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Technological advancements, especially in recent times, have resulted in a plethora of 
innovations in many different scientific fields. This is especially the case with regard to the 
new diagnostic procedures and imaging modalities being made available to the field of 
oncology [1]. However, the genetic and micro-environmental heterogeneity found in tumors 
and between patients adds a stark layer of complexity   [2,3]. Currently, due to the sheer 
abundance and complexity of oncology-related datasets, new strategies for facilitating 
clinical decision-making are becoming increasingly necessary [4]. 

Precision Medicine
Precision medicine refers to preventative and therapeutic approaches that focus on 
accounting for an individual patient’s characteristics, as well as their specific ailments [5]. 
Data mining is a typical method of precision medicine. It involves detecting patterns in and 
across big datasets of diverse populations, using powerful computational techniques such 
as machine learning. Across the variety of patient populations, patterns may be established 
that allow for the categorization of patient groups and the identification of the best therapy 
for each patient, hence improving therapeutic outcomes [6,7]. However, in order to cover 
as many of the variables within a population as feasible, vast patient datasets are required. 
Radiological images obtained during routine examinations are an essential source of large-
scale data that may be employed; nevertheless, imaging in a clinical setting is mostly used 
qualitatively to make diagnoses, but not kept for later analysis. The method of handcrafted 
radiomics provides a quantitative approach for measuring tumor heterogeneity by extracting 
a very large number of image characteristics from imaging data, using various mathematical 
techniques [8].

Handcrafted radiomics
The term “radiomics” refers to a set of mathematical formulas (handcrafted characteristics) 
that are extracted from regions of interest (ROI) in medical imaging [8]. A significant number of 
quantitative parameters can be rapidly retrieved with the use of high-throughput computing, 
providing for a more thorough description of lung diseases. Radiomic characteristics, in 
principle, can extract information not apparent to the naked eye and is capable of offering 
better predictions than other approaches. Hand-crafted radiomic features contain first-
order statistics shape, texture, fractal dimension, and filter-based features [9]. To perform 
a radiomics study, a set of processes (workflow) has to be applied, and this includes image 
acquisition, segmentation, feature extraction, feature selection, and modeling (Figure 1).
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Figure 1. A standard radiomic analysis workflow for handcrafted features (top) and Deep Learning method (bottom) 
(Courtesy of Frix, A.N, 2021).

The handcrafted radiomics workflow starts with obtaining medical images which is the 
most important stage in any radiomics study. Images in radiomics studies are frequently 
gathered retrospectively, which implies that the images were collected in a non-controlled 
setting, using a range of different acquisition settings. As a result, image heterogeneities are 
frequently found inside and across datasets.

Segmentation and features extraction is the next step once the data has been collected 
and arranged. The regions of interest (ROIs) in the images are segmented for study. The ROI 
determines the area from which radiomic characteristics will be retrieved [10]. The ROIs 
considered in this thesis are a complete lung and sectorized lungs. The segmented ROI is used 
to calculate a collection of handcrafted image characteristics. Intensity, shape/volume, and 
texture features, as well as higher order features like radial-gradient and filtered features, 
are examples of these characteristics [11]. Intensity features are calculated from the 
histogram within the ROI – including the mean, median, standard deviation, and skewness. 
Texture features explore the relationship between one voxel and its neighbor inside the 
ROI, such as the quantification of the number of consecutive intensity values that occur 
in a certain direction. Shape features use the ROI to describe certain features, such as the 
sphericity and maximum diameter. Filtered features are computed after applying image 
filtering techniques (e.g., wavelet or Gaussian (LoG)).

Once the segmentation and features extraction are done, the next critical stage in the 
radiomics workflow is to reduce the number of features. Many of the retrieved features 
have no correlation with the outcome or have a substantial correlation with other radiomic 
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or clinical variables [10]. These features add no new information and should thus be avoided.  
Following the selection of the best features, radiomics models can be generated using a variety 
of machine learning techniques. Several modeling algorithms can be implemented, such as 
decision trees and logistic regressions. The performance of the models can be assessed 
using various metrics – including the area under the receiver operating characteristic curve 
(AUC) [12] and calibration plot [13] – which illustrate the connection between the true class 
of samples and the model prediction probabilities.  

The approach of machine learning (ML) is a field of artificial intelligence in which an algorithm 
learns from a dataset via inference [14]. Its primary goal is to create a model capable of 
classifying, predicting, and estimating a scenario using the available data. Consequently, the 
technology may help clinicians make better decisions, since ML systems are able to consider a 
greater number of variables than human beings. Clinical observations, biology, genetics, and 
radiomics data may also be used to help improve decision-making. Deep learning is part of 
the machine learning field and uses the principles of simplified neuron interactions [15] and 
has already been shown to be extremely useful for solving image-processing tasks (Figure 1). 

Deep learning, or deep radiomics, is an alternative to (handcrafted) radiomics [16]. Deep 
learning methods usually involve feeding images directly into convolutional neural networks 
(CNN). Neural networks (NN) are models that have an input layer, many hidden layers, and 
an output layer. Each layer is made up of nodes that link to all the nodes in the preceding and 
subsequent layers [17]. Each node has a weight, and if its output exceeds a given threshold, 
it activates and transfers information to the next layer, finally going to the output layer, 
which provides a specific prediction. Deep learning has been successfully implemented in 
several different studies, with the use of medical imaging data. 

Challenges in radiomics
Numerous publications highlighted the potential of radiomics in facilitating precision 
medicine. However, multiple obstacles hinder the generalizability of radiomics signatures 
which, therefore, influences the clinical translation. The most obvious limitation is the lack 
of reproducibility of radiomic biomarkers. Several studies have investigated the stability 
of radiomic features with test-retest or phantom experiments, and have reported that a 
considerable percentage of features are not reproducible, i.e. using the same acquisition 
and reconstruction parameters on the same vendor for acquiring the scan [17]. 

The first part of this thesis is devoted to the challenges facing radiomic features. Chapter 3 
investigated the reproducibility of radiomic features across different scanners and scanning 
parameters. Chapter 4 evaluated the reproducibility of handcrafted radiomics across the 
arterial and portal venous phases of contrast-enhanced computed tomography images 
that depict hepatocellular carcinomas, as well as the potential of ComBat harmonization to 
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correct for these differences. In Chapter 5, we look at the reproducibility of HRFs derived 
from phantom CT scans taken with various reconstruction kernels on various imaging 
vendors, as well as the possibility of Reconstruction Kernel Normalization (RKN) and ComBat 
harmonization techniques to address the variations. Finally, chapter 6 evaluated the effects 
of differences in in-plane spatial resolution (IPR) on handcrafted radiomics, using a phantom 
dataset acquired on two scanner models.

The diseases with radiomics
The second part of this thesis is focused on the potential application of both handcrafted 
radiomics and deep learning in different lung disorders such as interstitial lung diseases (ILD) 
and chronic obstructive pulmonary diseases (COPD). 

The term “interstitial lung disease” or ILD refers to a set of diffuse parenchymal lung 
disorders that are linked with high morbidity and mortality. Patients with fibrotic ILD 
often experience a decline in lung function with progressive symptoms, poor therapeutic 
response, and a lower quality of life. Idiopathic pulmonary fibrosis (IPF) is the most common, 
progressive, and severe subtype of ILD [18]. Although the disease was once thought to 
be rare, it now occurs with the same frequency as stomach, brain, and testicular tumors 
[19,20]. The prevalence of IPF has grown over time, with estimates ranging from 28 to 18 
instances per 100,000 persons each year in Europe and North America [20,21]. IPF is more 
frequent in men and rare in those under the age of 50. (median age at diagnosis is about 65 
years) [18,22,23]. Despite the fact that the disease’s progression is diverse and somewhat 
unpredictable, the median survival period following diagnosis is 2–4 years [24]. IPF is usually 
associated with usual interstitial pneumonia (UIP) patterns on histology [25]. Although UIP 
is a defining feature of IPF, it is not unique to IPF and can be present in other ILDs, including 
connective tissue disease-associated ILD (CTD-ILD), hypersensitivity pneumonitis (HP), and 
sarcoidosis [26]. Accurate identification of IPF and UIP is important for prompt initiation 
of antifibrotic treatment and, when applicable, enrollment in clinical trials. According to 
the most recent ATS-ERS recommendations [25], radiologists only recognized a UIP pattern 
on thin-section CT with a sensitivity of 34% in a recent research that included a cohort of 
patients with pathologically verified UIP patterns [27]. Furthermore, radiographic evaluation 
of fibrotic lung disorders remains difficult and frequently varies amongst specialists [28–31]. 
Consequently, an automated technique that aids radiologists (particularly less experienced 
ones) in avoiding needless biopsies in the context of a multidisciplinary discussion might be 
extremely beneficial.

Chronic obstructive pulmonary disease (COPD) is one of the most common lung disorders, 
affecting an estimated 328 million people worldwide, and it is anticipated to become the leading 
cause of mortality in the world over the next two decades [21]. COPD is characterized by a 
restriction in airflow, which may be assessed via spirometry tests. It is not completely reversible 
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and is frequently induced by noxious particle or gas exposure (e.g., cigarette smoking), which 
causes an inflammatory reaction in the lungs [22,23]. COPD is a multicomponent disease, 
comprising a combination of bronchiolitis, emphysema, and extrapulmonary effects.

Role of computed tomography (CT)
In the majority of clinically suspected cases, high-resolution computed tomography (HRCT) 
can significantly reduce the differential diagnosis of interstitial lung disease (ILD) (Figure 2).  
In addition, HRCT can sometimes yield a precise diagnosis without requiring a surgical biopsy. 
HRCT may also be used to count the number of lung abnormalities and provide composite 
scores that can be used to assess disease severity and prognosis [24–26]. HRCT is a valuable tool 
for evaluating patients with suspected idiopathic pulmonary fibrosis (IPF) and is increasingly 
being used as a surrogate measure for monitoring therapeutic response in various drug trials 
[27–29].

 A CT scan with adequate technical quality is necessary for the effective interpretation of ILDs 
findings [30]. The following parameters should be utilized to acquire a volumetric image: a) 
thin collimation; b) thin-slice thickness reconstructions (≤ 1.5 mm) with the use of a high-
resolution filter; c) shortest rotation time and highest pitch, to reduce the motion artifacts 
and the acquisition time; and d) use of optimization tools to reduce radiation dose [19,31]. 

A B C

Figure 2. Figure shows CT of A) normal lungs; B) COPD lungs; C) ILD lungs.

Objectives and outline of the thesis
The overall aims of this thesis are two-fold; 1) to evaluate the effects of different scanners and 
scanning parameters on the reproducibility of radiomic features; 2) to investigate the use of 
radiomics in the classification between different ILDs. To this end, this thesis is divided into 
two parts. The first focuses on the challenges that the field of radiomics faces. The objective 
is to evaluate the reproducibility of radiomic features extracted from the same scanner, or 
from different scanners with different CT acquisition parameters. The second part concerns 
the application of handcrafted radiomics and deep learning in the classification of different 
types of lung disorders. The objective is to explore how the power of AI can be harnessed 
for the classification between different ILDs, potentially overcoming some of the current 
difficulties in the decision-making surrounding lung diseases. The outline of this thesis is 
shown in Figure 3 and elaborated on below.
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Part I: General introduction and outline of the thesis

Chapter 1 provides a general introduction to different lung diseases, the role of CT images, 
handcrafted radiomics, machine learning, and challenges regarding radiomics studies.

Chapter 2 provides a general overview and update on the recent rapidly expanding work in 
the field of handcrafted radiomics and deep learning, describing some of their limitations 
and providing examples of emerging clinical applications.

Part II: Challenges in handcrafted radiomics

Chapter 3 provides a study that attempts to test the repeatability of handcrafted radiomics 
using phantom scans. For this, a total of 13 scans were included and examined. These were 
collected with the use of various imaging vendors and reconstruction settings. The utilization 
of the ComBat harmonization approach was also explored.

Chapter 4 looks at the reproducibility of handcrafted radiomics derived from CT-based 
hepatocellular carcinoma in two imaging phases: arterial and portal venous. ComBat 
harmonization methods were also explored in order to evaluate their efficacy in reducing 
the impact of phase differences.

Chapter 5 investigates the reproducibility of HRFs extracted from phantom CT scans acquired 
with different reconstruction kernels on different imaging vendors. We also investigate the 
potential of ComBat harmonization, Reconstruction Kernel Normalization (RKN) and the 
combination of both methods to reduce the variations in HRF values attributed to differences 
solely in the reconstruction kernels of the original scans. 

Chapter 6 assesses how differences in in-plane resolution can affect the reproducibility of 
handcrafted radiomics, when all other parameters are kept at a constant level. This study 
included two sets of phantom scans which were collected in the same manner except for the 
in-plane resolution. In addition, we explored the impact of various resampling methods and 
the application of ComBat harmonization on the reproducibility of handcrafted radiomics. 

Part III: Application of handcrafted radiomics and deep learning on lung disease

Chapter 7 presents a review of the emerging role of radiomics in COPD and lung cancer. The 
review outlines the main applications of radiomics in lung cancer and briefly reviews the 
workflow from image acquisition to the evaluation of model performance. Furthermore, 
the current assessments of COPD and the potential application of radiomics in COPD were 
also discussed.
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Chapter 8 investigates the use of handcrafted radiomics to classify between IPF with UIP 
presentation in HRCT or confirmed by lung biopsy and non-IPF ILD with the absence of UIP 
patterns (confirmed by lung biopsy). Furthermore, we examine the difference in trachea 
volume and use it as a predictor for IPF.

Chapter 9 compares the use of handcrafted radiomics and deep learning to diagnose 
diverse lung disorders, such as IPF, and non-IPF ILDs patients. Interpretability approaches 
were also utilized to explain the performance of handcrafted radiomics and deep learning. 
Furthermore, the suggested handcrafted radiomics and deep learning outcomes were 
compared to the performance of medical imaging experts.

Part V: General discussion and future perspective of the thesis

The thesis is concluded by chapter 10, in which the work in this thesis is discussed and the 
directions for future research are provided.
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Abstract

Historically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult 
to quantify what can be seen in an image, and to turn it into valuable predictive outcomes. 
As a result of advances in both computational hardware and machine learning algorithms, 
computers are making great strides in obtaining quantitative information from imaging and 
correlating it with outcomes. This opens a new “omics” field, radiomics, adding new input 
avenues for precision medicine, beyond genomics. Radiomics, in its two forms “handcrafted 
and deep”, is an emerging field that translates medical images into quantitative data to yield 
biological information and enable radiologic phenotypic profiling for diagnosis, theragnosis, 
decision support, and monitoring.  Within this review, we describe the steps of handcrafted 
radiomics, a multistage process in which features based on shape, pixel intensities, and 
texture are extracted from radiographs. The application of deep learning, the second arm 
of radiomics, and its place in the radiomics workflow is discussed, along with its advantages 
and disadvantages. To better illustrate the technologies being used, we provide real-world 
clinical applications of radiomics in oncology and other diseases, showcasing research on 
the applications of radiomics, as well as covering its limitations and its future direction 
towards precision medicine.

Keywords: Radiomics; Oncology; Machine Learning; Deep Learning; Medical Imaging. 
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Introduction

Medical imaging technologies in healthcare have expanded remarkably  from the discovery 
of X-Rays 124 years ago to the use of Computed Tomography (CT), Magnetic Resonance 
Imaging (MRI), and Positron Emission Tomography (PET), among others in modern-day 
clinical practice [1] (see Figure 1). These tools have become an integral part in detection and 
diagnosis for many diseases due to several factors, including: the minimally invasive nature 
of imaging, rapid technological developments, lower costs compared to alternatives, the 
high information density of images, and the hardware can be used for multiple diseases and 
sites  [2,3]. 

Medical imaging in its infancy generated analogue images, which underwent subjective 
interpretation based on visual inspection and verbal communication. By the end of the 20th 
century, information technology has brought radiology to the digital world [4], although 
the interpretation of radiographs remained mostly qualitative. Humans excel at recognising 
patterns through visual inspection, however, they are often lacking when performing 
complex quantitative assessments [5,6]. In the early 1960s, researchers started to focus on 
computerized quantitative analysis of medical data for aiding clinical diagnosis [7–9], what 
later came to be known as Computer Aided Decision (CAD) systems. However, these systems 
were using a classical approach using statistical analysis and probability theories, and the 
volume of available data was low, so the results were often too inaccurate for clinical use. 
Later in the 1980s, further advances in theoretical computer science and digital imaging 
lead to the development of advanced machine learning and pattern recognition algorithms, 
which when integrated with CAD systems were able to generate clinically reliable results 
[10] [11]. 

In recent decades, simple quantitative image analysis has been adopted by clinicians (e.g. 
RECIST [12]), and has been primarily focused on assisting qualitative observations [13]. 
For instance, CAD systems can be found in health care worldwide, aiding radiologists and 
clinicians in making diagnostic   and theragnostic decisions [14]. One of the most typical 
applications of CAD systems is in recognizing abnormalities during cancer screening [15]. 
Notable contributions are in the area of lung and breast cancer research. For example, 
there are many CAD studies which focus on detecting and diagnosing lung nodules [16,17] 
(as benign or malignant) on CT and chest radiographs. Similarly, many such studies have 
been conducted in breast mammography images for highlighting microcalcifications [18], 
architectural distortions, and the prediction of mass type [19,20]. 

It is conceivable that the lack of quantitative information leads to increased follow-ups 
or invasive biopsies that would be deemed unnecessary given the unused information in 
medical images [21]. Even though there have been various developments in quantitative 
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image analysis, traditionally radiologists are trained to understand the behaviour of the 
underlying disease through visual inspection of radiographic images   [21]. This partially 
explains why most of the developments in imaging technology are in optimising the visual 
representation of the generated images, with vendors competing to generate the highest 
quality images. With the exception of CT, with its semi-parametric calibrated Hounsfield 
Units, and some particular MRI sequences, individual voxel values do not correlate with 
the underlying biology without further calibration and modelling. Furthermore, qualitative 
analysis is not so dependent on reproducible voxel values, while machines on the other 
hand only process numerical values and rely on the standardisation of image acquisition 
and reconstruction to yield reproducible results. The lack of standardisation of medical 
images has been a major hurdle in the development of quantitative image analysis (QIA) in 
medical imaging [22–25]. However, in recent years, quantitative imaging is becoming more 
popular with the advent of, e.g., quantitative FDG-PET [26,27] or quantitative MRI [28,29] 
for treatment response assessment.

The ubiquitous computer, vast amounts of data, and advanced algorithms have opened a new 
era in medical imaging. The high information density of images allows for many quantitative 
metrics since intricate pixel and voxel relationships can be captured by complex operations. 
Radiomics involves the process of extraction of quantifiable features from vast amounts of 
data that might correlate with the underlying biology or clinical outcomes using advanced 
machine learning analysis techniques [30,31]. Radiomics has two main arms, based on how 
imaging information is transformed into mineable data: handcrafted radiomics and deep 
learning. Handcrafted features are formulas mostly based on intensity histograms, shape 
attributes, and texture, that can be used to fingerprint phenotypical characteristics of the 
radiograph [32] while in deep learning a complex network “creates” its own features. Various 
statistical and machine learning models have been widely researched, and are envisioned to 
be complementary to best medical practice by aiding in making informed clinical decisions 
in both oncological and non-oncological diseases [33–36]. 

Since the 1990s predictions were being made that genomics, spearheaded by the Human 
Genome Project, would completely transform therapeutic medicine, heralding precision 
medicine [37]. Precision medicine, also termed personalized medicine, originally referred 
to the view that incorporating genomic information in the clinical workflow will lead to 
marked improvements in the prediction, diagnosis, and treatment of diseases. Recently, 
the scope of precision medicine has expanded to incorporate inputs beyond the genome 
[38]. Radiomics and other “-omic” developments, such as metabolomics and proteomics, 
are contributing to this a paradigm shift in medicine, where the focus has changed from 
standard clinical protocols based on trial populations to a personalised treatment tailored 
not only to the disease and site but also the patient, further enabling precision medicine.   
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In this review, we provide a broad overview and update on the fast-growing field of 
quantitative imaging research, focussing on the two arms “handcrafted radiomics and 
deep learning” describing some of its caveats and giving examples of the budding clinical 
implementation, the stepping stones towards precision medicine.

Figure 1.Timeline highlighting key developments in medical imaging.

Radiomics: from feature extraction to correlation with outcomes

Performing feature extraction of textures in medical imaging is nothing new and in fact 
serious research had begun in the early 1980s at Kurt Rossmann Laboratories for Radiologic 
Image Research in the Department of Radiology at the University of Chicago to develop  CAD 
systems for the detection of lung nodules as well as detection of clustered microcalcifications 
in mammograms [39,40].  The first CAD patent was filed all the way back in 1987 using a 
method of pixel thresholding and contiguous pixel area thresholding [40].  

The radiomic workflow begins with the medical image, which can be represented in two, 
three, or four dimensions [32,41]. Images contain quantitative data in the form of signals 
that are captured at different scales and variation across medical machines [42,43].  
Normalisation techniques are used to evenly distribute pixel intensities across a dataset 
and within a standardized range [42,43].  Next, a region of interest (ROI) is defined so that 
only information related to the lesion can be extracted, and the useful information that can 
be extracted are called features.  There are competing methods to extract features both in 
2D and 3D. One such method is the manual segmentation of the lesion or the creation of 
a bounding box, as seen in Figure 2 [45,46]. This can also be performed using automated 
segmentation algorithms.  Methods for automated segmentation include deep learning 
architectures such as U-Net, or semi-automatic methods like click-and-grow algorithms 
[45,46]. 
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Figure 2. The difference between using A) a contoured binary mask, and B) using a bounding box.

Once the ROI is defined, the choice of features to be extracted depend on the information 
being sought. Shape features such as volume relate only to the definition of the ROI, and if this 
is manually created, suffer from inter-and intra-observer variability [47]. First-order features 
give insight into the distribution of pixel intensities, e.g. histograms of pixel intensities 
are quantified by a large number of statistical methods, including variance, skewness, 
and kurtosis. These features, however, are unable to quantify how pixels are positioned 
in relation to each other. Second and higher-order features may capture this relationship, 
with second-order features obtained based on the average relationship between two pixels/
voxels, and higher-order features for more than two pixels/voxels. An example of a second-
order feature extraction method is the grey level co-occurring matrix (GLCM). GLCMs are co-
occurring pixels in each defined direction (see Figure 3) and are counted and recorded (see 
Figure 4) into a matrix.  Statistical analysis such as contrast, correlation, and homogeneity, as 
well as tailored formulae can then be applied on the GLCM to extract independent features 
[48]. Features extracted in this manner are considered “hand crafted” features as they are 
features that are pre-defined by specially designed formulae. 

Figure 3. Possible angles for the calculation of co-occurrence matrices in two and three dimensions.  A.) shows 
the four possible directions in two dimensions while B.) shows the thirteen possible directions in three dimensions.
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Figure 4. Calculating a GLCM for horizontal co-occurring pixel intensities.  In total three co-occurring pixel intensities 
of 3 and 2 that are next to each other on a horizontal plane can be totalled and tracked in the corresponding matrix.

After features have been extracted from all the images in a database, a subset of features 
needs to be selected that go into the final model. To make a model generalisable, it 
is important to avoid finding spurious correlations in the data that do not generalise to 
other similar datasets, an occurrence termed overfitting [49–51]. If a model has learned 
to recognize noise, outliers, or other kinds of variance, it is unlikely to perform well when 
presented new data. The larger the number of predictors, the larger the chance to find 
spurious correlations, a major problem in the realm of machine learning [52]. To detect 
overfitting, ideally, a model’s performance is validated in external datasets with similar 
population and outcome distributions, but from different centres -- if the model performs 
significantly better on the training set than on the validation set, overfitting is likely [53,54]. 
In the absence of an external validation dataset, data can be split into different subsets, 
and the model trained in one group and validated on the other(s) in a process called cross-
validation (see Figure 4)[55]. During this process, the model hyper-parameters (settings 
within the model itself, e.g. degree of polynomial fitting) can be further tuned to increase 
performance in the training and validation sets [56].

Figure 5. An example of fivefold cross-validation which can be used to evaluate machine learning models. Cross-
validation gives the ability to test the result across the entirety of a dataset, giving a better estimation of a model’s 
overall performance.
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A method to overcome overfitting is to reduce the number of predictors, in this case, imaging 
features.   Feature selection is the process of reducing the number of predictors while 
retaining the core important information that correlates with outcomes or the underlying 
biology [32]. Many feature reduction methods exist, but none are known to work well on all 
kinds of datasets, and they can be combined in many ways [32]. This remains an active field 
of research [57]. Similar features can also be grouped to achieve dimensionality reduction, 
and methods such as principal component analysis and independent component analysis 
are employed to this end [58].

Once features are selected, the task is to correlate these features -  individually or in groups 
-  to diagnostic and prognostic outcomes or to the underlying biology. There are numerous 
methods to find and test such models, from simple linear regression and curve-fitting to 
advanced machine learning methods such as decision trees, support vector machines (SVM), 
random forests, boosted trees, or neural networks [59]. Ensembling is the combination of 
models that get trained on random samples of data from the training set called bags and 
then combined as a whole using a voting system. This is the basis for algorithms such as 
Random Forests, AdaBoost, and Gradient Boosting [60]. An intuitive explanation is that even 
though the individual models can show a large amount of variance due to being trained 
on small subsets of the data, their averaging or voting smooths out the variance while 
improving the ability to better generalise [60].

Once a generalisable model has been trained and externally validated, it might be desirable 
to expand the interoperability of the model to all hardware, acquisition, and reconstruction 
parameters found in general clinical practice. Instead of relying on the standardisation 
of images, the features themselves can be harmonized to a common frame-of-reference 
using combined batch methods such as ComBat [44,60,61], originally developed for similar 
problems encountered in gene sequencing assays [62]. 

Deep learning for fully automated workflows

Artificial neural networks (ANN) are a class of machine learning architecture that are loosely 
based on how biological brains work [63]. With the exception of unsupervised learning 
(such as autoencoders), deep learning architectures usually rely on information regarding 
the outcome in order to craft their features, and unlike in handcrafted radiomics,  feature 
extraction and correlation are intertwined [64]. Also, unlike radiomics, there is generally 
no need for image segmentation, as the whole image can be presented to a deep learning 
model, both during training and in clinical routine.

An ANN is able to use a collection of neurons and weights, one for each of the inputs preceding 
the neuron [65]. These weights get continuously updated, or corrected, in steps called epochs 
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that work together to create a very complex function able to make predictions. The weights 
are inputs for each neuron and are multiplied and averaged, resulting in a transfer function, 
which is converted to an output via a function called an activation function [66]. These 
activation functions are often a sigmoidal function such as a hyperbolic tangent or sigmoid, 
or a function called a rectified linear unit (ReLU) that can be represented as the maximum of 
the product of the coefficient and zero or one. A representation of a single neuron, including 
the activation function, can be seen in Figure 6 [67]. Multiple neurons can then be stacked 
to create a single layer referred to as a “hidden layer” and hidden layers (were inputs and 
outputs all connect) can be stacked to create larger networks, see Figure 7 [65]. The term 
deep learning is used to describe a neural network that has many layers, which is considered 
deep. For a binary classifier or regression, the final layer should contain only a single neuron 
and use a sigmoid activation function to make a prediction with a binary outcome (zero 
or one). If the problem is categorical, the network’s final layer should contain the same 
number of neurons as there are categories to be classified and the final activation will be 
a “softmax” function, which is the average of the exponentials of the inputs [68], yielding 
the probabilities of each category. Deep learning for image vision employs convolutional 
neural networks (CNN) which are a type of ANN that have an automated feature extractor 
designed specifically for images [69]. CNNs employ a filtering technique, which convolves 
the image with a kernel (sliding window), creating a new pixel/voxel value (and hence new 
image) by sliding a matrix of numbers over the image, see Figure 8. It is possible to make 
a variety of different filters using these types of convolutions, such as blurring, sharpening, 
edge detection, and gradient detection [69,70], and CNNs are able to learn filters that are 
best suited to extracting features needed for making predictions.

Figure 6. The architecture of a single neuron with a transfer function and a sigmoid activation function visualised.
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Figure 7. A three-layer neural network that is a binary classifier with three inputs. Nodes with Xn refer to inputs 
while other nodes refer to activation functions. The connecting lines between the nodes represent weights.

Figure 8. A filter that is able to filter out vertical lines. The yellow lines represent the kernel or sliding window, 
while the image on the right is the result of performing convolutions across the entirety of the original image.

ANNs do have some drawbacks compared to using hand crafted features alongside other 
machine learning techniques. The main drawback is the intrinsic need for much larger 
datasets to train the models, since feature creation is contingent on the training data, as 
opposed to handcrafted radiomics. Another drawback to using ANNs is interpretability. 
ANNs build ultra-complex functions that can be extremely difficult for practitioners to make 
sense of. Although CNNs have performed very well in image recognition, they have been 
less successful learning texture features, since texture information inherently has a higher 
dimensionality compared to other types of datasets, making them more difficult for neural 
networks to master [69,71]. According to Basu et al (2018), a redesign of neural network 
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architectures is required to extract features in a similar manner as GLCM and other features 
based on spatial correlation.  

Currently, the main application of deep learning in the radiomics workflow still lies in the 
automated detection and localization of organs and lesions, removing the major burden in 
dataset curation.  While there is no algorithm that can solve every problem, deep learning 
still has its place and is able to work as additional methods for delineation and feature 
extraction that compliments handcrafted radiomics. There is active research in combining 
both deep learning features and radiomics features that shows improved results [72–74]. 

Potential Clinical Applications

Radiomics in Oncology
Radiomics has been widely studied for application in diagnosis and treatment prognosis/
selection in oncology, primarily due to the existence of large imaging datasets used for 
staging, often containing delineations of tumours and organs at risk necessary for radiation 
treatment planning. These datasets can be used to train diagnostic and prognostic models 
for a variety of cancer types and sites. Using clinical reports, pathology/histology, and 
genetic information along with radiomics analysis can give a global outlook on the biology 
of the disease [48]. In this section, an overview of notable studies published in this area will 
be discussed.

Lung:
Lung cancer is by far the leading cause of cancer-related deaths among both men and women 
worldwide [75]. Recent studies have shown that radiomics can determine the risk of lung 
cancer from screening scans [76–78]. Radiomic features found to have a strong association 
to decode tumour heterogeneity for risk stratification [79,80], concluding that patients with 
heterogeneous tumours tend to have a worse prognosis. In addition to that, Yoon et al. 
were able to show the association of radiomic analysis with gene expression [81]. Radiomic 
features were also found to correlate with TNM staging for lung and head-and-neck cancer 
[31,82]. Later studies further validated the strong predictive power of radiomics for distant 
metastasis [83–85].

Radiomics may also play a role in lung cancer treatment planning by evaluating tumour 
response to a specific treatment. Several studies focused on analysing the tumour 
response to radiation therapy [86,87]. For instance, Mattonen et al. developed a radiomics 
signature for treatment response to  stereotactic ablative radiation therapy that was able 
to predict lung cancer recurrence post-therapy [86], while Fave et al. used multiple time 
point information referred to as delta-radiomic analysis to evaluate the change of radiomic 
features as a predictor for tumour response to radiation therapy [87]. The results suggest 
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that delta radiomic features are in fact a good indicator of treatment response. Another 
interesting study by Mattonen et al.   found that radiomic analysis can identify features 
associated with local recurrence of lung cancer after radiation therapy [88], while physicians 
usually have great difficulty to distinguish local recurrence from radiation-induced sequelae. 

Besides the traditional handcrafted feature extraction approach followed in the radiomics 
pipeline, deep learning radiomics is also gaining popularity among researchers. A deep 
learning-based approach followed by Shen et al. yielded more accurate malignancy prediction 
of nodules compared to previous methods [89]. Pham et al. used a two-step deep learning 
approach for evaluating lymph node metastases with accurate cancer detection [90]. Instead 
of using data from a single time point, deep recurrent convolutional network architectures can 
be used to analyse data from multiple time points to monitor treatment response [91].

Brain:
Brain tumours are usually graded based on clinical or pathological analysis to define 
their malignancy. Radiomics may be able to non-invasively perform grade assessment, as 
reported by Coroller et al. in meningioma patients, suggesting a strong correlation between 
certain imaging features and histopathologic grade [92]. Zhang et al. were able to classify 
between low-grade gliomas and high-grade gliomas with high accuracy [93]. Chen et al. 
investigated the prediction of  brain metastases (BM) in T1 lung adenocarcinoma patients 
and found that the predictive performance for the radiomics model was significantly better 
compared to clinical models and could potentially be used for BM screening [94]. Fetit et al. 
performed radiomic analysis for the classification of brain tumours in childhood suggesting 
that radiomics can aid in the classification of tumour subtype [95]. However, the scalability 
of the techniques used in these studies needs to be assessed further by extensions to 
multicentric cohorts using different acquisition protocols and vendors.  

Radiation therapy can lead to necrosis, which is difficult to distinguish from tumour 
recurrence on imaging. Larroza et al. were able to develop a high classification accuracy 
model to distinguish between brain metastasis and radiation necrosis using radiomic analysis 
[96]. Some radiomic studies successfully investigated the treatment response in recurrent 
glioblastoma patients with a radiomics approach [97–99]. An iterative study by radiomic 
researchers found strong evidence of radiomic features in predicting survival and treatment 
response of patients with glioblastoma using pre-treatment imaging data [100–102]. 

Deep learning has also made some other interesting contributions in this area. Chang et al. 
used residual deep convolutional network for predicting the genotype in grade II-IV glioma 
with high accuracy [103]. Deep learning can also be used complementary to traditional hand 
crafted radiomics studies. For example, studies [72,73] focused on using deep networks for 
segmentation, followed by radiomics analysis for survival prediction. 
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Breast:
Among women, breast cancer is the second leading cause of death for cancer worldwide 
[75]. However, earlier diagnosis can lead to a better prognosis. Radiomics in the field of 
breast cancer has been applied to several imaging modalities including (PET)-MRI, (contrast-
enhanced) mammography, ultrasound, and digital breast tomosynthesis (DBT) focusing 
on tumour classification, molecular subtypes, tumour response prediction to neoadjuvant 
systemic therapy (NST), lymph node metastasis, overall survival, and recurrence risks. For 
example, a large number of radiomics studies have been used for the prediction of malignant 
breast cancers [104–107]. Besides the prediction of tumour malignancy, several radiomics 
studies examined the prediction of breast cancer molecular subtypes with the aim of leaving 
out liquid biopsies in the future [108–111]. Lymph node metastasis identification is an 
important prognostic factor and often determines treatment. In all clinically node negative 
patients, a sentinel lymph node procedure is the basis of the axillary treatment [112]. Dong 
et al. was able to provide an alternative to this invasive approach by successfully applying 
radiomics for the prediction of lymph node metastasis in the sentinel lymph node using 
imaging data [113]. 

In addition to the prediction of breast tumour malignancy, tumour molecular subtypes 
and sentinel lymph node metastasis identification, radiomics studies have also made 
some significant contributions to treatment planning. Chan et al. investigated the power 
of radiomics to discriminate between patients with low and high treatment failure risk on 
pre-treatment imaging data [114]. There are multiple studies that predict tumour response 
to neoadjuvant systemic therapy using radiomic analysis. For instance, Braman et al. found 
a combination of intratumoural and peritumoural radiomics features as a robust and strong 
indicator for pathologic complete tumour response using pre-treatment imaging data 
[115]. Two other studies [116,117] found similar evidence on serial imaging data containing 
follow-up scans. The use of multiparametric MRI for the prediction of tumour response to 
NST showed promising results [118,119]. 

Deep learning approaches have also been adopted in breast cancer research. The study of 
Huynh et al. investigated tumour classification capacity of deep features extracted from 
convolutional networks trained on a different dataset to analytically extracted features 
[120]. The results suggested a higher performance of deep features. Similarly, another study 
[121], used deep learning for risk assessment and found higher performance compared to 
conventional texture analysis. 

Other sites and diseases
While cancers of the lung, brain, and breast have received wide attention from the 
radiomics research community, any site is open to QIA research. Diagnostic and prognostic 
radiomics research is ongoing for cancers of the head and neck [122], ovaries [38], prostate 
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[123], kidney [124], liver [125], colon and rectum [126], and many other sites. The main 
requirements for a radiomics study are the presence of a radiologic phenotype which 
allows for the clustering of patients based on differences within that phenotype or some 
correlation to the underlying biology, and the availability of imaging and clinical data. While 
not nearly as prevalent [127], this has meant that non-oncological diseases which require 
medical imaging as part of the standard of care have also been the subject of radiomics 
analysis, such as in the fields of neurology [35], ophthalmology [128], and dentistry [129].

Limitations of radiomics and future directions towards precision medicine

While radiomics facilitates new possibilities in the field of personalised medicine, some 
challenges remain. One of the primary obstacles is the lack of big and standardised clinical 
data. Although large amounts of medical imaging data are stored, these data are dispersed 
across different centres and acquired using different protocols. Access for research purposes 
is highly restricted by law and ethics. An exhaustive data curation and harmonization 
process is still necessary to make it usable for research. Radiomics will potentially enable 
imaging-based clinical decision support systems, however, the current black box approach, 
particularly in deep learning, makes it less acceptable for clinical application. In certain 
cases, hand crafted radiomic features have already been correlated with biological processes 
[130–132], but it is essential to work further in the direction of interpretable AI to make it 
more accessible for clinical implementation [33]. 

In recent years, various countries have already adopted many measures to control variability 
in clinical trial protocols, data acquisition, and analysis [133,134]. For example, across 
Europe consistent protocol guidance was adopted with the help of European Association of 
Nuclear Medicine [135]. The Quantitative Imaging Biomarker Alliance initiative also aims to 
achieve the same task in a much broader level [136,137]. On the other hand, algorithmically, 
developments in deep learning allow for automated quality check, clustering of data, and 
automated detection and contouring of organs and lesions, vastly improving data curation 
times. Generative adversarial networks open up the possibility of generating synthetic data 
[138] or domain adaptive algorithms [139,140] might be able to deal with the shortage of 
standardized data. Techniques like distributed learning provide the ability to train machine 
learning models using distributed data without the data ever leaving their original locations. 
Distributed learning has already been applied across several medical institutions to build 
predictive and segmentation models [141–144]. Furthermore, this approach can be coupled 
with other technologies such as blockchain to trace back data provenance and monitor the 
use of the final models [145].  Various techniques to visualize deep features have already 
been put forward by researchers to generate an intuitive understanding. A completely new 
research area of Artificial Intelligence called explainable AI aims to track the decisions made 
by the intelligent algorithms so that it can be better understood by humans. Companies 
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like Google, IBM, Microsoft and Facebook are at the forefront in this research. This will not 
only helps to build trust of AI systems among medical professionals but also unlocks new 
possibilities in understanding a disease [146,147]. 

The implementation of precision medicine itself has its own limitations and has drawn 
criticism due to the lack of a “transformation in therapeutic medicine” in the last two 
decades [148]. So far life expectancies or other public health measures have not shown 
any dramatic improvements, regardless of the vast amounts of precision medicine research 
being conducted. Contentious points remain such as excessive costs (e.g. gene therapy), 
although new developments such as radiomics promise to reduce costs in the long run. 
Furthermore the diagnostic and prognostic power of complex “omics-driven” models is 
still to be determined in specific populations, and evidence needs to be produced that 
such methods improve health outcomes [149]. Precision medicine is likely to mature and 
translate to clinical workflows over the next decade and will change the way health services 
are delivered and evaluated. Healthcare systems will need to adjust their methods and 
processes to accommodate for these changes. 

Conclusion

Radiomics, whether handcrafted or deep, is an emerging field that translates medical 
images into quantitative data to give biological information and enable phenotypic profiling 
for diagnosis, theragnosis, decision support, and monitoring. Radiomics, in essence, allows 
personalised care by identifying features or signatures correlated with a disease or a 
treatment response with high precision and in a non-invasive way. Recent developments in 
genomics and deep learning have pushed radiomics researchers to focus more on extracting 
deep features and explore new possibilities in artificial intelligence modelling. In the future, 
radiomics will be a valued addition to precision medicine workflows by facilitating earlier 
and more accurate diagnosis, providing prognostic information, aiding in treatment choice, 
monitoring disease and treatment non-invasively, and enabling routine dynamic treatment 
based on individual responses. But the road to this vision is long, and many technical, 
regulatory, and ethical problems still need to be solved. 
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Abstract

Radiomics – the high throughput extraction of quantitative features from medical images 
and their correlation with clinical and biological endpoints- is the subject of active and 
extensive research. Although the field shows promise, the generalizability of radiomic 
signatures is affected significantly by differences in scan acquisition and reconstruction 
settings. Previous studies reported on the sensitivity of radiomic features (RFs) to test-retest 
variability, inter-observer segmentation variability, and intra-scanner variability. A framework 
involving robust radiomics analysis and the application of a post-reconstruction feature 
harmonization method using ComBat was recently proposed to address these challenges. In 
this study, we investigated the reproducibility of RFs across different scanners and scanning 
parameters using this framework. We analysed thirteen scans of a ten-layer phantom that 
were acquired differently. Each layer was subdivided into sixteen regions of interest (ROIs), 
and the scans were compared in a pairwise manner, resulting in seventy-eight different 
scenarios. Ninety-one RFs were extracted from each ROI. As hypothesized, we demonstrate 
that the reproducibility of a given RF is not a constant but is dependent on the heterogeneity 
found in the data under analysis. The number (%) of reproducible RFs varied across the 
pairwise scenarios investigated, having a wide range between 8 (8.8%) and 78 (85.7%) 
RFs. Furthermore, in contrast to what has been previously reported, and as hypothesized 
in the robust radiomics analysis framework, our results demonstrate that ComBat cannot 
be applied to all RFs but rather on a percentage of those – the “ComBatable” RFs – which 
differed depending on the data being harmonized. . The number (%) of reproducible RFs 
following ComBat harmonization varied across the pairwise scenarios investigated, ranging 
from 14 (15.4%) to 80 (87.9%) RFs, and was found to depend on the heterogeneity in 
the data. We conclude that the standardization of image acquisition protocols remains 
the cornerstone for improving the reproducibility of RFs, and the generalizability of the 
signatures developed. Our proposed approach helps identify the reproducible RFs across 
different datasets.

Keywords: Radiomics, Harmonization, Feature stability, Feature reproducibility
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Introduction

With the advancement and involvement of artificial intelligence in performing high-level 
tasks, its application has been extensively researched in the field of medical imaging analysis 
[1]. Radiomics – the high throughput extraction of quantitative features from medical 
imaging to find correlations with biological or clinical outcomes [2-4] – is currently one of 
the most commonly used quantitative imaging analysis methods in medical imaging.

A major area of research in the field of radiomics is the selection of robust and informative 
image features to be used as input for machine learning models [5]. Evidence suggests 
that radiomic features (RFs) are sensitive to differences in several factors, including make 
and type of imaging scanner, reconstruction settings, and protocols used to acquire the 
images [6, 7]. Studies on the reproducibility of RFs across test-retest [8, 9]; or across scans 
of a phantom made on the same scanner using different exposure levels, while fixing other 
parameters [10]; or across scans of a phantom using different acquisition and reconstruction 
parameters [11] highlighted the high sensitivity of RFs to variations within datasets. 

The above-mentioned studies focused on the reproducibility of RFs in limited settings, 
such as test-retest, inter-observer variability, and intra-scanner variability. As these studies 
reported significant differences in groups of RFs, it is only intuitive that adding more 
variation to image acquisition and reconstruction will further dampen the reproducibility of 
RFs. These findings indicate that ignoring data heterogeneity will influence the performance 
and generalizability of the models developed, especially in studies where training and 
validation sets are independent. Therefore, a global initiative – the Image Biomarkers 
Standardization Initiative (IBSI) – has been initiated in an effort to standardize the extraction 
of image biomarkers (RFs) from medical images [12]. The IBSI aims to standardize both the 
computation of RFs and the image processing steps required before RF extraction. However, 
little attention has been paid in the bulk of literature to date to the heterogeneity in image 
acquisition and reconstruction when performing radiomics analysis. As the goal of radiomics 
research is to employ quantitative imaging features as clinical biomarker, the issue of 
accurate measurement and reproducibility must be addressed [13]. Biomarkers are defined 
as “the objective indications of medical state observed from outside the patient – which 
can be measured reproducibly”. Therefore, reproducible measurement is a corner stone in 
choosing a biomarker. In essence, RFs that cannot be reproduced cannot be compared or 
selected as biomarkers.

Combining Batches (ComBat) harmonization is a method that was introduced for removing 
the effects of machinery and protocols used to extract gene expression data, in order to 
make gene expression data acquired at different centres comparable [14]. ComBat is a 
method that performs location and scale adjustments of the values presented to remove 
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the discrepancies in RF values introduced by technical differences in the images. These 
sources of variation are further referred to as batch effects. ComBat was subsequently 
adopted in radiomics analysis, and some studies reported that ComBat outperforms other 
harmonization methods (e.g, histogram-matching, voxel size normalization, and singular 
value decomposition) in radiomics analyses [15, 16]. Several radiomics studies have reported 
on the successful application of ComBat in removing the differences in RFs introduced 
by different vendors and acquisition protocols [17-21]. These studies investigated the 
differences in radiomic RF distributions across different batches following the application 
of ComBat harmonization. In contrast to gene expression arrays, RFs have different 
definitions, and the batch effect might vary for each RF. Using phantom data allows one to 
study the variations in a given RF extracted from scans acquired with different scanners/
reconstruction settings and to attribute these variations to the changes in acquisition and 
reconstruction, which in theory ComBat harmonization is designed to mitigate. However, we 
are not aware of any study that has performed a systematic evaluation of the performance 
of ComBat harmonization across variations between imaging parameters, which is the one 
of the objectives of this study.

Ibrahim et al. (2020) have proposed a new radiomics workflow (Fig 1) that tries to address 
the challenges current radiomics analyses face. The framework was proposed based on 
mathematical considerations of the complexity of medical imaging, and RFs’ mathematical 
definitions. Our framework is based on the hypothesis that the reproducibility of a given 
RF is a not constant, but depends on the variations of image acquisition and reconstruction 
in the data under study. Furthermore, for ComBat to be applicable in radiomics, radiomic 
RF values for a given region of interest obtained after ComBat must be (nearly) identical, 
regardless of differences in acquisition and reconstruction. 
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Figure 1. The proposed framework (reprinted with permission from [22]).
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Our general objective is to set-up the requirements for selecting biomarkers from RFs, 
to ease their incorporation into clinical decision support systems. We hypothesize that 
variations in image acquisition and reconstruction will variably affect RFs reproducibility. 
Furthermore, the performance of ComBat on a given RF is dependent on those variations, 
i.e, a given RF can be successfully harmonized with ComBat with specific variations in the 
imaging parameters but not others. We investigate these hypotheses on CT scans using a ten-
layer radiomics phantom, which was scanned with different acquisition and reconstruction 
parameters on various scanner models. 

Methods

Phantom Data
The publicly available Credence Cartridge Radiomics (CCR) phantom data, found in The 
Cancer Imaging Archive (TCIA.org) [23, 24], was used. The CCR phantom is composed of 
10 different layers that correspond to different texture patterns spanning a range of −900 
to +700 Hounsfield units (HU). Each layer of the phantom was further subdivided into 16 
distinct regions of interest (ROI) with cubic volume of 8 cm3, resulting in a total of 2080 
ROIs available for further analysis. The phantom was originally scanned using 17 different 
imaging protocols from four medical institutes using equipment from different vendors 
and a variety of acquisition and reconstruction parameters. Four of the scans lacked ROI 
definitions, thus to maintain consistency, these were not included. The remaining 13 scans 
are as follows: seven different scans acquired on GE scanners, five different scans acquired 
on Philips scanners, and one scan acquired on a Siemens scanner (Tables 1 and 2).

Table 2. CT reconstruction parameters*

Scan Convolution Kernel Filter Type Slice thickness (mm) Pixel spacing (mm)

CCR1-001 STANDARD BODY FILTER 2.5 0.49

CCR1-002 STANDARD BODY FILTER 2.5 0.70

CCR1-003 STANDARD BODY FILTER 2.5 0.78

CCR1-004 STANDARD BODY FILTER 2.5 0.98

CCR1-005 STANDARD BODY FILTER 2.5 0.98

CCR1-006 STANDARD BODY FILTER 2.5 0.98

CCR1-007 STANDARD BODY FILTER 2.5 0.74

CCR1-008 B B 3 0.98

CCR1-009 C C 3 0.98

CCR1-010 B B 3 1.04

CCR1-011 B B 3 1.04

CCR1-012 B B 3 0.98

CCR1-013 B31s 0 3 0.54

* Values are directly extracted from the publicly available imaging tags.
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Table 1. CT acquisition parameters*

Scan Vendor Model Scan Options Effective mAs** kVp

CCR1-001 GE Discovery CT750 HD HELICAL 81 120

CCR1-002 GE Discovery CT750 HD AXIAL 300 120

CCR1-003 GE Discovery CT750 HD HELICAL 122 120

CCR1-004 GE Discovery ST HELICAL 143 120

CCR1-005 GE LightSpeed RT HELICAL 1102 120

CCR1-006 GE LightSpeed RT16 HELICAL 367 120

CCR1-007 GE LightSpeed VCT HELICAL 82 120

CCR1-008 Philips Brilliance Big Bore HELICAL 320 120

CCR1-009 Philips Brilliance Big Bore HELICAL 369 120

CCR1-010 Philips Brilliance Big Bore HELICAL 320 120

CCR1-011 Philips Brilliance Big Bore HELICAL 369 120

CCR1-012 Philips Brilliance 64 HELICAL 372 120

CCR1-013 SIEMENS Sensation Open AXIAL 26-70 120

* Values are directly extracted from the publicly available imaging tags.

Radiomic features extraction
For each ROI, quantitative imaging features were calculated using the open source 
Pyradiomics (V 2.0.2). The software contains IBSI-compliant RFs, with deviations highlighted 
in the feature definitions. For the extraction step, no changes to the original slice thickness 
or pixel spacing of the scans were applied. To reduce noise and computational requirements, 
images were pre-processed by binning voxel greyscale values into bins with a fixed width of 
25 HUs prior to extracting RFs. The extracted features included HU intensity features, shape 
features, and texture features describing the spatial distribution of voxel intensities using 
5 texture matrices (i.e., grey-level co-occurrence (GLCM), grey-level run-length (GLRLM), 
grey-level size-zone (GLSZM), grey-level dependence (GLDM), and neighbourhood grey-tone 
difference matrix (NGTDM)). Detailed description of the features can be found online at 
https://pyradiomics.readthedocs.io/en/latest/features.html.

ComBat Harmonization
ComBat employs empirical Bayes methods to estimate the differences in feature values 
attributed to a batch effect. Empirical Bayes methods are able to estimate the prior 
distribution from a given dataset via statistical inference. In the context of radiomics, 
ComBat assumes that feature values can be approximated by the equation:

                                                    (1)

where α is the average value for feature Yij for ROI j on scanner i; X is a design matrix of 
the covariates of interest; β is the vector of regression coefficients corresponding to each 
covariate; γi is the additive effect of scanner i on features, which is presupposed to follow a 
normal distribution; δi is the multiplicative scanner effect, which is presupposed to follow an 
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inverse gamma-distribution; and εij is an error term, presupposed to be normally distributed 
with zero mean [17]. ComBat performs feature transformation based on the empirical Bayes 
prior estimates for γ and δ for each batch:

                                         (2)

where α and β are estimators of parameters α and β, respectively.γi and δi are the empirical 
Bayes estimates of γi and δi, respectively [17].

Statistical analysis
To assess the agreement of a given RF for the same ROI scanned using different settings and 
scanners, the concordance correlation coefficient (CCC) was calculated using epiR (version 
0.9-99) [25] on R [26] (version 3.5.1), using R studio (version 1.1.456) [27]. The CCC is used 
to evaluate the agreement between paired readings [28], and provides the measure of 
concordance as a value between 1 and -1, where 0 represents no concordance, 1 represents 
a perfect direct positive concordance, and -1 indicates a perfect inverse concordance. It 
further takes into account the rank and value of the RFs.

The analysis of the reproducibility before and after ComBat harmonization was performed 
in a pairwise manner, resulting in 78 different investigated scenarios. To assess differences in 
RF stability for differing data, the reproducibility of radiomics RFs across scans within a wide 
spectrum of scenarios was calculated. Data ranging from differences in a single acquisition 
or reconstruction parameter, to scans acquired using entirely different settings (See S1 table) 
were included. To identify reproducible radiomics, the CCC was calculated for all RFs for all 
ROIs across the 78 investigated scenarios. A cut-off of CCC>0.9, as found in the literature, 
suggests that a value < 0.9 indicates poor concordance [29].To identify the RFs that could 
be harmonized using ComBat, the pair-wise CCC was calculated following ComBat in each 
of the investigated 78 scenarios. We applied ComBat using R package “SVA” (version 3.30.1) 
[30]. As the RFs are calculated for the same ROI but for different scans, the agreement in RF 
value is expected to be high following ComBat harmonization. Thus, RFs that had a CCC<0.9 
were considered to be not harmonizable with ComBat. The code used in this work is publicly 
available on https://github.com/AbdallaIbrahim/The-reproducibility-and-ComBatability-of-
Radiomic-features.
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Results

Table 3. The number (percentage) of concordant RFs before ComBat harmonization between pair wise combinations 
of scans with different acquisition and reconstruction.

CCR1-001 CCR1-002 CCR1-003 CCR1-004 CCR1-005 CCR1-006 CCR1-007 CCR1-008 CCR1-009 CCR1-010 CCR1-011 CCR1-012

CCR1-002 38 
(41.76%)

CCR1-003 46 
(50.55%)

59 
(64.84%)

CCR1-004
18 

(19.78%)
34 

(37.36%)
25 

(27.47%)

CCR1-005 13 
(14.29%)

23 
(25.27%)

17 
(18.68%)

66 
(72.53%)

CCR1-006
16 

(17.58%)
24 

(26.37%)
18 

(19.78%)
71 

(78.02%)
69 

(75.82%)

CCR1-007 49 
(53.85%)

65 
(71.43%)

67 
(73.63%)

21 
(23.08%)

14 
(15.38%)

14 
(15.38%)

CCR1-008
8 

(8.79%)
12 

(13.19%)
14 

(15.38%)
41 

(45.05%)
34 

(37.36%)
47 

(51.65%)
10 

(10.99%)

CCR1-009 9
 (9.89%)

19 
(20.88%)

13 
(14.29%)

67 
(73.63%)

65 
(71.43%)

74 
(81.32%)

11 
(12.09%)

48 
(52.75%)

CCR1-010
8 

(8.79%)
10 

(10.99%)
13 

(14.29%)
32 

(35.16%)
21 

(23.08%)
27 

(29.67%)
11 

(12.09%)
59 

(64.84%)
34 

(37.36%)

CCR1-011 8 
(8.79%)

11 
(12.09%)

12 
(13.19%)

45 
(49.45%)

34 
(37.36%)

42 
(46.15%)

11 
(12.09%)

57 
(62.64%)

52 
(57.14%)

78 
(85.71%)

CCR1-012
8 

(8.79%)
13 

(14.29%)
12 

(13.19%)
21 

(23.08%)
16 

(17.58%)
22 

(24.18%)
10 

(10.99%)
61 

(67.03%)
36 

(39.56%)
71 

(78.02%)
69 

(75.82%)

CCR1-013 51 
(56.04%)

44 
(48.35%)

47 
(51.65%)

41 
(45.05%)

34 
(37.36%)

32 
(35.16%)

48 
(52.75%)

12 
(13.19%)

23 
(25.27%)

10 
(10.99%)

9
 (9.89%)

10 
(10.99%)

Reproducible Radiomic features

For each ROI, a total of 91 RFs were extracted. The number (percentage) of reproducible 
RFs in each pair-wise comparison ranged from 9 (8.8%) to 78 (85.7%) RFs, depending on the 
variations in acquisition and reconstruction of the scans (table 3). The highest concordance 
in feature values (85.7%) was observed between the two Philips scans (CCR1-010 and CCR1-
011) that were acquired using the same scanner model, and the same acquisition and 
reconstruction parameters except for the effective mAs, which differed by just 15% (tables 
1 and 2). 

The more profound the variations in scan acquisition parameters, the smaller the 
concordance of the extracted RFs (tables 1-3, S1).

As stated, in the best scenario (CCR1-010 and CCR1-011), 78 (85.7%) RFs were found to 
be reproducible, while 13 (14.3%) RFs were found not to be reproducible. Some RFs (n=8) 
were found to be concordant across all pairs. These RFs were histogram-based RFs that take 
into account the value of a single pixel/voxel, without looking at the relationship between 
neighbouring pixels/voxels. These RFs are (i) original first order 10Percentile; (ii) original 
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first order 90Percentile; (iii) original first order Maximum; (iv) original first order Mean (v) 
original first order Median; (vi) original first order Minimum; (vii) original first order Root 
Mean Squared; and (viii) original first order Total Energy. Nevertheless, the remainder 
(majority) of the RFs (including 10 histogram-based RFs) were not found to be reproducible 
across all pairs. 

Looking at tables (1-3, S1), we can consider subgroups of scans. Scans CCR1-001-007 were 
all acquired using the same imaging vendor (GE), but different scanner models and scanning 
parameters. The highest number of concordant RFs in this group was found between CCR1-
004 and CCR1-006 (71 RFs), which were acquired on two different scanner models, but 
were scanned with identical scanning parameters except for the mAs. The lowest number 
of concordant RFs in this group was found between scans CCR1-001 and CCR1-005 (13 RFs), 
which were acquired on two different scanner models, with the same scanning parameters 
except for the pixel spacing and mAs. Scans CCR1-007 to CCR1-012 were all acquired using 
one of two Philips imaging vendors. The highest number of concordant RFs is documented 
above. The lowest number of concordant RFs was found between CCR1-009 and CCR-010 
(34 RFs), which differed in terms of the mAs, convolution kernel, filter type and pixel spacing. 
Looking at the group of scans that were reconstructed to the same pixel spacing (CCR1-
004 to CCR1-006, CCR1-008, CCR1-009, and CCR-012), the highest number of concordant 
RFs was observed between CCR1-006 and CCR1-009 (74 RFs), which were acquired using 
two different imaging vendors, but using similar acquisition and reconstruction parameters 
except for the slice thickness, and kernel. The lowest number of concordant RFs was found 
between CCR1-005 and CCR1-012 (16 RFs), which were acquired using different imaging 
vendors, and different acquisition and reconstruction parameters except for the kVp. Finally, 
comparing scans acquired with different vendors resulted in a lower number of concordant 
RFs compared to scans acquired with the scanners from the same imaging vendor, except for 
the scenario when the majority of acquisition and reconstruction parameters were mostly 
identical (CCR1-006 vs CCR1-009). 
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ComBat harmonization

Table 4. The number (percentage) of concordant RFs after ComBat harmonization between pair wise combinations 
of scans with different acquisition and reconstruction.

CCR1-001 CCR1-002 CCR1-003 CCR1-004 CCR1-005 CCR1-006 CCR1-007 CCR1-008 CCR1-009 CCR1-010 CCR1-011 CCR1-012

CCR1-002 63 
(69.23%)

CCR1-003 69 
(75.82%)

75 
(82.42%)

CCR1-004
48 

(52.75%)
72 

(79.12%)
57 

(62.64%)

CCR1-005 43 
(47.25%)

60 
(65.93%)

54 
(59.34%)

72 
(79.12%)

CCR1-006
50 

(54.95%)
63 

(69.23%)
59 

(64.84%)
76 

(83.52%)
72 

(79.12%)

CCR1-007 70 
(76.92%)

69 
(75.82%)

74 
(81.32%)

56 
(61.54%)

49 
(53.85%)

57 
(62.64%)

CCR1-008
27 

(29.67%)
36 

(39.56%)
36 

(39.56%)
61 

(67.03%)
54 

(59.34%)
56 

(61.54%)
28 

(30.77%)

CCR1-009 40 
(43.96%)

57 
(62.64%)

53 
(58.24%)

76 
(83.52%)

74 
(81.32%)

81 
(89.01%)

52 
(57.14%)

57 
(62.64%)

CCR1-010
18 

(19.78%)
22 

(24.18%)
19 

(20.88%)
54 

(59.34%)
48 

(52.75%)
48 

(52.75%)
17 

(18.68%)
68 

(74.73%)
53 

(58.24%)

CCR1-011 14 
(15.38%)

23 
(25.27%)

25 
(27.47%)

67 
(73.63%)

59 
(64.84%)

59 
(64.84%)

16 
(17.58%)

65 
(71.43%)

67 
(73.63%)

80 
(87.91%)

CCR1-012
16 

(17.58%)
29 

(31.87%)
28 

(30.77%)
56 

(61.54%)
48 

(52.75%)
49 

(53.85%)
16 

(17.58%)
70 

(76.92%)
53 

(58.24%)
72 

(79.12%)
74 

(81.32%)

CCR1-013 65 
(71.43%)

75 
(82.42%)

69 
(75.82%)

65 
(71.43%)

55 
(60.44%)

59 
(64.84%)

67 
(73.63%)

35 
(38.46%)

58 
(63.74%)

35 
(38.46%)

36 
(39.56%)

34 
(37.36%)

As previously shown in the literature, we used each scan as a different batch in the ComBat 
equation. ComBat was applied pairwise (78 different pairs) and the concordance between 
RFs was measured for each pair (table 4). The percentage of RFs that became concordant 
following ComBat application ranged from 1.4% (71 concordant RFs increased to 72) to 
344% (9 concordant RFs increased to 40). 

The highest number of concordant RFs following ComBat application was 80 (87.9%) RFs. 
In this scenario, a single acquisition parameter differed between the two scans (Philips, 
CCR1-010 and CCR1-011). ComBat application improved the concordance of only two RFs 
(80 RFs after ComBat compared to 78 RFs before), and failed to improve the concordance 
of the remaining 11 RFs. On the other hand, in cases where the differences in acquisition 
and reconstruction parameters differed more (e.g., CCR1-001 (GE) vs CCR1-007 (Philips)), 
the application of ComBat improved the concordance of 31 RFs, resulting in a total of 
40 concordant RFs (~44% of the total number of RFs), more than 3 times the number of 
concordant RFs before harmonization. Furthermore, the successful application of ComBat 
on RFs depended on the variations in the batches defined. Only two RFs were found to be 
concordant in all pairwise scenarios following ComBat harmonization: (i) original first order 
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Energy; and (ii) original gldm Small Dependence High Gray Level Emphasis; in addition to the 
8 RFs mentioned above.

Discussion

In this work, for our first objective to investigate RFs reproducibility, we show that the 
majority of RFs are affected to different amounts depending upon the variations in 
acquisition and reconstruction parameters. We also show that the reproducibility of a given 
RF is not constant, but rather it is dependent on the variations in the data under study, as 
seen in table 3. We identified a number of RFs that were robust to the variations in scan 
acquisition in the dataset we analysed. These RFs could be used without any post–processing 
harmonization. While the same dataset has been analysed for similar purposes previously 
[11, 21], we analysed the data differently, and report different results than those studies. 
Our results show a substantial intra-scanner variability, and even greater inter-scanner 
variability, which is in line with other previous findings [10, 31, 32]. Only eight RFs (~9%) 
of the extracted RFs showed insensitivity to the differences in acquisition shown in tables 
1 and 2, and could be directly used to build radiomic signatures. The rest of the RFs (91%) 
could not be used without addressing the acquisition differences. Our sub-groups analysis 
showed that changes in pixel spacing and convolution kernel have more profound effects 
on the reproducibility of RFs, compared to variations limited solely to the effective mAs, 
scanner model or imaging vendor used. While the percentages reported are representative 
of the reproducibility of RFs in the data analysed, it highlights the sensitive nature of RFs, 
and helps set guidelines to preselect meaningful and reproducible RFs. We deduce that the 
use of RFs extracted from scans acquired with different hardware and parameters, without 
addressing the issue of reproducibility and harmonization, can lead to spurious results as 
the vast majority of RFs are sensitive to even minor variations in image acquisition and 
reconstruction. Therefore, models developed using RFs with large unexplained variances 
will most likely not be generalizable. 

As our second aim, we investigated the applicability of ComBat harmonization to removing 
differences in RF values attributed to batch effects. Studies [11, 21] have reported on the 
reproducibility of RFs on the same or a similar dataset to the one we analysed. However, 
our findings and conclusions vary significantly from theirs. In contrast to previous studies, 
we are the first to report that the reproducibility of RFs is dependent on the variations in 
the data under analysis. Previous studies referred to RFs as generally reproducible or non-
reproducible. Our analysis shows that a given RF can be reproducible in some scenarios and 
not in the others, depending on the variations in acquisition and reconstruction parameters. 
Moreover, ComBat was mathematically defined to remove one (technical) batch effect at a 
time while considering all the biologic covariates at the same time. However, as our results 
show (tables 3 and 4), the variations in acquisition and reconstruction parameters within 
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one scanner, at least in some instances, have a stronger impact on the reproducibility of 
RFs than the variations between two scanners. As such, grouping the scans by the scanner 
type is not generally the way to define “batches” in the ComBat equation [14]. In contrast 
to what is reported in the literature, our analysis shows ComBat did not perform uniformly 
on most of the RFs when there were variations in the batches being harmonized. In contrast 
to those studies, we employed the concordance correlation coefficient (CCC) to assess the 
reproducibility of RFs, since the aim of harmonization is to improve the reproducibility of 
data. We did not use the increment of model performance as a measure for the success 
of harmonization for several reasons. First, the aim of harmonization is to improve the 
reproducibility of RFs, and ultimately the generalizability of the developed signatures, and 
not their model performance [33]. Second, by assuming that an increment in the model 
performance following harmonization is an indication that the harmonization is successful 
carries with it the assumption that radiomic models decode the information under analysis; 
this is against the essence of the study, which is to investigate whether radiomics has that 
potential or not. However, by using the CCC, we ensure that the results generated are based 
on reproducible RFs, and are therefore generalizable, regardless of the change in model 
performance. Furthermore, the aim of ComBat harmonization is only to remove the variance 
in RF values attributed to the batch effects, while maintaining the biologic information. As 
such, using ComBat to correct batch effects directly on patient data without providing the 
correct biological covariates that actually do have an effect on RF values will lead to loss 
of biological signals. This is because ComBat tries to harmonize the distribution of the RF 
across different batches, and without providing the correct biological covariates that have 
effects on RF values, ComBat assumes that the variations in RF value are only attributed to 
the defined batch, and thus would not perform uniformly as shown in table 3. In clinical 
settings, this is by default spurious, as the differences in RF values are attributed to both the 
machine and the biology/physiology. As the aim of radiomics studies is to investigate the 
biological correlations of RFs, we are unable to actually provide a list of biologic covariates 
that influence the values. In addition, each time an observation is added to the data being 
harmonized, ComBat has to be re-performed, and models have to be refitted, as the 
estimated batch effects will change each time. Therefore, the harmonization of patient RFs 
should follow the process of estimating fixed batch effects on phantom data, then applying 
the location/scale shift estimated from the phantom data on patient data, as previously 
described by Ibrahim et al [22]. 

The pairwise approach we used shows how the variations in scan acquisition and 
reconstruction parameters affect the reproducibility of RFs. Therefore, aside from probably 
a few RFs, the reproducibility of the majority of the RFs cannot be guessed in untested 
scenarios. The workflow (figure 1) addresses this problem by introducing the assessment 
of RF reproducibility on representative phantom data. This workflow differs from existing 
radiomics workflows by the addition of an intermediary RF pre-selection step between RF 
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extraction and RF selection by one of two approaches: (i) only extracting the reproducible 
RFs for analysis; (ii) extracting and harmonizing the ‘ComBatable’ RFs before RF selection and 
model building. The application of ComBat and the definition of what constitutes a ‘batch’ 
should be performed based on the data being analysed, as could be deduced from tables 
3 and 4. For example, RFs extracted from scans acquired with different scanner models, 
but similar settings were found to be more concordant than RFs extracted with the same 
scanner model but with profound differences in acquisition and reconstruction parameters.  
Our proposed radiomics analysis workflow would ensure that the RFs being analysed are 
not affected by scan acquisition differences, and henceforth, signatures built would be more 
robust and generalizable. The first part of the model (steps 1-4), where only reproducible 
RFs are extracted and further analysed, might significantly limit the number of RFs used 
for further modelling. However, using the whole framework may significantly increase the 
number of RFs that can be used, depending on the data under study.

While the data used for this analysis are not representative of diagnostic clinical protocols 
and do not provide all technical details needed for proper analysis, our aim was to show 
that changes in scan acquisition and reconstruction parameters differently affect the 
majority of RFs. The variations in the reproducibility of RFs – as well as ComBat applicability 
– due to the heterogeneity in acquisition and reconstruction highlight the necessity of the 
standardization of image acquisition and reconstruction across centres. RFs have already 
been reported to be sensitive to test-retest [8, 34], which is the acquisition of two separate 
scans using the same parameters, as well as to the variations in the parameters within 
the same scanner [10]. Adding the variable sensitivity of RFs to different acquisition and 
reconstruction parameters significantly lowers the number of RFs that could be used for the 
analysis of heterogeneous data. As there is currently a pressing desire to analyse big data, 
a sound methodology is needed to address the heterogeneity introduced by machinery in 
retrospective data. Nevertheless, we strongly recommend the start of imaging protocol 
standardization across centres to facilitate future quantitative imaging analysis.

Recently, there has been an attempt to modify ComBat methodology in radiomics analysis 
[35]. The authors added a modification to ComBat (B-ComBat), which adds Bootstrapping 
and Monte Carlo to the original ComBat. The other functionality of ComBat the authors 
investigated was to use one of the batches as a reference (M-ComBat). The authors 
compared the performance of the four versions of ComBat by comparing the performance 
of radiomic models developed after the use of each method. The authors reported that all 
the methods are equally effective [35]. Therefore, we anticipate that the modified ComBat 
functions will have the same limitations of the original ComBat we discussed above.

Another method to harmonize RFs that is currently gaining momentum is deep learning 
based harmonization. A recent study developed deep learning algorithms, which were 
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reported to improve the reproducibility of RFs across variations in scanner type, acquisition 
protocols and reconstruction algorithms [36]. A more recent study [37] applied a similar 
approach to reduce the sensitivity of RFs to scanner types. The authors reported a significant 
improvement in the performance of radiomic models following harmonization. These 
studies highlight the potential efficacy of deep learning based harmonization methods.

One limitation of our study is in considering each scan as a separate batch effect (due to 
lack of data) while differences between pair batches are not similar (different numbers of 
varying parameters), which may have affected the performance of ComBat. Acquisition 
and reconstruction settings include a set of different parameters, which can singularly or 
collectively result in differences in RFs values. Another limitation is the lack of scans generated 
by other commonly used scanners and protocols in the clinics; and the lack of scans with 
the same settings acquired using different scanners, as the data currently available is limited 
to the changes introduced in the imaging parameters on the available scanners. While we 
did not investigate the added value of this approach on a clinical dataset, our focus in this 
study was in designing a framework to assess the reproducibility and ‘ComBatability’ of RFs. 
However, it is fair to assume that if RFs are not reproducible on phantom data, they would be 
equally, or possibly even more, unstable on patient datasets. For example, clinical data will 
be acquired at a variety of mAs values across a population of patients. Lastly, while Combat 
has been reported to outperform other harmonization methods in terms of apparent model 
performance, the systemic evaluation of the effects of these methods on the reproducibility 
of RFs, and the comparison with the effects of ComBat harmonization will be the aim of 
future studies, in addition to addressing the above mentioned limitations.

Conclusion 

In conclusion, we demonstrate that the reproducibility of RFs is not a constant, but changes 
with variations in the data acquisition and reconstruction parameters. Moreover, ComBat 
cannot be successfully applied on all RFs, and its successful application on a given RF is 
dependent on the heterogeneity of the dataset. We conclude that ComBat harmonization 
should not be blindly performed on patient data, but following the estimation of adjustment 
parameters on a phantom dataset. We anticipate that radiomics studies will benefit from our 
proposed harmonization workflow, as it allows comparison of a greater number of RFs, and 
enhances the generalizability of radiomic models. Yet, standardization of imaging protocols 
remains the cornerstone for improving the generalizability of prospective quantitative image 
studies. We recommend the standardization of scan acquisition across centres, especially in 
prospective clinical trials that include medical imaging; and/or the development of a specific 
imaging protocols for scans acquired to be used for quantitative imaging analysis.
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Abstract 

Handcrafted radiomic features (HRFs) are quantitative imaging features extracted from 
regions of interest on medical images, which can be correlated with clinical outcomes and 
biologic characteristics. While HRFs have been used to train predictive and prognostic models, 
their reproducibility has been reported to be affected by variations in scan acquisition and 
reconstruction parameters, even within the same imaging vendor. In this work, we evaluated 
the reproducibility of HRFs across the arterial and portal venous phases of contrast enhanced 
computed tomography images depicting hepatocellular carcinomas, as well as the potential 
of ComBat harmonization to correct for this difference. ComBat harmonization is a method 
based on Bayesian estimates that was developed for gene expression arrays, and has been 
investigated as a potential method for harmonizing HRFs. Our results show that the majority 
of HRFs are not reproducible between the arterial and portal venous imaging phases, yet 
a number of HRFs could be used interchangeably between those phases. Furthermore, 
ComBat harmonization increased the number of reproducible HRFs across both phases by 
1%. Our results guide the pooling of arterial and venous phases from different patients in an 
effort to increase cohort size, as well as joint analysis of the phases.

Keywords: Hepatocellular carcinoma; CT radiomics; domain translation; reproducibility.
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Introduction

The recent decades witnessed vast advances in computational power, artificial intelligence, 
and medical imaging techniques [1], which provided a unique opportunity for transforming 
the abundant amounts of medical imaging into mineable quantitative data. The concept 
acquired much scientific attention recently, and a branch of medical imaging analysis -known 
as handcrafted radiomics- emerged as a result [2]. Handcrafted Radiomic features (HRFs) are 
quantitative features extracted with high throughput from medical imaging, with its varying 
modalities. The hypothesis is that medical images carry more data than can be seen by 
trained human eyes, and that these data can be decoded using the HRFs, i.e correlations 
between HRFs and underlying biology could potentially exist [3]. Since the introduction of 
the field, many studies reported on the potential of radiomic signatures to predict clinical 
endpoints, the majority of which were performed on computed tomography (CT) [4–7], 
magnetic resonance (MR) [8–10], and positron emission tomography (PET) scans [11,12].

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, the fifth most 
common malignancy worldwide, and a leading cause of cancer-related mortality [13]. 
Different diagnostic approaches and treatment modalities are used clinically depending 
on the characteristics of the patient and the progression of the disease [14,15]. Contrast-
enhanced computed tomography (CE-CT) scans are considered one of the main diagnostic 
tools for HCC. CE-CT can be acquired at different times following the injection of the 
contrast agent to acquire arterial, venous or late phase scans. Each phase shows specific 
characteristics for HCC lesions. However, there is still a clinical need for reliable non-invasive 
tools that could aid diagnosing and devising individualized treatment plans for HCC patients. 
Several studies investigated and reported on the potential of HRFs to aid clinical decision 
making in HCC patients [16–19]. 

While numerous studies have reported on the potential of HRFs in aiding clinical decision 
making on HCC and other diseases, several hurdles hindering the clinical translation of 
radiomic signatures to clinical decision support systems have been identified. These hurdles 
include the reproducibility of HRFs in test-retest studies, their sensitivity to variations in 
acquisition and reconstruction parameters of the scans, inter-observer variability, and the 
need for big data [20–26]. However, the need for big data in radiomics analysis necessitates 
the exploration of methods for combining and comparing retrospective medical imaging 
databases.

A number of studies tried to address the issue of reproducibility of HRFs using ComBat 
harmonization [27–30]. ComBat harmonization is a method that was developed to remove 
the batch effects in gene expression arrays [31]. The studies that investigated the application 
of ComBat in radiomics analyses reported on the improvement in performance metrics of 
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developed radiomic signatures after the application of ComBat compared to before, and 
recommended the use of the method. Other studies that investigated the reproducibility of 
HRFs on phantom datasets acquired with different settings [32], or with a single parameter 
difference [33], and reported that the performance of ComBat is dependent on the data 
under study and recommended a framework to assess the reproducibility of HRFs. Yet to 
date, no study reported on the agreement in HRFs across different phases or the potential 
of ComBat to remove the effects of different imaging phases from HRFs, which could allow 
the proper combination of phases in a single analysis, or the interchangeability of HRFs 
across phases to allow the use of different imaging scans per patient. Furthermore, no study 
performed a reproducibility analysis for HRFs following ComBat harmonization on patients’ 
scans acquired with a single parameter difference.

We hypothesize that the time of acquisition after the injection of the contrast agents adds 
another level of complexity to be accounted for in the radiomics analysis, as HRFs might 
be affected by the appearance of contrast, due to the variations in the distribution of the 
contrast within the lesions. As a proof of concept, we investigate the sensitivity of HRFs 
extracted from CE-CT scans depicting HCC acquired during the arterial and portal venous 
phases, when all other acquisition and reconstruction parameters were fixed. Furthermore, 
we investigate the potential of the ComBat harmonization for domain translation of the 
HRFs extracted from these scans. Ultimately, we aim to (i) guide the identification of HRFs 
that can be used interchangeably between arterial and venous phase scans, which could 
increase the number of scans that can be included in a CE-CT based radiomics study; and 
(ii) identify the features that can be used in studies analyzing both phases simultaneously to 
maximize the information extracted from ROIs.

Materials and Methods

Patients and Imaging data
The imaging data were originally collected for the European multicenter clinical trial 
(SORAMIC) [34]. Imaging data for 424 patients diagnosed with HCC (using cyto-histological 
criteria, radiologic criteria, or a combination of both) were obtained for the SORAMIC trial, 
of which 338 scans were available for analysis in this study. Scans that contained artifacts 
were considered of poor quality (n=48). From the available 338 patients with both arterial 
and portal venous scans available, patients with scans that had any difference in the 
acquisition or reconstruction parameters, or lacked segmentations reviewed by an expert, 
were excluded. A total of 61 patients with 104 distinct lesions were finally included in this 
study (Figure 1). Scans included were acquired from different hospitals, using different 
vendors and protocols. In total, 9 scanner models from 4 different imaging vendors, and a 
range of scanning parameters, were included, as shown in Table 1. The imaging analysis was 
approved by the University of Magdeburg institutional review board (IRB00006099, EudraCT 
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no 2009-012576-27), and informed consent was obtained from all included patients. All 
methods were carried out in accordance with the relevant guidelines and regulations [35].

Figure 1. A flowchart showing the patients selection process.

Table 1. Acquisition and reconstruction parameters for the imaging dataset

Manufacturer Scanner model X-Ray Tube 
Current (kV)

Exposure 
(mAs)

Convolution 
kernels

Slice 
thickness 
(mm)

Pixel 
spacing
(mm2)

TOSHIBA Aquilion 50 - 360 2-300 FC13 1-5 0.39x0.39 
- 
0.98x0.98

Aquilion PRIME

Philips Brilliance 64 B

GE Discovery CT750 HD STANDARD

Optima CT660

SIEMENS Sensation 16 B31f

SOMATOM Definition AS

SOMATOM Definition Flash I30f , I40f

SOMATOM Force Br40d
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Segmentation and HRFs extraction
The scans of a single patient were co-registered. The region of interest (ROI) was segmented 
on each scan while viewing both phases simultaneously and saved to both scans (Fig 2). The 
segmentations were performed using MIM software (MIM Software Inc., Cleveland, OH) by 
a medical doctor (Y.W) with 2 years of experience in image segmentation, and revised by a 
radiologist (R.M.) with 15 years of experience in medical radiology.

HRFs were extracted from these ROIs using the software RadiomiX Discovery Toolbox 
(version, October 2019; https://www.radiomics.bio), which calculates HRFs compliant with 
the Imaging Biomarkers Standardization Initiative (IBSI) [36], in addition to others. Image 
intensities were binned with a binwidth of 25 Hounsfield Units (HUs) in order to reduce 
noise levels and to reduce texture matrix sizes, and therewith computation power, with no 
resampling or further preprocessing of the images. The description of the extracted HRFs 
was published previously [24].

Figure 2. An example of ROI segmented in (A) the arterial phase and (B) portal venous phase.

ComBat Harmonization
ComBat method employs empirical Bayes to estimate the effects of assigned batches on the 
data being harmonized. For HRFs, ComBat assumes that a feature value can be approximated 
by the equation:

(1)

where α is the average value for HRF Yij for ROI j on scanner i; X is a design matrix of the 
biologic covariates that are known to affect the value of HRFs; β is the vector of regression 
coefficients corresponding to each biologic covariate; γi is the additive effect of scanner 
i on HRFs, δi is the multiplicative scanner effect, and εij is an error term, presupposed to 
be normally distributed with zero mean. Based on the values estimated, ComBat performs 
feature transformation as given by the formula:



Reproducibility of CT-based Hepatocellular carcinoma radio-mic features

4

79

(2)

where α and β are estimators of the parameters α and β, respectively; and γi* and δi* are 
the empirical Bayes estimates for the parameters γi and δi, respectively.

Statistical Analysis
All statistical analyses were performed using R language [37] on RStudio (V 3.6.3) [38]. 
To determine the reproducibility of HRFs, the concordance correlation coefficient (CCC) 
between the HRFs values across the two phases was calculated [39], using epiR package [40]. 
The CCC measures how concordant are the values of a given HRF and the rank of each data 
point relative to the rest in each batch. HRFs with CCC>0.9 were considered reproducible 
and could be interchangeably used between the arterial and venous phase CT scans. 

To assess the performance of ComBat, shape features and HRFs with (near) zero variance 
(HRFs that have the same value in 95% or more of the observations) were removed. The 
phase of the scan was assigned as the batch for ComBat harmonization. The CCC was 
calculated after ComBat application and the cutoff of CCC>0.9 was applied to select the 
concordant HRFs. The correlation of concordant features with volume was assessed using 
Pearson correlation. Features that had a correlation coefficient > 0.85 were considered 
highly correlated. The analysis code used in this study can be found on: (https://github.com/
AbdallaIbrahim/The-reproducibility-and-ComBatability-of-Radiomic-features).

Results

Patient characteristics
The patients included (n=61) had a median age of 66 years, mainly male (n=50, 81.9%), with 
cirrhotic livers (n=56, 91.8%), and a minority (n=11, 18.1%) had portal vein invasion. For 
more patient characteristics see Table 2.
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Table 2. Patient characteristics.

Characteristic N=61

Gender, male (%)
Age, median (range)
Cirrhosis, yes (%)

50 (81.9%)
66 (48-81)
56 (91.8%)

Child-Pugh grade
A
B

56 (91.8%)
5 (8.2%)

Diameter of largest lesion, in mm, median (range)
Portal vein invasion, yes (%)
Extrahepatic disease yes (%)

37 (10-220)
11 (18.1%)
7 (11.4%)

BCLC staging
A
B
C

22 (36.1%)
22 (36.1%)
17 (27.8%)

ECOG performance
0
1

58 (95.1%)
3 (4.9%)

* Barcelona Clinic Liver cancer (BCLC) staging
** European Cooperative Oncology Group (ECOG) performance

Extracted HRFs
A total of 167 original HRFs were extracted from each of the available 104 ROIs. These HRFs 
are divided into 11 feature families: Fractal (n=3), Gray Level Co-occurence Matrix (GLCM; 
n= 26), Gray Level Distance Zone Matrix (GLDZM; n=16), Gray Level Run Length Matrix 
(GLRLM; n=15), Gray Level Size Zone Matrix (GLSZM, n=16), Intensity Histogram (IH; n=25), 
Local Intensity (LocInt, n=2), Neighbouring Gray Level Dependence Matrix (NGLDM; n=17), 
Neighbouring Gray Tone Difference Matrix (NGTDM, n=5), Shape (n=23), and Statistics 
(Stats, n=19).

The effects of differences in imaging phase on the reproducibility of HRFs
Out of the 167 extracted HRFs, 42 (25%) were reproducible (had a CCC>0.9) across both 
phases (Figure 3a, shape features were not included to ease the comparison between 
figures). These HRFs were divided into shape (n=22), NGTDM (n=1), NGLDM (n=4), IH (n=2), 
GLSZM (n=4), GLRLM (n=2) and GLDZM (n=7). The remaining HRFs had a CCC ranging from 
-0.07 and 0.85, with a median of 0.39.

Of the concordant 22 shape features, 8 features were highly correlated with volume 
(R>0.85), in addition to 1 feature from the NGLDM group (NGLDM_DN) and 2 features from 
the GLRLM group (GLRLM_RLN and GLRLM_GLN). The remaining features (31, 73.8%) had a 
correlation coefficient <0.85.
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Figure 3. (a) The CCC values for the different HRFs before ComBat harmonization; (b) The CCC values for the 
different HRFs after ComBat harmonization

The effects of ComBat on the reproducibility of HRFs
The application of ComBat harmonization to remove the batch effects attributed to the 
difference in time between contrast injection and scan acquisition resulted in a total of 44 
(26.1%) reproducible HRFs, i.e 2 extra HRFs became concordant following the application of 
ComBat: Stats_energy and GLDZM_HILDE (Fig 3b). The remaining 20 HRFs had a CCC>0.9 
before and after ComBat harmonization, in addition to the shape features (n=22). The CCC 
of stats_energy increased from 0.8 to 0.95 following ComBat harmonization, and that of 
GLDZM_HILDE increased from 0.34 to 0.93.

(a) (b)
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The impact of ComBat on the CCC values had a wide range; 6 HRFs had an increment in CCC 
between 0.5 and 0.6; 42 HRFs had an increment in CCC between 0.1 and 0.49; 87 HRFs had 
an increment between 0 and 0.09; and 33 HRFs had a decrement in CCC between -0.001 
and -0.06. Following ComBat harmonization, the number of highly correlated features with 
volume increased by one feature (Stats_energy). The concordant features before domain 
translation maintained their correlation with the volume.

Discussion

In this study, we investigated the reproducibility of HCC CT-based HRFs across the arterial 
and portal venous imaging phases when all other scanning parameters were fixed, and 
whether ComBat harmonization improves the reproducibility of HRFs in such a scenario. 
Uniquely, this is the first manuscript to investigate the potential of ComBat to remove batch 
effects attributed to the differences in imaging phase, and on patient data with a single 
parameter difference between the compared/harmonized scans. Our results show that the 
majority of HRFs were significantly affected by the difference in imaging phases, and only 
a quarter of the total extracted number of HRFs were reproducible across both phases. 
Moreover, ComBat harmonization did not successfully harmonize the majority of HRFs, even 
though the differences between the batches compared were limited to the variations in 
imaging phase.

HRFs are calculated using mathematical formulas applied on the array of values representing 
the medical image [41]. Changes in the value of units in this array are expected to have an 
impact on the value calculated by the same formula. Therefore, changes in the scanning 
parameters are expected to affect the reproducibility of different HRFs variably. Aside from 
HRFs that are not reproducible in test-retest studies, the sensitivity of the remaining HRFs 
to the imaging phase can be justified by the increased radio-opaqueness and the resulting 
perfusion patterns of contrast within the ROI, and thus, changes in the image array values 
based on which the HRFs are calculated. As expected, statistics and intensity histogram 
features, which are simple HRFs based on a single voxel value (e.g. minimum or maximum 
intensity value) or the description of their distribution (e.g. mean or median intensity value), 
were found to be the most significantly affected families. On the other hand, also according 
to expectations, HRFs that do not depend on the intensity values, but the shape of the 
segmentation (shape features), were found to be reproducible across both phases, with 
the exception of the shape feature centroid distance, which is based on the distribution of 
intensity values around the geometric center of the ROI. The copying of segmentations and 
the inclusion of scans that were acquired identically in both phases allowed isolating the 
effects of differences imaging phases on HRFs. However, in scenarios where acquisition and/
or reconstruction parameters, or the segmentation of the ROI changes, the reproducibility 
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of HRFs is expected to be further impacted. This is also in line with what reported in a study 
that investigated the reproducibility of liver parenchyma and tumors HRFs extracted from 
two contrast enhanced scans (one phase) taken within a 14 days interval [42]. Therefore, 
the reproducibility analysis based on the data under study should be an integral part of each 
radiomics study.

Our study sheds the light on the methodology of combining HRFs from different modalities, 
either for the purpose of combining different phases/modalities per patient, or the 
combination of different phases for different patients. For merging different modalities per 
patient, we show that a number of HRFs is reproducible across the phases. Therefore, models 
that try to combine different imaging phases per patient are recommended to define which 
reproducible (test-retest) HRFs vary across the available phases, and preselect those for 
further analysis. Another implication of our findings is allowing the combination of different 
imaging phases per patient (e.g due to the lack of data), when only the reproducible HRFs 
across phases are extracted and compared between the different patients, regardless of 
the available imaging phase for each patient. This approach can significantly increase the 
number of data points in retrospective radiomics studies.

The correlation of radiomic features with the volume of the ROI has been considered one 
of the major points to be assessed in radiomics analysis, since some of the features were 
reported previously to be surrogates of volume [43]. In our analysis, we observed that the 
majority of the features identified as concordant (or domain-translatable with ComBat) 
between the arterial and venous CT scans was considerable, most of which were shape 
features. However, the majority of features were not found to be highly correlated with 
volume, which means that these features can decode additional information about the ROIs 
being investigated.

The number of features that had a CCC value higher than 0.9 was slightly higher after 
the application of ComBat on the HRFs extracted from the arterial and portal venous 
phases. ComBat successfully harmonized two additional HRFs compared to the number 
of concordant HRFs before domain translation. The majority of HRFs were not concordant 
across the phases even after the application of ComBat harmonization. The differences in 
ComBat performance per HRF (and feature families) are also expected, as in contrast to 
gene expression arrays, HRFs have different levels of complexity and are not expected to be 
uniformly affected by the batch defined for domain translation. The variant performance of 
ComBat on HRFs could be explained by the differences in the complexity of HRFs, compared 
to gene expression arrays [21]. The findings are in line with the reproducibility studies that 
assessed the performance of ComBat on phantom scans, which reported that ComBat 
harmonization does not successfully harmonize all HRFs, and that its performance is 
dependent on the variations between the batches [32,33]. As a consequence, we recommend 
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that the application of ComBat harmonization on HRFs follows a reproducibility analysis 
with reference values to assess its performance, as it is expected to vary with the variations 
in the dataset batches being harmonized [21]. Other deep learning based harmonization 
methods that have been recently investigated [44–47] might be more suitable for domain 
translation of images acquired in different phases. However, this is yet to be investigated.

While this study provides a proof of concept for the combination/replacement of different 
imaging phases, we speculate that the set of reproducible HRFs identified in this study is 
limited to HCC lesions extracted from scans acquired similarly to our dataset. Furthermore, 
the changes in reconstruction parameters (and sometimes acquisition parameters) between 
the two imaging phases in clinical routine significantly lowered the number of available 
scans to perform this analysis. Lastly, the reproducibility of the identified HRFs has to be 
investigated across different acquisition and reconstruction parameters. However, due to 
the lack of data, this was not performed. Nevertheless, this study serves as a guide for 
selecting and/or harmonizing the reproducible HRFs in future radiomic studies that utilize 
contrast enhanced imaging.

Conclusions

The majority of HRFs are significantly affected by changes in the imaging phase of the scan. 
Studies that investigate the potential of combining HRFs from different imaging phases 
or modalities must investigate the reproducibility and interoperability of the HRFs across 
the investigated phases for the lesions of interest. Furthermore, a number of HRFs can be 
interchangeably used between the arterial and portal venous phases, and these can be used 
to increase data points in retrospective imaging studies. ComBat harmonization increased 
the number of comparable CT based HRFs across the arterial and portal venous imaging 
phases for HCC lesions by 1% in our dataset.
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Abstract

Handcrafted radiomics features (HRFs) are quantitative features extracted from medical 
images to decode biological information to improve clinical decision making. Despite the 
potential of the field, limitations have been identified. The most important identified 
limitation, currently, is the sensitivity of HRF to variations in image acquisition and 
reconstruction parameters. In this study, we investigated the use of Reconstruction Kernel 
Normalization (RKN) and ComBat harmonization to improve the reproducibility of HRFs 
across scans acquired with different reconstruction kernels. A set of phantom scans (n = 
28) acquired on five different scanner models was analyzed. HRFs were extracted from the 
original scans, and scans were harmonized using the RKN method. ComBat harmonization 
was applied on both sets of HRFs. The reproducibility of HRFs was assessed using the 
concordance correlation coefficient. The difference in the number of reproducible HRFs in 
each scenario was assessed using McNemar’s test. The majority of HRFs were found to be 
sensitive to variations in the reconstruction kernels, and only six HRFs were found to be 
robust with respect to variations in reconstruction kernels. The use of RKN resulted in a 
significant increment in the number of reproducible HRFs in 19 out of the 67 investigated 
scenarios (28.4%), while the ComBat technique resulted in a significant increment in 36 
(53.7%) scenarios. The combination of methods resulted in a significant increment in 
53 (79.1%) scenarios compared to the HRFs extracted from original images. Since the 
benefit of applying the harmonization methods depended on the data being harmonized, 
reproducibility analysis is recommended before performing radiomics analysis. For future 
radiomics studies incorporating images acquired with similar image acquisition and 
reconstruction parameters, except for the reconstruction kernels, we recommend the 
systematic use of the pre- and post-processing approaches (respectively, RKN and ComBat).

Keywords: radiomics reproducibility; reconstruction kernel; ComBat harmonization;  
image harmonization
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Introduction

Recent decades have witnessed an exponentially increasing number of studies investigating 
the potential of quantitative imaging features to extract additional information from 
medical images not detectable by human eyes [1,2]. Handcrafted radiomics refers to the 
high-throughput extraction of quantitative imaging features from medical images to decode 
biologic information [3,4] and, today, more than 5000 studies can be returned on the 
PubMed database using “radiomics” as a search word. The handcrafted radiomics approach 
“involves manual segmentation of the region of interest (eg, the tumor) on medical imaging 
and extraction of thousands of human-defined and curated quantitative features from the 
region of interest” [5].

The hypothesis in radiomics studies is that handcrafted radiomic features (HRFs) can be 
used singularly or collectively as clinical biomarkers [3]. Many studies have investigated 
and reported on the potential of HRFs to predict clinical endpoints, such as overall survival 
[6–8], tissue histology [9–13] and response to therapy [14,15]. These studies highlighted 
the potential of such approaches to be applied in clinical settings, since they could present 
non-invasive, reliable, readily available and cost-effective alternatives to current invasive 
clinical procedures, such as tissue biopsies. Moreover, with proper application, radiomics 
could provide reproducible predictions, which are quantitative and less dependent on the 
subjective interpretation of medical examinations [16,17].

With the development of handcrafted radiomics as a research field, the limitations the field 
faces have been increasingly investigated during recent years [4,18]. The most important 
identified limitation currently is the sensitivity of HRFs to variations in image acquisition and 
reconstruction parameters [19–24]. For an HRF to be used as a clinical biomarker (solely or in 
combination with other HRFs), it has to be reproducible across different imaging parameters 
for generalization purposes [24]. However, many studies have reported on the sensitivity 
of HRFs to variations in time (test–retest) [25–29] and to variations in imaging acquisition 
and reconstruction parameters [30–37]. Studies have also reported that the degree of 
variation in a single acquisition or reconstruction parameter affects the reproducibility of 
HRFs variably [31,34]. A number of studies have reported the significant effects of variations 
in reconstruction kernels on the reproducibility of HRFs [20,38].

Different methods have been investigated to address the issue of reproducibility of HRFs 
across scans acquired differently. ComBat harmonization [39] is one of the post-processing 
methods that have recently been extensively investigated in radiomics analyses [40–42]. 
ComBat harmonization is a method that was developed for removing batch effects—attributed 
to the use of different machinery—from gene expression arrays. A number of studies have 
reported on the applicability of ComBat harmonization in different scenarios, such as scans 
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acquired with varying degrees of differences in CT image acquisition and reconstruction 
parameters, scans acquired with a single variation in an image reconstruction parameter 
(in-plane resolution) and scans of different contrast-enhancement phases [31,35,43,44]. 
These studies reported that the performance of ComBat in radiomics analyses is dependent 
on the variations in the data being harmonized. A number of studies have also investigated 
the potential of ComBat in different scenarios [45–48]. However, the potential of ComBat 
to remove batch effects attributed solely to the variations in the reconstruction kernel has 
yet to be thoroughly investigated. Other investigated methods include pre-processing of 
the images to minimize effects due to differences in slice thickness, reconstruction with 
convolutional kernels, etc. Normalization of chest CT data minimized the variability that 
resulted from different reconstruction kernels [49]. The authors developed a method 
that targeted reducing the variations in the quantification of emphysema by normalizing 
the reconstruction kernel (Reconstruction Kernel Normalization—RKN). The CT scans 
obtained from different scanners that were reconstructed with varying kernels showed 
reduced variability in emphysema quantification after the proposed iterative normalization. 
However, the effect of this normalization method on the reproducibility of HRFs has not 
been investigated.

In this study, we hypothesize that the use of RKN and ComBat could improve the repro-
ducibility of HRFs across scans acquired with different reconstruction kernels depending on 
the variations in the data being analyzed and/or harmonized. We further hypothesize that 
the combination of both methods (RKN and ComBat) would give superior results in terms 
of “number of reproducible HRFs” compared to no or only one harmonization method. 
Given that variations in the convolution kernel impact the reproducibility of HRFs the most, 
we investigate the reproducibility of HRFs extracted from phantom CT scans acquired with 
different reconstruction kernels on different imaging vendors. We also investigate the 
potential of ComBat harmonization, RKN and the combination of both methods to reduce 
the variations in HRF values attributed to differences solely in the reconstruction kernels of 
the original scans.

Materials and Methods

Imaging Data
The phantom data used in the study were obtained from the public Credence Cartridge 
Radiomics (CCR) phantom dataset [50] from the Cancer Imaging Archive site (TCIA.org) [51]. 
A total of 251 scans were acquired using different scanners, acquisition and reconstruction 
parameters. For this study, we included scans that were acquired using the same imaging 
acquisition and reconstruction parameters, except for the convolution kernel. After applying 
the inclusion criteria, 28 scans from five different scanner models were used in this study 
(Table 1).
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Table 1. Acquisition and reconstruction parameters for the imaging dataset.

Manufacturer Scanner 
Model

Number 
of Scans

X-Ray Tube 
Current (kV)

Convolution 
Kernels

Slice Thickness 
(mm)

Pixel Spacing
(mm2)

GE Discovery STE 5 120 Standard, Detail, 
Edge, Soft, Lung

1.25 0.49 × 0.49

Philips Brilliance 64 4 120 A, B, C, L 1.50 0.49 × 0.49

Siemens Sensation 40 6 120 B10f, B20f, B31f, 
B50f, B60f, B70f

1.50 0.49 × 0.49

Sensation 64 7 120 B10f, B20f, B30f, 
B31f, B50f, B60f, 
B70f

1.50 0.49 × 0.49

SOMATOM 
Definition AS

6 120 I26f, I30f, I40f, 
I44f, I50f, I70f

1.50 0.49 × 0.49

Volume of Interest and HRFs Extraction
Each layer of the phantom was segmented as a single volume of interest (VOI), with the 
dimensions 8 × 8 × 2 cm3. A total of 10 VOIs were segmented per scan, resulting in a total of 
280 VOIs. HRFs were extracted using the open source PyRadiomics software version 2.2.0 
[52]. HRFs were extracted at two different stages: directly from the original scans; and after 
image pre-processing. Image intensities were binned in all of the three scenarios with a 
binwidth of 25 Hounsfield units (HUs) to reduce noise levels and texture matrix sizes and 
the amount of computational power needed. No other image pre-processing was applied 
in any of the scenarios. Extracted HRFs were HU intensity features and texture features of 
five matrices: gray-level co-occurrence (GLCM); gray-level run-length (GLRLM); gray-level 
size zone (GLSZM); gray-level dependence (GLDM); and neighborhood gray-tone difference 
(NGTDM) matrices. A more detailed description of PyRadiomics HRFs can be found online 
at: https://pyradiomics.readthedocs.io/en/latest/features.html (accessed on 13 October 
2021).

Reconstruction Kernel Normalization
The CT scan Io is decomposed into a series of frequency components Fi. Image Io is convoluted 
with the Gaussian filter at σi scale (σi = 0, 1, 2, 4, 8, 16) to get a filtered image Lσi. The 
frequency component for i = 0, 1, 2, 3, 4 is given by Fi+1 = Lσ+1 −Lσi+1 and for i = 5 it is given by 
Fi+1 = Lσi . The normalized image IN is obtained by IN = F6 + . λi is given by , where 
ri and ei are the standard deviations of the intensity values in the band F

i of the reference 
image and image Io , respectively. This process is repeated until λi is within the range [0.95, 
1.05]. This method was proposed for reducing the effects of varying reconstruction kernels 
for emphysema quantification in chest CT scans [49]. We investigated the effect of applying 
this normalization method on feature reproducibility.

Image Pre-Processing and HRF Post-Processing
Four scenarios were analyzed in this study (Figure 1): (i) HRFs extracted from original 
images; (ii) HRFs extracted from pre-processed scans with the method described in 2.3; (iii) 
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HRFs extracted from original images and harmonized with ComBat; and (iv) the combination 
of both methods. In scenario (ii), image pre-processing was performed using the method 
previously described in [49]. Each set of images (n = 5) was normalized to a reference 
scan from the set. HRFs were extracted following image pre-processing. In scenario (iii), 
ComBat harmonization was applied on HRFs extracted from the original scans without 
pre-processing. ComBat harmonization in radiomics has been previously described [43]. 
In scenario (iv), HRFs were extracted from images normalized with the RKN method and 
harmonized using ComBat harmonization.

Figure 1. The study workflow.

Statistical Analysis
All statistical analyses were performed using R [53] on RStudio (V 3.6.3) [54]. For each 
scanner model, scans were compared in a pair-wise manner. The concordance correlation 
coefficient (CCC) was used to assess the reproducibility of HRFs across different pairs [55] 
(epiR package V. 2.0.26) [56]. The CCC assesses the agreement in the value and rank for 
each HRF across the pairwise scenarios. HRFs with CCC > 0.9 were considered reproducible 
in a given scenario. The CCC was calculated in each of the investigated scenarios described 
in Section 2.4.

To assess the statistical significance of the differences in the number of reproducible HRFs 
in each scenario, the McNemar test was used [57]. The McNemar test is used to assess 
whether marginal frequencies are equal before and after an intervention. In this study, we 
calculated McNemar’s p-values using the HRFs extracted from the original images and after 
RKN, ComBat, and the combination of both. We also calculated the p-values among the 
methods, as well as the p-values for each method compared to the combination of methods. 
For each pair, the difference in the number of reproducible HRFs was labeled “significant” or 
“not significant” depending on the p-value.
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Results

The Effect of Differences in Convolution Kernels on the Reproducibility of HRFs
The Pyradiomics toolbox provides a set of 91 original HRFs from each VOI. These HRFs are 
divided into First Order Statistics (n = 18), GLCM (n = 22), GLRLM (n = 16); GLSZM (n = 16), 
NGTDM (n = 5) and GLDM (n = 14). The number of reproducible HRFs varied across kernels 
and scanner models. Six HRFs were found to be robust to changes in convolution kernels 
across all scanner models: “Firstorder_10Percentile”, “Firstorder_Energy”, “Firstorder_
Mean”, “Firstorder_Median”, “Firstorder_RootMeanSquared” and ”Firstorder_TotalEnergy”.
On the Discovery STE scanner model (GE Medical Systems), the number of reproducible 
HRFs varied between 6 (6.59%) and 78 (85.71%). The greatest number of reproducible HRFs 
was observed across scans acquired with Detailed and Standard kernels (Figure 2).

Figure 2. The number of reproducible HRFs across different kernels on the Discovery STE scanner model.

On the Sensation 40 scanner model (Siemens), the number of reproducible HRFs varied 
between 6 (6.59%) and 91 (100%). The greatest number of reproducible HRFs was observed 
across scans acquired with B60f and B70f kernels (Figure 3).

Figure 3. The number of reproducible HRFs across different kernels on the Sensation 40 scanner model.
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On the SOMATOM definition scanner model (Siemens), the number of reproducible HRFs 
varied between 6 (6.59%) and 65 (71.4%). The greatest number of reproducible HRFs was 
observed across scans acquired with I44f and I50f kernels (Figure 4).

Figure 4. The number of reproducible HRFs across different kernels on the SOMATOM Definition scanner model.

On the Sensation 64 scanner model (Siemens), the number of reproducible HRFs varied 
between 6 (6.59%) and 91 (100%). The greatest number of reproducible HRFs was observed 
across scans acquired with B60f and B70f kernels (Figure 5).

Figure 5. The number of reproducible HRFs across different kernels on the Sensation 64 scanner model.

On the Brilliance 64 scanner model (Philips), the number of reproducible HRFs varied 
between 14 (15.4%) and 48 (52.7%). The greatest number of reproducible HRFs was 
observed across scans acquired with A and B kernels (Figure 6).

Figure 6. The number of reproducible HRFs across different kernels on the Brilliance 64 scanner model.
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The Effects of Pre- and Post-Processing
Reconstruction Kernel Normalization (RKN)
The number of HRFs that became reproducible following the application of the described 
method varied with the variations in kernels being harmonized and the scanner model used. 
In most of the investigated scenarios (58 out of 67; 86.6%), the use of this method has 
resulted in an increment in the number of reproducible HRFs. However, only 19 scenarios 
(28.4%) showed statistically significant increments. In a number of scenarios (6 out of 
the analyzed 67 scenarios (9%)), there was a net loss in the number of reproducible HRFs 
compared to the original, 2 (3%) of which were statistically significant (Figures 2–6). In 
three (4.5%) scenarios, there was no difference between the number of reproducible HRFs 
extracted from the original and the normalized images.

On the Discovery STE scanner model (GE Medical Systems), the number of reproducible 
HRFs extracted from the scans after image pre-processing varied between 8 (8.8%) and 
82 (90.1%). The greatest increment in the number of reproducible HRFs compared to the 
original images was observed across scans acquired with Edge and Lung kernels (Figure 2).

On the Sensation 40 scanner model (Siemens), the number of reproducible HRFs extracted 
from the scans after image pre-processing varied between 8 (8.8%) and 84 (92.3%). In this 
scenario, the highest number of reproducible HRFs decreased compared to those extracted 
from the original images for the scans acquired with B60f and B70f. The greatest increment 
in the number of reproducible HRFs compared to the original images was observed across 
scans acquired with B50f and B70f kernels (Figure 3).

On the SOMATOM definition scanner model (Siemens), the number of reproducible HRFs 
extracted from the scans after image pre-processing varied between 7 (7.7%) and 69 (75.8%). 
The greatest increment in the number of reproducible HRFs compared to the original images 
was observed across scans acquired with I50f and I70f kernels (Figure 4).

On the Sensation 64 scanner model (Siemens), the number of reproducible HRFs extracted 
from the scans after image pre-processing varied between 7 (7.7%) and 86 (94.5%). In this 
scenario, the highest number of reproducible HRFs decreased compared to those extracted 
from the original images (B60f vs. B70f) (Figure 5).

On the Brilliance 64 scanner model (Philips), the number of reproducible HRFs extracted 
from the scans after image pre-processing varied between 18 (19.8%) and 49 (53.8%). The 
greatest increment in the number of reproducible HRFs compared to the original images 
was observed across scans acquired with L and C kernels (Figure 6).
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ComBat Harmonization
In 65 out of the 67 investigated scenarios (97%), there was a net increase in the number of 
reproducible HRFs compared to the original, with 36 (53.7%) scenarios witnessing significant 
statistical increments. In two scenarios, the same number of reproducible HRFs was found 
before and after ComBat harmonization. In 46 (68.7%) scenarios, ComBat harmonization 
outperformed the RKN method, 17 (25.4%) of which were statistically significant. In 13 
(19.4%) scenarios, the RKN method outperformed ComBat harmonization, 5 (7.5%) of which 
were statistically significant increments.

On the Discovery STE scanner model (GE Medical Systems), the number of reproducible 
HRFs extracted from the scans after ComBat harmonization varied between 9 (9.9%) and 
79 (86.8%). The greatest increment in the number of reproducible HRFs compared to the 
original images was observed across scans acquired with Edge and Lung kernels (Figure 2).

On the Sensation 40 scanner model (Siemens), the number of reproducible HRFs extracted 
from the scans after ComBat harmonization varied between 11 (12.1%) and 69 (75.8%). The 
greatest increment in the number of reproducible HRFs compared to the original images 
was observed across scans acquired with B50f and B60f kernels (Figure 3).

On the SOMATOM definition scanner model (Siemens), the number of reproducible HRFs 
extracted from the scans after ComBat harmonization pre-processing varied between 
7 (7.7%) and 69 (75.8%). The greatest increment in the number of reproducible HRFs 
compared to the original images was observed across scans acquired with I44f and I70f 
kernels (Figure 4).

On the Sensation 64 scanner model (Siemens), the number of reproducible HRFs extracted 
from the scans after ComBat harmonization varied between 8 (8.8%) and 91 (100%). The 
greatest increment in the number of reproducible HRFs compared to the original images 
was observed across scans acquired with B50f and B70f kernels (Figure 5).

On the Brilliance 64 scanner model (Philips), the number of reproducible HRFs extracted 
from the scans after ComBat harmonization varied between 18 (19.8%) and 53 (58.8%). The 
greatest increment in the number of reproducible HRFs compared to the original images 
was observed across scans acquired with L and C kernels (Figure 6).

The Combination of Pre- and Post-Processing
In 63 (95.5%) out of the 67 investigated scenarios, there was a net increase in the number 
of reproducible HRFs compared to the original, 53 (79.1%) of which were statistically 
significant. Three (4.5%) showed a lower number of reproducible HRFs, with one (1.5%) 
scenario showing significantly fewer (p < 0.05). The same number of reproducible HRFs 
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was observed in one (1.5%) scenario. In 66 (98.5%) scenarios, the combination of methods 
outperformed the RKN method, with 42 (62.7%) being significantly higher. The same 
number of reproducible HRFs was observed in one (1.5%) scenario. With regards to ComBat 
harmonization, the combination of methods resulted in a higher number of reproducible 
HRFs in 56 (83.6%) scenarios, 27 (40.3%) of which were statistically significant. A higher 
number of reproducible HRFs was obtained using only ComBat harmonization in 10 (14.9%) 
scenarios, only one (1.5%) of which was statistically significant. The same number of 
reproducible HRFs was observed in one (1.5%) scenario.

On the Discovery STE scanner model (GE Medical Systems), the number of reproducible 
HRFs extracted from the normalized scans after ComBat harmonization varied between 
17 (18.7%) and 84 (92.3%). The greatest increment in the number of reproducible HRFs 
compared to the original images was observed across scans acquired with Edge and Lung 
kernels (Figure 2).

On the Sensation 40 scanner model (Siemens), the number of reproducible HRFs extracted 
from the normalized scans after ComBat harmonization varied between 16 (17.6%) and 
84 (92.3%). The greatest increment in the number of reproducible HRFs compared to the 
original images was observed across scans acquired with B50f and B70f kernels (Figure 3).

On the SOMATOM definition scanner model (Siemens), the number of reproducible HRFs 
extracted from the normalized scans after ComBat harmonization pre-processing varied 
between 9 (9.9%) and 70 (77%). The greatest increment in the number of reproducible HRFs 
compared to the original images was observed across scans acquired with I50f and I70f 
kernels (Figure 4).

On the Sensation 64 scanner model (Siemens), the number of reproducible HRFs extracted 
from the normalized scans after ComBat harmonization varied between 11 (12.1%) and 
87 (95.7%). The greatest increment in the number of reproducible HRFs compared to the 
original images was observed across scans acquired with B50f and B70f kernels (Figure 5).

On the Brilliance 64 scanner model (Philips), the number of reproducible HRFs extracted 
from the normalized scans after ComBat harmonization varied between 20 (22%) and 52 
(57.2%). The greatest increment in the number of reproducible HRFs compared to the 
original images was observed across scans acquired with L and C kernels (Figure 6).
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Discussion

In this study, we analyzed the effects of difference in convolution kernels on five different 
scanner models, when all other CT acquisition and reconstruction parameters were fixed 
on a phantom dataset. We further investigated the ability of an image pre-processing 
(iterative normalization by frequency decomposition) method, and an HRF post-processing 
harmonization (using ComBat harmonization) method. Our results showed significant 
differences in the number of reproducible HRFs across the investigated scenarios. Scans 
reconstructed with similar convolution kernels showed a higher number of reproducible 
HRFs compared to scans reconstructed with significantly different convolution kernels. 
Similarly, the performance of both harmonization methods investigated varied with the 
differences in convolution kernels of the scans being harmonized.

Siemens scanner models (Sensation 40 and 64) have shown the reproducibility of all 
HRFs across the scans acquired with the higher end of convolution kernels (B60 and B70). 
Convolution kernels at the opposite end of the spectrum (for example, B10 and B70 on 
Siemens scanners) have shown the lowest number of reproducible HRFs. As such, our 
results are in line with previous studies that reported that the reproducibility of HRFs can be 
significantly affected by variations in convolution kernels [38,58-60].

The use of the RKN method on our dataset has resulted in a range of effects on the number 
of reproducible features, from negative to neutral to positive, depending on the scans being 
compared. We have observed a significant increase in the number of reproducible HRFs in 
most scenarios and a decrease in the number of reproducible HRFs in some other scenarios. 
This could be justified by the possibility that the analyzed data in this study included a wider 
range of convolution kernels than those used to develop the method.

The application of ComBat harmonization resulted in a higher number of reproducible HRFs 
compared to those before harmonization in almost all of the investigated scenarios, which 
is in line with previous reports [43,44,61]. Moreover, on average, ComBat harmonization 
outperformed the image pre-processing method. The performance of ComBat further 
depended on the differences in the convolution kernels of the scans being harmonized. In 
general, the number of reproducible HRFs after ComBat harmonization followed a similar 
pattern to that of the number of reproducible HRFs before post-processing. These findings 
are in line with previous studies that investigated the applicability of ComBat harmonization 
in radiomics analyses [31,34]. The results add to the evidence on the need for reproducibility 
analyses in radiomics studies, including scans acquired differently, as well as the need for 
radiomics-specific harmonization methods.
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The combination of RKN and ComBat harmonization methods resulted in a higher number 
of reproducible HRFs across the majority of the investigated scenarios. This indicates that 
each method could be addressing the reproducibility of HRFs in different manners, with 
their having been shown to be complementary to each other in many of the investigated 
scenarios. Nevertheless, the combination resulted in a lower number of reproducible HRFs 
in an appreciated percentage of scenarios compared to ComBat harmonization only. This 
suggests the need for reproducibility analysis before applying harmonization methods in 
radiomics analyses.

We identified six HRFs that were robust with respect to variations in convolution kernels across 
all the investigated scenarios. These HRFs were first-order statistics, and their robustness 
could be justified by the standardization of HUs across scanners. However, the majority of 
texture HRFs were sensitive to the majority of variations in convolution kernels. Clear to the 
eye, the standardization of image acquisition and reconstruction parameters would be the 
cornerstone for the translation of radiomic signatures to clinical practice. The findings of this 
study, and previous experiments, have shown that the reproducibility of HRFs significantly 
depends on imaging acquisition and reconstruction parameters. Therefore, reproducibility 
analysis is needed for a proper understanding of their performance or generalizability [19]. 
Another potential solution would be the development of radiomic signatures specific to a 
set of imaging acquisition and reconstruction parameters. However, this solution limits the 
generalizability of radiomic signatures.

While we tried to analyze all the kernels used in clinical practice, we were limited by 
the available data. However, the results have shown a similar pattern across different 
scanner models. Future studies that include a wider spectrum of convolution kernels 
are recommended. Furthermore, we limited our analyses to the original HRFs as they 
are commonly standardized across radiomics platforms. Detailed full HRF reproducibility 
analysis could be beneficial for specific tasks. Furthermore, the analysis was performed on 
a phantom dataset that was designed to mimic human tissues. However, it only gives an 
idea about the reproducibility of HRFs in the given scenarios, and similar analysis is needed 
for patient datasets to gain a full understanding. The potential of other harmonization 
methods, for example, dynamic range limitation [62], could also be explored in future 
studies. Additionally, the sensitivity of HRFs to variations in segmentations could not be 
assessed in this study, due to the use of automated segmentations.
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Conclusions

The reproducibility of the majority of HRFs depended on the variations in reconstruction 
kernels in the data being analyzed. Six HRFs were found to be reproducible across all 
investigated scenarios. Radiomics analysis of scans acquired with different reconstruction 
kernels is not recommended in the absence of reproducibility analysis. We recommend the 
systematic use of RKN and ComBat harmonization in future radiomics studies, including 
images acquired similarly except for the reconstruction kernel. Nevertheless, their 
application should follow a reproducibility analysis to identify the set of reproducible HRFs 
after harmonization. HRF-specific harmonization methods remain necessities in the field of 
radiomics.
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Abstract 

While handcrafted radiomic features (HRFs) have shown promise in the field of personalized 
medicine, many hurdles hinders its incorporation into clinical practice, including but not 
limited to their sensitivity to differences in acquisition and reconstruction parameters. In this 
study, we evaluated the effects of differences in in-plane spatial resolution (IPR) on HRFs, 
using a phantom dataset (n=14) acquired on two scanner models. Further, we assessed 
the effects of interpolation methods (IMs), the choice of a new unified in-plane resolution 
(NUIR), and ComBat harmonization on the reproducibility of HRFs. The reproducibility 
of HRFs was significantly affected by variations in IPR, with pairwise concordant HRFs, as 
measured by the concordance correlation coefficient (CCC), ranging from 42% to 95%. 
The number of concordant HRFs (CCC > 0.9) after resampling varied depending on (i) the 
scanner model, (ii) the IM, and (iii) the NUIR. The number of concordant HRFs after ComBat 
harmonization depended on the variations between the batches harmonized. The majority 
of IMs resulted in a higher number of concordant HRFs compared to ComBat harmonization, 
and the combination of IMs and ComBat harmonization did not yield a significant benefit. 
Our developed framework can be used to assess reproducibility and harmonizability of RFs.

Keywords: Image Processing, Harmonization, Reproducibility, Radiomics biomarkers
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Introduction

In recent years, quantitative medical imaging research using handcrafted radiomic features 
(HRFs) has been growing exponentially [1,2]. Radiomics refers to the high throughput 
extraction of quantitative imaging features that are expected to correlate with clinical and 
biological characteristics of patients [3,4]. For decades, it has been hypothesized that image 
texture analysis could potentially extract more information from an ROI than that solely 
perceived by the human eye [5,6]. Yet, the term radiomics has only been introduced recently 
[7,8]. HRFs are generally grouped into shape, intensity, and textural features. To date, many 
studies have reported on the potential of radiomics to predict various clinical endpoints 
[9,10]. However, major challenges, including the reproducibility of the HRFs across different 
acquisition and reconstruction parameters, have hindered the incorporation of radiomics in 
clinical decision support systems [11,12]. 

The essence of radiomics is that certain HRFs help decode biologic information [8], allowing 
these features to be treated as biomarkers. The mainstay of a biomarker is the ability to 
quantify it in a reproducible manner [13]. HRFs are mathematical equations applied to 
numeric arrays of intensity values which form the medical image. Therefore, it is intuitive that 
changes in the values in the array (due to differences in scan acquisition and reconstruction 
parameters), by the transitive property, lead to (potentially significant) quantitative changes 
in the HRFs. It is well established that changes in scan acquisition and reconstruction 
parameters affect the values in the array representing the medical image [14]. Therefore, 
it is a common clinical practice to scan a phantom to calibrate the CT scanner on a routine 
basis. Hence, similar practices are needed before radiomics studies are conducted, when 
the scans under analysis were acquired using heterogeneous acquisition and reconstruction 
parameters [15]. Many studies have already reported on the sensitivity of HRFs to different 
factors including: (i) temporal variability, or test-retest [16,17], in which two scans of a 
patient (or a phantom) are taken after a time interval using the exact scanning parameters; 
(ii) scanning parameters variability [11,18,19], in which an object (usually a phantom) is 
scanned multiple times using different scanning parameters. Variations in the majority of 
scanner/scanning parameter combinations were reported to impact the reproducibility of 
HRFs significantly [18-20].

One scan reconstruction parameter expected to have an effect on the reproducibility of 
HRFs is the in-plane spatial resolution (IPR), which is dictated in part by the pixel dimensions, 
while the through-plane spatial resolution is determined by the slice thickness and slice 
spacing. Resampling all the scans in a data set to a new unified in-plane spatial resolution 
(NUIR) before feature extraction has been employed as a method to reduce the variation 
in radiomic feature values [21,22]. The NUIR is usually decided based on the most frequent 
IPR in the dataset and different interpolation methods (IMs) can be used for this purpose. 
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Interpolation is a model-based method to recover continuous data from discrete data 
within a known range of data spacings (i.e., pixel size in images) [23]. The degree to which 
data recovery is possible is highly sensitive to the interpolation method and the underlying 
data structure. In the case of medical imaging analysis, interpolation is employed either 
to convert the spatial sampling rate (measured in pixel or voxel count per unit of length 
per dimension) to another, or to distort the image in the case of image registration [24]. 
Since the vast majority of HRFs are derived from pixel/voxel values and their distributions, 
interpolation to a common pixel spacing could potentially reduce variance introduced to 
these HRFs arising from differences in IPR.

As a rule, one must distinguish between interpolation methods that increase or reduce 
the image resolution. Interpolation from smaller pixels to larger pixels (i.e. reducing spatial 
resolution) usually involves some form of averaging, with the possible exception of modern 
deep learning-based methods.

 Generally, while data acquired with small pixels will contain more noise, the process of 
averaging to large pixels will ameliorate the noise properties. As such, the process is less 
sensitive to the interpolation method/model. Interpolation from larger pixels to smaller 
pixels (i.e. increasing spatial resolution) on the other hand is fraught with challenges as 
the interpolated data can be highly sensitive to the interpolation model due to the need to 
create de novo pixel values. Larger pixels average the signal over a larger area than smaller 
ones, leading to the loss of variations in the original scene that occur over spatial frequencies 
smaller than the Nyquist limit and cannot be recovered exactly. 

Certain methods, such as nearest neighbour interpolation (also called pixel replication), 
while fast, are less accurate than other methods such as sinc interpolation or deep-learning 
methods (which are trained with representative data). However, all such interpolation 
methods are sensitive to biases arising from the image [25]. The application of these methods 
to medical imaging has been evaluated qualitatively [26]. Yet, the effects of these methods 
on the reproducibility of HRFs is not well understood. Unlike humans, whose exposure to a 
vast assortment of scanners, patients, and acquisition conditions (including IPR) leads to a 
tolerance for such changes, IPR is likely to have more profound effects on HRFs.

A harmonization method that has become increasingly common in the field of radiomics is 
ComBat. ComBat was originally developed for the harmonization of gene expression arrays 
[27]. Several studies have investigated the potential of ComBat in radiomics analysis and 
recommended its use [28,29]. We hypothesize that ComBat, the chosen IM, and the selected 
NUIR will affect the reproducibility of HRFs differently. In this study, the reproducibility of 
HRFs was assessed across different IPRs, while keeping all other parameters fixed, using 
a public dataset of CT scans of a phantom. A thorough investigation of the applicability 
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of 10 different IMs was performed in an effort to identify suitable IMs for the purpose of 
increasing the number of reproducible HRFs in a heterogeneous dataset. In particular, we 
investigated whether data with discordant pixel sizes need to be interpolated to a common 
pixel size to perform radiomics analysis, and how the choice of IM and NUIR, as well as 
ComBat harmonization, affect the reproducibility of HRFs. Furthermore, we developed a 
generalizable workflow that assesses the impact of different harmonization techniques 
(Figure 1) on the reproducibility of RFs. Ultimately, the goal of our work is to guide robust 
radiomics analysis to ease its incorporation in clinical decision-making.

Figure 1. Proposed reproducible radiomic analysis workflow.

Materials and Methods

Phantom data
The publicly available Credence Cartridge Radiomics (CCR) phantom data [30] found in 
The Cancer Imaging Archive (TCIA.org) [31] was used. The CCR phantom is composed of 10 
different layers that correspond to different texture patterns spanning a range of almost −900 
to +700 HU (Figure S1). The publicly available dataset includes 251 scans of the phantom 
acquired using six scanner models manufactured by three different manufacturers. The 
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scans were acquired using various acquisition and reconstruction parameters to assess the 
reproducibility of HRFs. For the purpose of this study, 14 scans acquired using 2 different 
scanner models (Discovery STE & LightSpeed Pro 32) of the same manufacturer (GE), which 
were all acquired at a single slice thickness (1.25 mm), tube voltage (120 kV), tube current 
(250 mA), and convolution kernel (standard), but varying IPR (Table 1) were used. The 
reasoning behind this selection is multifold: (i) the effects of the variations are expected 
to be dependent on the heterogeneity in acquisition; (ii) the number and complexity of 
the different combinations available are too huge to be described, analyzed and presented 
in a single experiment; (iii) the data under analysis were acquired using the same scanner 
models, and the same acquisition and reconstruction parameters except for the in-plane 
resolution, which allows the assessment of the effect of variations in this single parameter.

Table 1. Scanning parameters of the phantom data.

Scanner Pixel spacing (mm2)

Discovery STE LightSpeed Pro 32

CCR-2-001 CCR-2-022 0.39*0.39

CCR-2-002 CCR-2-023 0.49*0.49

CCR-2-003 CCR-2-024 0.59*0.59

CCR-2-004 CCR-2-025 0.68*0.68

CCR-2-005 CCR-2-026 0.78*0.78

CCR-2-006 CCR-2-027 0.88*0.88

CCR-2-007 CCR-2-028 0.98*0.98

Interpolation and image resampling
The effects of the IMs included in the popular open-source radiomics toolbox PyRadiomics 
[33] were assessed in this study. The methods are based on the python library Simple-
ITK [33], and include (i) nearest neighbour (NN), (ii) linear, (iii) basis spline (B-spline), (iv) 
Gaussian, (v) Gaussian using labelling (mask) information (LabelGaussian), and windowed 
sinc interpolations using the following window types: (vi) Hamming (HammingWindowedSinc 
or HWS), (vii) Cosine (CosineWindowedSinc or CWS), (viii) Welch (WelchWindowedSinc 
or WWS), (ix) Lanczos window (LanczosWindowedSinc or LWS), and (x) Blackman 
(BlackmanWindowedSinc or BWS).

The simplest of these IMs, and the ones with the lowest computational costs, are (i) the 
NN interpolation, which functions by assigning any new voxel the same value as its closest 
neighbor in the original image; and (ii) linear interpolation, in which the values of new pixels 
are interpolated linearly between the two original values [26]. B-spline interpolation is more 
complex than NN or linear; the calculations span four pixels [34]. While the method performs 
well in terms of radiologic evaluation in which the aim is to convince human observers, it 
is known to unnecessarily over-smooth the image [26]. The windowed sinc functions are 
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complex convolution based interpolations that are based on multiplying the sinc function 
by a limited spatial support window to reduce unwanted effects on the resampled image 
[35], followed by filtering of the frequencies to avoid the injection of spurious frequency 
components. Windowed sinc functions are generally considered superior to other 
interpolation methods as little superfluous noise is injected into the interpolated images.

HRFs extraction
Each scan contained 10 independent regions of interest (ROIs) (one for each layer of the 
phantom) that occupy the same physical area of the phantom on each scan. For each ROI, 
HRFs were calculated using the open source software Pyradiomics V 2.1.2. HRFs were 
extracted multiple times to perform different experiments. First, to assess the effect of 
differences in in-plane resolution and ComBat harmonization on HRFs, no changes to the 
original in-plane resolution were made. Second, to assess the effect of different IMs and 
NUIRs and the combination of interpolation and ComBat, HRFs were extracted from the 
scans using all IMs and all available NUIRs in the dataset (Table 1).

For each set of scans (7 scans, with 10 ROIs per scan) from each scanner model (n=2), HRFs 
were extracted 71 times. The HRFs were extracted one time from the original scans, and 70 
times with unique combinations of IM and NUIR. In each run, a total of 91 original RFs were 
extracted. In Pyradiomics, shape features are calculated on the original input image, and are 
not affected by the in-application resampling. Therefore, those HRFs were excluded. 

To reduce noise and computational requirements, images were pre-processed by binning 
voxel grayscale values into bins with a fixed width of 25 HUs for extracting HRFs from 
unfiltered images. No other image pre-processing steps were performed. The extracted 
HRFs included HU intensity features, and texture features describing the spatial distribution 
of voxel intensities using 5 texture matrices (grey-level co-occurrence (GLCM), grey-level 
run-length (GLRLM), grey-level size-zone (GLSZM), grey-level dependence (GLDM), and 
neighborhood grey-tone difference (NGTDM) matrices). A more detailed description of 
the Pyradiomics HRFs can be found online (https://pyradiomics.readthedocs.io/en/latest/
features.html).

ComBat harmonization
ComBat is an empirical Bayes based method used to estimate the effects of different batches 
on HRFs; in this scenario, variations in scan acquisition and reconstruction parameters were 
considered [27]. ComBat method assumes that a feature value can be approximated by the 
equation.

                                                         (1)
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where  is the average value for feature  for ROI j on scanner i; X is a design matrix of 
the biologic covariates known to affect the HRFs;  is the vector of regression coefficients 
corresponding to each biologic covariate;  is the additive effect of scanner i on HRFs, 
is the multiplicative scanner effect, and εij is an error term, presupposed to be normally 
distributed with zero mean. Based on the values estimated, ComBat performs feature 
transformation in the form of:

                                                                        (2)

where and  are estimators of parameters α and β, respectively.  and  are the 
empirical Bayes estimates of  and , respectively [28].

Statistical analysis
To assess the agreement of a given HRF for the same ROI scanned using different settings 
and scanners, the concordance correlation coefficient (CCC) was calculated using the epiR 
package (Version 0.9-99) [36] and R language (Version 3.5.1) [37] with R studio (Version 
1.1.456) [38]. The CCC is used to evaluate the agreement between paired readings [38], 
and provides the measure of concordance as a value between 1 and -1, where 0 represents 
no concordance and 1 or -1 represent a perfect direct positive or inverse concordance, 
respectively. The CCC metric further has the advantages of (i) robustness in small sample 
sizes, and (ii) taking the rank and value of the feature into consideration [39]. The cut-off of 
(CCC>0.9) was used to select reproducible HRFs, as the literature suggests that values < 0.9 
indicate poor concordance [40].

Four different approaches for assessing concordances of HRFs were used (Figure 2): (i) HRFs 
extracted from the original scans; (ii) HRFs extracted from the original scans and harmonized 
using ComBat; (iii) HRFs extracted from resampled scans; and (iv) HRFs extracted from 
resampled scans harmonized using ComBat. For (i), the CCC was calculated for all HRFs of all 
ROIs across 7 different scans from each scanner. In each run, the CCC was calculated between 
a different pair of scans. For (ii), HRFs with nearly zero variance (i.e HRFs which have the 
same value in 95% or more of the data points) had to be removed before applying ComBat. 
Parametric prior estimations were used, and no reference batch was assigned for ComBat 
application. The CCC was calculated after harmonizing the remaining HRFs using ComBat. 
In each run, ComBat was applied on two batches (scans). For (iii), the CCC was calculated 
for the HRFs following feature extraction with each of the IMs. The effects of the NUIR were 
assessed by calculating the CCC for the HRFs after resampling all the scans to one of the 
available in-plane resolutions. For (iv), ComBat was applied after the same process in (iii), 
and the CCC was then calculated. To gauge an overall image of the reproducibility of HRFs 
across all pairs as well as the impact of IMs, NUIRs, and ComBat, the number (percentage) 
of HRFs that were reproducible by taking the intersection of HRFs that were reproducible in 
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each pairwise comparison of a certain scenario were compared (21 pairs in each scenario 
as shown in tables 2-5).

Figure 2. Reproducibility analysis approaches.

Further, we assessed the correlation between the HRFs that were concordant across all 
pairwise comparisons on each scanner model, using Spearman correlation [42]. HRFs were 
considered highly correlated if the Spearman’s correlation coefficient had a value > 0.90.
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Results

Approach (i): Effects of IPR on the reproducibility of HRFs
The number of HRFs insensitive to the variations in IPR depended on the scanner model (Tables 
2 and S1). In pairwise comparisons, the number of concordant HRFs was lower when the 
difference in IPR between the scan pairs was greater. The lowest concordance was observed 
between the scan with the highest resolution and the scan with the lowest resolution. 

Out of the 91 extracted HRFs, between 39 (42.9%) and 86 (94.5%) HRFs were concordant, 
varying pairwise and scanner wise. Some HRFs were robust to variations in IPR in one 
scanner model, and not in the other.

Table 2. Number of pair-wise concordant HRFs with a CCC > 0.9 before resampling, Discovery STE model.

Scan CCR-2-001 CCR-2-002 CCR-2-003 CCR-2-004 CCR-2-005 CCR-2-006

CCR-2-002
CCR-2-003
CCR-2-004
CCR-2-005
CCR-2-006
CCR-2-007

75 (82.4%)
57 (62.6%)
53 (58.2%)
50 (54.9%)
51 (56.0%)
39 (42.9%)

78 (85.7%)
64 (70.3%)
61 (67.0%)
58 (63.7%)
42 (46.2%)

83 (91.2%)
72 (79.1%)
68 (74.7%)
44 (48.4%)

86 (94.5%)
76 (83.5%)
52 (57.1%)

85 (93.4%)
60 (64.9%) 83 (91.2%)

On the Discovery STE model (GE), the number of concordant HRFs ranged between 39 
(42.9%) and 86 (94.5%), with a median of 70 (39.6%) HRFs (Table 2). 36 (39.6%) HRFs were 
reproducible regardless of the IPR selected when all other scanning parameters were fixed 
(List S1). Of these 36 HRFs, nine remained after removing highly correlated HRFs (List S3), 
and none was highly correlated with volume. Overall, the Lightspeed Pro 32 model showed 
lower concordance than the Discovery STE model. The number of pairwise concordant HRFs 
on the Lightspeed Pro 32 model ranged between 39 (42.8%) and 82 (90.1%), with a median 
of 60 (65.9%) (Table S1). 27 (29.7%) HRFs were reproducible across all pairs (List S2). Of 
these 27 HRFs, nine remained after removing highly correlated HRFs (List S4), and none was 
highly correlated with volume. 26 (28.6%) HRFs were reproducible on both scanner models 
regardless of the IPR.

Approach (ii): ComBat harmonization of HRFs extracted from original scans
ComBat harmonization increased the number of concordant HRFs compared to before 
harmonization. On the Discovery model, the increment in the number (percentage) of HRFs 
ranged between 0 (0%) and 13 (14.3%), with a median of 6 (6.6%) of the total depending 
on the batches being harmonized (Table 3). 46 (50.5%) HRFs were found to be reproducible 
across all pairwise comparisons following ComBat harmonization, 35 of which were found 
to be highly correlated. The number of concordant HRFs decreased with the increment in 
IPR variation. Hence, the increment in the number of concordant HRFs was larger when the 
batches being harmonized had a larger difference in IPR.
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Table 3. Number of pair-wise concordant HRFs with a CCC > 0.9 after ComBat harmonization, Discovery STE model.

Scan CCR-2-001 CCR-2-002 CCR-2-003 CCR-2-004 CCR-2-005 CCR-2-006

CCR-2-002
CCR-2-003
CCR-2-004
CCR-2-005
CCR-2-006
CCR-2-007

79 (86.8%)
65 (71.4%)
59 (64.8%)
58 (63.7%)
57 (62.6%)
48 (52.7%)

79 (86.8%)
70 (76.9%)
66 (72.5%)
65 (71.4%)
55 (60.4%)

83 (91.2%)
75 (82.4%)
70 (76.9%)
57 (62.6%)

87 (95.6%)
84 (92.3%)
60 (65.9%)

86 (94.5%)
73 (80.2%) 84 (92.3%)

The performance of ComBat had a similar pattern on both the Discovery STE and the 
Lightspeed Pro 32 models. The increment in the number (percentage) of concordant HRFs 
extracted from the scans acquired with the Lightspeed Pro 32 model following ComBat 
harmonization ranged between 1 (1.1%) and 14 (15.4%) HRFs with a median increment 
of 7 (7.7%) HRFs compared to before harmonization, depending on the batches being 
harmonized (Table S2). 41 (45.1%) HRFs were reproducible across all pairs following ComBat 
harmonization, 29 of which were found to be highly correlated.

Approach (iii): The effects of different IMs and NUIR on HRFs
Different interpolation methods showed different effects on the reproducibility of HRFs. 
These effects further depended on the selected NUIR and the scanner model (Figures 3 and 
S2). For the majority of combinations of scanner models, IMs and NUIRs, some HRFs were 
only concordant when extracted from the original scans, some HRFs became concordant 
only after resampling, while some lost their concordance following resampling (tables S5 
and S6). CSW resampling to the highest and lowest resolutions are used below as detailed 
examples on both scanner models.

Figure 3. The percentage of concordant HRFs following resampling compared to no resampling with linear 
trendlines, Discovery STE model.
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On the Discovery STE model, the use of windowed sinc IMs resulted in an overall increment 
in the number of reproducible HRFs, regardless of the NUIR selected. The range of HRFs 
that had an improved concordance across all pairs when using windowing sinc was between 
14 (15.4%) and 20 (22%) HRFs, depending on the NUIR. When scans were resampled to 
the highest resolution using CWS, the increment in the number of concordant HRFs ranged 
between -2 (-2.2%) and 36 (39.6%), with a median of 12 (13.2%) HRFs. Moreover, 47 (51.6%) 
HRFs were concordant across all pairs. When scans were resampled to the lowest resolution 
using CWS, the increment in the number of concordant HRFs ranged between 4 (4.4%) and 
35 (38.5%), with a median of 16 (17.6%) HRFs. 54 (59.3%) HRFs were concordant across 
all pairs. Table 4 shows the pairwise number (percentage) of reproducible HRFs following 
resampling to the median IPR value with CWS IM on the Discovery model, for comparison 
with table 5.

Table 4. Number of pair-wise concordant HRFs with a CCC > 0.9 after resampling* using CWS, Discovery model.

Scan CCR-2-001 CCR-2-002 CCR-2-003 CCR-2-004 CCR-2-005 CCR-2-006

CCR-2-002
CCR-2-003
CCR-2-004
CCR-2-005
CCR-2-006
CCR-2-007

89 (97.8%)
86 (94.5%)
86 (94.5%)
86 (94.5%)
78 (85.7%)
53 (58.2%)

88 (96.7%)
85 (93.4%)
88 (96.7%)
77 (84.6%)
53 (58.2%)

88 (96.7%)
91 (100%)
83 (91.2%)
55 (60.4%)

89 (97.8%)
79 (86.8%)
54 (59.3%)

88 (96.7%)
60 (65.9%) 85 (93.4%)

* All scans were resampled to the median pixel spacing value (0.49*0.49 mm2).

HWS performed the best when the images were resampled to a NUIR equal to or lower 
than the median (0.49*0.49 mm2), while CWS, WWS and LWS methods performed better 
on NUIR values higher than the median. BSpline IM resulted in a minor to significant 
increment in the number of reproducible HRFs, with higher number of concordant features 
when higher NUIRs where chosen. Gaussian and Label-Gaussian IMs consistently resulted 
in lower numbers of concordant HRFs. The number of HRFs losing concordance across all 
pairs when using a Gaussian IM ranged between -29 (-31.9%) and -30 (-33%) HRFs, while 
the range for LabelGaussian was between -11 (-12.1%) and -19 (-20.9%) HRFs, depending 
on the NUIR. The rest of IMs (NN and Linear) resulted in an overall decrease in the number 
of concordant HRFs when a NUIR below the median resolution was selected, and a minor-
significant improvement with NUIRs higher than the median resolution (Table S5).

On the Lightspeed Pro 32 model, windowed sinc IMs (except for BWS) showed a consistent 
increment in the number of reproducible HRFs, and varying depending on the NUIR. When 
scans were resampled to the highest resolution using CWS, the increment in the number of 
concordant HRFs ranged between -9 (-9.9%) and 36 (39.6%), with a median of 8 (8.8%) HRFs. 
30 (33%) HRFs were concordant across all pairs. When scans were resampled to the lowest 
resolution using CWS, the increment in the number of concordant HRFs ranged between -3 
(-3.3%) and 31 (34.1%), with a median of 16 (17.6%) HRFs. 38 (41.8 %) HRFs were concordant 
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across all pairs. Table S3 shows the pairwise number (percentage) of concordant HRFs 
following resampling to the median IPR value with CWS IM on the LightSpeed Pro 32 model, 
for comparison with table S4. The application of other IMs (BWS, NN, Linear, Gaussian and 
Label-Gaussian) with a NUIR other than the two lowest resolutions available resulted in an 
overall decrease in the number of concordant HRFs. However, when the lowest resolution 
was selected as NUIR, BSpline IM outperformed all other methods when the number of 
concordant HRFs across all pairs was considered (Table S6).

Approach (iv): The combination of IMs and ComBat harmonization
Approach (iii) resulted in a higher number of concordant HRFs in the majority of pairwise 
scenarios compared to approach (ii) for the majority of IMs that performed solely well (for 
example, table 3 vs table 4). The application of ComBat harmonization on HRFs extracted 
from resampled scans varied per scanner model, IMs, NUIRs, and batches. However, when 
the number of concordant HRFs across all pairs is considered, ComBat increased the number 
of concordant HRFs in almost all of the investigated scenarios (Figures 4 and S3; tables S7 
and S8).

Figure 4. The percentage of concordant HRFs following resampling and ComBat harmonization 
compared to no resampling with linear trendlines, Discovery STE model.

On the Discovery model, the increment in the number (percentage) of concordant HRFs 
extracted from scans resampled to the highest resolution after ComBat harmonization 
ranged between 0 (0%) and 10 (11%), with a median increment of 0 (0%) of the total number 
of HRFs compared to before harmonization. 54 (59.3%) HRFs were concordant across all 
pairs. When ComBat was applied on HRFs extracted from scans resampled to the lowest 
resolution, the increment in the number (percentage) of HRFs ranged between -1 (-1.1%) 
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and 10 (11%) HRFs, with a median of 0 (0%), depending on the batches being harmonized. 
61 (67%) were found to be stable across all pairs. Table 5 shows the Number of pair-wise 
concordant HRFs following the application of ComBat on scans acquired on the Discovery 
STE model, and resampled to the median IPR value using CWS IM.

Table 5. Number of pair-wise concordant HRFs with a CCC > 0.9 after ComBat following resampling* using CWS, 
Discovery STE model.

Scan CCR-2-022 CCR-2-023 CCR-2-024 CCR-2-025 CCR-2-026 CCR-2-027

CCR-2-023
CCR-2-024
CCR-2-025
CCR-2-026
CCR-2-027
CCR-2-028

89 (97.8%)
86 (94.5%)
86 (94.5%)
86 (94.5%)
79 (86.8%)
57 (62.6%)

88 (96.7%)
85 (93.4%)
88 (96.7%)
78 (85.7%)
61 (67.0%)

88 (96.7%)
91 (100%)
84 (92.3%)
60 (65.9%)

89 (97.8%)
84 (92.3%)
59 (64.8%)

89 (97.8%)
72 (79.1%) 85 (93.4%)

* All scans were resampled to the median pixel spacing value (0.49*0.49 mm2).

On the LightSpeed Pro 32 model, the increment in the number (percentage) of concordant 
HRFs after ComBat harmonization on HRFs extracted from scans resampled to the highest 
resolution (lowest concordance) ranged between -1 (-1.1%) and 13 (14.3%) HRFs, with a 
median of 3 (3.3%) of the total number of HRFs compared to before harmonization. 42 
(46.2%) HRFs were concordant across all pairs. When ComBat was applied on HRFs extracted 
from scans resampled to the lowest resolution (highest concordance), the increment in the 
number (percentage) of HRFs ranged between 0 (0%) and 10 (11%) HRFs, with a median 
increment of 1 (1.1%) feature. 51 (56%) HRFs were concordant across all pairs. Table S4 
shows the pairwise CCC following the application of ComBat on scans acquired with the 
LightSpeed Pro 32 model, and resampled to the median IPR value using CWS IM.

Discussion

In this study, the effects of variations in scans’ IPR on the reproducibility of HRFs, the 
proper methodology of identifying HRFs that are reproducible across different IPRs, and 
how to properly adjust for these differences before performing radiomics analysis using 
image interpolation and/or ComBat harmonization were thoroughly investigated. Uniquely, 
this study evaluates the effects of all the different IMs and the choice of NUIRs on the 
reproducibility of HRFs. Previous studies usually investigated a single IM with a single NUIR 
[21,22].

While two batches of scans acquired with the same imaging parameters on two scanner 
models of the same vendor were used for analysis, the effects of IPR, ComBat, IMs, and NUIR 
on the reproducibility of HRFs varied on each of the scanner models. The CCC was calculated 
pairwise to assess the reproducibility of HRFs when different sets of data were used as 
batches. Calculating the pairwise CCC between HRF values extracted before resampling the 
images revealed that the reproducibility of HRFs in our data depended on several factors 
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including, but not limited to, the definition of the HRF, the degree of variation in IPR, and 
the scanner (hardware) make/model. Addressing the effects of these factors is crucial for 
performing robust radiomics analysis.

Without performing image preprocessing, the number of reproducible HRFs varied according 
to the batches being assessed. The aim of this study was to show that different investigated 
scenarios showed different numbers of reproducible HRFs. Therefore, although 36 HRFs for 
the Discovery STE scanner (27 HRFs for LightSpeed Pro 32 scanner) were always included in 
the set of concordant HRFs, it is difficult to conclude that these HRFs are insensitive to spatial 
resolution on all other scanner models based on our experiments. Yet, our framework guides 
the methodology of identifying reproducible HRFs according to the data under analysis. As 
we have shown, the number and type of HRFs is at least sensitive to the scanner model by 
the same manufacturer. Moreover, we anticipate based on their definition, that certain HRFs 
(such as histogram-based features) are less sensitive, while others (eg. texture features) 
are more sensitive to variations in scanning parameters and/or imaging vendors. Generally, 
scans with more similar original IPRs, and those of integer multiples of IPR showed higher 
numbers of concordant HRFs before and after resampling. This can be explained by the 
mechanisms by which a scan is acquired. When all other scanning parameters are fixed, 
the variations in IPR will result in variations in the number of pixels in 2D, while the other 
dimensions are preserved. Therefore, when all other parameters are fixed, the closer the 
IPR values are, the closer the values of the extracted HRFs.

For the IMs, the number of HRFs that had better/worse concordance after resampling 
was dependent on the NUIR chosen and scanner model. The window sinc interpolation 
family performed consistently better on both scanners and NUIRs investigated. In the field 
of radiology, both NN and linear are known to result in imprecisions [26,35]. A study into 
the reproducibility of HRFs investigated the performance of B-spline, linear and NN using 
a single image slice thickness, and concluded that NN is not a favorable method for the 
reproducibility of HRFs [42]. Our results support these previous reports by showing that NN 
and linear IMs are not the best candidates for improving the reproducibility of HRFs among 
scans acquired with different IPRs, and their use led to lower numbers of concordant HRFs 
in many of the investigated scenarios.

With regard to the selection of NUIR, a common trend of an inverse relationship between 
the NUIR and the number of concordant HRFs following resampling was observed. This trend 
was observed in both scanner models investigated. However, the percentage difference 
between the concordant HRFs is not significant at the lower end of the NUIR spectrum 
(Figures 3, 4, S2 and S3; tables S5 and S6). As the best NUIR is expected to be task dependent 
(for e.g classification of a lesion, predicting response to therapy or overall survival, etc), 
outcome-based analysis is needed to determine the best NUIR. Yet, as a general rule, the 
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smaller the NUIR, the better the concordance. In addition, while the number of non-highly 
correlated HRFs was found to be low on both scanner models (9 and 11 HRFs before and 
after ComBat harmonization, respectively), the exclusion of highly correlated HRFs should 
be performed based on the effects of the removal of these HRFs on the model performance.

A previous study investigated the effects on HRFs of voxel size resampling using linear 
interpolation. The authors resampled the scans of a phantom to a single voxel size, which 
was larger than the largest voxel size in the original scans, and reported that around 20% of 
the HRFs (N=213) became concordant after resampling [22]. Another study also investigated 
the effects of voxel size on HRFs of lung cancer patients [21]. The authors resampled all the 
scans to a single common voxel size using linear interpolation, and reported that resampling 
does not eliminate all the variations in feature values even when the only variation in 
scan acquisition and reconstruction parameters was the voxel size, but is favorable to no 
resampling. Another group investigated the effects of variation in several acquisition and 
reconstruction parameters on a 13-layer phantom using a different approach, and reported 
that resampling the scans to isotropic voxels increased the percentage of concordant 
HRFs from 59.5% to 89.3% [43]. In this study, we found a similar conclusion: the number 
of previously non-concordant HRFs that became concordant following resampling to the 
lowest resolution ranged between 1.1% and 22% depending on the IM, and not all HRFs 
benefit from image resampling. 

In contrast to previous studies, we investigated more IMs and harmonization techniques, 
and propose a guideline on how to carefully approach HRFs reproducibility studies. 
Furthermore, we found that linear interpolation is not a good candidate for the purpose of 
improving the reproducibility of HRFs, when compared to other available IMs; and that the 
performance of an IM is dependent on the original IPR values and the chosen NUIR, as well 
as the imaging vendor. 

When pairwise comparisons were considered, the performance of ComBat harmonization 
was found to be inferior to that of well-performing IMs, regardless of the NUIR. Moreover, 
the combination of ComBat and the well-performing IMs did not yield significantly better 
results compared to solely using the IM. Furthermore, the performance of ComBat varied 
depending on the batches used. Nevertheless, when the number of concordant HRFs across 
all pairs was considered, ComBat harmonization was of added value in almost all scenarios. 
Therefore, ComBat application on HRFs should follow a reproducibility study (phantom or 
tissue studies) to assess the impact of ComBat on the reproducibility of HRFs in those settings, 
and use only the harmonizable HRFs for further radiomics analyses [15], as described in the 
workflow (Figure 1). The application of ComBat without assessing HRFs’ reproducibility as 
described may result in the inclusion of a high percentage of unreproducible HRFs, or even 
the loss of some of the HRFs that were originally reproducible, rendering the analysis of 
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these HRFs meaningless. This finding regarding ComBat harmonization is not in line with 
previous reports, which reported that ComBat successfully removes the batch effects 
for all HRFs [28,44]. This could be attributed to the differences in the radiomics software 
and/or the evaluation metrics used. In contrast to previous studies, and as the aim of 
harmonization is to improve reproducibility but necessarily the performance of generated 
radiomic models, we opted for the CCC. The CCC provides an accurate description of the 
reproducibility of HRFs, which is not reflected in neither the distribution of HRFs nor the 
performance of radiomics models [45]. If radiomic models are to be used clinically, it is 
expected to be applied to one patient per time. Therefore, the importance has been 
given in this study to the individual feature values, and not their distributions. HRFs with 
different values and order rank can share similar distributions, in which case the feature 
cannot be considered reproducible. In addition, different modeling techniques may yield 
significantly different results on the same dataset. Hence, the difference in the performance 
of a radiomic signature before and after harmonization does not necessarily inform about 
the performance of the harmonization method. Our proposed framework addresses this 
issue, and guides the selection of reproducible and harmonizable HRFs before developing a 
radiomic signature, which helps the translation and generalization of results, and ultimately 
the inclusion of radiomic signatures in clinical practice.

Of note, not all HRFs benefit from resampling all scans to a NUIR, or using ComBat 
harmonization. Some HRFs lost their concordance following resampling, depending on the 
IM employed and the chosen NUIR. The combination of IMs and NUIRs affected the HRFs 
differently on different scanner models. Some HRFs were not found to be concordant on one 
of the scanner models before or after resampling to any of the available NUIRs using any of 
the IMs, but were found to be concordant on the other scanner model. Other HRFs were 
found to be concordant across different scanner models and IPRs. These findings indicate 
the need for performing reproducibility studies depending on the data under study, and the 
fact that at this level, we are unable to provide a list of HRFs that can be used regardless 
of the acquisition and reconstruction parameters and scanner models used. However, it 
lays down the bases for identifying reproducible HRFs before performing data analysis. In 
real life scenarios, the variations between the imaging parameters in retrospective cohorts 
(especially multicentric) are usually not only limited to the IPR. Aside from the scanner/
scanning parameters combination variations, some of the effects will be attributed to 
patient populations. Furthermore, while phantom studies reflect on the reproducibility 
of HRFs extracted from anthropomorphic phantoms, HRFs extracted from human tissue 
are expected to have a wider range of variations, due to the inclusion of biologic factors. 
This knowledge, combined with our findings, necessitate the critical investigation of the 
reproducibility of HRFs across the different scanning parameters/scanners before performing 
any statistical analysis, and future investigations into the effects of differences in acquisition 
and reconstruction parameters on the reproducibility of HRFs extracted from human tissues, 
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if feasible. Directly performing radiomics analysis on data acquired heterogeneously leads to 
spurious results, and lacks meaningful interpretation. Henceforth, we reiterate the need for 
using our proposed robust radiomics analysis framework for addressing differences in IPR. 
Furthermore, the workflow can be generalized to evaluate other harmonization methods.

Conclusions

The reproducibility of a given HRF, and its harmonizabilty with ComBat are not constants, 
but depended on the degree of variation in a single reconstruction parameter (the in-
plane resolution) of the scans being analyzed. This implies that additional changes in the 
acquisition and reconstruction parameters could further reduce the number of reproducible 
and harmonizable HRFs. When scans acquired with different IPR values are to be analyzed, 
resampling the scans to a unified resolution can significantly improve the reproducibility 
of HRFs. Interpolation methods (CWS, HWS, BWS, WWS and B-spline) were found to be 
superior to ComBat harmonization alone in addressing the variations in HRFs attributed 
to differences in IPR, and the combination of an IM with ComBat following NUIR could 
increase the number of reproducible HRFs in some scenarios. The application of our 
proposed framework aids the selection of data- and outcome-specific interpolation and 
harmonization methods, and is expected to improve the translation and generalizability of 
radiomics analyses.



The effects of in-plane spatial resolution on CT-based radiomic features’ stability

6

131

References

1. 	 Walsh, S.; de Jong, E.E.C.; van Timmeren, J.E.; Ibrahim, A.; Compter, I.; Peerlings, J.; Sanduleanu, 
S.; Refaee, T.; Keek, S.; Larue, R.T.H.M.; et al. Decision Support Systems in Oncology. JCO Clin 
Cancer Inform 2019, 3, 1–9, doi:10.1200/CCI.18.00001.

2. 	 Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; 
Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: the bridge between 
medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762, 
doi:10.1038/nrclinonc.2017.141.

3. 	 Ibrahim, A.; Vallières, M.; Woodruff, H.; Primakov, S.; Beheshti, M.; Keek, S.; Refaee, 
T.; Sanduleanu, S.; Walsh, S.; Morin, O.; et al. Radiomics Analysis for Clinical Decision 
Support in Nuclear Medicine. Semin. Nucl. Med. 2019, 49, 438–449, doi:10.1053/j.
semnuclmed.2019.06.005.

4. 	 Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, 
H.J.W.L.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: the process and the challenges. Magn. 
Reson. Imaging 2012, 30, 1234–1248, doi:10.1016/j.mri.2012.06.010.

5. 	 Miller, A.S.; Blott, B.H.; Hames, T.K. Review of neural network applications in medical imaging 
and signal processing. Med. Biol. Eng. Comput. 1992, 30, 449–464, doi:10.1007/BF02457822.

6. 	 Kjaer, L.; Ring, P.; Thomsen, C.; Henriksen, O. Texture analysis in quantitative MR imaging. Tissue 
characterisation of normal brain and intracranial tumours at 1.5 T. Acta radiol. 1995, 36, 127–135.

7. 	 Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; 
Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: extracting more information 
from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446, 
doi:10.1016/j.ejca.2011.11.036.

8. 	 Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. 
Radiology 2016, 278, 563–577, doi:10.1148/radiol.2015151169.

9. 	 Refaee, T.; Wu, G.; Ibrahim, A.; Halilaj, I.; Leijenaar, R.T.H.; Rogers, W.; Gietema, H.A.; Hendriks, 
L.E.L.; Lambin, P.; Woodruff, H.C. The Emerging Role of Radiomics in COPD and Lung Cancer. 
Respiration 2020, 99, 99–107, doi:10.1159/000505429.

10. 	 Rogers, W.; Thulasi Seetha, S.; Refaee, T.A.G.; Lieverse, R.I.Y.; Granzier, R.W.Y.; Ibrahim, A.; 
Keek, S.A.; Sanduleanu, S.; Primakov, S.P.; Beuque, M.P.L.; et al. Radiomics: from qualitative to 
quantitative imaging. Br. J. Radiol. 2020, 93, 20190948, doi:10.1259/bjr.20190948.

11. 	 Mackin, D.; Fave, X.; Zhang, L.; Fried, D.; Yang, J.; Taylor, B.; Rodriguez-Rivera, E.; Dodge, C.; 
Jones, A.K.; Court, L. Measuring Computed Tomography Scanner Variability of Radiomics 
Features. Invest. Radiol. 2015, 50, 757–765, doi:10.1097/RLI.0000000000000180.

12. 	 Berenguer, R.; Pastor-Juan, M.D.R.; Canales-Vázquez, J.; Castro-García, M.; Villas, M.V.; Mansilla 
Legorburo, F.; Sabater, S. Radiomics of CT Features May Be Nonreproducible and Redundant: 
Influence of CT Acquisition Parameters. Radiology 2018, 288, 407–415, doi:10.1148/
radiol.2018172361.

13. 	 Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463.



132 Chapter 6

14. 	 Davis, A.T.; Palmer, A.L.; Pani, S.; Nisbet, A. Assessment of the variation in CT scanner 
performance (image quality and Hounsfield units) with scan parameters, for image 
optimisation in radiotherapy treatment planning. Phys. Med. 2018, 45, 59–64, doi:10.1016/j.
ejmp.2017.11.036.

15. 	 Ibrahim, A.; Primakov, S.; Beuque, M.; Woodruff, H.C.; Halilaj, I.; Wu, G.; Refaee, T.; Granzier, 
R.; Widaatalla, Y.; Hustinx, R.; et al. Radiomics for precision medicine: current challenges,future 
prospects, and the proposal of a new framework. Methods 2020, doi:10.1016/j.
ymeth.2020.05.022.

16. 	 van Timmeren, J.E.; Leijenaar, R.T.H.; van Elmpt, W.; Wang, J.; Zhang, Z.; Dekker, A.; Lambin, 
P. Test-Retest Data for Radiomics Feature Stability Analysis: Generalizable or Study-Specific? 
Tomography 2016, 2, 361–365, doi:10.18383/j.tom.2016.00208.

17. 	 Peerlings, J.; Woodruff, H.C.; Winfield, J.M.; Ibrahim, A.; Van Beers, B.E.; Heerschap, A.; Jackson, 
A.; Wildberger, J.E.; Mottaghy, F.M.; DeSouza, N.M.; et al. Stability of radiomics features in 
apparent diffusion coefficient maps from a multi-centre test-retest trial. Sci. Rep. 2019, 9, 4800, 
doi:10.1038/s41598-019-41344-5.

18. 	 Zhovannik, I.; Bussink, J.; Traverso, A.; Shi, Z.; Kalendralis, P.; Wee, L.; Dekker, A.; Fijten, R.; 
Monshouwer, R. Learning from scanners: Bias reduction and feature correction in radiomics. 
Clin Transl Radiat Oncol 2019, 19, 33–38, doi:10.1016/j.ctro.2019.07.003.

19. 	 Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic 
Features: A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158, 
doi:10.1016/j.ijrobp.2018.05.053.

20. 	 Papanikolaou, N.; Matos, C.; Koh, D.M. How to develop a meaningful radiomic signature for clinical 
use in oncologic patients. Cancer Imaging 2020, 20, 33, doi:10.1186/s40644-020-00311-4.

21. 	 Shafiq-Ul-Hassan, M.; Latifi, K.; Zhang, G.; Ullah, G.; Gillies, R.; Moros, E. Voxel size and gray 
level normalization of CT radiomic features in lung cancer. Sci. Rep. 2018, 8, 10545, doi:10.1038/
s41598-018-28895-9.

22. 	 Shafiq-ul-Hassan, M.; Zhang, G.G.; Latifi, K. Intrinsic dependencies of CT radiomic features on 
voxel size and number of gray levels. Medical 2017.

23. 	 Thévenaz, P.; Blu, T.; Unser, M. Image interpolation and resampling. of medical imaging, 
processing and analysis 2000.

24. 	 Haddad, M.; Porenta, G. Impact of reorientation algorithms on quantitative myocardial SPECT 
perfusion imaging. J. Nucl. Med. 1998, 39, 1864–1869.

25. 	 Menon, S.; Damian, A.; Hu, S.; Ravi, N.; Rudin, C. PULSE: Self-Supervised Photo Upsampling via 
Latent Space Exploration of Generative Models. In Proceedings of the Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition; openaccess.thecvf.com, 2020; pp. 
2437–2445.

26. 	 Parker, J.; Kenyon, R.V.; Troxel, D.E. Comparison of interpolating methods for image resampling. 
IEEE Trans. Med. Imaging 1983, 2, 31–39, doi:10.1109/TMI.1983.4307610.

27. 	 Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using 
empirical Bayes methods. Biostatistics 2007, 8, 118–127, doi:10.1093/biostatistics/kxj037.



The effects of in-plane spatial resolution on CT-based radiomic features’ stability

6

133

28. 	 Orlhac, F.; Frouin, F.; Nioche, C.; Ayache, N.; Buvat, I. Validation of a method to compensate 
multicenter effects affecting CT radiomic features. 2018.

29. 	 Orlhac, F.; Boughdad, S.; Philippe, C.; Stalla-Bourdillon, H.; Nioche, C.; Champion, L.; Soussan, 
M.; Frouin, F.; Frouin, V.; Buvat, I. A Postreconstruction Harmonization Method for Multicenter 
Radiomic Studies in PET. J. Nucl. Med. 2018, 59, 1321–1328, doi:10.2967/jnumed.117.199935.

30. 	 Mackin, D.; Fave, X.; Zhang, L.; Fried, D.; Yang, J.; Taylor, B.; Rodriguez-Rivera, E.; Dodge, C.; 
Jones, A.K.; and Court, L. Credence Cartridge Radiomics Phantom CT Scans - The Cancer Imaging 
Archive (TCIA) Public Access - Cancer Imaging Archive Wiki. Cancer Imaging Archive 2017.

31. 	 Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, 
D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public 
information repository. J. Digit. Imaging 2013, 26, 1045–1057, doi:10.1007/s10278-013-9622-7.

32. 	 van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, 
R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode 
the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107, doi:10.1158/0008-5472.CAN-
17-0339.

33. 	 Lowekamp, B.C.; Chen, D.T.; Ibáñez, L.; Blezek, D. The Design of SimpleITK. Front. Neuroinform. 
2013, 7, 45, doi:10.3389/fninf.2013.00045.

34. 	 Hsieh Hou; Andrews, H. Cubic splines for image interpolation and digital filtering. IEEE Trans. 
Acoust. 1978, 26, 508–517, doi:10.1109/TASSP.1978.1163154.

35. 	 Meijering, E.H.; Niessen, W.J.; Viergever, M.A. Quantitative evaluation of convolution-based 
methods for medical image interpolation. Med. Image Anal. 2001, 5, 111–126, doi:10.1016/
s1361-8415(00)00040-2.

36. 	 Stevenson, M.; Stevenson, M.M.; BiasedUrn, I. Package “epiR.” 2020.
37. 	 Team, R.C. R language definition. Vienna, Austria: R foundation for statistical computing 2000.
38. 	 Gandrud, C. Reproducible Research with R and R Studio; CRC Press, 2013; ISBN 9781466572843.
39. 	 Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 

255–268.
40. 	 McBride, G.B. A proposal for strength-of-agreement criteria for Lin’s concordance correlation 

coefficient. NIWA client report: HAM2005-062 2005, 62.
41. 	 Zar, J.H. Spearman Rank Correlation. Encyclopedia of Biostatistics 2005.
42. 	 Larue, R.T.H.M.; van Timmeren, J.E.; de Jong, E.E.C.; Feliciani, G.; Leijenaar, R.T.H.; Schreurs, 

W.M.J.; Sosef, M.N.; Raat, F.H.P.J.; van der Zande, F.H.R.; Das, M.; et al. Influence of gray level 
discretization on radiomic feature stability for different CT scanners, tube currents and slice 
thicknesses: a comprehensive phantom study. Acta Oncol. 2017, 56, 1544–1553, doi:10.1080/0
284186X.2017.1351624.

43. 	 Ligero, M.; Jordi-Ollero, O.; Bernatowicz, K.; Garcia-Ruiz, A.; Delgado-Muñoz, E.; Leiva, D.; 
Mast, R.; Suarez, C.; Sala-Llonch, R.; Calvo, N.; et al. Minimizing acquisition-related radiomics 
variability by image resampling and batch effect correction to allow for large-scale data analysis. 
Eur. Radiol. 2021, 31, 1460–1470, doi:10.1007/s00330-020-07174-0.



134 Chapter 6

44. 	 Da-Ano, R.; Masson, I.; Lucia, F.; Doré, M.; Robin, P.; Alfieri, J.; Rousseau, C.; Mervoyer, A.; 
Reinhold, C.; Castelli, J.; et al. Performance comparison of modified ComBat for harmonization 
of radiomic features for multicenter studies. Sci. Rep. 2020, 10, 10248, doi:10.1038/s41598-
020-66110-w.

45.	 Vetter, T.R.; Schober, P. Agreement Analysis: What He Said, She Said Versus You Said. Anesth. 
Analg. 2018, 126, 2123–2128, doi:10.1213/ANE.0000000000002924.



The effects of in-plane spatial resolution on CT-based radiomic features’ stability

6

135

Supplementary Materials

The following are available online at www.mdpi.com/xxx/s1, Figure S1: The scanned CCR 
Phantom, Figure S2: The percentage of concordant features following resampling compared 
to no resampling with linear trendlines, LightSpeed Pro 32 model, Figure S3: The percentage 
of concordant features following resampling and ComBat harmonization compared to no 
resampling with linear trendlines, LightSpeed Pro 32 model, Table S1: Number of pair-wise 
concordant features with a CCC > 0.9 before resampling, LightSpeed Pro 32 model, Table S2: 
Number of pair-wise concordant features with a CCC > 0.9 after ComBat, LightSpeed Pro 32 
model, Table S3: Number of pair-wise concordant features with a CCC > 0.9 after resampling* 
using CWS, LightSpeed Pro 32 model, Table S4: Number of pair-wise concordant features 
with a CCC > 0.9 after ComBat following resampling* using CWS, LightSpeed Pro 32 model, 
Table S5: Summary of the number of concordant features before and after resampling, 
Discovery STE model, Table S6: Summary of the number of concordant features before and 
after resampling, LightSpeed Pro 32 model, List S1: HRFs with CCC>0.9 across all pairs on 
Discovery STE model, List S2: HRFs with CCC>0.9 across all pairs on LightSpeed Pro 32 model, 
List S3: Non-highly correlated HRFs with CCC>0.9 across all pairs on Discovery STE model, 
List S4: Non-highly correlated HRFs with CCC>0.9 across all pairs on LighSpeed Pro 32 model.





Part III





Turkey Refaee, Guangyao Wu,  Abdalla Ibrahim, Iva Halilaj, Ralph T.H. Leijenaar, 
William Rogers, Hester A. Gietema, Lizza E.L. Hendriks, Philippe Lambin, 

Henry C. Woodruff

Adapted from:
Respiration 2020;99:99–107

DOI: 10.1159/000505429

The emerging role of Radiomics 
in COPD and lung cancer

Chapter 7



Abstract

Medical imaging plays a key role in evaluating and monitoring lung diseases such as 
chronic obstructive pulmonary disease (COPD) and lung cancer. The application of artificial 
intelligence (AI) in medical imaging has transformed medical images into mineable data, 
by extracting and correlating quantitative imaging features with patients’ outcomes and 
tumor phenotype – a process termed radiomics. While this process has already been widely 
researched in lung oncology, the evaluation of COPD in this fashion remains in its infancy. 
Here we outline the main applications of radiomics in lung cancer and briefly review the 
workflow from image acquisition to the evaluation of model performance. Finally, we discuss 
the current assessments of COPD and the potential application of radiomics in COPD.  
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Introduction

Chronic obstructive pulmonary disease (COPD) is one of the most prevalent lung diseases, 
with an estimated 328 million people worldwide being affected, and in two decades it is 
expected to become the leading cause of death globally [1]. COPD is characterised by the 
limitation of airflow, which can be measured using spirometry.  It is not completely reversible 
and is often caused by exposure to noxious particles or gas (e.g. cigarette smoking) which 
creates an inflammatory response in the lung. [2, 3]. COPD is a multicomponent disease 
comprising of a combination of bronchiolitis, emphysema and extrapulmonary effects [4]. 
While spirometry can measure airflow limitation, the contributions of large and small airway 
involvement and the extent and contribution of parenchyma destruction cannot be assessed 
[5]. Imaging by means of computed tomography (CT) has an increasing role in evaluation of 
COPD since CT-features can suggest the presence and severity of COPD. These features can 
be assessed visually [6] , but research is in advanced stages to  automate the quantification 
of emphysema extent and distribution [7-10], airway wall thickness [11], and small airways 
disease [12].

Lung cancer is the other predominant lung disease, being one of the world’s most prevalent 
cancers [13-16]. Globally, lung cancer is the most commonly diagnosed cancer (around 11% 
of all cancers in both sexes), and the world’s leading cause of cancer related mortality (around 
18% of total cancer related mortality) [17]. Lung cancers can be divided into two broad 
groups, small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) [18]. NSCLC can 
be further divided into subgroups according to histopathology into squamous cell carcinoma 
(SCC) and adenocarcinoma (ADC) [19].   COPD has been shown to be a major additional 
risk factor for the development of lung cancer, specifically squamous cell carcinoma [20, 
21]. Discovering the link between COPD and lung cancer has drawn significant attention in 
recent years [22]. It has been shown that COPD and lung cancer share similar pathological 
processes [23], while smoking cigarettes is one important common factor that causes both 
COPD and lung cancer [20], and patients with COPD and NSCLC have poor survival outcomes 
compared to NSCLC patients without COPD [24]. The link of pathophysiologic mechanisms 
between COPD and lung cancer is still not well understood (Fig. 1)[25]. 
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Figure 1. Different distributions of HU values extracted from the ROI (purple outline) for a) normal tissue, b) COPD 
tissue, and c) lung tumor.

The treatment of patients suffering from either disease would be greatly improved by 
personalised approaches, where patients are treated based on their and their diseases’ 
individual characteristics rather than sub-population statistics gained from clinical trials. 
Which role artificial intelligence will play on the path to this paradigm shift towards 
individualised treatment selection is being extensively investigated [26]. For example, 
biopsies are used in clinical practice to phenotype the tumor, but the heterogeneous nature 
of cancer cells limits the biopsy’s capacity to fully capture its condition [27, 28]. Medical 
imaging, on the other hand, has the potential to noninvasively asses the phenotypic 
differences of tumors in   three dimensions [29] and has recently experienced great 
advances in the field of AI [30, 31]. In particular, radiomics, or quantitative image analysis 
(QIA) – the high-throughput extraction of quantitative features from medical images and 
their correlation with diagnostic and prognostic outcomes – has been researched to decode 
tumor phenotypes from a number of modalities such as computed tomography (CT), 
magnetic resonance imaging (MRI), and positron emission tomography (PET). Thousands 
of quantitative radiomic features can be extracted from each region of interest (ROI) and 
further analysed using machine learning tools to investigate correlations with biological and 
clinical endpoints [32-37]. Therefore, the application of radiomics to both COPD and lung 
cancer may improve the clinical workflow in diagnosing, managing, and following up the 
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patients. It can provide non-invasive, reliable and cost-effective clinical decision support 
systems, decreasing the need for invasive procedures.

The workflow of radiomics
The process of handcrafted radiomics consists of several steps (Fig 2): (1) collection of 
medical imaging (e.g CT, MR, PET/CT) for the target population; (2) segmentation of the 
region of interest (ROI) to be investigated; (3) extraction of radiomic features from the ROI; 
(4) the selection of radiomic features that best correlate with the outcome of interest ; 
(5) building the radiomics signature, and (6) evaluation of the model performance on 
various datasets using different metrics such as the receiver operating characteristic (ROC), 
area under the curve (AUC), and the precision-recall  curve (PRC). The workflow has been 
previously described in detail [30, 37, 38].

Figure 2. Graphic depiction of the radiomics workflow

Radiomics studies quality 
Despite the potential of radiomics to facilitate precision medicine as highlighted in numerous 
publications, a number of obstacles still limits the generalizability of radiomics signatures, 
and thus their translation to clinical applications. The most important and widely known 
limitation is the lack of reproducibility for radiomics biomarkers [39-41]. Several studies 
have investigated the stability of radiomic features with test-retest experiments [42-44], 
and reported that a considered percentage of features is not reproducible in test-retest 
settings, i.e. using the same acquisition and reconstruction parameters on the same vendor 
for acquiring the scan. A study by Zhovannic et al [45] demonstrated that 62 of radiomic 
features are sensitive to differences in acquisition and reconstruction parameters using 
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the same imaging vendor. Other studies investigated the sensitivity of radiomic features to 
differences in segmentations, or what is known as inter-observer variability [46].

As such, efforts must be made to unify image acquisition and reconstruction across different 
centres to facilitate quantitative imaging analysis research, and integrate these methods 
into clinical decision support systems. 

Several guidelines have been proposed to ensure that radiomic studies are methodologically 
sound and reproducible. Clear reporting in radiomics research is required to minimize 
bias and enhance the general application of prediction models. For instance, Transparent 
Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) 
initiative has established several recommendations in terms of reporting of the methodology 
of prediction models [47]. The Radiomics Quality Score (RQS) is, however, established 
specifically for radiomics research [38]. RQS is a checklist that contains sixteen elements 
to evaluate the design and reporting of a radiomics study. RQS guidelines include robust 
segmentation, the stability of test-retest, description of imaging protocol used, and internal/
external validation. Due to the fast pace of advancement in this field, further improvement in 
the standardization of this score is required to ensure a high quality workflow. Furthermore, 
Image Biomarker Standardization Initiative (IBSI) is a newly formed guidelines to address the 
standardization of feature calculation and image pre-processing [48].

Role of radiomics in lung cancer

Diagnosis
Several studies have explored the use of radiomics in the screening of lung cancer. The advent 
of low-dose (LDCT) has altered the landscape of lung-cancer screening. Studies indicate that 
LDCT imaging, unlike molecular markers in blood, sputum, and bronchial brushings detects 
many tumors at early stages. For instance, The National Lung Screening Trial (NLST) in the 
United States demonstrated in a large population of 53.454 participants at a high risk for 
lung cancer, a 20% relative reduction in mortality when participants underwent three annual 
screening (LDCT) scans instead of single-view posterior- anterior chest radiography [49]. 
Kumar et al. used LIDC-IDRI dataset in order to differentiate between benign and malignant 
lesions, resulting in sensitivity and specificity of 79.06% and 76.11, respectively [50]. Other 
publications already shown promising results in the diagnosis of lung cancer [51-53]. 

Staging
Tumor node metastasis (TNM) staging of lung cancer is also important for cancer treatment. 
Several studies showed the added value of radiomic features in lung cancer staging. A study 
by Aerts et al. that included 1,019 patients to extract 440 CT radiomics per patient reported 
that radiomic features were associated with the overall stage (TNM) of lung cancer [54].  A 



The emerging role of Radiomics in COPD and lung cancer

7

145

study by Wu et al. that used radiomic characteristics extracted from PET/CT to predict the 
early stage of distant metastasis (DM) in 101 early-stage NSCLC patients  showed that PET 
radiomic features correlated with DM, and have added value in M staging [55]. Coroller et 
al. applied radiomics on 182 lung adenocarcinoma in order to predict (DM) showing that 
radiomics performed well on M staging [35]. 

Genetics and histopathology
Besides diagnosing and staging lung cancer, the use of radiomics has been extended to 
predict gene mutation or different pathology types of lung cancer. A study by Zhange et al. 
that included 298 patients found a correlation between EGFR mutation and CT radiomics 
features [56]. Liu et al. achieved the same results [57, 58]. Rios et al. developed a radiomic 
models that classifies mutations in patients with lung adenocarcinoma. The research found 
that radiomic signature based on CT images can predict EGFR status effectively [59]. Wu et 
al. used two NSCLC cohorts from Netherlands to predict the histologic types of lung cancer 
(ADC, SCC) [52].  

Response to therapy 
The use of radiomics signatures could be used to predict the response of patients to 
particular therapy. In a study by Aerts et al. it was reported that radiomics features obtained 
from CT images before treatment were able to predict the mutation status of EGFR in NSCLC 
and correlate with gefitinib response [60]. Coroller et al. showed that radiomic features 
based-CT images acquired prior to treatment could predict the pathological response to 
chemoradiation in NSCLC patients [61].  Mathhonen et al. predicted the recurrence of lung 
cancer following receiving Stereotactic Ablative Radiation Therapy (SART)  using radiomics 
[62, 63]. Another study that utilized delta-radiomics, a method of analysing the difference 
of radiomic features obtained from longitudinal scans, in Stage III NSCLC patients to predict 
the outcome during radiation therapy, reported that the change in radiomic features 
values might be linked to the tumor response due to exposure to radiation [64]. Hao et al. 
used radiomic characteristics of peritumoral tissue derived from PET images to study its 
correlation with distant failure in NSCLC and cervical cancer (CC) [65]. The results showed 
a relationship between tumor boundaries and distant failure, suggesting that such an 
approach might be useful in predicting early response to radiotherapy in NSCLC and CC 
patients. In a recent study by Khorramin et al. CT-based radiomic features were extracted 
from peri- and intratumoral lung adenocarcinoma tissue and shown to have the potential to 
predict the response to chemotherapy, and correlated with both time to progression (TTP) 
and overall survival for patient with NSCLC [66]
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Prognosis
	 Several studies investigated the prognosis of lung cancer using a radiomics approach. 
Coroller et al. found a prognostic relation between radiomics features and distant metastasis 
(DM) and survival in patients with lung cancer [67]. Aerts et al. found an association between 
the prognosis of lung cancer and radiomics features [54]. Balagurunathan et al. showed a 
correlation between the prognosis of lung cancer and radiomic features [42]. Song et al. 
showed a connection between features extracted from CT images and overall survival in 
NSCLC patients [68].

Potential translation of radiomics in COPD  
The heterogeneous nature of COPD makes diagnosis challenging. However, it is crucial to 
unravel this variety of presentations to achieve an accurate diagnosis in early stages and help 
improve patients’ outcomes [5]. Different COPD assessments are used in clinical practice, 
including pulmonary function test (PFTs) and quantitative CT (QCT). Pulmonary function test 
(PFTs) are essential to diagnose and classify COPD. A commonly used PTF is spirometry, 
which is used to measure the  forced expiratory volume in 1 second (FEV1) and the forced 
vital capacity (FVC) as the primary parameters [69]. However, spirometry alone does not 
provide any locational information regarding emphysema [69]. Quantitative CT (QCT) is a 
promising approach that is able to quantify emphysema, airways abnormalities, and air 
trapping [5]. QCT has already demonstrated the capacity to evaluate the existence and 
degree of emphysema [70-76]. For example, CT densitometry parameters such as relative 
low-attenuation area [77-82] and percentile of the frequency – attenuation distribution 
[9, 83-85] are usually used to assess the degree of emphysema. Airways abnormalities are 
commonly measured by the calculation of the square root at an internal perimeter of 10mm 
(Pi10) using linear regression [86-89]. It is considered the gold standard tool and has already 
demonstrated significant correlation with the histological measurement of small airways 
[90]. Air trapping appears as decreased attenuation on expiratory CT images [91], making it 
the best way to evaluate air trapping in COPD [88]. The measurements of gas trapping using 
CT are highly correlated with PTF in COPD patients [92]

Despite the ability of QCT to quantify COPD, the interpretation of QCT is still time-consuming, 
qualitative, requires experts, and is prone to variability in the diagnosis between experts. 
CT image metric (radiomics) approach could potentially quantify COPD and uncover the 
disease’s hidden mechanism and the link between lung cancer and COPD in more nuance 
and more powerful phenotypic classification. A radiomics signature would be easier to apply 
as a clinical decision support system (cDSS), and less time consuming compare to currently 
used QCT. Therefore, several potential applications for radiomic features in COPD are 
suggested. Texture analysis for example has shown its effectiveness in assessing the degree 
of emphysema. A study by Ginsburg et al. demonstrated the effectiveness of texture-based 
approach in classifying between the lungs of never-smokers, smokers without emphysema, 
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and smokers with emphysema, indicating that an early stage of smoking-related lung injury 
could potentially be identified before emphysema develops [93]. Another study by Castadi 
et al. used a local histogram-based technique to quantify distinct emphysema pattern using 
CT scans from 9,313 smoker subjects in the COPODGene study [94]. The results of the study 
suggests that information extracted from CT pattern of emphysema were more predictive 
than threshold-based emphysema measurements such as “low attenuation area less than 
-950” (LAA-950).  As described above, the applications of radiomics in the screening of lung 
cancer showed interesting results. Automated screening of routine chest CT to diagnose 
COPD is therefore one possible use, with the ability to detect suspected sarcopenia not 
only in the lung but also in the muscle tissue. Detection and differentiation between COPD 
stages and phenotypes, especially in early stages, will allow for the early and suitable 
treatment for the patient. In a study by Lafata et al., the authors reported on the potential 
of radiomic features extracted from CT images to quantify the changes in lung function and 
associated with spirometry test [95]. The same approach using radiomics could be extended 
to investigate its relationship with other gold standard COPD markers such as waking exams, 
FEV/FVC ratio (Tiffeneau index) or to the frequency of exacerbations associated with COPD 
patients, enabling an accurate diagnose of COPD severity. In addition, the use of radiomics 
could improve the performance of the existing multifactorial models (nomograms) by 
adding radiomics features to existing clinical factors (age, sex, number of pack-years, current 
smoking, performance score, wheezing) as already shown in a previous publication [96]. 
Delta-radiomics has already demonstrated its ability to predict response to therapy in lung 
cancer. Therefore, such a technique could be used to identify quantitatively the evolution 
of the disease and the effect of (new) treatment. Additionally, delta-radiomics could be 
applied to assess the difference between inspiration and expiration scans and to explore 
hidden information that could help in evaluating the extent and severity of pulmonary 
emphysema, air trapping, and airway abnormalities. The use of radiomics potentially could 
be used to predict whether patient will respond to certain interventions, such as endoscopic 
lung volume reduction (ELVR), and inhalation steroids. 

Conclusion

The field of radiomics is rapidly growing and has already shown its potential in assessing 
lung cancers in terms of detection, treatment response, and prognosis. Different QCT 
measurements have been used to quantify COPD abnormalities such as emphysema, air 
trapping, and airway remodelling. Applying radiomics in COPD has not been extensively 
investigated yet. We show examples of the potential use of radiomics in the diagnosis, 
treatment and the follow-up of COPD and future directions for further research.
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A Handcrafted Radiomics-Based Model 
for the Diagnosis of Usual Interstitial 

Pneumonia in Patients with 
Idiopathic Pulmonary Fibrosis

Chapter 8



Abstract

The most common idiopathic interstitial lung disease (ILD) is idiopathic pulmonary fibrosis 
(IPF). It can be identified by the presence of usual interstitial pneumonia (UIP) via high-
resolution computed tomography (HRCT) or with the use of a lung biopsy. We hypothesized 
that a CT-based approach using handcrafted radiomics might be able to identify IPF patients 
with a radiological or histological UIP pattern from those with an ILD or normal lungs. A 
total of 328 patients from one center and two databases participated in this study. Each 
participant had their lungs automatically contoured and sectorized. The best radiomic 
features were selected for the random forest classifier and performance was assessed using 
the area under the receiver operator characteristics curve (AUC). A significant difference in 
the volume of the trachea was seen between a normal state, IPF, and non-IPF ILD. Between 
normal and fibrotic lungs, the AUC of the classification model was 1.0 in validation. When 
classifying between IPF with a typical HRCT UIP pattern and non-IPF ILD the AUC was 0.96 in 
validation. When classifying between IPF with UIP (radiological or biopsy-proved) and non-
IPF ILD, an AUC of 0.66 was achieved in the testing dataset. Classification between normal, 
IPF/UIP, and other ILDs using radiomics could help discriminate between different types of 
ILDs via HRCT, which are hardly recognizable with visual assessments. Radiomic features 
could become a valuable tool for computer-aided decision-making in imaging, and reduce 
the need for unnecessary biopsies.

Keywords: handcrafted radiomics; interstitial lung diseases; usual interstitial pneumonia; 
machine learning
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Introduction

Idiopathic pulmonary fibrosis (IPF) is the most common progressive form of interstitial lung 
disease (ILD) with an unknown etiology, usually impacting older adults [1,2]. In 2011, four 
societies—the American Thoracic Society, the European Respiratory Society, the Japanese 
Respiratory Society, and the Latin American Thoracic Association—came together to issue 
an evidence-based statement, which provided recommendations for both the diagnosis and 
management of IPF [3]. According to these recommendations, high-resolution computed 
tomography (HRCT) can play a crucial role in the diagnosis of fibrotic lung diseases and has 
a significant impact on medical decision-making.

Diagnosing IPF comes about using a multidisciplinary discussion (MDD) of the clinical, 
radiological, and, if available, pathological data showing a usual interstitial pneumonia (UIP) 
pattern which is the most common histopathological form of diffuse lung fibrosis [3,4]. The 
diagnostic radiological characteristic of UIP necessitates honeycombing with a basal and 
subpleural predominance. The upper lobes are less affected, and traction bronchiectasis 
may be present [5]. An IPF diagnosis requires a multidisciplinary discussion (MDD) and 
the exclusion of known causes of ILD, in addition to the presence of a UIP-specific pattern 
on thin-section CT, or a specific combination of HRCT patterns and histopathological UIP 
patterns in patients subjected to lung tissue sampling [3]. It is also worth noting that, in 
2018, the Fleischner Society expanded on these recommendations for diagnosing IPF to 
include the appearance of probable UIP in HRCTs, if the clinical context was consistent with 
an IPF [6].

Surgical lung biopsy (SLB), which is recommended when no UIP pattern is present on the 
HRCT [3,7], is an invasive procedure that requires pleural drainage and is associated with a 
mortality rate ranging from 2.0% to 3.6% [8–13]. Moreover, in a recent study that included 
a cohort of patients with pathologically-proven UIP patterns, radiologists only identified a 
UIP pattern on thin-section CT with a sensitivity of 34% [14], according to the recent ATS-
ERS guidelines [15]. Furthermore, the radiological assessment of fibrotic lung diseases is 
still challenging and often varies between experts [16–19]. Consequently, an automated 
approach that assists radiologists (especially less experienced ones) could be very useful in 
avoiding unnecessary biopsies in a context of a multidisciplinary discussion. 

The interest in radiomics, pioneered in 2012, has increased in recent years [20]. The field 
of handcrafted radiomics, briefly stated, extracting a large number of mineable quantitative 
data from medical images using predetermined formulas, has developed rapidly in recent 
times [20]. The term radiomics (handcrafted radiomics and deep learning) refers to the high-
throughput extraction of numeric features from medical imaging modalities, providing high-
dimensional data that could be used to identify patterns relating to the pathophysiology 
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of a disease. These data could then be merged with the characteristics of each patient to 
aid clinical decision-making [20,21]. Different studies have shown that radiomics has the 
potential to complement clinical decision support systems, for example, for cancer diagnosis 
and prognosis [20,22–24]. These studies have shown some potential to function as imaging 
biomarkers and to predict clinical outcomes and drug responses [20,25–27]. While the 
potential of radiomics has mainly been investigated in oncology, it can also be applied to 
many other diseases, including ILDs and chronic obstructive pulmonary disease (COPD) 
[28–30].

We hypothesize that radiomic features are able to decode biological information from 
specified regions of interest within the lung that can be used to diagnose IPF with UIP 
pattern. The aims of this study are two-fold: (1) to evaluate the use of radiomics, to 
differentiate between normal lung tissue and ILDs; (2) to evaluate the use of radiomics to 
distinguish IPF with a typical or less typical (biopsy-proven) UIP pattern related to IPF from 
HRCT patterns related to non-IPF ILDs. We also conjecture, based on the literature [31], 
that tracheal enlargement and tracheal shape would significantly complement handcrafted 
radiomic features that would help in the classification of different types of ILDs.

Materials and Methods

Study Population
The study protocol was registered on clinicaltrials.gov (identifier: NCT04430491), approved 
by the ethics committee of the Erasme University hospital (ref: P2017/411). The electronic 
medical records at Erasme University hospital (center i) were searched between 2011 and 
2018 for patients diagnosed with ILD. The inclusion criteria were: (i) the availability of HRCT 
with slices of less than 1.5 mm; (ii) the availability of a high-confidence diagnosis (MDD 
diagnosis of IPF with a typical UIP pattern; MDD diagnosis of IPF with a biopsy-proven UIP 
pattern; or MDD diagnosis of non-IPF ILD, validated by a lung biopsy showing a pattern 
other than UIP). The exclusion criteria were (i) the use of contrast enhancements in HRCT; 
(ii) images containing metal or motion artifacts; and (iii) images reconstructed with a slice 
thickness larger than 1.5 mm (Figure 1). At least 1 chest physician, 1 pathologist, 1 thoracic 
radiologist, 1 specialist in internal medicine or rheumatology participated in the MDD. For 
external validation (database A), we used the group of patients diagnosed with interstitial 
lung diseases from the publicly available Lung Tissue Research Consortium (LTRC, https://
ltrcpublic.com/ (accessed on 19 September 2018)). Images from patients with ostensibly 
healthy lungs (database B) were collected from the publicly available Radiomics Imaging 
Archive (RIA, https://www.radiomicsimagingarchive.eu/ (accessed on 24 October 2021)) 
(G4). Information was also gathered from patients, such as the demographic (age, gender) 
and clinical data (body mass index—BMI), as well as the measurements of pulmonary 
function tests (PFT) (forced expiratory volume in 1s (FEV1), forced vital capacity (FVC), and 
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diffusion capacity of carbon monoxide (DLCO). The so-called gender, age, and pulmonary 
function (GAP) score and staging system that was developed by Ley et al. in 2012 [32] was 
calculated for each patient and the value was recorded.

Figure 1. A flowchart diagram shows the patient selection process. (G1) patients with final MDD diagnosis of IPF 
with typical UIP pattern in HRCT and no lung biopsy; (G2) patients with a final MDD diagnosis of IPF confirmed 
by Surgical Lung Biopsy (SLB) (less typical HRCT pattern); (G3) patients with ILDs other than IPF with lung biopsy 
confirming a non-UIP pattern; (G4) patients with apparently healthy lungs.

High-Resolution CT (HRCT) Scanning
For center i, the HRCTs were acquired on a 64- or 128-detector row CT system (Somatom, 
Definition, Siemens Healthineers, Erlangen, Germany). For database A, HRCT images were 
acquired using 4 different CT vendors (Siemens, Erlangen, Germany), (GE, Waukesha, USA), 
(Philips, Amsterdam, the Netherlands), and (Toshiba, Tochigi-ken, Japan). For database B, 
all scans were acquired from the same scanner (GE Medical Systems, Waukesha, USA). The 
slice thickness of all scans varied between 0.5 and 1.5 mm.

Segmentation
The process of delineating a region of interest (ROI) that will be utilized to extract handcrafted 
radiomic features is known as segmentation. A workflow for radiomics from segmentation 
to data analysis is depicted in Figure 2. Segmentation of the lungs and sectors, as well as the 
tracheobronchial tree, were performed automatically using an automated workflow created 
with MIM software (MIM Software Inc., Cleveland, OH, USA). Sectorized lung segmentation 
was performed to account for the differences in the spatial distribution of the lesions 
between UIP and non-UIP patterns. Each sector was defined as a (ROI). As shown in the left 
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part of Figure 2, sectors 1 and 2 represent the upper section of the lung, sector 3 represents 
the middle section, and sector 4 represents the basal section.

Figure 2. Radiomics Pipeline for lung fibrosis classification from CT images. First, the region of interest (ROI) 
was delineated. Second, handcrafted radiomic features were extracted from both ROIs. Third, feature selection 
methods were applied to select the most informative set of features. Fourth, the selected set of features were train 
the Random Forest classifier to arrive at a prediction.

Radiomic Features Extraction
To minimize the effects of the variations in image voxel size, all HRCT images were resampled 
into 1 × 1 × 1 mm3 voxel size, using linear interpolation to address the disparate reconstruction 
settings found in the datasets [33]. 1 × 1 × 1 mm3 was the maximum voxel size available in 
the dataset [34]. Radiomic features, except for the trachea volume, were extracted from the 
ROIs of the lung and sectors within the HRCT images, using the RadiomiX Discovery Toolbox 
(version, October 2019; https://www.radiomics.bio (accessed on 23 June 2020)), which 
calculates radiomics features in compliance with the Imaging Biomarkers Standardization 
Initiative (IBSI) [35]. Voxel intensities were aggregated into bins of 25 Hounsfield Units 
(HUs)—for nonfiltered features, excluding first-order statistics features—to reduce noise 
and interscanner variability [36]. The extracted features describe the fractal dimension, 
intensity histogram, first-order statistics, texture, and shape. Mathematical definitions and 
descriptions of the features mentioned can be found in other studies [21].

Data Splitting
For the first aim, i.e., normal vs. ILDs (G4 vs. G1,2,3), the data from center (i) and database 
B was combined and split into training and validation datasets, with a ratio of 0.8:0.2. For 
the second aim, i.e., IPF/UIP vs. non-IPF ILDs (G1 and 2 vs. G3), datasets from center (i) were 
randomly divided into training and validation dataset, using a ratio of 0.8:0.2, and data from 
database A was used as an external validation dataset.

Feature Selection and Modeling
To avoid any information leaking, all of the feature selection and model training was 
conducted in the training dataset alone. In order to reduce feature dimensionality, several 
steps were applied. Firstly, features with (near) zero variance (i.e., features that have the 
same value in ≥95% of the data points) were excluded. Next, feature pairs with Spearman 
correlation (r ≥ 0.90) were considered to be highly correlated, and the feature with the 
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highest average correlation with all other features was removed. Then, the remaining 
features were fed into the Boruta dimension-reduction and feature-elimination algorithm, 
with the maximal number of important sources, runs set to 1000. The Boruta algorithm is 
a wrapper method based on random forest classification [37]. Afterward, a random forest 
model was trained with the remaining features and the top-10 features with the highest 
mean decrease in Gini were retained for the final random forest model. Five models were 
trained: 1 model was trained to classify between normal and ILDs, while the rest were used 
to classify between IPF with different UIP pattern appearances (i.e., UIP on HRCT or UIP 
not on HRCT but confirmed with a lung biopsy) and non-IPF ILDs with no UIP pattern and 
confirmed by a lung biopsy.

Statistical Analysis
All statistical analyses were performed using R on RStudio (version 4.0.2; https://www.R-
project.org/ (accessed on 10 January 2022)). Comparisons between datasets were 
summarized using a Wilcoxon rank-sum test for the continuous variables and an X2 Fisher 
exact test for categorical variables. A Spearman correlation was used to evaluate the 
correlation between radiomic features.

To assess the model’s level of performance, the area under the curve (AUC) from the 
receiver operating characteristic (ROC) analysis was used and a 95% confidence interval 
(CI) was reported. To estimate the goodness-of-fit of the models, the Hosmer–Lemeshow 
test was used, and calibration plots were generated to visualize the consistency of models. 
This study was assessed using a Radiomics Quality Score [21] that consists of 16 items with 
different scores that sum up to 36 points and was designed specifically for radiomic studies.

Results

Patients Characteristics
A total of 328 patients were included in the study after the application of the exclusion 
criteria (Figure 1). A group of 122 patients from the center (i) was included. These patients 
were divided into three groups: (G1) patients with a final diagnosis of IPF and with typical UIP 
pattern in HRCT (n = 39); (G2) patients with non-typical UIP pattern and a final MDD diagnosis 
of IPF confirmed by SLB (n = 41); (G3) patients non-IPF ILD diagnosis confirmed by SLB (n = 
42). From database (A), a total of 109 patients were included and divided into two groups: (1) 
IPF with UIP pattern patients (n = 53) and (2) non-IPF ILD with no UIP pattern (n = 56). From 
database (B) (G4), 97 healthy patients were included. A comparison between patients with a 
final diagnosis of IPF\UIP, non-IPF ILD, and healthy patients was performed and summarized 
in Table 1. As expected, there was a higher percentage of males among IPF patients (79% vs. 
51%, p < 0.001), whereas no significant differences were noticed regarding age (p = 0.06), and 
lung function tests (FEV1, p = 0.8; FVC, p = 0.18; DLCO, p = 0.23; BMI, p = 0.34). 
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Table 1. Demographic and clinical characteristics of patients with IPF, non-IPF ILD, and healthy groups.  
IQR: interquartile range; SD: standard deviation.

Variable IPF\UIP (HRCT & Biopsy) Non-IPF ILD (Biopsy) Normal p-Value

Age (median (IQR)
Sex = M (%)
FEV1 (mean (SD))
FVC (mean (SD))
DLCO (mean (SD))
BMI (mean (SD))

65 (60, 71)
104 (78.8)

71.08 (18.34)
67.39 (19.53)
38.92 (11.62)
28.06 (4.42)

63 (57, 72)
51 (51.5)

71.77 (21.94)
71.07 (22.17)
36.73 (16.12)
28.69 (5.59)

62 (56, 67)
56 (57.7)

-
-
-
-

0.06
<0.001
0.8
0.18
0.23
0.34

Feature Extraction and Feature Selection
Original features were extracted (n = 170) for the whole and sectorized lung. Shape features 
and features with little or zero variance were excluded (n = 33). A list of the selected 
features after removing the highly correlated features, applying the Boruta algorithm, and 
Gini decrease can be found in Appendix A, Table A1. Feature selection methods yielded ten 
radiomics features as inputs for the group comparisons.

Performance of the Models
The volume of the trachea was observed to differ significantly (p < 0.001) between the 
control, IPF/UIP, and ILDs other than IPF patients (49.23 ±1 2.96, 73.40 ± 22.01, and 61.67 ± 
18.81 cm3, respectively, mean ± SD), and also between IPF/ UIP and ILD (non-IPF) (p < 0.001) 
(Figure 3). In addition, no association was detected between tracheal volume and either 
lung function (FVC% predicted, r = −0.03, p = 0.59), or the GAP index (r = 0.17, p = 0.01). 
Following the feature selection, the volume of the trachea was selected as an important 
feature for all models, except for the classification between normal and ILDs.

Figure 3. The difference in the volume of the trachea between IPF, non-IPF ILD, and normal, 
p < 0.001.
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When classifying between a normal lung (G4, database B) and a lung with ILDs (G1 + G2 + 
G3) from center (i), an AUC of 1.0 (CI: 1.0–0.1) was achieved in validation (M1) (Figure 4). 
For the classification between G1 and G3 (center i), significant results were obtained using 
whole lungs with an AUC of 0.96 (95% CI: 0.90–1.0) in validation (M2). For the classification 
between G2 and G3 (center i), significant results were achieved using sector 1 (upper zone 
of the lung) with an AUC of 0.87 (95% CI: 0.74–1.0) in validation (M3).

When combining G1 and G2 to distinguish the results from G3 (center (i)), an AUC of 0.82 
(95% CI: 0.68–0.95, M4) and 0.66 (95% CI: 0.59–0.73, M4.1) in validation and test dataset 
(database A) were achieved using whole lungs respectively. When 40% of the test dataset 
(from database A) is introduced to the training dataset, and retaining the remaining 60% as 
testing, an AUC of 0.77 (95% CI: 0.69–0.85) was achieved (M5).

           (a)            (b)

Figure 4. The graph shows the area under the receiver operating characteristic (AUC) curve of different models in 
the validation (a)\test (b) dataset. (M1) normal lungs vs. ILD; (M2) IPF\UIP on HRCT (G1) vs. non-IPF ILD (biopsy-
proven) (G3); (M3) IPF\UIP pattern proven by biopsy (G2) vs. non-IPF ILD (biopsy-proven) (G3); (M4) IPF with UIP 
(G1 + G2) vs. non-IPF ILD (biopsy-proven) (G3); M4.1) IPF with UIP (G1 + G2) vs. non-IPF ILD (G3) vs. non-IPF ILD 
(biopsy-proven)(G3) in testing; (M5) IPF with UIP (G1 + G2) vs. non-IPF ILD (biopsy-proven) (G3) mixed with 40% of 
the testing dataset.

The detailed sensitivity and specificity of the models for validation/testing dataset are 
summarized in Table 2. To gauge the presence of overfitting when retraining all the models 
with randomized outcomes, no single feature was chosen as significant when the Boruta 
algorithm was applied and the workflow had to be halted.
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Table 2. Detailed predictive and diagnostic values among various models studied, using the validation/testing 
dataset.

Model (M) AUC
(95% CI)

Accuracy
%

Sensitivity
%

Specificity
%

M1
M2
M3
M4
M4.1
M5

1.0 (1.0–1.0)
0.96 (0.90–1.0)
0.87 (0.74–1.0)
0.82 (0.68–0.95)
0.66 (0.59–0.73)
0.77 (0.69–0.85

99
91
72
70
65
69

98
88
65
66
60
64

98
94
90
79
69
75

Among all models, M1, M2, and M4 showed proper calibration with p = 0.68, 0.32, and 0.07, respectively  
(Figure 5). The radiomics quality score of this study was 64% (23 of 36).

Figure 5. Calibration plots of radiomics models on the validation/testing dataset. (A) Normal vs. ILD (M1); (B) IPF\
UIP vs. non-IPF ILD (M2); (C) IPF with UIP (G1 + G2) vs. non-IPF ILD (biopsy-proven) (M4).

Discussion

In this study, we developed a quantitative signature (radiomics) extracted from HRCT to 
classify fibrotic lung disease. A random forest classifier was used to differentiate between 
(1) normal lungs and interstitial lung diseases (ILDs); (2) idiopathic pulmonary fibrosis (IPF) 
(with typical or less typical usual interstitial pneumonia (UIP) radiological presentation), and 
non-IPF ILDs (other than IPF as proven by the absence of UIP in a surgical biopsy). Briefly 
stated, we were able to demonstrate that radiomic features derived from HRCT images can 
be used to distinguish between a normal state and ILDs, as well as between IPF with a UIP 
pattern and ILDs with no UIP pattern verified by surgical biopsy. The inclusion of biopsy-
proven non-IPF ILDs patients strengthens the study, as well as making it unique (Appendix 
A, Table A2).

Differentiating between normal and ILD lung tissues might seem a trivial task. However, it 
is a time-consuming process since the clinician has to go through all the scans. Developing 
an automated approach that differentiates between normal and abnormal lungs would 
decrease the amount of time a clinician needs to assess images on a daily basis. A previous 
study presented a novel texture analysis method that incorporates texture matching with 
histogram features analysis [38]. This study reported that their method achieved a sensitivity 
of 92.96% and a specificity of 93.78% in differentiating between normal and abnormal lungs. 
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The study made use of a part of the handcrafted radiomic features used in our analysis. 
Using all-handcrafted radiomic features, we achieved a sensitivity of 98% and a specificity 
of 98% to identify an ILD.

Many ILDs have characteristics and changes in the lungs similar to those of IPF/UIP on 
HRCT, making the diagnosis very difficult—even for experienced radiologists [39]. Visual 
assessments of ILDs while using HRCT can be very subjective due to the high variability in the 
knowledge of inter-readers [16–18]. Therefore, providing automated diagnostic assistance 
in this setting would be highly beneficial, especially for less experienced radiologists. Texture 
image analysis is not new in fibrotic lung diseases and has been researched to automatically 
analyze ILDs on CT images [38,40–46]. However, most of the existing studies have focused 
on prognostic questions rather than providing diagnostic support. Maldonado et al. showed 
that short-term reticular changes evaluated by CALIPER (Computer-Aided Lung Informatics 
for Pathology Evaluation and Rating) correlated with physiological parameters and were 
predictive of survival in IPF patients [41]. Humphries et al. concluded that the use of Data-
driven Texture Analysis (DTA) for IPF patients correlates with both pulmonary function tests 
and visual assessment on CT images at baseline [45]. However, a more thorough classification 
of phenotypes can be provided by applying radiomic data stratification. Walsh et al. used 
a deep learning approach for automated classification of fibrotic lung disease, according to 
the 2011 ATS/ERS/JRS/ALAT idiopathic pulmonary fibrosis diagnostic guidelines on a dataset 
of 1157 HRCT scans. The algorithm performance was compared to that of 91 radiologists and 
showed an accuracy of 73.3%, compared to the median accuracy of the radiologists, 70.7% 
[47]. To the best of our knowledge, no study has investigated the potential of handcrafted 
radiomics for differentiation between IPF/UIP and other ILDs.

By assessing the potential of handcrafted radiomics to differentiate between IPF with 
typical UIP presentation on HRCT and ILDs other than IPF, we discovered another benefit of 
automation similar to that achieved by differentiating between normal and abnormal lung 
tissue. It could serve mainly as a decision-aiding tool that would increase the diagnostic 
accuracy of the disease, reduce the need for invasive lung biopsies, and decrease the time 
needed to conduct routine scans.

IPF is also associated with wide parenchymal and airway conditions, such as those found 
in the trachea wall, which leads to pathological changes [48]. Ratwani et al. studied the 
correlation between the change of tracheobronchial tree size and the disease severity of IPF 
[31]. Our study found a significant difference in the volume of trachea between normal, IPF/
UIP and, ILDs patients. Furthermore, it was found that the volume of the trachea was higher 
for IPF subjects compared to normal and ILDs other than IPF (Figure 3). No correlation 
was seen between the volume of the trachea and %FVC predicted. This conclusion may be 
consistent with the findings of Ratwani et al. [31], who found that there was no association 
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between %FVC predicted and growing tracheobronchial tree size, indicating that tracheal 
expansion is not only due to fibrosis and that other variables may be at play. Such findings 
suggest that the increase of the volume of the trachea might be a good new handcrafted 
radiomic feature to serve as a promising tool in the diagnosis of IPF.

The decrease in model performance in the test dataset might be explained by the presence of 
variation in acquisition and reconstruction parameters. When the random forest algorithm 
learned part of the test dataset in the training dataset (M4.1), the model AUC increased 
from 0.66 to 0.77. Such findings indicate the need for addressing the challenges associated 
with differences in imaging parameters.

This study has some limitations. Firstly, we did have the additional categories of UIP 
patterns (definite, probable, indeterminate, or alternative) in the training dataset but not 
in the test dataset. Therefore, we only used the test dataset when we combined G1 and 
G2. Secondly, the healthy CT scans (G4) were obtained only from one center (center iii). 
Thirdly, the CT acquisition parameters of HRCT varied between and within the centers, and 
radiomic features are known to be influenced by different CT acquisition and reconstruction 
parameters [34,49,50]. Furthermore, we could not assess the reproducibility of features due 
to the lack of anthropomorphic phantom or test-retest scans acquired with settings similar 
to the scans used in this study. Henceforth, future studies must employ reproducibility 
studies to ensure the generalizability of the developed models. The application of radiomics 
to IPF may be broadened to include treatment decision aids. Further research should be 
undertaken to investigate the progression of IPF/UIP at baseline and follow up to evaluate 
the effectiveness of the antifibrotic treatment. In addition, a combination of deep learning 
and handcrafted radiomics with the addition of blood or genetic biomarkers would be a 
powerful tool in the classification of ILDs.

Conclusions

At present, there is minimal radiomics research on ILDs. Our findings are, nonetheless, 
promising and underline the strong potential of HRCT-based radiomics for the identification 
of ILDs. The classification between IPF/UIP and other ILDs using radiomics might capture 
features indicating different types of ILDs in HRCT, which are hardly recognizable via visual 
assessment. The radiomic features extracted from HRCT, along with clinical features, might 
aid in the assessment of ILDs and be used as a valuable tool for computer-aided decision-
making in imaging.
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Appendix A

Table A1. Features name for each model.

Model Features Name

M1 GLSZM_SZNN, GLDZM_LISDE, GLSZM_HISAE, GLSZM_HILAE, GLCM_diffVar, GLRLM_GLV, GLCM_
infoCorr2, GLSZM_LILAE, IH_medianD, GLDZM_LILDE

M2 NGLDM_LGSDE, GLDZM_DZN, GLDZM_LISDE, Trachea_Volume, NGLDM_HGLDE, GLRLM_GLV, 
GLCM_clusShade, IH_qcod, GLDZM_HILDE, GLCM_contrast

M3 GLCM_infoCorr2, Fractal_sd, Trachea_Volume, GLCM_maxCorr, GLDZM_SDE, GLRLM_GLV, IH_
energy, GLDZM_LISDE, NGLDM_DV, Stats_kurtosis

M4
M4.1

Trachea_Volume, GLDZM_DZN, NGLDM_LGSDE, GLCM_infoCorr2, GLDZM_SDE, GLCM_sumVar, 
NGTDM_strength, NGLDM_HGLDE, GLDZM_LISDE, GLCM_maxCorr

M5 Trachea_Volume, GLRLM_GLV, GLCM_diffVar, GLSZM_HILAE, NGLDM_LGSDE, GLSZM_SAE, IH_qcod, 
GLSZM_ZE, GLSZM_IV, Stats_kurtosis

Table A2. List of ILDs included in the study.

ILD Names

Hypersensitivity pneumonitis (HP)
Nonspecific interstitial pneumonia (NSIP)
Connective tissue disease-associated interstitial lung disease (other than systemic sclerosis (SSc-ILD)) (CTD-ILD)
Lymphoid interstitial pneumonia (LIP)
Unclassifiable ILD
Idiopathic pulmonary fibrosis (IPF)
Pleuro-parenchymal fibroelastosis
Desquamative interstitial pneumonia (DIP)
Eosinophilic pneumonia
systemic sclerosis SSc-ILD
Respiratory bronchiolitis (RB-ILD)
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Abstract

Purpose: To develop handcrafted radiomics (HCR) and deep learning (DL) based automated 
diagnostic tools that can differentiate between idiopathic pulmonary fibrosis (IPF) and non-
IPF interstitial lung diseases (ILDs) in patients using high-resolution computed tomography 
(HRCT) scans.

Material and Methods: In this retrospective study, 474 HRCT scans were included (mean 
age, 64.10 years ± 9.57 [SD]). Five-fold cross-validation was performed on 365 HRCT scans. 
Furthermore, an external dataset comprising 109 patients was used as a test set. An HCR 
model, a DL model, and an ensemble of HCR and DL model were developed. A virtual in-silico 
trial was conducted with two radiologists and one pulmonologist on the same external test 
set for performance comparison. The performance was compared using DeLong method 
and McNemar test. Shapley Additive exPlanations (SHAP) plots and Grad-CAM heatmaps 
were used for the post-hoc interpretability of HCR and DL models, respectively.

Results: In five-fold cross-validation, the HCR model, DL model, and the ensemble of HCR and 
DL models achieved accuracies of 76.2±6.8%, 77.9±4.6%, and 85.2±2.7%, respectively. For 
the diagnosis of IPF and non-IPF ILDs on the external test set, the HCR, DL, and the ensemble 
of HCR and DL models achieved accuracies of 76.1%, 77.9%, and 85.3%, respectively. The 
ensemble model outperformed the diagnostic performance of clinicians who achieved a 
mean accuracy of 66.3±6.7% (p < 0.05) during the in-silico trial. The area under the receiver 
operating characteristic curve (AUC) for the ensemble model on the test set was 0.917 which 
was significantly higher than the HCR model (0.817, p = 0.02) and the DL model (0.823,  
p = 0.005). The agreement between HCR and DL models was 61.4%, and the accuracy and 
specificity for the predictions when both the models agree were 93% and 97%, respectively. 
SHAP analysis showed the texture features as the most important features for IPF diagnosis 
and Grad-CAM showed that the model focused on the clinically relevant part of the image. 

Conclusion: DL and HCR models can complement each other and serve as useful clinical aids 
for the diagnosis of IPF and non-IPF ILDs.

Keywords: Artificial Intelligence, Radiomics, Computed Tomography, Interpretability, 
Idiopathic Pulmonary Fibrosis, Interstitial Lung Disease.
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Introduction

Interstitial lung disorders (ILDs) are a diverse group of ailments with an estimated 200 distinct 
entities and are linked with high morbidity and death (1). Many different parenchymal lung 
disorders have similar clinical signs and patterns of lung injury. Several disorders, including 
idiopathic pulmonary fibrosis (IPF), have unknown etiology and are labeled idiopathic or 
cryptogenic, while the rest are linked to other diseases, particularly connective tissue diseases, 
or to environmental exposures (2–6). One of the most common types of ILDs is IPF, a progressive 
illness marked by decreased lung function (7). IPF has an estimated incidence rate between 
2.8 and 18 cases per 100,000 per year in Europe and North America (8). The median survival 
rate of patients with IPF is between two to four years from diagnosis (9). A prompt diagnosis 
and management are crucial for slowing down the progression of these lung disorders.

Medical imaging is becoming increasingly crucial for disease diagnosis, prognosis, and 
treatment planning in precision medicine (10). Computed tomography (CT) provides 
visual data that may be used to enhance decision-making (4,11). However, qualitative CT 
evaluation remains challenging and frequently varies amongst experts (12). The diagnosis 
of idiopathic pulmonary fibrosis using high-resolution computed tomography (HRCT) is a 
difficult task and high inter-observer variability is associated with it even with experienced 
radiologists (13). Consequently, there is a need for an automated clinical tool that can aid 
clinicians for accurate and timely diagnosis. 

Artificial intelligence is becoming increasingly popular due to the increasing amount of imaging 
data and available computational resources (14). The use of quantitative imaging techniques 
in medical imaging has grown at an exponential rate (15). Handcrafted radiomics (HCR) is a 
quantitative approach that measures and extracts high-dimensional imaging characteristics 
to aid clinical decision-making (15,16). Deep learning (DL) methods learn different features 
and representations from the image data without the need for explicit feature engineering 
(17). Convolutional neural networks (CNNs) have shown remarkable results on numerous 
diagnostic tasks using medical image data including the diagnosis of fibrotic lung disease (18).

Despite promising results demonstrated by HCR and DL models for various medical imaging 
tasks, the clinical utility of such models is limited due to their lack of interpretability (19). 
Shapley Additive exPlanations (SHAP) (20) and Gradient-weighted class activation maps 
(Grad-CAM) (21) are post-hoc interpretability methods that are useful for understanding 
the decision-making process of HCR and DL models respectively. 

In this paper, we propose a machine learning-based HCR pipeline and a DL pipeline for the 
automated diagnosis of IPF, non-IPF ILDs patients.  We also perform an in-silico trial with 
experienced radiologists to compare the performance of HCR and DL on a test dataset. 
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Furthermore, we use post-hoc interpretability methods to aid the incorporation of these 
automated diagnostic tools in the clinical workflow.

Material and methods 

Patients
A total of 652 HRCT scans were obtained from Site 1 (University Liege hospital) and 205 HRCT 
scans were obtained from database A (The Lung tissue research consortium database (LTCR)). 
The inclusion criteria were: the availability of non-contrast enhanced HRCT and the availability 
of HRCT with slices thickness of less than 1.5 mm. The exclusion criteria were: the use of contrast 
enhancement, images containing metal or motion artifacts, and images reconstructed with 
a slice thickness larger than 1.5 mm. All diagnoses were confirmed by the Multidisciplinary 
discussion (MDD) that included a histopathologist, pulmonologist, thoracic radiologist, and 
rheumatologist. Lung biopsy is only required in case of ILD inconsistent with IPF. Figure 1 
shows the patient selection process. Demographic data, clinical data, and measurements of 
pulmonary function tests (PFT) were acquired for each patient. Demographic and clinical data 
include age, gender, body mass index (BMI), forced edxpiratory volume in 1s (FEV1), forced 
vital capacity (FVC), and diffusion capacity of the lungs for carbon monoxide (DLCO).

Figure 1: The flowchart diagram shows the patient selection process. IPF = Idiopathic pulmonary fibrosis,  
ILDsnon-IPF = non-IPF Interstitial lung diseases.
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Imaging acquisition and segmentation 
The HRCT scans at site 1 were acquired at the same hospital using two different vendors 
(Siemens and GE). The scans acquired from database A were acquired using four different CT 
vendors (Siemens, GE, Philips, and Toshiba). The slice thickness of the scans varied between 
0.5 mm and 1.5 mm. A further detailed description of the CT acquisition parameters can 
be found in Supplementary (Table E1). Whole lung segmentation was performed using an 
automated workflow created in MIM software (MIM Software Inc., Cleveland, OH). 

 Data Split
Five-fold cross-validation was performed on data from Site 1 consisting of 365 HRCT scans 
containing 279 non-IPF ILDs, and 86 IPF patients. External data from database A, comprising 
53 IPF patients and 56 non-IPF ILDs patients was used to benchmark the performance of the 
proposed AI tools along with the in-silico trial.

Handcrafted Radiomics (HCR)
Handcrafted radiomics feature extraction
To minimize the effect of the variations in image voxel size, all CT images were resampled to a 
1 × 1 × 1 mm3. Radiomics features were extracted from the HRCT images using the RadiomiX 
Discovery Toolbox (https://www.radiomics.bio) which calculates HCR features compliant 
with the Imaging Biomarkers Standardization Initiative (IBSI) (22). Voxel intensities were 
aggregated into 25 bins of Hounsfield Units to reduce noise and inter-scanner variability. 
The extracted features describe fractal dimension, intensity histogram, first-order statistics, 
texture, and shape. A workflow for handcrafted radiomics from segmentation to data 
analysis is illustrated in Figure 2.

Figure 2: Radiomics Pipeline for Lung disease classification from CT images. The same 12 radiomics features from 
both lungs after feature selection are concatenated and fed to the Random Forest classifier. Post-hoc SHAP analysis 
is performed for interpretability.
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Features selection and modeling
Features with near-zero variance (i.e. features that have the same value in ≥ 95 % of the data 
points) were excluded. Then, a correlation matrix was created between all HCR features and 
populated using Spearman’s correlation coefficient (r). Feature pairs with |r| ≥ 0.90 were 
considered to be highly correlated, and the feature with the highest average correlation with 
all other features was removed. Furthermore, a Recursive feature elimination (RFE) using a 
random forest classifier was performed on the subset of features that were selected after 
applying Spearman’s correlation coefficient. RFE was applied with cross-validation in order 
to determine the accuracy of the classification and the top 12 features with the highest 
accuracy were selected for the final model. The same 12 features were extracted for each 
lung and concatenated to give a final feature vector consisting of 24 HCR features.  A list of 
the names of the features along with their abbreviations that were used in the model can 
be found in Supplementary (Table E2). A random forest classifier was used to construct the 
HCR model to predict the probability of IPF in patients using HRCTs. Random forest classifier 
has proven to be effective for lungs CT-based radiomics problems in recent research findings 
(23-25). The random forest classifier was trained with class weights of 1 for non-IPF ILDs and 
3 for IPF patients to compensate for the class imbalance. Five-fold cross-validation was used 
for hyper-parameter tuning. 

Post-hoc Interpretability 
SHapley Additive exPlanations (SHAP) analysis is based on co-operative game theory (20). 
SHAP analysis is a post-hoc interpretability method that quantifies the impact of each 
feature on the model prediction in terms of SHAP value. SHAP summary plots provide global 
explanations by highlighting the effect of features on the prediction in terms of SHAP value 
and help in recognizing the trends. These plots show whether a high or low feature value 
affects the model output positively or negatively. SHAP dependence plots highlight the 
relationship between the model output in terms of SHAP values and the corresponding 
feature values. These dependence plots can be useful for quantifying the trend of model 
output with respect to the feature values as well as understanding the interaction effects 
between a pair of features. 

Deep learning (DL)
All the scans were resampled to an isotropic resolution of 1 x 1 x 1 mm3. Min-max 
normalization was applied to the area within the lung mask. Two patches containing one 
lung each of size 240  240  240 voxels were extracted using the lungs masks. Both 
lungs were randomly flipped for augmentation and concatenated along the z-axis. The 
image was then downsampled by taking every sixth slice along the z-axis. The start index 
was randomly chosen in the range of 1 to 6. This resulted in additional augmentation and 
reduction of the input image size. A Densenet-121 (26,27) classifier with 3D convolutional 
layers was used with weighted binary cross-entropy loss (non-IPF ILDs: 1, IPF: 3) in order 
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to minimize the effects of data imbalance. Adam optimizer with a learning rate of 1 e-5 and 
ReduceLROnPlateau scheduler was employed. The batch size was set at 16 and the network 
was trained for 50 epochs. Figure 3 shows the different steps involved in training the DL 
model for lung disease classification in CT images.

Figure 3: Figure shows different steps in the deep learning pipeline for the prediction of lung diseases in CT scans.  

During prediction, six input images from the test image were extracted by setting the start 
slice index in the range from 1 to 6 and taking every sixth consecutive slice. These six test 
samples are fed to the trained 3D Densenet-121 model. The final prediction is the average of 
the prediction of these six test samples. Heatmaps highlight the regions of the input image 
that the model considers important for prediction. We utilized Grad-CAM (21) heatmaps for 
the post-hoc interpretability of the Densenet-121 model. 

Ensemble Model
The ensemble methods utilize multiple machine learning methods in an effort to achieve 
better predictive performance as compared to the performance obtained by the constituent 
machine learning methods alone. We constructed an ensemble model from HCR and DL 
models by taking an average of the probabilities predicted by the two models.

In-silico Clinical Trial
An application that allows the construction of a reference performance point by gathering 
medical imaging expert comments based on the visual assessment of HRCT images was 
created. The application allows displaying the CT images one at a time with the option of 
different planes (Axial, Coronal, or Sagittal), and the application also allows scrolling through 
the CT scan slices. The graphical user interface (GUI) of the application can be found in 
Supplementary (Figure E1). The radiologist can select one of the two classes (IPF or ILDs other 
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than IPF). The diagnostic performance of two radiologists (6 and 23 years of experience) and 
one pulmonologist (12 years of experience) was recorded for the same test dataset (n=109) 
to perform a comparison with the machine learning-based HCR, DL, and ensemble models. 

 Statistical analysis
Statistical analysis was performed in Python (version: 3.6). Wilcoxon rank-sum test was 
used for the continuous variables to test the group differences and Fisher exact test for 
categorical variables. To assess the model’s performance, the areas under the curves (AUCs) 
for receiver operating characteristic (ROC) curves were compared using the DeLong test. 
The thresholds for each model were set at the highest Youden’s index in the training set. The 
performance was evaluated using accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV). For five-fold cross-validation, we also report the 
standard deviation (SD). The performance of the models on the test set was compared with 
the performance of clinicians using McNemar test. This study followed the Standard for 
Reporting Diagnostic accuracy studies (STRAD) (28) and was assessed using the Radiomics 
Quality Score (RQS) (29). The detailed description about RQS can be found in supplementary 
table E3. 

Results

Patients Characteristics
A total of 474 patients, 335 of whom were diagnosed with non-IPF ILDs, and 139 with 
IPF, were included after the application of exclusion criteria (Figure 1). The demographic 
characteristics of the included patients can be found in Table 1.

Table 1. Demographic and clinical information of the study participants.

Variables Site 1 Database A P-value (p)

n 365 109 -

Age (mean(SD)) 64.10 (9.57) 63.61 (14.17) 0.8

Sex = M (%) 213 (87 74 (67.9) 0.09

FEV1 (mean (SD)) 80.42 (21.47) 69.60 (20.67) < 0.001

FVC (mean(SD)) 80.52 (21.25) 67.35 (21.37) < 0.001

DLCO (mean(SD)) 51.32 (24.99) 29.84 (5.36) < 0.001

BMI (mean(SD)) 25.48 (6.45) 29.55 (5.21) < 0.001

Body mass index (BMI), forced expiratory volume (FEV), Forced vital capacity (FVC), and diffusion capacity of 
the lungs for carbon monoxide (DLCO) are shown in the table for different patients along with their mean and 
standard deviation (SD). 

Handcrafted Radiomics
The HCR model achieved an AUC of 0.85 (95% CI: 0.771 – 0.924) in the validation set in five-
fold cross-validation (Figure 4 (a)). The threshold of 0.51 was fixed based on Youden’s index 
in the training set. An accuracy, sensitivity, and specificity of 0.762±0.068, 0.816±0.094, and 
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0.745±0.065 were obtained in five-fold cross-validation, respectively. In the external test set, 
the HCR model achieved an AUC, accuracy, sensitivity, and specificity of 0.817, 0.761, 0.698, 
and 0.821, respectively. Tables 2 and 3 show the performance metrics for the HCR model 
during five-fold cross-validation and external validation, respectively. Figure 4 (b) shows the 
test performance for the HCR model on the external dataset. The Radiomics Quality Score 
(RQS) achieved for this study is 52.78 % (19 of 36).

Table 2. Precision and recall metrics for five-fold cross-validation using handcrafted radiomics (HCR), deep 
learning (DL), and an ensemble of HCR and DL models.

Model Accuracy Sensitivity Specificity Positive 
Predictive 

Value (PPV)

Negative 
Predictive 

Value (NPV)

Handcrafted Radiomics (HCR) 0.762 ± 0.068 0.816 ± 0.094 0.745 ± 0.065 0.506 ± 0.084 0.923 ± 0.040

Deep Learning (DL) 0.779 ± 0.046 0.711 ± 0.10 0.800 ± 0.075 0.541 ± 0.074 0.901 ± 0.025

Ensemble (HCR + DL) 0.852 ± 0.027 0.827 ± 0.005 0.860 ± 0.035 0.65 ± 0.063 0.94 ± 0.003

Table 3. Comparison of diagnostic performance on the external test dataset for HCR, DL, an ensemble of HCR and 
DL, and in-silico trial with clinicians.

Model Accuracy Sensitivity Specificity Positive 
Predictive 

Value (PPV)

Negative 
Predictive 

Value (NPV)

Handcrafted Radiomics (HCR) 0.761 0.698 0.821 0.787  0.741

Deep Learning (DL) 0.779 0.792 0.768 0.763 0.796

Ensemble (HCR + DL) 0.853 0.886 0.821 0.825 0.885

In-silico trial with clinicians 0.66 ± 0.067 0.572 ± 0.186 0.750 ± 0.0525 0.680 ± 0.042 0.669 ± 0.100

Figure 4: Receiver operating characteristics (ROC) curves for five-fold cross-validation (a) and external test dataset 
(b) for the classification of IPF and non-IPF ILDs using handcrafted radiomics (HCR), deep learning (DL), and 
ensemble (HCR + DL) models.
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The global SHAP summary plots in Figure 5 (a) demonstrate that the same features extracted 
from each lung separately affect the model’s prediction for IPF diagnosis in a similar way. 
A high feature value with a positive SHAP value forces the model’s probability to be higher. 
The IH_qcod feature values extracted from lung1 and lung2 demonstrate a similar trend 
that a high feature value results in a positive SHAP value. However, there are some outliers 
in the trend that can seen be in features such as GLCM_correl1_lung and GLDZM_INN_lung. 
Similarly, the GLDZM_INN feature values extracted from lung1 and lung2 show a negative 
trend that a high feature value results in a negative SHAP value. Figure 5 (b,c,d,e) show 
the dependence plots of GLCM_clusTend, GLCM_correl1, GLDZM_HISDE, and GLDZM_DZN 
features, respectively. In Figure 5 (c), when the feature value of GLDZM_HISDE is low, high 
feature values of GLCM_clusTend result in a lower SHAP value. A similar effect can be seen 
in Figure 5 (d) between features GLDZM_DZN and NGLDM_DE. 

Deep learning
The DL model achieved an AUC of 0.85 (95% CI: 0.806 – 0.904) in the validation set in five-
fold cross-validation (Figure 4 (a)). The threshold of 0.45 was fixed based on Youden’s index 
in the training set. An accuracy, sensitivity, and specificity of 0.779±0.046, 0.711±0.10, and 
0.800±0.075 was achieved during five-fold cross-validation, respectively. In the external test 
set, the DL model achieved an AUC, accuracy, sensitivity, and specificity of 0.823, 0.853, 
0.886, and 0.821, respectively. Tables 2 and 3 show the performance metrics for the HCR 
model during five-fold cross-validation and external validation, respectively. Figure 4 (b) 
shows the test performance for the DL model on the external dataset.

Figure 6 shows Grad-CAM overlayed on CT image slices obtained from HRCT scans from IPF 
and non-IPF ILDs patients. The overlayed heatmap shows the regions of the input image that 
the model considers important for prediction. The Grad-CAM focuses on the tissue pattern 
in the patient with IPF. However, no information is provided on how these areas contribute 
to the final model prediction.

Figure 6: GradCAM heatmaps for post-hoc interpretability of IPF and non-IPF ILDs HRCT scans to understand the 
predictions made by the Densenet-121. 
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Ensemble 
The ensemble model achieved an AUC of 0.93 (95% CI: 0.899 – 0.955) in the validation set 
during five-fold cross-validation (Figure 4 (a)). The threshold of 0.49 was fixed based on 
Youden’s index in the training set. An accuracy, sensitivity, and specificity of 0.852±0.027, 
0.827±0.005, and 0.860±0.035 was obtained during five-fold cross-validation, respectively. 
In the external test set, the DL model achieved an AUC, accuracy, sensitivity, and specificity 
of 0.917, 0.853, 0.886, and 0.821, respectively. Tables 2 and 3 show the performance metrics 
for the HCR model during five-fold cross-validation and external validation, respectively. 
The agreement between the predictions of HCR and DL models is 61.4%. The accuracy and 
specificity for the predictions when both the models agree were 93% and 97%, respectively. 
There was a statistically significant difference between the ROC curves for the ensemble 
model and HCR model (p = 0.02), and the ensemble model and the DL model (p = 0.005).

 In-silico Clinical Trials
Two radiologists and one pulmonologist achieved accuracies of 58.7%, 65.1%, and 75.2% 
with a mean of 66.3±6.7% for the diagnosis of IPF and non-IPF ILDs on the external test 
dataset. There was a statistically significant difference between performance of the 
ensemble model, and that of radiologists and pulmonologists (P < 0.05).

Discussion

In this study, we investigated the potential of HCR and DL to differentiate between different 
lung disorders i.e. IPF and non-IPF ILDs patients on HRCT scans. We also used post-hoc 
interpretability methods to explain the predictions of HCR and DL models. Moreover, 
we compare the performance of the proposed models to the diagnostic performance of 
radiologists using an in-silico trial on an external test set. Our results show that HCR and 
DL have a great potential to be used as an aid for clinical decision-making, which could 
minimize the time needed by radiologists, and increase diagnostic accuracy. The superior 
performance of an ensemble of DL and HCR models also demonstrates that these approaches 
can complement each other for lung disease diagnosis.

HCR and DL models achieved an accuracy of 76.2±6.8% and 77.9± 4.6% during five-fold 
cross-validation, respectively. In the external test set, HCR and DL models demonstrated 
a similar accuracy of 76.1% and 77.9%, respectively.  There was no statistically significant 
difference between the ROC curves for HCR and DL models. The ensemble of HCR and DL 
models demonstrated the best accuracy of 85.2±2.7% and 85.3% for five-fold cross-validation 
and external test set, respectively. There was a statistically significant difference between 
the ROC curves for the ensemble model and HCR model (p = 0.023), and the ensemble 
model and DL model (p = 0.005). The HCR and DL models show an agreement of 61.4% for 
the predictions on the external test set. A sensitivity and specificity of 93% and 97% were 
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obtained when both the models agreed on the prediction. Hence, HCR and DL models add 
complementary value to each other resulting in a boost in performance. 

We compared the performance of the developed models against the performance of the 
radiologists using a virtual clinical trial setting. The performance of HCR (76.1%), DL (77.9%), 
and ensemble (85.3 %) models were better than the performance of two radiologists and 
one pulmonologist (66  7%) in discriminating IPF from non-IPF ILDs on the external test 
set. There was a statistically significant difference (p < 0.05) between the predictions of the 
ensemble model, and the two radiologists and one pulmonologist. There was a significant 
difference (p < 0.001) in the BMI, FEV, FVC, and DLCO values between site 1 and database 
A. The models demonstrated similar performance on the external database A despite the 
variability, showing that the trained models are robust and generalize well.

The clinical translation of HCR and DL is limited due to the “black-box” nature of the underlying 
complex classifiers. It is difficult for clinicians to understand the underlying mechanisms that 
govern the decision-making process of these complex classifiers. SHAP post-hoc explanations 
discover the patterns of the complex classifiers and increase transparency. SHAP global 
summary plots showed that Gray-level Co-occurrence Matrix Cluster Tendency and Intensity 
Histogram quartile coefficient of dispersion are the most important features for IPF diagnosis. 
These plots also showed that the same features extracted from different lungs demonstrate 
a similar trend in SHAP impact value. SHAP dependence plots demonstrated the effect of 
a single feature value and the interaction between a pair of features on the model output. 
Grad-CAM heatmaps highlight the area that the DL model considers important for the final 
prediction. These heatmaps can reinforce the trust in the model predictions if the model is 
focusing on the area relevant to the clinical task. However, Grad-CAM heatmaps do not offer 
any explanation of how the highlighted area contributes to the final prediction. Although 
DL demonstrates good performance, it is more opaque in nature due to its complexity that 
might hinder its clinical adoption. 

Some studies previously investigated the potential of HCR and DL algorithms to classify lung 
disorders. Walsh el al. (18) employed a DL algorithm on a dataset of 1157 HRCT images for 
the diagnosis of fibrotic lung disease. The algorithm performance was compared to that of 
91 radiologists and revealed an accuracy of 73.3 %, compared to the radiologist’s median 
accuracy of 70.7 %. When compared to Walsh et al. (18), our study demonstrated greater 
accuracy using HCR (76.1%), DL (77.9%), and an ensemble of HCR and DL (85.3%). Christe et 
al. (30) conducted another study in which they employed a computer-aided diagnostic (CAD) 
system (INTACT system) to diagnose IPF cases based on HRCT images and compared the 
performance of the CAD system to the performance of radiologists. Their findings showed 
that the two radiologists and the CAD system obtained an accuracy of 60 %, 54 %, and 56 
% respectively. Mean RQS score of 20.4%, 26.1%, and 27.4% were obtained after recent 
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analyses of papers reporting radiomics studies (31–33). This shows that RQS is a stringent 
and demanding criterion (34-36) that aims to encourage the best scientific practice. An RQS 
of 52.78% shows that this study tries to adhere to the best scientific practices and reporting 
guidelines. 

This study has some limitations. The datasets utilized for this study contain HRCT scans 
acquired with different CT acquisition and reconstruction settings that can influence HCR 
feature values (37). Hence, phantom studies to evaluate the reproducibility of the HCR 
features or harmonization investigations need to be carried out to make a more robust 
HCR pipeline (38). Grad-CAMs only highlight the region of the input image that the model 
considers important for the decision-making process. There is a need to utilize interpretability 
methods that give an insight into how the relevant region contributes to the decision-making 
process (19). The high performance of an ensemble of HCR and DL model shows that these 
two approaches add complementary values. It may be useful to employ an interpretability 
method such as concept attribution that will investigate the HCR features that the DL model 
considers important for classification (39). A prospective virtual in-silico trial in a real-world 
environment where the predictions of DL/HCR model and post-hoc interpretability plots 
are made available to the doctors during diagnosis should be carried out to confirm the 
clinical utility of the proposed methods. The quality of lung segmentation can affect the 
performance of the models. Therefore, it is important to ensure the quality of the automatic 
segmentation in the presence of variability such as noise and artifacts

At the moment, there is little research on the diagnosis of ILDs using HCR and DL. The 
reported results are encouraging and highlight the significant potential of HCR and DL 
methods for the diagnosis of IPF. In the future, HCR and DL approaches may be expanded to 
include treatment decisions. More studies should be conducted to explore the development 
of IPF at baseline and follow-up, as well as to assess the efficacy of anti-fibrotic treatment.

Conclusion 

In this study, we developed handcrafted radiomics and deep learning models for the 
classification of IPF and non-IPF ILDs using HRCTs. In addition, we compared the performance 
of both models to radiologists on an external test dataset. HCR, DL, and ensemble models 
demonstrated better accuracy than radiologists in a virtual in-silico clinical trial setting. 
An ensemble of HCR and DL models demonstrated the best performance highlighting the 
complementary value of the two quantitative approaches for lung disease diagnosis. SHAP 
and GRAD-CAM post-hoc interpretability methods are useful for explaining the predictions 
made by radiomics and DL models respectively. These automated diagnostic tools can serve 
as a useful clinical aid for diagnosing different lung diseases.
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The application of artificial intelligence (AI) in diagnostic medical imaging is increasingly 
a topic of many different research projects. A great deal of the research makes use of 
handcrafted radiomics or deep learning algorithms to complete various tasks in a range 
of different medical imaging modalities (1,2) (Figure 1). AI has demonstrated outstanding 
levels of accuracy and sensitivity in the identification of imaging abnormalities, and it has 
the potential to improve tissue-based detection and characterization (3–5). To guarantee 
successful and safe inclusion of AI-assisted diagnostic imaging in clinical practices, the 
medical community must anticipate possible unknowns underlying these technologies 
already at the start of the  AI-assisted diagnostic imaging revolution. A careful assessment 
of AI’s possible risks in the context of its unique abilities is critical when establishing its place 
in clinical medicine. Though it should be pointed out that straddling the line between better 
detection and overdiagnosis will be difficult. When establishing this assessment, the regular 
use of out-of-sample external validation and well-defined cohorts to improve the quality 
and interpretability of AI studies will be of critical importance (6).
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Figure 1. Number of publications on PubMed search; a) radiomics; b) deep learning.
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This thesis provided two AI methods: a) handcrafted radiomics and b) deep learning (DL). 
As described in this thesis, the overall goals of the study for handcrafted radiomics were 
(i) to acquire better insights into their reproducibility (Figure 2) and (ii) to evaluate their 
potential in the categorization of various types of lung disorders. The primary goal for DL is 
to examine its capacity to classify various types of lung diseases. This chapter provides an 
in-depth discussion of the work completed in this thesis as well as future perspectives.
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Figure 2. Number of publications on the reproducibility of handcrafted radiomics in the period between 2012 and 
2021, based on PubMed research. 

Reproducibility of handcrafted radiomics (HRFs)

In chapter 3, we investigated the robustness of HRFs on a dataset consisting of 13 phantom 
CT scans. The scans were obtained from different vendors, with different CT parameters. 
After the extraction of HRFs from the 13 scans, we assessed their reproducibility using 
the concordance correlation coefficient (CCC). The study’s findings indicated that only 
a small percentage of HRFs were robust to differences in the imaging settings examined. 
The majority of the HRFs were reliant on imaging parameter changes. Furthermore, when 
applying ComBat harmonization to phantom scans, the findings demonstrated that ComBat’s 
capacity to harmonize HRFs depends on variations in imaging parameters. However, the 
performance of ComBat harmonization may suffer as a result of treating each scan as a 
unique batch effect, despite the fact that variations between pair batches are not similar.

The reproducibility of hepatocellular carcinoma (HCC) HRFs, generated from various phases 
of contrast-enhanced CT images (CECT), was evaluated in chapter 4. For this study, HCC 
patients’ arterial and venous CT scans were made accessible. To ensure that the same region 
of interest (ROI) was placed in the right position in both phases, the segmentation of ROIs 
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was performed on one phase and then replicated in the other. The finding of the presented 
study showed that, when no image settings were changed, a subset of HRFs were shown to 
be reproducible in both phases. In addition, the use of the ComBat harmonization approach 
resulted in an increase in reproducible HRFs by 1% across phases. This study also found that 
a number of HRFs may be utilized interchangeably across arterial and venous phase CT scans 
and that combining these scans might enhance the information gathered from HCC lesions. 
However, we speculate that the subgroup of reproducible HRFs identified in our study is 
confined to the HCC lesions derived from scans collected in a manner similar to our dataset. 
Furthermore, the reproducibility of the discovered HRFs must be tested using different 
acquisition and reconstruction conditions, which was not achievable due to a lack of data.

In chapter 5, we investigated the use of Reconstruction Kernel Normalization (RKN) and 
ComBat harmonization to improve the reproducibility of HRFs across scans acquired with 
different reconstruction kernels. A sample of 28 phantom scans collected on five distinct 
scanner types was evaluated. HRFs were derived from the original scans, and scans were 
harmonized using the RKN approach. ComBat harmonization was applied on both set of 
HRFs. Concordance correlation coefficient (CCC) was used to assess the reproducibility of 
HRFs. McNemar’s test was used to determine the difference in the number of reproducible 
HRFs in each scenario. The results of the study showed that the majority of HRFs were found 
to be sensitive to variations in the reconstruction kernels, and only six HRFs were found 
to be robust with respect to variations in reconstruction kernels. Furthermore, combining 
RKN and ComBat harmonization led in considerable increases in reproducible HRFs as 
compared to HRFs derived from original images. For future radiomic studies, we suggest 
the systematic use of pre- and post- processing approaches in images collected with similar 
image acquisition and reconstruction parameters, except for the reconstruction kernels.

In chapter 6, we used a phantom dataset (n = 14) collected on two scanner types, the 
Discovery STE and the LightSpeed Pro 32, to examine the impact of changes in in-plane 
spatial resolution (IPR) on HRFs. All other imaging parameters were kept constant. Ten 
ROIs were performed for each scan, and HRFs were extracted from each ROI. CCC was used 
to evaluate HRF reproducibility across pairs of phantom CT images. Moreover, we looked 
at how ten various image resampling techniques (IR), as well as ComBat harmonization, 
affected the HRFs. According to the findings of this study, certain HRFs are immune to 
changes in pixel spacing; however, the reproducibility of the remaining HRFs depends on 
the degree of variation in pixel spacing. Furthermore, compared to the other IR techniques, 
scans resampled using cosine windowed sinc interpolation exhibited the largest number 
of concordant HRFs among the types of IR. The impacts of IR and ComBat harmonization 
on the reproducibility of HRFs, on the other hand, were shown to rely significantly on the 
variances in the scans being evaluated.
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HRFs in lung disorders

In chapter 2, the current state of play of handcrafted radiomics and deep learning was 
evaluated with the use of a literature review. In this review, we provided a broad overview 
and update on the rapidly expanding field of quantitative imaging research, focusing on 
the two arms “handcrafted radiomics and deep learning.” The chapter describes some of 
its limitations and provides examples of emerging clinical implementation, which are the 
stepping stones toward precision medicine.

In chapter 7, we provided an overview of available literature concerning the use of 
handcrafted radiomics in lung cancer – in terms of detection, treatment response, and 
prognosis. While the research on applying handcrafted radiomics in lung cancer has been 
increasing in recent times, the application of handcrafted radiomics on chronic obstructive 
pulmonary disease is still limited. The use of quantitative CT (QCT) has been shown to be able 
to quantify emphysema, airway abnormalities, and air trapping. However, the interpretation 
of QCT is still time-consuming, requires experts, and is prone to variability in the diagnosis 
between experts. The use of CT image metrics (radiomics) could be able to quantify COPD 
and identify the disease’s underlying mechanism, as well as the relationship between lung 
cancer and COPD, in a more nuanced and stronger form of phenotypic categorization. 
Potentially, handcrafted radiomics might be useful in detecting and classifying between 
COPD stages and phenotypes, allowing for the early treatment for the patient.

In chapter 8, we investigated the application of handcrafted radiomics on interstitial lung 
disease (ILDs). The data used in this study was collected from one center and two databases. 
Four groups were included in the study, namely: a) IPF with UIP pattern presentation on HRCT, 
b) IPF with UIP presentation confirmed by surgical lung biopsy, b) non-IPF ILDs with surgical 
lung biopsy confirming the absence of a UIP pattern, and c) healthy lung subjects. Two lung 
segmentations were performed, one with whole lungs and the other with sectorized lungs. 
Briefly stated, we were able to demonstrate that radiomic features derived from HRCT 
images can be used to distinguish between a normal state and ILDs, as well as between 
IPF with a UIP pattern and ILDs with no UIP pattern verified by surgical biopsy. In addition, 
our investigation revealed a substantial variation in tracheal volume between normal, IPF/
UIP, and non-IPF ILDs patients. The volume of the trachea was shown to be greater in IPF 
participants compared to normal and non-IPF ILDs. In addition, the performance on the 
external dataset was decreased. This decline in the performance might be explained by the 
fact that the computation of HRFs is highly dependent on the variation in acquisition and 
reconstruction parameters. For this reason, the need to assess the reproducibility of HRFs is 
of great importance. Nevertheless, it is not currently possible to perform a reproducibility 
study due to the lack of anthropomorphic phantom or test-retest scans acquired with 
settings similar to the scans used in this study. 
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In chapter 9, a similar analysis to that found in chapter 8 was performed on classifying 
different parenchymal lung diseases. Data was collected from one center and one 
databases. Whole lung segmentation was performed for each scan and HRFs were extracted 
from each lung. The models were trained on center 1, and validated on database A. The 
finding of the study showed the ability HRFs have in terms of the classification of different 
types of lung disorders, namely IPF, and non- IPF ILDs lung. The model’s performance in the 
external validation dataset was better than that seen in chapter 8, with the same external 
validation dataset. The reason for this is might be that, in chapter 8, the training dataset 
was homogenous; however, in chapter 9, the training dataset was heterogeneous, and 
the machine learning algorithm most likely learned some of the differences in the training 
dataset that may already be present in the validation dataset.  

DL in lung disorders

In addition to the application of HRFs, chapter 9 outlines the development of a DL algorithm 
that might be used to identify various lung disorders. The identical training and validation 
data split utilized in chapter 9 for HRF models was employed for DL algorithms. Two patches 
with one lung – each with a  size of  voxles – were extracted using the 
lung mask. To reduce the impacts of data imbalance, a Densenet-121 classifier with 3D 
convolutional layers and weighted binary cross entropy loss was utilized. It was found 
that DL findings were similar to HRFs findings. However, due to its complexity, DL is less 
transparent in nature, which may impede its clinical adaptation.

Ensemble learning  

Ensemble learning combines many different machine learning algorithms to obtain higher 
prediction performance than any single learning method alone (7). In chapter 9, an ensemble 
model of HRFs and DL was developed by taking the average of both models’ performance in 
external validation, resulting in a greater level of accuracy when identifying IPF and non-IPF 
ILDs than either approach alone. HRFs and DL models both provide complimentary value to 
one another, resulting in improved overall performance.

Interpretability of HRFs and DL

One significant limitation of both handcrafted radiomics and DL is the absence of clinical 
routine interpretability (8). In chapter 9, a post-hoc interpretability approach, based on a 
SHAP analysis, was used to interpret HRF models, allowing us to visualize the influence of 
feature values on the model output of each class in terms of SHAP values. We evaluated 
the most important HRFs related to each class using SHAP analysis ( IPF and non-IPF ILDs). 
For DL, Gradient-weighted Class Activation Mapping (Grad-CAM) was used to interpret 
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the performance of DL models. Both SHAP analysis for HRF models and Grad-CAM for DL 
models provided an insight into the reasoning process behind these models. However, Grad-
CAM does not offer an explanation as to how the highlighted area contributes to the final 
prediction. A well-defined mathematical method is used to calculate HRFs, which makes 
them more understandable. On the other hand, with deep learning, the process from input 
images to prediction is less transparent , which may be detrimental in understanding good 
or bad model performance.

In-silico clinical trial

ISCT – also known as virtual clinical trials or virtual imaging trials – is increasingly playing 
a role in ascertaining and qualifying the effectiveness of medical imaging technologies or 
AI algorithms, as evidenced in a few recent FDA approvals based on ISCT (9). We therefore 
embarked on an ISCT to evaluate the performance of both handcrafted radiomics and DL 
tools, compared to the evaluation of medical doctors in chapter 9. The decision of two 
radiologists and one pulmonologist on the diagnosis was collected in the test dataset 
(n=109) for the same number of cases, in order to equate their results with the performance 
of the models. The findings showed that both HRFs, DL, and ensemble models had higher 
levels of accuracy than the doctors’ mean accuracy in classifying IPF and non-IPF ILDs. Such 
findings point to the necessity for image-based categorization approaches to be combined 
with clinician input in order to obtain the most accurate diagnosis.

Future perspective

This thesis has made significant achievements in exploring the reproducibility of handcrafted 
radiomics and unraveling the challenges impeding the full potential of the field from being 
utilized. Such challenges include the reproducibility and repeatability of image-based 
features, the interpretability of signatures, and the need for big(ger) data. In fact, the 
majority of the work in this thesis was devoted to comprehending and overcoming the 
limitations of HRFs.

Several concerns must be resolved before HRFs may be used in real clinical practices. Future 
studies on the reproducibility of HRFs across multiple imaging settings should cover a broader 
range of imaging parameters. A bigger dataset with more variations might also increase 
our knowledge of the cumulative impact of the variances found in imaging parameters on 
HRF reproducibility, and therefore our capacity to improve and establish robust radiomic 
signatures, eventually leading to more personalized medicine and better patient outcomes 
(chapter 3-6). In addition, due to the fact that variations in imaging parameters can 
significantly alter the majority of HRFs, it is important to develop a method (or methods) of 
harmonization that takes imaging parameter differences into account. One newly proposed 
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method involves employing deep networks such as convolutional neural networks (CNN) or 
generative adversarial networks (GAN) to synthesize pictures with increasingly comparable 
features, aiming at multicenter harmonization (10). It is also necessary to examine HRFs’ 
repeatability as well as their vulnerability to inter-reader variability. 

The work described in chapters 8 and 9 in this thesis only takes into account a single 
time-point. The method of delta-radiomics has previously shown the capacity to predict 
treatment responses in lung cancer (11). As a result, such a technique might be used to 
quantify the progression of the disease and the impact of (new) treatments. Regarding 
IPF patients, it would be very important for future research to include delta-radiomics, in 
order to investigate the efficacy of treatment in different time-points (12). In addition, delta-
radiomics might be used to examine the difference between inspiration and expiration scans 
and to uncover hidden information that could aid in determining the extent and severity 
of pulmonary emphysema. Furthermore, future research will focus on determining the 
prognostic or predictive significance of these features, as well as developing appropriate 
modeling tools that allow for meaningful inclusion in longitudinal data.

In chapter 9, deep learning models were built on images that have already been segmented. 
Future work will involve using deep learning to segment lungs with different types of lung 
disorders. Furthermore, deep learning may automatically uncover visual features that are 
suitable for a certain purpose through an optimization process – including features with 
varying levels of complexity – without the need for human intervention (13,14). Although 
deep learning is a promising advancement, one significant difficulty is the need for enormous 
amounts of data. Nonetheless, the additional benefit of HRFs to deep learning should not be 
neglected, as it may be more practical and effective than significantly increasing the number 
of samples used to train a deep learning model (15,16). Furthermore, the process from input 
images to prediction is less transparent with DL, which may be detrimental to understanding 
model performance. In the future, HRFs may be used to explain the ambiguity of DL models 
in an attempt to make them more understandable (Figure 3).
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Figure 3. Overview of the process of both HCR and DL and the ensemble of both methods.  

Conclusion

This thesis was divided into two parts: (i) investigating the reproducibility of HRFs (chapters 
3-6), and (ii) evaluating specific applications of HRFs and DL (chapters 8-9). Numerous 
studies focus on the impact of various acquisition and reconstruction parameters on the 
reproducibility of HRFs (17–19). The application of HRFs in differentiating between types 
of lung disorders in this thesis is promising, showing their potential to be applied in clinical 
practices. However, future work on investigating the reproducibility of those models is crucial 
and should not be ignored. The DL algorithm demonstrated its capacity to execute several 
tasks in medical image analysis, indicating its potential for supporting clinical decisions. Both 
handcrafted radiomics and DL have the potential to greatly contribute to clinical decision-
making in the future, which together will enhance patient outcomes. Nevertheless, the 
challenge has yet to be fully solved.	
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Impact Paragraph

The rise of artificial intelligence (AI) in medicine has been aided by the development of 
computer sciences, the prevalence of large quantities of data, and advancements in evidence-
based clinical care. While prospects for AI and machine learning applications are expanding 
across different specialties and clinical services, radiology has led the way, with AI algorithms 
employed for various tasks going from scanning procedures and disease identification, 
prognostication, predictive biomarkers to referral systems and workflow optimization. It can 
be argued that AI’s main objective is to deliver rapid, accurate, and cost-effective tools to help 
physicians make personalized decisions in much less time. The types of AI used in this thesis 
were: handcrafted radiomics and deep learning used separately or together. The primary 
goals for handcrafted radiomics were to study the influence of imaging parameter changes 
on the reproducibility of handcrafted radiomic features (HRFs) and to investigate its potential 
for discriminating between different forms of lung disease. In regard to deep learning, its 
potential applications for classifying different lung disorders were investigated. 

Scientific impacts

1.	 Most of the studies in this thesis are published or under review in well-cited open 
access scientific journals (e.g., Cancers, Respiration, BJR, Journal of personalized 
medicine, Plos One, and Frontiers in Medicine), which will facilitate dissemination in 
academic communities. In addition, other groups world-wide will be able to reuse the 
methodology utilized in this thesis.

2.	 The experiments in Chapters 4 employed patient data to investigate the effect of 
different imaging phases (arterial and portal venous) on the reproducibility of HRFs. 
This knowledge can be reused for future studies where HRFs can be interchangeably 
used between arterial and portal venous phases, and these can be used to increase 
data points in retrospective imaging studies. 

3.	 Chapters 3,5, and 6 are phantom investigations that aimed to improve knowledge of 
how changes in imaging parameters impact HRF reproducibility and how harmonization 
approaches, such as image resampling, Reconstruction Kernel Normalization (RKN), 
and ComBat harmonization, work in different contexts. Until now most of the groups, 
including ours, were using Combat harmonization alone we hope that this paper will 
convince group to use both approaches and that will lead to better results.

4.	 Chapters 2 and 7 cover the existing state of research, challenges, and future prospects of 
radiomic research and deep learning in various diseases. This knowledge dissemination 
may serve as a basis for future research and to write grants trying to fill knowledge gaps.
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5.	 Chapter 8 examines the potential use of HRFs to differentiate between various 
interstitial lung diseases (ILDs), as well as the use of trachea volume as a novel HRF to 
categorize ILDs. Trachea volume is a new feature very explainable that should be used 
more systematically in the future chronic lung diseases.

6.	 In chapter 9, the potential application of HRFs and deep learning in classifying different 
lung disorders, including idiopathic pulmonary fibrosis (IPF), interstitial lung diseases 
(ILD) other than IPF subjects. This signature could be taken over by companies working 
of AI-based diagnostic clinical grade software. This could be particularly useful in 
understaffed department or areas in the world without radiologists to make a first 
screening of the patients needed immediate attention.

7.	 The combined model (ensemble learning), comprising both HRFs and deep learning, 
achieved the highest accuracy and precision for five-fold cross-validation and external 
test sets. Consequently, HRFs and deep learning models complement each other, 
resulting in improved performance.  We hope that this combined approach will become 
the new standard: using several AI algorithm. The Department of Precision Medicine 
intend to revisit some of their published papers with this new approach.

Social impacts

1.	 Radiomics has the ability to speed up clinical work, reduce the workload of clinicians, 
and making healthcare more cost-effective.

2.	 Diagnostic radiomics signatures could be used in understaffed radiology department or 
in remote areas of the world without radiologists.

3.	 Diagnostic radiomics signatures could be used to support training of young radiologists. 

4.	 The standardization of handcrafted radiomic features will aid in the generalization of 
radiomic signatures across institutions.

5.	 The development of generalizable and robust radiomic signatures will facilitate their 
inclusion into clinical decision-support systems.

6.	 Radiomics offers the potential to enhance patient care by directing personalized 
management rather than a one-size-fits-all approach. This can lead to less invasive 
methods, such as reducing the need for surgical autopsies.
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7.	 Personalized clinical decisions are able to maximize public medical resources while 
lowering patient expenditures.

8.	 Accurate classification of interstitial lung diseases can reduce the mortality rate by 
allowing an earlier diagnosis for example in small center with limited experience with 
this rather rare diseases and aid in finding the right treatments. 

Target groups

This dissertation seeks to extend and enhance our understanding of handcrafted radiomics 
and deep learning applied to medical imaging and potential applications. The main potential 
target groups are: 

1.	 The scientists who are conducting handcrafted radiomics experiments in order to 
increase the awareness of the limitations associated with the field. Moreover, we 
anticipated that the results of our work would be useful as a reference for future 
researchers using handcrafted radiomics and/or deep learning. 

2.	 The radiologists who is specializing in the thoracic imaging. The diagnosis of idiopathic 
pulmonary fibrosis using HRCT is a difficult task with considerable inter-observer 
variability even among experienced radiologists. Therefore, such methods might help 
the radiologist to achieve an accurate diagnosis. 

3.	 The companies selling AI to deliver technological solutions and services for healthcare 
organizations and practitioners, diagnostic, and research centers. 

4.	 The medical insurance can benefit from the use of AI and machine learning. It has the 
potential to detect at-risk individuals while also reducing growing healthcare expenses. 
In addition, the crucial aspect of a successful AI and machine learning system is its 
ability to develop efficient reasoning and intuitively read and understand trends.  

5.	 Better treatment personalization will have the greatest impact on patients since they 
will be provided the best possible treatment to maintain a high quality of life, as well as 
facilitating consistent and rapid stratification of patients in drug trials.  

6.	 The medical communities in poorer countries where thoracic imaging expertise is 
unavailable.

Impact Paragraph
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Summary

Medical imaging has the capacity to non invasively analyse the phenotypic differences 
of tumors in three dimensions, and lately it has seen significant improvements due to 
advancements in the field of artificial intelligence. For example, radiomics, or quantitative 
image analysis – the high-throughput extraction of quantitative features from medical 
images and their correlation with diagnostic and prognostic outcomes – has been studied in 
particular to decode tumor phenotypes from a variety of modalities, including CT, magnetic 
resonance imaging, and positron emission tomography (PET). Thousands of quantitative 
radiomic characteristics may be retrieved from each area of interest (ROI) and examined 
further using machine learning algorithms to look for connections with biological and 
clinical end objectives. 

In this thesis, our objectives are; 1) to evaluate the reproducibility of radiomic features 
extracted from the same scanner, or from different scanners with different CT acquisition 
parameters ; 2) to explore how the power of AI can be harnessed for the classification 
between different ILDs, potentially overcoming some of the current difficulties in the 
decision-making surrounding lung diseases. The thesis is divided into four parts:

Part 1: General introduction and outline of the thesis.
Part 2: Challenges in handcrafted radiomics.
Part 3: Application of handcrafted radiomics and deep learning on lung disease.
Part 4: General discussion and future perspective of the thesis.

In part 1, chapter 2 provides a literature review to assess the present state of play in 
handcrafted radiomics and deep learning. We presented a thorough overview and update on 
the rapidly increasing field of quantitative imaging research in this review, with an emphasis 
on the two arms “handcrafted radiomics and deep learning.” The chapter discusses some 
of its shortcomings as well as instances of developing clinical implementations that serve as 
stepping stones toward precision medicine.  

In part 2, several studies have been conducted to investigate the potential of handcrafted 
radiomics (HRFs). Nonetheless, a number of barriers to clinical integration of radiomics 
signatures have been discovered. Numerous research studies have been published on 
the sensitivity of HRFs to inter-reader variability, test-retest, and variations in imagining 
parameters. In this thesis (chapters 3-6), we showed that HRFs are sensitive to imagine 
variations using phantom and patient reproducibility studies. In addition, we examined the 
use of different harmonization methods on reducing the effect of different variations in 
imagining parameters.
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In chapters 3-6, we assess the reproducibility of HRFs to the variations in CT parameters and 
the role of harmonization methods to address those variations. Chapter 3 investigated the 
robustness of HRFs on a dataset consisting of 13 phantom CT scans. The scans were obtained 
from different vendors, with different CT parameters. The study’s findings indicated that 
only a small percentage of handcrafted (HRFs) radiomics were robust to differences in the 
imaging settings examined. We also found that the performance of ComBat harmonization 
depends on the variations in imaging parameters.

Chapter 4 assess the reproducibility of hepatocellular carcinoma (HCC) HRFs, generated 
from various phases of contrast-enhanced CT images (CECT). For this study, HCC patients’ 
arterial and venous CT scans were made accessible. The finding of the presented study 
showed that, when no image settings were changed, a subset of HRFs were shown to be 
reproducible in both phases. Moreover, the application of ComBat harmonization increased 
the number of reproducible features by 1% across phases. 

In chapter 5, we investigated the use of Reconstruction Kernel Normalization (RKN) and 
ComBat harmonization to improve the reproducibility of HRFs across scans acquired with 
different reconstruction kernels. A total of 28 phantom scans collected on five distinct 
scanners types were assessed. The HRFs were extracted from the original scans and scans 
that were harmonized using the RKN method. Moreover, ComBat harmonization method 
was applied on both set of HRFs. The finding of this study showed that the majority of HRFs 
were found to be sensitive to the variations in the reconstruction kernels. Furthermore, the 
use of both RKN and ComBat harmonization methods significantly increased the number of 
reproducible HRFs compared to HRFs extracted from original scans.

 In chapter 6, we also investigated the impact of changes in the in-plane spatial resolution 
(IPR) on the reproducibility of HRFs extracted from phantom scans (n=14) while all other 
imaging parameters were the same. We also examine the impact of ComBat harmonization 
on HRFs. The finding of this study revealed that the reproducibly of HRFs depends on the 
degree of the variations in pixel spacing.   

Part 3 in this thesis is related to the application of radiomics and deep learning in different 
lung disorders. In chapter 7, we presented a summary of the existing researches on the 
use of handcrafted radiomics in lung cancer diagnosis, treatment response, and prognosis. 
In addition, applying HRFs in chronic obstructive pulmonary disease (COPD) has not been 
extensively investigated yet. We show examples of the potential use of HRFs in the diagnosis, 
treatment, and follow-up of COPD and future direction. 

In chapter 8, the approach of HRFs was studied in order to predict different interstitial lung 
diseases (ILDs). The data for this study came from one center and two databases. The study 
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comprised four groups: 1) IPF with UIP pattern on HRCT, 2) IPF with UIP pattern confirmed 
by surgical lung biopsy, 3) non-IPF ILDs with surgical lung biopsy confirming the absence 
of a UIP pattern, and 4) healthy lung patients. To summarize, we were able to show that 
radiomic characteristics generated from HRCT images may be utilized to differentiate 
between a normal state and ILDs, as well as between IPF with a UIP pattern and ILDs with 
no UIP pattern as confirmed by surgical biopsy. Furthermore, our study found a significant 
difference in tracheal volume between individuals with normal, IPF/UIP, and non-IPF ILDs. 
The trachea volume was shown to be larger in IPF participants compared to normal and 
non-IPF ILDs. 

In chapter 9, the use of both HRFs and DL was explored in this thesis to differentiate between 
different lung disorders – namely, IPF, and non-IPF ILDs subjects. In addition, in order to 
interpret the performance of HRFs and DL, interpretability methods were used. We also 
made use of ensemble learning methods to improve the performance of both HRFs and DL. 
In silico clinical trials were also used to compare the performance of medical experts with 
AI. Our results showcased the utility of HRFs and DL algorithms as a tool to support clinical 
decisions.

Finally, in part 4 (chapter 10) we extensively discussed the results of this thesis and the 
future perspective of both HRFs and deep learning.  

Overall, this thesis verified a number of hypotheses concerning the uses of handcrafted 
radiomics and deep learning in medical image analysis. For handcrafted radiomics, 
we assessed the robustness of handcrafted radiomics analyses, which will aid in the 
development of generalizable radiomics signatures, and provided unique quantitative 
methods to measure the reproducibility of HRFs among scans obtained differently. For deep 
learning, we evaluated and demonstrated the potential of automated algorithms to improve 
clinical decision making. More specifically, a deep learning algorithm was developed that 
performed very well and has the potential to be used in clinical settings.

Summary
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 نبذه مختصرة عن الرسالة
ي الإشعاعي لديه  ي صورة ثلاثية  النمطية الاختلافاتعلى تحليل  القدرةالتصوير الطب 

ي بدورها شهدت  الأبعاد،للأورام ف  والب 
ي مجال الذكاء الا  تقدما 

. من الأمثلة على ذلك: علم الأشعة المهتم بتحليل البيانات الكمية ملحوظا بفضل التطور ف  صطناعي
الممكن استخراجها من صور الأشعه وما يمكن رؤيته أو تشخيصه من  الهائلةللصورة, الذي يربط بي   الخصائص الكمية 

ات غي  طبيعية طارئة على العضو المراد تصويره. بل تجاوز الأمر ذلك إلى أن هذا العل  الكميةم استطاع تحليل البيانات تغي 
من قبل الطبيب. اهتم هذا المجال ة للصوره ومن ثم توقع نوع المرض الذي سيصاب به المريض قبل أن يرى بالعي   المجرد

تحديدا بدراسة وتحليل أنماط أورام عديدة باستخدام صور الأشعه المقطعية والمغناطيسية والأشعة  الأشعةمن علم 
ونية،البوزيالمقطعيه  اج آلاف الخصائص  الصورةبعد تحديد جزء  ي  لهذا الجزء تحديدا  النمطيةالمراد تحليله, يمكن اسي 

ات  . والاكلينيكية البيولوجيةباستخدام خوارزميات تعلم الآلة وربطها مع التغي   

  

ي التشخيص المبكر للأورام.  الاستفادةقامت العديد من الدراسات بقياس مدى إمكانية تطبيق علم )الريديومكس( و 
منه ف 

ي تحول دون التطبيقات  ي  الإكلينيكيةهذه الدراسات بينت أن هناك عدد من العوائق الب 
لهذا العلم.  هذه العوائق تتمثل ف 

ي عوامل التصوير الريديومكسحساسية ال )
( مع وجود بعض العوامل  كاختلاف نوع القراء ، وإعادة الاختبار ، والاختلافات ف 

. ا . على دراسات قائمة على مرض  وأخرى قائمة على دمى تحاكي البشر )فانتومز( مبنيةبيانات وباستخدام لإشعاعي  

ي التصوير الريديومكس( أن ال )السادسإلى  الثالثأثبتت فصول هذه الأطروحة )من الفصل  
( يتأثر بمجرد تغي  العوامل ف 

.  بالإضافة إلى ذلك، قامت هذه  ي علم تعلم  الأطروحةالإشعاعي
والذكاء  الآلةباختبار استخدام طرق الإنسجام و الاندماج ف 

ي عوامل التصوير الإ 
. الاصطناعي للتقليل من تأثي  هذه الاختلاف ف  شعاعي  

 

( الريديومكسل )لما وصل إليه التعلم العميق بالنسبة  مفصلة منهجية مراجعةإضافة إلى ما سبق، قدمت هذه الأطروحة 
ي هذه الأطروحة حول مجال  خاصة. كذلك تم تقديم دراسة حتملةالموتطبيقاتها 

من أجل التنبؤ ( الريديومكسال )ف 
من عدمها. قامت هذه الأطروحة بتقديم فصل آخر يهتم بدراسة استخدام حجم  الرئةبإحتمالية الإصابة بأمراض أنسجة 

ب مقابل المرض  المصابي   ( ف الرئوي مجهول السببالتليبال )القصبة الهوائية كعامل تنبؤ للتفريق بي   المرض  المصابي   
. و الأشخاص السليمي   ( أمراض الرئة الخلالية)  

 

ي  بالإفادةكما قامت هذه الأطروحة كذلك 
بات فهم النتائج من أجل التثبت مما توصلنا إليه من إثمن الطرق المعتمدة ف 

ي الريديومكستحسي   أداء ال )( والتعلم العميق. ومن أجل الريديومكسنتائج باستخدام ال )
ظهار نتائج إ( والتعلم العميق ف 

ا, قامت هذه  الجمع(.  خاصيةو أيسمى بالتعلم )انسيمل  فاده مما تم كذلك الإ . أفضل بعمل ما يسمى  الأطروحةوأخي 
اضية لمقارنة أداء الأطباء أصحاب الخي  بالتجارب الشيرية الا ي قراءة صور أشعةة في 

الرئة مع أداء خوارزميات الذكاء  ف 
ي أثبتت بأن كلا من ) الاصطناعي  ي اتخاذ الريديومكسوالب 

( والتعلم العميق يمكن استخدامهما كأداة مساعدة للأطباء ف 
 تشخيصاتهم وقراراتهم الخاصة بالمريض. 

 

ي تحليل بشكل عام, هذه الرسالة أكدت عددا من الفرضيات المتعلقة باستخدام ما يسمى بالريديومك
س والتعلم العميق ف 

ي تحسي   ما توصلنا إليه من استخدام للخوارزميات الآلية 
صور الأشعة. أثبتنا كذلك متانة هذا العلم وأنه يمكن الاستمرار ف 

ي وقت وجي   وبمستوى عال من 
ي تحليل وتشخيص صور الأشعه ف 

والتعلم العميق لتكون أداة أساسية يستفيد منها الأطباء ف 
اء أطباء الدقة لا  ي يقوم بها خي  . الأشعةتقل عن تلك الب   
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 وعرف ان  شكر

 
 سبحانك اللهم خير معلم... علمت بالقلم القرون الأولى

 سبيلا القويم النهج وهديته...  ظلماته من العقل هذا  أخرجت
 

   كما   لله الحمد  
 على والفضل الثناء رب    لك. سلطانه وعظيم وجهه لجلال ينبغ 

 النور تر  لم رب    فلولاك الرسالة، هذه بإتمام  توفيقك
 

   شخصير   أعظم إلى
   ف 

، أم   حياب   سبحانه الله بعد  الشكر  يستحق من أنتم وأب  
   أسباب أهم من كان   ودعاءكم المتواصل فدعمكم وتعالى،

 بحجم لكما  شكرا . توفيق 
 الكون
 

، ورفيقة زوجت    إلى    إياي لمرافقتك القلب من شكرا  درب  
 ودعمك الغربة، بلد  ف 

 الدراسة سنوات طيلة المتواصل
 

   وشمعة فؤادي نبض إلى
   صعبة بأيام مريت   كم  ،(روجير  ) بنت    حياب 

 وكم دراست    ف 
. الله من نعمة أنت. وتعب هم كل  عت    تزيل كانت  رؤيتك لكن ، الهم من عانيت  

 الصلاح لك الله أسال
 

   إلى
،  إخواب   

   داعم أكي   أنتم وأخواب 
ة ف     مسير

 وقوفكم على جميعا  لكم شكرا . حياب 
   مغ  

 ومساندب 
 

، وطت    إلى  دراست    طيلة المتواصل الدعم على الشكر  وافر  لك الغالى 
  

 دعمكم على السماء بحجم شكرا  التطبيقية، الطبية العلوم كلية  عميد  إلى
 

، رئيس إلى  لى   قدمتها  مساعدة كل  على قلت    أعماق من شكرا  قسم 
 والسؤال الدعم على شكرا  ، وحبيب صديق كل  إلى 

 
 قلت    أعماق من شكرا  شكرا  شكرا 
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