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214 Summary

Summary

Medical	 imaging	 has	 the	 capacity	 to	 non	 invasively	 analyse	 the	 phenotypic	 differences	
of	 tumors	 in	 three	 dimensions,	 and	 lately	 it	 has	 seen	 significant	 improvements	 due	 to	
advancements	in	the	field	of	artificial	intelligence.	For	example,	radiomics,	or	quantitative	
image	 analysis	 –	 the	 high-throughput	 extraction	 of	 quantitative	 features	 from	 medical	
images	and	their	correlation	with	diagnostic	and	prognostic	outcomes	–	has	been	studied	in	
particular	to	decode	tumor	phenotypes	from	a	variety	of	modalities,	including	CT,	magnetic	
resonance	 imaging,	 and	 positron	 emission	 tomography	 (PET).	 Thousands	 of	 quantitative	
radiomic	characteristics	may	be	retrieved	from	each	area	of	 interest	 (ROI)	and	examined	
further	 using	 machine	 learning	 algorithms	 to	 look	 for	 connections	 with	 biological	 and	
clinical	end	objectives.	

In	 this	 thesis,	 our	 objectives	 are;	 1)	 to	 evaluate	 the	 reproducibility	 of	 radiomic	 features	
extracted	from	the	same	scanner,	or	from	different	scanners	with	different	CT	acquisition	
parameters	 ;	 2)	 to	 explore	 how	 the	 power	 of	 AI	 can	 be	 harnessed	 for	 the	 classification	
between	 different	 ILDs,	 potentially	 overcoming	 some	 of	 the	 current	 difficulties	 in	 the	
decision-making	surrounding	lung	diseases.	The	thesis	is	divided	into	four	parts:

Part	1:	General	introduction	and	outline	of	the	thesis.
Part	2:	Challenges	in	handcrafted	radiomics.
Part	3:	Application	of	handcrafted	radiomics	and	deep	learning	on	lung	disease.
Part	4:	General	discussion	and	future	perspective	of	the	thesis.

In part 1, chapter 2	 provides	 a	 literature	 review	 to	 assess	 the	 present	 state	 of	 play	 in	
handcrafted	radiomics	and	deep	learning.	We	presented	a	thorough	overview	and	update	on	
the	rapidly	increasing	field	of	quantitative	imaging	research	in	this	review,	with	an	emphasis	
on	the	two	arms	“handcrafted	radiomics	and	deep	learning.”	The	chapter	discusses	some	
of	its	shortcomings	as	well	as	instances	of	developing	clinical	implementations	that	serve	as	
stepping	stones	toward	precision	medicine.		

In	part	2,	several	studies	have	been	conducted	to	investigate	the	potential	of	handcrafted	
radiomics	 (HRFs).	 Nonetheless,	 a	 number	 of	 barriers	 to	 clinical	 integration	 of	 radiomics	
signatures	 have	 been	 discovered.	 Numerous	 research	 studies	 have	 been	 published	 on	
the	 sensitivity	 of	 HRFs	 to	 inter-reader	 variability,	 test-retest,	 and	 variations	 in	 imagining	
parameters.	 In	 this	 thesis	 (chapters 3-6),	we	 showed	 that	HRFs	 are	 sensitive	 to	 imagine	
variations	using	phantom	and	patient	reproducibility	studies.	In	addition,	we	examined	the	
use	 of	 different	 harmonization	methods	 on	 reducing	 the	 effect	 of	 different	 variations	 in	
imagining	parameters.



10

215Summary

In chapters 3-6, we	assess	the	reproducibility	of	HRFs	to	the	variations	in	CT	parameters	and	
the	role	of	harmonization	methods	to	address	those	variations.	Chapter 3	investigated	the	
robustness	of	HRFs	on	a	dataset	consisting	of	13	phantom	CT	scans.	The	scans	were	obtained	
from	different	vendors,	with	different	CT	parameters.	The	 study’s	findings	 indicated	 that	
only	a	small	percentage	of	handcrafted	(HRFs)	radiomics	were	robust	to	differences	in	the	
imaging	settings	examined.	We	also	found	that	the	performance	of	ComBat	harmonization	
depends	on	the	variations	in	imaging	parameters.

Chapter 4	 assess	 the	 reproducibility	 of	 hepatocellular	 carcinoma	 (HCC)	 HRFs,	 generated	
from	various	phases	of	contrast-enhanced	CT	images	(CECT).	For	this	study,	HCC	patients’	
arterial	 and	 venous	 CT	 scans	were	made	 accessible.	 The	 finding	 of	 the	 presented	 study	
showed	that,	when	no	image	settings	were	changed,	a	subset	of	HRFs	were	shown	to	be	
reproducible	in	both	phases.	Moreover,	the	application	of	ComBat	harmonization	increased	
the	number	of	reproducible	features	by	1%	across	phases.	

In chapter 5, we	 investigated	 the	use	of	Reconstruction	Kernel	Normalization	 (RKN)	and	
ComBat	harmonization	to	improve	the	reproducibility	of	HRFs	across	scans	acquired	with	
different	 reconstruction	 kernels.	 A	 total	 of	 28	 phantom	 scans	 collected	 on	 five	 distinct	
scanners	types	were	assessed.	The	HRFs	were	extracted	from	the	original	scans	and	scans	
that	were	harmonized	using	the	RKN	method.	Moreover,	ComBat	harmonization	method	
was	applied	on	both	set	of	HRFs.	The	finding	of	this	study	showed	that	the	majority	of	HRFs	
were	found	to	be	sensitive	to	the	variations	in	the	reconstruction	kernels.	Furthermore,	the	
use	of	both	RKN	and	ComBat	harmonization	methods	significantly	increased	the	number	of	
reproducible	HRFs	compared	to	HRFs	extracted	from	original	scans.

 In chapter 6, we	also	investigated	the	impact	of	changes	in	the	in-plane	spatial	resolution	
(IPR)	on	the	reproducibility	of	HRFs	extracted	from	phantom	scans	(n=14)	while	all	other	
imaging	parameters	were	the	same.	We	also	examine	the	impact	of	ComBat	harmonization	
on	HRFs.	The	finding	of	this	study	revealed	that	the	reproducibly	of	HRFs	depends	on	the	
degree	of	the	variations	in	pixel	spacing.			

Part	3	in	this	thesis	is	related	to	the	application	of	radiomics	and	deep	learning	in	different	
lung	disorders.	 In chapter 7,	we	presented	a	 summary	of	 the	existing	 researches	on	 the	
use	of	handcrafted	radiomics	in	lung	cancer	diagnosis,	treatment	response,	and	prognosis.	
In	addition,	applying	HRFs	in	chronic	obstructive	pulmonary	disease	(COPD)	has	not	been	
extensively	investigated	yet.	We	show	examples	of	the	potential	use	of	HRFs	in	the	diagnosis,	
treatment,	and	follow-up	of	COPD	and	future	direction.	

In chapter 8,	the	approach	of	HRFs	was	studied	in	order	to	predict	different	interstitial	lung	
diseases	(ILDs).	The	data	for	this	study	came	from	one	center	and	two	databases.	The	study	
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comprised	four	groups:	1)	IPF	with	UIP	pattern	on	HRCT,	2)	IPF	with	UIP	pattern	confirmed	
by	surgical	 lung	biopsy,	3)	non-IPF	 ILDs	with	surgical	 lung	biopsy	confirming	 the	absence	
of	a	UIP	pattern,	and	4)	healthy	lung	patients.	To	summarize,	we	were	able	to	show	that	
radiomic	 characteristics	 generated	 from	 HRCT	 images	 may	 be	 utilized	 to	 differentiate	
between	a	normal	state	and	ILDs,	as	well	as	between	IPF	with	a	UIP	pattern	and	ILDs	with	
no	UIP	pattern	as	confirmed	by	surgical	biopsy.	Furthermore,	our	study	found	a	significant	
difference	in	tracheal	volume	between	individuals	with	normal,	IPF/UIP,	and	non-IPF	ILDs.	
The	trachea	volume	was	shown	to	be	 larger	 in	 IPF	participants	compared	to	normal	and	
non-IPF	ILDs.	

In chapter 9,	the	use	of	both	HRFs	and	DL	was	explored	in	this	thesis	to	differentiate	between	
different	 lung	disorders	–	namely,	 IPF,	and	non-IPF	 ILDs	 subjects.	 In	addition,	 in	order	 to	
interpret	 the	performance	of	HRFs	and	DL,	 interpretability	methods	were	used.	We	also	
made	use	of	ensemble	learning	methods	to	improve	the	performance	of	both	HRFs	and	DL.	
In	silico	clinical	trials	were	also	used	to	compare	the	performance	of	medical	experts	with	
AI.	Our	results	showcased	the	utility	of	HRFs	and	DL	algorithms	as	a	tool	to	support	clinical	
decisions.

Finally,	 in	part	4	 (chapter	10)	we	extensively	discussed	 the	 results	of	 this	 thesis	 and	 the	
future	perspective	of	both	HRFs	and	deep	learning.		

Overall,	 this	 thesis	 verified	 a	number	of	 hypotheses	 concerning	 the	uses	 of	 handcrafted	
radiomics	 and	 deep	 learning	 in	 medical	 image	 analysis.	 For	 handcrafted	 radiomics,	
we	 assessed	 the	 robustness	 of	 handcrafted	 radiomics	 analyses,	 which	 will	 aid	 in	 the	
development	 of	 generalizable	 radiomics	 signatures,	 and	 provided	 unique	 quantitative	
methods	to	measure	the	reproducibility	of	HRFs	among	scans	obtained	differently.	For	deep	
learning,	we	evaluated	and	demonstrated	the	potential	of	automated	algorithms	to	improve	
clinical	decision	making.	More	specifically,	a	deep	learning	algorithm	was	developed	that	
performed	very	well	and	has	the	potential	to	be	used	in	clinical	settings.

Summary
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