used in LASSO (least 
absolute shrinkage and selection operator) regression 
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and the L2 norm, as used in ridge regression 
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with j indicates the feature, bj the regression coefficient of the jth 

feature, and l1 and l2 are two parameters that define the amount 
of penalization provided by each of the two terms (Zou and Hastie 
2005). The result of including these two penalization terms is a 
“shrinkage” (i.e., regularization) of the regression coefficients that 
limit the risk of overfitting, that is when the created algorithm is 
too good in correctly predicting the cases included in the training 
sample while having poor performance when used to make 
prediction in new ones. Moreover, the use of the L1 penalty during 
training produces also an implicit feature selection, reducing some 
coefficient to 0 and thus removing some of them form the 
algorithm. The final predictive model is a logistic regression 
equation. Thus, the training procedures cannot automatically 
model non-linear relationships and interactions among predictors, 
unless polynomials and interactions are “handcrafted” and a-priori 
inserted as features in the model. 

• Elastic Net with polynomial features: considering what explained 
above, also EN models including degree three polynomials of the 
continuous features were trained. 

• Support Vector Machine: Intuitively, in this algorithm, each case 
can be viewed as a point in n-dimensional space, where n is 
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number of features. During the learning process, the linear hyper-
plane that optimize the separation of the two classes in such 
multi-dimensional space is found. New examples are then 
“plotted” into that space and predicted to belong to a class based 
on which side they fall on. However, this would allow only to solve 
so-called linearly separable problems, likewise to what logistic 
regression can achieve, but SVMs can also perform non-linear 
classification transforming the original feature space to a higher 
dimensional space (i.e., creating several new features from the 
original ones) where the classification problem may better result 
linearly separable. To perform this transformation in a 
computationally efficiently manner, the so-called “kernel trick” 
can be applied, which avoids the explicit transformation that is 
needed to get linear learning algorithm to learn to perform 
nonlinear classification. Instead, it enables to operate in an 
“implicit” feature space without ever computing the coordinate of 
each case in the new higher dimensional space, but by simply 
computing the distance of all pairs of cases only considering the 
original features. In this study, we used the radial basis function 
(Gaussian) kernel, that is 

 

𝐾(x, x′) = 𝑒
&'

()')!("

%s" *
 

 
where x and x’ the two feature vectors of two distinct cases and 
‖𝑥 − 𝑥′‖ is the Euclidean distance between the two (see below for 
the formula). The kernel parameter s must be set and requires 
optimization during the training of the algorithm. Furthermore, also 
a further C parameter requires optimization. Intuitively, the latter 
is a regularization parameter that similarly to the l2 in EN is useful 
to improve the generalized performance of the model allowing a 
trade-off between error in the training sample and model 
complexity. SVM originally provides only class prediction, with no 
associated probability. The widely-applied Platt scaling was used 
to make the model provide probability predictions (Platt 1999). A 
detailed explanation of SVM and the kernel trick can be found in 
(Schölkopf, Smola et al. 2002). 
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• Gaussian Processes: GP is a method based on Bayesian theory 
that can be applied in solving both regression and classification 
problems, modelling the relationship between the inputs and the 
outputs following a Bayesian probabilistic approach. A Gaussian 
process can be viewed as a distribution over functions, and 
inference consists of applying Bayes’ rule to find the posterior 
function distribution that best approximates the training data. GP 
used for classification naturally produce probabilistic class 
predictions. The covariance function matrix of the model can be 
substituted with a kernel matrix, which represents the counterpart 
of the “kernel trick” seen before. The radial basis kernel was used 
also for GP and again this kernel has s as parameter that requires 
optimization. A detailed explanation of GP can be found in 
(Rasmussen 2006). 

• K-Nearest Neighbors: in the kNN, at first the distances (i.e., the 
dissimilarity) between a new case and all known examples (i.e., 
those included in the training set whose output is already known) 
is calculated. In this analysis, the Euclidean distance was used as 
distance metric, that is 

•  

0"(𝑐+ − 𝑒+)%
,

+$!

 

 
were c is the new case, e is a known example and i is each of the 
N features. To make the prediction, the k less distant examples, 
also called its nearest neighbors, are taken into account and 
probabilistic class prediction is performed considering the number 
of nearest neighbors belonging to each class. K is a hyper-
parameter that may take integer values varying from 1 up to the 
size of the training sample and requires optimization during the 
training phase. 

 
All analyses were parallelized on a Microsoft® Windows® server equipped 
with two 6-cores X5650 Intel® Xeon® 2.66 GHz CPUs and were performed 
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in R (R Core Team 2017), using the implementation of the machine 
learning techniques available in the caret package (Kuhn 2008). 

Cross-validation procedure 

All the machine learning techniques used in this study have different so-
called hyper-parameters that allow a different tuning of the algorithm 
during the training process. These are l1 and l2 in EN and EN-poly, s 
and C in SVM, s in GP, and k in KNN. We trained each model, when 
possible, with up to 200 random hyper-parameter configurations. 
Different configurations of these parameters lead to algorithms with 
different predictive performances. Specifically, we are interested in 
achieving the best possible performance when the algorithm is applied 
to new cases that are not part of the training sample.  
Considering the small sample size available at this phase, we used 
cross-validation to provide an estimate of such generalized performance. 
In cross-validation, the train sample is divided in several folds of cases. 
Training is iteratively performed with the remaining cases not included in 
each fold and then the algorithm is tested on the fold cases. Several 
different cross-validation protocols exist (e.g., n-fold, repeated n-fold, 
leave-one-out-cross-validation). Recent simulation studies found the 
rarely applied leave-pair-out cross-validation (LPOCV) protocol to be the 
best choice when the sample size is limited, being nearly unbiased 
compared to other commonly applied options such as leave-one-out-
cross-validation that instead leads to biased estimate (Parker, Gunter et 
al. 2007, Airola, Pahikkala et al. 2011). In our study, LPOCV implies to 
use as folds all possible combinations made of one cAD and one NC. 
The flaw of LPOCV is its high computational expensiveness. For each 
attempted hyper-parameter configurations, the training process is 
performed excluding each defined pair (2790 pairs in the current study) 
from the training sample and calculating the performance of the 
algorithm in this left-out pair. Finally, the average performance metric is 
taken as estimate of the generalized performance of the algorithm 
created with that particular technique and hyper-parameter 
configuration.  
The performance achieved during the LPOCV procedure will be 
considered as a first estimate of the performance for the algorithm when 
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applied to new cases. A test of the model that showed the best LPOCV 
performance will be performed as a future step using a fully independent 
dataset. Even if this further investigation is usually lacking for machine 
learning models developed in the medical field, this will provide a more 
accurate estimate of the algorithm predictive performance when applied 
to clinical samples. 

Performance metrics 

As primary performance metric, the Area Under the Receiving Operating 
Curve (AUROC) was used. This metric necessitate that the algorithm 
outputs a single continuous score, in this case in the range 0-1, and then 
the class prediction is finally made setting a cut-off score (cAD if above 
or equal to the cut-off score, NC if below). The AUROC value can be 
interpreted as the probability that a randomly selected cAD subject will 
receive a higher output score than a randomly selected NC subject, no 
matter which cut-off is applied to the output score. The AUROC is 0.5 
when the algorithm makes predictions at random and 1 in case it is 
infallible. Considering the LPOCV protocol applied in the analyses, the 
cross-validated AUROC was calculated with the following formula: 
 

1
𝑐"3

					1			𝑖𝑓		𝑓-7𝑥./0,-8 > 𝑓-7𝑥,2,-8	
0.5			𝑖𝑓	𝑓-7𝑥./0,-8 = 𝑓-7𝑥,2,-8
			0			𝑖𝑓	𝑓-7𝑥./0,-8 < 𝑓-7𝑥,2,-8

2

-$!

 

 
were c in the number of LPOCV pairs, f is the output function of the 
algorithm, xcAD,p is the converter and xNC,p is the non-converter of the each 
pair. The hyper-parameter configuration for each machine learning 
technique that produced the best cross-validated AUROC was finally 
retained. As we could not find in literature any proposed asymptotic 
procedure to calculate the cross-validated AUROC confidence interval 
(CI) with the LPOCV protocol, we calculated them with a stratified 
bootstrap procedure, generating 10000 new subsamples randomly 
sampling with replacement the original samples and keeping the same 
frequency of cAD e NC subjects. The distribution of the new 10000 
AUROC calculated was used to calculate 95% CI with the bias-corrected 
and accelerated (BCa) approach (Efron 1987).  
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The algorithm with the highest performance will be compared to all other 
algorithms with a paired-sample t-test calculating the standard deviation 
of the AUROCs difference with 10000 stratified bootstrap resampling, 
based on what proposed in (Carpenter and Bithell 2000). 
Moreover, the cross-validated levels of specificities and balanced 
accuracy values when sensitivity approached to 0.95, 0.9, 0.85, 0.8, 0.75 
were calculated. The cut-off applied to the algorithm output scores was 
progressively increased starting from 0 and the thresholds providing the 
closest sensitivity to the aforementioned ones was used to calculate the 
two other values. The sensitivity and specificity at the best achieved 
accuracy were also calculated. 
To provide distinct predictive performances in the two subpopulations 
and ease the comparison with previously published models that usually 
addressed only MCI patients, all performance metrics were also 
separately calculated in the MCI and PreMCI subsamples. Only the 
cross-validation pairs containing two MCI and two PreMCI subjects (one 
cAD and the other NC) were used. Considering that only three converting 
PreMCI subjects were available, results in the PreMCI subsample should 
be taken just as preliminary evidence.  
The advantage of using AUROC, sensitivity, specificity, and balanced 
accuracy over other performance metrics (e.g., accuracy, positive 
predictive value, negative predictive value) is that they are independent 
from the prevalence of the two outcome classes. Given that the observed 
rate of conversion to Alzheimer’s disease may not be the same in 
different independent samples, these metrics provide more stable 
performance estimates and ease the comparison with the performance 
achieved in other studies. 

Feature selection 

Training was initially performed including all the 36 features. Only EN and 
EN-poly automatically operate a selection of features that are finally 
included in the algorithm. Excluding non-relevant and redundant features 
and reducing the dimensionality of the algorithm feature-space usually 
brings to better generalized predictive performance. SVM, GP, KNN, and 
LR do not automatically operate any feature selection during the training 
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and so, for these techniques, we re-performed the training and hyper-
parameter optimization process with two reduced set of features.  
At first, we included only those features selected by the final EN model. 
Then, we applied a recursive feature elimination (RFE) method with 
Random Forest as implemented in the rfe function of the caret R package 
(Kuhn 2008). Detailed description of the algorithm can be found at the 
following webpage: http://topepo.github.io/caret/recursive-feature-
elimination.html. In brief, a Random Forest model is initially trained with 
all features in each cross-validation fold. Features are ranked 
according to their importance through a permutation procedure and 
then the training is re-performed iteratively removing the least ranked 
feature until when all features have been removed. The optimal number 
of feature is selected according to the average performance of all 
cross-validated folds. At the end, the model is trained with the whole 
sample, features are ranked and those falling in the previously 
identified optima number of features are retained. As different initial 
conditions may lead to different final feature subsets, we performed 
the RFE procedure 100 times with random initialization. We finally 
included only those features that were selected in more than 50 of the 
100 repetitions and we used these to train the SVM, GP, KNN and LR 
models.  
The same paired-sample t-test with bootstrap resampling was also used 
to test the significance of the change in the LPOCV AUROC achieved 
applying the two aforementioned feature selection procedures 
compared to including all the features. 

Feature importance 

While ranking the importance of features in linear models is 
straightforward (e.g., in GLM and EN), this is a particularly uneasy task in 
more complex models (e.g., non-linear kernel SVM and GP). The latter 
are sometimes referred as black-box models, making hard-to-
“impossible” to extract the rules that relate each feature to the outcome. 
Moreover, different strategy exists for different techniques and a gold-
standard procedure has not been defined yet. 
To anyhow provide a general ranking of the importance of the predictors, 
the LPOCV AUROC of each of the 36 features when taken individually 
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was calculated. This gives a metric of importance for each predictor that 
is independent from both the applied technique and all other predictors. 
The 95% CI with the abovementioned stratified bootstrap procedure 
were also calculated. Feature importance indicated by the LPOCV 
AUROC were confronted with the selection of features operated by the 
two feature selection procedures applied in our analyses. 

Results 

Final analyses required approximately 23 hours of non-stop 
computations (excluding exploratory and preliminary analyses, and 
debugging). Descriptive statistics of each feature variables in the cAD 
and NC groups are reported in Table 1. Statistics of continuous features 
are reported before the standardization was applied.  

Cross-validated predictive performance of algorithms 

The cross-validated AUROC for each of the final models is reported in 
the Table 2 and Fig. 1. SVM, GP and kNN globally achieved better 
performances then the techniques that cannot model the interaction 
between the features, i.e., LR and EN. The latter performed generally 
poorly, even when feature selection strategies were applied to LR and 
polynomial features were inserted in the EN. LR without feature selection, 
which was used as reference technique, resulted very poorly performing, 
being the worst performing model and the sole one showing an AUROC 
below 0.8 (AUROC = 0.692; C.I. 95% bootstrap=0.598, 0.788). 
SVM with the features selected by the RFE procedure is the technique 
that achieved the highest cross-validated AUROC (AUROC = 0.962; C.I. 
95% bootstrap=0.923, 0.987). The results of the paired-sample t-test 
with stratified bootstrap resampling evidenced that the AUROC of this 
model was statistically significantly higher (p<.05) of all other algorithms, 
except for the algorithm ranked second (SVM RFE vs GP RFE: p=.074). 
The models achieved high predictive performances also when the two 
subsample were considered separately, although lower in the MCI 
subsample (AUROC=0.914; C.I. 95% bootstrap=0.822, 0.975) and very 
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high in the PreMCI subsample (AUROC=0.994; C.I. 95% 
bootstrap=0.932, 1). 
The cross-validated levels of specificities and balanced accuracy values 
when sensitivity approached 0.95, 0.9, 0.85, 0.8, 0.75, as much as the 
sensitivity and specificity at the best achieved accuracy are reported in 
Table 3. Considering the whole sample of both MCI and PreMCI 
subjects, the best achieved cross-validated balanced accuracy is 0.913 
(sensitivity = 0.956, specificity = 0.871). Again, performances were still 
high but lower in magnitude in the MCI subsample, with a best balanced 
accuracy of 0.874 (sensitivity = 0.880, specificity = 0.867). Instead, 
preliminary results in the PreMCI subsample presented very high 
performances, with a best balanced accuracy of 0.980 (sensitivity = 1, 
specificity = 0.960). 

Efficacy of feature selection procedures 

The features selected by the EN model with the best hyper-parameter 
configuration and the RFE procedure are also specified in Table 1. The 
RFE procedure used in this study resulted effective in identifying a 
relevant subset of the initial features, leading for all the techniques to a 
significant improvement of the cross-validated performances compared 
to the use of all features (SVM vs SVM RFE: p = .015; GP vs GP RFE: p 
= .023; kNN vs kNN RFE: p=.048; LR vs LR RFE: p<.001). Moreover, also 
the models ranked second and third were GP and kNN with the features 
selected by the RFE procedure and they both achieved an AUROC 
higher than 0.9.  
Instead, the approach of using the features selected by the EN model 
was not particularly efficacious, leading to not statistically significant 
improvements in GP, kNN, and LR and even leading to a reduced 
performance in SVM. 

Feature importance 

The LPOCV AUROC of each of the 36 features is reported in Table 4, 
ranked from the highest to the lowest AUROC, and in Fig. 2, subdivided 
based on their type (i.e., sociodemographic, diagnosis, clinical, VRS, 
neuropsychological tests and of cardiovascular risk indexes). 
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The sociodemographic features had poor predictive capability. All their 
AUROC resulted below 0.65 and only age achieved statistical 
significance (lower bound of the 95% C.I. higher than 0.5). As a matter 
of facts, neither the EN model nor the RFE procedures selected any of 
the sociodemographic features to be included in the models. 
The baseline diagnosis (i.e., aMCI, non-aMCI, PreMCI-np, and PreMCI-
cl) resulted instead quite predictive, with an AUROC of 0.759. This is 
again in accordance with both the feature selection procedures that 
identified these features as to be retained. 
Among the clinical scales, only the ModCDR-M score resulted with both 
a significant and relevant cross-validated AUROC (AUROC = 0.730), 
being the sole selected by both the feature selection procedures. The 
global CDR score, although resulting with a statistically significant 
AUROC, had an AUROC very small in magnitude (AUROC = 0.559). 
The AUROC of the six VRS scores ranged from 0.761 (right ERC atrophy) 
to 0.647 (the left PRC atrophy). The left PRC atrophy score was the sole 
not selected by the RFE procedure while all VRS scores were included 
in the final EN model.  
Among the fourteen neuropsychological test scores, the HVLTR-R and 
HVLTR-D scores, the SIT-RT and SIT-RC scores, LM-I and LM-D scores 
of the Weschler Memory Scale – Fourth Edition (WMS-IV) resulted the 
tests with the highest predictive performances (all AUROC above 0.750) 
and these were all selected by both the feature selection procedures. 
The DVR score of the WMS-IV also resulted able to provide statistically 
significant although less precise prediction of conversion (AUROC = 
0.718), as much as TMT-A and TMT-B errors (AUROC ranging between 
0.6 and 0.7). Of these, both time and errors of the TMT-B resulted 
included also in the final EN model, while the RFE procedure selected 
only TMT-B errors. 
Finally, among the cardiovascular risk features, only history of stroke/tia 
and history of coronary bypass/angioplasty were found to have an 
AUROC statistically significant and higher than 0.6. Interestingly, the 
selection of these features by the two feature selection procedures 
resulted quite different from this evidence. The final EN model didn’t 
include any of the cardiovascular risk features, while the RFE selected 
history of myocardial infarction and heart rate, which had a non-
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significant LPOCV AUROC, and not history of myocardial infarction and 
history of coronary bypass/angioplasty. 

Discussion 

The current study represents the first step in the development of a novel 
machine-learning algorithm for the identification of three-year conversion 
to Alzheimer’s disease in subjects with either MCI or PreMCI. Such an 
algorithm finally aims to be efficiently applicable in clinical practice, thus 
achieving high accuracy and to be based on predictors that can be easily 
and effectively assessed in clinical settings.  
The algorithms developed in this study promise to fulfill both these 
requirements. We employed only predictors based on 
sociodemographic characteristics, clinical and neuropsychological tests, 
cardiovascular risk indexes, and level of brain atrophy as assessed by 
clinicians through the VRS from structural MRI images. With these pieces 
of information, our best algorithm achieved a global cross-validated 
AUROC higher than 0.96, with a AUROC higher than 0.91 also in the MCI 
subsample. This indicates that our best algorithm already outperforms 
the clear majority of the several previously proposed algorithms. 
Furthermore, to the best of our knowledge, this is the only available 
predictive model that was developed for subjects at a PreMCI stage, 
showing very high preliminary performance (AUROC > 0.99) also in the 
PreMCI subgroup.  

Translation to clinical practice 

Among all the algorithms we developed, the one which showed the best 
performance was the SVM with radial-basis function kernel that included 
only the features selected via the RFE procedure. Regarding the MCI 
subsample, roughly 88% of specificity and 87% sensitively are the levels 
that resulted maximizing the overall cross-validated balanced accuracy 
(87%). Also, we found results of a nearly perfect identification of cAD in 
the PreMCI subsample (cross-validated accuracy = 98%), although 
these should be considered preliminary as we only had three cAD 
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PreMCI subjects in our sample. Further testing in independent clinical 
samples would finally confirm these results.  
The predictive capabilities achieved by this model would make its 
application useful in clinical practice as much as in clinical trials, 
representing a relevant improvement in the current possibility to identify 
only those subjects truly at risk of converting to Alzheimer’s disease. 
Moreover, it would be possible to further optimize the desired levels of 
specificity and sensitivity according to the cost associated in predicting 
false positives and negatives.  
We achieved the obtained results employing only information that can be 
collected in routine clinical practice. All the measures we used as 
predictors are non-invasive and can be easily introduced in any clinical 
center without requiring any particular difficulty or the purchase of non-
standardly available equipment. All the neuropsychological tests do not 
necessitate any intensive training and can be administered by a 
technician under the supervision of a neuropsychologist. Moreover, the 
availability of machines for structural MRI and the ease of using VRS is 
fast and easily adoptable thanks to the availability of a software with 
reference images that guide the clinician during the rating, providing 
training for the relatively uninitiated radiologist, neurologist, or any other 
interested rater (Urs, Potter et al. 2009). The VRS overcomes the issue of 
MRI data obtained from different machines, which are usually non-
automatically comparable. All the remaining information we considered, 
such as socio-demographic, clinical, and cardiovascular risk, can be 
readily collected during neurological interviews. 

Comparisons with other available machine learning algorithms  

Several machine learning algorithms have been previously proposed to 
predict the MCI to Alzheimer’s disease conversion. Among those that 
used only baseline information and make a prediction of conversion in 
about three years, we could identify only a few achieving performances 
similar or superior to ours, and they are reported in Table 5.  
Specifically, five studies evidenced superior performances. The 
algorithm proposed by Argwal and colleagues (Agarwal, Ghanty et al. 
2015) uses a selection of blood plasma proteins as sole predictors. This 
is a very interesting result as their model uses information from a different 
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domain and it may be partially complementary to the features we used. 
Also, the prediction is entirely based on the analysis of a single blood 
sample and even if the assessment of such protein blood levels is not 
currently clinical routine, it requires a very little invasive procedure and 
may be develop so to result cost-effectively adoptable in clinical 
practice. However, these results come from a small training sample and 
further investigation is necessary to evidence the soundness of such 
promising results.  
Three further algorithms have been developed based on structural MRI 
data: those proposed by Minhas and colleagues (Minhas, Khanum et al. 
2017), and Plant and colleagues (Plant, Teipel et al. 2010) were trained 
and cross-validated in very small samples, respectively of 13 and 24 MCI 
subjects, while Long and colleagues (Long, Chen et al. 2017) used a 
larger sample (n=227). All these algorithms showed very high cross-
validated performance. However, they directly use structural MRI data 
and considering the difficulties of employing together data coming from 
different scanners (Teipel, Reuter et al. 2011), this may place a barrier to 
an efficient dissemination of such algorithms into clinical practice.  
Finally, also Hojjati and collegues proposed an algorithm (Hojjati, 
Ebrahimzadeh et al. 2017) with high predictive accuracy based on resting 
state functional MRI data. If the availability of MRI machines in clinical 
setting is quite common nowadays, functional MRI is still mainly used in 
research settings. Thus, such algorithm may currently result difficulty 
applicable in clinical practice. 
Four additional studies proposed algorithm with performances similar to 
ours. Three studies employed predictors that may not allow an easy 
translation to clinical practice: Dukart and colleagues (Moradi, Pepe et 
al. 2015) used structural MRI data, Dukart and colleagues (Dukart, 
Sambataro et al. 2016) both structural MRI and fludeoxyglucose positron 
emission tomography data, and Apostolova and colleagues (Apostolova, 
Hwang et al. 2014) cerebrospinal fluid p-tau protein levels.  
Instead, Clark and colleagues (Clark, Kapur et al. 2014) used only 
sociodemographic, clinical, and neuropsychological test scores, 
achieving high cross-validated performances although inferior to those 
achieved by our best model. 
Considering this evidence, our and Clark’s algorithms are the only two 
currently available that achieved a relevant predictive performance using 



PREDICTION OF AD CONVERSION FROM MCI AND PRE-MCI: A FIRST ML ALGORITHM  

 
 

57 

only predictors that may be easily assessed in nowadays clinical 
practice, with our algorithm that seems to outperform the Clark’s ones. 
As we used different predictors than those employed in Clark’s 
algorithms (i.e., they didn’t use brain atrophy levels assessed via the VRS 
but included the scores of a novel semantic fluency word lists test), it 
would be of great interest to investigate in the next steps if adding such 
predictors to our features would bring to a further increase in the 
predictive performance of our algorithms.  

Importance of predictors 

While sociodemographic and cardiovascular risk were not particularly 
predictive, memory and brain atrophy seem to be the most relevant for 
the prediction of Alzheimer’s disease conversion. The HVLTR, SIT, and 
LM tests were identified as the most relevant cognitive measures by all 
feature selection and importance procedures, and they all assess 
different aspects of memory. The ModCDR-M score was also suggested 
as a particularly relevant feature. The important role of memory 
functioning as predictor was somehow expected considering previous 
findings (Loewenstein, Acevedo et al. 2007) and that memory deficits are 
the core clinical characteristics that defines Alzheimer’s disease. Also, 
the evidence of an important role of brain atrophy is in line with previous 
evidence (Li, Tan et al. 2016) as well as several other studies which 
developed highly performing machine learning algorithms starting from 
structural MRI data, alone (e.g., Plant, Teipel et al. 2010) or in 
combination with neuropsychological test scores (e.g., Moradi, Pepe et 
al. 2015, Minhas, Khanum et al. 2017). Memory deterioration and brain 
atrophy may begin years before a full-blown Alzheimer’s disease 
diagnosis can be made and a proper set of sensible measures can allow 
to promptly identify them. Our study further suggests that machine 
learning techniques have the potential to exploit such information to early 
identify those subjects in which the onset of the pathophysiological 
processes leading to Alzheimer’s disease has been occurring. 

Limitations 

Our study has some potential limitations that should be taken into 
account. We used cross-validation as validation procedure but further 
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testing in an independent sample of new cases has not been performed 
yet. However, nearly all the algorithms proposed to make a MCI-to-
Alzheimer’s disease prediction currently lack such further testing. 
Furthermore, the sample we used to train the algorithm was limited in 
size and included only three cAD PreMCI. Thus, the performance 
estimate obtained for the PreMCI should be considered as very 
preliminary and requires further investigation.  
Also, we applied only some of the many machine learning as well as 
feature selection procedures available. Although we have already 
reached good results, there is no guarantee that other machine learning 
procedures and other subsets of features would allow to achieve even 
better predictive accuracy.  
Moreover, all subjects of our sample were recruited in the same 
abovementioned clinical centers. The population referring to these might 
have peculiar characteristics and algorithms might perform less well in 
different MCI and PreMCI populations. Also, both the features and 
subjects we finally included were selected from a larger set of available 
variables and subjects according to the lack of missing values. Their 
occurrence in such excluded variables and subjects may be due to 
reasons that are beyond mere randomness, potentially limiting the 
representativeness of our feature set and train sample and thus leading 
to biases in our algorithms. 
Given these current issues, we plan to test the performance in a new 
sample of MCI and PreMCI subjects currently in a longitudinal study in 
Miami, currently in its third year, as well as to try new procedures for 
further optimization.  
Another potential shortcoming is the complexity of providing a clear 
explanation of the role that each feature plays in the prediction. While a 
first basic approach has been attempted in this study, more strategies 
will be applied while proceeding in the next phases with larger samples. 
A better interpretability of the model will help both in gaining further 
understandings of how these variables are related to the development of 
Alzheimer’s disease and in generating more trust towards the application 
of model by clinicians as much as patients.  
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Conclusion 

In conclusion, we used supervised machine learning techniques to 
develop algorithms able to identify which subjects with PreMCI and MCI 
will convert to Alzheimer’s disease in the following three years. As the 
opportunity of an efficient clinical translation was one of the main goals 
motivating our study, we used predictors based only on 
sociodemographic characteristics, clinical tests, cognitive measures, 
cardiovascular risk indexes, and level of brain atrophy as assessed by 
clinicians through the VRS from structural MRI images. We promisingly 
achieved high predictive performance, among the very best of the many 
algorithms available in literature and the best achieved so far using only 
information easily assessable in clinical practice. Considering these 
results, we plan to proceed in further testing and optimization in other 
independent and larger samples as to reach the level of reliability 
necessary for an actual applicability. 
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Figure 1. AUROC of algorithms. 

 
The figure indicates the cross-validated AUROC and its 95% bootstrap C.I. for each 
algorithm. Algorithms are grouped according to the machine learning techniques. The 
different feature selection procedure applied are indicated below, as well as by 
different point shapes (circle = all features; square = features selected via EN, triangle 
= features selected via RFE) 
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Figure 2. AUROC of individual predictors 

 
The figure indicates the cross-validated AUROC and its 95% bootstrap C.I. when prediction is made by 
each single predictor. Predictors are grouped according to conceptual domains, in descending order 
sociodemographic information, diagnosis, clinical scores, brain atrophy, cognitive measures and 
cardiovascular risk index. Non-significant AUROC (i.e., lower bound of the C.I. lower than or equal to 
0.5) are in grey, significant ones in black. 
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Abstract 

Background: in a previous study, we developed a highly performant and 
clinically-translatable machine learning algorithm for a prediction of 3-
year conversion to Alzheimer’s disease in subjects with Mild Cognitive 
Impairment (MCI) and Premild Cognitive Impairment. Further tests are 
necessary to demonstrate its accuracy when applied to subjects not 
used in the original training process. In this study, we aimed to provide 
preliminary evidence of this via a transfer learning approach.  
Methods: we initially employed the same baseline information (i.e., 
clinical and neuropsychological test scores, cardiovascular risk indexes, 
and a visual rating scale for brain atrophy) and the same machine 
learning technique (support vector machine with radial-basis function 
kernel) used in our previous study to retrain the algorithm to discriminate 
between participants with AD (n=75) and normal cognition (n=197). Then, 
the algorithm was applied to perform the original task of predicting the 
3-year conversion to AD in the sample of 61 MCI subjects that we used 
in the previous study. 
Results: even after the retraining, the algorithm demonstrated a 
significant predictive performance in the MCI sample (AUROC = 0.821, 
95% CI bootstrap = 0.705-0.912, best balanced accuracy = 0.779, 
sensitivity = 0.852, specificity = 0.706). 
Conclusions: these results provide first indirect evidence that our 
original algorithm can perform relevant generalized predictions also 
when applied to new MCI individuals. This motivates future efforts to 
bring the algorithm at sufficient levels of optimization and trustworthiness 
that will allow its application in clinical as well as research settings. 
 
Keywords: Alzheimer’s disease, clinical prediction rule, machine 
learning, mild cognitive impairment, personalized medicine, precision 
medicine, transfer learning 
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Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative brain 
disorder and is the top cause for disabilities in later life being associated 
with huge global costs. Currently, no cure is available for AD although, 
with new emerging treatment approaches, it is increasingly important to 
be able to identify subjects at a true risk of later developing AD. By 
identifying those persons at greatest risk for decline, it would be possible 
to make clinical trials of AD treatments more cost-effective and valid by 
better selecting subjects to recruit, as treatments will likely have the 
greatest impact when provided at the earliest possible stage of the 
disease process (Brooks and Loewenstein 2010, Loewenstein, Curiel et 
al. 2017).  
In a previous study, we presented a novel machine learning (ML) 
algorithm for the prediction of a three-year conversion to AD in subjects 
with Mild Cognitive Impairment (MCI) and preliminarily also in subjects 
with Premild Cognitive Impairment (PreMCI), which was developed with 
a sample of 123 MCI and PreMCI patients recruited in a collaborative 
longitudinal study by several centers located in the Miami (Florida, US) 
area (Grassi, Perna et al. 2018). Differently from several other available 
ML algorithms, ours employed only non-invasive predictors that are 
either already routinely assessed or effectively introducible in current 
clinical practice, i.e., clinical and neuropsychological test scores, 
cardiovascular risk indexes, and clinician-rated levels of brain atrophy. 
Promisingly, the algorithm achieved high predictive accuracy in our 
previous study, with a cross-validated balanced accuracy of 0.913 and 
Area Under the Receiving Operating Curve (AUROC) of 0.962 in the entire 
sample of MCI and PreMCI, and with a cross-validated balanced 
accuracy of 0.874 and AUROC of 0.914 in the sole sample of MCI. Its 
level of accuracy is among the very best of the many algorithms available 
in literature and the best achieved so far using only information easily 
collectable in clinical practice (Plant, Teipel et al. 2010, Apostolova, 
Hwang et al. 2014, Clark, Kapur et al. 2014, Agarwal, Ghanty et al. 2015, 
Moradi, Pepe et al. 2015, Dukart, Sambataro et al. 2016, Hojjati, 
Ebrahimzadeh et al. 2017, Long, Chen et al. 2017, Mathotaarachchi, 
Pascoal et al. 2017, Minhas, Khanum et al. 2017). 
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However, before an application can be safely proposed, a predictive 
algorithm needs to be tested in further independent samples of MCI and 
PreMCI subjects to demonstrate that its accuracy levels are preserved 
also when it is applied in generalized clinical and experimental contexts. 
To provide such evidence, a sample of distinct MCI and PreMCI subjects 
is currently under recruitment as part of a longitudinal study of over 450 
persons at the University of Miami (DL). This sample will be used to test 
the algorithm we proposed in our previous study as soon as the three-
year follow-up assessments will be completed.  
However, before such optimal testing strategy will become performable, 
another opportunity for a preliminary test of our algorithm can come from 
the application of the so-called transfer learning approach. In the ML 
field, this refers to the process of using knowledge from one problem to 
train part or an entire algorithm that will be later applied to another 
problem. Its application for the solution of many complex tasks has been 
growing in the last years (Weiss, Khoshgoftaar et al. 2016) and such 
strategy has already been applied in developing several algorithms that 
predict the conversion of MCI subjects to AD (Nho, Shen et al. 2010, 
Plant, Teipel et al. 2010, Cui, Liu et al. 2011, Hinrichs, Singh et al. 2011, 
Cheng, Zhang et al. 2013, Westman, Aguilar et al. 2013, Young, Modat 
et al. 2013, Retico, Bosco et al. 2015, Collij, Heeman et al. 2016, Dukart, 
Sambataro et al. 2016). In these studies, the Authors initially trained the 
algorithms to discriminate between AD and Cognitively Normal 
individuals (CN), not using samples of MCI subjects but instead samples 
of solely AD and CN subjects. Then, they applied these ML algorithms in 
a different task, which is the prediction of the risk of future conversion to 
AD in MCI subjects. A prediction of conversion is made if the MCI 
subjects is classified as AD by the algorithm, while a prediction of not 
conversion is made if the MCI subjects is classified as CN. Such strategy 
is motivated by the hypothesis that those MCI subjects who will later 
convert to AD already show AD-like unrecognized characteristics, which 
instead do not characterize the MCI subjects who will not convert. 
Following the abovementioned approach, we employed the same 
predictors and ML technique (support vector machine with radial-basis 
function kernel) used in our previous study to retrain our algorithm to 
discriminate between AD and CN using a sample of subjects with either 
the former or the latter condition. Then, after retraining, we will use our 
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ML algorithm to make a prediction of the three-years conversion to AD 
in the same sample of MCI subjects we used in our previous study. In 
the current study, although we will use the same predictors and ML 
technique, the MCI sample will be used only to test the algorithm and 
not during training. Thus, the results we will achieve will be able to 
provide first indirect evidence of how our previously proposed ML 
algorithm can perform relevant predictions also when applied to a 
sample of subjects not used in the training process. 
Compared to our previous study where both training and validation were 
performed in the MCI sample via a cross-validation procedure, we 
expect that the algorithm retrained in a separate sample of AD/CN 
individuals will achieve a reduced but still relevant predictive 
performance in the MCI sample, which will provide further 
complementary evidence in support of the results found in our previous 
study. 

Materials and methods 

Subjects 

Data regarding 272 subjects with AD or CN as well as the sample of 61 
subjects with MCI used in our previous study (Grassi, Perna et al. 2018) 
were included in the current one. Instead, considering that only three 
converters were available in the PreMCI sample, this was employed in 
the current study. All the included sample of subjects are part of a 
dataset that collects several patients recruited in a study investigating 
longitudinal changes associated with MCI and normal aging, which 
involved community volunteers as well as subjects recruited from the 
Memory Disorders Clinic at the Wien Center for Alzheimer’s disease, the 
Memory Disorders at Mount Sinai Medical Center, Miami Beach, Florida, 
and the community and memory disorders center at the University of 
South Florida. A common clinical and neuropsychological battery was 
administered to all subjects at all the sites. Considering the final aim of 
developing a predictive algorithm to be used in clinical practice, no other 
inclusion or exclusion criteria were applied beyond these diagnostic 
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criteria and the occurrence of missing information in the variables used 
as predictors (see below).  
Subjects were classified as having probable Alzheimer’s disease (AD; n 
= 75, 27.07%) if at the time of the assessment they presented a Dementia 
syndrome by DSM-IV-TR criteria (American Psychiatric Association 
2000), and satisfied the National Institute of Neurological and 
Communicative Disorders and Stroke/Alzheimer's Disease and Related 
Disorders Association criteria for Alzheimer’s disease (McKhann, 
Drachman et al. 1984). Subjects were classified as MCI if they presented 
subjective memory complaints by the participant and/or or collateral 
informant, and evidence of decline from clinical history and evaluation, 
i.e., a global CDR score (Morris 1993) of 0.5, and one or more memory 
measures (including the HVLTR, the SIT, Logical Memory Delay and 
Visual Reproduction of the WMS-IV, TMT-B, Category Fluency, Letter 
Fluency and WAIS-III Block Design) 1.5 standard deviation or greater 
below expected normative values. Finally, subjects were identified as CN 
(n = 197, 72.03%) if during assessment they had a global CDR of 0 and 
no neuropsychological deficits (1.5 standard deviation or greater above 
expected normative values). 
The study was conducted with the ethical standards of the relevant 
national and institutional committees on human experimentation and 
with the Helsinki Declaration of 1975, as revised in 2008. All subjects 
gave their written informed consent to the use of their clinical data for 
scientific research purposes.  

Feature extraction 

The same variables included as predictors in the best algorithm 
developed in our previous study were used to train the AD/CN algorithm, 
excluding the variable indicating the MCI/PreMCI sub-type that is not 
applicable to AD and CN subjects. These predictors were selected with 
a recursive feature elimination procedure starting from a larger set of 36 
variables regarding sociodemographic characteristics, clinical and 
neuropsychological test scores, cardiovascular risk indexes, and a visual 
rating scale for brain atrophy.  
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• Clinical scales: the memory sum score of a modified informant-
based version of CDR (ModCDR-M) (Duara, Loewenstein et al. 
2010);  

• Visual Rating Scale for brain atrophy: left and right hemisphere 
HPC, ERC, and PRC atrophy levels were assessed with a 0-4 VRS 
(Duara, Loewenstein et al. 2008), an adaptation from the original 
Scheltens’ VRS for the global assessment of medial temporal 
atrophy (Scheltens, Leys et al. 1992). Ratings were performed on 
a Magnetic Resonance Imaging (MRI) image of a standardized 
coronal slice, perpendicular to the line joining the anterior and 
posterior commissures, intersecting the mammillary bodies and 
on adjacent slices. Ratings are performed on a five-point scale (0 
= no atrophy, 1 = minimal atrophy, 2 = mild atrophy, 3 = moderate 
atrophy, and 4 = severe atrophy) and excellent inter-rater (kappa, 
0.75 to 0.94) and intra-rater (kappa, 0.84 to 0.94) agreements have 
been reported (Duara, Loewenstein et al. 2008, Urs, Potter et al. 
2009), also thanks to a computer interface that provides a library 
of reference images. Only five of the six VRS scores were included 
in the algorithm, excluding the left PRC score as indicated by the 
feature selection procedure used in our previous study. 

• Neuropsychological tests: The Hopkins Verbal Learning Test 
Revised  - Total Recall (HVLTR-R) and Delayed Recall (HVLTR-D) 
scores (Benedict and Zgaljardic 1998), the Semantic Interference 
Test - Total Retroactive (SIT-RT) and Total Recognition (SIT-RC) 
scores (Loewenstein, Acevedo et al. 2004), the Trial Making  
the Logical Memory Test - Immediate Recall (LM-I) and - Delayed 
Recall (LM-D) scores of the WMS-IV (Wechsler 1997). 

• Cardiovascular risk indexes: heart rate, and history of myocardial 
infarction. 

 
Detailed descriptions of these variables can be found in (Grassi, Perna 
et al. 2018). Continuous variables were standardized. In the end, 14 
continuous and one dichotomous categorical predictor were used. The 
full list is available in Table 1.  
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Training with AD/CN Participants 

In this study, we used the same ML technique that generated the most 
performing algorithm in our previous study (Grassi, Perna et al. 2018), 
which is Support Vector Machine with radial basis function (Gaussian) 
kernel (SVM). It has two hyper-parameters (s; C) that allow a different 
tuning of the algorithm during the training process, and 200 random 
configurations of these hyper-parameters were attempted in order to 
identify the configuration that allow to achieve the best predictive 
performance.  
Specifically, we are interested in achieving the hyper-parameter 
configuration that results in the best possible performance when the 
algorithm is applied to discriminate new AD/CN cases that are not part 
of the training sample. We used cross-validation to provide an estimate 
of such generalized performance but the sample size in this study 
resulted too large to apply the computationally expensive leave-pair-out 
cross-validation protocol, as we did in our previous study. Instead, a 
stratified cross-validation protocol was used. For each hyper-parameter 
configurations, 75 folds were used, each including a single subject with 
AD. Training was performed excluding the cases in the fold from the 
training sample and calculating the performance of the algorithm on 
them. Finally, the average performance metric is taken as estimate of the 
generalized performance of the algorithm created with that hyper-
parameter configuration. As primary performance metric, the Area Under 
the Receiving Operating Curve (AUROC) was used. At first the algorithm 
outputs a continuous prediction score (range: 0-1; the closer to 1 the 
higher the predicted risk of conversion for that subject) and then the 
class prediction is finally made setting a cut-off score (AD if above or 
equal to the cut-off score, CN if below). 
A bootstrap procedure, (10000 resampling with replacement) was used 
to calculate the confidence interval (CI) of the average cross-validated 
AUROC. The distribution of the resampled 10000 average AUROCs was 
used to calculate 95% CI with the bias-corrected and accelerated (BCa) 
approach (Efron 1987). 
The hyper-parameter configuration for each technique that produced the 
best cross-validated AUROC was retained and a final algorithm with 
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such configuration is finally trained on the whole dataset of AD and CN 
subjects.  

Testing with MCI 

Predictions of three-year conversion to AD for the MCI subjects was 
obtained using the algorithm trained with AD and CN subjects, 
considering a classification of AD as prediction of future conversion to 
AD and CN as prediction of non-conversion. It is worth noting that in this 
case the MCI subjects were not used during the training of the model. 
The AUROC in the MCI sample subsample were calculated and a 
stratified bootstrap procedure, (10000 resampling with replacement) was 
used to calculate the AUROC confidence interval (CI). The distribution of 
the new 10000 AUROCs calculated was used to calculate 95% CI with 
the bias-corrected and accelerated (BCa) approach (Efron 1987). The 
cut-off applied to the algorithm output scores was progressively 
increased starting from 0 and the thresholds providing the best balanced 
accuracy was identified, calculating also the sensitivity and specificity 
achieved. Moreover, the cross-validated levels of specificities and 
balanced accuracy values when sensitivity approached to 0.95, 0.9, 
0.85, 0.8, 0.75 were calculated.  

Results 

Descriptive statistics of each feature in the AD and CN groups are 
reported in Table 1. Statistics of continuous features are reported before 
standardization was applied.  
The final algorithm trained with the AD/CN sample shows very high 
cross-validated accuracy in discriminating between AD and CN 
individuals, with an AUROC of 0.996 (C.I. 95% bootstrap= 0.983, 1). 
When applied to sample of MCI individuals to predict their risk of 
conversion to AD in the next 3-year, its predictive performance resulted 
relevant also in this task, with an AUROC of 0.821 (C.I. 95% bootstrap = 
0.705, 0.912) and a best balanced accuracy of 0.779 (sensitivity = 0.852, 
specificity = 0.706). The levels of specificities and balanced accuracy 
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values when sensitivity approached 0.95, 0.9, 0.85, 0.8, 0.75 are 
reported in Table 2. 
As expected, its predictive performance was smaller than the cross-
validated one found in our previous study (AUROC = 0.914, C.I. 95% 
bootstrap = 0.822, 0.975; best balanced accuracy = 0.874, sensitivity = 
0.880, specificity = 0.867) but it demonstrated a predictive performance 
better than randomness (i.e., the AUROC has a lower 95% bootstrap CI 
larger than 0.5). 

Discussion 

The aim of the current study was to provide a first indirect evidence in 
support of a clinically-translatable machine-learning algorithm for the 
identification of three-year conversion to Alzheimer’s disease in subjects 
with either MCI or PreMCI, which we presented in a previous paper 
(Grassi, Perna et al. 2018). Such algorithm showed high cross-validated 
predictive performance, the highest among the currently available 
algorithms that are based only on information easily assessable in clinical 
practice (Grassi, Perna et al. 2018). 
A three-year follow-up assessment of a new sample of MCI subjects is 
currently ongoing, which will allow a proper testing of our algorithm in a 
sample that is independent from the one employed in the training phase. 
Instead, in this study, we used the transfer learning approach to 
preliminary perform such testing. We employed the same feature and ML 
techniques used in our previous study to retrain the algorithm to 
discriminate between AD and CN participants, and then we applied it to 
the sample of MCI subjects that we used in the previous study, 
considering a prediction of a three-year conversion to AD if the algorithm 
classifies a MCI subject as AD and a prediction of non-conversion if the 
algorithm classifies the subject as CN.  
As hypothesized, after the retraining, the algorithm demonstrated a 
significant predictive performance in the MCI sample, although reduced 
in magnitude compared to the one achieved in our previous study 
(Grassi, Perna et al. 2018). These results suggest that our algorithm can 
perform relevant predictions also when applied to new samples not used 
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for training, further motivating future efforts to bring our algorithm at a 
clinical-ready level. 
Previously, other investigators have applied a similar strategy to develop 
predictive algorithms for the conversion to AD in MCI subjects (Nho, 
Shen et al. 2010, Plant, Teipel et al. 2010, Cui, Liu et al. 2011, Hinrichs, 
Singh et al. 2011, Cheng, Zhang et al. 2013, Westman, Aguilar et al. 
2013, Young, Modat et al. 2013, Retico, Bosco et al. 2015, Collij, 
Heeman et al. 2016, Dukart, Sambataro et al. 2016), based on the 
hypothesis that the MCI subjects who will later convert to AD already 
show characteristics of the AD, and that their MCI condition is caused 
by the same pathophysiological process that will later lead to a full-blow 
AD manifestation, which has already begun although not fully evident 
yet. Instead, the non-converters have MCI for other causes and their 
traits are distinct from those characterizing subjects with AD.  
Results from previous studies that trained algorithms with an AD/CN 
sample and then applied them to predict the conversion to AD of MCI 
subjects are summarized in Table 3. Our algorithm achieved one of the 
best predictive performance available, with only the algorithms 
presented by Young and colleagues (Young, 2013 #75), and Dukart and 
colleagues (Dukart, 2016 #49) showing respectively the former similar, 
and the latter higher performances compared to ours. However, both 
these ML algorithms necessitate information that are currently not easily 
and routinely assessed in clinical practice, i.e., 18-fluorodeoxyglucose 
Positron Emission Tomography, and the typization of APOE gene. These 
results are consistent with the evidence from the previous study that our 
proposed algorithm is the best performing one among those based on 
only information easy to be clinically collected. 
A reduced predictive performance compared to when the algorithm was 
trained directly on MCI and PreMCI subjects was expected. First, the 
training and the tuning of the model hyper-parameters were performed 
to accomplish a different classification task, i.e., distinguishing AD and 
CN subjects. Even if it is hypothesized that MCI converters show AD-like 
characteristics while non-converters do not, the AD/CN and 
converters/non-converters classification tasks may share a common but 
not totally equal solution. Thus, the optimized hyper-parameter 
configuration of a ML algorithm identified to perform the former may be 
a good but not the very best possible to perform the latter, taking to a 
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sub-optimal predictive accuracy. Moreover, training the algorithm with 
AD and CN subjects did not enable to include one of the predictors we 
have previously used, i.e., the MCI/PreMCI sub-type, which resulted of 
particular relevance for the prediction. The lack of this piece of 
information may also have caused part of the fall in the predictive 
performance compared to what previously achieved. Despite these 
abovementioned issues, the retrained algorithm achieved a significant 
predictive capability in the MCI sample, which in this study was not 
directly employed in the training phase. 
However, it is worth highlighting that our MCI sample cannot be viewed 
as perfectly independent from the AD/CN training sample, which is a 
potential limitation of the current study. As a matter of facts, both 
samples have been recruited in the same clinical centers as part of the 
same longitudinal study, all located in the area of Miami. The population 
referring to this study might have peculiar characteristics and the 
performance of the algorithm might result partially reduced if used in 
different populations. Moreover, in the previous study, both the feature 
selection and the identification of the best ML technique was performed 
with a sample that also included the same MCI sample here applied as 
a test dataset. As in this study we used the same features and ML 
technique that were selected in our previous study, some minor so-
called data leakage may indeed have occurred. In the ML field, this 
indicates that some information may have passed from the training to the 
test process, which can cause a partial inflation of the estimate of the 
algorithm generalized performance obtained by its application to the test 
set. The inflation is expected to be the more severe the greater the 
amount of information shared between training and testing, which in our 
analyses we expect to be limited and only related to the issues we have 
just discussed. 
Albeit taking into account these limitations, the results of this study 
further support that the baseline information we took into account 
together with the use of ML techniques can effectively allow a prediction 
of conversion to AD in MCI subjects and they motivate to proceed in a 
further development and testing of the algorithm in order to reach 
sufficient levels of optimization and trustworthy for its application in 
clinical as well as research settings. 
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Specifically, some main issues will be principally addressed in the next 
phase: first, a test of the generalizability of the algorithm will be 
performed by applying it to new MCI subjects, which are currently under 
recruitment in a longitudinal study of over 450 persons at the University 
of Miami (DL). In addition, we aim to test the algorithm predictive 
performance in further subjects with PreMCI that convert to AD within 
three-years. This would allow the use of the algorithm to identify fast 
converters to AD at a very early stage of the degenerative process. 
Finally, a particular effort will be made to provide an explanation of which 
role each feature plays in the prediction. The current algorithm was 
chosen in our previous study because it proved to significantly 
outperform all the others we attempted. However, this algorithm results 
a “black-box” at the moment as it does not allow an easy interpretation 
of how the algorithm achieve to perform the predictions. A better 
interpretability of the algorithm will allow to foster its application by being 
better comprehended and accepted by all users, as well as it may allow 
to reach further potential insights regarding the development process of 
AD. 
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Abstract 

Background: Despite the increasing availability in brain health related 
data, clinically translatable methods to predict the conversion from Mild 
Cognitive Impairment (MCI) to Alzheimer’s disease (AD) are still lacking. 
Although MCI typically precedes AD, only a fraction of 20-40% of MCI 
individuals will progress to dementia within 3 years following the initial 
diagnosis. As currently available and emerging therapies likely have the 
greatest impact when provided at the earliest disease stage, the prompt 
identification of subjects at high risk for conversion to AD is of great 
importance in the fight against this disease. In this work, we propose a 
highly predictive machine learning algorithm, based only on non-
invasively and easily in-the-clinic collectable predictors, to identify MCI 
subjects at risk for conversion to AD. 
Methods: The algorithm was developed using the open dataset from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI), employing a sample 
of 550 MCI subjects whose diagnostic follow-up is available for at least 
3 years after the baseline assessment. A restricted set of information 
regarding sociodemographic and clinical characteristics, and 
neuropsychological test scores was used as predictors and several 
different supervised machine learning algorithms were developed and 
ensembled in a final algorithm. A site-independent stratified train/test 
split protocol was used to provide an estimate of the generalized 
performance of the algorithm. 
Results: The final algorithm demonstrated an AUROC of 0.88, sensitivity 
of 77.7%, and a specificity of 79.9% on excluded test data. The 
specificity of the algorithm was 40.2% for 100% sensitivity.  
Conclusions: The algorithm we developed achieved sound and high 
prognostic performance to predict AD conversion using easily clinically 
derived information that makes the algorithm easy to be translated into 
practice. This indicates beneficial application to improve recruitment in 
clinical trials and to more selectively prescribe new and newly emerging 
early interventions to high AD risk patients. 
 
Keywords: Alzheimer’s disease, clinical prediction rule, machine 
learning, mild cognitive impairment, personalized medicine, precision 
medicine, neuropsychological tests. 
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Introduction 

Alzheimer’s Disease (AD) is a neurodegenerative disease characterized 
by progressive memory loss, cognitive impairment, and general 
disability; AD is the most common cause of dementia of the Alzheimer’s 
type. The progression of AD comprises a long, unnoticed preclinical 
stage, followed by a prodromal stage of Mild Cognitive Impairment (MCI) 
that leads to severe dementia and eventually death (Alzheimer's Disease 
2018). While no disease-modifying treatment is currently available for 
AD, a large number of drugs are in development and encouraging early-
stage results from clinical trials provide for the first time a concrete hope 
that one or more therapies may become available in a few years (Liu, 
Hlávka et al. 2017). As the progression of the neuropathology in AD starts 
years in advance before clinical symptoms of the disease become 
apparent and progressive neurodegeneration has irreversibly damaged 
the brain, emerging treatments will likely have the greatest effect when 
provided at the earliest disease stages. Thus, the prompt identification 
of subjects at high risk for conversion to AD is of great importance. 
The ability to identify declining individuals at the prodromal AD stage 
provides a critical time window for early clinical management, treatment 
& care planning and design of clinical drug trials (Alzheimer's 2018). 
Precise identification and early treatment of at-risk subjects would stand 
to improve outcomes of clinical trials and reduce healthcare costs in 
clinical practice. However, simulations also suggest that the health care 
system is not prepared to handle the potentially high volume of patients 
who would be eligible for treatment (Liu, Hlávka et al. 2017). 
MCI represents (currently) the earliest clinically detectable stage of a 
potential ongoing progression towards AD or other dementias. The 
cognitive decline in MCI is abnormal given an individual’s age and 
education level, but does not interfere with daily activities, and thus does 
not meet criteria for AD. However, only 20-40% of individuals will 
progress to AD within three years, with a lower rate of conversion 
reported in epidemiologic samples than in clinical ones (Petersen, Parisi 
et al. 2006, Roberts, Knopman et al. 2014). 
Currently, there are no means to provide patients diagnosed with MCI 
with an early prognosis for conversion to AD. While changes in several 
biomarkers prior to developing AD have been reported, no single 
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biomarker appears to adequately predict the conversion from MCI to AD 
with an acceptable level of accuracy. As such, there is increasing 
evidence that the use of a combination of biomarkers can best predict 
the conversion to AD (Devanand, Liu et al. 2008, Sperling and Johnson 
2013, Dukart, Sambataro et al. 2016, Giannakopoulos 2017, Alzheimer's 
2018). 
In the current age of big data and artificial intelligence technologies, 
considerable effort has been dedicated in developing machine learning 
algorithms that can predict the conversion to AD in subjects with MCI. In 
almost all medical fields, the introduction into research and clinical 
practice of machine learning based decision-making tools, and more in 
general the shift towards a personalized medicine paradigm, is currently 
a debated topic and viewed as an opportunity to improve clinical 
outcomes. Such objective tools may provide individual predictions with 
a certain degree of confidence based on information that can be 
collected about the subject, so that researchers and clinicians may be 
supported by these predictions in order to take better and more effective 
decisions (Perna, Grassi et al. 2018). 
So far, many studies focused on predicting the conversion of AD in MCI 
patients using different combinations of data including brain imaging, 
CSF biomarkers, genotyping, demographic and clinical information, and 
cognitive performance, achieving varying levels of accuracy (Plant, 
Teipel et al. 2010, Apostolova, Hwang et al. 2014, Clark, Kapur et al. 
2014, Agarwal, Ghanty et al. 2015, Moradi, Pepe et al. 2015, Clark, 
McLaughlin et al. 2016, Dukart, Sambataro et al. 2016, Hojjati, 
Ebrahimzadeh et al. 2017, Long, Chen et al. 2017, Minhas, Khanum et 
al. 2017; see Grassi, Loewenstein et al. 2018, Grassi, Perna et al. 2018 
for a recent review of the most performing algorithms presented in the 
scientific literature so far). However, while combining different 
biomarkers improves model accuracy, there is a lack of consistency 
regarding a specific combined AD prediction model and a translation into 
practice is still lacking. One possible reason for this is that current 
algorithms generally rely on expensive and/or invasive predictors, such 
as brain imaging or CSF biomarkers. As such, these studies only serve 
the purpose of a proof-of-concept, without being further tested in 
independent and clinical samples. 



PREDICTION OF AD CONVERSION FROM MCI AND PRE-MCI: IMPROVED CLINICAL TRANSLABILITY  

 
 

101 

The current study aimed to develop a clinically translatable machine 
learning algorithm to predict the conversion to AD in subjects with MCI 
within a 3-year period, based on fast, easy, and cost-effective predictors. 
Specifically, we chose to develop a variety of machine learning 
algorithms based on distinct supervised machine learning techniques 
and subsets of the considered predictors, followed by a weighted 
average rank ensemble strategy on the predictions provided by the 
various algorithms to obtain a final, more accurate prediction. Our 
hypothesis was that high predictive accuracy could be obtained using 
the above-mentioned approach with simple and non-invasive predictors. 
We used data obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI; http://adni.loni.usc.edu/) with a particular consideration 
for socio-demographic and clinical information, and neuropsychological 
test scores rather than using complex, invasive, and expensive imaging 
or CSF predictors. 

Materials and methods 

ADNI 

Data used in the preparation of this article were obtained from the ADNI 
database. The ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be 
combined to measure the progression of MCI and early AD. It contains 
data of a large number of cognitive normal, MCI, and AD subjects 
recruited in over 50 different centers in US and Canada with follow-up 
assessments performed every 6 months. 
For this study, we used a subset of the ADNI dataset called ADNIMERGE 
that includes a reduced selection of more commonly used variables (i.e., 
demographic, clinical exam total scores, MRI and PET variables). This 
subset is part of the official dataset provided by ADNI.  
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Subjects 

Data regarding 550 subjects with MCI and with available diagnostic 
follow-up assessments for at least three years were included in the 
study. The most relevant inclusion criteria of ADNI studies are the 
following: age between 55-90; six grade education or work history; 
subjects had to be fluent English/Spanish speakers; Geriatric Depression 
Scale score less than 6; good general health; no use of excluded 
medications (e.g., medications with anticholinergic properties) and 
stability for at least 4 weeks of other allowed medications; Hachinski 
ischemic score scale less than or equal to 4. A complete description of 
the ADNI study inclusion/exclusion criteria, including the full list of 
excluded and permitted medications, can be found in the ADNI General 
Procedure Manual, pages 20-25 (link: https://adni.loni.usc.edu/wp-
content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf).  
The diagnosis of MCI was performed with the following criteria: memory 
complaint by subject or study partner that is verified by a study partner; 
abnormal memory function documented by scoring below the education 
adjusted cutoff on the Logical Memory II subscale (Delayed Paragraph 
Recall) from the Wechsler Memory Scale – Revised, which is less than or 
equal to 11 for 16 or more years of education, less than or equal to 9 for 
8-15 years of education, and less than or equal to 6 for 0-7 years of 
education; Mini-Mental State Exam (MMSE) score between 24 and 30; 
Clinical Dementia Rating (CDR) score of 0.5; Memory Box score at least 
of 0.5; general cognition and functional performance sufficiently 
preserved such that a diagnosis of AD cannot be made. 
Subjects were classified as converters to probable AD (cAD; n = 197, 
35.82%) if they satisfied the National Institute of Neurological and 
Communicative Disorders and Stroke/Alzheimer's Disease and Related 
Disorders Association criteria for AD  [28] during at least one of the 
follow-up assessments occurred within three years from the baseline 
investigation, as well as having a MMSE score between 20 and 2. 
Otherwise, they were classified as non-converters to AD (NC; n = 353, 
64.18%).  
The study procedures were approved by the institutional review boards 
of all participating centers to the Alzheimer's Disease Neuroimaging 
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Initiative, and written informed consent was obtained from all 
participants or their authorized representatives. 

Feature extraction 

Considering our aim to employ only predictors that are either already 
routinely assessed or easily introducible in clinical practice, and that are 
not perceived as invasive by patients, we decided to take into account 
only variables in the ADNIMERGE dataset that regards diagnostic 
subtypes, sociodemographic characteristics, clinical and 
neuropsychological test scores. Some of these variables were not 
available for all recruited subjects and it was a priori decided to remove 
variables with greater than 20% missing values. Only the Digit Span Test 
score (DIGIT) exceeded the cut-off (52.73%) and was not used in our 
analysis. The following variables were used: 
 

• Sociodemographic characteristics: sex, age (in years), years of 
education, and marital status (never married, married, divorced, 
widowed, unknown).\ 

• Subtypes of MCI: Early or Late MCI according to their score in the 
Logic Memory subscale of the Wechsler Memory Scale - Revised 
(Wechsler 1997), adjusted for the years of education. 9-11 Early 
MCI and ≤8 Late MCI for 16 or more years of education; 5-9 Early 
MCI and ≤4 Late MCI for 8-15 years of education; 3-6 Early MCI 
and ≤2 Late MCI for 0-7 years of education. 

• Clinical scales: CDR (Morris 1993) was used to characterize six 
domains of cognitive and functional performance in AD and 
related dementias: Memory, Orientation, Judgment & Problem 
Solving, Community Affairs, Home & Hobbies, and Personal Care. 
The rating is obtained through a semi-structured interview of the 
patient together with other informants (e.g., family members). Sum 
of Boxes score was used in the current analyses (CDRSB). The 
score of the Functional Assessment Questionnaire (FAQ) (Pfeffer, 
Kurosaki et al. 1982), an informant-based clinician-administered 
questionnaire which assess the functional daily-living impairment 
in dementia, was also used in the analyses.  
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• Neuropsychological tests: MMSE (Folstein, Folstein et al. 1975) is 
a 30-point questionnaire that is used measuring cognitive 
impairment. All MCI subjects has a score of 24 of more at 
baseline. The Cognitive Subscale Alzheimer’s Disease 
Assessment Scale (ADAS) (Rosen, Mohs et al. 1984) is made of 
11 tasks that include both subject-completed tests and observer-
based assessments, assessing the memory, language, and praxis 
domains. The result is a global final score ranging from 0 to 70, 
based on the sum of the scores of the single tasks (ADAS11). 
Beyond the ADAS11 score, the ADNI study also included an 
additional test of delayed word recall and a number cancellation 
or maze task, which are further summed to have a new total score 
that ranges from 0 to 85 (ADAS13). In addition, the score of the 
task 4 (Word Recognition, ADASQ4) was included in the 
ADNIMERGE dataset. All these three ADAS scores were initially 
considered as predictors in the analyses. The Rey Auditory Verbal 
Learning Test (RAVLT) (Schmidt and Others 1996) is a cognitive 
test used to evaluate verbal learning and memory. All the 
immediate (RAVLT-I), learning (RAVLT-L), forgetting (RAVLT-F), 
and percent forgetting (RAVLT-PF) scores were included in the 
ADNIMERGE dataset and used in the analyses. Moreover, the 
total delayed recall score of the Logic Memory subtest of the of 
the Wechsler Memory Scale-Revised (Wechsler 1945) (LDT), 
which assess verbal memory, and the time to complete of the Trial 
Making Test version B (TMTBT) (Reitan 1958), which assess 
visual-motor coordination and attentive functions. A summary of 
the abbreviations of all neuropsychological tests can be found in 
Table 1. 

 
Taken together, 14 continuous, 2 dichotomous and 1 polytomous 
categorical features were initially considered. The full list is available in 
Table 2.  

Dataset division in 5 site-independent, stratified test subsets 

The entire dataset was divided in five mutually exclusive data subsets. 
These five subsets were created in order to satisfy the following criteria: 
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every subset has to include roughly 20% of the cases; all subjects from 
each of the 58 different recruitment sites has to be allocated into the 
same subset; every subset has to include roughly the same percentage 
of cAD as observed in the entire dataset (35.82%). In order to accomplish 
a division in 5 folds which satisfies all these criteria, 10000 different 
subsets were generated by progressively adding all subjects from a 
randomly chosen recruiting site, until the included cases ranged between 
19% and 21% of the entire sample. Then, only those subsets whose 
percentage of cAD ranged between 35.52% and 36.12% were retained, 
which was satisfied in 567 (5,67%) out of the generated subsets. Finally, 
all possible combinations of five of the retained subsets were created in 
order to identify whether in any of these combinations covered the entire 
dataset without any repetition of cases. The entire process took around 
4 hours of computation (on a Linux server with 2.20GHz Intel Xeon E5-
2650 v4 CPUs), and successfully found a single combination of five 
subsets that satisfied all the desired criteria (Table 3).  
All the missing value imputation, feature transformation and selection 
procedures, model training with cross-validation, and ensembling of 
different algorithms predictions described in the following paragraphs 
were performed in five distinct repetitions (named A-E) of the analyses, 
each time using the cases included in four of the five subsets and blindly 
to the remaining subset that were used as a test subset. The same 
missing value imputation, feature transformation and selection applied 
during training in the other four subsets were applied to the test subset. 
The predictive algorithms and their ensembling procedure developed in 
the other 4 subsets were tested against the test subset to obtain an 
estimate of the generalized performance in an independent sample of 
cases recruited in sites different from the ones used for training7. 

 
 
7 Our approach based on a division in 5 site-independent test subsets and a 10-fold cross-validation applied within each of them 
actually mimics the popular nested cross-validation approach, which is based on the nesting of an inner (in our case, the 10-fold 
cross-validation) and outer cross-validation loops (in our case, the site-independent test subsets). However, even if identical in its 
structure, in our study we did not compare the outer loop performances obtained re-applying nested cross-validation to different 
competing strategies (i.e., different machine learning techniques or ensembling approaches) in order to identify the best algorithmic 
approach, which is the primary reason for which any type of (cross-)validation strategy is employed. Instead, we a-priori chose to use 
all the 52 models we developed and to ensemble them with the average weighted ranks strategy. Thus, differently from what is done 
with nested cross-validation, the performance we observed in the outer loop was not used to take any choice about the development 
of the algorithm but only to provide a final estimate of the performance of our algorithm. For this reason, such final performance 
estimate can be safely considered a test instead of a validation of the performance of our algorithm, making the use of the term nested 
cross-validation not entirely appropriate and potentially misleading. 
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Feature transformation and selection 

Imputation was performed for variables with missing values using the 
median for continuous features and using the mode for categorical 
features. Continuous variables were standardized (mean = 0, standard 
deviation = 1) and non-dichotomous categorical variables were 
dichotomized using one-hot encoding, i.e., re-coding them in a new 
dichotomous variable for each class of the categorical variable, with 1 
indicating the occurrence of that class and 0 the occurrence of any other 
class of the variable. 
In case groups of variables resulted highly correlated (pairwise r >= .75), 
principal component analysis was used to calculate principal 
components and the original variables were substituted with all the 
components with eigenvalues >= 1. 
All features were initially used during training (feature set 1). Moreover, 
three feature subsets were additionally created based on different 
selection strategies in order to include only those that are the most 
informative. A filtering procedure was applied to create reduced sets of 
features based on their bivariate statistical association (p < .05) with the 
outcome using independent sample t-test for continuous predictors and 
Fisher’s exact test for both dichotomous and one-hot encoded 
polytomous features (feature subset 2). Two cross-validated recursive 
feature elimination procedures (also known as “wrapper” procedures) 
with Logistic Regression (LR, feature subset 3) and Random Forest (RF, 
feature subset 4) (Breiman 2001) were also applied. In particular, the 
latter strategy was chosen because it has previously proved to be 
efficacious in selecting a relevant feature subset (Grassi, Perna et al. 
2018). 

Machine learning techniques 

Several machine learning procedures that can be used to solve 
classification problems exists. We used 13 supervised techniques: LR, 
Naive Bayes (NB) (Rish and Others 2001), L1 and L2 regularized logistic 
regression or Elastic Net (EN) (Zou and Hastie 2005), Support Vector 
Machine (Schölkopf, Smola et al. 2002) with linear (SVM-Linear), radial 
basis function (SVM-RBF), and polynomial (SVM-Poly) kernels with Platt 
scaling (Platt 1999), k-Nearest Neighbors algorithm (kNN) (Altman 1992), 
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Multi-Layer Perceptrons with either one or two hidden layers and trained 
with either a full-batch gradient descent or adam (Kingma and Ba 2014) 
algorithms (MLP1-Batch, MLP2-Batch, MLP1-Adam, MLP2-Adam), RF, 
and Gradient boosted decision trees (GBDT)  (Mason, Baxter et al. 2000). 
All analyses were parallelized on a Linux server equipped with four 12-
core Intel Xeon CPU E5-2650 v4 @ 2.20GHz and were performed in 
Python 3.6 (Python Software), using the implementation of the machine 
learning techniques available in the Scikit-Learn library (Pedregosa, 
Varoquaux et al. 2011). 

Hyper-parameter optimization  

Machine learning techniques usually have one or more hyper-parameters 
that allow a different tuning of the algorithm during the training process. 
Different values of these hyper-parameters lead to algorithms with 
different predictive performances with the goal of obtaining the best 
possible performance when applied to cases that are not part of the 
training set. In order to optimize such hyper-parameters for each ML 
techniques used in this study, each model was trained with 50 random 
hyper-parameter configurations, and 50 further configurations were 
progressively estimated with a Bayesian optimization approach. Instead 
of a random generation, Bayesian optimization aims to estimate which is 
the hyper-parameter configuration that would maximize the performance 
of the algorithm starting from the previously attempted ones, based on 
the assumption that it exists a relationship between the various hyper-
parameter values and the performance achieved by the algorithm. 
Bayesian optimization is expected of being able to identify better hyper-
parameter configurations, and in a reduced number of attempts, than 
just trying to generate them at random. Estimation was performed with 
Gaussian Processes, as implemented in the Scikit-Optimized library 
(https://scikit-optimize.github.io/). 
The Area Under the Receiving Operating Curve (AUROC) was used as 
performance metric to be maximized. All the ML algorithms developed 
in this study output a continuous prediction score (range: 0-1; the closer 
to 1 the higher the predicted risk of conversion for that subject) and the 
AUROC value can be interpreted as the probability that a randomly 
selected cAD subject will receive a higher output score than a randomly 
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selected NC subject. The AUROC value is 0.5 when the algorithm makes 
random predictions and 1 in case it is always correct in making 
predictions. AUROC is not affected by class imbalance, and it is 
independent with respect to any specific threshold that is applied to 
perform a dichotomous prediction.  

Cross-validation procedure 

The aim is to develop an algorithm that can achieve the best possible 
generalized performance and not to perform well only with the cases 
used in the training process. Cross-validation provides an estimate of 
such generalized performance for every hyper-parameter configuration. 
In cross-validation, the train sample is divided in several folds of cases 
that are held-out from the training process, with training iteratively 
performed with the remaining cases. After the training, the algorithm is 
finally applied on the held-out cases.  
We applied the commonly used 10-fold cross-validation procedure, 
repeated 10 times to obtain a stable performance estimate. The fold 
creation was performed at random, stratifying (i.e., balancing) for the 
percentage of converters and non-converters in each fold. Finally, the 
100 performance estimates of the algorithm available for each hyper-
parameter configuration were averaged to provide a final point estimate 
of the generalized performance. The hyper-parameter configuration for 
each machine learning technique that demonstrated the best average 
cross-validated AUROC was retained.   

Weighted rank average of single algorithm predictions 

Using a collection of algorithms and combining their predictions instead 
of considering only the prediction coming from a single algorithm 
generally improves the overall predictive performance (Opitz and Maclin 
1999). This procedure is called ensembling and it is also the principles 
on which some individual techniques such as Random Forest and 
Gradient Boosting techniques are based.  
Several different ensemble methods exist, which usually require a further 
independent data subset from both the training and test ones. This 
additional subset would be used to train how to optimally combine the 
various predictions generated by the single algorithms. Given the limited 
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amount of data available in the current study, further reducing the size of 
the train sample may have undermined the predictive performance of the 
developed algorithms. Thus, we decided to apply a simple form of 
ensembling based on a weighted average of the rank predictions 
generated by all individual algorithms. This strategy is usually considered 
effective even though it does not require to develop any further machine 
learning meta-algorithm and to optimize its hyperparameters (Wolpert 
1992).  
First, the ranks of the cross-validated continuous prediction scores of 
the train subset cases were calculated for each of the 52 developed 
algorithms and rescaled in order to range between 0 and 1. Then, the 
arithmetic average of the rescaled ranks weighted for the cross-validated 
AUROC was calculated for each train subset case, representing the new 
continuous prediction scores for the train subset cases. 
To generate the final continuous prediction scores of the test subset 
cases, at first 52 prediction scores for each test case were generated 
using all the 52 used algorithms. Then, the prediction score of each 
algorithm was substituted with the rescaled rank of the closest cross-
validated train subset prediction score of that algorithm. Finally, the 
average of the rescaled ranks weighted for the cross-validated AUROC 
was calculated. This represents the final continuous prediction scores of 
each test subset cases. 

Testing performance  

The final continuous prediction scores of the five test subsets, which 
were obtained using the weighted rank average, were pooled and used 
to calculate the whole sample test AUROC. This represents the final 
estimate of the generalized site-independent AUROC that the algorithm 
is expected to achieve when it is applied to new cases. The 95% 
confidence interval (CI) of the AUROC was calculated with a stratified 
bootstrap procedure, with 10000 resamples and applying the bias-
corrected and accelerated (BCa) approach (Efron 1987).  
Different categorical cAD/NC predictions were generated for each case 
applying various thresholds to the final continuous prediction scores (i.e., 
a score equal or above the threshold indicated a cAD, otherwise a NC). 
First, the threshold values that maximized the balanced accuracy (i.e., 
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the average between sensitivity and specificity) of the cross-validated 
train subsample ensemble predictions in each of the five analyses 
replication was identified and averaged in order to have a final unique 
threshold that was applied to the final continuous prediction scores. 
Moreover, the threshold values that generated sensitivity of 100%, 
97.5%, 95%, 90%, 85%, 80%, 75% of the cross-validated train 
subsample ensemble predictions in each of the five analyses replication 
was identified, averaged, and applied to the final continuous prediction 
scores. 
Specificity (i.e., recall), sensitivity, positive predictive value (i.e., 
precision), negative predictive value, balanced accuracy and F1 score 
(i.e., the harmonic average of the sensitivity and positive predictive value) 
were calculated considering the pooled categorical predictions 
generated with the abovementioned thresholds, which represent the 
estimates of the generalized site-independent performance of the 
algorithm when applied to perform categorical predictions of cAD/NC in 
new cases, such that either the balanced-accuracy is aimed to be 
maximized or defined levels of sensitivity are aimed to be obtained. 

Feature importance 

To provide a general ranking of the importance of the predictors used in 
this study, we applied the same five train/test split protocol to iteratively 
develop logistic regression models using only a single feature, in the train 
subsets, and these models were applied to generate the continuous 
prediction scores in the five test subsamples. The scores of the test 
subsamples were finally pooled together and used to calculate the whole 
sample test AUROC for each predictor. This gives a metric of importance 
for each predictor that is independent from both the machine learning 
technique used and all other predictors inserted in the algorithm. The 
95% confidence interval (CI) of also these AUROCs was calculated with 
a stratified bootstrap procedure, with 10000 resamples and applying the 
bias-corrected and accelerated (BCa) approach (Efron 1987).  
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Results 

Descriptive statistics of each feature in the cAD and NC groups are 
reported in Table 2. Statistics of continuous features are reported before 
the standardization was applied. 

Feature transformation and selection 

Two groups of features correlated above the 0.75 threshold were 
identified, respectively the three ADAS scores (ADAS11, ADAS13, 
ADASQ4) and two of the RAVLT scores (RAVLT-F, RAVLT-PF). Such 
evidence equally resulted in all the five training subsets. In all the 5 
subsets, only the first principal component of each group had an 
eigenvalue >= 1, and these were used to substitute the correlated 
features as predictors (ADAS-PC1, RAVLT-F-PC1). 
Across the five training subsamples used in the analyses, each feature 
selection procedure selected only partially overlapping subsets of 
relevant features, as reported in Table 4. Thus, the feature sets 2, 3, and 
4 used in the analyses were in part different across the training 
subsamples used in the five repetitions of the analyses. This evidence 
further justifies our choice of creating several site-independent train and 
test subsamples instead of just a single training and test split, in order to 
provide a better and more stable estimate of the generalized 
performance of the algorithm. 
Among the features, CDRSB, ADAS-PC1, RAVLT-I, RAVLT-F-PC1, 
TMTBT, and FAQ, were selected by all the three feature selection 
strategies in all the five repetitions of the analyses, the subtype of MCI 
was discarded only once, LDT twice, RAVLT-L three times and MMSE 
four times. All the sociodemographic characteristics were all discarded 
at least 6 up to 11 times out of the 15 feature sets identified in the 
analyses. 

Performance of the predictive algorithm 

The cross-validated AUROC results for each of the 52 models developed 
in each repetitions are reported in the supplementary data (Table S1), 
which ranged from a minimum value of 0.83 to a maximum value of 0.90 
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for the models developed with feature set 1, from 0.84 to 0.90 for the 
models developed with feature set 2, from 0.84 to 0.89  for the models 
developed with feature set 3, and from 0.83 to 0.90 for the models 
developed with feature set 4. These results indicate a narrow difference 
of performance among different feature sets, as well as among different 
replications and techniques, which included simple linear models such 
LR and NB as well as ensembling technique such as RF and GBM. The 
cross-validated AUROC of the weighted rank average ensembling 
strategy in each fold is also reported in Table S1, which ranged from a 
minimum of 0.86 to a maximum of 0.89. 
When the test continuous prediction scores obtained with the 
ensembling approach were pooled, the whole sample test AUROC 
resulted 0.88 (95% bootstrap CI 0.85-0.91), which is plotted in Figure 1.  
Considering the categorical predictions generated with the threshold that 
maximized the training balanced accuracy, results indicated a 
sensitivity/recall of 77.7%, a specificity of 79.9%, a positive predictive 
value/precision of 68.3%, a negative predictive value of 86.5%, a 
balanced accuracy of 0.79, and F1-score of 0.73. Results generated 
applying the other thresholds are reported in Table 5. 
All these results provide an estimate of the generalized performance of 
the algorithm when applied in new subjects which were not included in 
the sample used to develop the model and that have been evaluated in 
distinct recruiting sites. 
On the server we employed in our study, training took around 12 hours 
for each of the 5 test folds, with a total training time of 2 days and a half. 
Instead, the computational time necessary to calculate the prediction 
using the ensemble of machine learning algorithms is less then 1 second 
for each case in each fold. 

Importance of predictors 

The AUROC of each of the various features obtained by pooling the 
results in the five test subsamples is reported in Table 6, ranked from the 
highest to the lowest AUROC, and in Figure 2, subdivided based on type 
of the features (i.e., sociodemographic, subtype of MCI, clinical, and 
neuropsychological tests). These represent an estimate of the 
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generalized predictive performance achievable using each feature 
singularly. 
Sociodemographic characteristics resulted the least relevant, with age 
being the sole with a statistically significant AUROC (lower bound of the 
95% bootstrap CI higher than 0.50) even if quite small in magnitude 
(AUROCage = 0.57). Instead, both subtypes of MCI and CDRSB 
demonstrated a better predictive performance (AUROCMCI = 0.66; 
AUROCCDRSB = 0.70), and FAQ a high AUROC of 0.78. Among the 
neuropsychological test scores, some of them also proved to have a high 
predictive capability even when used as individual predictors. The ADAS-
PC1 achieved an AUROC of 0.81, RAVLT-I of 0.78, and LDT of 0.77. All 
other neuropsychological test scores resulted with an inferior AUROC 
(minimum AUROC: AUROCTMTBT = 0.66). 
Of notice, the most relevant of the predictors, e.g., ADAS-PC1, resulted 
having a significantly lower test AUROC than the one demonstrated by 
the algorithm we developed (higher bound of the 95% bootstrap CI of 
ADAS-PC1 = 0.84 < lower bound of the 95% bootstrap CI of the 
algorithm = 0.85). 

Discussion  

The aim of the current study was to develop a new machine learning 
algorithm to allow a three-year prediction for conversion to AD in 
subjects diagnosed with MCI. 
Considering an imminent necessity of being able to discriminate which 
MCI subjects will progress to AD from those who will not, as soon as in 
a few years the first effective treatments will be probably available (Liu, 
Hlávka et al. 2017), our algorithm has been designed to be used as a 
prognosis support tool for MCI patients, which is cost-effective and 
easily translatable to clinical practice. This would allow timely planning 
of early interventions for such individuals. Further, our algorithm can be 
employed as a tool during the recruitment of MCI subjects for clinical 
trials which aim to investigate innovative treatments of AD. The 
opportunity to recruit only subjects at true risk of future conversion to AD 
- who most likely show the earliest brain changes underlying AD 
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pathology – will drastically reduce the costs to run such clinical trials and 
result in improved outcomes. 
In contrast with many of the machine learning approaches that have been 
previously presented, our algorithm aimed to achieve good predictive 
performance based only on a reduced set of sociodemographic 
characteristics, clinical information, and neuropsychological tests 
scores. It does not rely on information coming from procedures that are 
currently still expensive, invasive, or not widespread available in many 
clinical settings, such as neuroimaging techniques, lumbar puncture, and 
genetic testing. 
The algorithm was developed using a sample of MCI subjects recruited 
in the ADNI study and we applied a site-independent testing protocol in 
order to obtain results which represent a better estimate of the expected 
performance when the algorithm is applied in distinct clinical centers. To 
the best of our knowledge, this is the first algorithm that was tested 
ensuring independence between the train and test sets regarding the 
sites where the subjects were recruited from.  
Even using such a rigid testing protocol, the algorithm demonstrated a 
high predictive performance, showing a test AUROC of 0.88, a sensitivity 
of 77.7%, and a specificity of 79.9% when the classification threshold 
was optimized to achieve the best possible balanced accuracy. Of 
particular interest is the achievement of 40.2%/53% specificity and 
48.3%/53% positive predictive value when the threshold was further 
optimized to achieve a sensitivity of respectively 100% and 95%. These 
results support the utility of our algorithm especially as a potential 
screening tool, i.e., an algorithm that can provide a marginal number of 
false negative predictions at the cost of a higher number of false 
positives. Thus, our algorithm would turn out to be particularly useful in 
case another more accurate, and especially more sensitive tool will 
become available, however which requires additional expensive or 
invasive-to-collect information. In such case, our algorithm can be used 
as a first step to significantly reduce the number of subjects which 
require examination using more precise, yet less easily applicable 
procedures at a later stage. Considering an expected conversion rate of 
20%-40% from MCI to AD in three years, the expected percentage of 
subjects confidently predicted as non-converters would be estimated as 
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being 32%-24% subsequently, leaving only the remaining 68%-76% of 
subjects with the necessity of further investigations. 
Making a proper comparison of our algorithm with all others previously 
published is not a trivial task, especially considering the different and 
reduced level of independent validation most of these algorithms have 
undergone so far.  
In some studies, algorithms which used as predictive information some 
type of functional brain imaging, such as PET and fMRI, and/or CSF 
investigations demonstrated particularly high cross-validated 
performance, with AUROCs close to 0.95 (Hojjati, Ebrahimzadeh et al. 
2017, Long, Chen et al. 2017). A recent study presented an algorithm 
based on regional information from a single amyloid PET scan which 
demonstrated a test performance of an AUROC of 0.91 and an 
unbalanced accuracy of 0.84 in the ADNI sample for a prediction of 
conversion in 2 years (Mathotaarachchi, Pascoal et al. 2017), thus 
showing a higher predictive performance than what was achieved by our 
algorithm.  
In addition, some studies which used only structural MRI also 
demonstrated high cross-validated (i.e., Hojjati, Ebrahimzadeh et al. 
2017, Long, Chen et al. 2017): AUROC = 0.932; balanced accuracy = 
0.886) and nested cross-validated performance (sensitivity = 85%; 
specificity = 84.78%; Guo, Lai et al. 2017). Similarly, high cross-validated 
results were found by other studies who combined structural MRI with 
clinical and neuropsychological information (e.g., Plant, Teipel et al. 
2010, Apostolova, Hwang et al. 2014, Clark, Kapur et al. 2014, Agarwal, 
Ghanty et al. 2015, Moradi, Pepe et al. 2015, Clark, McLaughlin et al. 
2016, Dukart, Sambataro et al. 2016, Hojjati, Ebrahimzadeh et al. 2017, 
Long, Chen et al. 2017, Minhas, Khanum et al. 2017): AUROC = 0.902; 
balanced accuracy = 80.5%) In addition, a recent study (Spasov, 
Passamonti et al. 2019) presented a highly performing deep learning 
algorithm (AUROC = 0.925; accuracy = 86%; sensitivity = 87.5%; 
specificity = 85%) and, to the best of our knowledge, this is the only 
available study using structural MRI in which a proper testing of the 
algorithm was performed. 
Some particularly promising cross-validated results were also found in 
some studies which considered also APOE genotyping, together with 
EEG, (Vecchio, Miraglia et al. 2018): AUROC = 0.97; sensitivity = 96.7%; 
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specificity = 86%) or blood biomarkers (Apostolova, Hwang et al. 2014, 
Agarwal, Ghanty et al. 2015, Dukart, Sambataro et al. 2016): balanced 
accuracy = 92.5%). Thus, the use of brain imaging, CSF, and/or other 
biomarkers as predictive information may have, to some degree, resulted 
in a better predictive performance compared to our algorithm, which did 
not use any of these types of information.  
While the results of the previous studies indicate that neuroimaging 
biomarkers hold great promise for predicting conversion to AD, the 
performance increase gained by including biomarker information is 
questioned and much debated (Fleisher, Sun et al. 2008, Johnson, 
Vandewater et al. 2014, Clark, McLaughlin et al. 2016). Instead, 
neuropsychological measures of cognitive functioning are possibly 
equally excellent predictors of progression to dementia. For example, in 
a study by Fleisher and colleagues, common cognitive tests provide 
better predictive accuracy than imaging measures for predicting 
progression to AD in subject with moderate stages of amnestic MCI 
(Fleisher, Sun et al. 2008), and in another study by Clark and colleagues, 
models developed using only socio-demographic information, clinical 
information and neuropsychological test scores (focusing on verbal 
fluency scores) resulted in an AUROC score of 0.87 and a balanced 
accuracy of 0.84, while including brain imaging did not significantly 
improve this performance (AUROC = 0.81, accuracy = 0.83) (Clark, 
McLaughlin et al. 2016).  
Moreover, the cost of the standard procedure in the clinical process of 
diagnosing AD (which entails the clinical consultation, including the 
patient’s administrative admission, anamnesis, physical examination, 
neuropsychological testing, test evaluation and diagnosis conference & 
physician letter) is relatively low at an estimated 110 € (US$115) on 
average, while the use of additional advanced technical procedures, 
such as blood sampling, CT, MRI, PET & CSF procedures, which are 
required following deficits in neuropsychological test results and 
depends on the patient’s suspected diagnosis of MCI, AD or other 
dementia types (which is increasingly associated with higher frequencies 
of using cost-intensive imaging & CSF procedures), drives costs up to 
649 € (US$676) in case of an AD diagnosis according to a study in a 
German memory clinic (Michalowsky, Flessa et al. 2017). 
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In this regard, the use of advanced technological procedures, rather than 
clinical consultation and neuropsychological testing, is driving costs in 
the diagnostic process and as such, will also increase the costs of 
predictive algorithms based on information of imaging, blood sampling 
or CSF procedures compared to those algorithms that rely only on 
sociodemographic, clinical, and neuropsychological predictive 
information, like the one we present in this study. In addition, even if 
nowadays some forms of neuroimaging investigations are often routinely 
performed, for example in order to evaluate other potential comorbidities 
such as neurovascular problems or regional atrophies, and thus such 
information may result already available without additional costs, a clear 
evidence of its relevance to improve predictions based only on 
neuropsychological and clinical measures is still lacking, as it has already 
been discussed above, and still requires further investigations. 
Additionally, our algorithm demonstrated similar predictive performance 
compared to other top-performing algorithms based only on 
sociodemographic, clinical, and neuropsychological predictive 
information. For example, in a first study by Clark and colleagues, they 
used only a simple cross-validation protocol to investigate the 
performance of their algorithm to make prediction of conversion at 1 year 
or more (AUROC = 0.88, balanced accuracy = 0.84) (Clark, Kapur et al. 
2014), while in another study they used a more sound nested cross-
validation protocol to investigate the predictive performance of their 
algorithm at 4 years (AUROC = 0.87, balanced accuracy = 0.79) (Clark, 
McLaughlin et al. 2016). 
Our results originate from a proper testing protocol and represent a 
better unbiased estimate of the generalized performance of the 
algorithm. Only a very small number of machine learning algorithms for 
the prediction of conversion from MCI to AD were subjected to a proper 
testing protocol, rather than only a cross-validation protocol, which limits 
the soundness of the evidence of their predictive performance. As such, 
apart from (Mathotaarachchi, Pascoal et al. 2017, Spasov, Passamonti 
et al. 2019), all the previously mentioned results may be optimistically 
biased estimates of the generalized performance of such algorithms as 
a proper testing protocol was not applied. 
We previously presented another machine learning algorithm that 
performs a prediction of conversion to AD in MCI subjects (Grassi, 
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Loewenstein et al. 2018, Grassi, Perna et al. 2018). However, the 
algorithm described here has distinct characteristics and can be 
considered at a more advanced stage of validation. First, the current 
algorithm does not require any neuroimaging information, while our 
previous method relied on a clinicians’ rating of the atrophy in three brain 
structures, evaluated by observing standardized images coming from a 
structural magnetic resonance. Structural magnetic resonance is 
widespread also in clinical settings nowadays, it is less expensive than 
other neuroimaging evaluation such as functional magnetic resonance 
and positron emission tomography, and the use of a clinician-
administered visual scale allows to bypass the obstacles related to the 
non-automatic calibration of data coming from different magnetic 
resonance scanners. Nevertheless, the fact that our new algorithm does 
not necessitate any magnetic resonance evaluation makes its use even 
more easily translatable in practice, and less expensive. Moreover, even 
though our former algorithm showed higher cross-validated performance 
(AUROC = 0.91, sensitivity = 86.7% and specificity = 87.4% at the best 
balanced accuracy; Grassi, Perna et al. 2018), a solid testing of its 
performance is still lacking and, at the moment, only a preliminary 
evidence via a transfer learning approach is available (Grassi, Perna et 
al. 2018). Instead, the protocol applied in the current study provides a 
better and sounder evaluation of the actual predictive performance of 
this new algorithm. 
Beyond testing the algorithm’s predictive accuracy, we also aimed to 
provide a first indication of the importance of the variables used as 
predictors. The opportunity to provide an explanation of how the model 
works and performs its prediction is crucial to foster its application in 
clinical practice (Perna, Grassi et al. 2018). However, given the 
architectural complexity of the algorithm we developed, this is not a 
straightforward task. Several different approaches have been proposed, 
all of them providing a different, and only partial explanation of an 
algorithm’s functioning (Du, Liu et al. 2018). Thus, we decided to leave 
complex and more extensive investigations to a future study which will 
be fully dedicated to this goal. Instead, we simply investigated the 
predictive role of each predictor individually, which can evidence the 
amount of predictive information carried by each predictor. However, it 
does not allow to identify potential interactions among multiple 
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predictors that could have been modeled by the algorithm and that can 
relevantly contribute to its high predictive performance.  
In line with the evidence in our previous study (Grassi, Perna et al. 2018), 
sociodemographic characteristics seem not to be particularly relevant in 
discriminating cAD and NC MCI subjects. Furthermore, in both studies, 
age was the sole of these characteristics showing a significant, even if 
very limited, predictive power. Also, sociodemographic characteristics 
resulted to be the most often discarded features by the feature selection 
strategies we applied in our study, once again suggesting their poor 
predictive relevance. 
Instead, the clinical scale scores, the subtype of MCI, and the 
neuropsychological test scores resulted markedly predictive. Their test 
AUROC ranged from 0.658 to 0.809, and even the least predictive of 
them had a 95% CI higher than 0.6. The evidence of their predictive 
importance was expected. These features measure core elements of the 
progressive decline leading to a full manifestation of AD, such as the 
memory and other cognitive functions deterioration, and the consequent 
functional impairment.  
In our algorithm, as well as in several previously presented algorithms 
which included clinical, and neuropsychological predictors, some of 
these were also reassessed at later follow-ups in order to investigate 
when a conversion to AD occurred after the baseline assessment. As a 
matter of facts, MMSE and CDR scores below certain cut-offs and a 
cognitive impairment in at least two cognitive domains are necessary 
criteria to receive a diagnosis of probable AD, evidencing a conversion 
from MCI to AD. Using some measures at baseline to predict the same 
or related measures at a future follow-up time is a strategy at the 
foundation of time-series analyses (i.e., autoregressive models). The 
same measure may result correlated to itself at different future times (i.e., 
autocorrelation), thus making relevant predictive information at the 
disposal of the predictive model. Instead, in other occasions, a measure 
may result uncorrelated to itself across different times of assessment. 
The result of a significant individual predictive performance of all 
neuropsychological tests, MMSE, and CDR baseline scores evidences 
the former in our data, and it may generally be interpreted as that the 
more severe is the level of impairment reached by a subject, the higher 
becomes the probability of its progression until a conversion to AD within 
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the following three years. The use of such autocorrelated information as 
predictors may have relevantly contributed to the high performance 
achieved by our as well other algorithms which included them, compared 
to others which did not (Chapman, McCrary et al. 2011, Battista, 
Salvatore et al. 2017). 
Moreover, the first principal component of the three ADAS scores, which 
resulted in the most individually important predictor, demonstrated a test 
AUROC significantly lower than the one achieved by the entire algorithm. 
The results of our, as well as other previous studies, had already showed 
that machine learning algorithms can effectively be used to combine 
these individual pieces of information, providing a better identification of 
cAD among MCI subjects than what it would be possible using each of 
them singularly (Clark, Kapur et al. 2014, Johnson, Vandewater et al. 
2014, Clark, McLaughlin et al. 2016, Grassi, Loewenstein et al. 2018).  
Our study has some limitations that should be taken into account and 
that will be addressed in the future stages of our research. First, even if 
we iteratively ensured that the subjects used for testing were always 
recruited in different sites than those used in the development of the 
algorithm, it is important to note that all the ADNI recruiting sites were 
located in the USA or Canada. Even if this can be considered an 
important step forward towards the demonstration of the generalized 
performance of the proposed algorithm, still these sites may not be 
completely representative of the entire population of centers in which the 
algorithm may aspire to be used. Our aim was to develop an algorithm 
that may be applied also beyond US and Canada centers only, and 
perhaps also clinical centers without any research inclinations. MCI 
subjects referring to these extended range of centers might have peculiar 
characteristics and the algorithm might show reduced predictive 
accuracy when applied to them. In order to at least partially address this 
potential bias, we plan to first test and then re-optimize our algorithm 
using further datasets coming from the several international replications 
of the North American Alzheimer’s Disease Neuroimaging Initiative 
(https://www.alz.org/research/for_researchers/partnerships/wwadni). In 
addition, inclusion and exclusion criteria may have excluded from ADNI, 
and in turn from our analyses, some MCI subjects with peculiar 
characteristics, e.g., MCI subjects with high level of depression or 
currently taking some of the medications that were excluded from the 
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study. Once again, the algorithm might show reduced predictive 
accuracy when applied to them and further testing in a less selected 
sample should be performed before a safe use of the algorithm can be 
guaranteed with these peculiar MCI subjects. 
Furthermore, our final algorithm is based on an ensemble of several 
lower-level machine learning algorithms, including some that use the 
entire initial set of predictors as feature set. Thus, all predictors currently 
remain necessary to be assessed, even if some of them may contribute 
poorly or even not at all to the prediction. Although the ensembling 
approach we used may have effectively prevented that such irrelevant 
predictors decreased the algorithm accuracy, a further reduction of the 
amount of information necessary to be assessed and used by the 
algorithm would permit to reduce the costs associated with its 
application. At the same time, our algorithm may have missed to take 
into account relevant pieces of information that can improve the 
accuracy of its predictions. 
It should be also noted that compensatory neurophysiological 
mechanisms, including for instance cognitive reserve factors such as 
bilingualism that are latent in MCI subjects, might result in 
misclassifications of MCI converters and non-converters (Alladi, Bak et 
al. 2013, Lojo-Seoane, Facal et al. 2018). It would be important to take 
this into account for predictive models, like ours, that exclusively relies 
on quantitative psychological test scores to predict the conversion to AD 
in MCI patients, as these compensatory brain mechanisms might not be 
reflected during neuropsychological testing and perhaps potentially 
impact the performance of the algorithm. 
Finally, our algorithm currently operates three-year predictions in 
subjects that already manifest MCI. As the new arriving treatments are 
expected to be the more effective the earlier they will be started, 
algorithms that can perform accurate predictions at even earlier stages 
of deterioration than MCI, and in a longer time frame, will be of particular 
relevance. A preliminary attempt has already been done in our previous 
study (Grassi, Perna et al. 2018), employing also a sample of subjects 
with Pre-mild Cognitive Impairment (Chao, Mueller et al. 2010), as well 
as in other previous studies which developed algorithm that aimed to 
make predictions for periods longer than three years (Agarwal, Ghanty et 
al. 2015, Clark, McLaughlin et al. 2016). Future steps in our research will 
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take into account this necessity, exploring the opportunity of making 
predictions at longer time periods and in earlier-stage subjects. 

Conclusions 

We developed an algorithm to predict three-year conversion to AD in 
MCI subjects, based on a weighted rank average ensemble of several 
supervised machine learning algorithms. It demonstrated high predictive 
accuracy when tested via a sound train/test split protocol, exhibiting 
especially good predictive performance when the algorithm was 
optimized as a screening tool. Predictions are performed using only a 
restricted set of sociodemographic characteristics, clinical information, 
and neuropsychological test scores, which makes its application of easy 
translation into clinical practice, as well as useful in improving the 
recruitment of MCI subjects at true risk of conversion to AD in clinical 
trials.  
It is important to conclude highlighting that any prediction, including 
those provided by machine learning algorithms, is probabilistic in its 
nature and always comes with a certain degree of imprecision. The 
advantage in the potential use of algorithmic decision-making tools is 
that such imprecision is defined by a known and objectively investigated 
degree of confidence. However, in order to guarantee such confidence, 
several and continuous tests of an algorithm have to be performed 
before its application can be safely recommended. Further tests and 
optimizations will follow this study in the attempt to provide additional 
evidence of its accuracy in generalized applications, and to improve its 
cost-effectiveness. 
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Contribution to the Field: Alzheimer’s Disease (AD) is the most common 
form of dementia, whose progression comprises a long, unnoticed 
preclinical stage, followed by a prodromal stage of Mild Cognitive 
Impairment (MCI) that leads to severe dementia and eventually death. As 
currently available and emerging therapies likely have the greatest 
impact when provided at the earliest disease stage, the prompt 
identification of subjects at high risk for conversion to AD is of great 
importance both to improve the recruitment of MCI subjects in clinical 
trials and considering that the available and emerging therapies likely 
have the greatest impact when provided at the earliest disease stage. 
Considerable effort has been dedicated in developing predictive 
algorithms, but they generally rely on expensive and/or invasive 
predictors, such as brain imaging or CSF biomarkers, usually serve the 
purpose of a proof-of-concept. In this work, we present a new machine 
learning predictive algorithm to identify MCI subjects at risk for 
conversion to AD in the following three years. The algorithm 
demonstrated a high prognostic performance even if it is based only on 
non-invasively and easily in-the-clinic collectable predictors (i.e., 
sociodemographic and clinical characteristics, neuropsychological test 
scores), which facilitates its potential translation into practice. 
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Table 1. Abbreviations of neuropsychological tests. 

ADAS11 Cognitive Subscale (11 items) Alzheimer’s Disease Assessment Scale 

ADAS13 Cognitive Subscale (13 items) Alzheimer’s Disease Assessment Scale 

ADASQ4  Task 4 of the Cognitive Subscale (11 items) Alzheimer’s Disease Assessment Scale  

CDRSB Sum of Boxes score of the Clinical Dementia Rating Scale;  

DIGIT Digit Span Test score  

FAQ  Functional Activities Questionnaire  

LDT Logic Memory subtest of the of the Wechsler Memory Scale-Revised  

RAVLT  Rey Auditory Verbal Learning Test  

RAVLT-F  Forgetting score of the Rey Auditory Verbal Learning Test  

RAVLT-I  Immediate score of the Rey Auditory Verbal Learning Test  

RAVLT-L  Learning score of the Rey Auditory Verbal Learning Test  

RAVLT-PF Percent forgetting score of the Rey Auditory Verbal Learning Test  

TMTBT  Trial Making Test, version B 
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Table 2. Descriptive statistics 

Continuous predictors 
Non-converters Converters Missing values 

Mean S.D. Mean S.D. N % 

Age 72.42 7.54 74.19 6.88 / / 

Years of education 16.18 2.74 15.74 2.83 / / 

CDRSB 1.26 0.70 1.95 1.01 / / 

ADAS11 8.67 3.78 12.94 4.26 1 0.18% 

ADAS13 13.89 5.81 21.05 5.72 3 0.55% 

ADASQ4 4.61 2.35 7.16 2.04 / / 

MMSE 28.01 1.71 26.85 1.72 / / 

RAVLT-I 37.84 10.47 28.05 6.74 / / 

RAVLT-L 4.76 2.59 2.90 2.11 / / 

RAVLT-F 4.37 2.46 5.20 2.30 / / 

RAVLT-PF 51.09 30.92 78.20 28.04 / / 

LDT 6.84 3.12 3.59 2.89 / / 

DIGIT 40.24 10.42 34.86 11.02 290 52.73% 

TMTBT 100.30 49.56 141.24 79.66 4 0.73% 

FAQ 1.76 2.75 5.81 5.00 4 0.73% 
 
        

 

Categorical predictors 
Non-converters Converters Missing values 

N % N % N % 

Sex 
Male 220 62.32% 118 59.90% 

/ / 
Female 133 37.68% 79 40.10% 

Subtype of 
MCI 

Early 196 47.88% 22 11.17% 
/ / 

Late 184 52.12% 175 88.83% 

Marital 
status 

Never married 6 1.70% 3 1.52% 

3 0.55% 
Married 267 75.64% 161 81.73% 

Divorced 35 9.92% 13 6.60% 

Widowed 42 11.90% 20 10.15% 
S.D = Standard Deviation; N = numbers of subjects. 
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Table 6. Individual test pooled AUROC of each feature. 

 AUROC 95% Bootstrap CI 

ADAS-PC1 0.809 0.772 0.842 

RAVLT-I 0.777 0.737 0.814 

FAQ 0.777 0.733 0.816 

LDT 0.770 0.726 0.808 

RAVLT-L 0.707 0.661 0.750 

CDRSB 0.697 0.648 0.740 

RAVLT-F-PC1 0.685 0.639 0.730 

MMSE 0.678 0.631 0.723 

Subtype of MCI 0.658 0.610 0.702 

TMTBT 0.658 0.608 0.704 

Age 0.564 0.511 0.614 

Years of education 0.540 0.494 0.590 

Marital Status - Married 0.506 0.452 0.547 

Marital Status - Divorced 0.501 0.449 0.543 

Marital Status - Never Married 0.488 0.439 0.537 

Marital Status - Widowed 0.487 0.430 0.529 

Sex 0.475 0.413 0.512 
AUROC = Area Under the Receiving Operating Curve. 
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Figure 1. Area Under the Receiving Operating Curve of the pooled 
test predictions. 
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Figure 2. Area Under the Receiving Operating Curve of Individual 
Predictors. 

 
The figure indicates the pooled test AUROC and its 95% bootstrap CI when prediction is made 
considering each predictor singularly. Predictors are grouped according to conceptual domains, which 
in descending order are sociodemographic characteristics, subtype of MCI, clinical scale scores, and 
neuropsychological test scores. Non-significant AUROC (i.e., the lower bound of the CI is lower than 
or equal to 0.5) are in grey, significant ones in black. 
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Abstract 

Introduction. The course of OCD differs widely between individual OCD 
patients, varying from severe chronic symptoms to full remission. No 
tools for individual prediction of OCD remission are currently available. 
The present study aimed to develop and test a machine learning 
algorithm to predict OCD remission after 2 years, using solely predictors 
easily accessible in the daily clinical routine.  
Methods. Subjects were recruited in a longitudinal multi-center study 
(NOCDA). Gradient boosted decision trees (GBDT) were used as a 
supervised machine learning technique. The training of the algorithm was 
performed with 227 features and 213 cases recruited in a single clinical 
center. Hyper-parameter optimization was performed with 10-fold cross-
validation and a Bayesian optimization strategy. The predictive 
performance of the algorithm was subsequently tested using an 
independent sample of 215 cases recruited from five different centers. 
Between-center differences were investigated with a bootstrap 
resampling approach.  
Results: The average predictive performance of the algorithm in the five 
test centers resulted in an AUROC of 0.7820, a sensitivity of 73.42%, 
and a specificity of 71.45%. However, a large between-center variation 
was observed, which was partially statistically significant even after a 
conservative Bonferroni correction for multiple comparisons. 
Discussion. The present study developed an algorithm for OCD course 
prediction and subsequently tested it in different independent test 
samples. Although the algorithm resulted in a moderate average 
predictive performance, results showed a large variation in the predictive 
performance when tested per center. Future studies will focus on 
increasing the stability of the predictive performance across clinical 
settings, as well as on improving the overall accuracy of the algorithm. 
 
Keywords: Obsessive-Compulsive Disorder, Machine Learning, 
Prognosis, Remission, Personalized Medicine. 
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Introduction 

Obsessive-compulsive disorder (OCD) is a debilitating disorder 
characterized by intrusive thoughts or images (obsessions) and ritualized 
stereotypic and often repetitive behavior (compulsions) that are time-
consuming and interfere with daily functioning (American Psychiatric 
Association 2013). It is listed as the tenth most disabling medical 
disorder in the World Health Organization (WHO) burden of disease study 
(Ezzati, Lopez et al. 2004) and is associated with diminished quality of 
life (Coluccia, Fagiolini et al. 2016, Pozza, Lochner et al. 2018) 
Despite the effectiveness of selective serotonin reuptake inhibitors and 
cognitive-behavioral therapy, obsessive-compulsive symptoms persist 
in a large group of patients. Remission rates vary from 50 to 80% 
depending on treatment modality and definition of treatment outcome 
(Fineberg, Brown et al. 2012, Ost, Havnen et al. 2015, Agne, Tisott et al. 
2020). OCD tends to run a chronic course in the majority of patients. 
Long-term treatment follow-up studies found varying remission rates of 
50% to 65% (van Oppen, van Balkom et al. 2005, Kempe, van Oppen et 
al. 2007, Cherian, Math et al. 2014, Nakajima, Matsuura et al. 2018) with 
relapse during follow-up in more than half of the remitted OCD patients 
(Kempe, van Oppen et al. 2007). Results of long-term naturalistic studies 
vary widely due to differences in outcome definition and methodology. 
In summary, 10-30% of the OCD patients achieve complete recovery 
and about 25% suffer from chronic persisting or deteriorating symptoms, 
while the majority of the OCD patients experience partial improvement 
over the years, and more than half of the remitted patients subsequently 
relapse (Skoog, 1999 #74;Eisen, 2013 #66;Garnaat, 2015 #67}.  
In sum, the course of OCD varies widely among different individuals. 
Several studies investigated factors associated with treatment outcome 
and course of OCD with the aim of finding predictors for remission, 
relapse, and chronicity of obsessive-compulsive symptoms. Several 
hypotheses including various factors such as OCD symptom severity, 
OCD symptom dimensions, course, insight, comorbidities, OCD-related 
cognitions, or social circumstances were investigated. However, results 
are inconclusive, often contradictory, and mostly not replicated (Keeley, 
Storch et al. 2008, Knopp, Knowles et al. 2013, Hazari, Narayanaswamy 
et al. 2016). Thus, the possibility of making a prompt individual-level 
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prediction of the clinical course of OCD is currently limited because 
reliable clinically relevant predictors are not available (Schuurmans, van 
Balkom et al. 2012, Knopp, Knowles et al. 2013, Hazari, Narayanaswamy 
et al. 2016)  
In addition, different factors may contribute to the prognosis of OCD and 
thus predictions based on single factors are too restricted and inaccurate 
to be used in clinical practice. Instead, models that simultaneously 
exploit the information coming from several potential predictors may 
achieve a better predictive capability.  
Machine learning (ML) techniques can be used to create precisely such 
models. ML techniques use known training examples to create 
algorithms able to provide the best possible prediction when applied to 
new cases whose outcome is still unknown. It is a fast-growing field at 
the crossroads of computer science, engineering, and statistics “that 
gives computers the ability to learn without being explicitly programmed” 
(Samuel 1959). 
A few attempts to apply such techniques to achieve clinically relevant 
predictions in OCD patients have already been made (Salomoni, Grassi 
et al. 2009, Hoexter, Miguel et al. 2013, Askland, Garnaat et al. 2015, 
Yun, Jang et al. 2015, Mas, Gasso et al. 2016, Lenhard, Sauer et al. 2018, 
Reggente, Moody et al. 2018, Agne, Tisott et al. 2020, Metin, Balli Altuglu 
et al. 2020). Although some of the algorithms showed high preliminary 
predictive accuracy, they have remained just proofs-of-concept, with a 
lack of any testing in further independent samples. Evidence from 
independent test sets is necessary before an algorithm can be safely 
translated into clinical practice, especially if its application aims to be 
generalized in multiple clinical centers (Cearns, Hahn et al. 2019). In 
addition, some of these algorithms are based on predictors that may 
represent a significant barrier to their clinical adoption due to their high 
costs or non-routine assessment in current clinical practice (Hoexter, 
Miguel et al. 2013, Yun, Jang et al. 2015, Mas, Gasso et al. 2016, 
Lenhard, Sauer et al. 2018, Reggente, Moody et al. 2018). Besides, two 
of them are focused on very peculiar treatments or OCD populations 
(Lenhard, Sauer et al. 2018, Metin, Balli Altuglu et al. 2020). Nevertheless, 
three studies showed promising predictive performances using only 
information easy to be assessed in clinical practice (Salomoni, Grassi et 
al. 2009, Askland, Garnaat et al. 2015, Agne, Tisott et al. 2020), 
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demonstrating the feasibility of developing clinically translatable ML 
algorithm for the prediction of OCD clinical course and treatment 
response prediction.  
The present study aims to develop and test a ML algorithm for the 
prediction of OCD remission after 2 years. To facilitate clinical adoption, 
only predictors that are easily accessible in the daily clinical routine, such 
as anamnestic information and questionnaires, were used. The present 
article reports the results of the first phase with a focus on the preliminary 
investigation of the generalized predictive performance of the algorithm 
when applied to new different clinical centers.   

Methods 

Subjects 

Both the training and testing of the algorithm have been performed using 
data from the Netherlands Obsessive Compulsive Disorder Association 
(NOCDA) study, a large multi-center naturalistic cohort study of the 
biological, psychological, and social determinants of chronicity in a 
clinical sample (Schuurmans, van Balkom et al. 2012). All subjects 
recruited in the NOCDA study are patients with a lifetime diagnosis of 
OCD which referred to one of the participating mental health care centers 
for evaluation and treatment. No formal exclusion criteria were applied 
except for an inadequate understanding of the Dutch language. The 
study was approved by the local ethics committees, and all participants 
gave written informed consent. More details about the rationale, 
objectives, and methods of NOCDA can be found elsewhere 
(Schuurmans, van Balkom et al. 2012). 
The present study included all NOCDA participants who fulfilled DSM-
IV-TR criteria for OCD either at the baseline or at the 2-year follow-up 
assessment, and whose diagnostic status was respectively reassessed 
at the 2-year and 4-year follow-up (n= 287). The latter reassessment was 
used as a 2-year outcome the algorithm aims to predict. In case a subject 
took part in all baseline, 2-year, and 4-year assessments and fulfilled 
diagnostic criteria for OCD both at baseline and the 2-year follow-up, it 
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was included twice in the analyses. Thus, a total of 462 observations 
were used in the study.  
Remission was defined as an absence of the previously present 
diagnosis of OCD according to the DSM-IV-TR OCD criteria, assessed 
by the Structured Clinical Interview for the DSM-IV-TR (SCID-I/P) (First, 
Spitzer et al. 2002), as suggested by international expert consensus 
(Mataix-Cols, Fernandez de la Cruz et al. 2016). One-hundred and eleven 
(n=111, 24.03%) remissions were observed.  
The subjects have been recruited from eight different clinical centers. 
Almost half of the sample has been recruited in one center (center Tr: 
subjects = 131/45.64%, observation = 213/46.10%) and the remaining 
part from the seven other ones, with a large variation in their contribution, 
ranging from 10 to 53 subjects and 15 to 87 observations. A detailed 
description of the number of subjects recruited in each center and the 
distribution of the remission variable can be found in Table 1. 

Features  

A detailed description of the information assessed in the NOCDA study 
is available in the paper addressing the design and rationale of the study 
(Schuurmans, van Balkom et al. 2012). Only variables available both at 
baseline and at 2-year assessment were included in the present study. 
Genetic and biomarker-based variables were discarded because this 
study aimed to use only information collectible in a clinical interview and 
with psychometric scales. Two additional variables were defined: current 
use of a serotoninergic antidepressant and current pharmacological 
treatment according to the clinical guidelines (Balkom, Vliet et al. 2013). 
Some of the variables were not available for all observations and it was 
a priori decided to remove variables with greater than 20% missing 
values in the train set (i.e., data coming from the center Tr). Moreover, 
we included only the categorical predictors in which at least two of the 
classes had a frequency of at least 5% in the training set, excluding 
missing values. This was applied to avoid the inclusion of categorical 
variables whose variation was too small in the training sample. All 
variables initially included as predictors during the training of the 
algorithm are reported in Appendix III as supplementary materials. 
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Two hundred twenty-seven (n=227) features were initially considered. 
Continuous variables were standardized (mean = 0, standard deviation = 
1). Categorical variables were re-coded with the so-called label-
encoding strategy, i.e., all cases of each categorical variable have been 
assigned to an integer number starting from 0. If the variable was ordinal, 
the class-to-integer conversion respected the order of the classes. In 
case a “Not answered” class was present, this was not coded as a 
missing value but the value 0 and other classes starting from 1, because 
the “Not answered” class may give an additional piece of information 
rather than a pure missing value (i.e., the subject decided to actively 
decline to answer instead of that the answer was not collected). The 
encoding was performed using only the classes occurring in the data 
used for training. The test data were coded following the coding scheme 
used for the training data. Any additional class that occurred only in the 
test dataset was coded as a missing value. This coding strategy for 
categorical variables is justified by the use of a tree-based ML technique. 
Missing values were imputed using the MissForest technique (Stekhoven 
and Bühlmann 2011), implemented with the IterativeImputer function of 
the Scikit-Learn library version 0.22.2 (Pedregosa, Varoquaux et al. 2011) 
and using Random Forest (Breiman 2001) as estimator. The imputation 
model was first trained using only the train set and then applied also to 
the test set. 

Gradient boosting technique 

Boosting is a ML technique that produces a prediction model in the form 
of an ensemble of several simpler and consecutively developed 
prediction models, which are expected to show weaker predictive 
performance if applied singularly. In our study, we used decision tree 
models, which is the most common choice within the gradient boosting 
ensemble technique. Several decision trees are iteratively built, each one 
consecutively trained to better predict the cases misclassified by the 
previous model or, as in the case of the gradient boosting approach we 
used in this study, to predict the error in the prediction performed by the 
previous model  (Friedman 2001). In the end, the final prediction is the 
result of a weighted sum of the prediction performed by all weaker (up 
to hundreds) models. 
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The present study used the implementation of gradient boosted decision 
trees (GBDT) provided in the eXtreme Gradient Boosting (XGBoost) 
library (Chen and Guestrin 2016), which is an optimized distributed 
gradient boosting library designed to be highly efficient, flexible, and 
portable. This library implements several advancements compared to the 
standard GBDT technique, among which the possibility of adding 
stochasticity (Blagus and Lusa 2015) and the use of parallel decision 
trees (bagging) in each bagging iteration.  

Hyper-parameter optimization 

As for most of the ML techniques, several hyper-parameters are available 
for XGBoost, which allow a different tuning of the algorithm during the 
training process. Different values of these hyper-parameters lead to 
different predictive performances. The aim is to identify the configuration 
that produces the best possible performance when applied to cases that 
are not part of the training set. In order to optimize such hyper-
parameters, the algorithm was first trained with 50 random 
hyperparameter configurations. Subsequently, 150 further 
configurations were progressively estimated with a Bayesian 
optimization approach. Bayesian optimization aims to estimate the 
hyper-parameter configuration that maximizes the performance of the 
algorithm starting from the previous estimates. It is based on the 
assumption of a relationship between the various hyper-parameter 
values and the performance achieved by the algorithm. Bayesian 
optimization is expected to identify better hyper-parameter 
configurations with fewer attempts, compared to a random generation of 
configurations. Estimation was performed with Gaussian Processes, as 
implemented in the Scikit-Optimized Python library (https://scikit-
optimize.github.io/).  
The Area Under the Receiving Operating Curve (AUROC) was used as 
the performance metric to be maximized. The algorithm outputs a 
continuous prediction score (range: 0-1; the closer to 1 the higher the 
predicted probability of remission for that subject). The AUROC value 
can be interpreted as the probability that a randomly selected remitted 
subject will receive a higher output score than a randomly selected non-
remitted subject. The AUROC value is 0.5 when the algorithm makes 
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random predictions and 1 in case it is always correct in making 
predictions. AUROC is not affected by class imbalance, and it is 
independent from any specific threshold that is applied to perform a 
dichotomous prediction.  

Cross-validation 

The aim is to train an algorithm that achieves the best possible 
generalized performance and that also performs well beyond the cases 
used in the training process. Cross-validation provides an estimate of 
such generalized performance for every hyper-parameter configuration. 
In cross-validation, the training sample is divided into several folds of 
cases that are held-out from the training process, with training iteratively 
performed with the remaining cases. After the training, the algorithm is 
finally applied to the held-out cases.  
In this study, the commonly used 10-fold cross-validation procedure was 
applied. The fold creation was performed at random, stratifying (i.e., 
balancing) for the percentage of remitters and non-remitters in each fold. 
Finally, the 10 performance estimates of the algorithm available for each 
hyper-parameter configuration were averaged to provide a final point 
estimate of the generalized performance. The hyper-parameter 
configuration that demonstrated the best average cross-validated 
AUROC was retained and used to retrain a single algorithm with the 
entire train sample. 

Train/test protocol 

For training and cross-validation of the final algorithm, all observations 
from the center Tr were used. The observations from the other seven 
centers (centers A-G) were used as an independent test set to investigate 
the predictive performance of the algorithm. Even if sometimes two 
observations from the same subjects have been included in the analysis 
(i.e., the baseline assessment information as predictors and the OCD 
diagnosis at the two-year follow-up as outcome, and the two-year 
follow-up assessment information as predictors and the OCD diagnosis 
at the four-year follow-up as outcome), the entire train and test sets are 
fully independent with respect to the subjects because the test set 



CHAPTER 5 

 
 
148 

(Center A-G) includes observations from subjects that are distinct from 
those included in the training set (Center Tr). 
The algorithm initially outputs a continuous prediction to which a 
threshold is applied to obtain the final dichotomous prediction of 
remission. Different threshold values may result in different predictive 
performances in terms of sensitivity and specificity. In this preliminary 
investigation, we chose the threshold value which maximizes the 
balanced accuracy (i.e., the average between sensitivity and specificity) 
of the cross-validated predictions in the training dataset. This value was 
applied to obtain the final prediction in the test dataset. 
In every single center of the test set, the achieved AUROC, balance 
accuracy, sensitivity (i.e., Recall), specificity, positive predictive value 
(i.e., Precision), and negative predictive value were calculated separately. 
The 95% confidence intervals (CIs) were calculated with a stratified 
bootstrap procedure, with 10000 resamples (Efron 1987). Only five of the 
seven centers were considered in these analyses given that two centers 
provided a small number of observations (Center E = 19; Center F = 15), 
in which the observed cases of remissions were very limited (Center E = 
1; Center F = 3). 
The bootstrap resampling technique was also used to investigate if the 
differences observed in the predictive performance between the different 
centers were statistically significant. For each statistic, we generated a 
stratified bootstrap distribution (10000 resamples) of the pairwise 
differences between two centers and subsequently calculated CIs of the 
differences, using the very conservative 99.5% range in order to correct 
for the 10 pairwise comparisons for each statistic (alpha = 0.05/10 = 
0.005). A difference was considered statistically significant if both 
bounds of the CI being above or below the value 0. 

Feature importance 

Some of the predictors initially taken into consideration may be 
automatically discarded during the training process. As the NOCDA 
dataset includes a very extensive assessment, this step may help to 
reduce the amount of necessary information.  
At first, we investigated which predictors were included in the final 
model. Subsequently, we ranked the retained predictors by importance 
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using the gain feature importance metric as provided by the XGBoost 
library. The gain metric indicates the relative contribution of a feature to 
the model, which is calculated by taking into account the improvement 
in accuracy brought by that feature at each node split in the ensemble of 
decision trees (https://xgboost.readthedocs.io/en/release_1.5.0/R-
package/discoverYourData.html).  
Both the inclusion of a predictor in the model as well as its gain 
importance score cannot be considered as an absolute metric of the 
strength of association between the predictor and the probability of the 
2-year remission. The inclusion as well as the gain score are closely 
related to the contribution that a certain predictor has in improving the 
predictive performance of the specific algorithm that has been 
developed. This contribution may substantially vary when using other ML 
techniques, or even with the same technique but with a different hyper-
parameter configuration. 

Results 

Descriptive statistics of all baseline assessment variables are available in 
Appendix III as supplementary materials, separately for the training and 
test dataset. Statistics of continuous features are reported before the 
standardization was applied. In particular, in the train dataset (center Tr), 
the recruited subjects had a mean age of 39.95 years (SD = 10.75), a 
mean Y-BOCS total severity compulsions score of 10.26 (SD= 4.28), and 
a mean Y-BOCS total severity obsessions score of 9.95 (SD = 3.83). In 
the test dataset (center A-E), the recruited subjects had a mean age of 
36.47 years (SD = 11.02), a mean Y-BOCS total severity compulsions 
score of 10.33 (SD= 4.28), and a mean Y-BOCS total severity obsessions 
score of 10.6 (SD = 4.09). In the train dataset 118 (55%) were female, 
while in the test dataset 130 (52.21%) were female.  
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Performance of the predictive algorithm  

The hyper-parameter optimization identified the best hyper-parameter 
configuration8 that resulted in an average cross-validated AUROC of 
0.7392. The cross-validated predictions obtained with this configuration 
were pooled together and used to identify the cut-off threshold that 
maximized the cross-validated balanced accuracy. The obtained 
threshold value was 0.2193. Applying this threshold to the cross-
validated predictions, a balanced accuracy of 71.90%, a sensitivity of 
80.00%, a specificity of 68.71%, a positive predictive value of 40.40%, 
and a negative predictive value of 91.23% were observed. This hyper-
parameter configuration was subsequently used to train the final model 
using the entire train set without cross-validation.  
When the final model was tested using the data collected in the centers 
A, B, C, D, and G, the average AUROC among the centers resulted 
0.7820 (95% bootstrap CI = 0.7119-0.8267). Considering the categorical 
predictions generated with the threshold identified above, results 
indicated an average balanced accuracy of 72.44% (95% bootstrap CI 
= 66.81%-77.73%), an average sensitivity of 73.42% (95% bootstrap CI 
= 65.84%-82.91%), an average specificity of 71.45% (95% bootstrap CI 
= 63.27%-76.74%), an average positive predictive value of 48.52% (95% 
bootstrap CI = 40.76%-54.75%), and an average negative predictive 
value of 87.33% (95% bootstrap CI = 83.94%-92.12%).  
When testing the distinct predictive performance of the algorithm per 
center, results demonstrated a large between-center variation with the 
AUROC ranging from 0.6364 (A) to 0.9063 (D), the balanced accuracy 
from 58.02% (A) to 87.50% (D), the sensitivity from 45.45% (A) to 100% 
(D), the specificity from 62.69% (C) to 76.92% (G), the positive predictive 
value from 31.25% (A) to 78.57% (G), and the negative predictive value 
from 78.95% (B) to 100% (D). All point estimates and the 95% bootstrap 
CIs of the results per center are summarized in Table 3.  
Bootstrap analyses revealed significantly different balanced accuracies 
between center A and center D (58.02% versus 87.50%) and between 

 
 
8 The resulted best hyperparameter configuration is: base_score = 0.5, booster = 'gbtree', colsample_bylevel = 
0.42115547404634657, colsample_bynode = 0.3067377514618746, colsample_bytree = 0.4082812237129432, gamma = 0.9, 
learning_rate = 0.3, max_delta_step = 1, max_depth = 2, min_child_weight = 0.99, n_estimators = 231, num_parallel_tree = 10, 
reg_alpha = 0.11711395279718309, reg_lambda = 15.276374168654078, subsample = 0.2. 
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center C and center D (66.34% versus 87.50%), significantly different 
sensitivities between center A and center D (45.45% versus 100%) and 
between center C and center D (70.00% versus 100%), significantly 
different positive predictive values between center A and center G 
(31.25% versus 78.57%) and between center C and center G (35.90% 
versus 78.57%), and significantly different negative predictive values 
between center A and center D (79.31% versus 100.00%) and between 
center C and center D (87.50% versus 100.00%). Bootstrap median and 
99.5% CIs of the differences are reported in Table 4. In summary, despite 
the conservative multiple-comparison correction applied in these 
analyses, the performance of the algorithm sometimes differs 
considerably between different clinical centers, even though all centers 
followed the assessment protocol as demanded by the NOCDA study. 

Feature importance 

The final model included 217 out of the 227 initial features (95.59%), 
while only 10 variables (4.41%) were discarded. A detailed description of 
the retained variables, the associated gain feature importance score, and 
the ranking are reported in Appendix III as supplementary materials.  
Based on the gain feature importance metric, the variables ranked as the 
ten most important predictors in the present algorithm are (Table 2): the 
total score Y-BOCS severity (Goodman, Price et al. 1989); hours spent 
every week by the respondent as an organizer of social organizations 
and clubs  (e.g., employers, religious, sport, political or patients 
organizations); the use of antidepressant drugs on doctors order in the 
last two weeks; whether the respondent had a paid job at the moment of 
the baseline assessment; chronic course of OCD in the last two years; 
the use of any psychotropic drug on doctors order in the last two 
weeks; participation in sports clubs; the use of psychoanaleptic drugs 
on doctors order in the last two weeks (defined according to the ATC 
classification; Organization 2011); the number of different psychotropic 
drugs currently taken by the subject (defined according to the ATC 
classification; Organization 2011); and the number of hours the subject 
work in a week. 
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Discussion 

The present study aimed to develop and test a preliminary ML algorithm 
for the prediction of the two-year remission in subjects with OCD using 
data from a large naturalistic multi-center study (NOCDA). Solely 
predictors based on information from clinical interviews and 
psychometric scales were included as features. The algorithm was 
developed and trained using a large sample of subjects recruited in a 
single center, which represented almost half of the entire dataset. 
Subsequently, the algorithm was tested in the other participating 
NOCDA centers. This was done to mimic the translation from a research 
environment into clinical practice, where new algorithms or protocols are 
commonly developed in one large center and subsequently applied in 
smaller centers.  
The strict separation between the training and the test set was chosen 
to increase independence between both datasets. It ensures a sound 
testing of the generalized performance of the algorithm when applied to 
clinical centers distinct from the training center.   
In this preliminary phase, we arbitrary decided to give equal importance 
to sensitivity and specificity by defining the predictive threshold that 
maximized the balanced accuracy in the training dataset. Results 
showed a moderate predictive performance, with a similar cross-
validated and average test balanced accuracy of respectively 71.90% 
and 72.44%. There is one previous study (Askland, Garnaat et al. 2015) 
which also aimed to develop a ML model to predict OCD remission 
based on features assessed by an extensive clinical interview and 
several psychometric questionnaires. They reported an unbalanced 
accuracy of 75.4% as the performance of their algorithm. Although there 
are similarities in the study designs (e.g., both studies are large 
naturalistic multi-center follow-up studies), this study is not fully 
comparable to ours because of the performance metrics Askland and 
colleagues used (e.g., unbalanced accuracy in their study, and balanced 
accuracy in the current study), and a different definition of OCD 
remission (at least one period of eight consecutive weeks of sub-
threshold symptoms during the entire study enrollment, versus lack of 
fulfillment of DSM-IV-TR criteria for OCD at the 2-year follow-up 
assessment in the current study). 
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The other performance statistics also resulted somewhat similar 
between cross-validation and testing, with a partial reduction in the 
average sensitivity and average negative predictive value, and partial 
improvement in the average specificity and average positive predictive 
value in the test dataset compared to the cross-validated results 
obtained in the training dataset. Thus, when the average test 
performance is taken into account, it might be concluded that the 
algorithm maintained its performance levels when applied to new clinical 
centers. 
However, in subsequent testing using every single center as a distinct 
test data set, a substantial variation in the performance statistics was 
observed between the five centers. The predictive performance of the 
algorithm was particularly good in some of them, while quite reduced 
and poor in others. Some between-center differences resulted 
statistically significant even after a conservative Bonferroni correction for 
multiple comparisons. Based on these results, any expected 
performance cannot be guaranteed when the current version of the 
algorithm is applied to new clinical settings.  
Differences in remission rates between the centers (varying from 14.3% 
to 48%) may affect the predictive performance, but it does not 
sufficiently explain all of the variability, because also statistics that are in 
theory unaffected by the rate of remissions occurring in a specific center 
showed this variation, such as the balanced accuracy, sensitivity, and 
specificity. The distribution of the characteristics of the OCD subjects 
may also affect the predictive performance. OCD often is described as a 
heterogeneous disorder (Mataix-Cols, Rosario-Campos et al. 2005), and 
also the participants of the NOCDA study were a diverse group. OCD 
patients referred to a certain clinical center might differ significantly from 
those referred to another center. The predictive accuracy of a ML 
algorithm is not necessarily constant among subjects with different 
characteristics, and some centers may present a higher prevalence of 
subjects in which the algorithm tends to be less accurate in its 
predictions. Moreover, variations in the distribution of the predictors (i.e., 
covariate shift [Shimodaira 2000]) or of the outcome variable (i.e., label 
shift [Lipton, Wang et al. 2018]) are known to potentially affect the 
performance of ML algorithms. Besides, even a change in the 
relationship between the predictor and outcome variables (i.e., concept 
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drift [Gama, Žliobaitė et al. 2014]) can occur over time and among 
different populations. Thus, before a medical predictive model can be 
safely applied in clinical practice, it is crucial to test it not only in a single 
but in multiple datasets that are independent both to each other and to 
the data used during the development of the algorithm. As a matter of 
facts, the majority of medical device filings to regulatory bodies such as 
the US Food and Drugs Administration are based on multi-center clinical 
studies (Johnston, Dhruva et al. 2020), and multi-centric testing seems 
to have progressively become more and more used in the recent 
literature of ML for medical applications (Abraham, Milham et al. 2017, 
Meyer, Mueller et al. 2017, Gabr, Coronado et al. 2019).  
However, previous studies using ML to predict clinical course and 
treatment response prediction in OCD patients are mostly based on data 
recruited in a single center (Salomoni, Grassi et al. 2009, Hoexter, Miguel 
et al. 2013, Yun, Jang et al. 2015, Mas, Gasso et al. 2016, Lenhard, Sauer 
et al. 2018, Reggente, Moody et al. 2018, Metin, Balli Altuglu et al. 2020). 
Only Askland and colleagues (Askland, Garnaat et al. 2015) used a large 
multi-center dataset from a longitudinal study of OCD (The Brown 
Longitudinal Obsessive-Compulsive Study Pinto; Mancebo et al. 2006). 
However, pooled data from all centers were used both for training and 
testing. Their testing was not designed to ensure center-independence 
from the data used during the training of the algorithm and thus the 
predictive performance may differ when the algorithm is applied to new, 
independent data sets. In conclusion, the present study is the first one 
using ML in OCD course prediction which tested the algorithm in an 
independent test sample consisting of data from other centers than the 
training center.  
Some strategies that attempt to reduce the impact of the above-
mentioned distribution shift/drift have been proposed in the ML literature 
(Shimodaira 2000, Gama, Žliobaitė et al. 2014, Lipton, Wang et al. 2018). 
However, any application of such correction strategies requires 
advanced knowledge of the predictor and/or target variable distributions 
in the particular setting where the algorithms will be used. Thus, a 
relevant amount of data has to be preliminary available for any new 
center, or these data have to be collected in advance for the sole 
purpose of developing the center-specific correction of the algorithm. 
Especially for the outcome variable, which is based on a 2-year follow-
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up, this preliminary data collection would be particularly burdensome 
and may delay the introduction of the algorithm in a particular clinical 
center.  
Another potential strategy to reduce the impact of variable distribution 
shifts/drifts is to include only predictive variables in the algorithm with 
more stable distributions among clinical centers, and a stable 
relationship with the outcome variable. A reduction of the number of 
predictors may also help to improve the applicability of the algorithm in 
the daily clinical practice. Although the present algorithm only uses 
information from clinical interviews and questionnaires, the extensive 
NOCDA assessment protocol is time-consuming and may be exhausting 
for patients. Unfortunately, less than 5% of the features were 
automatically discarded during the training process, which is a 
characteristic of the GBDT technique, and the algorithm still relies on 217 
predictors. A further reduction of the predictive variables will be later 
performed by applying some additional feature selection strategies, by 
taking into account the gain feature importance metric, and by evaluating 
the clinical importance and availability of the predictors. This may lead 
to the development of a more robust algorithm while maintaining or 
perhaps even improving its predictive performance. 
The ranking of importance of the predictors based on the gain feature 
importance metric confirms that factors of different nature may 
contribute to the prognosis of OCD, without one domain being the sole 
or primary source of it. For example, the ten features that resulted as 
most relevant are related to very different domains, such as clinical 
severity and characterizations, medications, work, and social activities. 
This also supports the necessity of using models that simultaneously 
consider multiple predictors rather than individual factors to achieve 
relevant prediction of OCD remission and prognosis. 
Some limitations should be taken into account. We used GBDT as the 
sole ML technique in our study. Several other supervised ML techniques 
exist, all of which may have led to different results. Some of these other 
techniques may have even resulted in better predictive performance, and 
an ensemble of different techniques can also be used in the attempt of 
achieving better results (Grassi, Rouleaux et al. 2019). In this preliminary 
phase, we opted to focus on the GBDT technique for several reasons. 
First, it has proved to be a powerful technique even if used individually 
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(Natekin and Knoll 2013). Moreover, given the large number of 
categorical variables we used as predictors, this technique was chosen 
because it can handle non-dichotomous categorical variables with 
efficient coding strategies (e.g., label encoding), allowing the use of a 
single predictor per categorical variable instead of a single predictor per 
class of each categorical variable (i.e., one-hot encoding), as it is 
required by most of the other supervised ML techniques. Furthermore, a 
metric of the importance of the predictive variables, i.e., the gain feature 
importance metric, can be derived natively and computationally 
efficiently directly from the algorithm, which takes into account the 
interactions between the predictive variables and does not require 
additional analyses to be performed after the final model has been 
trained. Finally, less important features are expected to be discarded 
automatically during the development of the algorithm, with the GBDT 
technique operating an automatic and model-tailored feature selection. 
Considering all these characteristics of the GBDT technique, it seemed 
convenient to use this single technique in this preliminary step, leaving 
the use of further techniques and their ensembling to the following 
phases of our research. 
Another limitation is that, although independent to each other, the clinical 
centers of the NOCDA study all collected the data following the same 
assessment protocol. Moreover, they are all located in the Netherlands. 
Thus, these centers may share more similarities than other clinical 
centers not following the standardized assessment protocol or from 
other countries. Therefore, when the algorithm is applied to new clinical 
centers, the predictive performance may vary even more compared to 
the variation observed in the present study. 
An additional limitation is that, although two centers with a very limited 
number of cases were excluded, the sample size of the data from some 
of the five test centers was small. In the next phase, we plan to include 
the final follow-up assessment (predictor variables from the four-year 
follow-up assessment and remission at the six-year follow-up 
assessment) to enlarge the sample size for both in training and testing of 
the algorithm.  
Finally, the definition of remission used in this study is the absence of an 
OCD diagnosis at the two-year follow-up assessment. As the course is 
not unidirectional but shows periods of remission and subsequent 
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relapse in the majority of the OCD patients (Reddy, D'Souza et al. 2005, 
Eisen, Sibrava et al. 2013, Garnaat, Boisseau et al. 2015), the current 
prediction of the algorithm may not be able to provide an exhaustive 
description of the clinical course of the subject. A more complex 
modeling of the course of OCD may be desirable, based on information 
about the course of OCD assessed longitudinally during several follow-
ups. 
Some strengths may also be mentioned. Data are based on a large 
naturalistic multi-center study. The longitudinal design, with baseline and 
successive follow-up assessments, makes the application of ML 
techniques particularly suitable to examine predictors of the course of 
OCD. The naturalistic investigation of the illness course contributes to 
the clinical validity of the ML algorithms developed with data from the 
NOCDA study. All features can be assessed during the daily routing 
using interviews and questionnaires, which makes it easily accessible. 
With a total of 462 observations, it is one of the largest ML studies in the 
field of OCD research. Approximately half of the subjects were recruited 
from a single center, and the remaining part of the sample from the other 
seven centers, with a large variation in the number of subjects recruited 
in each one of them. This mimics the common scenario in which a larger 
dataset coming from one or a few centers is used to train a ML algorithm, 
which will be later applied to other centers. In contrast to previous 
studies in this field, the present study did not only develop an algorithm 
for OCD course prediction and tested it within the training set, but also 
applied a thorough testing by subsequently validating the algorithm in a 
test sample consisting of data from other centers than the training 
center.  
The present study aimed to develop a clinically accessible algorithm that 
predicts remission of OCD, which is based on information that can be 
easily assessed in the daily clinical routine. However, if this information 
is not sufficient to achieve a good level of prediction, the inclusion of 
additional predictors, such as genetic or neuroimaging biomarkers, 
should be investigated. Although costs and availability can make their 
introduction in the clinical routine quite challenging, it may be justified if 
they significantly increase the predictive performance of the algorithm 
given the contribution that a prediction of the OCD course may bring to 
treatment planning and appropriate support of OCD patients. In the 
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NOCDA study, further biological and genetic information has been 
collected and we also plan as a further next step to investigate if the 
addition of such information may relevantly increase the accuracy of our 
algorithm.  
In conclusion, the present study developed and tested a ML algorithm 
for the prediction of the 2-year remission of the diagnosis of OCD using 
data from a large, multi-center study (NOCDA). The algorithm  was 
development with data coming from one large clinical center and 
subsequently tested with data from different smaller centers. Results 
evidenced a moderate average generalized performance but showed a 
large variation between the centers when investigated per distinct center. 
This demonstrates the difficulties algorithms have to overcome before 
they can be safely translated from the research environment into clinical 
practice. It also emphasizes the need for independent test samples from 
different centers during further research. 
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Table 1. Description of test centers. 
 

Center Subjects Total 
Observations 

Remitters 
 

N % 

Included in the 
testing 

Test - A 27 45 11 24.44% 

Test - B 20 30 10 33.33% 

Test - C 53 87 20 22.99% 

Test - D 17 28 4 14.29% 

Test - G 19 25 12 48.00% 
     
Mean 27 43 11 28.61% 

S.D. 13.33 23.06 5.12 11.42% 

Minimum 17 25 4 14.29% 

Maximum 53 87 20 48.00% 
      

Excluded from 
the testing 

Test - E 10 19 1 5.26% 

Test - F 10 15 3 20.00% 
S.D. = Standard Deviation.  
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As introduced in Chapter 1, mental disorders are widespread and 
burdensome, but most people suffering from them still miss to receive 
proper treatment or experience treatment unresponsiveness, relapses, 
and recurrence episodes. Psychiatry is still based on descriptive 
diagnostic taxonomies with limited validity, and clinical guidelines 
recommend interventions only for the ‘average’ patients suffering from a 
specific diagnostic class. The new paradigm of Personalized Medicine 
promises to improve the treatment and prevention of mental disorders 
by providing better individual indications and predictions. Recent 
technological advancements now permit to cost-effectively collect vast 
sets of information that may be used to achieve such personalized 
recommendations. However, data are not enough, and it is also 
necessary to develop models that can perform these personalized 
recommendations. Given the complexity and multifactorial nature of 
mental disorders, it is difficult to fully achieve a full a priori understanding 
of the phenomenon that is then used to develop rules that clinicians are 
advised to follow during their clinical decision-making process. A 
promising alternative to develop such tools is the use of Supervised 
Machine Learning (SML). These techniques use examples in which both 
the input and the desired output variables are available. From these 
examples, such techniques are able to automatically extract patterns 
and build algorithms that can provide an estimate of the output variables 
in new cases in which only the input variables are known. SML opens the 
possibility to develop PM tools that may have been impossible 
otherwise, only by having enough suitable examples and without the 
need for an explicit a priori understanding of the relationship between the 
input and output variables. Moreover, SML algorithms may help 
automatize some time-consuming clinical tasks, reducing the associate 
costs and clinicians’ burden. In psychiatric scientific literature, a growing 
number of research articles using SML are available, and most of them 
present algorithms that seem to achieve very high performances. 
However, this amount of promising evidence appears to conflict with the 
general lack of SML-based tools in psychiatric clinical practice. Several 
challenges need to be faced to ensure a safe and effective application of 
these algorithms in clinical practice. 
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This doctoral dissertation aims to present the development and testing 
of some SML algorithms for the psychiatric clinical practice, with two 
main focuses: the ability to achieve good performance by solely using 
input information that facilitates or at least does not hinder its clinical 
adoption, and the necessity to provide preliminary evidence of the 
expected generalized performance of the algorithm even at early stages 
of its development. 
 
In particular, Chapters 2, 3, and 4 report three studies related to the 
development of an SML algorithm for the 3-year prediction of conversion 
from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD). 
Currently available and emerging therapies for AD likely have the most 
significant impact when provided at the earliest disease stage. Thus, the 
possibility to early identify which subjects are at high risk of later 
developing AD, e.g., subjects with MCI, it is of crucial importance. 
However, currently proposed machine learning algorithms seem to 
achieve only limited predictive accuracy, or they are based on expensive 
and hard-to-collect information.  
 
The study presented in Chapter 2 aimed to develop an initial proof-of-
concept of a clinically-translatable SML algorithm for the 3-years 
prediction of conversion to AD in MCI and Pre-mild Cognitive Impairment 
(PreMCI) subjects. This algorithm is based only on non-invasive 
predictors that are either already routinely assessed or easily introducible 
in clinical practice. Specifically, baseline information regarding 
sociodemographic characteristics, clinical and neuropsychological test 
scores, cardiovascular risk indexes, and a visual rating scale for brain 
atrophy was used as input. Data were extracted from a longitudinal, 
multicentric dataset collected in Miami (Florida, US). A subset of 16 
predictors was selected from all the abovementioned domains. The best 
model (support vector machine with radial-basis function kernel) resulted 
in a high leave-pair-out-cross-validation performance, with an Area 
Under the Receiver Operating Characteristics (AUROC) of 0.962, a 
balanced accuracy of 91.3%, a sensitivity of 95.6%, and a specificity of 
87.1%. These results are among the best of the many algorithms 
available in the literature and the best achieved so far using only 
information easily collectible in clinical practice.  
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However, these preliminary results are based solely on a cross-validation 
approach, and not on a set of test examples that have completely been 
held out during the development of the algorithm. Thus, to provide a 
sounder estimate of its expected performance, the study in Chapter 3 
aimed to perform indirect testing of this algorithm via a transfer learning 
approach. The same predictors and SML technique used in the previous 
study were employed to retrain the algorithm to accomplish the task of 
discriminating between AD and Cognitively Normal individuals (CN). Data 
used for training were another sample of subjects with either the former 
or the latter condition that have being recruited during same longitudinal, 
multicentric dataset collected in Miami (Florida, US) used in the previous 
study. The new algorithm was then used to predict the three-year 
conversion to AD in the same sample of MCI subjects used in the 
previous study. In this study, the MCI sample was entirely held out during 
training and only used to test the algorithm. A reduced but still significant 
predictive performance was observed in the MCI sample (AUROC = 
0.821; balanced accuracy = 77.9%; sensitivity = 85.2%; specificity = 
70.6%), and these can be considered a first indirect, possibly 
conservative estimate of the performance of the algorithm presented in 
Chapter 2 when applied to a sample of MCI subjects not used in the 
training process.  
 
Chapter 4 presents an improved algorithm for the same task based on 
an ensemble of several SML algorithms whose individual predictions are 
aggregated with a weighted average rank approach. Data from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) open database were 
employed in this study. A restricted set of information, which included 
sociodemographic and clinical characteristics and neuropsychological 
test scores, was used as predictors, while any imaging information was 
excluded entirely. Moreover, a peculiar site-independent stratified 
train/test split protocol was used to better estimate the generalized 
performance of the algorithm when applied in clinical centers different 
from those used for training and validation. The ensemble of the SML 
algorithms demonstrated a test AUROC of 0.88, a sensitivity of 77.7%, 
and a specificity of 79.9%. In addition, it demonstrated a specificity of 
40.2%/53% when the threshold was optimized to achieve a sensitivity of 
respectively 100% and 95%. These results show evidence of high 
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predictive accuracy even when testing is performed with a sound 
train/test split protocol, exhibiting particularly good predictive 
performance when the algorithm was optimized as a screening tool. 
Thus, the algorithm may be useful to improve recruitment in clinical trials 
and to more selectively prescribe newly emerging early interventions to 
patients at high risk to convert from MCI to AD. 
 
The work described in Chapter 5 relates to the initial development of an 
SML algorithm for the prediction of 2-year OCD remission. The OCD 
course differs widely between OCD patients, varying from severe chronic 
symptoms to full remission. No tools for individual prediction of OCD 
remission are currently available. To facilitate clinical adoption, only 
predictors easily accessible in the daily clinical routine, such as 
anamnestic information and questionnaires, were used in the algorithm. 
Gradient boosted decision trees (GBDT) were used as a supervised 
machine learning technique. The training of the algorithm was performed 
with 227 features and a sample of 215 cases recruited in a single clinical 
center. The predictive performance of the algorithm was subsequently 
tested using an independent sample of 215 cases recruited in five 
different centers. All data were collected in a longitudinal multi-center 
study (NOCDA). The predictive performance of the algorithm in the five 
test centers resulted in an average AUROC of 0.7820, an average 
balanced accuracy of 72.73%, an average sensitivity of 73.42%, and an 
average specificity of 71.45%. However, a large between-center 
variation was observed (AUROC range = 0.636-0.906; balanced 
accuracy range = 58.0%-87.5%; sensitivity rage = 45.5%-100.0%; 
specificity range = 62.7%-76.9%), which evidence the challenge of 
achieving a stable generalized performance when applied into different 
clinical settings. These results highlight the necessity of testing SML 
algorithms in samples collected in different sites before being safely 
translated from the research environment into clinical practice.  
 
Chapter 6 presents an extensive test of a computer program (MEBsleep 
by Medibio Limited) that performs automatic sleep staging of 
polysomnography by processing the signals of EEG montages through 
a processing pipeline of SML algorithms. Sleep staging of 
polysomnography is a time-consuming task, it requires significant 
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training, and significant variability among scorers is expected. Testing 
has been based on the agreement of the staging performed by the 
program with the manual sleep staging performed by expert sleep 
technicians. The extensive test performed in this study aim to finally 
demonstrate the clinical applicability of the SML-based software. Forty 
polysomnography recordings of patients referred for sleep evaluation to 
three different sleep clinics were retrospectively collected. Three 
experienced technicians independently staged the recording twice, first 
taking into account only the electroencephalography signals, and then 
also the electromyography and electrooculography signals in 
compliance with the staging rules recommended by the American 
Academy of Sleep Medicine guidelines. In addition, the staging 
performed initially in clinical practice was also considered. Several 
agreement statistics of the automatic staging with the manual staging, 
among the different manual staging scoring, and their differences were 
calculated as a test of the performance achieved by the SML-based 
application. The automatic staging resulted for the most part comparable 
or significantly more in agreement with the technicians’ staging than the 
between-technician agreement, with the sole exception of a partial 
reduction in the positive percent agreement of the Wake stage. The same 
result was observed in the comparison between the agreement of the 
automatic staging with the clinical staging and the agreement of the 
technicians’ staging with the clinical staging. Given these results, the use 
of this SML-based software may be granted as a supporting tool for 
sleep clinicians, helping to reduce the burden associated with manual 
sleep staging of inpatient polysomnography. 
 
In conclusion, as discussed in Chapter 7, the studies presented in this 
doctoral thesis used SML techniques to develop and test algorithms that 
may support mental health professionals in their clinical practice. Not all 
studies included in this dissertation present an algorithm that has already 
reached a definitive, clinically applicable version. However, even at early 
or intermediate steps, the studies followed specific strategies to provide 
a preliminary estimate of the generalized performance of the algorithm in 
order to identify issues in their current versions promptly and better 
direct the following development steps. The results support the 
hypothesis that it is possible to develop algorithms that can achieve a 
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clinically meaningful performance using only input information that would 
allow an easy clinical translation of these algorithms and avoiding using 
information that is currently expensive, invasive, or hard to introduce into 
clinical psychiatric practice. In addition, the studies evidence the crucial 
role of data, which needs to be of good quality and big-enough quantity 
to develop SML algorithms. As the use of either purely clinical or 
experimental data may result in specific issues, data collected in 
observational, multicentric, non-retrospective studies seem to be the 
most suitable for SML, and increased availability of open-source 
datasets with these characteristics may foster the development and test 
of SML-based clinical tools. Moreover, given that any SML algorithm 
needs to be transformed into a proper clinical tool before it can be 
translated into clinical practice, and that the performance that such tool 
can achieve in practice may be different than what observed for the sole 
SML algorithm, particular attention should be given also to this 
development phase, as well as to improve the clinicians’ understanding 
of SML and to remove any resistance from clinicians associated with the 
utilization of SML-based tools in clinical practice. Only initiatives that 
promote a coordinated effort between several professional roles and 
stakeholders, including the end-users of such tools that are clinicians 
and patients, can finally make SML-based Personalized Medicine clinical 
tools a widespread reality. 
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Contributions  

The contributions of this PhD thesis are: 
• the initial development of SML algorithms for the prediction for the 

3-year prediction of conversion from Mild Cognitive Impairment to 
Alzheimer’s Disease (Chapter 2-4), and the prediction of 2-year 
Obsessive-Compulsive Disorder remission (Chapter 5) 

• the development of the abovementioned algorithms by using only 
limited cost and clinically accessible predictive information 
(Chapter 2-5) 

• the introduction of different validation and testing protocols that, 
even in early development phases, allow providing more accurate 
estimates of the expected algorithm performance when applied in 
clinical practice and in multiple clinical contexts, with the aim to 
steering the development of SML algorithm towards a clinical 
applicability since the initial phases (Chapter 3-5) 

• the extensive clinical validation of a SML algorithm that can 
automatically perform sleep staging of polysomnography 
(Chapter 6) 

Impact Paragraph 

In recent years, there has been an exponential growth of scientific 
literature regarding the application of SML in Psychiatry. This interest has 
been motivated by the promise of using SML to develop new clinical 
tools that could help to perform personalized predictions and 
recommendations, ultimately improving the results achievable in the 
psychiatric clinical practice. Starting from the evidence of a substantial 
lack of such tools in Psychiatry, the studies presented in this dissertation 
aimed to contribute to further directing the application of SML towards 
the original promise. In particular, they demonstrate that it is possible to 
develop SML algorithms that reach clinically relevant performances even 
by employing only input variables that are or may be easily accessible in 
the clinical routine, and avoiding those that are still too expensive, 
invasive, or hard to introduce into clinical psychiatric practice. This 
selection of the input information is crucial to prevent SML algorithms to 



CONTRIBUTIONS, IMPACT, AND PROPOSITIONS 

 
 

233 

remain just promising proofs-of-concept with limited opportunity to 
become applicable in practice. 
Moreover, the studies also contributed to highlighting the importance of 
providing estimates of the generalized performance of an SML algorithm 
even at early development phases. This implies an investigation of what 
is the expected performance of an SML algorithm when applied in totally 
new cases, as well as in new clinical settings. This is a necessity because 
no clinical application of a medical device can be made before a 
thorough investigation of its safety and efficacy. Doing it systematically 
at every step of the development process allows to early identify any 
generalizability issue and to promptly act to solve it along the entire 
development process. The studies in this thesis introduced peculiar 
performance testing strategies, specifically designed based on the level 
at which the development of the algorithm was, the nature of the task 
under study, and the data available. These strategies may also be used 
in other studies with similar characteristics or inspire innovative testing 
protocols. 
Overall, the results of the studies included in this doctoral dissertation 
contribute to demonstrating that the use of SML algorithms in psychiatric 
clinical practice is not just a promise, even though the process to reach 
a practical application may require several redesigns of the algorithms 
and significant evidence in support of their efficacy. Psychiatry may 
substantially benefit from a shift towards a Personalized Medicine 
approach to improve the prevention and treatment of mental disorders, 
which still have significant margins of improvement. Thus, the potential 
progress achieved in the clinical practice may be worth all the efforts 
required to complete the development and clinical validation of an SML 
algorithm. The advantage of using SML is that it does not require an 
explicit understanding of the phenomena under investigation, but rather 
the availability of enough suitable examples to be used to train the 
algorithm. The studies presented in this thesis show how the use of SML 
may enable to perform psychiatric clinical tasks that were only in part 
possible previously, e.g., an early prediction of conversion to Alzheimer’s 
Disease in high-risk individuals or of remission in subjects suffering from 
Obsessive-Compulsive Disorder. The study in Chapter 6 also 
demonstrates how SML may allow to speed up some clinical procedures 
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in clinical practice, reducing the costs and the associated clinicians’ 
burden. 
This doctoral project has been conceived as inherently multidisciplinary. 
A joint work among multiple parties and professional figures is necessary 
to develop SML algorithms that aim to become clinically used tools. 
Machine Learning requires theoretical and technical skills beyond the 
average expertise of the typical research scientist in Psychiatry. At the 
same time, machine learning experts need to work closely and 
continuously with domain experts from both the research and the clinical 
side to receive directions regarding which tasks may be relevant to 
address with SML, which available scientific knowledge can be used to 
better design and improve the algorithms, and which constrains needs 
to be satisfied to make them effectively applicable in practice. Besides, 
further experts need to be involved to effectively transform a SML 
algorithm into a usable clinical tool, e.g., software engineers, user-
experience designers, and regulatory specialists. These interdisciplinary 
collaborations may foster additional exchanges beyond the sole 
activities regarding SML, ultimately promoting the beginning of new 
projects and innovative ideas in all the involved disciplines.  
Finally, all studies presented in this doctoral dissertation have been 
performed with the collaboration of different research groups and 
institutions, and this doctoral work contributed to further strengthening 
existing partnerships as well as creating new ones14. Part of these 
collaborations revolved around the sharing of privately-owned datasets 
that have been used for the development of SML algorithms for the first 
time. Several psychiatric datasets suitable to be employed for this 
purpose may exist, but they may not be publicly available, and they may 
have never been used in SML projects before. The studies presented in 
this dissertation may also contribute to foster a new use of already 
available datasets that ultimately will ease the beginning of new SML 
projects in Psychiatry and make a larger number of institutions and 
researchers in the psychiatric field approach SML for the first time. 

 
 
14 The main research groups and institutions involved in this doctoral project were: the School for Mental Health and Neuroscience 
(MHeNs) and the Institute of Data Science (IDS) of Maastricht University, Villa San Benedetto Menni Hospital (Albese con Cassano, 
CO, Italy), Humanitas University (Rozzano, MI, Italy), Mount Sinai Medical Center and Miami University (Miami, FL, USA), the 
Netherlands Obsessive Compulsive Disorder Association (NL), and Medibio Limited (Savage, MN, USA). 
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Propositions 

1. The Personalize Medicine paradigm can help to improve the 
effectiveness of psychiatric treatments and the prevention of 
Mental Disorders. 

2. Psychiatry must begin to better exploit the possibilities opened by 
recent technological advancements. 

3. The introduction of clinical decision support systems in Psychiatry 
would allow clinicians to improve the decisions they take in clinical 
practice. 

4. The interest in Psychiatry for Machine Learning (i.e., Artificial 
Intelligence) needs to be ultimately directed to develop clinical 
tools. 

5. Supervised Machine Learning algorithms should be developed to 
use input information that can be cost-effectively collected in 
clinical practice. 

6. Introducing the principles of Supervised Machine Learning to 
mental health clinicians and addressing their potential resistance 
is necessary to achieve the application of Supervised Machine 
Learning in clinical practice. 

7. A coordinated effort between the academia, industry, clinicians, 
and patients is necessary to develop useful clinical tools based on 
Supervised Machine Learning algorithms. 

8. Supervised Machine Learning algorithms can significantly 
contribute to making Personalized Medicine a reality in psychiatric 
clinical practice. 

9. We should not judge the decision-making performance of Artificial 
Intelligence systems more severely than how we judge the 
performance of human decision-making.  

10. The labor market is drastically changing due to a massive 
introduction of automatization and Artificial Intelligence, with a 
serious risk of unemployment for several categories of workers. 
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Supplementary Table 1. Description of the predictor variables 

Source Variable 

Included in 
the 

algorithm 
after 

training 

Descriptive 
statistics in the 

train set 

Descriptive 
statistics in the 

test set 

Gain 
feature 

importance 
(score) 

Gain 
feature 

importance 
(rank) 

ADHD rating 
scale IV 
(DuPaul, Ervin 
et al. 1998) 

ADHD symptoms in the past 1 Mean: 4.62, SD: 
4.48 

Mean: 3.92, SD: 
4.21 0.0039 160 

Hyperactivity Impulsiveness 
symptoms in the past 1 Mean: 2.06, SD: 

2.38 
Mean: 1.73, SD: 

2.21 0.0039 166 

Attention deficit symptoms in the 
past 1 Mean: 2.57, SD: 

2.7 
Mean: 2.19, SD: 

2.41 0.0035 184 

ADHD inattentive type in the past 1 
No: 169 (79%), 
Yes: 43 (20%), 
Missing values: 

1 (0.47%) 

No: 217 
(87.15%), Yes: 

32 (12.85%) 
0.0028 209 

ADHD combined type in the past 1 

No: 197 (92%), 
Yes: 15 (7%), 

Missing values: 
1 (0.47%) 

No: 235 
(94.38%), Yes: 

14 (5.62%) 
0.0028 211 

ADHD hyperactive type in the 
past 0 

No: 186 (87%), 
Yes: 26 (12%), 
Missing values: 

1 (0.47%) 

No: 229 
(91.97%), Yes: 

20 (8.03%) 
- - 

Beck Anxiety 
Inventory 
(Beck, Epstein 
et al. 1988) 

Becks Anxiety Inventory - total 
scale score 1 Mean: 15.64, 

SD: 10.57 
Mean: 17.6Yes, 

SD: 12.06 0.0046 104 

Beck 
Depression 
Inventory 
(Beck, Ward 
et al. 1961) 

Becks Depression Inventory - 
total scale score 1 Mean: 13.63, 

SD: 8.6 
Mean: 15.73, 

SD: 10.46 0.0059 24 

Clinical 
Interview 

How many hours a week the 
respondent is involved in an 
executive role in a club or 
organizations (e.g., sport club, 
music band, organization for 
patient, social organization, 
religious organization, political 
party)? 

1 Mean: 0.17, SD: 
0.92 

Mean: 0.16, SD: 
0.96 0.0076 2 

Antidepressant use on doctor’s 
order in the last two weeks 1 

No: 92 (43%), 
Yes: 110 (52%), 
Missing values: 

11 (5.16%) 

No: 75 (30.12%), 
Yes: 165 
(66.27%), 

Missing values: 
9 (4%) 

0.0076 3 

Do you have a paid job at the 
moment? 1 

No, I have never 
had a paid job: 5 
(2%), No, I had a 

paid job in the 
past: 71 (33%), 
Yes: 126 (59%), 
Missing values: 

11 (5.16%) 

No, I have never 
had a paid job: 9 

(3.61%), No, I 
had a paid job in 

the past: 116 
(46.59%), Yes: 
115 (46.18%), 

Missing values: 
9 (4%) 

0.0075 4 
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Psychotropic drug use on 
doctor’s order in the last two 
weeks 

1 
No: 80 (38%), 

Yes: 122 (57%), 
Missing values: 

11 (5.16%) 

No: 66 (26.51%), 
Yes: 174 
(69.88%), 

Missing values: 
9 (4%) 

0.0070 6 

The respondent participates in a 
sports club 1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 134 
(63%), Yes: 71 
(33%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), No: 165 
(66.27%), Yes: 

78 (31.33%) 

0.0068 7 

Psychoanaleptic use on doctor’s 
order in the last two weeks 1 

No: 92 (43%), 
Yes: 110 (52%), 
Missing values: 

11 (5.16%) 

No: 72 (28.92%), 
Yes: 168 
(67.47%), 

Missing values: 
9 (4%) 

0.0068 8 

Total number of different 
psychotropic medications used 
by the respondent 

1 Mean: 0.99, SD: 
1.08 

Mean: 1.25, SD: 
1.2 0.0066 9 

How many hours did you work a 
week recently? 1 Mean: 16.98, 

SD: 16.75 
Mean: 12.93, 

SD: 16.37 0.0064 10 

How many different 
antidepressants are used by the 
respondent? 

1 Mean: 0.6, SD: 
0.64 

Mean: 0.76, SD: 
0.58 0.0064 11 

Age at the time of the interview 1 Mean: 39.95, 
SD: 10.75 

Mean: 36.47, 
SD: 11.02 0.0063 13 

Antipsychotic use on doctor’s 
order the last two weeks 1 

No: 183 (86%), 
Yes: 19 (9%), 

Missing values: 
11 (5.16%) 

No: 196 
(78.71%), Yes: 
44 (17.67%), 

Missing values: 
9 (4%) 

0.0061 20 

How many different 
psychoanaleptic medications are 
used by the respondent? 

1 Mean: 0.62, SD: 
0.65 

Mean: 0.79, SD: 
0.6 0.0060 21 

Do you take classes aimed at a 
diploma at the moment or in the 
last year? 

1 

Asked but the 
respondent did 
not answer: 7 
(3%), No: 185 
(87%), Yes: 18 
(8%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 5 

(2.01%), No: 217 
(87.15%), Yes: 

27 (10.84%) 

0.0058 27 

The respondent participates in a 
political party, organization or 
club 

1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 194 
(91%), Yes: 11 
(5%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), No: 230 
(92.37%), Yes: 

13 (5.22%) 

0.0058 28 

Number of children 1 Mean: 0.4Yes, 
SD: 0.91 

Mean: 0.45, SD: 
0.93 0.0057 32 

How many different anxiolytic 
medications are used by the 
respondent? 

1 Mean: 0.13, SD: 
0.34 

Mean: 0.14, SD: 
0.39 0.0057 33 



APPENDIX III 

 
 
240 

Clinical 
Interview 

How often do you have contact 
(phone, email, writing a letter, etc) 
with your best friend? 

1 

Asked but the 
respondent did 
not answer: 10 
(5%), No friend: 
54 (25%), Less 

than a few times 
a year: 2 (1%), A 
few times a year: 
18 (8%), A few 
times a month: 
61 (29%), A few 
times a week: 54 
(25%), Daily: 10 
(5%), We live in 
the same house: 
1 (0%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 14 

(5.62%), No 
friend: 57 

(22.89%), Less 
than a few times 

a year: 5 
(2.01%), A few 

times a year: 19 
(7.63%), A few 
times a month: 
63 (25.3%), A 
few times a 
week: 67 

(26.91%), Daily: 
15 (6.02%), We 
live in the same 

house: 4 
(1.61%), Missing 

values: 5 (2%) 

0.0057 34 

Participant currently taking 
serotonergic antidepressiant 
according to clinical guidelines 
for OCD 

1 

Missing: 15 
(7%), None: 97 

(46%), Yes, 
dosage not 

reported: (1%), 
Yes, 

subtherapeutic 
dosage 

according to 
guidelines: 38 
(18%), Yes, 

adequate OCD 
dosage 

according to 
guidelines: 60 

(28%) 

Missing: 14 
(5.62%), None: 
79 (31.73%), 

Yes, 
subtherapeutic 

dosage 
according to 

guidelines: 75 
(30.12%), Yes, 
adequate OCD 

dosage 
according to 

guidelines: 81 
(32.53%) 

0.0055 44 

Psycholeptic use on doctor’s 
order in the last two weeks 1 

No: 158 (74%), 
Yes: 44 (21%), 
Missing values: 

11 (5.16%) 

No: 175 
(70.28%), Yes: 

65 (26.1%), 
Missing values: 

9 (4%) 

0.0054 49 

How often does the respondent 
visit a sport match? 1 

Asked but the 
respondent did 
not answer: 9 

(4%), Practically 
never: 164 

(77%), A few 
times a year: 24 

(11%), Every 
month: 4 (2%), A 

few times a 
month: 5 (2%), 
Every week: 2 
(1%), A few 

times a week: 2 
(1%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), 
Practically never: 
179 (71.89%), A 
few times a year: 

30 (12.05%), 
Every month: 9 
(3.61%), A few 
times a month: 

12 (4.82%), 
Every week: 12 
(4.82%), A few 
times a week: 1 

(0.4%) 

0.0053 52 

How many minutes a week do 
you volunteer for a club or 
organizations (e.g., sport club, 
music band, organization for 
patient, social organization, 
religious organization, political 
party)? 

1 Mean: 0.52, SD: 
3.02 

Mean: 1.37, SD: 
5.75 0.0053 54 
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Total household income of the 
respondent (excluding holiday 
allowance, refunding of traveling 
or payment of expense) 

1 

Asked, no 
answer: 26 

(12%), 0-750 
euro: 14 (7%), 

0750-1000 euro: 
18 (8%), 1000-
1250 euro: 18 

(8%), 1250-1500 
euro: 21 (10%), 
1500-2000 euro: 
25 (12%), 2000-
2500 euro: 11 

(5%), 2500-3000 
euro: 24 (11%), 
3000-4000 euro: 
28 (13%), more 
than 4000 euro: 
14 (7%), Missing 

values: 14 
(6.57%) 

Asked, no 
answer: 45 

(18.07%), 0-750 
euro: 7 (2.81%), 
0750-1000 euro: 

21 (8.43%), 
1000-1250 euro: 

17 (6.83%), 
1250-1500 euro: 

19 (7.63%), 
1500-2000 euro: 

26 (10.44%), 
2000-2500 euro: 

21 (8.43%), 
2500-3000 euro: 

30 (12.05%), 
3000-4000 euro: 

34 (13.65%), 
more than 4000 

euro: 18 
(7.23%), Missing 
values: 11 (4%) 

0.0052 59 

Of the friends you have, how 
many are people you work with? 1 Mean: 0.34, SD: 

1.23 
Mean: 0.36, SD: 

1.26 0.0052 61 

Does the respondent have an 
executive role in a club or 
organizations (e.g., sport club, 
music band, organization for 
patient, social organization, 
religious organization, political 
party)? 

1 

Asked but the 
respondent did 
not answer: 6 
(3%), No: 189 
(89%), Yes: 15 
(7%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 7 

(2.81%), No: 219 
(87.95%), Yes: 

23 (9.24%) 

0.0051 62 

How often do you see\visit your 
best friend? 1 

Asked but the 
respondent did 
not answer: 6 

(3%), No friend: 
54 (25%), Less 

than a few times 
a year: 1 (0%), A 
few times a year: 
52 (24%), A few 
times a month: 
56 (26%), A few 
times a week: 35 
(16%), Daily: 5 
(2%), We live in 
the same house: 
1 (0%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 3 

(1.2%), No 
friend: 57 

(22.89%), Less 
than a few times 

a year: 5 
(2.01%), A few 

times a year: 46 
(18.47%), A few 
times a month: 
76 (30.52%), A 

few times a 
week: 45 

(18.07%), Daily: 
8 (3.21%), We 

live in the same 
house: 4 

(1.61%), Missing 
values: 5 (2%) 

0.0051 66 

How many hours a day do you 
spend with hobbies, doing “odd” 
jobs or other creative activities 
around the house? 

1 Mean: 0.86, SD: 
1.29 

Mean: 0.85, SD: 
1.32 0.0050 69 

How among your friends are 
neighbors or live in the 
neighborhood? 

1 Mean: 1.26, SD: 
1.9 

Mean: 1.2, SD: 
2.28 0.0050 70 
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Employment status of the 
respondent 1 

Incapacitated for 
work: 42 (20%), 
Paid work, 12 

hours a week or 
more: 98 (46%),  
Paid work, but 
less than 12 

hours a week: 4 
(2%), Retired: 5 

(2%),  
Housewife / 

house husband: 
6 (3%), Student: 

12 (6%), 
Unemployed: 7 

(3%),  
Working as a 
volunteer: 5 

(2%), 
Independent 

worker: 9 (4%), 
Independent 

worker: 14 (7%), 
Missing values: 

11 (5.16%) 

Incapacitated for 
work: 67 
(26.91%),  

Paid work, 12 
hours a week or 

more: 89 
(35.74%),  

Paid work, but 
less than 12 

hours a week: 7 
(2.81%), Retired: 

4 (1.61%), 
Housewife / 

house husband: 
10 (4.02%), 
Student: 20 

(8.03%), 
Unemployed: 7 

(2.81%),  
Working as a 
volunteer: 9 

(3.61%), 
Independent 

worker: 5 
(2.01%), 
Sickness 

Benefits Act: 22 
(8.84%), Missing 

values: 9 (4%) 

0.0050 72 

How many minutes a day do you 
spend with hobbies, doing odd 
jobs or other creative activities 
around the house? 

1 Mean: 7.44, SD: 
12.55 

Mean: 7.86, SD: 
12.55 0.0050 73 

Total number of different 
benzodiazepines used by the 
respondent 

1 Mean: 0.19, SD: 
0.44 

Mean: 0.18, SD: 
0.48 0.0050 75 

How many friends do you have or 
how many friends do you think 
you have? 

1 Mean: 5.5, SD: 
5.26 

Mean: 5.28, SD: 
4.77 0.0050 77 

How many times a week you read 
the newspaper? 1 

Asked but the 
respondent did 
not answer: 9 

(4%), Never: 46 
(22%), Less than 
once a week: 21 
(10%), 1-2 times 

a week: 33 
(15%), 3-4 times 

a week: 31 
(15%), Daily: 70 
(33%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 5 

(2.01%), Never: 
86 (34.54%), 

Less than once a 
week: 26 

(10.44%), 1-2 
times a week: 46 

(18.47%), 3-4 
times a week: 20 
(8.03%), Daily: 
66 (26.51%) 

0.0049 88 

Do you have a partner at the 
moment? 1 

questionnaire 
not present: 14 

(7%), no: 70 
(33%), yes: 129 

(61%) 

questionnaire 
not present: 11 
(4.42%), no: 86 
(34.54%), yes: 
152 (61.04%) 

0.0048 91 
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Living arrangements of the 
respondent 1 

Other: 9 (4%), 
Alone: 74 (35%), 

Partner with 
childeren: 49 

(23%), Partner 
without 

childeren: 45 
(21%), Single 

with childeren: 8 
(4%), With 
parents: 10 

(5%), Missing 
values: 18 
(8.45%) 

Other: 9 (3.61%), 
Alone: 68 
(27.31%), 

Partner with 
childeren: 68 

(27.31%), 
Partner without 
childeren: 63 

(25.3%), Single 
with childeren: 5 

(2.01%), With 
parents: 25 
(10.04%), 

Missing values: 
11 (4%) 

0.0048 93 

Do you use a computer? 1 

Asked but the 
respondent did 
not answer: 7 
(3%), No: 28 

(13%), Yes: 175 
(82%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 5 

(2.01%), No: 28 
(11.24%), Yes: 
216 (86.75%) 

0.0048 95 

Type of residence of the 
respondent 1 

Other: 2 (1%), In 
parents house: 8 
(4%), Lodgings: 

7 (3%), Own 
house (rented or 

owner-
occupied): 121 

(57%), Not 
pertinent: 58 

(27%), Missing 
values: 17 
(7.98%) 

Other: 8 (3.21%), 
In parents 
house: 18 
(7.23%), 

Lodgings: 7 
(2.81%), Own 

house (rented or 
owner-

occupied): 140 
(56.22%), Not 
pertinent: 64 

(25.7%), Missing 
values: 12 (5%) 

0.0047 96 

How many hours a week do you 
use a computer? 1 Mean: 6.65, SD: 

9.93 
Mean: 7.42, SD: 

10.0 0.0047 98 

If you participate in clubs or 
organizations, how often do you 
attend activities or meetings of 
these clubs or organizations? 

1 

Asked but the 
respondent did 
not answer: 6 

(3%), Never: 104 
(49%), 

Practically never: 
4 (2%), A few 

times a year: 21 
(10%), Every 

month: 10 (5%), 
A few times a 

month: 11 (5%), 
Every week: 28 
(13%), A few 

times a week: 25 
(12%), Every 
day: 1 (0%), 

Missing values: 
3 (1.41%) 

Asked but the 
respondent did 
not answer: 7 

(2.81%), Never: 
105 (42.17%), 

Practically never: 
6 (2.41%), A few 
times a year: 23 
(9.24%), Every 

month: 12 
(4.82%), A few 
times a month: 

17 (6.83%), 
Every week: 41 
(16.47%), A few 
times a week: 37 
(14.86%), Every 

day: 1 (0.4%) 

0.0046 101 

Number of benzodiazepines from 
different groups used by the 
respondent 

1 Mean: 0.18, SD: 
0.42 

Mean: 0.17, SD: 
0.42 0.0046 102 

Body Mass Index (BMI) of the 
respondent 1 Mean: 24.7, SD: 

4.8 
Mean: 25.95, 

SD: 5.67 0.0045 112 
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How often does the respondent 
go to a cafe, restaurant, etc.? 1 

Asked but the 
respondent did 
not answer: 9 

(4%), Practically 
never: 26 (12%), 

A few times a 
year: 48 (23%), 
Every month: 45 

(21%), A few 
times a month: 
33 (15%), Every 
week: 33 (15%), 

A few times a 
week: 15 (7%), 

Every day: 1 
(0%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 5 

(2.01%), 
Practically never: 
38 (15.26%), A 

few times a year: 
64 (25.7%), 

Every month: 51 
(20.48%), A few 
times a month: 
48 (19.28%), 

Every week: 37 
(14.86%), A few 
times a week: 5 
(2.01%), Every 
day: 1 (0.4%) 

0.0045 114 

The respondent participates in a 
Trade Union, a employers’ 
organization, or a professional 
organization 

1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 186 
(87%), Yes: 19 
(9%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), No: 224 
(89.96%), Yes: 

19 (7.63%) 

0.0044 116 

How many different psycholeptic 
medications are used by the 
respondent? 

1 Mean: 0.28, SD: 
0.6 

Mean: 0.4, SD: 
0.77 0.0044 118 

How many different 
benzodiazepines are used by the 
respondent? 

1 Mean: 0.13, SD: 
0.34 

Mean: 0.14, SD: 
0.39 0.0044 121 

How often do you watch the 
news or the newsreel on TV? 1 

Asked but the 
respondent did 
not answer: 9 

(4%), Never: 10 
(5%), 2 Less 
than once a 

week: 14 (7%), 3 
1-2 times a 

week: 20 (9%), 4 
3-4 times a 

week: 41 (19%), 
5 Daily: 116 

(54%), Missing 
values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), Never: 
21 (8.43%), 2 

Less than once a 
week: 15 

(6.02%), 3 1-2 
times a week: 25 
(10.04%), 4 3-4 

times a week: 55 
(22.09%), 5 

Daily: 127 (51%) 

0.0044 122 

Is your best friend a man or a 
woman? 1 

Asked but the 
respondent did 
not answer: 6 
(3%), No best 

friend: 54 (25%), 
Man: 55 (26%), 

Woman: 95 
(45%), Missing 

values: 3 
(1.41%) 

No best friend: 
57 (22.89%), 

Man: 76 
(30.52%), 

Woman: 111 
(44.58%), 

Missing values: 
5 (2%) 

0.0043 123 

How many persons in your 
household have a regular 
income? Don't include children 
with only Saturday/holidays jobs 

1 Mean: 1.39, SD: 
0.65 

Mean: 1.6Yes, 
SD: 0.78 0.0043 124 

If you participate in clubs or 
organizations, do you volunteer 
for these clubs or organizations? 

1 

Asked but no 
answer: 5 (2%), 
No: 168 (79%), 
Yes: 37 (17%), 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 7 

(2.81%), No: 178 
(71.49%), Yes: 

64 (25.7%) 

0.0043 127 



SUPPLEMENTARY MATERIALS OF CHAPTER 5 

 
 

245 

Clinical 
Interview 

How many different SSRIs are 
used by the respondent? 1 Mean: 0.37, SD: 

0.49 
Mean: 0.48, SD: 

0.52 0.0042 131 

How often does the respondent 
go to the forest, dunes, zoo, etc.? 1 

Asked but the 
respondent did 
not answer: 7 

(3%), Practically 
never: 34 (16%), 

A few times a 
year: 59 (28%), 
Every month: 32 

(15%), A few 
times a month: 
35 (16%), Every 
week: 26 (12%), 

A few times a 
week: 10 (5%), 

Every day: 7 
(3%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 5 

(2.01%), 
Practically never: 
46 (18.47%), A 

few times a year: 
98 (39.36%), 

Every month: 37 
(14.86%), A few 
times a month: 

24 (9.64%), 
Every week: 20 
(8.03%), A few 

times a week: 10 
(4.02%), Every 
day: 9 (3.61%) 

0.0042 134 

Sex of the respondent 1 
Male: 95 (45%), 

Female: 118 
(55%) 

Male: 119 
(47.79%), 

Female: 130 
(52.21%) 

0.0042 136 

Did the respondent experience 
one or more negative events in 
the past year? 

1 No: 54 (25%), 
Yes: 159 (75%) 

No: 54 (21.69%), 
Yes: 191 
(76.71%), 

Missing values: 
4 (2%) 

0.0042 139 

How often does the respondent 
go shopping for fun? 1 

Asked but the 
respondent did 
not answer: 7 

(3%), Practically 
never: 43 (20%), 

A few times a 
year: 38 (18%), 
Every month: 47 

(22%), A few 
times a month: 
40 (19%), Every 
week: 24 (11%), 

A few times a 
week: 10 (5%), 

Every day: 1 
(0%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 7 

(2.81%), 
Practically never: 

60 (24.1%), A 
few times a year: 

49 (19.68%), 
Every month: 44 
(17.67%), A few 
times a month: 
45 (18.07%), 

Every week: 33 
(13.25%), A few 
times a week: 10 
(4.02%), Every 
day: 1 (0.4%) 

0.0041 149 

Do you take classes at the 
moment or in last year? 1 

Asked but the 
respondent did 
not answer: 7 
(3%), No: 138 
(65%), Yes: 65 
(31%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 5 

(2.01%), No: 161 
(64.66%), Yes: 

83 (33.33%) 

0.0041 151 

How often does the respondent 
visit a cultural organization, like a 
movie theater, museum, concert, 
etc.? 

1 

Practically never: 
44 (21%), A few 
times a year: 93 

(44%), Every 
month: 34 

(16%), A few 
times a month: 
21 (10%), Every 
week: 7 (3%), A 

few times a 
week: 4 (2%), 

Missing values: 
3 (1.41%) 

Practically never: 
71 (28.51%), A 

few times a year: 
133 (53.41%), 

Every month: 26 
(10.44%), A few 
times a month: 

12 (4.82%), 
Every week: 2 

(0.8%) 

0.0040 153 
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Number of positive recent events 
in the past year 1 Mean: 2.2, SD: 

1.63 
Mean: 2.16, SD: 

1.62 0.0040 154 

How many different antipsychotic 
medications are used by the 
respondent? 

1 Mean: 0.1Yes, 
SD: 0.37 

Mean: 0.22, SD: 
0.51 0.0040 158 

Did the respondent experience 
one or more lingering conflicts or 
problems in the past year? 

1 No: 81 (38%), 
Yes: 132 (62%) 

No: 115 
(46.18%), Yes: 
129 (51.81%), 

Missing values: 
5 (2%) 

0.0039 159 

Do you have financial troubles? 1 
No: 174 (82%), 
Yes: 24 (11%), 
Missing values: 

15 (7.04%) 

No: 215 
(86.35%), Yes: 

23 (9.24%), 
Missing values: 

11 (4%) 

0.0039 161 

Number of negative recent events 
in the past year 1 Mean: 1.63, SD: 

1.5 
Mean: 1.64, SD: 

1.43 0.0039 164 

If you participate in clubs or 
organizations, how many minutes 
a week are you involved in an 
executive role in these clubs or 
organizations? 

1 Mean: 0.19, SD: 
2.16 

Mean: 1.08, SD: 
5.6 0.0039 167 

Other antidepressant (different 
than SSRIs and non-selective 
monoamine reuptake inhibitors) 
use on doctor’s order in the last 
two weeks 

1 

No: 174 (82%), 
Yes: 28 (13%), 
Missing values: 

11 (5.16%) 

No: 220 
(88.35%), Yes: 

20 (8.03%), 
Missing values: 

9 (4%) 

0.0038 168 

How often does the respondent 
visit a social-cultural 
organization? 

1 

Asked but the 
respondent did 
not answer: 9 

(4%), Practically 
never: 164 

(77%), A few 
times a year: 13 

(6%), Every 
month: 10 (5%), 

A few times a 
month: 4 (2%), 
Every week: 9 
(4%), A few 

times a week: 1 
(0%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 5 

(2.01%), 
Practically never: 
204 (81.93%), A 
few times a year: 

17 (6.83%), 
Every month: 7 
(2.81%), A few 

times a month: 6 
(2.41%), Every 

week: 6 (2.41%), 
A few times a 

week: 4 (1.61%) 

0.0038 169 

How often does the respondent 
do outdoor activities, like 
swimming, walking, fishing, etc.? 

1 

Practically never: 
33 (15%), A few 
times a year: 13 

(6%), Every 
month: 11 (5%), 

A few times a 
month: 15 (7%), 
Every week: 51 
(24%), A few 

times a week: 55 
(26%), Every 

day: 25 (12%), 
Missing values: 

3 (1.41%) 

Practically never: 
56 (22.49%), A 

few times a year: 
27 (10.84%), 

Every month: 10 
(4.02%), A few 
times a month: 
25 (10.04%), 

Every week: 55 
(22.09%), A few 
times a week: 45 
(18.07%), Every 
day: 25 (10.04%) 

0.0038 171 

Benzodiazepines (all types) use 
on doctor’s order the last two 
weeks 

1 
No: 168 (79%), 
Yes: 34 (16%), 
Missing values: 

11 (5.16%) 

No: 205 
(82.33%), Yes: 
35 (14.06%), 

Missing values: 
9 (4%) 

0.0038 174 
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Clinical 
Interview 

Number of lingering conflicts or 
problems in the past year 1 Mean: 0.85, SD: 

0.79 
Mean: 0.74, SD: 

0.81 0.0037 177 

The respondent participates in 
other kind of clubs and 
organizations 

1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 179 
(84%), Yes: 26 
(12%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), No: 220 
(88.35%), Yes: 

23 (9.24%) 

0.0035 183 

The respondent participates in a 
choral society, music band, 
theatre company 

1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 182 
(85%), Yes: 23 
(11%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), No: 223 
(89.56%), Yes: 

20 (8.03%) 

0.0035 185 

Did the respondent experience 
one or more positive recent 
events in the past year? 

1 No: 34 (16%), 
Yes: 179 (84%) 

No: 40 (16.06%), 
Yes: 205 
(82.33%), 

Missing values: 
4 (2%) 

0.0034 188 

The respondent participates in an 
organization for patients 1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 183 
(86%), Yes: 22 
(10%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), No: 217 
(87.15%), Yes: 

26 (10.44%) 

0.0034 189 

SSRI use on doctor’s order the 
last two weeks 1 

No: 128 (60%), 
Yes: 74 (35%), 
Missing values: 

11 (5.16%) 

No: 127 (51%), 
Yes: 113 
(45.38%), 

Missing values: 
9 (4%) 

0.0034 190 

Participant currently taking 
psychotropic pharmacotherapy 
according to guidelines 

1 

missing: 18 
(8%), no: 135 
(63%), yes: 60 

(28%) 

missing: 13 
(5.22%), no: 154 
(61.85%), yes: 
81 (32.53%), 

Missing values: 
1 (0%) 

0.0034 192 

If you participate in clubs or 
organizations, how many hours a 
week do you volunteer for these 
clubs and organizations? 

1 Mean: 0.6Yes, 
SD: 2.43 

Mean: 0.88, SD: 
2.62 0.0033 193 

Anxiolytic use on doctor’s order 
the last two weeks 1 

No: 175 (82%), 
Yes: 27 (13%), 
Missing values: 

11 (5.16%) 

No: 210 
(84.34%), Yes: 
30 (12.05%), 

Missing values: 
9 (4%) 

0.0033 194 

If you participate in clubs or 
organizations, do you participate 
in activities or meetings of these 
clubs or organizations? 

1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 104 

(49%), Yes: 101 
(47%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), No: 105 
(42.17%), Yes: 
138 (55.42%) 

0.0033 195 

How many different non-selective 
monoamine reuptake inhibitors 
are used by the respondent? 

1 Mean: 0.09, SD: 
0.32 

Mean: 0.19, SD: 
0.43 0.0032 199 
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Clinical 
Interview 

The respondent participates in an 
action committee or organization 
with social goals 

1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 186 
(87%), Yes: 19 
(9%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), No: 232 
(93.17%), Yes: 

11 (4.42%) 

0.0030 203 

How many minutes a week do 
you use a computer? 1 Mean: 3.08, SD: 

9.37 
Mean: 5.59, SD: 

12.24 0.0030 204 

Do you take other kind of classes 
at the moment or in the last year? 1 

Asked but the 
respondent did 
not answer: 7 
(3%), No: 168 
(79%), Yes: 35 
(16%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 5 

(2.01%), No: 206 
(82.73%), Yes: 

38 (15.26%) 

0.0030 205 

The respondent participates in a 
church or organization with 
religious or ideological goal 

1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 186 
(87%), Yes: 19 
(9%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), No: 177 
(71.08%), Yes: 

66 (26.51%) 

0.0029 206 

The respondent participates in a 
hobby or social club 1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 187 
(88%), Yes: 18 
(8%), Missing 

values: 3 
(1.41%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), No: 222 
(89.16%), Yes: 

21 (8.43%) 

0.0029 207 

Benzodiazepine (anxiolytic type) 
use on doctor’s order in the last 
two weeks 

1 

No: 175 (82%), 
Yes: 27 (13%), 
Missing values: 

11 (5.16%) 

No: 210 
(84.34%), Yes: 
30 (12.05%), 

Missing values: 
9 (4%) 

0.0029 208 

Non-selective monoamine 
reuptake inhibitor use on doctor’s 
order in the last two weeks 

1 
No: 185 (87%), 
Yes: 17 (8%), 

Missing values: 
11 (5.16%) 

No: 197 
(79.12%), Yes: 
43 (17.27%), 

Missing values: 
9 (4%) 

0.0025 216 

How many different hypnotics 
sedatives are used by the 
respondent? 

1 Mean: 0.04, SD: 
0.22 

Mean: 0.03, SD: 
0.18 0.0010 217 

How many different antiepileptic 
medications are used by the 
respondent? 

0 Mean: 0.03, SD: 
0.23 

Mean: 0.02, SD: 
0.14 - - 

How many different hypnotic 
benzodiazepines are used by the 
respondent? 

0 Mean: 0.03, SD: 
0.2 

Mean: 0.03, SD: 
0.18 - - 

How many different nervous 
system drugs are used by the 
respondent?? 

0 Mean: 0.0Yes, 
SD: 0.12 

Mean: 0.0Yes, 
SD: 0.14 - - 

How many different addictive 
disorders drug are used by the 
respondent?? 

0 Mean: 0.0Yes, 
SD: 0.12 

Mean: 0.0Yes, 
SD: 0.14 - - 

EuroQol 
(EuroQol 
1990) 

EQ-5D score 1 Mean: 0.7Yes, 
SD: 0.26 

Mean: 0.68, SD: 
0.27 0.0057 31 
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Interpretation 
of Intrusion 
Inventory 
(Group 2001) 

Interpretation of Intrusions 
Inventory: Responsibility subscale 
score 

1 Mean: 448.26, 
SD: 277.36 

Mean: 488.28, 
SD: 281.01 0.0047 99 

Interpretation of Intrusions 
Inventory: Importance of 
Thoughts subscale score 

1 Mean: 359.0Yes, 
SD: 228.58 

Mean: 371.73, 
SD: 246.24 0.0046 100 

Interpretation of Intrusions 
Inventory: Control subscale score 1 Mean: 519.52, 

SD: 246.79 
Mean: 554.96, 

SD: 260.81 0.0041 147 

Level of 
Expressed 
Emotion (Cole 
and Kazarian 
1988) 

Percieved lack of emotional 
support scale 1 Mean: 31.02, 

SD: 9.52 
Mean: 31.69, 

SD: 12.11 0.0050 76 

Percieved irritation scale 1 Mean: 12.9, SD: 
4.64 

Mean: 13.27, 
SD: 5.01 0.0049 79 

Percieved intrusiveness scale 1 Mean: 11.77, 
SD: 5.31 

Mean: 12.6Yes, 
SD: 5.79 0.0049 89 

Percieved criticism scale 1 Mean: 8.45, SD: 
2.79 

Mean: 8.78, SD: 
3.15 0.0047 97 

Life Chart 
(Eaton, 
Anthony et al. 
1997) 

Chronical Course of OCD in the 
last 2 years 1 

Too many 
omitted answers 

from the 
respondent: 3 
(1%), No: 90 

(42%), Yes: 120 
(56%) 

Too many 
omitted answers 

from the 
respondent: 3 
(1.2%), No: 97 
(38.96%), Yes: 
146 (58.63%), 

Missing values: 
3 (1%) 

0.0070 5 

Late onset OCD (20 years or 
older)? 1 

Asked but the 
respondent did 
not answer: 11 
(5%), No: 126 
(59%), Yes: 59 
(28%), Missing 

values: 17 
(7.98%) 

Asked but the 
respondent did 
not answer: 15 

(6.02%), No: 144 
(57.83%), Yes: 
87 (34.94%), 

Missing values: 
3 (1%) 

0.0057 30 

Loneliness 
Scale (De 
Jong-Gierveld 
and Kamphuls 
1985) 

Emotional loneliness score 1 Mean: 2.66, SD: 
2.18 

Mean: 2.69, SD: 
2.22 0.0056 38 

Total score 1 Mean: 5.18, SD: 
3.6 

Mean: 5.42, SD: 
3.61 0.0050 74 

Social loneliness score 1 Mean: 2.53, SD: 
1.86 

Mean: 2.73, SD: 
1.82 0.0049 85 

Montgomery-
Asberg 
Depression 
Rating Scale 
(Montgomery 
and Asberg 
1979) 

MADRS total score  1 Mean: 11.92, 
SD: 8.09 

Mean: 12.04, 
SD: 9.3 0.0062 14 

Padua 
Inventory 
(Sanavio 1988) 

Padua Inventory: precision 
subscale score 1 Mean: 6.45, SD: 

5.9 
Mean: 6.75, SD: 

6.2 0.0062 15 

Padua Inventory: rumination 
subscale score 1 Mean: 20.85, 

SD: 9.5 
Mean: 22.84, 

SD: 8.89 0.0051 63 

Padua Inventory: checking 
subscale score 1 Mean: 13.07, 

SD: 7.91 
Mean: 13.94, 

SD: 7.16 0.0051 65 

Padua Inventory: washing 
subscale score 1 Mean: 11.87, 

SD: 11.92 
Mean: 10.73, 

SD: 10.16 0.0051 67 

Padua Inventory: impulses 
subscale score 1 Mean: 6.07, SD: 

5.98 
Mean: 5.62, SD: 

6.52 0.0050 68 

Structured 
Clinical 
Interview for 
DSM-IV-R 
(First and 
Gibbon 2004) 

Diagnosis of Somatoform 
disorders - lifetime 1 No: 203 (95%), 

Yes: 10 (5%) 

No: 236 
(94.78%), Yes: 

13 (5.22%) 
0.0064 12 
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Structured 
Clinical 
Interview for 
DSM-IV-R 
(First and 
Gibbon 2004) 

Diagnosis of Major depressive 
disorder - lifetime 1 No: 83 (39%), 

Yes: 130 (61%) 

No: 96 (38.55%), 
Yes: 153 
(61.45%) 

0.0052 58 

Diagnosis of Specific Phobia - 
current 1 No: 189 (89%), 

Yes: 24 (11%) 
No: 240 

(96.39%), Yes: 9 
(3.61%) 

0.0049 84 

Any current diagnosis of Anxiety 
disorder besides OCD diagnosis 1 No: 140 (66%), 

Yes: 73 (34%) 
No: 172 

(69.08%), Yes: 
77 (30.92%) 

0.0046 103 

Any lifetime diagnosis of anxiety 
disorder besides OCD diagnosis 1 No: 112 (53%), 

Yes: 101 (47%) 

No: 138 
(55.42%), Yes: 
111 (44.58%) 

0.0046 109 

Diagnosis of Social phobia - 
lifetime 1 No: 161 (76%), 

Yes: 52 (24%) 

No: 179 
(71.89%), Yes: 

70 (28.11%) 
0.0044 117 

Number of current diagnosis 1 Mean: 1.84, SD: 
1.11 

Mean: 1.77, SD: 
1.02 0.0042 129 

Diagnosis of Dysthymic disorder - 
lifetime 1 No: 197 (92%), 

Yes: 16 (8%) 
No: 234 

(93.98%), Yes: 
15 (6.02%) 

0.0042 137 

Diagnosis of Panic disorder with 
agoraphobia - lifetime 1 No: 177 (83%), 

Yes: 36 (17%) 
No: 226 

(90.76%), Yes: 
23 (9.24%) 

0.0042 142 

Number of lifetime diagnosis 1 Mean: 2.74, SD: 
1.46 

Mean: 2.63, SD: 
1.36 0.0041 150 

Diagnosis of Substance related 
disorders dependence - lifetime 1 No: 194 (91%), 

Yes: 19 (9%) 

No: 222 
(89.16%), Yes: 

27 (10.84%) 
0.0040 157 

Diagnosis of Social phobia - 
current 1 No: 182 (85%), 

Yes: 31 (15%) 
No: 204 

(81.93%), Yes: 
45 (18.07%) 

0.0038 172 

Diagnosis of Specific Phobia - 
lifetime 1 No: 179 (84%), 

Yes: 34 (16%) 
No: 230 

(92.37%), Yes: 
19 (7.63%) 

0.0036 180 

Diagnosis of Eating disorders - 
lifetime 1 No: 186 (87%), 

Yes: 27 (13%) 

No: 223 
(89.56%), Yes: 

26 (10.44%) 
0.0035 187 

Diagnosis of Major depressive 
disorder - current 1 No: 175 (82%), 

Yes: 38 (18%) 
No: 210 

(84.34%), Yes: 
39 (15.66%) 

0.0032 197 

Diagnosis of Generalized anxiety 
disorder - lifetime 1 No: 187 (88%), 

Yes: 26 (12%) 

No: 228 
(91.57%), Yes: 

21 (8.43%) 
0.0032 198 

Diagnosis of Panic disorder 
without agoraphobia - lifetime 1 No: 194 (91%), 

Yes: 19 (9%) 
No: 222 

(89.16%), Yes: 
27 (10.84%) 

0.0032 200 

Diagnosis of Dysthymic disorder - 
current 1 No: 202 (95%), 

Yes: 11 (5%) 

No: 239 
(95.98%), Yes: 

10 (4.02%) 
0.0028 210 

Diagnosis of Panic disorder with 
agoraphobia - current 1 No: 200 (94%), 

Yes: 13 (6%) 

No: 238 
(95.58%), Yes: 

11 (4.42%) 
0.0027 214 

Diagnosis of Generalized anxiety 
disorder - current 0 No: 195 (92%), 

Yes: 18 (8%) 
No: 231 

(92.77%), Yes: 
18 (7.23%) 

- - 
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Self-reported 
general 
attachment 
style (Griffin 
and 
Bartholomew 
1994) 

Which attachment style most 
appropriately describes you? 1 

Asked but the 
respondent did 
not answer: 4 

(2%), 
Dismissing: 21 
(10%), Fearful: 

65 (31%), 
Preoccupied: 52 
(24%), Secure: 

66 (31%), 
Missing values: 

5 (2.35%) 

Asked but the 
respondent did 
not answer: 9 

(3.61%), 
Dismissing: 21 

(8.43%), Fearful: 
104 (41.77%), 

Preoccupied: 48 
(19.28%), 
Secure: 57 
(22.89%), 

Missing values: 
10 (4%) 

0.0052 60 

Attachment Style Fearful score: I 
am wary to get engaged in close 
relationships because I am afraid 
to get hurt 

1 Mean: 4.05, SD: 
2.01 

Mean: 4.38, SD: 
1.88 0.0059 25 

Attachment Style Preoccupied 
score: I have the impression that 
usually I like others better than 
they like me  

1 Mean: 3.74, SD: 
1.77 

Mean: 3.9, SD: 
1.68 0.0055 42 

Attachment Style Dismissing 
score: I prefer that others are 
independent of me and I am 
independent of them 

1 Mean: 3.24, SD: 
1.86 

Mean: 2.96, SD: 
1.85 0.0049 86 

Attachment Style Secure score: I 
feel at ease in intimate 
relationships 

1 Mean: 4.08, SD: 
1.83 

Mean: 3.7Yes, 
SD: 1.78 0.0042 138 

Social 
Support 
Inventory 
(Timmerman, 
Emanuels-
Zuurveen et 
al. 2000) 

Informative Support subscale 
score 1 Mean: 12.84, 

SD: 2.22 
Mean: 12.55, 

SD: 2.46 0.0046 110 

Instrumental Support subscale 
score 1 Mean: 13.25, 

SD: 2.19 
Mean: 13.16, 

SD: 2.51 0.0042 141 

Emotional Support subscale 
score 1 Mean: 12.6, SD: 

2.65 
Mean: 12.2Yes, 

SD: 2.75 0.0041 144 

Social Companionship subscale 
score 1 Mean: 12.Yes, 

SD: 2.56 
Mean: 12.15, 

SD: 2.68 0.0041 145 

Structured 
Trauma 
Interview 
(Draijer and 
Langeland 
1999) 

Mother was (sometimes) 
dysfuctioning or unavailable? 1 

Too many 
omitted answers 

from the 
respondent: 5 
(2%), No: 90 

(42%), Yes: 112 
(53%), Missing 

values: 6 
(2.82%) 

No: 101 
(40.56%), Yes: 
148 (59.44%) 

0.0060 22 

Structured 
Trauma 
Interview 
(Draijer and 
Langeland 
1999) 

Mother and/or Father was 
(sometimes) dysfuctioning or 
unavailable 

1 

Too many 
omitted answers 

from the 
respondent: 5 
(2%), No: 57 

(27%), Yes: 145 
(68%), Missing 

values: 6 
(2.82%) 

No: 72 (28.92%), 
Yes: 177 
(71.08%) 

0.0059 23 

Physical abuse (domestic) after 
age 16 1 

Asked but the 
respondent did 
not answer: 30 
(14%), No: 156 
(73%), Yes: 21 
(10%), Missing 

values: 6 
(2.82%) 

Asked but the 
respondent did 
not answer: 28 
(11.24%), No: 
186 (74.7%), 

Yes: 35 
(14.06%) 

0.0057 29 
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Structured 
Trauma 
Interview 
(Draijer and 
Langeland 
1999) 

Abuse before or after age 16 1 

Asked but the 
respondent did 
not answer: 30 
(14%), No: 164 
(77%), Yes: 13 
(6%), Missing 

values: 6 
(2.82%) 

Asked but the 
respondent did 
not answer: 29 
(11.65%), No: 
206 (82.73%), 

Yes: 14 (5.62%) 

0.0057 36 

Father was (sometimes) 
dysfuctioning or unavailable? 1 

Too many 
omitted answers 

from the 
respondent: 9 
(4%), No: 101 
(47%), Yes: 97 
(46%), Missing 

values: 6 
(2.82%) 

No: 136 
(54.62%), Yes: 
113 (45.38%) 

0.0054 46 

Total score dysfunctioning or 
unavailability mother 1 Mean: 1.14, SD: 

1.31 
Mean: 1.16, SD: 

1.31 0.0050 71 

Childhood witnessing of 
interparental violence 1 

Asked but the 
respondent did 
not answer: 5 
(2%), No: 167 
(78%), Yes: 35 
(16%), Missing 

values: 6 
(2.82%) 

Asked but the 
respondent did 
not answer: 5 

(2.01%), No: 212 
(85.14%), Yes: 

32 (12.85%) 

0.0049 80 

Number of questions unanswered 1 Mean: 0.25, SD: 
1.02 

Mean: 0.02, SD: 
0.14 0.0049 87 

Total score dysfunctioning or 
unavailability father 1 Mean: 0.94, SD: 

1.21 
Mean: 0.78, SD: 

1.12 0.0048 90 

Number of different kind of 
childhood trauma exposures 
before age 16 (0-6: mother and 
father disfunctioning is counted 
separately) 

1 Mean: 1.5Yes, 
SD: 1.22 

Mean: 1.4Yes, 
SD: 1.17 0.0046 105 

Number of different kind of 
childhood trauma exposures 
before age 16 (0-5: mother and 
father disfunctioning is counted 
together) 

1 Mean: 1.2, SD: 
0.96 

Mean: 1.07, SD: 
0.88 0.0044 119 

Sexual abuse after age 16 1 

Asked but the 
respondent did 
not answer: 13 
(6%), No: 162 
(76%), Yes: 32 
(15%), Missing 

values: 6 
(2.82%) 

Asked but the 
respondent did 
not answer: 5 

(2.01%), No: 210 
(84.34%), Yes: 

34 (13.65%) 

0.0044 120 

Physical abuse but no sexual 
abuse before age 16 1 

No: 188 (88%), 
Yes: 19 (9%), 

Missing values: 
6 (2.82%) 

No: 231 
(92.77%), Yes: 

18 (7.23%) 
0.0043 125 

Sexual and/or physical abuse 
before age 16 1 

No: 180 (85%), 
Yes: 27 (13%), 
Missing values: 

6 (2.82%) 

No: 218 
(87.55%), Yes: 

31 (12.45%) 
0.0040 155 

Physical (parental) abuse before 
age 16 1 

No: 186 (87%), 
Yes: 21 (10%), 
Missing values: 

6 (2.82%) 

No: 228 
(91.57%), Yes: 

21 (8.43%) 
0.0026 215 

Systolic and 
diastolic blood 
pressure 
assessment 

Diastolic pressure - arm - lying - 
measurement 1 1 Mean: 79.12, 

SD: 10.75 
Mean: 79.89, 

SD: 12.78 0.0054 50 

Systolic pressure - arm - lying - 
measurement 2 1 Mean: 131.17, 

SD: 18.93 
Mean: 131.12, 

SD: 17.25 0.0052 57 
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Systolic and 
diastolic blood 
pressure 
assessment 

Diastolic pressure - arm - 
standing - measurement 2 1 Mean: 83.74, 

SD: 10.52 
Mean: 84.4Yes, 

SD: 12.65 0.0050 78 

Systolic pressure - arm - standing 
- measurement 1 1 Mean: 128.88, 

SD: 17.61 
Mean: 129.9Yes, 

SD: 16.57 0.0049 82 

Diastolic pressure - arm - lying - 
measurement 2 1 Mean: 79.37, 

SD: 10.94 
Mean: 81.04, 

SD: 13.28 0.0048 92 

Systolic pressure - arm - standing 
- measurement 2 1 Mean: 130.69, 

SD: 18.62 
Mean: 131.83, 

SD: 18.38 0.0046 107 

Systolic pressure - arm - lying - 
measurement 1 1 Mean: 131.9Yes, 

SD: 17.5 
Mean: 131.26, 

SD: 17.2 0.0046 108 

Diastolic pressure - arm - 
standing - measurement 1 1 Mean: 82.16, 

SD: 10.59 
Mean: 83.17, 

SD: 11.41 0.0041 152 

Trimbos/iMTA 
Questionnaire 
for Costs 
Associated 
with 
Psychiatric 
Illness (Roijen, 
Straten et al. 
2002) 

Respondent doing houshold work 1 

Did not do it, 
because of 

health problems: 
11 (5%), Did not 
do it, for reasons 
other than health 

problems: 3 
(1%), Done, 
hindered by 

health problems: 
118 (55%), 
Done, not 

hindered by 
health problems: 

81 (38%) 

Did not do it, 
because of 

health problems: 
6 (2.41%), Did 
not do it, for 

reasons other 
than health 
problems: 4 

(1.61%), Done, 
hindered by 

health problems: 
156 (62.65%), 

Done, not 
hindered by 

health problems: 
80 (32.13%), 

Missing values: 
3 (1%) 

0.0062 16 

Hours of work missed/lost 
because of hindrance by health 
problems 

1 Mean: 19.25, 
SD: 92.91 

Mean: 10.15, 
SD: 53.65 0.0062 18 

With how many medical 
specialists did you have contact 
in the last 6 months? 

1 Mean: 0.63, SD: 
0.91 

Mean: 0.54, SD: 
0.84 0.0061 19 

Have you been admitted to a 
health care institution in the last 6 
months? 

1 No: 189 (89%), 
Yes: 24 (11%) 

No: 169 
(67.87%), Yes: 
77 (30.92%), 

Missing values: 
3 (1%) 

0.0058 26 

Days per week the respondent is 
employed 1 Mean: 2.33, SD: 

2.12 
Mean: 1.86, SD: 

2.23 0.0057 35 

I was at work, but due to health 
problems I had to postpone work 
for the past 6 months 

1 

Asked but the 
respondent did 
not answer: 1 

(0%), Not 
pertinent: 129 
(61%), Rarely: 

43 (20%), 
Occasionally: 10 

(5%), 
Sometimes: 22 
(10%), Often: 6 
(3%), Nearly all 
the time: 2 (1%) 

Asked but the 
respondent did 
not answer: 2 
(0.8%), Not 

pertinent: 177 
(71.08%), 
Rarely: 43 
(17.27%), 

Occasionally: 5 
(2.01%), 

Sometimes: 12 
(4.82%), Often: 5 
(2.01%), Nearly 
all the time: 2 

(0.8%), Missing 
values: 3 (1%) 

0.0056 37 
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with 
Psychiatric 
Illness (Roijen, 
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Respondent doing “odd” jobs 1 

Did not do it, 
because of 

health problems: 
36 (17%), Did 
not do it, for 

reasons other 
than health 

problems: 38 
(18%), Done, 
hindered by 

health problems: 
76 (36%), Done, 
not hindered by 
health problems: 

63 (30%) 

Did not do it, 
because of 

health problems: 
29 (11.65%), Did 

not do it, for 
reasons other 

than health 
problems: 56 

(22.49%), Done, 
hindered by 

health problems: 
96 (38.55%), 

Done, not 
hindered by 

health problems: 
65 (26.1%), 

Missing values: 
3 (1%) 

0.0056 39 

Number of hours volunteers took 
over domestic work in past 6 
months 

1 Mean: 4.13, SD: 
37.8 

Mean: 3.63, SD: 
24.14 0.0056 40 

If the respondent had contact 
with a psychiatrist, psychologist 
or psychotherapist in a policlinic 
of a general hospital in the last six 
months, in what type of hospital 
did the respondent have such 
contact? 

1 

General 
Hospital: 4 (2%), 
No contact with 
a psychiatrist, 

psychologist or 
psychotherapist 
in a policlinic of 

a general 
hospital: 119 
(56%), Other 

type of hospital: 
17 (8%), 

Psychiatric 
hospital: 63 

(30%), University 
hospital: 9 (4%) 

General 
Hospital: 10 
(4.02%), No 

contact with a 
psychiatrist, 

psychologist or 
psychotherapist 
in a policlinic of 

a general 
hospital: 185 

(74.3%), Other 
type of hospital: 

4 (1.61%), 
Psychiatric 
hospital: 21 

(8.43%), 
University 

hospital: 20 
(8.03%), Missing 

values: 3 (1%) 

0.0055 41 

Hours per week the respondent is 
employed 1 Mean: 17.67, 

SD: 16.14 
Mean: 13.7Yes, 

SD: 16.44 0.0055 43 

If the respondent does not work, 
what is the best description of 
current status? 

1 

(early) 
Retirement: 4 

(2%), 
Housekeeping: 6 

(3%), No work 
because of 

health related 
problems: 56 
(26%), Other 

reasons: 8 (4%), 
Not pertinent: 

134 (63%), 
Student: 5 (2%) 

(early) 
Retirement: 5 

(2.01%), 
Housekeeping: 
15 (6.02%), No 

work because of 
health related 
problems: 88 

(35.34%), Other 
reasons: 7 

(2.81%), Not 
pertinent: 118 

(47.39%), 
Student: 13 

(5.22%), Missing 
values: 3 (1%) 

0.0055 45 

How many contacts with a social 
worker in the last six months? 1 Mean: 0.53, SD: 

3.82 
Mean: 1.14, SD: 

6.91 0.0054 48 

Did you have any contact with a 
social worker in the last six 
months? 

1 No: 201 (94%), 
Yes: 12 (6%) 

No: 226 
(90.76%), Yes: 

19 (7.63%), 
Missing values: 

4 (2%) 

0.0054 51 
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with 
Psychiatric 
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Do you have a paid job at the 
moment? 1 No: 79 (37%), 

Yes: 134 (63%) 

No: 128 
(51.41%), Yes: 
118 (47.39%), 

Missing values: 
3 (1%) 

0.0053 53 

Did you have any contact with a 
psychiatrist, psychologist or 
psychotherapist in a policlinic of a 
general hospital without 
admission to the hospital in the 
last six months? 

1 No: 119 (56%), 
Yes: 94 (44%) 

No: 185 (74.3%), 
Yes: 58 

(23.29%), 
Missing values: 

6 (2%) 

0.0053 55 

How many contacts did you have 
with psychiatrist, psychologist or 
psychotherapist in policlinic of a 
general hospital without 
admission to the hospital in the 
last six months? 

1 Mean: 3.43, SD: 
7.41 

Mean: 2.66, SD: 
7.29 0.0052 56 

Did you have any contact with a 
RIAGG or GGZ institute in the last 
six months? 

1 No: 113 (53%), 
Yes: 100 (47%) 

No: 88 (35.34%), 
Yes: 156 
(62.65%), 

Missing values: 
5 (2%) 

0.0051 64 

Has the respondent being absent 
from work due to health problems 
in last 6 months? 

1 

No: 142 (67%), 
Yes: 70 (33%), 
Missing values: 

1 (0.47%) 

No: 169 
(67.87%), Yes: 
76 (30.52%), 

Missing values: 
4 (2%) 

0.0049 81 

I was at work, but due to health 
problems I had problems with 
concentration in the past 6 
months 

1 

Not pertinent: 
129 (61%), 

Rarely: 18 (8%), 
Occasionally: 9 

(4%), 
Sometimes: 31 

(15%), Often: 16 
(8%), Nearly all 

the time: 9 (4%), 
Missing values: 

1 (0.47%) 

Not pertinent: 
177 (71.08%), 

Rarely: 26 
(10.44%), 

Occasionally: 10 
(4.02%), 

Sometimes: 17 
(6.83%), Often: 

11 (4.42%), 
Nearly all the 

time: 4 (1.61%), 
Missing values: 

4 (2%) 

0.0049 83 

How many contacts did you have 
with a RIAGG or GGZ institute in 
the last six months? 

1 Mean: 12.62, 
SD: 26.94 

Mean: 13.8, SD: 
29.02 0.0048 94 

If the respondent has children, 
did the respondent do things for 
or with the children living at 
home? 

1 

Asked but the 
respondent did 
not answer/not 
relevant: 104 

(49%), Did not 
do it, because of 
health problems: 
1 (0%), Did not 

do it, for reasons 
other than health 

problems: 47 
(22%), Done, 
hindered by 

health problems: 
32 (15%), Done, 
not hindered by 
health problems: 

29 (14%) 

Asked but the 
respondent did 
not answer/not 

relevant: 74 
(29.72%), Did 

not do it, 
because of 

health problems: 
5 (2.01%), Did 
not do it, for 

reasons other 
than health 

problems: 86 
(34.54%), Done, 

hindered by 
health problems: 

43 (17.27%), 
Done, not 

hindered by 
health problems: 

38 (15.26%), 
Missing values: 

3 (1%) 

0.0046 106 
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I was at work, but due to health 
problems I had to work at a 
slower pace over the past 6 
months 

1 

Not pertinent: 
129 (61%), 
Rarely: 28 

(13%), 
Occasionally: 9 

(4%), 
Sometimes: 20 
(9%), Often: 20 
(9%), Nearly all 

the time: 6 (3%), 
Missing values: 

1 (0.47%) 

Not pertinent: 
177 (71.08%), 

Rarely: 23 
(9.24%), 

Occasionally: 9 
(3.61%), 

Sometimes: 22 
(8.84%), Often: 7 
(2.81%), Nearly 
all the time: 7 

(2.81%), Missing 
values: 4 (2%) 

0.0045 111 

Volunteers took over domestic 
work of the respondent in past 6 
months? 

1 

No: 190 (89%), 
Yes: 22 (10%), 
Missing values: 

1 (0.47%) 

No: 227 
(91.16%), Yes: 

18 (7.23%), 
Missing values: 

4 (2%) 

0.0045 113 

Did you have any contact with a 
medical specialist in a policlinic of 
a general hospital without 
admission to the hospital in the 
last six months? 

1 
No: 121 (57%), 
Yes: 91 (43%), 
Missing values: 

1 (0.47%) 

No: 152 
(61.04%), Yes: 
92 (36.95%), 

Missing values: 
5 (2%) 

0.0044 115 

I was at work, but due to health 
problems I had to isolate myself 
for the past 6 months 

1 

Not pertinent: 
129 (61%), 
Rarely: 51 

(24%), 
Occasionally: 8 

(4%), 
Sometimes: 15 
(7%), Often: 8 
(4%), Nearly all 

the time: 1 (0%), 
Missing values: 

1 (0.47%) 

Not pertinent: 
177 (71.08%), 

Rarely: 43 
(17.27%), 

Occasionally: 5 
(2.01%), 

Sometimes: 16 
(6.43%), Often: 2 
(0.8%), Nearly all 

the time: 2 
(0.8%), Missing 
values: 4 (2%) 

0.0043 126 

How many contacts did you have 
with a physiotherapist in the last 
six months? 

1 Mean: 6.72, SD: 
22.91 

Mean: 2.69, SD: 
7.89 0.0043 128 

In what type of health care 
institution have you been 
admitted? 

1 

General 
Hospital: 14 

(7%), No 
admission to a 

health care 
institution : 189 

(89%), Other 
type of hospital: 

1 (0%), 
Psychiatric 

hospital: 4 (2%), 
University 

hospital: 5 (2%) 

General 
Hospital: 17 
(6.83%), No 

admission to a 
health care 

institution : 169 
(67.87%), Other 
type of hospital: 

26 (10.44%), 
Psychiatric 
hospital: 29 
(11.65%), 
University 
hospital: 2 

(0.8%), Missing 
values: 6 (2%) 

0.0042 130 

Physical or psychological cause 
of absence/illness/disability? 1 

Not at all: 129 
(61%), A little: 59 
(28%), A lot: 24 
(11%), Missing 

values: 1 
(0.47%) 

Not at all: 177 
(71.08%), A little: 
46 (18.47%), A 
lot: 22 (8.84%), 
Missing values: 

4 (2%) 

0.0042 132 

How many contacts did you have 
with your physician in the last six 
months? (add all visits to doctor, 
telephonic consultations, and 
visits of the physician at the 
respondent’s home) 

1 Mean: 1.95, SD: 
2.05 

Mean: 1.94, SD: 
2.24 0.0042 133 
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Did you participate in a self-help 
group in the last six months? 
(e.g., Aa group, talk-group patient 
association)? 

1 

No: 196 (92%), 
Yes: 16 (8%), 

Missing values: 
1 (0.47%) 

No: 231 
(92.77%), Yes: 

14 (5.62%), 
Missing values: 

4 (2%) 

0.0042 135 

Did you have any contact with 
alternative caretakers in the last 
six months (like a homoeopath, 
acupuncturist, healer, manual 
therapist, haptonomist 
chiropractor, iriscopist?) 

1 No: 173 (81%), 
Yes: 40 (19%) 

No: 219 
(87.95%), Yes: 
26 (10.44%), 

Missing values: 
4 (2%) 

0.0042 140 

How many days have you been 
admitted to a health care 
institution in the last 6 months? 

1 Mean: 4.36, SD: 
31.62 

Mean: 21.3Yes, 
SD: 59.36 0.0042 143 

Did family members took over 
domestic work in past 6 months? 1 

No: 152 (71%), 
Yes: 60 (28%), 
Missing values: 

1 (0.47%) 

No: 179 
(71.89%), Yes: 
67 (26.91%), 

Missing values: 
3 (1%) 

0.0041 146 

Respondent going to buy 
Groceries 1 

Did not do it, 
because of 

health problems: 
7 (3%), Did not 

do it, for reasons 
other than health 

problems: 4 
(2%), Done, 
hindered by 

health problems: 
88 (41%), Done, 
not hindered by 
health problems: 

114 (54%) 

Did not do it, 
because of 

health problems: 
9 (3.61%), Did 
not do it, for 

reasons other 
than health 
problems: 4 

(1.61%), Done, 
hindered by 

health problems: 
127 (51%), 
Done, not 

hindered by 
health problems: 

106 (42.57%), 
Missing values: 

3 (1%) 

0.0041 148 

Number of hours family members 
took over domestic work in past 6 
months 

1 Mean: 23.92, 
SD: 89.67 

Mean: 19.94, 
SD: 61.76 0.0040 156 

Days in the last 6 months the 
respondent was hindered at work 
by health problems 

1 Mean: 19.7Yes, 
SD: 38.12 

Mean: 20.18, 
SD: 43.59 0.0039 162 

Did you have any contact with a 
physiotherapist in the last six 
months? 

1 
No: 146 (69%), 
Yes: 66 (31%), 
Missing values: 

1 (0.47%) 

No: 196 
(78.71%), Yes: 
49 (19.68%), 

Missing values: 
4 (2%) 

0.0039 163 

I was at work, but due to health 
problems I had to have others 
take over work for the past 6 
months 

1 

Not pertinent: 
129 (61%), 
Rarely: 54 

(25%), 
Occasionally: 10 

(5%), 
Sometimes: 12 
(6%), Often: 7 
(3%), Missing 

values: 1 
(0.47%) 

Not pertinent: 
177 (71.08%), 

Rarely: 47 
(18.88%), 

Occasionally: 7 
(2.81%), 

Sometimes: 9 
(3.61%), Often: 5 
(2.01%), Missing 

values: 4 (2%) 

0.0039 165 

How many whole days did you 
have day-time or part-time 
treatment for mental problems in 
the last 6 months? 

1 Mean: 4.3, SD: 
22.92 

Mean: 10.84, 
SD: 30.31 0.0038 170 
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Did you have any contact with a 
company doctor in the last six 
months? 

1 No: 164 (77%), 
Yes: 49 (23%) 

Asked but the 
respondent did 
not answer: 9 

(3.61%), No: 179 
(71.89%), Yes: 
58 (23.29%), 

Missing values: 
3 (1%) 

0.0038 173 

I was at work, but due to health 
issues, I had more trouble making 
decisions in the past 6 months 

1 

Asked but the 
respondent did 
not answer: 2 

(1%), Not 
pertinent: 129 
(61%), Rarely: 

43 (20%), 
Occasionally: 9 

(4%), 
Sometimes: 20 
(9%), Often: 9 
(4%), Nearly all 
the time: 1 (0%) 

Asked but the 
respondent did 
not answer: 1 
(0.4%), Not 

pertinent: 177 
(71.08%), 
Rarely: 39 
(15.66%), 

Occasionally: 9 
(3.61%), 

Sometimes: 10 
(4.02%), Often: 7 
(2.81%), Nearly 
all the time: 3 

(1.2%), Missing 
values: 3 (1%) 

0.0038 175 

How many contacts did you have 
with a company doctor in the last 
six months? 

1 Mean: 0.73, SD: 
1.75 

Mean: 0.88, SD: 
2.11 0.0038 176 

Others took over domestic work 
that the respondent normally 
does in past 6 months? 

1 No: 130 (61%), 
Yes: 83 (39%) 

No: 159 
(63.86%), Yes: 
87 (34.94%), 

Missing values: 
3 (1%) 

0.0037 178 

I was at work, but due to health 
problems I had other problems 1 

Not pertinent: 
129 (61%), 
Rarely: 60 

(28%), 
Occasionally: 2 

(1%), 
Sometimes: 9 
(4%), Often: 7 
(3%), Nearly all 
the time: 5 (2%) 

Not pertinent: 
178 (71.49%), 

Rarely: 51 
(20.48%), 

Sometimes: 4 
(1.61%), Often: 8 
(3.21%), Nearly 
all the time: 3 

(1.2%), Missing 
values: 3 (1%) 

0.0037 179 

With how many alternative 
caretakers did you have contact 
in the last 6 months? 

1 Mean: 0.2Yes, 
SD: 0.45 

Mean: 0.12, SD: 
0.36 0.0036 181 

How many contacts did you have 
with an independent psychiatrist, 
psychologist or psychotherapist 
in the last six months? 

1 Mean: 2.65, SD: 
10.02 

Mean: 2.06, SD: 
11.2 0.0036 182 

Did you have any contact with an 
independent psychiatrist, 
psychologist or psychotherapist 
in the last six months? 

1 

No: 159 (75%), 
Yes: 53 (25%), 
Missing values: 

1 (0.47%) 

No: 208 
(83.53%), Yes: 
36 (14.46%), 

Missing values: 
5 (2%) 

0.0035 186 

How many different self-help 
groups? 1 No: 197 (92%), 

Yes: 16 (8%) 
No: 235 

(94.38%), Yes: 
14 (5.62%) 

0.0034 191 

Hours per week the respondent 
was employed in the past 1 Mean: 6.46, SD: 

13.51 
Mean: 9.78, SD: 

16.19 0.0033 196 

Did you have contact with your 
physician in the last six months? 1 No: 49 (23%), 

Yes: 164 (77%) 

No: 72 (28.92%), 
Yes: 174 
(69.88%), 

Missing values: 
3 (1%) 

0.0032 201 
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In what type of institution did you 
have daytime- or part-time 
treatment for mental problems? 

1 

General 
Hospital: 1 (0%), 
No daytime- or 

parttime 
treatment for 

mental 
problems: 190 
(89%), Other 

type of hospital: 
15 (7%), 

Psychiatric 
hospital: 7 (3%) 

Asked but the 
respondent did 
not answer: 6 

(2.41%), General 
Hospital: 2 
(0.8%), No 
daytime- or 

parttime 
treatment for 

mental 
problems: 183 

(73.49%), Other 
type of hospital: 

22 (8.84%), 
Psychiatric 
hospital: 33 
(13.25%), 

Missing values: 
3 (1%) 

0.0031 202 

Did you have day-time or part-
time treatment for mental 
problems? 

1 No: 190 (89%), 
Yes: 23 (11%) 

No: 183 
(73.49%), Yes: 

63 (25.3%), 
Missing values: 

3 (1%) 

0.0028 212 

How many contacts for a 
homecare did you have in the last 
6 months? 

1 Mean: 7.65, SD: 
49.34 

Mean: 7.73, SD: 
51.37 0.0028 213 

Number of hours homecare took 
over domestic work in past 6 
months 

0 Mean: 1.89, SD: 
11.98 

Mean: 1.07, SD: 
10.37 - - 

Number of hours paid help took 
over domestic work in past 6 
months 

0 Mean: 3.77, SD: 
38.18 

Mean: 2.92, SD: 
15.35 - - 

How many contacts did you have 
with the center for alcohol and 
drugs in the last six months? 

0 Mean: 0.24, SD: 
1.78 

Mean: 0.55, SD: 
4.91 - - 

Did you use homecare in the last 
six months? 0 No: 202 (95%), 

Yes: 11 (5%) 

No: 229 
(91.97%), Yes: 

16 (6.43%), 
Missing values: 

4 (2%) 

- - 

Y-BOCS 
(Goodman, 
Price et al. 
1989, 
Goodman, 
Price et al. 
1989) 

Total severity score  1 Mean: 19.96, 
SD: 6.94 

Mean: 19.9Yes, 
SD: 7.35 0.0077 1 

Total severity score - 
compulsions 1 Mean: 10.26, 

SD: 4.28 
Mean: 10.33, 

SD: 4.28 0.0062 17 

Total severity score - obsessions 1 Mean: 9.95, SD: 
3.83 

Mean: 10.06, 
SD: 4.09 0.0054 47 

The Italic font in the variable description indicates questions asked to the respondent. For some of these 
questions, minor adaptations have been made to the text reported in this table in order to improve their 
understandability.
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