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Technological	 advancements,	 especially	 in	 recent	 times,	 have	 resulted	 in	 a	 plethora	 of	
innovations	in	many	different	scientific	fields.	This	is	especially	the	case	with	regard	to	the	
new	 diagnostic	 procedures	 and	 imaging	modalities	 being	made	 available	 to	 the	 field	 of	
oncology	[1].	However,	the	genetic	and	micro-environmental	heterogeneity	found	in	tumors	
and	between	patients	adds	a	stark	 layer	of	complexity	 	 [2,3].	Currently,	due	to	the	sheer	
abundance	 and	 complexity	 of	 oncology-related	 datasets,	 new	 strategies	 for	 facilitating	
clinical	decision-making	are	becoming	increasingly	necessary	[4].	

Precision Medicine
Precision	 medicine	 refers	 to	 preventative	 and	 therapeutic	 approaches	 that	 focus	 on	
accounting	for	an	individual	patient’s	characteristics,	as	well	as	their	specific	ailments	[5].	
Data	mining	is	a	typical	method	of	precision	medicine.	It	involves	detecting	patterns	in	and	
across	big	datasets	of	diverse	populations,	using	powerful	computational	techniques	such	
as	machine	learning.	Across	the	variety	of	patient	populations,	patterns	may	be	established	
that	allow	for	the	categorization	of	patient	groups	and	the	identification	of	the	best	therapy	
for	each	patient,	hence	improving	therapeutic	outcomes	[6,7].	However,	in	order	to	cover	
as	many	of	the	variables	within	a	population	as	feasible,	vast	patient	datasets	are	required.	
Radiological	images	obtained	during	routine	examinations	are	an	essential	source	of	large-
scale	data	that	may	be	employed;	nevertheless,	imaging	in	a	clinical	setting	is	mostly	used	
qualitatively	to	make	diagnoses,	but	not	kept	for	later	analysis.	The	method	of	handcrafted	
radiomics	provides	a	quantitative	approach	for	measuring	tumor	heterogeneity	by	extracting	
a	very	large	number	of	image	characteristics	from	imaging	data,	using	various	mathematical	
techniques	[8].

Handcrafted radiomics
The	term	“radiomics”	refers	to	a	set	of	mathematical	formulas	(handcrafted	characteristics)	
that	are	extracted	from	regions	of	interest	(ROI)	in	medical	imaging	[8].	A	significant	number	of	
quantitative	parameters	can	be	rapidly	retrieved	with	the	use	of	high-throughput	computing,	
providing	 for	 a	more	 thorough	 description	 of	 lung	 diseases.	 Radiomic	 characteristics,	 in	
principle,	can	extract	information	not	apparent	to	the	naked	eye	and	is	capable	of	offering	
better	 predictions	 than	 other	 approaches.	 Hand-crafted	 radiomic	 features	 contain	 first-
order	statistics	shape,	texture,	fractal	dimension,	and	filter-based	features	[9].	To	perform	
a	radiomics	study,	a	set	of	processes	(workflow)	has	to	be	applied,	and	this	includes	image	
acquisition,	segmentation,	feature	extraction,	feature	selection,	and	modeling	(Figure 1).
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Figure 1.	A	standard	radiomic	analysis	workflow	for	handcrafted	features	(top)	and	Deep	Learning	method	(bottom)	
(Courtesy	of	Frix,	A.N,	2021).

The	 handcrafted	 radiomics	 workflow	 starts	 with	 obtaining	 medical	 images	 which	 is	 the	
most	 important	 stage	 in	any	 radiomics	 study.	 Images	 in	 radiomics	 studies	are	 frequently	
gathered	retrospectively,	which	implies	that	the	images	were	collected	in	a	non-controlled	
setting,	using	a	range	of	different	acquisition	settings.	As	a	result,	image	heterogeneities	are	
frequently	found	inside	and	across	datasets.

Segmentation	 and	 features	 extraction	 is	 the	 next	 step	 once	 the	 data	 has	 been	 collected	
and	arranged.	The	regions	of	interest	(ROIs)	in	the	images	are	segmented	for	study.	The	ROI	
determines	 the	 area	 from	which	 radiomic	 characteristics	 will	 be	 retrieved	 [10].	 The	 ROIs	
considered	in	this	thesis	are	a	complete	lung	and	sectorized	lungs.	The	segmented	ROI	is	used	
to	calculate	a	collection	of	handcrafted	image	characteristics.	Intensity,	shape/volume,	and	
texture	features,	as	well	as	higher	order	features	like	radial-gradient	and	filtered	features,	
are	 examples	 of	 these	 characteristics	 [11].	 Intensity	 features	 are	 calculated	 from	 the	
histogram	within	the	ROI	–	including	the	mean,	median,	standard	deviation,	and	skewness.	
Texture	 features	 explore	 the	 relationship	between	one	 voxel	 and	 its	 neighbor	 inside	 the	
ROI,	 such	as	 the	quantification	of	 the	number	of	 consecutive	 intensity	values	 that	occur	
in	a	certain	direction.	Shape	features	use	the	ROI	to	describe	certain	features,	such	as	the	
sphericity	 and	maximum	 diameter.	 Filtered	 features	 are	 computed	 after	 applying	 image	
filtering	techniques	(e.g.,	wavelet	or	Gaussian	(LoG)).

Once	 the	 segmentation	 and	 features	 extraction	 are	 done,	 the	 next	 critical	 stage	 in	 the	
radiomics	workflow	 is	 to	 reduce	 the	number	of	 features.	Many	of	 the	 retrieved	 features	
have	no	correlation	with	the	outcome	or	have	a	substantial	correlation	with	other	radiomic	
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or	clinical	variables	[10].	These	features	add	no	new	information	and	should	thus	be	avoided.		
Following	the	selection	of	the	best	features,	radiomics	models	can	be	generated	using	a	variety	
of	machine	learning	techniques.	Several	modeling	algorithms	can	be	implemented,	such	as	
decision	 trees	 and	 logistic	 regressions.	 The	 performance	 of	 the	models	 can	 be	 assessed	
using	various	metrics	–	including	the	area	under	the	receiver	operating	characteristic	curve	
(AUC)	[12]	and	calibration	plot	[13]	–	which	illustrate	the	connection	between	the	true	class	
of	samples	and	the	model	prediction	probabilities.		

The	approach	of	machine	learning	(ML)	is	a	field	of	artificial	intelligence	in	which	an	algorithm	
learns	 from	 a	 dataset	 via	 inference	 [14].	 Its	 primary	 goal	 is	 to	 create	 a	model	 capable	 of	
classifying,	predicting,	and	estimating	a	scenario	using	the	available	data.	Consequently,	the	
technology	may	help	clinicians	make	better	decisions,	since	ML	systems	are	able	to	consider	a	
greater	number	of	variables	than	human	beings.	Clinical	observations,	biology,	genetics,	and	
radiomics	data	may	also	be	used	to	help	improve	decision-making.	Deep	learning	is	part	of	
the	machine	learning	field	and	uses	the	principles	of	simplified	neuron	interactions	[15]	and	
has	already	been	shown	to	be	extremely	useful	for	solving	image-processing	tasks	(Figure 1).	

Deep	learning,	or	deep	radiomics,	 is	an	alternative	to	(handcrafted)	radiomics	[16].	Deep	
learning	methods	usually	involve	feeding	images	directly	into	convolutional	neural	networks	
(CNN).	Neural	networks	(NN)	are	models	that	have	an	input	layer,	many	hidden	layers,	and	
an	output	layer.	Each	layer	is	made	up	of	nodes	that	link	to	all	the	nodes	in	the	preceding	and	
subsequent	layers	[17].	Each	node	has	a	weight,	and	if	its	output	exceeds	a	given	threshold,	
it	 activates	 and	 transfers	 information	 to	 the	next	 layer,	 finally	 going	 to	 the	output	 layer,	
which	provides	a	specific	prediction.	Deep	learning	has	been	successfully	implemented	in	
several	different	studies,	with	the	use	of	medical	imaging	data.	

Challenges in radiomics
Numerous	 publications	 highlighted	 the	 potential	 of	 radiomics	 in	 facilitating	 precision	
medicine.	However,	multiple	obstacles	hinder	the	generalizability	of	radiomics	signatures	
which,	therefore,	influences	the	clinical	translation.	The	most	obvious	limitation	is	the	lack	
of	 reproducibility	 of	 radiomic	 biomarkers.	 Several	 studies	 have	 investigated	 the	 stability	
of	 radiomic	 features	with	 test-retest	or	phantom	experiments,	 and	have	 reported	 that	a	
considerable	percentage	of	 features	are	not	reproducible,	 i.e.	using	the	same	acquisition	
and	reconstruction	parameters	on	the	same	vendor	for	acquiring	the	scan	[17].	

The	first	part	of	this	thesis	is	devoted	to	the	challenges	facing	radiomic	features.	Chapter	3	
investigated	the	reproducibility	of	radiomic	features	across	different	scanners	and	scanning	
parameters.	Chapter	4	evaluated	 the	 reproducibility	of	handcrafted	 radiomics	across	 the	
arterial	 and	 portal	 venous	 phases	 of	 contrast-enhanced	 computed	 tomography	 images	
that	depict	hepatocellular	carcinomas,	as	well	as	the	potential	of	ComBat	harmonization	to	
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correct	for	these	differences.	In	Chapter	5,	we	look	at	the	reproducibility	of	HRFs	derived	
from	 phantom	 CT	 scans	 taken	 with	 various	 reconstruction	 kernels	 on	 various	 imaging	
vendors,	as	well	as	the	possibility	of	Reconstruction	Kernel	Normalization	(RKN)	and	ComBat	
harmonization	techniques	to	address	the	variations.	Finally,	chapter	6	evaluated	the	effects	
of	differences	in	in-plane	spatial	resolution	(IPR)	on	handcrafted	radiomics,	using	a	phantom	
dataset	acquired	on	two	scanner	models.

The diseases with radiomics
The	second	part	of	this	thesis	is	focused	on	the	potential	application	of	both	handcrafted	
radiomics	and	deep	learning	in	different	lung	disorders	such	as	interstitial	lung	diseases	(ILD)	
and	chronic	obstructive	pulmonary	diseases	(COPD).	

The	 term	 “interstitial	 lung	 disease”	 or	 ILD	 refers	 to	 a	 set	 of	 diffuse	 parenchymal	 lung	
disorders	 that	 are	 linked	 with	 high	 morbidity	 and	 mortality.	 Patients	 with	 fibrotic	 ILD	
often	experience	a	decline	 in	 lung	function	with	progressive	symptoms,	poor	therapeutic	
response,	and	a	lower	quality	of	life.	Idiopathic	pulmonary	fibrosis	(IPF)	is	the	most	common,	
progressive,	 and	 severe	 subtype	 of	 ILD	 [18].	 Although	 the	 disease	was	 once	 thought	 to	
be	rare,	 it	now	occurs	with	the	same	frequency	as	stomach,	brain,	and	testicular	tumors	
[19,20].	The	prevalence	of	IPF	has	grown	over	time,	with	estimates	ranging	from	28	to	18	
instances	per	100,000	persons	each	year	in	Europe	and	North	America	[20,21].	IPF	is	more	
frequent	in	men	and	rare	in	those	under	the	age	of	50.	(median	age	at	diagnosis	is	about	65	
years)	[18,22,23].	Despite	the	fact	that	the	disease’s	progression	is	diverse	and	somewhat	
unpredictable,	the	median	survival	period	following	diagnosis	is	2–4	years	[24].	IPF	is	usually	
associated	with	usual	interstitial	pneumonia	(UIP)	patterns	on	histology	[25].	Although	UIP	
is	a	defining	feature	of	IPF,	it	is	not	unique	to	IPF	and	can	be	present	in	other	ILDs,	including	
connective	tissue	disease-associated	ILD	(CTD-ILD),	hypersensitivity	pneumonitis	(HP),	and	
sarcoidosis	 [26].	Accurate	 identification	of	 IPF	and	UIP	 is	 important	 for	prompt	 initiation	
of	 antifibrotic	 treatment	 and,	when	applicable,	 enrollment	 in	 clinical	 trials.	 According	 to	
the	most	recent	ATS-ERS	recommendations	[25],	radiologists	only	recognized	a	UIP	pattern	
on	thin-section	CT	with	a	sensitivity	of	34%	in	a	recent	research	that	included	a	cohort	of	
patients	with	pathologically	verified	UIP	patterns	[27].	Furthermore,	radiographic	evaluation	
of	fibrotic	lung	disorders	remains	difficult	and	frequently	varies	amongst	specialists	[28–31].	
Consequently,	an	automated	technique	that	aids	radiologists	(particularly	less	experienced	
ones)	in	avoiding	needless	biopsies	in	the	context	of	a	multidisciplinary	discussion	might	be	
extremely	beneficial.

Chronic	obstructive	pulmonary	disease	(COPD)	 is	one	of	the	most	common	lung	disorders,	
affecting	an	estimated	328	million	people	worldwide,	and	it	is	anticipated	to	become	the	leading	
cause	of	mortality	in	the	world	over	the	next	two	decades	[21].	COPD	is	characterized	by	a	
restriction	in	airflow,	which	may	be	assessed	via	spirometry	tests.	It	is	not	completely	reversible	
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and	is	frequently	induced	by	noxious	particle	or	gas	exposure	(e.g.,	cigarette	smoking),	which	
causes	 an	 inflammatory	 reaction	 in	 the	 lungs	 [22,23].	COPD	 is	 a	multicomponent	disease,	
comprising	a	combination	of	bronchiolitis,	emphysema,	and	extrapulmonary	effects.

Role of computed tomography (CT)
In	 the	majority	of	clinically	suspected	cases,	high-resolution	computed	tomography	(HRCT)	
can	significantly	reduce	the	differential	diagnosis	of	interstitial	lung	disease	(ILD)	(Figure 2).	 
In	addition,	HRCT	can	sometimes	yield	a	precise	diagnosis	without	requiring	a	surgical	biopsy.	
HRCT	may	also	be	used	to	count	the	number	of	 lung	abnormalities	and	provide	composite	
scores	that	can	be	used	to	assess	disease	severity	and	prognosis	[24–26].	HRCT	is	a	valuable	tool	
for	evaluating	patients	with	suspected	idiopathic	pulmonary	fibrosis	(IPF)	and	is	increasingly	
being	used	as	a	surrogate	measure	for	monitoring	therapeutic	response	in	various	drug	trials	
[27–29].

	A	CT	scan	with	adequate	technical	quality	is	necessary	for	the	effective	interpretation	of	ILDs	
findings	[30].	The	following	parameters	should	be	utilized	to	acquire	a	volumetric	image:	a)	
thin	collimation;	b)	thin-slice	thickness	reconstructions	(≤	1.5	mm)	with	the	use	of	a	high-
resolution	filter;	c)	shortest	rotation	time	and	highest	pitch,	to	reduce	the	motion	artifacts	
and	the	acquisition	time;	and	d)	use	of	optimization	tools	to	reduce	radiation	dose	[19,31].	

A B C

Figure 2. Figure	shows	CT	of	A)	normal	lungs;	B)	COPD	lungs;	C)	ILD	lungs.

Objectives and outline of the thesis
The	overall	aims	of	this	thesis	are	two-fold;	1)	to	evaluate	the	effects	of	different	scanners	and	
scanning	parameters	on	the	reproducibility	of	radiomic	features;	2)	to	investigate	the	use	of	
radiomics	in	the	classification	between	different	ILDs.	To	this	end,	this	thesis	is	divided	into	
two	parts.	The	first	focuses	on	the	challenges	that	the	field	of	radiomics	faces.	The	objective	
is	to	evaluate	the	reproducibility	of	radiomic	features	extracted	from	the	same	scanner,	or	
from	different	scanners	with	different	CT	acquisition	parameters.	The	second	part	concerns	
the	application	of	handcrafted	radiomics	and	deep	learning	in	the	classification	of	different	
types	of	lung	disorders.	The	objective	is	to	explore	how	the	power	of	AI	can	be	harnessed	
for	 the	classification	between	different	 ILDs,	potentially	overcoming	some	of	 the	current	
difficulties	 in	 the	decision-making	surrounding	 lung	diseases.	The	outline	of	 this	 thesis	 is	
shown in Figure 3	and	elaborated	on	below.
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Part I: General introduction and outline of the thesis

Chapter 1 provides	a	general	introduction	to	different	lung	diseases,	the	role	of	CT	images,	
handcrafted	radiomics,	machine	learning,	and	challenges	regarding	radiomics	studies.

Chapter 2 provides	a	general	overview	and	update	on	the	recent	rapidly	expanding	work	in	
the	field	of	handcrafted	radiomics	and	deep	learning,	describing	some	of	their	limitations	
and	providing	examples	of	emerging	clinical	applications.

Part II: Challenges in handcrafted radiomics

Chapter 3 provides	a	study	that	attempts	to	test	the	repeatability	of	handcrafted	radiomics	
using	phantom	scans.	For	this,	a	total	of	13	scans	were	included	and	examined.	These	were	
collected	with	the	use	of	various	imaging	vendors	and	reconstruction	settings.	The	utilization	
of	the	ComBat	harmonization	approach	was	also	explored.

Chapter 4 looks	 at	 the	 reproducibility	 of	 handcrafted	 radiomics	 derived	 from	 CT-based	
hepatocellular	 carcinoma	 in	 two	 imaging	 phases:	 arterial	 and	 portal	 venous.	 ComBat	
harmonization	methods	were	also	explored	in	order	to	evaluate	their	efficacy	in	reducing	
the	impact	of	phase	differences.

Chapter 5	investigates	the	reproducibility	of	HRFs	extracted	from	phantom	CT	scans	acquired	
with	different	reconstruction	kernels	on	different	imaging	vendors.	We	also	investigate	the	
potential	 of	 ComBat	 harmonization,	 Reconstruction	 Kernel	 Normalization	 (RKN)	 and	 the	
combination	of	both	methods	to	reduce	the	variations	in	HRF	values	attributed	to	differences	
solely	in	the	reconstruction	kernels	of	the	original	scans.	

Chapter 6 assesses	how	differences	in	in-plane	resolution	can	affect	the	reproducibility	of	
handcrafted	radiomics,	when	all	other	parameters	are	kept	at	a	constant	level.	This	study	
included	two	sets	of	phantom	scans	which	were	collected	in	the	same	manner	except	for	the	
in-plane	resolution.	In	addition,	we	explored	the	impact	of	various	resampling	methods	and	
the	application	of	ComBat	harmonization	on	the	reproducibility	of	handcrafted	radiomics.	

Part III: Application of handcrafted radiomics and deep learning on lung disease

Chapter 7 presents	a	review	of	the	emerging	role	of	radiomics	in	COPD	and	lung	cancer.	The	
review	outlines	the	main	applications	of	radiomics	 in	 lung	cancer	and	briefly	reviews	the	
workflow	 from	 image	acquisition	 to	 the	evaluation	of	model	performance.	Furthermore,	
the	current	assessments	of	COPD	and	the	potential	application	of	radiomics	in	COPD	were	
also	discussed.
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Chapter 8 investigates	the	use	of	handcrafted	radiomics	to	classify	between	IPF	with	UIP	
presentation	in	HRCT	or	confirmed	by	lung	biopsy	and	non-IPF	ILD	with	the	absence	of	UIP	
patterns	 (confirmed	by	 lung	biopsy).	 Furthermore,	we	examine	 the	difference	 in	 trachea	
volume	and	use	it	as	a	predictor	for	IPF.

Chapter 9 compares	 the	 use	 of	 handcrafted	 radiomics	 and	 deep	 learning	 to	 diagnose	
diverse	lung	disorders,	such	as	IPF,	and	non-IPF	ILDs	patients.	 Interpretability	approaches	
were	also	utilized	to	explain	the	performance	of	handcrafted	radiomics	and	deep	learning.	
Furthermore,	 the	 suggested	 handcrafted	 radiomics	 and	 deep	 learning	 outcomes	 were	
compared	to	the	performance	of	medical	imaging	experts.

Part V: General discussion and future perspective of the thesis

The	thesis	is	concluded	by	chapter 10, in which the work in this thesis is discussed and the 
directions	for	future	research	are	provided.
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Radiomics: 
from qualitative to quantitative imaging

Chapter 2



Abstract

Historically,	medical	imaging	has	been	a	qualitative	or	semi-quantitative	modality.	It	is	difficult	
to	quantify	what	can	be	seen	in	an	image,	and	to	turn	it	into	valuable	predictive	outcomes.	
As	a	result	of	advances	in	both	computational	hardware	and	machine	learning	algorithms,	
computers	are	making	great	strides	in	obtaining	quantitative	information	from	imaging	and	
correlating	it	with	outcomes.	This	opens	a	new	“omics”	field,	radiomics,	adding	new	input	
avenues	for	precision	medicine,	beyond	genomics.	Radiomics,	in	its	two	forms	“handcrafted	
and	deep”,	is	an	emerging	field	that	translates	medical	images	into	quantitative	data	to	yield	
biological	information	and	enable	radiologic	phenotypic	profiling	for	diagnosis,	theragnosis,	
decision	support,	and	monitoring.		Within	this	review,	we	describe	the	steps	of	handcrafted	
radiomics,	 a	multistage	 process	 in	which	 features	 based	 on	 shape,	 pixel	 intensities,	 and	
texture	are	extracted	from	radiographs.	The	application	of	deep	learning,	the	second	arm	
of	radiomics,	and	its	place	in	the	radiomics	workflow	is	discussed,	along	with	its	advantages	
and	disadvantages.	To	better	illustrate	the	technologies	being	used,	we	provide	real-world	
clinical	applications	of	radiomics	 in	oncology	and	other	diseases,	showcasing	research	on	
the	 applications	 of	 radiomics,	 as	well	 as	 covering	 its	 limitations	 and	 its	 future	 direction	
towards	precision	medicine.

Keywords:	Radiomics;	Oncology;	Machine	Learning;	Deep	Learning;	Medical	Imaging.	



Radiomics: from qualitative to quantitative imaging

2

25

Introduction

Medical	imaging	technologies	in	healthcare	have	expanded	remarkably		from	the	discovery	
of	X-Rays	124	years	ago	 to	 the	use	of	Computed	Tomography	 (CT),	Magnetic	Resonance	
Imaging	 (MRI),	 and	 Positron	 Emission	 Tomography	 (PET),	 among	 others	 in	 modern-day	
clinical	practice	[1]	(see	Figure	1).	These	tools	have	become	an	integral	part	in	detection	and	
diagnosis	for	many	diseases	due	to	several	factors,	including:	the	minimally	invasive	nature	
of	 imaging,	 rapid	 technological	developments,	 lower	costs	 compared	 to	alternatives,	 the	
high	information	density	of	images,	and	the	hardware	can	be	used	for	multiple	diseases	and	
sites		[2,3].	

Medical	 imaging	 in	 its	 infancy	 generated	 analogue	 images,	 which	 underwent	 subjective	
interpretation	based	on	visual	inspection	and	verbal	communication.	By	the	end	of	the	20th	
century,	 information	 technology	has	brought	 radiology	 to	 the	digital	world	 [4],	 although	
the	interpretation	of	radiographs	remained	mostly	qualitative.	Humans	excel	at	recognising	
patterns	 through	 visual	 inspection,	 however,	 they	 are	 often	 lacking	 when	 performing	
complex	quantitative	assessments	[5,6].	In	the	early	1960s,	researchers	started	to	focus	on	
computerized	quantitative	analysis	of	medical	data	for	aiding	clinical	diagnosis	[7–9], what 
later	came	to	be	known	as	Computer	Aided	Decision	(CAD)	systems.	However,	these	systems	
were	using	a	classical	approach	using	statistical	analysis	and	probability	theories,	and	the	
volume	of	available	data	was	low,	so	the	results	were	often	too	inaccurate	for	clinical	use.	
Later	 in	 the	1980s,	 further	advances	 in	 theoretical	 computer	 science	and	digital	 imaging	
lead	to	the	development	of	advanced	machine	learning	and	pattern	recognition	algorithms,	
which	when	 integrated	with	CAD	systems	were	able	to	generate	clinically	reliable	results	
[10] [11].	

In	recent	decades,	simple	quantitative	image	analysis	has	been	adopted	by	clinicians	(e.g.	
RECIST	 [12]),	 and	 has	 been	 primarily	 focused	 on	 assisting	 qualitative	 observations	 [13].	
For	instance,	CAD	systems	can	be	found	in	health	care	worldwide,	aiding	radiologists	and	
clinicians	 in	making	diagnostic	 	 and	 theragnostic	decisions	 [14].	One	of	 the	most	 typical	
applications	of	CAD	systems	 is	 in	recognizing	abnormalities	during	cancer	screening	[15].	
Notable	 contributions	 are	 in	 the	 area	 of	 lung	 and	 breast	 cancer	 research.	 For	 example,	
there	are	many	CAD	studies	which	focus	on	detecting	and	diagnosing	lung	nodules	[16,17] 
(as	benign	or	malignant)	on	CT	and	chest	 radiographs.	Similarly,	many	such	studies	have	
been	conducted	 in	breast	mammography	 images	for	highlighting	microcalcifications	 [18], 
architectural	distortions,	and	the	prediction	of	mass	type	[19,20].	

It	 is	 conceivable	 that	 the	 lack	 of	 quantitative	 information	 leads	 to	 increased	 follow-ups	
or	 invasive	biopsies	that	would	be	deemed	unnecessary	given	the	unused	 information	in	
medical	 images	 [21].	Even	though	there	have	been	various	developments	 in	quantitative	
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image	 analysis,	 traditionally	 radiologists	 are	 trained	 to	 understand	 the	 behaviour	 of	 the	
underlying	 disease	 through	 visual	 inspection	 of	 radiographic	 images	 	 [21].	 This	 partially	
explains	why	most	of	the	developments	in	imaging	technology	are	in	optimising	the	visual	
representation	of	the	generated	images,	with	vendors	competing	to	generate	the	highest	
quality	 images.	With	 the	exception	of	 CT,	with	 its	 semi-parametric	 calibrated	Hounsfield	
Units,	 and	 some	particular	MRI	 sequences,	 individual	 voxel	 values	do	not	 correlate	with	
the	underlying	biology	without	further	calibration	and	modelling.	Furthermore,	qualitative	
analysis	 is	not	 so	dependent	on	 reproducible	 voxel	 values,	while	machines	on	 the	other	
hand	only	process	numerical	values	and	rely	on	the	standardisation	of	 image	acquisition	
and	 reconstruction	 to	 yield	 reproducible	 results.	 The	 lack	 of	 standardisation	 of	medical	
images	has	been	a	major	hurdle	in	the	development	of	quantitative	image	analysis	(QIA)	in	
medical	imaging	[22–25].	However,	in	recent	years,	quantitative	imaging	is	becoming	more	
popular	with	the	advent	of,	e.g.,	quantitative	FDG-PET	[26,27]	or	quantitative	MRI	[28,29]	
for	treatment	response	assessment.

The	ubiquitous	computer,	vast	amounts	of	data,	and	advanced	algorithms	have	opened	a	new	
era	in	medical	imaging.	The	high	information	density	of	images	allows	for	many	quantitative	
metrics	since	intricate	pixel	and	voxel	relationships	can	be	captured	by	complex	operations.	
Radiomics	involves	the	process	of	extraction	of	quantifiable	features	from	vast	amounts	of	
data	that	might	correlate	with	the	underlying	biology	or	clinical	outcomes	using	advanced	
machine	learning	analysis	techniques	[30,31].	Radiomics	has	two	main	arms,	based	on	how	
imaging	 information	 is	 transformed	 into	mineable	data:	handcrafted	 radiomics	and	deep	
learning.	Handcrafted	features	are	 formulas	mostly	based	on	 intensity	histograms,	shape	
attributes,	and	texture,	that	can	be	used	to	fingerprint	phenotypical	characteristics	of	the	
radiograph	[32]	while	in	deep	learning	a	complex	network	“creates”	its	own	features.	Various	
statistical	and	machine	learning	models	have	been	widely	researched,	and	are	envisioned	to	
be	complementary	to	best	medical	practice	by	aiding	in	making	informed	clinical	decisions	
in	both	oncological	and	non-oncological	diseases	[33–36].	

Since	the	1990s	predictions	were	being	made	that	genomics,	spearheaded	by	the	Human	
Genome	 Project,	 would	 completely	 transform	 therapeutic	medicine,	 heralding	 precision	
medicine	[37].	Precision	medicine,	also	termed	personalized	medicine,	originally	referred	
to	 the	 view	 that	 incorporating	 genomic	 information	 in	 the	 clinical	workflow	will	 lead	 to	
marked	 improvements	 in	 the	 prediction,	 diagnosis,	 and	 treatment	 of	 diseases.	 Recently,	
the	scope	of	precision	medicine	has	expanded	to	incorporate	inputs	beyond	the	genome	
[38].	Radiomics	and	other	“-omic”	developments,	such	as	metabolomics	and	proteomics,	
are	contributing	to	this	a	paradigm	shift	 in	medicine,	where	the	 focus	has	changed	from	
standard	clinical	protocols	based	on	trial	populations	to	a	personalised	treatment	tailored	
not	only	to	the	disease	and	site	but	also	the	patient,	further	enabling	precision	medicine.			
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In	 this	 review,	 we	 provide	 a	 broad	 overview	 and	 update	 on	 the	 fast-growing	 field	 of	
quantitative	 imaging	 research,	 focussing	 on	 the	 two	 arms	 “handcrafted	 radiomics	 and	
deep	learning”	describing	some	of	its	caveats	and	giving	examples	of	the	budding	clinical	
implementation,	the	stepping	stones	towards	precision	medicine.

Figure 1.Timeline	highlighting	key	developments	in	medical	imaging.

Radiomics: from feature extraction to correlation with outcomes

Performing	 feature	 extraction	 of	 textures	 in	medical	 imaging	 is	 nothing	 new	 and	 in	 fact	
serious	research	had	begun	in	the	early	1980s	at	Kurt	Rossmann	Laboratories	for	Radiologic	
Image	Research	in	the	Department	of	Radiology	at	the	University	of	Chicago	to	develop		CAD	
systems	for	the	detection	of	lung	nodules	as	well	as	detection	of	clustered	microcalcifications	
in	mammograms	[39,40].		The	first	CAD	patent	was	filed	all	the	way	back	in	1987	using	a	
method	of	pixel	thresholding	and	contiguous	pixel	area	thresholding	[40].		

The	radiomic	workflow	begins	with	the	medical	 image,	which	can	be	represented	in	two,	
three,	or	four	dimensions	[32,41].	Images	contain	quantitative	data	in	the	form	of	signals	
that	 are	 captured	 at	 different	 scales	 and	 variation	 across	 medical	 machines	 [42,43].		
Normalisation	 techniques	 are	used	 to	 evenly	 distribute	pixel	 intensities	 across	 a	 dataset	
and	within	a	standardized	range	[42,43].		Next,	a	region	of	interest	(ROI)	is	defined	so	that	
only	information	related	to	the	lesion	can	be	extracted,	and	the	useful	information	that	can	
be	extracted	are	called	features.		There	are	competing	methods	to	extract	features	both	in	
2D	and	3D.	One	such	method	is	the	manual	segmentation	of	the	lesion	or	the	creation	of	
a	bounding	box,	as	seen	in	Figure	2	[45,46].	This	can	also	be	performed	using	automated	
segmentation	 algorithms.	 	Methods	 for	 automated	 segmentation	 include	 deep	 learning	
architectures	 such	 as	 U-Net,	 or	 semi-automatic	 methods	 like	 click-and-grow	 algorithms	
[45,46].	
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Figure	2.	The	difference	between	using	A)	a	contoured	binary	mask,	and	B)	using	a	bounding	box.

Once	the	ROI	is	defined,	the	choice	of	features	to	be	extracted	depend	on	the	information	
being	sought.	Shape	features	such	as	volume	relate	only	to	the	definition	of	the	ROI,	and	if	this	
is	manually	created,	suffer	from	inter-and	intra-observer	variability	[47].	First-order	features	
give	 insight	 into	 the	 distribution	 of	 pixel	 intensities,	 e.g.	 histograms	 of	 pixel	 intensities	
are	 quantified	 by	 a	 large	 number	 of	 statistical	 methods,	 including	 variance,	 skewness,	
and	 kurtosis.	 These	 features,	 however,	 are	unable	 to	quantify	how	pixels	 are	positioned	
in	relation	to	each	other.	Second	and	higher-order	features	may	capture	this	relationship,	
with	second-order	features	obtained	based	on	the	average	relationship	between	two	pixels/
voxels,	and	higher-order	features	for	more	than	two	pixels/voxels.	An	example	of	a	second-
order	feature	extraction	method	is	the	grey	level	co-occurring	matrix	(GLCM).	GLCMs	are	co-
occurring	pixels	in	each	defined	direction	(see Figure	3)	and	are	counted	and	recorded	(see 
Figure	4)	into	a	matrix.		Statistical	analysis	such	as	contrast,	correlation,	and	homogeneity,	as	
well	as	tailored	formulae	can	then	be	applied	on	the	GLCM	to	extract	independent	features	
[48].	Features	extracted	in	this	manner	are	considered	“hand	crafted”	features	as	they	are	
features	that	are	pre-defined	by	specially	designed	formulae.	

Figure 3. Possible	angles	for	the	calculation	of	co-occurrence	matrices	in	two	and	three	dimensions.		A.)	shows	
the	four	possible	directions	in	two	dimensions	while	B.)	shows	the	thirteen	possible	directions	in	three	dimensions.
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Figure 4.	Calculating	a	GLCM	for	horizontal	co-occurring	pixel	intensities.		In	total	three	co-occurring	pixel	intensities	
of	3	and	2	that	are	next	to	each	other	on	a	horizontal	plane	can	be	totalled	and	tracked	in	the	corresponding	matrix.

After	features	have	been	extracted	from	all	the	images	in	a	database,	a	subset	of	features	
needs	 to	 be	 selected	 that	 go	 into	 the	 final	 model.	 To	 make	 a	 model	 generalisable,	 it	
is	 important	 to	 avoid	 finding	 spurious	 correlations	 in	 the	 data	 that	 do	 not	 generalise	 to	
other	 similar	datasets,	an	occurrence	 termed	overfitting	 [49–51].	 If	a	model	has	 learned	
to	recognize	noise,	outliers,	or	other	kinds	of	variance,	it	is	unlikely	to	perform	well	when	
presented	new	data.	 The	 larger	 the	number	of	 predictors,	 the	 larger	 the	 chance	 to	find	
spurious	 correlations,	 a	major	problem	 in	 the	 realm	of	machine	 learning	 [52].	 To	detect	
overfitting,	 ideally,	 a	 model’s	 performance	 is	 validated	 in	 external	 datasets	 with	 similar	
population	and	outcome	distributions,	but	from	different	centres	--	if	the	model	performs	
significantly	better	on	the	training	set	than	on	the	validation	set,	overfitting	is	likely	[53,54].	
In	 the	absence	of	an	external	validation	dataset,	data	can	be	split	 into	different	subsets,	
and	the	model	trained	in	one	group	and	validated	on	the	other(s)	in	a	process	called	cross-
validation	 (see	 Figure	 4)[55].	 During	 this	 process,	 the	model	 hyper-parameters	 (settings	
within	the	model	itself,	e.g.	degree	of	polynomial	fitting)	can	be	further	tuned	to	increase	
performance	in	the	training	and	validation	sets	[56].

Figure 5.	An	example	of	fivefold	cross-validation	which	can	be	used	to	evaluate	machine	learning	models.	Cross-
validation	gives	the	ability	to	test	the	result	across	the	entirety	of	a	dataset,	giving	a	better	estimation	of	a	model’s	
overall	performance.
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A	method	to	overcome	overfitting	is	to	reduce	the	number	of	predictors,	in	this	case,	imaging	
features.	 	 Feature	 selection	 is	 the	 process	 of	 reducing	 the	 number	 of	 predictors	 while	
retaining	the	core	important	information	that	correlates	with	outcomes	or	the	underlying	
biology	[32].	Many	feature	reduction	methods	exist,	but	none	are	known	to	work	well	on	all	
kinds	of	datasets,	and	they	can	be	combined	in	many	ways	[32].	This	remains	an	active	field	
of	research	[57].	Similar	features	can	also	be	grouped	to	achieve	dimensionality	reduction,	
and	methods	such	as	principal	component	analysis	and	independent	component	analysis	
are	employed	to	this	end	[58].

Once	features	are	selected,	the	task	is	to	correlate	these	features	-		individually	or	in	groups	
-		to	diagnostic	and	prognostic	outcomes	or	to	the	underlying	biology.	There	are	numerous	
methods	to	find	and	test	such	models,	 from	simple	 linear	regression	and	curve-fitting	to	
advanced	machine	learning	methods	such	as	decision	trees,	support	vector	machines	(SVM),	
random	forests,	boosted	trees,	or	neural	networks	[59].	Ensembling	is	the	combination	of	
models	that	get	trained	on	random	samples	of	data	from	the	training	set	called	bags	and	
then	combined	as	a	whole	using	a	voting	system.	This	 is	the	basis	for	algorithms	such	as	
Random	Forests,	AdaBoost,	and	Gradient	Boosting	[60].	An	intuitive	explanation	is	that	even	
though	the	 individual	models	can	show	a	 large	amount	of	variance	due	to	being	 trained	
on	 small	 subsets	 of	 the	 data,	 their	 averaging	 or	 voting	 smooths	 out	 the	 variance	while	
improving	the	ability	to	better	generalise	[60].

Once	a	generalisable	model	has	been	trained	and	externally	validated,	it	might	be	desirable	
to	expand	the	interoperability	of	the	model	to	all	hardware,	acquisition,	and	reconstruction	
parameters	 found	 in	 general	 clinical	 practice.	 Instead	 of	 relying	 on	 the	 standardisation	
of	 images,	 the	 features	 themselves	can	be	harmonized	 to	a	 common	 frame-of-reference	
using	combined	batch	methods	such	as	ComBat	[44,60,61],	originally	developed	for	similar	
problems	encountered	in	gene	sequencing	assays	[62].	

Deep learning for fully automated workflows

Artificial	neural	networks	(ANN)	are	a	class	of	machine	learning	architecture	that	are	loosely	
based	 on	 how	 biological	 brains	work	 [63].	With	 the	 exception	 of	 unsupervised	 learning	
(such	as	autoencoders),	deep	learning	architectures	usually	rely	on	information	regarding	
the	outcome	in	order	to	craft	their	features,	and	unlike	in	handcrafted	radiomics,		feature	
extraction	and	 correlation	are	 intertwined	 [64].	Also,	unlike	 radiomics,	 there	 is	 generally	
no	need	for	image	segmentation,	as	the	whole	image	can	be	presented	to	a	deep	learning	
model,	both	during	training	and	in	clinical	routine.

An	ANN	is	able	to	use	a	collection	of	neurons	and	weights,	one	for	each	of	the	inputs	preceding	
the	neuron	[65].	These	weights	get	continuously	updated,	or	corrected,	in	steps	called	epochs	
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that	work	together	to	create	a	very	complex	function	able	to	make	predictions.	The	weights	
are	inputs	for	each	neuron	and	are	multiplied	and	averaged,	resulting	in	a	transfer	function,	
which	 is	 converted	 to	 an	 output	 via	 a	 function	 called	 an	 activation	 function	 [66].	 These	
activation	functions	are	often	a	sigmoidal	function	such	as	a	hyperbolic	tangent	or	sigmoid,	
or	a	function	called	a	rectified	linear	unit	(ReLU)	that	can	be	represented	as	the	maximum	of	
the	product	of	the	coefficient	and	zero	or	one.	A	representation	of	a	single	neuron,	including	
the	activation	function,	can	be	seen	in Figure	6 [67].	Multiple	neurons	can	then	be	stacked	
to	create	a	single	layer	referred	to	as	a	“hidden	layer”	and	hidden	layers	(were	inputs	and	
outputs	all	connect)	can	be	stacked	to	create	larger	networks,	see	Figure	7 [65].	The	term	
deep	learning	is	used	to	describe	a	neural	network	that	has	many	layers,	which	is	considered	
deep.	For	a	binary	classifier	or	regression,	the	final	layer	should	contain	only	a	single	neuron	
and	use	a	 sigmoid	activation	 function	 to	make	a	prediction	with	a	binary	outcome	 (zero	
or	one).	 If	 the	problem	 is	 categorical,	 the	network’s	 final	 layer	 should	 contain	 the	 same	
number	of	neurons	as	there	are	categories	to	be	classified	and	the	final	activation	will	be	
a	“softmax”	function,	which	is	the	average	of	the	exponentials	of	the	inputs	[68],	yielding	
the	probabilities	of	each	category.	Deep	 learning	 for	 image	vision	employs	convolutional	
neural	networks	(CNN)	which	are	a	type	of	ANN	that	have	an	automated	feature	extractor	
designed	specifically	for	images	[69].	CNNs	employ	a	filtering	technique,	which	convolves	
the	image	with	a	kernel	(sliding	window),	creating	a	new	pixel/voxel	value	(and	hence	new	
image)	by	sliding	a	matrix	of	numbers	over	the	image,	see	Figure	8.	It	is	possible	to	make	
a	variety	of	different	filters	using	these	types	of	convolutions,	such	as	blurring,	sharpening,	
edge	detection,	and	gradient	detection	[69,70],	and	CNNs	are	able	to	learn	filters	that	are	
best	suited	to	extracting	features	needed	for	making	predictions.

Figure 6.	The	architecture	of	a	single	neuron	with	a	transfer	function	and	a	sigmoid	activation	function	visualised.
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Figure 7.	A	three-layer	neural	network	that	is	a	binary	classifier	with	three	inputs.	Nodes	with	Xn refer to inputs 
while	other	nodes	refer	to	activation	functions.	The	connecting	lines	between	the	nodes	represent	weights.

Figure 8.	A	filter	that	is	able	to	filter	out	vertical	lines.	The	yellow	lines	represent	the	kernel	or	sliding	window,	
while	the	image	on	the	right	is	the	result	of	performing	convolutions	across	the	entirety	of	the	original	image.

ANNs	do	have	some	drawbacks	compared	to	using	hand	crafted	features	alongside	other	
machine	 learning	 techniques.	 The	 main	 drawback	 is	 the	 intrinsic	 need	 for	 much	 larger	
datasets	to	train	the	models,	since	feature	creation	is	contingent	on	the	training	data,	as	
opposed	 to	 handcrafted	 radiomics.	 Another	 drawback	 to	 using	 ANNs	 is	 interpretability.	
ANNs	build	ultra-complex	functions	that	can	be	extremely	difficult	for	practitioners	to	make	
sense	of.	Although	CNNs	have	performed	very	well	 in	 image	recognition,	they	have	been	
less	successful	learning	texture	features,	since	texture	information	inherently	has	a	higher	
dimensionality	compared	to	other	types	of	datasets,	making	them	more	difficult	for	neural	
networks	to	master	[69,71].	According	to	Basu	et	al	(2018),	a	redesign	of	neural	network	
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architectures	is	required	to	extract	features	in	a	similar	manner	as	GLCM	and	other	features	
based	on	spatial	correlation.		

Currently,	the	main	application	of	deep	learning	in	the	radiomics	workflow	still	lies	in	the	
automated	detection	and	localization	of	organs	and	lesions,	removing	the	major	burden	in	
dataset	curation.		While	there	is	no	algorithm	that	can	solve	every	problem,	deep	learning	
still	 has	 its	 place	 and	 is	 able	 to	work	 as	 additional	methods	 for	 delineation	 and	 feature	
extraction	that	compliments	handcrafted	radiomics.	There	is	active	research	in	combining	
both	deep	learning	features	and	radiomics	features	that	shows	improved	results	[72–74].	

Potential Clinical Applications

Radiomics in Oncology
Radiomics	has	been	widely	studied	for	application	 in	diagnosis	and	treatment	prognosis/
selection	 in	 oncology,	 primarily	 due	 to	 the	 existence	 of	 large	 imaging	 datasets	 used	 for	
staging,	often	containing	delineations	of	tumours	and	organs	at	risk	necessary	for	radiation	
treatment	planning.	These	datasets	can	be	used	to	train	diagnostic	and	prognostic	models	
for	 a	 variety	 of	 cancer	 types	 and	 sites.	 Using	 clinical	 reports,	 pathology/histology,	 and	
genetic	information	along	with	radiomics	analysis	can	give	a	global	outlook	on	the	biology	
of	the	disease	[48].	In	this	section,	an	overview	of	notable	studies	published	in	this	area	will	
be	discussed.

Lung:
Lung	cancer	is	by	far	the	leading	cause	of	cancer-related	deaths	among	both	men	and	women	
worldwide	[75].	Recent	studies	have	shown	that	radiomics	can	determine	the	risk	of	lung	
cancer	from	screening	scans	[76–78].	Radiomic	features	found	to	have	a	strong	association	
to	decode	tumour	heterogeneity	for	risk	stratification	[79,80],	concluding	that	patients	with	
heterogeneous	 tumours	 tend	 to	have	a	worse	prognosis.	 In	 addition	 to	 that,	 Yoon	et	 al.	
were	able	to	show	the	association	of	radiomic	analysis	with	gene	expression	[81].	Radiomic	
features	were	also	found	to	correlate	with	TNM	staging	for	lung	and	head-and-neck	cancer	
[31,82].	Later	studies	further	validated	the	strong	predictive	power	of	radiomics	for	distant	
metastasis	[83–85].

Radiomics	may	 also	play	 a	 role	 in	 lung	 cancer	 treatment	planning	by	 evaluating	 tumour	
response	 to	 a	 specific	 treatment.	 Several	 studies	 focused	 on	 analysing	 the	 tumour	
response	to	radiation	therapy	[86,87].	For	instance,	Mattonen	et	al.	developed	a	radiomics	
signature	for	treatment	response	to		stereotactic	ablative	radiation	therapy	that	was	able	
to	predict	 lung	cancer	 recurrence	post-therapy	 [86],	while	Fave	et	al.	used	multiple	time	
point	information	referred	to	as	delta-radiomic	analysis	to	evaluate	the	change	of	radiomic	
features	as	a	predictor	for	tumour	response	to	radiation	therapy	[87].	The	results	suggest	
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that	delta	 radiomic	 features	are	 in	 fact	a	good	 indicator	of	 treatment	 response.	Another	
interesting	 study	 by	Mattonen	 et	 al.	 	 found	 that	 radiomic	 analysis	 can	 identify	 features	
associated	with	local	recurrence	of	lung	cancer	after	radiation	therapy	[88],	while	physicians	
usually	have	great	difficulty	to	distinguish	local	recurrence	from	radiation-induced	sequelae.	

Besides	 the	 traditional	 handcrafted	 feature	 extraction	 approach	 followed	 in	 the	 radiomics	
pipeline,	 deep	 learning	 radiomics	 is	 also	 gaining	 popularity	 among	 researchers.	 A	 deep	
learning-based	approach	followed	by	Shen	et	al.	yielded	more	accurate	malignancy	prediction	
of	nodules	compared	to	previous	methods	[89].	Pham	et	al.	used	a	two-step	deep	learning	
approach	for	evaluating	lymph	node	metastases	with	accurate	cancer	detection	[90].	Instead	
of	using	data	from	a	single	time	point,	deep	recurrent	convolutional	network	architectures	can	
be	used	to	analyse	data	from	multiple	time	points	to	monitor	treatment	response	[91].

Brain:
Brain	 tumours	 are	 usually	 graded	 based	 on	 clinical	 or	 pathological	 analysis	 to	 define	
their	malignancy.	Radiomics	may	be	able	to	non-invasively	perform	grade	assessment,	as	
reported	by	Coroller	et	al.	in	meningioma	patients,	suggesting	a	strong	correlation	between	
certain	imaging	features	and	histopathologic	grade	[92].	Zhang	et	al.	were	able	to	classify	
between	 low-grade	 gliomas	 and	high-grade	 gliomas	with	high	 accuracy	 [93].	 Chen	et	 al.	
investigated	the	prediction	of		brain	metastases	(BM)	in	T1	lung	adenocarcinoma	patients	
and	found	that	the	predictive	performance	for	the	radiomics	model	was	significantly	better	
compared	to	clinical	models	and	could	potentially	be	used	for	BM	screening	[94].	Fetit	et	al.	
performed	radiomic	analysis	for	the	classification	of	brain	tumours	in	childhood	suggesting	
that	radiomics	can	aid	in	the	classification	of	tumour	subtype	[95].	However,	the	scalability	
of	 the	 techniques	 used	 in	 these	 studies	 needs	 to	 be	 assessed	 further	 by	 extensions	 to	
multicentric	cohorts	using	different	acquisition	protocols	and	vendors.		

Radiation	 therapy	 can	 lead	 to	 necrosis,	 which	 is	 difficult	 to	 distinguish	 from	 tumour	
recurrence	on	 imaging.	 Larroza	et	al.	were	able	 to	develop	a	high	classification	accuracy	
model	to	distinguish	between	brain	metastasis	and	radiation	necrosis	using	radiomic	analysis	
[96].	Some	radiomic	studies	successfully	investigated	the	treatment	response	in	recurrent	
glioblastoma	patients	with	a	 radiomics	approach	 [97–99].	An	 iterative	 study	by	 radiomic	
researchers	found	strong	evidence	of	radiomic	features	in	predicting	survival	and	treatment	
response	of	patients	with	glioblastoma	using	pre-treatment	imaging	data	[100–102].	

Deep	learning	has	also	made	some	other	interesting	contributions	in	this	area.	Chang	et	al.	
used	residual	deep	convolutional	network	for	predicting	the	genotype	in	grade	II-IV	glioma	
with	high	accuracy	[103].	Deep	learning	can	also	be	used	complementary	to	traditional	hand	
crafted	radiomics	studies.	For	example,	studies	[72,73]	focused	on	using	deep	networks	for	
segmentation,	followed	by	radiomics	analysis	for	survival	prediction.	
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Breast:
Among	women,	breast	cancer	is	the	second	leading	cause	of	death	for	cancer	worldwide	
[75].	However,	earlier	diagnosis	 can	 lead	 to	a	better	prognosis.	Radiomics	 in	 the	field	of	
breast	cancer	has	been	applied	to	several	imaging	modalities	including	(PET)-MRI,	(contrast-
enhanced)	 mammography,	 ultrasound,	 and	 digital	 breast	 tomosynthesis	 (DBT)	 focusing	
on	tumour	classification,	molecular	subtypes,	tumour	response	prediction	to	neoadjuvant	
systemic	therapy	(NST),	lymph	node	metastasis,	overall	survival,	and	recurrence	risks.	For	
example,	a	large	number	of	radiomics	studies	have	been	used	for	the	prediction	of	malignant	
breast	cancers	[104–107].	Besides	the	prediction	of	tumour	malignancy,	several	radiomics	
studies	examined	the	prediction	of	breast	cancer	molecular	subtypes	with	the	aim	of	leaving	
out	 liquid	 biopsies	 in	 the	 future	 [108–111].	 Lymph	 node	 metastasis	 identification	 is	 an	
important	prognostic	factor	and	often	determines	treatment.	In	all	clinically	node	negative	
patients,	a	sentinel	lymph	node	procedure	is	the	basis	of	the	axillary	treatment	[112].	Dong	
et	al.	was	able	to	provide	an	alternative	to	this	invasive	approach	by	successfully	applying	
radiomics	 for	 the	prediction	of	 lymph	node	metastasis	 in	 the	 sentinel	 lymph	node	using	
imaging	data	[113].	

In	 addition	 to	 the	 prediction	 of	 breast	 tumour	malignancy,	 tumour	molecular	 subtypes	
and	 sentinel	 lymph	 node	 metastasis	 identification,	 radiomics	 studies	 have	 also	 made	
some	significant	contributions	 to	 treatment	planning.	Chan	et	al.	 investigated	 the	power	
of	radiomics	to	discriminate	between	patients	with	low	and	high	treatment	failure	risk	on	
pre-treatment	imaging	data	[114].	There	are	multiple	studies	that	predict	tumour	response	
to	neoadjuvant	systemic	therapy	using	radiomic	analysis.	For	instance,	Braman	et	al.	found	
a	combination	of	intratumoural	and	peritumoural	radiomics	features	as	a	robust	and	strong	
indicator	 for	 pathologic	 complete	 tumour	 response	 using	 pre-treatment	 imaging	 data	
[115].	Two	other	studies	[116,117]	found	similar	evidence	on	serial	imaging	data	containing	
follow-up	scans.	The	use	of	multiparametric	MRI	for	the	prediction	of	tumour	response	to	
NST	showed	promising	results	[118,119].	

Deep	learning	approaches	have	also	been	adopted	in	breast	cancer	research.	The	study	of	
Huynh	 et	 al.	 investigated	 tumour	 classification	 capacity	 of	 deep	 features	 extracted	 from	
convolutional	 networks	 trained	 on	 a	 different	 dataset	 to	 analytically	 extracted	 features	
[120].	The	results	suggested	a	higher	performance	of	deep	features.	Similarly,	another	study	
[121],	used	deep	learning	for	risk	assessment	and	found	higher	performance	compared	to	
conventional	texture	analysis.	

Other sites and diseases
While	 cancers	 of	 the	 lung,	 brain,	 and	 breast	 have	 received	 wide	 attention	 from	 the	
radiomics	research	community,	any	site	is	open	to	QIA	research.	Diagnostic	and	prognostic	
radiomics	research	is	ongoing	for	cancers	of	the	head	and	neck	[122],	ovaries	[38],	prostate	
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[123],	kidney	 [124],	 liver	 [125],	colon	and	rectum	[126],	and	many	other	sites.	The	main	
requirements	 for	 a	 radiomics	 study	 are	 the	 presence	 of	 a	 radiologic	 phenotype	 which	
allows	for	the	clustering	of	patients	based	on	differences	within	that	phenotype	or	some	
correlation	to	the	underlying	biology,	and	the	availability	of	imaging	and	clinical	data.	While	
not	nearly	as	prevalent	[127],	this	has	meant	that	non-oncological	diseases	which	require	
medical	 imaging	as	part	of	 the	standard	of	care	have	also	been	the	subject	of	 radiomics	
analysis,	such	as	in	the	fields	of	neurology	[35],	ophthalmology	[128],	and	dentistry	[129].

Limitations of radiomics and future directions towards precision medicine

While	 radiomics	 facilitates	 new	 possibilities	 in	 the	 field	 of	 personalised	medicine,	 some	
challenges	remain.	One	of	the	primary	obstacles	is	the	lack	of	big	and	standardised	clinical	
data.	Although	large	amounts	of	medical	imaging	data	are	stored,	these	data	are	dispersed	
across	different	centres	and	acquired	using	different	protocols.	Access	for	research	purposes	
is	 highly	 restricted	 by	 law	 and	 ethics.	 An	 exhaustive	 data	 curation	 and	 harmonization	
process	is	still	necessary	to	make	it	usable	for	research.	Radiomics	will	potentially	enable	
imaging-based	clinical	decision	support	systems,	however,	the	current	black	box	approach,	
particularly	 in	 deep	 learning,	makes	 it	 less	 acceptable	 for	 clinical	 application.	 In	 certain	
cases,	hand	crafted	radiomic	features	have	already	been	correlated	with	biological	processes	
[130–132],	but	it	is	essential	to	work	further	in	the	direction	of	interpretable	AI	to	make	it	
more	accessible	for	clinical	implementation	[33].	

In	recent	years,	various	countries	have	already	adopted	many	measures	to	control	variability	
in	 clinical	 trial	 protocols,	 data	 acquisition,	 and	 analysis	 [133,134].	 For	 example,	 across	
Europe	consistent	protocol	guidance	was	adopted	with	the	help	of	European	Association	of	
Nuclear	Medicine	[135].	The	Quantitative	Imaging	Biomarker	Alliance	initiative	also	aims	to	
achieve	the	same	task	in	a	much	broader	level	[136,137].	On	the	other	hand,	algorithmically,	
developments	in	deep	learning	allow	for	automated	quality	check,	clustering	of	data,	and	
automated	detection	and	contouring	of	organs	and	lesions,	vastly	improving	data	curation	
times.	Generative	adversarial	networks	open	up	the	possibility	of	generating	synthetic	data	
[138]	or	domain	adaptive	algorithms	[139,140]	might	be	able	to	deal	with	the	shortage	of	
standardized	data.	Techniques	like	distributed	learning	provide	the	ability	to	train	machine	
learning	models	using	distributed	data	without	the	data	ever	leaving	their	original	locations.	
Distributed	 learning	has	already	been	applied	across	several	medical	 institutions	to	build	
predictive	and	segmentation	models	[141–144].	Furthermore,	this	approach	can	be	coupled	
with	other	technologies	such	as	blockchain	to	trace	back	data	provenance	and	monitor	the	
use	of	the	final	models	[145].		Various	techniques	to	visualize	deep	features	have	already	
been	put	forward	by	researchers	to	generate	an	intuitive	understanding.	A	completely	new	
research	area	of	Artificial	Intelligence	called	explainable	AI	aims	to	track	the	decisions	made	
by	 the	 intelligent	algorithms	so	 that	 it	 can	be	better	understood	by	humans.	Companies	
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like	Google,	IBM,	Microsoft	and	Facebook	are	at	the	forefront	in	this	research.	This	will	not	
only	helps	to	build	trust	of	AI	systems	among	medical	professionals	but	also	unlocks	new	
possibilities	in	understanding	a	disease	[146,147].	

The	 implementation	 of	 precision	medicine	 itself	 has	 its	 own	 limitations	 and	 has	 drawn	
criticism	 due	 to	 the	 lack	 of	 a	 “transformation	 in	 therapeutic	 medicine”	 in	 the	 last	 two	
decades	 [148].	 So	 far	 life	expectancies	or	other	public	health	measures	have	not	 shown	
any	dramatic	improvements,	regardless	of	the	vast	amounts	of	precision	medicine	research	
being	 conducted.	Contentious	points	 remain	 such	as	excessive	 costs	 (e.g.	 gene	 therapy),	
although	new	developments	 such	as	 radiomics	promise	 to	 reduce	 costs	 in	 the	 long	 run.	
Furthermore	 the	 diagnostic	 and	 prognostic	 power	 of	 complex	 “omics-driven”	models	 is	
still	 to	 be	 determined	 in	 specific	 populations,	 and	 evidence	 needs	 to	 be	 produced	 that	
such	methods	improve	health	outcomes	[149].	Precision	medicine	is	 likely	to	mature	and	
translate	to	clinical	workflows	over	the	next	decade	and	will	change	the	way	health	services	
are	 delivered	 and	 evaluated.	 Healthcare	 systems	will	 need	 to	 adjust	 their	methods	 and	
processes	to	accommodate	for	these	changes.	

Conclusion

Radiomics,	 whether	 handcrafted	 or	 deep,	 is	 an	 emerging	 field	 that	 translates	 medical	
images	into	quantitative	data	to	give	biological	information	and	enable	phenotypic	profiling	
for	diagnosis,	theragnosis,	decision	support,	and	monitoring.	Radiomics,	in	essence,	allows	
personalised	 care	 by	 identifying	 features	 or	 signatures	 correlated	 with	 a	 disease	 or	 a	
treatment	response	with	high	precision	and	in	a	non-invasive	way.	Recent	developments	in	
genomics	and	deep	learning	have	pushed	radiomics	researchers	to	focus	more	on	extracting	
deep	features	and	explore	new	possibilities	in	artificial	intelligence	modelling.	In	the	future,	
radiomics	will	be	a	valued	addition	to	precision	medicine	workflows	by	facilitating	earlier	
and	more	accurate	diagnosis,	providing	prognostic	information,	aiding	in	treatment	choice,	
monitoring	disease	and	treatment	non-invasively,	and	enabling	routine	dynamic	treatment	
based	 on	 individual	 responses.	 But	 the	 road	 to	 this	 vision	 is	 long,	 and	many	 technical,	
regulatory,	and	ethical	problems	still	need	to	be	solved.	
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Abstract

Radiomics	–	the	high	throughput	extraction	of	quantitative	features	from	medical	images	
and	 their	 correlation	with	 clinical	 and	 biological	 endpoints-	 is	 the	 subject	 of	 active	 and	
extensive	 research.	 Although	 the	 field	 shows	 promise,	 the	 generalizability	 of	 radiomic	
signatures	 is	 affected	 significantly	 by	 differences	 in	 scan	 acquisition	 and	 reconstruction	
settings.	Previous	studies	reported	on	the	sensitivity	of	radiomic	features	(RFs)	to	test-retest	
variability,	inter-observer	segmentation	variability,	and	intra-scanner	variability.	A	framework	
involving	 robust	 radiomics	 analysis	 and	 the	 application	 of	 a	 post-reconstruction	 feature	
harmonization	method	using	ComBat	was	recently	proposed	to	address	these	challenges.	In	
this	study,	we	investigated	the	reproducibility	of	RFs	across	different	scanners	and	scanning	
parameters	using	this	framework.	We	analysed	thirteen	scans	of	a	ten-layer	phantom	that	
were	acquired	differently.	Each	layer	was	subdivided	into	sixteen	regions	of	interest	(ROIs),	
and	 the	 scans	were	 compared	 in	 a	 pairwise	manner,	 resulting	 in	 seventy-eight	 different	
scenarios.	Ninety-one	RFs	were	extracted	from	each	ROI.	As	hypothesized,	we	demonstrate	
that	the	reproducibility	of	a	given	RF	is	not	a	constant	but	is	dependent	on	the	heterogeneity	
found	 in	 the	data	under	 analysis.	 The	number	 (%)	of	 reproducible	RFs	 varied	across	 the	
pairwise	 scenarios	 investigated,	 having	 a	 wide	 range	 between	 8	 (8.8%)	 and	 78	 (85.7%)	
RFs.	Furthermore,	in	contrast	to	what	has	been	previously	reported,	and	as	hypothesized	
in	the	robust	radiomics	analysis	framework,	our	results	demonstrate	that	ComBat	cannot	
be	applied	to	all	RFs	but	rather	on	a	percentage	of	those	–	the	“ComBatable”	RFs	–	which	
differed	depending	on	the	data	being	harmonized.	 .	The	number	(%)	of	reproducible	RFs	
following	ComBat	harmonization	varied	across	the	pairwise	scenarios	investigated,	ranging	
from	 14	 (15.4%)	 to	 80	 (87.9%)	 RFs,	 and	 was	 found	 to	 depend	 on	 the	 heterogeneity	 in	
the	 data.	We	 conclude	 that	 the	 standardization	 of	 image	 acquisition	 protocols	 remains	
the	 cornerstone	 for	 improving	 the	 reproducibility	 of	 RFs,	 and	 the	 generalizability	 of	 the	
signatures	developed.	Our	proposed	approach	helps	 identify	the	reproducible	RFs	across	
different	datasets.

Keywords:	Radiomics,	Harmonization,	Feature	stability,	Feature	reproducibility
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Introduction

With	 the	advancement	and	 involvement	of	artificial	 intelligence	 in	performing	high-level	
tasks,	its	application	has	been	extensively	researched	in	the	field	of	medical	imaging	analysis	
[1].	 Radiomics	 –	 the	 high	 throughput	 extraction	 of	 quantitative	 features	 from	 medical	
imaging	to	find	correlations	with	biological	or	clinical	outcomes	[2-4]	–	is	currently	one	of	
the	most	commonly	used	quantitative	imaging	analysis	methods	in	medical	imaging.

A	major	area	of	research	in	the	field	of	radiomics	is	the	selection	of	robust	and	informative	
image	 features	 to	 be	 used	 as	 input	 for	machine	 learning	models	 [5].	 Evidence	 suggests	
that	radiomic	features	(RFs)	are	sensitive	to	differences	in	several	factors,	 including	make	
and	 type	 of	 imaging	 scanner,	 reconstruction	 settings,	 and	 protocols	 used	 to	 acquire	 the	
images	[6,	7].	Studies	on	the	reproducibility	of	RFs	across	test-retest	[8,	9];	or	across	scans	
of	a	phantom	made	on	the	same	scanner	using	different	exposure	levels,	while	fixing	other	
parameters	[10];	or	across	scans	of	a	phantom	using	different	acquisition	and	reconstruction	
parameters	[11]	highlighted	the	high	sensitivity	of	RFs	to	variations	within	datasets.	

The	 above-mentioned	 studies	 focused	 on	 the	 reproducibility	 of	 RFs	 in	 limited	 settings,	
such	as	test-retest,	inter-observer	variability,	and	intra-scanner	variability.	As	these	studies	
reported	 significant	 differences	 in	 groups	 of	 RFs,	 it	 is	 only	 intuitive	 that	 adding	 more	
variation	to	image	acquisition	and	reconstruction	will	further	dampen	the	reproducibility	of	
RFs.	These	findings	indicate	that	ignoring	data	heterogeneity	will	influence	the	performance	
and	 generalizability	 of	 the	 models	 developed,	 especially	 in	 studies	 where	 training	 and	
validation	 sets	 are	 independent.	 Therefore,	 a	 global	 initiative	 –	 the	 Image	 Biomarkers	
Standardization	Initiative	(IBSI)	–	has	been	initiated	in	an	effort	to	standardize	the	extraction	
of	image	biomarkers	(RFs)	from	medical	images	[12].	The	IBSI	aims	to	standardize	both	the	
computation	of	RFs	and	the	image	processing	steps	required	before	RF	extraction.	However,	
little	attention	has	been	paid	in	the	bulk	of	literature	to	date	to	the	heterogeneity	in	image	
acquisition	and	reconstruction	when	performing	radiomics	analysis.	As	the	goal	of	radiomics	
research	 is	 to	 employ	 quantitative	 imaging	 features	 as	 clinical	 biomarker,	 the	 issue	 of	
accurate	measurement	and	reproducibility	must	be	addressed	[13].	Biomarkers	are	defined	
as	“the	objective	 indications	of	medical	state	observed	from	outside	the	patient	–	which	
can	be	measured	reproducibly”.	Therefore,	reproducible	measurement	is	a	corner	stone	in	
choosing	a	biomarker.	In	essence,	RFs	that	cannot	be	reproduced	cannot	be	compared	or	
selected	as	biomarkers.

Combining	Batches	(ComBat)	harmonization	is	a	method	that	was	introduced	for	removing	
the	effects	of	machinery	and	protocols	used	to	extract	gene	expression	data,	 in	order	to	
make	 gene	 expression	 data	 acquired	 at	 different	 centres	 comparable	 [14].	 ComBat	 is	 a	
method	that	performs	location	and	scale	adjustments	of	the	values	presented	to	remove	
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the	 discrepancies	 in	 RF	 values	 introduced	 by	 technical	 differences	 in	 the	 images.	 These	
sources	 of	 variation	 are	 further	 referred	 to	 as	 batch	 effects.	 ComBat	 was	 subsequently	
adopted	in	radiomics	analysis,	and	some	studies	reported	that	ComBat	outperforms	other	
harmonization	methods	 (e.g,	 histogram-matching,	 voxel	 size	 normalization,	 and	 singular	
value	decomposition)	in	radiomics	analyses	[15,	16].	Several	radiomics	studies	have	reported	
on	 the	 successful	 application	 of	 ComBat	 in	 removing	 the	 differences	 in	 RFs	 introduced	
by	 different	 vendors	 and	 acquisition	 protocols	 [17-21].	 These	 studies	 investigated	 the	
differences	 in	radiomic	RF	distributions	across	different	batches	following	the	application	
of	 ComBat	 harmonization.	 In	 contrast	 to	 gene	 expression	 arrays,	 RFs	 have	 different	
definitions,	and	the	batch	effect	might	vary	for	each	RF.	Using	phantom	data	allows	one	to	
study	the	variations	 in	a	given	RF	extracted	from	scans	acquired	with	different	scanners/
reconstruction	settings	and	to	attribute	these	variations	to	the	changes	in	acquisition	and	
reconstruction,	which	in	theory	ComBat	harmonization	is	designed	to	mitigate.	However,	we	
are	not	aware	of	any	study	that	has	performed	a	systematic	evaluation	of	the	performance	
of	ComBat	harmonization	across	variations	between	imaging	parameters,	which	is	the	one	
of	the	objectives	of	this	study.

Ibrahim	et	al.	(2020)	have	proposed	a	new	radiomics	workflow	(Fig	1)	that	tries	to	address	
the	 challenges	 current	 radiomics	 analyses	 face.	 The	 framework	was	 proposed	 based	 on	
mathematical	considerations	of	the	complexity	of	medical	imaging,	and	RFs’	mathematical	
definitions.	Our	framework	 is	based	on	the	hypothesis	that	the	reproducibility	of	a	given	
RF	is	a	not	constant,	but	depends	on	the	variations	of	image	acquisition	and	reconstruction	
in	the	data	under	study.	Furthermore,	for	ComBat	to	be	applicable	in	radiomics,	radiomic	
RF	values	for	a	given	region	of	 interest	obtained	after	ComBat	must	be	(nearly)	 identical,	
regardless	of	differences	in	acquisition	and	reconstruction.	
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Figure 1.	The	proposed	framework	(reprinted	with	permission	from	[22]).
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Our	 general	 objective	 is	 to	 set-up	 the	 requirements	 for	 selecting	 biomarkers	 from	 RFs,	
to	 ease	 their	 incorporation	 into	 clinical	 decision	 support	 systems.	 We	 hypothesize	 that	
variations	 in	 image	acquisition	and	 reconstruction	will	 variably	 affect	RFs	 reproducibility.	
Furthermore,	the	performance	of	ComBat	on	a	given	RF	is	dependent	on	those	variations,	
i.e,	a	given	RF	can	be	successfully	harmonized	with	ComBat	with	specific	variations	in	the	
imaging	parameters	but	not	others.	We	investigate	these	hypotheses	on	CT	scans	using	a	ten-
layer	radiomics	phantom,	which	was	scanned	with	different	acquisition	and	reconstruction	
parameters	on	various	scanner	models.	

Methods

Phantom Data
The	 publicly	 available	 Credence	 Cartridge	 Radiomics	 (CCR)	 phantom	 data,	 found	 in	 The	
Cancer	 Imaging	Archive	 (TCIA.org)	 [23,	24],	was	used.	The	CCR	phantom	 is	 composed	of	
10	different	layers	that	correspond	to	different	texture	patterns	spanning	a	range	of	−900	
to	+700	Hounsfield	units	(HU).	Each	layer	of	the	phantom	was	further	subdivided	into	16	
distinct	 regions	of	 interest	 (ROI)	with	cubic	volume	of	8	cm3,	 resulting	 in	a	 total	of	2080	
ROIs	available	for	further	analysis.	The	phantom	was	originally	scanned	using	17	different	
imaging	 protocols	 from	 four	 medical	 institutes	 using	 equipment	 from	 different	 vendors	
and	a	variety	of	acquisition	and	reconstruction	parameters.	Four	of	 the	scans	 lacked	ROI	
definitions,	thus	to	maintain	consistency,	these	were	not	included.	The	remaining	13	scans	
are	as	follows:	seven	different	scans	acquired	on	GE	scanners,	five	different	scans	acquired	
on	Philips	scanners,	and	one	scan	acquired	on	a	Siemens	scanner	(Tables	1	and	2).

Table 2. CT reconstruction parameters*

Scan Convolution Kernel Filter Type Slice thickness (mm) Pixel spacing (mm)

CCR1-001 STANDARD BODY	FILTER 2.5 0.49

CCR1-002 STANDARD BODY	FILTER 2.5 0.70

CCR1-003 STANDARD BODY	FILTER 2.5 0.78

CCR1-004 STANDARD BODY	FILTER 2.5 0.98

CCR1-005 STANDARD BODY	FILTER 2.5 0.98

CCR1-006 STANDARD BODY	FILTER 2.5 0.98

CCR1-007 STANDARD BODY	FILTER 2.5 0.74

CCR1-008 B B 3 0.98

CCR1-009 C C 3 0.98

CCR1-010 B B 3 1.04

CCR1-011 B B 3 1.04

CCR1-012 B B 3 0.98

CCR1-013 B31s 0 3 0.54

*	Values	are	directly	extracted	from	the	publicly	available	imaging	tags.
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Table 1. CT acquisition parameters*

Scan Vendor Model Scan Options Effective mAs** kVp

CCR1-001 GE Discovery CT750 HD HELICAL 81 120

CCR1-002 GE Discovery CT750 HD AXIAL 300 120

CCR1-003 GE Discovery CT750 HD HELICAL 122 120

CCR1-004 GE Discovery ST HELICAL 143 120

CCR1-005 GE LightSpeed RT HELICAL 1102 120

CCR1-006 GE LightSpeed RT16 HELICAL 367 120

CCR1-007 GE LightSpeed	VCT HELICAL 82 120

CCR1-008 Philips Brilliance	Big	Bore HELICAL 320 120

CCR1-009 Philips Brilliance	Big	Bore HELICAL 369 120

CCR1-010 Philips Brilliance	Big	Bore HELICAL 320 120

CCR1-011 Philips Brilliance	Big	Bore HELICAL 369 120

CCR1-012 Philips Brilliance	64 HELICAL 372 120

CCR1-013 SIEMENS Sensation	Open AXIAL 26-70 120

*	Values	are	directly	extracted	from	the	publicly	available	imaging	tags.

Radiomic features extraction
For	 each	 ROI,	 quantitative	 imaging	 features	 were	 calculated	 using	 the	 open	 source	
Pyradiomics	(V	2.0.2).	The	software	contains	IBSI-compliant	RFs,	with	deviations	highlighted	
in	the	feature	definitions.	For	the	extraction	step,	no	changes	to	the	original	slice	thickness	
or	pixel	spacing	of	the	scans	were	applied.	To	reduce	noise	and	computational	requirements,	
images	were	pre-processed	by	binning	voxel	greyscale	values	into	bins	with	a	fixed	width	of	
25	HUs	prior	to	extracting	RFs.	The	extracted	features	included	HU	intensity	features,	shape	
features,	and	texture	features	describing	the	spatial	distribution	of	voxel	 intensities	using	
5	 texture	matrices	 (i.e.,	 grey-level	 co-occurrence	 (GLCM),	 grey-level	 run-length	 (GLRLM),	
grey-level	size-zone	(GLSZM),	grey-level	dependence	(GLDM),	and	neighbourhood	grey-tone	
difference	matrix	 (NGTDM)).	Detailed	description	of	 the	 features	 can	be	 found	online	at	
https://pyradiomics.readthedocs.io/en/latest/features.html.

ComBat Harmonization
ComBat	 employs	 empirical	 Bayes	methods	 to	 estimate	 the	 differences	 in	 feature	 values	
attributed	 to	 a	 batch	 effect.	 Empirical	 Bayes	 methods	 are	 able	 to	 estimate	 the	 prior	
distribution	 from	 a	 given	 dataset	 via	 statistical	 inference.	 In	 the	 context	 of	 radiomics,	
ComBat	assumes	that	feature	values	can	be	approximated	by	the	equation:

																																																				(1)

where	α	 is	the	average	value	for	feature	Yij	 for	ROI	 j	on	scanner	 i;	X	 is	a	design	matrix	of	
the	covariates	of	interest;	β	is	the	vector	of	regression	coefficients	corresponding	to	each	
covariate;	γi	is	the	additive	effect	of	scanner	i	on	features,	which	is	presupposed	to	follow	a	
normal	distribution;	δi	is	the	multiplicative	scanner	effect,	which	is	presupposed	to	follow	an	
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inverse	gamma-distribution;	and	εij	is	an	error	term,	presupposed	to	be	normally	distributed	
with	zero	mean	[17].	ComBat	performs	feature	transformation	based	on	the	empirical	Bayes	
prior	estimates	for	γ	and	δ	for	each	batch:

																																									(2)

where α and β	are	estimators	of	parameters	α	and	β,	respectively.γi and δi	are	the	empirical	
Bayes	estimates	of	γi	and	δi,	respectively	[17].

Statistical analysis
To	assess	the	agreement	of	a	given	RF	for	the	same	ROI	scanned	using	different	settings	and	
scanners,	the	concordance	correlation	coefficient	(CCC)	was	calculated	using	epiR	(version	
0.9-99)	[25]	on	R	[26]	(version	3.5.1),	using	R	studio	(version	1.1.456)	[27].	The	CCC	is	used	
to	 evaluate	 the	 agreement	 between	 paired	 readings	 [28],	 and	 provides	 the	measure	 of	
concordance	as	a	value	between	1	and	-1,	where	0	represents	no	concordance,	1	represents	
a	 perfect	 direct	 positive	 concordance,	 and	 -1	 indicates	 a	 perfect	 inverse	 concordance.	 It	
further	takes	into	account	the	rank	and	value	of	the	RFs.

The	analysis	of	the	reproducibility	before	and	after	ComBat	harmonization	was	performed	
in	a	pairwise	manner,	resulting	in	78	different	investigated	scenarios.	To	assess	differences	in	
RF	stability	for	differing	data,	the	reproducibility	of	radiomics	RFs	across	scans	within	a	wide	
spectrum	of	scenarios	was	calculated.	Data	ranging	from	differences	in	a	single	acquisition	
or	reconstruction	parameter,	to	scans	acquired	using	entirely	different	settings	(See	S1	table)	
were	included.	To	identify	reproducible	radiomics,	the	CCC	was	calculated	for	all	RFs	for	all	
ROIs	across	the	78	investigated	scenarios.	A	cut-off	of	CCC>0.9,	as	found	in	the	literature,	
suggests	that	a	value	<	0.9	indicates	poor	concordance	[29].To	identify	the	RFs	that	could	
be	harmonized	using	ComBat,	the	pair-wise	CCC	was	calculated	following	ComBat	in	each	
of	the	investigated	78	scenarios.	We	applied	ComBat	using	R	package	“SVA”	(version	3.30.1)	
[30].	As	the	RFs	are	calculated	for	the	same	ROI	but	for	different	scans,	the	agreement	in	RF	
value	is	expected	to	be	high	following	ComBat	harmonization.	Thus,	RFs	that	had	a	CCC<0.9	
were	considered	to	be	not	harmonizable	with	ComBat.	The	code	used	in	this	work	is	publicly	
available	on	https://github.com/AbdallaIbrahim/The-reproducibility-and-ComBatability-of-
Radiomic-features.
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Results

Table 3. The	number	(percentage)	of	concordant	RFs	before	ComBat	harmonization	between	pair	wise	combinations	
of	scans	with	different	acquisition	and	reconstruction.

CCR1-001 CCR1-002 CCR1-003 CCR1-004 CCR1-005 CCR1-006 CCR1-007 CCR1-008 CCR1-009 CCR1-010 CCR1-011 CCR1-012

CCR1-002 38 
(41.76%)

CCR1-003 46 
(50.55%)

59 
(64.84%)

CCR1-004
18 

(19.78%)
34 

(37.36%)
25 

(27.47%)

CCR1-005 13 
(14.29%)

23 
(25.27%)

17 
(18.68%)

66 
(72.53%)

CCR1-006
16 

(17.58%)
24 

(26.37%)
18 

(19.78%)
71 

(78.02%)
69 

(75.82%)

CCR1-007 49 
(53.85%)

65 
(71.43%)

67 
(73.63%)

21 
(23.08%)

14 
(15.38%)

14 
(15.38%)

CCR1-008
8 

(8.79%)
12 

(13.19%)
14 

(15.38%)
41 

(45.05%)
34 

(37.36%)
47 

(51.65%)
10 

(10.99%)

CCR1-009 9
	(9.89%)

19 
(20.88%)

13 
(14.29%)

67 
(73.63%)

65 
(71.43%)

74 
(81.32%)

11 
(12.09%)

48 
(52.75%)

CCR1-010
8 

(8.79%)
10 

(10.99%)
13 

(14.29%)
32 

(35.16%)
21 

(23.08%)
27 

(29.67%)
11 

(12.09%)
59 

(64.84%)
34 

(37.36%)

CCR1-011 8 
(8.79%)

11 
(12.09%)

12 
(13.19%)

45 
(49.45%)

34 
(37.36%)

42 
(46.15%)

11 
(12.09%)

57 
(62.64%)

52 
(57.14%)

78 
(85.71%)

CCR1-012
8 

(8.79%)
13 

(14.29%)
12 

(13.19%)
21 

(23.08%)
16 

(17.58%)
22 

(24.18%)
10 

(10.99%)
61 

(67.03%)
36 

(39.56%)
71 

(78.02%)
69 

(75.82%)

CCR1-013 51 
(56.04%)

44 
(48.35%)

47 
(51.65%)

41 
(45.05%)

34 
(37.36%)

32 
(35.16%)

48 
(52.75%)

12 
(13.19%)

23 
(25.27%)

10 
(10.99%)

9
	(9.89%)

10 
(10.99%)

Reproducible Radiomic features

For	each	ROI,	a	total	of	91	RFs	were	extracted.	The	number	(percentage)	of	reproducible	
RFs	in	each	pair-wise	comparison	ranged	from	9	(8.8%)	to	78	(85.7%)	RFs,	depending	on	the	
variations	in	acquisition	and	reconstruction	of	the	scans	(table	3).	The	highest	concordance	
in	feature	values	(85.7%)	was	observed	between	the	two	Philips	scans	(CCR1-010	and	CCR1-
011)	 that	 were	 acquired	 using	 the	 same	 scanner	model,	 and	 the	 same	 acquisition	 and	
reconstruction	parameters	except	for	the	effective	mAs,	which	differed	by	just	15%	(tables	
1	and	2).	

The	 more	 profound	 the	 variations	 in	 scan	 acquisition	 parameters,	 the	 smaller	 the	
concordance	of	the	extracted	RFs	(tables	1-3,	S1).

As	 stated,	 in	 the	best	 scenario	 (CCR1-010	and	CCR1-011),	78	 (85.7%)	RFs	were	 found	 to	
be	reproducible,	while	13	(14.3%)	RFs	were	found	not	to	be	reproducible.	Some	RFs	(n=8)	
were	found	to	be	concordant	across	all	pairs.	These	RFs	were	histogram-based	RFs	that	take	
into	account	the	value	of	a	single	pixel/voxel,	without	looking	at	the	relationship	between	
neighbouring	pixels/voxels.	 These	RFs	 are	 (i)	 original	 first	 order	10Percentile;	 (ii)	 original	
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first	order	90Percentile;	(iii)	original	first	order	Maximum;	(iv)	original	first	order	Mean	(v)	
original	first	order	Median;	(vi)	original	first	order	Minimum;	(vii)	original	first	order	Root	
Mean	 Squared;	 and	 (viii)	 original	 first	 order	 Total	 Energy.	 Nevertheless,	 the	 remainder	
(majority)	of	the	RFs	(including	10	histogram-based	RFs)	were	not	found	to	be	reproducible	
across	all	pairs.	

Looking	at	tables	(1-3,	S1),	we	can	consider	subgroups	of	scans.	Scans	CCR1-001-007	were	
all	acquired	using	the	same	imaging	vendor	(GE),	but	different	scanner	models	and	scanning	
parameters.	The	highest	number	of	concordant	RFs	in	this	group	was	found	between	CCR1-
004	 and	 CCR1-006	 (71	 RFs),	which	were	 acquired	 on	 two	 different	 scanner	models,	 but	
were	scanned	with	identical	scanning	parameters	except	for	the	mAs.	The	lowest	number	
of	concordant	RFs	in	this	group	was	found	between	scans	CCR1-001	and	CCR1-005	(13	RFs),	
which	were	acquired	on	two	different	scanner	models,	with	the	same	scanning	parameters	
except	for	the	pixel	spacing	and	mAs.	Scans	CCR1-007	to	CCR1-012	were	all	acquired	using	
one	of	two	Philips	imaging	vendors.	The	highest	number	of	concordant	RFs	is	documented	
above.	The	lowest	number	of	concordant	RFs	was	found	between	CCR1-009	and	CCR-010	
(34	RFs),	which	differed	in	terms	of	the	mAs,	convolution	kernel,	filter	type	and	pixel	spacing.	
Looking	at	 the	group	of	 scans	 that	were	 reconstructed	 to	 the	 same	pixel	 spacing	 (CCR1-
004	to	CCR1-006,	CCR1-008,	CCR1-009,	and	CCR-012),	the	highest	number	of	concordant	
RFs	was	observed	between	CCR1-006	and	CCR1-009	(74	RFs),	which	were	acquired	using	
two	different	imaging	vendors,	but	using	similar	acquisition	and	reconstruction	parameters	
except	for	the	slice	thickness,	and	kernel.	The	lowest	number	of	concordant	RFs	was	found	
between	CCR1-005	and	CCR1-012	 (16	RFs),	which	were	acquired	using	different	 imaging	
vendors,	and	different	acquisition	and	reconstruction	parameters	except	for	the	kVp.	Finally,	
comparing	scans	acquired	with	different	vendors	resulted	in	a	lower	number	of	concordant	
RFs	compared	to	scans	acquired	with	the	scanners	from	the	same	imaging	vendor,	except	for	
the	scenario	when	the	majority	of	acquisition	and	reconstruction	parameters	were	mostly	
identical	(CCR1-006	vs	CCR1-009).	
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ComBat harmonization

Table 4. The	number	(percentage)	of	concordant	RFs	after	ComBat	harmonization	between	pair	wise	combinations	
of	scans	with	different	acquisition	and	reconstruction.

CCR1-001 CCR1-002 CCR1-003 CCR1-004 CCR1-005 CCR1-006 CCR1-007 CCR1-008 CCR1-009 CCR1-010 CCR1-011 CCR1-012

CCR1-002 63 
(69.23%)

CCR1-003 69 
(75.82%)

75 
(82.42%)

CCR1-004
48 

(52.75%)
72 

(79.12%)
57 

(62.64%)

CCR1-005 43 
(47.25%)

60 
(65.93%)

54 
(59.34%)

72 
(79.12%)

CCR1-006
50 

(54.95%)
63 

(69.23%)
59 

(64.84%)
76 

(83.52%)
72 

(79.12%)

CCR1-007 70 
(76.92%)

69 
(75.82%)

74 
(81.32%)

56 
(61.54%)

49 
(53.85%)

57 
(62.64%)

CCR1-008
27 

(29.67%)
36 

(39.56%)
36 

(39.56%)
61 

(67.03%)
54 

(59.34%)
56 

(61.54%)
28 

(30.77%)

CCR1-009 40 
(43.96%)

57 
(62.64%)

53 
(58.24%)

76 
(83.52%)

74 
(81.32%)

81 
(89.01%)

52 
(57.14%)

57 
(62.64%)

CCR1-010
18 

(19.78%)
22 

(24.18%)
19 

(20.88%)
54 

(59.34%)
48 

(52.75%)
48 

(52.75%)
17 

(18.68%)
68 

(74.73%)
53 

(58.24%)

CCR1-011 14 
(15.38%)

23 
(25.27%)

25 
(27.47%)

67 
(73.63%)

59 
(64.84%)

59 
(64.84%)

16 
(17.58%)

65 
(71.43%)

67 
(73.63%)

80 
(87.91%)

CCR1-012
16 

(17.58%)
29 

(31.87%)
28 

(30.77%)
56 

(61.54%)
48 

(52.75%)
49 

(53.85%)
16 

(17.58%)
70 

(76.92%)
53 

(58.24%)
72 

(79.12%)
74 

(81.32%)

CCR1-013 65 
(71.43%)

75 
(82.42%)

69 
(75.82%)

65 
(71.43%)

55 
(60.44%)

59 
(64.84%)

67 
(73.63%)

35 
(38.46%)

58 
(63.74%)

35 
(38.46%)

36 
(39.56%)

34 
(37.36%)

As	previously	shown	in	the	literature,	we	used	each	scan	as	a	different	batch	in	the	ComBat	
equation.	ComBat	was	applied	pairwise	(78	different	pairs)	and	the	concordance	between	
RFs	was	measured	for	each	pair	(table	4).	The	percentage	of	RFs	that	became	concordant	
following	 ComBat	 application	 ranged	 from	 1.4%	 (71	 concordant	 RFs	 increased	 to	 72)	 to	
344%	(9	concordant	RFs	increased	to	40).	

The	highest	number	of	concordant	RFs	following	ComBat	application	was	80	(87.9%)	RFs.	
In	 this	 scenario,	 a	 single	 acquisition	 parameter	 differed	 between	 the	 two	 scans	 (Philips,	
CCR1-010	and	CCR1-011).	ComBat	application	improved	the	concordance	of	only	two	RFs	
(80	RFs	after	ComBat	compared	to	78	RFs	before),	and	failed	to	improve	the	concordance	
of	the	remaining	11	RFs.	On	the	other	hand,	in	cases	where	the	differences	in	acquisition	
and	reconstruction	parameters	differed	more	(e.g.,	CCR1-001	(GE)	vs	CCR1-007	(Philips)),	
the	 application	 of	 ComBat	 improved	 the	 concordance	 of	 31	 RFs,	 resulting	 in	 a	 total	 of	
40	concordant	RFs	(~44%	of	the	total	number	of	RFs),	more	than	3	times	the	number	of	
concordant	RFs	before	harmonization.	Furthermore,	the	successful	application	of	ComBat	
on	RFs	depended	on	the	variations	in	the	batches	defined.	Only	two	RFs	were	found	to	be	
concordant	in	all	pairwise	scenarios	following	ComBat	harmonization:	(i)	original	first	order	
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Energy;	and	(ii)	original	gldm	Small	Dependence	High	Gray	Level	Emphasis;	in	addition	to	the	
8	RFs	mentioned	above.

Discussion

In	 this	 work,	 for	 our	 first	 objective	 to	 investigate	 RFs	 reproducibility,	 we	 show	 that	 the	
majority	 of	 RFs	 are	 affected	 to	 different	 amounts	 depending	 upon	 the	 variations	 in	
acquisition	and	reconstruction	parameters.	We	also	show	that	the	reproducibility	of	a	given	
RF	is	not	constant,	but	rather	it	is	dependent	on	the	variations	in	the	data	under	study,	as	
seen	in	table	3.	We	identified	a	number	of	RFs	that	were	robust	to	the	variations	in	scan	
acquisition	in	the	dataset	we	analysed.	These	RFs	could	be	used	without	any	post–processing	
harmonization.	While	the	same	dataset	has	been	analysed	for	similar	purposes	previously	
[11,	21],	we	analysed	the	data	differently,	and	report	different	results	than	those	studies.	
Our	 results	 show	 a	 substantial	 intra-scanner	 variability,	 and	 even	 greater	 inter-scanner	
variability,	which	 is	 in	 line	with	other	previous	findings	[10,	31,	32].	Only	eight	RFs	(~9%)	
of	the	extracted	RFs	showed	insensitivity	to	the	differences	in	acquisition	shown	in	tables	
1	and	2,	and	could	be	directly	used	to	build	radiomic	signatures.	The	rest	of	the	RFs	(91%)	
could	not	be	used	without	addressing	the	acquisition	differences.	Our	sub-groups	analysis	
showed	that	changes	in	pixel	spacing	and	convolution	kernel	have	more	profound	effects	
on	 the	reproducibility	of	RFs,	compared	to	variations	 limited	solely	 to	 the	effective	mAs,	
scanner	model	or	imaging	vendor	used.	While	the	percentages	reported	are	representative	
of	the	reproducibility	of	RFs	in	the	data	analysed,	it	highlights	the	sensitive	nature	of	RFs,	
and	helps	set	guidelines	to	preselect	meaningful	and	reproducible	RFs.	We	deduce	that	the	
use	of	RFs	extracted	from	scans	acquired	with	different	hardware	and	parameters,	without	
addressing	the	issue	of	reproducibility	and	harmonization,	can	lead	to	spurious	results	as	
the	 vast	majority	 of	 RFs	 are	 sensitive	 to	 even	minor	 variations	 in	 image	 acquisition	 and	
reconstruction.	 Therefore,	models	developed	using	RFs	with	 large	unexplained	variances	
will	most	likely	not	be	generalizable.	

As	our	second	aim,	we	investigated	the	applicability	of	ComBat	harmonization	to	removing	
differences	in	RF	values	attributed	to	batch	effects.	Studies	[11,	21]	have	reported	on	the	
reproducibility	of	RFs	on	the	same	or	a	similar	dataset	to	the	one	we	analysed.	However,	
our	findings	and	conclusions	vary	significantly	from	theirs.	In	contrast	to	previous	studies,	
we	are	the	first	to	report	that	the	reproducibility	of	RFs	is	dependent	on	the	variations	in	
the	data	under	analysis.	Previous	studies	referred	to	RFs	as	generally	reproducible	or	non-
reproducible.	Our	analysis	shows	that	a	given	RF	can	be	reproducible	in	some	scenarios	and	
not	in	the	others,	depending	on	the	variations	in	acquisition	and	reconstruction	parameters.	
Moreover,	ComBat	was	mathematically	defined	to	remove	one	(technical)	batch	effect	at	a	
time	while	considering	all	the	biologic	covariates	at	the	same	time.	However,	as	our	results	
show	(tables	3	and	4),	the	variations	in	acquisition	and	reconstruction	parameters	within	
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one	scanner,	at	 least	 in	some	instances,	have	a	stronger	 impact	on	the	reproducibility	of	
RFs	than	the	variations	between	two	scanners.	As	such,	grouping	the	scans	by	the	scanner	
type	is	not	generally	the	way	to	define	“batches”	in	the	ComBat	equation	[14].	In	contrast	
to	what	is	reported	in	the	literature,	our	analysis	shows	ComBat	did	not	perform	uniformly	
on	most	of	the	RFs	when	there	were	variations	in	the	batches	being	harmonized.	In	contrast	
to	those	studies,	we	employed	the	concordance	correlation	coefficient	(CCC)	to	assess	the	
reproducibility	of	RFs,	since	the	aim	of	harmonization	is	to	improve	the	reproducibility	of	
data.	We	did	not	use	the	 increment	of	model	performance	as	a	measure	for	the	success	
of	 harmonization	 for	 several	 reasons.	 First,	 the	 aim	 of	 harmonization	 is	 to	 improve	 the	
reproducibility	of	RFs,	and	ultimately	the	generalizability	of	the	developed	signatures,	and	
not	 their	model	performance	 [33].	Second,	by	assuming	 that	an	 increment	 in	 the	model	
performance	following	harmonization	is	an	indication	that	the	harmonization	is	successful	
carries	with	it	the	assumption	that	radiomic	models	decode	the	information	under	analysis;	
this	is	against	the	essence	of	the	study,	which	is	to	investigate	whether	radiomics	has	that	
potential	or	not.	However,	by	using	the	CCC,	we	ensure	that	the	results	generated	are	based	
on	 reproducible	RFs,	 and	are	 therefore	generalizable,	 regardless	of	 the	 change	 in	model	
performance.	Furthermore,	the	aim	of	ComBat	harmonization	is	only	to	remove	the	variance	
in	RF	values	attributed	to	the	batch	effects,	while	maintaining	the	biologic	information.	As	
such,	using	ComBat	to	correct	batch	effects	directly	on	patient	data	without	providing	the	
correct	biological	covariates	that	actually	do	have	an	effect	on	RF	values	will	 lead	to	 loss	
of	biological	signals.	This	is	because	ComBat	tries	to	harmonize	the	distribution	of	the	RF	
across	different	batches,	and	without	providing	the	correct	biological	covariates	that	have	
effects	on	RF	values,	ComBat	assumes	that	the	variations	in	RF	value	are	only	attributed	to	
the	defined	batch,	and	thus	would	not	perform	uniformly	as	shown	in	table	3.	 In	clinical	
settings,	this	is	by	default	spurious,	as	the	differences	in	RF	values	are	attributed	to	both	the	
machine	and	the	biology/physiology.	As	the	aim	of	radiomics	studies	is	to	investigate	the	
biological	correlations	of	RFs,	we	are	unable	to	actually	provide	a	list	of	biologic	covariates	
that	influence	the	values.	In	addition,	each	time	an	observation	is	added	to	the	data	being	
harmonized,	 ComBat	 has	 to	 be	 re-performed,	 and	 models	 have	 to	 be	 refitted,	 as	 the	
estimated	batch	effects	will	change	each	time.	Therefore,	the	harmonization	of	patient	RFs	
should	follow	the	process	of	estimating	fixed	batch	effects	on	phantom	data,	then	applying	
the	 location/scale	 shift	estimated	 from	 the	phantom	data	on	patient	data,	 as	previously	
described	by	Ibrahim	et	al	[22].	

The	 pairwise	 approach	 we	 used	 shows	 how	 the	 variations	 in	 scan	 acquisition	 and	
reconstruction	parameters	affect	the	reproducibility	of	RFs.	Therefore,	aside	from	probably	
a	 few	RFs,	 the	 reproducibility	 of	 the	majority	 of	 the	RFs	 cannot	 be	 guessed	 in	 untested	
scenarios.	The	workflow	(figure	1)	addresses	this	problem	by	introducing	the	assessment	
of	RF	reproducibility	on	representative	phantom	data.	This	workflow	differs	from	existing	
radiomics	workflows	by	the	addition	of	an	intermediary	RF	pre-selection	step	between	RF	
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extraction	and	RF	selection	by	one	of	two	approaches:	(i)	only	extracting	the	reproducible	
RFs	for	analysis;	(ii)	extracting	and	harmonizing	the	‘ComBatable’	RFs	before	RF	selection	and	
model	building.	The	application	of	ComBat	and	the	definition	of	what	constitutes	a	‘batch’	
should	be	performed	based	on	the	data	being	analysed,	as	could	be	deduced	from	tables	
3	and	4.	 For	example,	RFs	extracted	 from	scans	acquired	with	different	 scanner	models,	
but	similar	settings	were	found	to	be	more	concordant	than	RFs	extracted	with	the	same	
scanner	model	but	with	profound	differences	in	acquisition	and	reconstruction	parameters.		
Our	proposed	radiomics	analysis	workflow	would	ensure	that	the	RFs	being	analysed	are	
not	affected	by	scan	acquisition	differences,	and	henceforth,	signatures	built	would	be	more	
robust	and	generalizable.	The	first	part	of	the	model	(steps	1-4),	where	only	reproducible	
RFs	are	extracted	and	 further	analysed,	might	 significantly	 limit	 the	number	of	RFs	used	
for	further	modelling.	However,	using	the	whole	framework	may	significantly	increase	the	
number	of	RFs	that	can	be	used,	depending	on	the	data	under	study.

While	the	data	used	for	this	analysis	are	not	representative	of	diagnostic	clinical	protocols	
and	do	not	provide	all	technical	details	needed	for	proper	analysis,	our	aim	was	to	show	
that	 changes	 in	 scan	 acquisition	 and	 reconstruction	 parameters	 differently	 affect	 the	
majority	of	RFs.	The	variations	in	the	reproducibility	of	RFs	–	as	well	as	ComBat	applicability	
–	due	to	the	heterogeneity	in	acquisition	and	reconstruction	highlight	the	necessity	of	the	
standardization	of	 image	acquisition	and	 reconstruction	across	centres.	RFs	have	already	
been	reported	to	be	sensitive	to	test-retest	[8,	34],	which	is	the	acquisition	of	two	separate	
scans	 using	 the	 same	 parameters,	 as	well	 as	 to	 the	 variations	 in	 the	 parameters	within	
the	same	scanner	 [10].	Adding	 the	variable	sensitivity	of	RFs	 to	different	acquisition	and	
reconstruction	parameters	significantly	lowers	the	number	of	RFs	that	could	be	used	for	the	
analysis	of	heterogeneous	data.	As	there	is	currently	a	pressing	desire	to	analyse	big	data,	
a	sound	methodology	is	needed	to	address	the	heterogeneity	introduced	by	machinery	in	
retrospective	 data.	 Nevertheless,	 we	 strongly	 recommend	 the	 start	 of	 imaging	 protocol	
standardization	across	centres	to	facilitate	future	quantitative	imaging	analysis.

Recently,	there	has	been	an	attempt	to	modify	ComBat	methodology	in	radiomics	analysis	
[35].	The	authors	added	a	modification	to	ComBat	(B-ComBat),	which	adds	Bootstrapping	
and	Monte	Carlo	 to	 the	original	ComBat.	The	other	 functionality	of	ComBat	 the	authors	
investigated	 was	 to	 use	 one	 of	 the	 batches	 as	 a	 reference	 (M-ComBat).	 The	 authors	
compared	the	performance	of	the	four	versions	of	ComBat	by	comparing	the	performance	
of	radiomic	models	developed	after	the	use	of	each	method.	The	authors	reported	that	all	
the	methods	are	equally	effective	[35].	Therefore,	we	anticipate	that	the	modified	ComBat	
functions	will	have	the	same	limitations	of	the	original	ComBat	we	discussed	above.

Another	method	 to	harmonize	RFs	 that	 is	 currently	 gaining	momentum	 is	deep	 learning	
based	 harmonization.	 A	 recent	 study	 developed	 deep	 learning	 algorithms,	 which	 were	



The application of a workflow integrating the variable reproducibility and harmonizability

3

67

reported	to	improve	the	reproducibility	of	RFs	across	variations	in	scanner	type,	acquisition	
protocols	and	 reconstruction	algorithms	 [36].	A	more	 recent	 study	 [37]	applied	a	 similar	
approach	to	reduce	the	sensitivity	of	RFs	to	scanner	types.	The	authors	reported	a	significant	
improvement	 in	 the	 performance	 of	 radiomic	 models	 following	 harmonization.	 These	
studies	highlight	the	potential	efficacy	of	deep	learning	based	harmonization	methods.

One	limitation	of	our	study	is	 in	considering	each	scan	as	a	separate	batch	effect	(due	to	
lack	of	data)	while	differences	between	pair	batches	are	not	similar	(different	numbers	of	
varying	 parameters),	 which	may	 have	 affected	 the	 performance	 of	 ComBat.	 Acquisition	
and	reconstruction	settings	 include	a	set	of	different	parameters,	which	can	singularly	or	
collectively	result	in	differences	in	RFs	values.	Another	limitation	is	the	lack	of	scans	generated	
by	other	commonly	used	scanners	and	protocols	in	the	clinics;	and	the	lack	of	scans	with	
the	same	settings	acquired	using	different	scanners,	as	the	data	currently	available	is	limited	
to	the	changes	introduced	in	the	imaging	parameters	on	the	available	scanners.	While	we	
did	not	investigate	the	added	value	of	this	approach	on	a	clinical	dataset,	our	focus	in	this	
study	was	in	designing	a	framework	to	assess	the	reproducibility	and	‘ComBatability’	of	RFs.	
However,	it	is	fair	to	assume	that	if	RFs	are	not	reproducible	on	phantom	data,	they	would	be	
equally,	or	possibly	even	more,	unstable	on	patient	datasets.	For	example,	clinical	data	will	
be	acquired	at	a	variety	of	mAs	values	across	a	population	of	patients.	Lastly,	while	Combat	
has	been	reported	to	outperform	other	harmonization	methods	in	terms	of	apparent	model	
performance,	the	systemic	evaluation	of	the	effects	of	these	methods	on	the	reproducibility	
of	RFs,	and	the	comparison	with	the	effects	of	ComBat	harmonization	will	be	the	aim	of	
future	studies,	in	addition	to	addressing	the	above	mentioned	limitations.

Conclusion 

In	conclusion,	we	demonstrate	that	the	reproducibility	of	RFs	is	not	a	constant,	but	changes	
with	variations	in	the	data	acquisition	and	reconstruction	parameters.	Moreover,	ComBat	
cannot	be	 successfully	 applied	on	all	 RFs,	 and	 its	 successful	 application	on	a	 given	RF	 is	
dependent	on	the	heterogeneity	of	the	dataset.	We	conclude	that	ComBat	harmonization	
should	not	be	blindly	performed	on	patient	data,	but	following	the	estimation	of	adjustment	
parameters	on	a	phantom	dataset.	We	anticipate	that	radiomics	studies	will	benefit	from	our	
proposed	harmonization	workflow,	as	it	allows	comparison	of	a	greater	number	of	RFs,	and	
enhances	the	generalizability	of	radiomic	models.	Yet,	standardization	of	imaging	protocols	
remains	the	cornerstone	for	improving	the	generalizability	of	prospective	quantitative	image	
studies.	We	recommend	the	standardization	of	scan	acquisition	across	centres,	especially	in	
prospective	clinical	trials	that	include	medical	imaging;	and/or	the	development	of	a	specific	
imaging	protocols	for	scans	acquired	to	be	used	for	quantitative	imaging	analysis.
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different contrast imaging phases: 
A proof of concept on SORAMIC trial data

Chapter 4



Abstract 

Handcrafted	 radiomic	 features	 (HRFs)	 are	 quantitative	 imaging	 features	 extracted	 from	
regions	of	interest	on	medical	images,	which	can	be	correlated	with	clinical	outcomes	and	
biologic	characteristics.	While	HRFs	have	been	used	to	train	predictive	and	prognostic	models,	
their	reproducibility	has	been	reported	to	be	affected	by	variations	in	scan	acquisition	and	
reconstruction	parameters,	even	within	the	same	imaging	vendor.	In	this	work,	we	evaluated	
the	reproducibility	of	HRFs	across	the	arterial	and	portal	venous	phases	of	contrast	enhanced	
computed	tomography	images	depicting	hepatocellular	carcinomas,	as	well	as	the	potential	
of	ComBat	harmonization	to	correct	for	this	difference.	ComBat	harmonization	is	a	method	
based	on	Bayesian	estimates	that	was	developed	for	gene	expression	arrays,	and	has	been	
investigated	as	a	potential	method	for	harmonizing	HRFs.	Our	results	show	that	the	majority	
of	HRFs	are	not	reproducible	between	the	arterial	and	portal	venous	imaging	phases,	yet	
a	 number	 of	 HRFs	 could	 be	 used	 interchangeably	 between	 those	 phases.	 Furthermore,	
ComBat	harmonization	increased	the	number	of	reproducible	HRFs	across	both	phases	by	
1%.	Our	results	guide	the	pooling	of	arterial	and	venous	phases	from	different	patients	in	an	
effort	to	increase	cohort	size,	as	well	as	joint	analysis	of	the	phases.

Keywords: Hepatocellular	carcinoma;	CT	radiomics;	domain	translation;	reproducibility.
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Introduction

The	recent	decades	witnessed	vast	advances	in	computational	power,	artificial	intelligence,	
and	medical	imaging	techniques	[1],	which	provided	a	unique	opportunity	for	transforming	
the	abundant	amounts	of	medical	 imaging	 into	mineable	quantitative	data.	The	concept	
acquired	much	scientific	attention	recently,	and	a	branch	of	medical	imaging	analysis	-known	
as	handcrafted	radiomics-	emerged	as	a	result	[2].	Handcrafted	Radiomic	features	(HRFs)	are	
quantitative	features	extracted	with	high	throughput	from	medical	imaging,	with	its	varying	
modalities.	 The	hypothesis	 is	 that	medical	 images	 carry	more	data	 than	 can	be	 seen	by	
trained	human	eyes,	and	that	these	data	can	be	decoded	using	the	HRFs,	 i.e	correlations	
between	HRFs	and	underlying	biology	could	potentially	exist	[3].	Since	the	introduction	of	
the	field,	many	studies	reported	on	the	potential	of	radiomic	signatures	to	predict	clinical	
endpoints,	 the	majority	 of	which	were	 performed	on	 computed	 tomography	 (CT)	 [4–7],	
magnetic	resonance	(MR)	[8–10],	and	positron	emission	tomography	(PET)	scans	[11,12].

Hepatocellular	carcinoma	(HCC)	 is	 the	most	common	primary	 liver	cancer,	 the	fifth	most	
common	 malignancy	 worldwide,	 and	 a	 leading	 cause	 of	 cancer-related	 mortality	 [13].	
Different	 diagnostic	 approaches	 and	 treatment	modalities	 are	 used	 clinically	 depending	
on	the	characteristics	of	the	patient	and	the	progression	of	the	disease	[14,15].	Contrast-
enhanced	computed	tomography	(CE-CT)	scans	are	considered	one	of	the	main	diagnostic	
tools	 for	 HCC.	 CE-CT	 can	 be	 acquired	 at	 different	 times	 following	 the	 injection	 of	 the	
contrast	agent	to	acquire	arterial,	venous	or	 late	phase	scans.	Each	phase	shows	specific	
characteristics	for	HCC	lesions.	However,	there	is	still	a	clinical	need	for	reliable	non-invasive	
tools	that	could	aid	diagnosing	and	devising	individualized	treatment	plans	for	HCC	patients.	
Several	studies	investigated	and	reported	on	the	potential	of	HRFs	to	aid	clinical	decision	
making	in	HCC	patients	[16–19].	

While	numerous	studies	have	reported	on	the	potential	of	HRFs	in	aiding	clinical	decision	
making	 on	 HCC	 and	 other	 diseases,	 several	 hurdles	 hindering	 the	 clinical	 translation	 of	
radiomic	signatures	to	clinical	decision	support	systems	have	been	identified.	These	hurdles	
include	 the	 reproducibility	of	HRFs	 in	 test-retest	 studies,	 their	 sensitivity	 to	 variations	 in	
acquisition	and	reconstruction	parameters	of	the	scans,	inter-observer	variability,	and	the	
need	for	big	data	[20–26].	However,	the	need	for	big	data	in	radiomics	analysis	necessitates	
the	exploration	of	methods	 for	 combining	 and	 comparing	 retrospective	medical	 imaging	
databases.

A	 number	 of	 studies	 tried	 to	 address	 the	 issue	 of	 reproducibility	 of	HRFs	 using	 ComBat	
harmonization	[27–30].	ComBat	harmonization	is	a	method	that	was	developed	to	remove	
the	batch	effects	in	gene	expression	arrays	[31].	The	studies	that	investigated	the	application	
of	ComBat	in	radiomics	analyses	reported	on	the	improvement	in	performance	metrics	of	
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developed	 radiomic	 signatures	after	 the	application	of	ComBat	compared	 to	before,	and	
recommended	the	use	of	the	method.	Other	studies	that	investigated	the	reproducibility	of	
HRFs	on	phantom	datasets	acquired	with	different	settings	[32],	or	with	a	single	parameter	
difference	[33],	and	reported	that	the	performance	of	ComBat	 is	dependent	on	the	data	
under	study	and	recommended	a	framework	to	assess	the	reproducibility	of	HRFs.	Yet	to	
date,	no	study	reported	on	the	agreement	in	HRFs	across	different	phases	or	the	potential	
of	ComBat	to	remove	the	effects	of	different	imaging	phases	from	HRFs,	which	could	allow	
the	proper	 combination	of	 phases	 in	 a	 single	 analysis,	 or	 the	 interchangeability	 of	HRFs	
across	phases	to	allow	the	use	of	different	imaging	scans	per	patient.	Furthermore,	no	study	
performed	a	reproducibility	analysis	for	HRFs	following	ComBat	harmonization	on	patients’	
scans	acquired	with	a	single	parameter	difference.

We	hypothesize	that	the	time	of	acquisition	after	the	injection	of	the	contrast	agents	adds	
another	 level	of	complexity	to	be	accounted	for	 in	the	radiomics	analysis,	as	HRFs	might	
be	affected	by	the	appearance	of	contrast,	due	to	the	variations	in	the	distribution	of	the	
contrast	within	 the	 lesions.	As	a	proof	of	 concept,	we	 investigate	 the	 sensitivity	of	HRFs	
extracted	from	CE-CT	scans	depicting	HCC	acquired	during	the	arterial	and	portal	venous	
phases,	when	all	other	acquisition	and	reconstruction	parameters	were	fixed.	Furthermore,	
we	 investigate	 the	potential	of	 the	ComBat	harmonization	 for	domain	 translation	of	 the	
HRFs	extracted	from	these	scans.	Ultimately,	we	aim	to	(i)	guide	the	identification	of	HRFs	
that	can	be	used	 interchangeably	between	arterial	and	venous	phase	scans,	which	could	
increase	the	number	of	scans	that	can	be	included	in	a	CE-CT	based	radiomics	study;	and	
(ii)	identify	the	features	that	can	be	used	in	studies	analyzing	both	phases	simultaneously	to	
maximize	the	information	extracted	from	ROIs.

Materials and Methods

Patients and Imaging data
The	 imaging	 data	 were	 originally	 collected	 for	 the	 European	 multicenter	 clinical	 trial	
(SORAMIC)	[34].	Imaging	data	for	424	patients	diagnosed	with	HCC	(using	cyto-histological	
criteria,	radiologic	criteria,	or	a	combination	of	both)	were	obtained	for	the	SORAMIC	trial,	
of	which	338	scans	were	available	for	analysis	in	this	study.	Scans	that	contained	artifacts	
were	considered	of	poor	quality	(n=48).	From	the	available	338	patients	with	both	arterial	
and	 portal	 venous	 scans	 available,	 patients	 with	 scans	 that	 had	 any	 difference	 in	 the	
acquisition	or	reconstruction	parameters,	or	lacked	segmentations	reviewed	by	an	expert,	
were	excluded.	A	total	of	61	patients	with	104	distinct	lesions	were	finally	included	in	this	
study	 (Figure	 1).	 Scans	 included	 were	 acquired	 from	 different	 hospitals,	 using	 different	
vendors	and	protocols.	In	total,	9	scanner	models	from	4	different	imaging	vendors,	and	a	
range	of	scanning	parameters,	were	included,	as	shown	in	Table	1.	The	imaging	analysis	was	
approved	by	the	University	of	Magdeburg	institutional	review	board	(IRB00006099,	EudraCT	
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no	2009-012576-27),	 and	 informed	 consent	was	 obtained	 from	all	 included	patients.	 All	
methods	were	carried	out	in	accordance	with	the	relevant	guidelines	and	regulations	[35].

Figure 1.	A	flowchart	showing	the	patients	selection	process.

Table 1.	Acquisition	and	reconstruction	parameters	for	the	imaging	dataset

Manufacturer Scanner model X-Ray Tube 
Current (kV)

Exposure 
(mAs)

Convolution 
kernels

Slice 
thickness 
(mm)

Pixel 
spacing
(mm2)

TOSHIBA Aquilion 50 - 360 2-300 FC13 1-5 0.39x0.39	
- 
0.98x0.98

Aquilion	PRIME

Philips Brilliance	64 B

GE Discovery CT750 HD STANDARD

Optima	CT660

SIEMENS Sensation	16 B31f

SOMATOM	Definition	AS

SOMATOM	Definition	Flash I30f , I40f

SOMATOM	Force Br40d
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Segmentation and HRFs extraction
The	scans	of	a	single	patient	were	co-registered.	The	region	of	interest	(ROI)	was	segmented	
on	each	scan	while	viewing	both	phases	simultaneously	and	saved	to	both	scans	(Fig	2).	The	
segmentations	were	performed	using	MIM	software	(MIM	Software	Inc.,	Cleveland,	OH)	by	
a	medical	doctor	(Y.W)	with	2	years	of	experience	in	image	segmentation,	and	revised	by	a	
radiologist	(R.M.)	with	15	years	of	experience	in	medical	radiology.

HRFs	 were	 extracted	 from	 these	 ROIs	 using	 the	 software	 RadiomiX	 Discovery	 Toolbox	
(version,	October	2019;	https://www.radiomics.bio),	which	calculates	HRFs	compliant	with	
the	 Imaging	Biomarkers	Standardization	 Initiative	(IBSI)	 [36],	 in	addition	to	others.	 Image	
intensities	were	binned	with	a	binwidth	of	25	Hounsfield	Units	 (HUs)	 in	order	 to	 reduce	
noise	levels	and	to	reduce	texture	matrix	sizes,	and	therewith	computation	power,	with	no	
resampling	or	further	preprocessing	of	the	images.	The	description	of	the	extracted	HRFs	
was	published	previously	[24].

Figure 2.	An	example	of	ROI	segmented	in	(A)	the	arterial	phase	and	(B)	portal	venous	phase.

ComBat Harmonization
ComBat	method	employs	empirical	Bayes	to	estimate	the	effects	of	assigned	batches	on	the	
data	being	harmonized.	For	HRFs,	ComBat	assumes	that	a	feature	value	can	be	approximated	
by	the	equation:

(1)

where	α	is	the	average	value	for	HRF	Yij	for	ROI	j	on	scanner	i;	X	is	a	design	matrix	of	the	
biologic	covariates	that	are	known	to	affect	the	value	of	HRFs;	β	is	the	vector	of	regression	
coefficients	 corresponding	 to	 each	biologic	 covariate;	 γi	 is	 the	 additive	effect	of	 scanner	
i	on	HRFs,	δi	 is	the	multiplicative	scanner	effect,	and	εij	 is	an	error	term,	presupposed	to	
be	normally	distributed	with	zero	mean.	Based	on	the	values	estimated,	ComBat	performs	
feature	transformation	as	given	by	the	formula:
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(2)

where	α and	β	are	estimators	of	the	parameters	α	and	β,	respectively;	and	γi*	and	δi*	are	
the	empirical	Bayes	estimates	for	the	parameters	γi	and	δi,	respectively.

Statistical Analysis
All	 statistical	 analyses	were	 performed	 using	 R	 language	 [37]	 on	 RStudio	 (V	 3.6.3)	 [38].	
To	 determine	 the	 reproducibility	 of	 HRFs,	 the	 concordance	 correlation	 coefficient	 (CCC)	
between	the	HRFs	values	across	the	two	phases	was	calculated	[39],	using	epiR	package	[40].	
The	CCC	measures	how	concordant	are	the	values	of	a	given	HRF	and	the	rank	of	each	data	
point	relative	to	the	rest	in	each	batch.	HRFs	with	CCC>0.9	were	considered	reproducible	
and	could	be	interchangeably	used	between	the	arterial	and	venous	phase	CT	scans.	

To	assess	the	performance	of	ComBat,	shape	features	and	HRFs	with	(near)	zero	variance	
(HRFs	that	have	the	same	value	in	95%	or	more	of	the	observations)	were	removed.	The	
phase	 of	 the	 scan	 was	 assigned	 as	 the	 batch	 for	 ComBat	 harmonization.	 The	 CCC	 was	
calculated	after	ComBat	application	and	 the	 cutoff	of	CCC>0.9	was	applied	 to	 select	 the	
concordant	HRFs.	The	correlation	of	concordant	features	with	volume	was	assessed	using	
Pearson	 correlation.	 Features	 that	 had	 a	 correlation	 coefficient	 >	 0.85	 were	 considered	
highly	correlated.	The	analysis	code	used	in	this	study	can	be	found	on:	(https://github.com/
AbdallaIbrahim/The-reproducibility-and-ComBatability-of-Radiomic-features).

Results

Patient characteristics
The	patients	included	(n=61)	had	a	median	age	of	66	years,	mainly	male	(n=50,	81.9%),	with	
cirrhotic	 livers	 (n=56,	91.8%),	and	a	minority	 (n=11,	18.1%)	had	portal	vein	 invasion.	For	
more	patient	characteristics	see	Table	2.
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Table 2.	Patient	characteristics.

Characteristic N=61

Gender,	male	(%)
Age,	median	(range)
Cirrhosis,	yes	(%)

50	(81.9%)
66	(48-81)
56	(91.8%)

Child-Pugh	grade
A
B

56	(91.8%)
5	(8.2%)

Diameter	of	largest	lesion,	in	mm,	median	(range)
Portal	vein	invasion,	yes	(%)
Extrahepatic	disease	yes	(%)

37	(10-220)
11	(18.1%)
7	(11.4%)

BCLC staging
A
B
C

22	(36.1%)
22	(36.1%)
17	(27.8%)

ECOG	performance
0
1

58	(95.1%)
3	(4.9%)

*	Barcelona	Clinic	Liver	cancer	(BCLC)	staging
**	European	Cooperative	Oncology	Group	(ECOG)	performance

Extracted HRFs
A	total	of	167	original	HRFs	were	extracted	from	each	of	the	available	104	ROIs.	These	HRFs	
are	divided	into	11	feature	families:	Fractal	(n=3),	Gray	Level	Co-occurence	Matrix	(GLCM;	
n=	 26),	 Gray	 Level	 Distance	 Zone	Matrix	 (GLDZM;	 n=16),	 Gray	 Level	 Run	 Length	Matrix	
(GLRLM;	n=15),	Gray	Level	Size	Zone	Matrix	(GLSZM,	n=16),	Intensity	Histogram	(IH;	n=25),	
Local	Intensity	(LocInt,	n=2),	Neighbouring	Gray	Level	Dependence	Matrix	(NGLDM;	n=17),	
Neighbouring	 Gray	 Tone	 Difference	 Matrix	 (NGTDM,	 n=5),	 Shape	 (n=23),	 and	 Statistics	
(Stats,	n=19).

The effects of differences in imaging phase on the reproducibility of HRFs
Out	of	 the	167	extracted	HRFs,	42	 (25%)	were	reproducible	 (had	a	CCC>0.9)	across	both	
phases	 (Figure	 3a,	 shape	 features	 were	 not	 included	 to	 ease	 the	 comparison	 between	
figures).	These	HRFs	were	divided	into	shape	(n=22),	NGTDM	(n=1),	NGLDM	(n=4),	IH	(n=2),	
GLSZM	(n=4),	GLRLM	(n=2)	and	GLDZM	(n=7).	The	remaining	HRFs	had	a	CCC	ranging	from	
-0.07	and	0.85,	with	a	median	of	0.39.

Of	 the	 concordant	 22	 shape	 features,	 8	 features	 were	 highly	 correlated	 with	 volume	
(R>0.85),	in	addition	to	1	feature	from	the	NGLDM	group	(NGLDM_DN)	and	2	features	from	
the	GLRLM	group	(GLRLM_RLN	and	GLRLM_GLN).	The	remaining	features	(31,	73.8%)	had	a	
correlation	coefficient	<0.85.
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Figure 3. (a) The	CCC	values	for	the	different	HRFs	before	ComBat	harmonization;	(b) The	CCC	values	for	the	
different	HRFs	after	ComBat	harmonization

The effects of ComBat on the reproducibility of HRFs
The	 application	 of	 ComBat	 harmonization	 to	 remove	 the	 batch	 effects	 attributed	 to	 the	
difference	in	time	between	contrast	injection	and	scan	acquisition	resulted	in	a	total	of	44	
(26.1%)	reproducible	HRFs,	i.e	2	extra	HRFs	became	concordant	following	the	application	of	
ComBat:	Stats_energy	and	GLDZM_HILDE	(Fig	3b).	The	remaining	20	HRFs	had	a	CCC>0.9	
before	and	after	ComBat	harmonization,	in	addition	to	the	shape	features	(n=22).	The	CCC	
of	 stats_energy	 increased	 from	0.8	 to	0.95	 following	ComBat	harmonization,	and	 that	of	
GLDZM_HILDE	increased	from	0.34	to	0.93.

(a) (b)
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The	impact	of	ComBat	on	the	CCC	values	had	a	wide	range;	6	HRFs	had	an	increment	in	CCC	
between	0.5	and	0.6;	42	HRFs	had	an	increment	in	CCC	between	0.1	and	0.49;	87	HRFs	had	
an	increment	between	0	and	0.09;	and	33	HRFs	had	a	decrement	in	CCC	between	-0.001	
and	-0.06.	Following	ComBat	harmonization,	the	number	of	highly	correlated	features	with	
volume	increased	by	one	feature	(Stats_energy).	The	concordant	features	before	domain	
translation	maintained	their	correlation	with	the	volume.

Discussion

In	this	study,	we	investigated	the	reproducibility	of	HCC	CT-based	HRFs	across	the	arterial	
and	 portal	 venous	 imaging	 phases	when	 all	 other	 scanning	 parameters	were	 fixed,	 and	
whether	ComBat	harmonization	 improves	 the	 reproducibility	of	HRFs	 in	 such	a	 scenario.	
Uniquely,	this	is	the	first	manuscript	to	investigate	the	potential	of	ComBat	to	remove	batch	
effects	 attributed	 to	 the	differences	 in	 imaging	phase,	 and	on	patient	data	with	a	 single	
parameter	difference	between	the	compared/harmonized	scans.	Our	results	show	that	the	
majority	of	HRFs	were	significantly	affected	by	the	difference	in	imaging	phases,	and	only	
a	 quarter	 of	 the	 total	 extracted	number	 of	HRFs	were	 reproducible	 across	 both	 phases.	
Moreover,	ComBat	harmonization	did	not	successfully	harmonize	the	majority	of	HRFs,	even	
though	 the	differences	between	 the	batches	 compared	were	 limited	 to	 the	variations	 in	
imaging	phase.

HRFs	are	calculated	using	mathematical	formulas	applied	on	the	array	of	values	representing	
the	medical	image	[41].	Changes	in	the	value	of	units	in	this	array	are	expected	to	have	an	
impact	on	the	value	calculated	by	the	same	formula.	Therefore,	changes	 in	 the	scanning	
parameters	are	expected	to	affect	the	reproducibility	of	different	HRFs	variably.	Aside	from	
HRFs	that	are	not	reproducible	in	test-retest	studies,	the	sensitivity	of	the	remaining	HRFs	
to	the	imaging	phase	can	be	justified	by	the	increased	radio-opaqueness	and	the	resulting	
perfusion	patterns	of	contrast	within	the	ROI,	and	thus,	changes	in	the	image	array	values	
based	 on	which	 the	HRFs	 are	 calculated.	 As	 expected,	 statistics	 and	 intensity	 histogram	
features,	which	are	simple	HRFs	based	on	a	single	voxel	value	(e.g.	minimum	or	maximum	
intensity	value)	or	the	description	of	their	distribution	(e.g.	mean	or	median	intensity	value),	
were	found	to	be	the	most	significantly	affected	families.	On	the	other	hand,	also	according	
to	 expectations,	HRFs	 that	 do	not	 depend	on	 the	 intensity	 values,	 but	 the	 shape	of	 the	
segmentation	 (shape	 features),	were	 found	 to	be	 reproducible	 across	 both	phases,	with	
the	exception	of	the	shape	feature	centroid	distance,	which	is	based	on	the	distribution	of	
intensity	values	around	the	geometric	center	of	the	ROI.	The	copying	of	segmentations	and	
the	inclusion	of	scans	that	were	acquired	identically	 in	both	phases	allowed	isolating	the	
effects	of	differences	imaging	phases	on	HRFs.	However,	in	scenarios	where	acquisition	and/
or	reconstruction	parameters,	or	the	segmentation	of	the	ROI	changes,	the	reproducibility	
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of	HRFs	is	expected	to	be	further	impacted.	This	is	also	in	line	with	what	reported	in	a	study	
that	investigated	the	reproducibility	of	liver	parenchyma	and	tumors	HRFs	extracted	from	
two	contrast	enhanced	scans	(one	phase)	taken	within	a	14	days	interval	[42].	Therefore,	
the	reproducibility	analysis	based	on	the	data	under	study	should	be	an	integral	part	of	each	
radiomics	study.

Our	study	sheds	the	light	on	the	methodology	of	combining	HRFs	from	different	modalities,	
either	 for	 the	 purpose	 of	 combining	 different	 phases/modalities	 per	 patient,	 or	 the	
combination	of	different	phases	for	different	patients.	For	merging	different	modalities	per	
patient,	we	show	that	a	number	of	HRFs	is	reproducible	across	the	phases.	Therefore,	models	
that	try	to	combine	different	imaging	phases	per	patient	are	recommended	to	define	which	
reproducible	 (test-retest)	HRFs	 vary	 across	 the	 available	 phases,	 and	 preselect	 those	 for	
further	analysis.	Another	implication	of	our	findings	is	allowing	the	combination	of	different	
imaging	phases	per	patient	(e.g	due	to	the	lack	of	data),	when	only	the	reproducible	HRFs	
across	phases	are	extracted	and	 compared	between	 the	different	patients,	 regardless	of	
the	available	imaging	phase	for	each	patient.	This	approach	can	significantly	increase	the	
number	of	data	points	in	retrospective	radiomics	studies.

The	correlation	of	radiomic	features	with	the	volume	of	the	ROI	has	been	considered	one	
of	the	major	points	to	be	assessed	in	radiomics	analysis,	since	some	of	the	features	were	
reported	previously	to	be	surrogates	of	volume	[43].	In	our	analysis,	we	observed	that	the	
majority	 of	 the	 features	 identified	 as	 concordant	 (or	 domain-translatable	 with	 ComBat)	
between	 the	 arterial	 and	 venous	CT	 scans	was	 considerable,	most	of	which	were	 shape	
features.	However,	 the	majority	of	 features	were	not	 found	 to	be	highly	 correlated	with	
volume,	which	means	that	these	features	can	decode	additional	information	about	the	ROIs	
being	investigated.

The	 number	 of	 features	 that	 had	 a	 CCC	 value	 higher	 than	 0.9	 was	 slightly	 higher	 after	
the	 application	 of	 ComBat	 on	 the	 HRFs	 extracted	 from	 the	 arterial	 and	 portal	 venous	
phases.	 ComBat	 successfully	 harmonized	 two	 additional	 HRFs	 compared	 to	 the	 number	
of	concordant	HRFs	before	domain	translation.	The	majority	of	HRFs	were	not	concordant	
across	the	phases	even	after	the	application	of	ComBat	harmonization.	The	differences	in	
ComBat	performance	per	HRF	 (and	 feature	 families)	 are	also	expected,	 as	 in	 contrast	 to	
gene	expression	arrays,	HRFs	have	different	levels	of	complexity	and	are	not	expected	to	be	
uniformly	affected	by	the	batch	defined	for	domain	translation.	The	variant	performance	of	
ComBat	on	HRFs	could	be	explained	by	the	differences	in	the	complexity	of	HRFs,	compared	
to	gene	expression	arrays	[21].	The	findings	are	in	line	with	the	reproducibility	studies	that	
assessed	 the	 performance	 of	 ComBat	 on	 phantom	 scans,	 which	 reported	 that	 ComBat	
harmonization	 does	 not	 successfully	 harmonize	 all	 HRFs,	 and	 that	 its	 performance	 is	
dependent	on	the	variations	between	the	batches	[32,33].	As	a	consequence,	we	recommend	
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that	 the	 application	of	 ComBat	harmonization	on	HRFs	 follows	 a	 reproducibility	 analysis	
with	reference	values	to	assess	its	performance,	as	it	is	expected	to	vary	with	the	variations	
in	 the	dataset	batches	being	harmonized	 [21].	Other	deep	 learning	based	harmonization	
methods	that	have	been	recently	investigated	[44–47]	might	be	more	suitable	for	domain	
translation	of	images	acquired	in	different	phases.	However,	this	is	yet	to	be	investigated.

While	this	study	provides	a	proof	of	concept	for	the	combination/replacement	of	different	
imaging	phases,	we	speculate	that	the	set	of	reproducible	HRFs	identified	in	this	study	is	
limited	to	HCC	lesions	extracted	from	scans	acquired	similarly	to	our	dataset.	Furthermore,	
the	changes	in	reconstruction	parameters	(and	sometimes	acquisition	parameters)	between	
the	 two	 imaging	 phases	 in	 clinical	 routine	 significantly	 lowered	 the	 number	 of	 available	
scans	to	perform	this	analysis.	Lastly,	 the	reproducibility	of	the	 identified	HRFs	has	to	be	
investigated	across	different	acquisition	and	reconstruction	parameters.	However,	due	 to	
the	 lack	 of	 data,	 this	was	 not	 performed.	Nevertheless,	 this	 study	 serves	 as	 a	 guide	 for	
selecting	and/or	harmonizing	the	reproducible	HRFs	in	future	radiomic	studies	that	utilize	
contrast	enhanced	imaging.

Conclusions

The	majority	of	HRFs	are	significantly	affected	by	changes	in	the	imaging	phase	of	the	scan.	
Studies	 that	 investigate	 the	 potential	 of	 combining	 HRFs	 from	 different	 imaging	 phases	
or	modalities	must	 investigate	the	reproducibility	and	 interoperability	of	 the	HRFs	across	
the	investigated	phases	for	the	lesions	of	interest.	Furthermore,	a	number	of	HRFs	can	be	
interchangeably	used	between	the	arterial	and	portal	venous	phases,	and	these	can	be	used	
to	increase	data	points	in	retrospective	imaging	studies.	ComBat	harmonization	increased	
the	number	of	comparable	CT	based	HRFs	across	 the	arterial	and	portal	venous	 imaging	
phases	for	HCC	lesions	by	1%	in	our	dataset.
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Abstract

Handcrafted	 radiomics	 features	 (HRFs)	 are	 quantitative	 features	 extracted	 from	medical	
images	to	decode	biological	 information	to	 improve	clinical	decision	making.	Despite	the	
potential	 of	 the	 field,	 limitations	 have	 been	 identified.	 The	 most	 important	 identified	
limitation,	 currently,	 is	 the	 sensitivity	 of	 HRF	 to	 variations	 in	 image	 acquisition	 and	
reconstruction	parameters.	In	this	study,	we	investigated	the	use	of	Reconstruction	Kernel	
Normalization	 (RKN)	 and	 ComBat	 harmonization	 to	 improve	 the	 reproducibility	 of	 HRFs	
across	 scans	acquired	with	different	 reconstruction	kernels.	A	set	of	phantom	scans	 (n	=	
28)	acquired	on	five	different	scanner	models	was	analyzed.	HRFs	were	extracted	from	the	
original	scans,	and	scans	were	harmonized	using	the	RKN	method.	ComBat	harmonization	
was	 applied	 on	 both	 sets	 of	 HRFs.	 The	 reproducibility	 of	 HRFs	 was	 assessed	 using	 the	
concordance	correlation	coefficient.	The	difference	in	the	number	of	reproducible	HRFs	in	
each	scenario	was	assessed	using	McNemar’s	test.	The	majority	of	HRFs	were	found	to	be	
sensitive	 to	variations	 in	 the	 reconstruction	kernels,	and	only	 six	HRFs	were	 found	 to	be	
robust	with	 respect	 to	variations	 in	 reconstruction	kernels.	The	use	of	RKN	resulted	 in	a	
significant	increment	in	the	number	of	reproducible	HRFs	in	19	out	of	the	67	investigated	
scenarios	 (28.4%),	while	 the	ComBat	 technique	 resulted	 in	 a	 significant	 increment	 in	 36	
(53.7%)	 scenarios.	 The	 combination	 of	 methods	 resulted	 in	 a	 significant	 increment	 in	
53	 (79.1%)	 scenarios	 compared	 to	 the	 HRFs	 extracted	 from	 original	 images.	 Since	 the	
benefit	of	applying	the	harmonization	methods	depended	on	the	data	being	harmonized,	
reproducibility	analysis	 is	recommended	before	performing	radiomics	analysis.	For	future	
radiomics	 studies	 incorporating	 images	 acquired	 with	 similar	 image	 acquisition	 and	
reconstruction	 parameters,	 except	 for	 the	 reconstruction	 kernels,	 we	 recommend	 the	
systematic	use	of	the	pre-	and	post-processing	approaches	(respectively,	RKN	and	ComBat).

Keywords: radiomics	 reproducibility;	 reconstruction	 kernel;	 ComBat	 harmonization;	 
image	harmonization
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Introduction

Recent	decades	have	witnessed	an	exponentially	increasing	number	of	studies	investigating	
the	 potential	 of	 quantitative	 imaging	 features	 to	 extract	 additional	 information	 from	
medical	 images	not	detectable	by	human	eyes	 [1,2].	Handcrafted	radiomics	refers	to	the	
high-throughput	extraction	of	quantitative	imaging	features	from	medical	images	to	decode	
biologic	 information	 [3,4]	 and,	 today,	 more	 than	 5000	 studies	 can	 be	 returned	 on	 the	
PubMed	database	using	“radiomics”	as	a	search	word.	The	handcrafted	radiomics	approach	
“involves	manual	segmentation	of	the	region	of	interest	(eg,	the	tumor)	on	medical	imaging	
and	extraction	of	thousands	of	human-defined	and	curated	quantitative	features	from	the	
region	of	interest”	[5].

The	hypothesis	 in	 radiomics	 studies	 is	 that	 handcrafted	 radiomic	 features	 (HRFs)	 can	be	
used	 singularly	 or	 collectively	 as	 clinical	 biomarkers	 [3].	Many	 studies	 have	 investigated	
and	reported	on	the	potential	of	HRFs	to	predict	clinical	endpoints,	such	as	overall	survival	
[6–8],	tissue	histology	 [9–13]	and	response	 to	 therapy	 [14,15].	These	studies	highlighted	
the	potential	of	such	approaches	to	be	applied	in	clinical	settings,	since	they	could	present	
non-invasive,	 reliable,	 readily	 available	 and	 cost-effective	 alternatives	 to	 current	 invasive	
clinical	procedures,	such	as	tissue	biopsies.	Moreover,	with	proper	application,	radiomics	
could	provide	reproducible	predictions,	which	are	quantitative	and	less	dependent	on	the	
subjective	interpretation	of	medical	examinations	[16,17].

With	the	development	of	handcrafted	radiomics	as	a	research	field,	the	limitations	the	field	
faces	have	been	 increasingly	 investigated	during	recent	years	[4,18].	The	most	 important	
identified	limitation	currently	is	the	sensitivity	of	HRFs	to	variations	in	image	acquisition	and	
reconstruction	parameters	[19–24].	For	an	HRF	to	be	used	as	a	clinical	biomarker	(solely	or	in	
combination	with	other	HRFs),	it	has	to	be	reproducible	across	different	imaging	parameters	
for	generalization	purposes	[24].	However,	many	studies	have	reported	on	the	sensitivity	
of	HRFs	to	variations	in	time	(test–retest)	[25–29]	and	to	variations	in	imaging	acquisition	
and	 reconstruction	 parameters	 [30–37].	 Studies	 have	 also	 reported	 that	 the	 degree	 of	
variation	in	a	single	acquisition	or	reconstruction	parameter	affects	the	reproducibility	of	
HRFs	variably	[31,34].	A	number	of	studies	have	reported	the	significant	effects	of	variations	
in	reconstruction	kernels	on	the	reproducibility	of	HRFs	[20,38].

Different	methods	have	been	 investigated	to	address	the	 issue	of	reproducibility	of	HRFs	
across	scans	acquired	differently.	ComBat	harmonization	[39]	is	one	of	the	post-processing	
methods	 that	have	 recently	been	extensively	 investigated	 in	 radiomics	analyses	 [40–42].	
ComBat	harmonization	is	a	method	that	was	developed	for	removing	batch	effects—attributed	
to	the	use	of	different	machinery—from	gene	expression	arrays.	A	number	of	studies	have	
reported	on	the	applicability	of	ComBat	harmonization	in	different	scenarios,	such	as	scans	
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acquired	with	 varying	 degrees	 of	 differences	 in	 CT	 image	 acquisition	 and	 reconstruction	
parameters,	 scans	acquired	with	a	single	variation	 in	an	 image	reconstruction	parameter	
(in-plane	 resolution)	 and	 scans	 of	 different	 contrast-enhancement	 phases	 [31,35,43,44].	
These	studies	reported	that	the	performance	of	ComBat	in	radiomics	analyses	is	dependent	
on	the	variations	in	the	data	being	harmonized.	A	number	of	studies	have	also	investigated	
the	potential	of	ComBat	in	different	scenarios	[45–48].	However,	the	potential	of	ComBat	
to	remove	batch	effects	attributed	solely	to	the	variations	in	the	reconstruction	kernel	has	
yet	 to	be	 thoroughly	 investigated.	Other	 investigated	methods	 include	pre-processing	of	
the	 images	 to	minimize	 effects	 due	 to	 differences	 in	 slice	 thickness,	 reconstruction	with	
convolutional	 kernels,	 etc.	Normalization	 of	 chest	 CT	 data	minimized	 the	 variability	 that	
resulted	 from	 different	 reconstruction	 kernels	 [49].	 The	 authors	 developed	 a	 method	
that	 targeted	reducing	 the	variations	 in	 the	quantification	of	emphysema	by	normalizing	
the	 reconstruction	 kernel	 (Reconstruction	 Kernel	 Normalization—RKN).	 The	 CT	 scans	
obtained	 from	 different	 scanners	 that	 were	 reconstructed	 with	 varying	 kernels	 showed	
reduced	variability	in	emphysema	quantification	after	the	proposed	iterative	normalization.	
However,	 the	effect	of	 this	normalization	method	on	 the	 reproducibility	of	HRFs	has	not	
been	investigated.

In	 this	 study,	we	hypothesize	 that	 the	use	of	RKN	and	ComBat	could	 improve	 the	 repro-
ducibility	of	HRFs	across	scans	acquired	with	different	reconstruction	kernels	depending	on	
the	variations	in	the	data	being	analyzed	and/or	harmonized.	We	further	hypothesize	that	
the	combination	of	both	methods	(RKN	and	ComBat)	would	give	superior	results	in	terms	
of	 “number	 of	 reproducible	 HRFs”	 compared	 to	 no	 or	 only	 one	 harmonization	method.	
Given	that	variations	in	the	convolution	kernel	impact	the	reproducibility	of	HRFs	the	most,	
we	investigate	the	reproducibility	of	HRFs	extracted	from	phantom	CT	scans	acquired	with	
different	 reconstruction	 kernels	 on	 different	 imaging	 vendors.	 We	 also	 investigate	 the	
potential	of	ComBat	harmonization,	RKN	and	the	combination	of	both	methods	to	reduce	
the	variations	in	HRF	values	attributed	to	differences	solely	in	the	reconstruction	kernels	of	
the	original	scans.

Materials and Methods

Imaging Data
The	phantom	data	used	 in	 the	 study	were	obtained	 from	 the	public	 Credence	Cartridge	
Radiomics	(CCR)	phantom	dataset	[50]	from	the	Cancer	Imaging	Archive	site	(TCIA.org)	[51].	
A	total	of	251	scans	were	acquired	using	different	scanners,	acquisition	and	reconstruction	
parameters.	For	this	study,	we	included	scans	that	were	acquired	using	the	same	imaging	
acquisition	and	reconstruction	parameters,	except	for	the	convolution	kernel.	After	applying	
the	inclusion	criteria,	28	scans	from	five	different	scanner	models	were	used	in	this	study	
(Table	1).
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Table 1. Acquisition	and	reconstruction	parameters	for	the	imaging	dataset.

Manufacturer Scanner 
Model

Number 
of Scans

X-Ray Tube 
Current (kV)

Convolution 
Kernels

Slice Thickness 
(mm)

Pixel Spacing
(mm2)

GE Discovery	STE 5 120 Standard,	Detail,	
Edge,	Soft,	Lung

1.25 0.49	×	0.49

Philips Brilliance	64 4 120 A,	B,	C,	L 1.50 0.49	×	0.49

Siemens Sensation	40 6 120 B10f, B20f, B31f, 
B50f, B60f, B70f

1.50 0.49	×	0.49

Sensation	64 7 120 B10f, B20f, B30f, 
B31f, B50f, B60f, 
B70f

1.50 0.49	×	0.49

SOMATOM	
Definition	AS

6 120 I26f, I30f, I40f, 
I44f, I50f, I70f

1.50 0.49	×	0.49

Volume of Interest and HRFs Extraction
Each	 layer	of	 the	phantom	was	segmented	as	a	single	volume	of	 interest	 (VOI),	with	the	
dimensions	8	×	8	×	2	cm3.	A	total	of	10	VOIs	were	segmented	per	scan,	resulting	in	a	total	of	
280	VOIs.	HRFs	were	extracted	using	the	open	source	PyRadiomics	software	version	2.2.0	
[52].	HRFs	were	extracted	at	two	different	stages:	directly	from	the	original	scans;	and	after	
image	pre-processing.	 Image	 intensities	were	binned	 in	all	 of	 the	 three	 scenarios	with	a	
binwidth	of	25	Hounsfield	units	(HUs)	to	reduce	noise	levels	and	texture	matrix	sizes	and	
the	amount	of	computational	power	needed.	No	other	image	pre-processing	was	applied	
in	any	of	the	scenarios.	Extracted	HRFs	were	HU	intensity	features	and	texture	features	of	
five	matrices:	 gray-level	 co-occurrence	 (GLCM);	 gray-level	 run-length	 (GLRLM);	 gray-level	
size	zone	(GLSZM);	gray-level	dependence	(GLDM);	and	neighborhood	gray-tone	difference	
(NGTDM)	matrices.	A	more	detailed	description	of	PyRadiomics	HRFs	can	be	found	online	
at: https://pyradiomics.readthedocs.io/en/latest/features.html	 (accessed on 13 October 
2021).

Reconstruction Kernel Normalization
The CT scan Io	is	decomposed	into	a	series	of	frequency	components	Fi. Image	Io is	convoluted	
with	 the	Gaussian	filter	at	σi scale	 (σi	 =	0,	1,	2,	4,	8,	16) to	get	a	filtered	 image	Lσi.	 The	
frequency	component	for	i	=	0,	1,	2,	3,	4	is	given	by	Fi+1	=	Lσ+1 −Lσi+1 and for i	=	5 it is given by 
Fi+1 =	Lσi .	The	normalized	image	IN is obtained by IN	=	F6 + .	λi is given by , where 
ri and ei are	the	standard	deviations	of	the	intensity	values	in	the	band	F

i of the reference 
image	and	image	Io ,	respectively.	This	process	is	repeated	until	λi is	within	the	range	[0.95,	
1.05].	This	method	was	proposed	for	reducing	the	effects	of	varying	reconstruction	kernels	
for	emphysema	quantification	in	chest	CT	scans	[49].	We	investigated	the	effect	of	applying	
this	normalization	method	on	feature	reproducibility.

Image Pre-Processing and HRF Post-Processing
Four	 scenarios	 were	 analyzed	 in	 this	 study	 (Figure	 1):	 (i)	 HRFs	 extracted	 from	 original	
images;	(ii)	HRFs	extracted	from	pre-processed	scans	with	the	method	described	in	2.3;	(iii)	
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HRFs	extracted	from	original	images	and	harmonized	with	ComBat;	and	(iv)	the	combination	
of	both	methods.	In	scenario	(ii),	 image	pre-processing	was	performed	using	the	method	
previously	 described	 in	 [49].	 Each	 set	 of	 images	 (n	 =	 5)	 was	 normalized	 to	 a	 reference	
scan	 from	 the	 set.	HRFs	were	extracted	 following	 image	pre-processing.	 In	 scenario	 (iii),	
ComBat	 harmonization	 was	 applied	 on	 HRFs	 extracted	 from	 the	 original	 scans	 without	
pre-processing.	 ComBat	 harmonization	 in	 radiomics	 has	 been	 previously	 described	 [43].	
In	scenario	 (iv),	HRFs	were	extracted	 from	 images	normalized	with	 the	RKN	method	and	
harmonized	using	ComBat	harmonization.

Figure 1. The	study	workflow.

Statistical Analysis
All	 statistical	 analyses	 were	 performed	 using	 R	 [53]	 on	 RStudio	 (V	 3.6.3)	 [54].	 For	 each	
scanner	model,	scans	were	compared	in	a	pair-wise	manner.	The	concordance	correlation	
coefficient	(CCC)	was	used	to	assess	the	reproducibility	of	HRFs	across	different	pairs	[55]	
(epiR	package	V.	2.0.26)	 [56].	The	CCC	assesses	 the	agreement	 in	 the	value	and	rank	 for	
each	HRF	across	the	pairwise	scenarios.	HRFs	with	CCC	>	0.9	were	considered	reproducible	
in	a	given	scenario.	The	CCC	was	calculated	in	each	of	the	investigated	scenarios	described	
in	Section	2.4.

To	assess	the	statistical	significance	of	the	differences	in	the	number	of	reproducible	HRFs	
in	each	 scenario,	 the	McNemar	 test	was	used	 [57].	 The	McNemar	 test	 is	used	 to	assess	
whether	marginal	frequencies	are	equal	before	and	after	an	intervention.	In	this	study,	we	
calculated	McNemar’s	p-values	using	the	HRFs	extracted	from	the	original	images	and	after	
RKN,	ComBat,	 and	 the	 combination	of	both.	We	also	 calculated	 the	p-values	among	 the	
methods,	as	well	as	the	p-values	for	each	method	compared	to	the	combination	of	methods.	
For	each	pair,	the	difference	in	the	number	of	reproducible	HRFs	was	labeled	“significant”	or	
“not	significant”	depending	on	the	p-value.
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Results

The Effect of Differences in Convolution Kernels on the Reproducibility of HRFs
The	Pyradiomics	toolbox	provides	a	set	of	91	original	HRFs	from	each	VOI.	These	HRFs	are	
divided	into	First	Order	Statistics	(n	=	18),	GLCM	(n	=	22),	GLRLM	(n	=	16);	GLSZM	(n	=	16),	
NGTDM	(n	=	5)	and	GLDM	(n	=	14).	The	number	of	reproducible	HRFs	varied	across	kernels	
and	scanner	models.	Six	HRFs	were	found	to	be	robust	to	changes	in	convolution	kernels	
across	 all	 scanner	 models:	 “Firstorder_10Percentile”,	 “Firstorder_Energy”,	 “Firstorder_
Mean”,	“Firstorder_Median”,	“Firstorder_RootMeanSquared”	and	”Firstorder_TotalEnergy”.
On	 the	Discovery	STE	 scanner	model	 (GE	Medical	 Systems),	 the	number	of	 reproducible	
HRFs	varied	between	6	(6.59%)	and	78	(85.71%).	The	greatest	number	of	reproducible	HRFs	
was	observed	across	scans	acquired	with	Detailed	and	Standard	kernels	(Figure	2).

Figure 2. The	number	of	reproducible	HRFs	across	different	kernels	on	the	Discovery	STE	scanner	model.

On	 the	 Sensation	40	 scanner	model	 (Siemens),	 the	number	of	 reproducible	HRFs	 varied	
between	6	(6.59%)	and	91	(100%).	The	greatest	number	of	reproducible	HRFs	was	observed	
across	scans	acquired	with	B60f	and	B70f	kernels	(Figure	3).

Figure 3. The	number	of	reproducible	HRFs	across	different	kernels	on	the	Sensation	40	scanner	model.
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On	the	SOMATOM	definition	scanner	model	(Siemens),	the	number	of	reproducible	HRFs	
varied	between	6	(6.59%)	and	65	(71.4%).	The	greatest	number	of	reproducible	HRFs	was	
observed	across	scans	acquired	with	I44f	and	I50f	kernels	(Figure	4).

Figure 4. The	number	of	reproducible	HRFs	across	different	kernels	on	the	SOMATOM	Definition	scanner	model.

On	 the	 Sensation	64	 scanner	model	 (Siemens),	 the	number	of	 reproducible	HRFs	 varied	
between	6	(6.59%)	and	91	(100%).	The	greatest	number	of	reproducible	HRFs	was	observed	
across	scans	acquired	with	B60f	and	B70f	kernels	(Figure	5).

Figure 5. The	number	of	reproducible	HRFs	across	different	kernels	on	the	Sensation	64	scanner	model.

On	 the	 Brilliance	 64	 scanner	 model	 (Philips),	 the	 number	 of	 reproducible	 HRFs	 varied	
between	 14	 (15.4%)	 and	 48	 (52.7%).	 The	 greatest	 number	 of	 reproducible	 HRFs	 was	
observed	across	scans	acquired	with	A	and	B	kernels	(Figure	6).

Figure 6. The	number	of	reproducible	HRFs	across	different	kernels	on	the	Brilliance	64	scanner	model.
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The Effects of Pre- and Post-Processing
Reconstruction Kernel Normalization (RKN)
The	number	of	HRFs	that	became	reproducible	following	the	application	of	the	described	
method	varied	with	the	variations	in	kernels	being	harmonized	and	the	scanner	model	used.	
In	most	of	 the	 investigated	 scenarios	 (58	out	of	 67;	 86.6%),	 the	use	of	 this	method	has	
resulted	in	an	increment	in	the	number	of	reproducible	HRFs.	However,	only	19	scenarios	
(28.4%)	 showed	 statistically	 significant	 increments.	 In	 a	 number	 of	 scenarios	 (6	 out	 of	
the	analyzed	67	scenarios	(9%)),	there	was	a	net	loss	in	the	number	of	reproducible	HRFs	
compared	 to	 the	 original,	 2	 (3%)	 of	 which	were	 statistically	 significant	 (Figures	 2–6).	 In	
three	(4.5%)	scenarios,	there	was	no	difference	between	the	number	of	reproducible	HRFs	
extracted	from	the	original	and	the	normalized	images.

On	 the	Discovery	STE	 scanner	model	 (GE	Medical	 Systems),	 the	number	of	 reproducible	
HRFs	 extracted	 from	 the	 scans	 after	 image	 pre-processing	 varied	 between	 8	 (8.8%)	 and	
82	(90.1%).	The	greatest	increment	in	the	number	of	reproducible	HRFs	compared	to	the	
original	images	was	observed	across	scans	acquired	with	Edge	and	Lung	kernels	(Figure	2).

On	the	Sensation	40	scanner	model	(Siemens),	the	number	of	reproducible	HRFs	extracted	
from	the	scans	after	image	pre-processing	varied	between	8	(8.8%)	and	84	(92.3%).	In	this	
scenario,	the	highest	number	of	reproducible	HRFs	decreased	compared	to	those	extracted	
from	the	original	images	for	the	scans	acquired	with	B60f	and	B70f.	The	greatest	increment	
in	the	number	of	reproducible	HRFs	compared	to	the	original	images	was	observed	across	
scans	acquired	with	B50f	and	B70f	kernels	(Figure	3).

On	the	SOMATOM	definition	scanner	model	(Siemens),	the	number	of	reproducible	HRFs	
extracted	from	the	scans	after	image	pre-processing	varied	between	7	(7.7%)	and	69	(75.8%).	
The	greatest	increment	in	the	number	of	reproducible	HRFs	compared	to	the	original	images	
was	observed	across	scans	acquired	with	I50f	and	I70f	kernels	(Figure	4).

On	the	Sensation	64	scanner	model	(Siemens),	the	number	of	reproducible	HRFs	extracted	
from	the	scans	after	image	pre-processing	varied	between	7	(7.7%)	and	86	(94.5%).	In	this	
scenario,	the	highest	number	of	reproducible	HRFs	decreased	compared	to	those	extracted	
from	the	original	images	(B60f	vs.	B70f)	(Figure	5).

On	the	Brilliance	64	scanner	model	 (Philips),	 the	number	of	 reproducible	HRFs	extracted	
from	the	scans	after	image	pre-processing	varied	between	18	(19.8%)	and	49	(53.8%).	The	
greatest	 increment	 in	the	number	of	reproducible	HRFs	compared	to	the	original	 images	
was	observed	across	scans	acquired	with	L	and	C	kernels	(Figure	6).
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ComBat Harmonization
In	65	out	of	the	67	investigated	scenarios	(97%),	there	was	a	net	increase	in	the	number	of	
reproducible	HRFs	compared	to	the	original,	with	36	(53.7%)	scenarios	witnessing	significant	
statistical	increments.	In	two	scenarios,	the	same	number	of	reproducible	HRFs	was	found	
before	and	after	ComBat	harmonization.	 In	46	 (68.7%)	scenarios,	ComBat	harmonization	
outperformed	 the	 RKN	method,	 17	 (25.4%)	 of	 which	were	 statistically	 significant.	 In	 13	
(19.4%)	scenarios,	the	RKN	method	outperformed	ComBat	harmonization,	5	(7.5%)	of	which	
were	statistically	significant	increments.

On	 the	Discovery	STE	 scanner	model	 (GE	Medical	 Systems),	 the	number	of	 reproducible	
HRFs	extracted	from	the	scans	after	ComBat	harmonization	varied	between	9	(9.9%)	and	
79	(86.8%).	The	greatest	increment	in	the	number	of	reproducible	HRFs	compared	to	the	
original	images	was	observed	across	scans	acquired	with	Edge	and	Lung	kernels	(Figure	2).

On	the	Sensation	40	scanner	model	(Siemens),	the	number	of	reproducible	HRFs	extracted	
from	the	scans	after	ComBat	harmonization	varied	between	11	(12.1%)	and	69	(75.8%).	The	
greatest	 increment	 in	the	number	of	reproducible	HRFs	compared	to	the	original	 images	
was	observed	across	scans	acquired	with	B50f	and	B60f	kernels	(Figure	3).

On	the	SOMATOM	definition	scanner	model	(Siemens),	the	number	of	reproducible	HRFs	
extracted	 from	 the	 scans	 after	 ComBat	 harmonization	 pre-processing	 varied	 between	
7	 (7.7%)	 and	 69	 (75.8%).	 The	 greatest	 increment	 in	 the	 number	 of	 reproducible	 HRFs	
compared	 to	 the	original	 images	was	observed	across	 scans	 acquired	with	 I44f	 and	 I70f	
kernels	(Figure	4).

On	the	Sensation	64	scanner	model	(Siemens),	the	number	of	reproducible	HRFs	extracted	
from	the	scans	after	ComBat	harmonization	varied	between	8	(8.8%)	and	91	(100%).	The	
greatest	 increment	 in	the	number	of	reproducible	HRFs	compared	to	the	original	 images	
was	observed	across	scans	acquired	with	B50f	and	B70f	kernels	(Figure	5).

On	the	Brilliance	64	scanner	model	 (Philips),	 the	number	of	 reproducible	HRFs	extracted	
from	the	scans	after	ComBat	harmonization	varied	between	18	(19.8%)	and	53	(58.8%).	The	
greatest	 increment	 in	the	number	of	reproducible	HRFs	compared	to	the	original	 images	
was	observed	across	scans	acquired	with	L	and	C	kernels	(Figure	6).

The Combination of Pre- and Post-Processing
In	63	(95.5%)	out	of	the	67	investigated	scenarios,	there	was	a	net	increase	in	the	number	
of	 reproducible	 HRFs	 compared	 to	 the	 original,	 53	 (79.1%)	 of	 which	 were	 statistically	
significant.	 Three	 (4.5%)	 showed	a	 lower	number	of	 reproducible	HRFs,	with	one	 (1.5%)	
scenario	 showing	 significantly	 fewer	 (p	 <	 0.05).	 The	 same	 number	 of	 reproducible	HRFs	
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was	observed	in	one	(1.5%)	scenario.	In	66	(98.5%)	scenarios,	the	combination	of	methods	
outperformed	 the	 RKN	 method,	 with	 42	 (62.7%)	 being	 significantly	 higher.	 The	 same	
number	of	reproducible	HRFs	was	observed	in	one	(1.5%)	scenario.	With	regards	to	ComBat	
harmonization,	the	combination	of	methods	resulted	in	a	higher	number	of	reproducible	
HRFs	 in	56	 (83.6%)	 scenarios,	 27	 (40.3%)	of	which	were	 statistically	 significant.	A	higher	
number	of	reproducible	HRFs	was	obtained	using	only	ComBat	harmonization	in	10	(14.9%)	
scenarios,	 only	 one	 (1.5%)	 of	 which	 was	 statistically	 significant.	 The	 same	 number	 of	
reproducible	HRFs	was	observed	in	one	(1.5%)	scenario.

On	 the	Discovery	STE	 scanner	model	 (GE	Medical	 Systems),	 the	number	of	 reproducible	
HRFs	 extracted	 from	 the	 normalized	 scans	 after	 ComBat	 harmonization	 varied	 between	
17	 (18.7%)	 and	84	 (92.3%).	 The	greatest	 increment	 in	 the	number	of	 reproducible	HRFs	
compared	to	the	original	images	was	observed	across	scans	acquired	with	Edge	and	Lung	
kernels	(Figure	2).

On	the	Sensation	40	scanner	model	(Siemens),	the	number	of	reproducible	HRFs	extracted	
from	 the	 normalized	 scans	 after	 ComBat	 harmonization	 varied	 between	 16	 (17.6%)	 and	
84	(92.3%).	The	greatest	increment	in	the	number	of	reproducible	HRFs	compared	to	the	
original	images	was	observed	across	scans	acquired	with	B50f	and	B70f	kernels	(Figure	3).

On	the	SOMATOM	definition	scanner	model	(Siemens),	the	number	of	reproducible	HRFs	
extracted	 from	 the	 normalized	 scans	 after	 ComBat	 harmonization	 pre-processing	 varied	
between	9	(9.9%)	and	70	(77%).	The	greatest	increment	in	the	number	of	reproducible	HRFs	
compared	 to	 the	original	 images	was	observed	across	 scans	 acquired	with	 I50f	 and	 I70f	
kernels	(Figure	4).

On	the	Sensation	64	scanner	model	(Siemens),	the	number	of	reproducible	HRFs	extracted	
from	 the	 normalized	 scans	 after	 ComBat	 harmonization	 varied	 between	 11	 (12.1%)	 and	
87	(95.7%).	The	greatest	increment	in	the	number	of	reproducible	HRFs	compared	to	the	
original	images	was	observed	across	scans	acquired	with	B50f	and	B70f	kernels	(Figure	5).

On	the	Brilliance	64	scanner	model	 (Philips),	 the	number	of	 reproducible	HRFs	extracted	
from	the	normalized	scans	after	ComBat	harmonization	varied	between	20	(22%)	and	52	
(57.2%).	 The	 greatest	 increment	 in	 the	 number	 of	 reproducible	 HRFs	 compared	 to	 the	
original	images	was	observed	across	scans	acquired	with	L	and	C	kernels	(Figure	6).
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Discussion

In	this	study,	we	analyzed	the	effects	of	difference	in	convolution	kernels	on	five	different	
scanner	models,	when	all	other	CT	acquisition	and	reconstruction	parameters	were	fixed	
on	 a	 phantom	 dataset.	 We	 further	 investigated	 the	 ability	 of	 an	 image	 pre-processing	
(iterative	normalization	by	frequency	decomposition)	method,	and	an	HRF	post-processing	
harmonization	 (using	 ComBat	 harmonization)	 method.	 Our	 results	 showed	 significant	
differences	 in	 the	number	 of	 reproducible	HRFs	 across	 the	 investigated	 scenarios.	 Scans	
reconstructed	with	 similar	 convolution	 kernels	 showed	a	higher	number	of	 reproducible	
HRFs	 compared	 to	 scans	 reconstructed	 with	 significantly	 different	 convolution	 kernels.	
Similarly,	 the	 performance	 of	 both	 harmonization	methods	 investigated	 varied	with	 the	
differences	in	convolution	kernels	of	the	scans	being	harmonized.

Siemens	 scanner	 models	 (Sensation	 40	 and	 64)	 have	 shown	 the	 reproducibility	 of	 all	
HRFs	across	the	scans	acquired	with	the	higher	end	of	convolution	kernels	(B60	and	B70).	
Convolution	 kernels	 at	 the	opposite	 end	of	 the	 spectrum	 (for	 example,	B10	and	B70	on	
Siemens	 scanners)	 have	 shown	 the	 lowest	 number	 of	 reproducible	 HRFs.	 As	 such,	 our	
results	are	in	line	with	previous	studies	that	reported	that	the	reproducibility	of	HRFs	can	be	
significantly	affected	by	variations	in	convolution	kernels	[38,58-60].

The	use	of	the	RKN	method	on	our	dataset	has	resulted	in	a	range	of	effects	on	the	number	
of	reproducible	features,	from	negative	to	neutral	to	positive,	depending	on	the	scans	being	
compared.	We	have	observed	a	significant	increase	in	the	number	of	reproducible	HRFs	in	
most	scenarios	and	a	decrease	in	the	number	of	reproducible	HRFs	in	some	other	scenarios.	
This	could	be	justified	by	the	possibility	that	the	analyzed	data	in	this	study	included	a	wider	
range	of	convolution	kernels	than	those	used	to	develop	the	method.

The	application	of	ComBat	harmonization	resulted	in	a	higher	number	of	reproducible	HRFs	
compared	to	those	before	harmonization	in	almost	all	of	the	investigated	scenarios,	which	
is	 in	 line	with	previous	reports	 [43,44,61].	Moreover,	on	average,	ComBat	harmonization	
outperformed	 the	 image	 pre-processing	 method.	 The	 performance	 of	 ComBat	 further	
depended	on	the	differences	in	the	convolution	kernels	of	the	scans	being	harmonized.	In	
general,	the	number	of	reproducible	HRFs	after	ComBat	harmonization	followed	a	similar	
pattern	to	that	of	the	number	of	reproducible	HRFs	before	post-processing.	These	findings	
are	in	line	with	previous	studies	that	investigated	the	applicability	of	ComBat	harmonization	
in	radiomics	analyses	[31,34].	The	results	add	to	the	evidence	on	the	need	for	reproducibility	
analyses	in	radiomics	studies,	including	scans	acquired	differently,	as	well	as	the	need	for	
radiomics-specific	harmonization	methods.
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The	combination	of	RKN	and	ComBat	harmonization	methods	resulted	in	a	higher	number	
of	reproducible	HRFs	across	the	majority	of	the	investigated	scenarios.	This	indicates	that	
each	method	 could	be	addressing	 the	 reproducibility	of	HRFs	 in	different	manners,	with	
their	having	been	shown	to	be	complementary	to	each	other	in	many	of	the	investigated	
scenarios.	Nevertheless,	the	combination	resulted	in	a	lower	number	of	reproducible	HRFs	
in	an	appreciated	percentage	of	scenarios	compared	to	ComBat	harmonization	only.	This	
suggests	 the	need	 for	 reproducibility	analysis	before	applying	harmonization	methods	 in	
radiomics	analyses.

We	identified	six	HRFs	that	were	robust	with	respect	to	variations	in	convolution	kernels	across	
all	 the	 investigated	scenarios.	These	HRFs	were	first-order	statistics,	and	their	robustness	
could	be	justified	by	the	standardization	of	HUs	across	scanners.	However,	the	majority	of	
texture	HRFs	were	sensitive	to	the	majority	of	variations	in	convolution	kernels.	Clear	to	the	
eye,	the	standardization	of	image	acquisition	and	reconstruction	parameters	would	be	the	
cornerstone	for	the	translation	of	radiomic	signatures	to	clinical	practice.	The	findings	of	this	
study,	and	previous	experiments,	have	shown	that	the	reproducibility	of	HRFs	significantly	
depends	on	imaging	acquisition	and	reconstruction	parameters.	Therefore,	reproducibility	
analysis	is	needed	for	a	proper	understanding	of	their	performance	or	generalizability	[19].	
Another	potential	solution	would	be	the	development	of	radiomic	signatures	specific	to	a	
set	of	imaging	acquisition	and	reconstruction	parameters.	However,	this	solution	limits	the	
generalizability	of	radiomic	signatures.

While	 we	 tried	 to	 analyze	 all	 the	 kernels	 used	 in	 clinical	 practice,	 we	 were	 limited	 by	
the	 available	 data.	 However,	 the	 results	 have	 shown	 a	 similar	 pattern	 across	 different	
scanner	 models.	 Future	 studies	 that	 include	 a	 wider	 spectrum	 of	 convolution	 kernels	
are	 recommended.	 Furthermore,	 we	 limited	 our	 analyses	 to	 the	 original	 HRFs	 as	 they	
are	 commonly	 standardized	 across	 radiomics	 platforms.	Detailed	 full	 HRF	 reproducibility	
analysis	could	be	beneficial	for	specific	tasks.	Furthermore,	the	analysis	was	performed	on	
a	phantom	dataset	that	was	designed	to	mimic	human	tissues.	However,	 it	only	gives	an	
idea	about	the	reproducibility	of	HRFs	in	the	given	scenarios,	and	similar	analysis	is	needed	
for	 patient	 datasets	 to	 gain	 a	 full	 understanding.	 The	 potential	 of	 other	 harmonization	
methods,	 for	 example,	 dynamic	 range	 limitation	 [62],	 could	 also	 be	 explored	 in	 future	
studies.	 Additionally,	 the	 sensitivity	 of	HRFs	 to	 variations	 in	 segmentations	 could	 not	 be	
assessed	in	this	study,	due	to	the	use	of	automated	segmentations.
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Conclusions

The	reproducibility	of	the	majority	of	HRFs	depended	on	the	variations	 in	reconstruction	
kernels	 in	 the	 data	 being	 analyzed.	 Six	 HRFs	 were	 found	 to	 be	 reproducible	 across	 all	
investigated	scenarios.	Radiomics	analysis	of	scans	acquired	with	different	reconstruction	
kernels	is	not	recommended	in	the	absence	of	reproducibility	analysis.	We	recommend	the	
systematic	 use	 of	 RKN	 and	 ComBat	 harmonization	 in	 future	 radiomics	 studies,	 including	
images	 acquired	 similarly	 except	 for	 the	 reconstruction	 kernel.	 Nevertheless,	 their	
application	should	follow	a	reproducibility	analysis	to	identify	the	set	of	reproducible	HRFs	
after	harmonization.	HRF-specific	harmonization	methods	remain	necessities	in	the	field	of	
radiomics.
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Abstract 

While	handcrafted	radiomic	features	(HRFs)	have	shown	promise	in	the	field	of	personalized	
medicine,	many	hurdles	hinders	 its	 incorporation	 into	 clinical	 practice,	 including	but	not	
limited	to	their	sensitivity	to	differences	in	acquisition	and	reconstruction	parameters.	In	this	
study,	we	evaluated	the	effects	of	differences	in	in-plane	spatial	resolution	(IPR)	on	HRFs,	
using	 a	 phantom	dataset	 (n=14)	 acquired	 on	 two	 scanner	models.	 Further,	we	 assessed	
the	effects	of	interpolation	methods	(IMs),	the	choice	of	a	new	unified	in-plane	resolution	
(NUIR),	 and	 ComBat	 harmonization	 on	 the	 reproducibility	 of	 HRFs.	 The	 reproducibility	
of	HRFs	was	significantly	affected	by	variations	 in	 IPR,	with	pairwise	concordant	HRFs,	as	
measured	 by	 the	 concordance	 correlation	 coefficient	 (CCC),	 ranging	 from	 42%	 to	 95%.	
The	number	of	concordant	HRFs	(CCC	>	0.9)	after	resampling	varied	depending	on	(i)	the	
scanner	model,	(ii)	the	IM,	and	(iii)	the	NUIR.	The	number	of	concordant	HRFs	after	ComBat	
harmonization	depended	on	the	variations	between	the	batches	harmonized.	The	majority	
of	IMs	resulted	in	a	higher	number	of	concordant	HRFs	compared	to	ComBat	harmonization,	
and	the	combination	of	IMs	and	ComBat	harmonization	did	not	yield	a	significant	benefit.	
Our	developed	framework	can	be	used	to	assess	reproducibility	and	harmonizability	of	RFs.

Keywords: Image	Processing,	Harmonization,	Reproducibility,	Radiomics	biomarkers
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Introduction

In	recent	years,	quantitative	medical	imaging	research	using	handcrafted	radiomic	features	
(HRFs)	 has	 been	 growing	 exponentially	 [1,2].	 Radiomics	 refers	 to	 the	 high	 throughput	
extraction	of	quantitative	imaging	features	that	are	expected	to	correlate	with	clinical	and	
biological	characteristics	of	patients	[3,4].	For	decades,	it	has	been	hypothesized	that	image	
texture	analysis	 could	potentially	 extract	more	 information	 from	an	ROI	 than	 that	 solely	
perceived	by	the	human	eye	[5,6].	Yet,	the	term	radiomics	has	only	been	introduced	recently	
[7,8].	HRFs	are	generally	grouped	into	shape,	intensity,	and	textural	features.	To	date,	many	
studies	have	 reported	on	 the	potential	of	 radiomics	 to	predict	 various	 clinical	 endpoints	
[9,10].	However,	major	challenges,	including	the	reproducibility	of	the	HRFs	across	different	
acquisition	and	reconstruction	parameters,	have	hindered	the	incorporation	of	radiomics	in	
clinical	decision	support	systems	[11,12].	

The	essence	of	radiomics	is	that	certain	HRFs	help	decode	biologic	information	[8],	allowing	
these	features	to	be	treated	as	biomarkers.	The	mainstay	of	a	biomarker	 is	 the	ability	to	
quantify	 it	 in	 a	 reproducible	manner	 [13].	 HRFs	 are	mathematical	 equations	 applied	 to	
numeric	arrays	of	intensity	values	which	form	the	medical	image.	Therefore,	it	is	intuitive	that	
changes	in	the	values	in	the	array	(due	to	differences	in	scan	acquisition	and	reconstruction	
parameters),	by	the	transitive	property,	lead	to	(potentially	significant)	quantitative	changes	
in	 the	 HRFs.	 It	 is	 well	 established	 that	 changes	 in	 scan	 acquisition	 and	 reconstruction	
parameters	affect	the	values	in	the	array	representing	the	medical	image	[14].	Therefore,	
it	is	a	common	clinical	practice	to	scan	a	phantom	to	calibrate	the	CT	scanner	on	a	routine	
basis.	Hence,	similar	practices	are	needed	before	radiomics	studies	are	conducted,	when	
the	scans	under	analysis	were	acquired	using	heterogeneous	acquisition	and	reconstruction	
parameters	[15].	Many	studies	have	already	reported	on	the	sensitivity	of	HRFs	to	different	
factors	 including:	 (i)	 temporal	 variability,	 or	 test-retest	 [16,17],	 in	 which	 two	 scans	 of	 a	
patient	(or	a	phantom)	are	taken	after	a	time	interval	using	the	exact	scanning	parameters;	
(ii)	 scanning	parameters	 variability	 [11,18,19],	 in	which	 an	object	 (usually	 a	 phantom)	 is	
scanned	multiple	times	using	different	scanning	parameters.	Variations	in	the	majority	of	
scanner/scanning	parameter	combinations	were	reported	to	impact	the	reproducibility	of	
HRFs	significantly	[18-20].

One	 scan	 reconstruction	parameter	 expected	 to	have	an	effect	on	 the	 reproducibility	 of	
HRFs	is	the	in-plane	spatial	resolution	(IPR),	which	is	dictated	in	part	by	the	pixel	dimensions,	
while	 the	 through-plane	 spatial	 resolution	 is	 determined	by	 the	 slice	 thickness	 and	 slice	
spacing.	Resampling	all	the	scans	in	a	data	set	to	a	new	unified	in-plane	spatial	resolution	
(NUIR)	before	feature	extraction	has	been	employed	as	a	method	to	reduce	the	variation	
in	radiomic	feature	values	[21,22].	The	NUIR	is	usually	decided	based	on	the	most	frequent	
IPR	in	the	dataset	and	different	interpolation	methods	(IMs)	can	be	used	for	this	purpose.	
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Interpolation	 is	 a	 model-based	 method	 to	 recover	 continuous	 data	 from	 discrete	 data	
within	a	known	range	of	data	spacings	(i.e.,	pixel	size	in	images)	[23].	The	degree	to	which	
data	recovery	is	possible	is	highly	sensitive	to	the	interpolation	method	and	the	underlying	
data	 structure.	 In	 the	 case	of	medical	 imaging	analysis,	 interpolation	 is	 employed	either	
to	convert	 the	spatial	 sampling	 rate	 (measured	 in	pixel	or	voxel	count	per	unit	of	 length	
per	dimension)	to	another,	or	to	distort	the	 image	in	the	case	of	 image	registration	[24].	
Since	the	vast	majority	of	HRFs	are	derived	from	pixel/voxel	values	and	their	distributions,	
interpolation	to	a	common	pixel	 spacing	could	potentially	 reduce	variance	 introduced	 to	
these	HRFs	arising	from	differences	in	IPR.

As	 a	 rule,	 one	must	 distinguish	 between	 interpolation	methods	 that	 increase	 or	 reduce	
the	image	resolution.	Interpolation	from	smaller	pixels	to	larger	pixels	(i.e.	reducing	spatial	
resolution)	usually	involves	some	form	of	averaging,	with	the	possible	exception	of	modern	
deep	learning-based	methods.

	Generally,	while	data	acquired	with	 small	pixels	will	 contain	more	noise,	 the	process	of	
averaging	to	 large	pixels	will	ameliorate	the	noise	properties.	As	such,	the	process	 is	 less	
sensitive	 to	 the	 interpolation	method/model.	 Interpolation	 from	 larger	 pixels	 to	 smaller	
pixels	 (i.e.	 increasing	 spatial	 resolution)	 on	 the	other	 hand	 is	 fraught	with	 challenges	 as	
the	interpolated	data	can	be	highly	sensitive	to	the	interpolation	model	due	to	the	need	to	
create	de	novo	pixel	values.	Larger	pixels	average	the	signal	over	a	larger	area	than	smaller	
ones,	leading	to	the	loss	of	variations	in	the	original	scene	that	occur	over	spatial	frequencies	
smaller	than	the	Nyquist	limit	and	cannot	be	recovered	exactly.	

Certain	methods,	 such	 as	 nearest	 neighbour	 interpolation	 (also	 called	 pixel	 replication),	
while	fast,	are	less	accurate	than	other	methods	such	as	sinc	interpolation	or	deep-learning	
methods	 (which	 are	 trained	 with	 representative	 data).	 However,	 all	 such	 interpolation	
methods	are	sensitive	to	biases	arising	from	the	image	[25].	The	application	of	these	methods	
to	medical	imaging	has	been	evaluated	qualitatively	[26].	Yet,	the	effects	of	these	methods	
on	the	reproducibility	of	HRFs	is	not	well	understood.	Unlike	humans,	whose	exposure	to	a	
vast	assortment	of	scanners,	patients,	and	acquisition	conditions	(including	IPR)	leads	to	a	
tolerance	for	such	changes,	IPR	is	likely	to	have	more	profound	effects	on	HRFs.

A	harmonization	method	that	has	become	increasingly	common	in	the	field	of	radiomics	is	
ComBat.	ComBat	was	originally	developed	for	the	harmonization	of	gene	expression	arrays	
[27].	Several	studies	have	 investigated	the	potential	of	ComBat	 in	 radiomics	analysis	and	
recommended	its	use	[28,29].	We	hypothesize	that	ComBat,	the	chosen	IM,	and	the	selected	
NUIR	will	affect	the	reproducibility	of	HRFs	differently.	In	this	study,	the	reproducibility	of	
HRFs	was	 assessed	across	different	 IPRs,	while	 keeping	all	 other	parameters	fixed,	using	
a	 public	 dataset	 of	 CT	 scans	 of	 a	 phantom.	A	 thorough	 investigation	of	 the	 applicability	
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of	10	different	IMs	was	performed	in	an	effort	to	identify	suitable	IMs	for	the	purpose	of	
increasing	the	number	of	reproducible	HRFs	in	a	heterogeneous	dataset.	In	particular,	we	
investigated	whether	data	with	discordant	pixel	sizes	need	to	be	interpolated	to	a	common	
pixel	 size	 to	perform	 radiomics	analysis,	 and	how	 the	choice	of	 IM	and	NUIR,	as	well	 as	
ComBat	harmonization,	 affect	 the	 reproducibility	of	HRFs.	 Furthermore,	we	developed	a	
generalizable	 workflow	 that	 assesses	 the	 impact	 of	 different	 harmonization	 techniques	
(Figure	1)	on	the	reproducibility	of	RFs.	Ultimately,	the	goal	of	our	work	is	to	guide	robust	
radiomics	analysis	to	ease	its	incorporation	in	clinical	decision-making.

Figure 1.	Proposed	reproducible	radiomic	analysis	workflow.

Materials and Methods

Phantom data
The	 publicly	 available	 Credence	 Cartridge	 Radiomics	 (CCR)	 phantom	 data	 [30]	 found	 in	
The	Cancer	Imaging	Archive	(TCIA.org)	[31]	was	used.	The	CCR	phantom	is	composed	of	10	
different	layers	that	correspond	to	different	texture	patterns	spanning	a	range	of	almost	−900	
to	+700	HU	(Figure	S1).	The	publicly	available	dataset	includes	251	scans	of	the	phantom	
acquired	 using	 six	 scanner	models	manufactured	 by	 three	 different	manufacturers.	 The	
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scans	were	acquired	using	various	acquisition	and	reconstruction	parameters	to	assess	the	
reproducibility	of	HRFs.	For	the	purpose	of	this	study,	14	scans	acquired	using	2	different	
scanner	models	(Discovery	STE	&	LightSpeed	Pro	32)	of	the	same	manufacturer	(GE),	which	
were	all	acquired	at	a	single	slice	thickness	(1.25	mm),	tube	voltage	(120	kV),	tube	current	
(250	mA),	 and	 convolution	 kernel	 (standard),	 but	 varying	 IPR	 (Table	 1)	 were	 used.	 The	
reasoning	behind	 this	 selection	 is	multifold:	 (i)	 the	effects	of	 the	variations	are	expected	
to	be	dependent	on	 the	heterogeneity	 in	 acquisition;	 (ii)	 the	number	 and	 complexity	of	
the	different	combinations	available	are	too	huge	to	be	described,	analyzed	and	presented	
in	a	single	experiment;	(iii)	the	data	under	analysis	were	acquired	using	the	same	scanner	
models,	and	the	same	acquisition	and	reconstruction	parameters	except	 for	 the	 in-plane	
resolution,	which	allows	the	assessment	of	the	effect	of	variations	in	this	single	parameter.

Table 1. Scanning	parameters	of	the	phantom	data.

Scanner Pixel spacing (mm2)

Discovery STE LightSpeed Pro 32

CCR-2-001 CCR-2-022 0.39*0.39

CCR-2-002 CCR-2-023 0.49*0.49

CCR-2-003 CCR-2-024 0.59*0.59

CCR-2-004 CCR-2-025 0.68*0.68

CCR-2-005 CCR-2-026 0.78*0.78

CCR-2-006 CCR-2-027 0.88*0.88

CCR-2-007 CCR-2-028 0.98*0.98

Interpolation and image resampling
The	effects	of	the	IMs	included	in	the	popular	open-source	radiomics	toolbox	PyRadiomics	
[33]	were	 assessed	 in	 this	 study.	 The	methods	 are	 based	 on	 the	 python	 library	 Simple-
ITK	[33],	and	include	(i)	nearest	neighbour	(NN),	(ii)	 linear,	(iii)	basis	spline	(B-spline),	 (iv)	
Gaussian,	(v)	Gaussian	using	labelling	(mask)	information	(LabelGaussian),	and	windowed	
sinc	interpolations	using	the	following	window	types:	(vi)	Hamming	(HammingWindowedSinc	
or	 HWS),	 (vii)	 Cosine	 (CosineWindowedSinc	 or	 CWS),	 (viii)	 Welch	 (WelchWindowedSinc	
or	 WWS),	 (ix)	 Lanczos	 window	 (LanczosWindowedSinc	 or	 LWS),	 and	 (x)	 Blackman	
(BlackmanWindowedSinc	or	BWS).

The	simplest	of	these	 IMs,	and	the	ones	with	the	 lowest	computational	costs,	are	(i)	 the	
NN	interpolation,	which	functions	by	assigning	any	new	voxel	the	same	value	as	its	closest	
neighbor	in	the	original	image;	and	(ii)	linear	interpolation,	in	which	the	values	of	new	pixels	
are	interpolated	linearly	between	the	two	original	values	[26].	B-spline	interpolation	is	more	
complex	than	NN	or	linear;	the	calculations	span	four	pixels	[34].	While	the	method	performs	
well	in	terms	of	radiologic	evaluation	in	which	the	aim	is	to	convince	human	observers,	it	
is	known	to	unnecessarily	over-smooth	the	 image	[26].	The	windowed	sinc	functions	are	
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complex	convolution	based	interpolations	that	are	based	on	multiplying	the	sinc	function	
by	a	limited	spatial	support	window	to	reduce	unwanted	effects	on	the	resampled	image	
[35],	followed	by	filtering	of	the	frequencies	to	avoid	the	 injection	of	spurious	frequency	
components.	 Windowed	 sinc	 functions	 are	 generally	 considered	 superior	 to	 other	
interpolation	methods	as	little	superfluous	noise	is	injected	into	the	interpolated	images.

HRFs extraction
Each	scan	contained	10	 independent	regions	of	 interest	(ROIs)	 (one	for	each	 layer	of	the	
phantom)	that	occupy	the	same	physical	area	of	the	phantom	on	each	scan.	For	each	ROI,	
HRFs	 were	 calculated	 using	 the	 open	 source	 software	 Pyradiomics	 V	 2.1.2.	 HRFs	 were	
extracted	multiple	 times	 to	 perform	 different	 experiments.	 First,	 to	 assess	 the	 effect	 of	
differences	in	 in-plane	resolution	and	ComBat	harmonization	on	HRFs,	no	changes	to	the	
original	 in-plane	resolution	were	made.	Second,	 to	assess	the	effect	of	different	 IMs	and	
NUIRs	and	 the	 combination	of	 interpolation	and	ComBat,	HRFs	were	extracted	 from	 the	
scans	using	all	IMs	and	all	available	NUIRs	in	the	dataset	(Table	1).

For	each	set	of	scans	(7	scans,	with	10	ROIs	per	scan)	from	each	scanner	model	(n=2),	HRFs	
were	extracted	71	times.	The	HRFs	were	extracted	one	time	from	the	original	scans,	and	70	
times	with	unique	combinations	of	IM	and	NUIR.	In	each	run,	a	total	of	91	original	RFs	were	
extracted.	In	Pyradiomics,	shape	features	are	calculated	on	the	original	input	image,	and	are	
not	affected	by	the	in-application	resampling.	Therefore,	those	HRFs	were	excluded.	

To	reduce	noise	and	computational	requirements,	 images	were	pre-processed	by	binning	
voxel	 grayscale	 values	 into	 bins	 with	 a	 fixed	 width	 of	 25	 HUs	 for	 extracting	 HRFs	 from	
unfiltered	 images.	 No	 other	 image	 pre-processing	 steps	were	 performed.	 The	 extracted	
HRFs	included	HU	intensity	features,	and	texture	features	describing	the	spatial	distribution	
of	 voxel	 intensities	using	5	 texture	matrices	 (grey-level	 co-occurrence	 (GLCM),	 grey-level	
run-length	 (GLRLM),	 grey-level	 size-zone	 (GLSZM),	 grey-level	 dependence	 (GLDM),	 and	
neighborhood	 grey-tone	 difference	 (NGTDM)	 matrices).	 A	 more	 detailed	 description	 of	
the	Pyradiomics	HRFs	can	be	found	online	(https://pyradiomics.readthedocs.io/en/latest/
features.html).

ComBat harmonization
ComBat	is	an	empirical	Bayes	based	method	used	to	estimate	the	effects	of	different	batches	
on	HRFs;	in	this	scenario,	variations	in	scan	acquisition	and	reconstruction	parameters	were	
considered	[27].	ComBat	method	assumes	that	a	feature	value	can	be	approximated	by	the	
equation.

                                                         (1)
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where 	 is	the	average	value	for	feature	  for	ROI	 j	on	scanner	 i;	X	 is	a	design	matrix	of	
the	biologic	covariates	known	to	affect	the	HRFs;	 	is	the	vector	of	regression	coefficients	
corresponding	to	each	biologic	covariate;	  is	 the	additive	effect	of	scanner	 i	on	HRFs,	
is	 the	multiplicative	scanner	effect,	and	εij	 is	an	error	 term,	presupposed	to	be	normally	
distributed	 with	 zero	 mean.	 Based	 on	 the	 values	 estimated,	 ComBat	 performs	 feature	
transformation	in	the	form	of:

                                                                        (2)

where and 	 are	 estimators	 of	 parameters	 α	 and	 β,	 respectively.	  and  are the 
empirical	Bayes	estimates	of	  and ,	respectively	[28].

Statistical analysis
To	assess	the	agreement	of	a	given	HRF	for	the	same	ROI	scanned	using	different	settings	
and	scanners,	the	concordance	correlation	coefficient	(CCC)	was	calculated	using	the	epiR	
package	 (Version	0.9-99)	 [36]	 and	R	 language	 (Version	3.5.1)	 [37]	with	R	 studio	 (Version	
1.1.456)	 [38].	The	CCC	 is	used	 to	evaluate	 the	agreement	between	paired	 readings	 [38],	
and	provides	the	measure	of	concordance	as	a	value	between	1	and	-1,	where	0	represents	
no	 concordance	 and	 1	 or	 -1	 represent	 a	 perfect	 direct	 positive	 or	 inverse	 concordance,	
respectively.	The	CCC	metric	further	has	the	advantages	of	(i)	robustness	in	small	sample	
sizes,	and	(ii)	taking	the	rank	and	value	of	the	feature	into	consideration	[39].	The	cut-off	of	
(CCC>0.9)	was	used	to	select	reproducible	HRFs,	as	the	literature	suggests	that	values	<	0.9	
indicate	poor	concordance	[40].

Four	different	approaches	for	assessing	concordances	of	HRFs	were	used	(Figure	2):	(i)	HRFs	
extracted	from	the	original	scans;	(ii)	HRFs	extracted	from	the	original	scans	and	harmonized	
using	 ComBat;	 (iii)	 HRFs	 extracted	 from	 resampled	 scans;	 and	 (iv)	 HRFs	 extracted	 from	
resampled	scans	harmonized	using	ComBat.	For	(i),	the	CCC	was	calculated	for	all	HRFs	of	all	
ROIs	across	7	different	scans	from	each	scanner.	In	each	run,	the	CCC	was	calculated	between	
a	different	pair	of	scans.	For	(ii),	HRFs	with	nearly	zero	variance	(i.e	HRFs	which	have	the	
same	value	in	95%	or	more	of	the	data	points)	had	to	be	removed	before	applying	ComBat.	
Parametric	prior	estimations	were	used,	and	no	reference	batch	was	assigned	for	ComBat	
application.	The	CCC	was	calculated	after	harmonizing	the	remaining	HRFs	using	ComBat.	
In	each	run,	ComBat	was	applied	on	two	batches	(scans).	For	(iii),	the	CCC	was	calculated	
for	the	HRFs	following	feature	extraction	with	each	of	the	IMs.	The	effects	of	the	NUIR	were	
assessed	by	calculating	the	CCC	for	the	HRFs	after	resampling	all	 the	scans	to	one	of	the	
available	in-plane	resolutions.	For	(iv),	ComBat	was	applied	after	the	same	process	in	(iii),	
and	the	CCC	was	then	calculated.	To	gauge	an	overall	image	of	the	reproducibility	of	HRFs	
across	all	pairs	as	well	as	the	impact	of	IMs,	NUIRs,	and	ComBat,	the	number	(percentage)	
of	HRFs	that	were	reproducible	by	taking	the	intersection	of	HRFs	that	were	reproducible	in	
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each	pairwise	comparison	of	a	certain	scenario	were	compared	(21	pairs	in	each	scenario	
as	shown	in	tables	2-5).

Figure 2. Reproducibility	analysis	approaches.

Further,	we	 assessed	 the	 correlation	 between	 the	HRFs	 that	were	 concordant	 across	 all	
pairwise	comparisons	on	each	scanner	model,	using	Spearman	correlation	[42].	HRFs	were	
considered	highly	correlated	if	the	Spearman’s	correlation	coefficient	had	a	value	>	0.90.



122 Chapter 6

Results

Approach (i): Effects of IPR on the reproducibility of HRFs
The	number	of	HRFs	insensitive	to	the	variations	in	IPR	depended	on	the	scanner	model	(Tables	
2	 and	S1).	 In	pairwise	 comparisons,	 the	number	of	 concordant	HRFs	was	 lower	when	 the	
difference	in	IPR	between	the	scan	pairs	was	greater.	The	lowest	concordance	was	observed	
between	the	scan	with	the	highest	resolution	and	the	scan	with	the	lowest	resolution.	

Out	of	the	91	extracted	HRFs,	between	39	(42.9%)	and	86	(94.5%)	HRFs	were	concordant,	
varying	 pairwise	 and	 scanner	 wise.	 Some	 HRFs	 were	 robust	 to	 variations	 in	 IPR	 in	 one	
scanner	model,	and	not	in	the	other.

Table 2. Number	of	pair-wise	concordant	HRFs	with	a	CCC	>	0.9	before	resampling,	Discovery	STE	model.

Scan CCR-2-001 CCR-2-002 CCR-2-003 CCR-2-004 CCR-2-005 CCR-2-006

CCR-2-002
CCR-2-003
CCR-2-004
CCR-2-005
CCR-2-006
CCR-2-007

75	(82.4%)
57	(62.6%)
53	(58.2%)
50	(54.9%)
51	(56.0%)
39	(42.9%)

78	(85.7%)
64	(70.3%)
61	(67.0%)
58	(63.7%)
42	(46.2%)

83	(91.2%)
72	(79.1%)
68	(74.7%)
44	(48.4%)

86	(94.5%)
76	(83.5%)
52	(57.1%)

85	(93.4%)
60	(64.9%) 83	(91.2%)

On	 the	 Discovery	 STE	model	 (GE),	 the	 number	 of	 concordant	 HRFs	 ranged	 between	 39	
(42.9%)	and	86	(94.5%),	with	a	median	of	70	(39.6%)	HRFs	(Table	2).	36	(39.6%)	HRFs	were	
reproducible	regardless	of	the	IPR	selected	when	all	other	scanning	parameters	were	fixed	
(List	S1).	Of	these	36	HRFs,	nine	remained	after	removing	highly	correlated	HRFs	(List	S3),	
and	none	was	highly	correlated	with	volume.	Overall,	the	Lightspeed	Pro	32	model	showed	
lower	concordance	than	the	Discovery	STE	model.	The	number	of	pairwise	concordant	HRFs	
on	the	Lightspeed	Pro	32	model	ranged	between	39	(42.8%)	and	82	(90.1%),	with	a	median	
of	60	 (65.9%)	 (Table	S1).	27	 (29.7%)	HRFs	were	 reproducible	across	all	pairs	 (List	S2).	Of	
these	27	HRFs,	nine	remained	after	removing	highly	correlated	HRFs	(List	S4),	and	none	was	
highly	correlated	with	volume.	26	(28.6%)	HRFs	were	reproducible	on	both	scanner	models	
regardless	of	the	IPR.

Approach (ii): ComBat harmonization of HRFs extracted from original scans
ComBat	 harmonization	 increased	 the	 number	 of	 concordant	 HRFs	 compared	 to	 before	
harmonization.	On	the	Discovery	model,	the	increment	in	the	number	(percentage)	of	HRFs	
ranged	between	0	(0%)	and	13	(14.3%),	with	a	median	of	6	(6.6%)	of	the	total	depending	
on	the	batches	being	harmonized	(Table	3).	46	(50.5%)	HRFs	were	found	to	be	reproducible	
across	all	pairwise	comparisons	following	ComBat	harmonization,	35	of	which	were	found	
to	be	highly	correlated.	The	number	of	concordant	HRFs	decreased	with	the	increment	in	
IPR	variation.	Hence,	the	increment	in	the	number	of	concordant	HRFs	was	larger	when	the	
batches	being	harmonized	had	a	larger	difference	in	IPR.
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Table 3. Number	of	pair-wise	concordant	HRFs	with	a	CCC	>	0.9	after	ComBat	harmonization,	Discovery	STE	model.

Scan CCR-2-001 CCR-2-002 CCR-2-003 CCR-2-004 CCR-2-005 CCR-2-006

CCR-2-002
CCR-2-003
CCR-2-004
CCR-2-005
CCR-2-006
CCR-2-007

79	(86.8%)
65	(71.4%)
59	(64.8%)
58	(63.7%)
57	(62.6%)
48	(52.7%)

79	(86.8%)
70	(76.9%)
66	(72.5%)
65	(71.4%)
55	(60.4%)

83	(91.2%)
75	(82.4%)
70	(76.9%)
57	(62.6%)

87	(95.6%)
84	(92.3%)
60	(65.9%)

86	(94.5%)
73	(80.2%) 84	(92.3%)

The	 performance	 of	 ComBat	 had	 a	 similar	 pattern	 on	 both	 the	 Discovery	 STE	 and	 the	
Lightspeed	Pro	32	models.	The	increment	in	the	number	(percentage)	of	concordant	HRFs	
extracted	 from	 the	 scans	 acquired	with	 the	 Lightspeed	 Pro	 32	model	 following	 ComBat	
harmonization	 ranged	 between	 1	 (1.1%)	 and	 14	 (15.4%)	HRFs	with	 a	median	 increment	
of	 7	 (7.7%)	 HRFs	 compared	 to	 before	 harmonization,	 depending	 on	 the	 batches	 being	
harmonized	(Table	S2).	41	(45.1%)	HRFs	were	reproducible	across	all	pairs	following	ComBat	
harmonization,	29	of	which	were	found	to	be	highly	correlated.

Approach (iii): The effects of different IMs and NUIR on HRFs
Different	 interpolation	methods	 showed	different	 effects	 on	 the	 reproducibility	 of	HRFs.	
These	effects	further	depended	on	the	selected	NUIR	and	the	scanner	model	(Figures	3	and	
S2).	For	the	majority	of	combinations	of	scanner	models,	IMs	and	NUIRs,	some	HRFs	were	
only	concordant	when	extracted	 from	the	original	scans,	some	HRFs	became	concordant	
only	after	resampling,	while	some	lost	their	concordance	following	resampling	(tables	S5	
and	S6).	CSW	resampling	to	the	highest	and	lowest	resolutions	are	used	below	as	detailed	
examples	on	both	scanner	models.

Figure 3. The	percentage	of	concordant	HRFs	following	resampling	compared	to	no	resampling	with	linear	
trendlines,	Discovery	STE	model.
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On	the	Discovery	STE	model,	the	use	of	windowed	sinc	IMs	resulted	in	an	overall	increment	
in	 the	number	of	 reproducible	HRFs,	 regardless	of	 the	NUIR	selected.	The	range	of	HRFs	
that	had	an	improved	concordance	across	all	pairs	when	using	windowing	sinc	was	between	
14	 (15.4%)	and	20	 (22%)	HRFs,	depending	on	 the	NUIR.	When	scans	were	 resampled	 to	
the	highest	resolution	using	CWS,	the	increment	in	the	number	of	concordant	HRFs	ranged	
between	-2	(-2.2%)	and	36	(39.6%),	with	a	median	of	12	(13.2%)	HRFs.	Moreover,	47	(51.6%)	
HRFs	were	concordant	across	all	pairs.	When	scans	were	resampled	to	the	lowest	resolution	
using	CWS,	the	increment	in	the	number	of	concordant	HRFs	ranged	between	4	(4.4%)	and	
35	 (38.5%),	with	a	median	of	16	 (17.6%)	HRFs.	54	 (59.3%)	HRFs	were	concordant	across	
all	pairs.	Table	4	shows	the	pairwise	number	(percentage)	of	reproducible	HRFs	following	
resampling	to	the	median	IPR	value	with	CWS	IM	on	the	Discovery	model,	for	comparison	
with	table	5.

Table 4. Number	of	pair-wise	concordant	HRFs	with	a	CCC	>	0.9	after	resampling*	using	CWS,	Discovery	model.

Scan CCR-2-001 CCR-2-002 CCR-2-003 CCR-2-004 CCR-2-005 CCR-2-006

CCR-2-002
CCR-2-003
CCR-2-004
CCR-2-005
CCR-2-006
CCR-2-007

89	(97.8%)
86	(94.5%)
86	(94.5%)
86	(94.5%)
78	(85.7%)
53	(58.2%)

88	(96.7%)
85	(93.4%)
88	(96.7%)
77	(84.6%)
53	(58.2%)

88	(96.7%)
91	(100%)
83	(91.2%)
55	(60.4%)

89	(97.8%)
79	(86.8%)
54	(59.3%)

88	(96.7%)
60	(65.9%) 85	(93.4%)

*	All	scans	were	resampled	to	the	median	pixel	spacing	value	(0.49*0.49	mm2).

HWS	performed	the	best	when	the	 images	were	resampled	to	a	NUIR	equal	 to	or	 lower	
than	the	median	(0.49*0.49	mm2),	while	CWS,	WWS	and	LWS	methods	performed	better	
on	 NUIR	 values	 higher	 than	 the	 median.	 BSpline	 IM	 resulted	 in	 a	 minor	 to	 significant	
increment	in	the	number	of	reproducible	HRFs,	with	higher	number	of	concordant	features	
when	higher	NUIRs	where	chosen.	Gaussian	and	Label-Gaussian	IMs	consistently	resulted	
in	lower	numbers	of	concordant	HRFs.	The	number	of	HRFs	losing	concordance	across	all	
pairs	when	using	a	Gaussian	IM	ranged	between	-29	(-31.9%)	and	-30	(-33%)	HRFs,	while	
the	range	for	LabelGaussian	was	between	-11	(-12.1%)	and	-19	(-20.9%)	HRFs,	depending	
on	the	NUIR.	The	rest	of	IMs	(NN	and	Linear)	resulted	in	an	overall	decrease	in	the	number	
of	concordant	HRFs	when	a	NUIR	below	the	median	resolution	was	selected,	and	a	minor-
significant	improvement	with	NUIRs	higher	than	the	median	resolution	(Table	S5).

On	the	Lightspeed	Pro	32	model,	windowed	sinc	IMs	(except	for	BWS)	showed	a	consistent	
increment	in	the	number	of	reproducible	HRFs,	and	varying	depending	on	the	NUIR.	When	
scans	were	resampled	to	the	highest	resolution	using	CWS,	the	increment	in	the	number	of	
concordant	HRFs	ranged	between	-9	(-9.9%)	and	36	(39.6%),	with	a	median	of	8	(8.8%)	HRFs.	
30	(33%)	HRFs	were	concordant	across	all	pairs.	When	scans	were	resampled	to	the	lowest	
resolution	using	CWS,	the	increment	in	the	number	of	concordant	HRFs	ranged	between	-3	
(-3.3%)	and	31	(34.1%),	with	a	median	of	16	(17.6%)	HRFs.	38	(41.8	%)	HRFs	were	concordant	
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across	 all	 pairs.	 Table	 S3	 shows	 the	 pairwise	 number	 (percentage)	 of	 concordant	 HRFs	
following	resampling	to	the	median	IPR	value	with	CWS	IM	on	the	LightSpeed	Pro	32	model,	
for	comparison	with	table	S4.	The	application	of	other	IMs	(BWS,	NN,	Linear,	Gaussian	and	
Label-Gaussian)	with	a	NUIR	other	than	the	two	lowest	resolutions	available	resulted	in	an	
overall	decrease	in	the	number	of	concordant	HRFs.	However,	when	the	lowest	resolution	
was	 selected	as	NUIR,	BSpline	 IM	outperformed	all	other	methods	when	 the	number	of	
concordant	HRFs	across	all	pairs	was	considered	(Table	S6).

Approach (iv): The combination of IMs and ComBat harmonization
Approach	(iii)	resulted	in	a	higher	number	of	concordant	HRFs	in	the	majority	of	pairwise	
scenarios	compared	to	approach	(ii)	for	the	majority	of	IMs	that	performed	solely	well	(for	
example,	table	3	vs	table	4).	The	application	of	ComBat	harmonization	on	HRFs	extracted	
from	resampled	scans	varied	per	scanner	model,	IMs,	NUIRs,	and	batches.	However,	when	
the	number	of	concordant	HRFs	across	all	pairs	is	considered,	ComBat	increased	the	number	
of	concordant	HRFs	in	almost	all	of	the	investigated	scenarios	(Figures	4	and	S3;	tables	S7	
and	S8).

Figure 4. The	percentage	of	concordant	HRFs	following	resampling	and	ComBat	harmonization	
compared	to	no	resampling	with	linear	trendlines,	Discovery	STE	model.

On	 the	Discovery	model,	 the	 increment	 in	 the	number	 (percentage)	of	 concordant	HRFs	
extracted	 from	 scans	 resampled	 to	 the	 highest	 resolution	 after	 ComBat	 harmonization	
ranged	between	0	(0%)	and	10	(11%),	with	a	median	increment	of	0	(0%)	of	the	total	number	
of	HRFs	compared	 to	before	harmonization.	54	 (59.3%)	HRFs	were	concordant	across	all	
pairs.	When	ComBat	was	applied	on	HRFs	extracted	from	scans	resampled	to	the	 lowest	
resolution,	the	increment	in	the	number	(percentage)	of	HRFs	ranged	between	-1	(-1.1%)	
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and	10	(11%)	HRFs,	with	a	median	of	0	(0%),	depending	on	the	batches	being	harmonized.	
61	(67%)	were	found	to	be	stable	across	all	pairs.	Table	5	shows	the	Number	of	pair-wise	
concordant	HRFs	following	the	application	of	ComBat	on	scans	acquired	on	the	Discovery	
STE	model,	and	resampled	to	the	median	IPR	value	using	CWS	IM.

Table 5. Number	of	pair-wise	concordant	HRFs	with	a	CCC	>	0.9	after	ComBat	following	resampling*	using	CWS,	
Discovery	STE	model.

Scan CCR-2-022 CCR-2-023 CCR-2-024 CCR-2-025 CCR-2-026 CCR-2-027

CCR-2-023
CCR-2-024
CCR-2-025
CCR-2-026
CCR-2-027
CCR-2-028

89	(97.8%)
86	(94.5%)
86	(94.5%)
86	(94.5%)
79	(86.8%)
57	(62.6%)

88	(96.7%)
85	(93.4%)
88	(96.7%)
78	(85.7%)
61	(67.0%)

88	(96.7%)
91	(100%)
84	(92.3%)
60	(65.9%)

89	(97.8%)
84	(92.3%)
59	(64.8%)

89	(97.8%)
72	(79.1%) 85	(93.4%)

*	All	scans	were	resampled	to	the	median	pixel	spacing	value	(0.49*0.49	mm2).

On	the	LightSpeed	Pro	32	model,	the	increment	in	the	number	(percentage)	of	concordant	
HRFs	after	ComBat	harmonization	on	HRFs	extracted	from	scans	resampled	to	the	highest	
resolution	 (lowest	concordance)	 ranged	between	 -1	 (-1.1%)	and	13	 (14.3%)	HRFs,	with	a	
median	of	 3	 (3.3%)	 of	 the	 total	 number	of	HRFs	 compared	 to	 before	harmonization.	 42	
(46.2%)	HRFs	were	concordant	across	all	pairs.	When	ComBat	was	applied	on	HRFs	extracted	
from	scans	resampled	to	the	lowest	resolution	(highest	concordance),	the	increment	in	the	
number	(percentage)	of	HRFs	ranged	between	0	(0%)	and	10	(11%)	HRFs,	with	a	median	
increment	of	1	 (1.1%)	 feature.	51	 (56%)	HRFs	were	 concordant	across	all	 pairs.	 Table	S4	
shows	 the	pairwise	CCC	 following	 the	application	of	ComBat	on	scans	acquired	with	 the	
LightSpeed	Pro	32	model,	and	resampled	to	the	median	IPR	value	using	CWS	IM.

Discussion

In	 this	 study,	 the	 effects	 of	 variations	 in	 scans’	 IPR	 on	 the	 reproducibility	 of	 HRFs,	 the	
proper	methodology	of	 identifying	HRFs	 that	 are	 reproducible	 across	different	 IPRs,	 and	
how	 to	 properly	 adjust	 for	 these	 differences	 before	 performing	 radiomics	 analysis	 using	
image	interpolation	and/or	ComBat	harmonization	were	thoroughly	investigated.	Uniquely,	
this	 study	 evaluates	 the	 effects	 of	 all	 the	 different	 IMs	 and	 the	 choice	 of	 NUIRs	 on	 the	
reproducibility	of	HRFs.	Previous	studies	usually	investigated	a	single	IM	with	a	single	NUIR	
[21,22].

While	 two	batches	of	scans	acquired	with	the	same	 imaging	parameters	on	two	scanner	
models	of	the	same	vendor	were	used	for	analysis,	the	effects	of	IPR,	ComBat,	IMs,	and	NUIR	
on	the	reproducibility	of	HRFs	varied	on	each	of	the	scanner	models.	The	CCC	was	calculated	
pairwise	 to	 assess	 the	 reproducibility	 of	HRFs	when	 different	 sets	 of	 data	were	 used	 as	
batches.	Calculating	the	pairwise	CCC	between	HRF	values	extracted	before	resampling	the	
images	revealed	that	the	reproducibility	of	HRFs	in	our	data	depended	on	several	factors	
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including,	but	not	limited	to,	the	definition	of	the	HRF,	the	degree	of	variation	in	IPR,	and	
the	scanner	(hardware)	make/model.	Addressing	the	effects	of	these	factors	is	crucial	for	
performing	robust	radiomics	analysis.

Without	performing	image	preprocessing,	the	number	of	reproducible	HRFs	varied	according	
to	the	batches	being	assessed.	The	aim	of	this	study	was	to	show	that	different	investigated	
scenarios	showed	different	numbers	of	reproducible	HRFs.	Therefore,	although	36	HRFs	for	
the	Discovery	STE	scanner	(27	HRFs	for	LightSpeed	Pro	32	scanner)	were	always	included	in	
the	set	of	concordant	HRFs,	it	is	difficult	to	conclude	that	these	HRFs	are	insensitive	to	spatial	
resolution	on	all	other	scanner	models	based	on	our	experiments.	Yet,	our	framework	guides	
the	methodology	of	identifying	reproducible	HRFs	according	to	the	data	under	analysis.	As	
we	have	shown,	the	number	and	type	of	HRFs	is	at	least	sensitive	to	the	scanner	model	by	
the	same	manufacturer.	Moreover,	we	anticipate	based	on	their	definition,	that	certain	HRFs	
(such	 as	 histogram-based	 features)	 are	 less	 sensitive,	while	 others	 (eg.	 texture	 features)	
are	more	sensitive	to	variations	in	scanning	parameters	and/or	imaging	vendors.	Generally,	
scans	with	more	similar	original	IPRs,	and	those	of	integer	multiples	of	IPR	showed	higher	
numbers	 of	 concordant	HRFs	 before	 and	 after	 resampling.	 This	 can	 be	 explained	by	 the	
mechanisms	by	which	a	 scan	 is	acquired.	When	all	other	 scanning	parameters	are	fixed,	
the	variations	in	IPR	will	result	in	variations	in	the	number	of	pixels	in	2D,	while	the	other	
dimensions	are	preserved.	Therefore,	when	all	other	parameters	are	fixed,	the	closer	the	
IPR	values	are,	the	closer	the	values	of	the	extracted	HRFs.

For	 the	 IMs,	 the	 number	 of	 HRFs	 that	 had	 better/worse	 concordance	 after	 resampling	
was	 dependent	 on	 the	NUIR	 chosen	 and	 scanner	model.	 The	window	 sinc	 interpolation	
family	performed	consistently	better	on	both	scanners	and	NUIRs	investigated.	In	the	field	
of	radiology,	both	NN	and	linear	are	known	to	result	in	imprecisions	[26,35].	A	study	into	
the	reproducibility	of	HRFs	investigated	the	performance	of	B-spline,	 linear	and	NN	using	
a	 single	 image	 slice	 thickness,	 and	concluded	 that	NN	 is	not	a	 favorable	method	 for	 the	
reproducibility	of	HRFs	[42].	Our	results	support	these	previous	reports	by	showing	that	NN	
and	linear	IMs	are	not	the	best	candidates	for	improving	the	reproducibility	of	HRFs	among	
scans	acquired	with	different	IPRs,	and	their	use	led	to	lower	numbers	of	concordant	HRFs	
in	many	of	the	investigated	scenarios.

With	regard	to	the	selection	of	NUIR,	a	common	trend	of	an	inverse	relationship	between	
the	NUIR	and	the	number	of	concordant	HRFs	following	resampling	was	observed.	This	trend	
was	 observed	 in	 both	 scanner	models	 investigated.	 However,	 the	 percentage	 difference	
between	 the	 concordant	HRFs	 is	 not	 significant	 at	 the	 lower	 end	 of	 the	NUIR	 spectrum	
(Figures	3,	4,	S2	and	S3;	tables	S5	and	S6).	As	the	best	NUIR	is	expected	to	be	task	dependent	
(for	 e.g	 classification	of	 a	 lesion,	predicting	 response	 to	 therapy	or	overall	 survival,	 etc),	
outcome-based	analysis	is	needed	to	determine	the	best	NUIR.	Yet,	as	a	general	rule,	the	
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smaller	the	NUIR,	the	better	the	concordance.	In	addition,	while	the	number	of	non-highly	
correlated	HRFs	was	found	to	be	low	on	both	scanner	models	(9	and	11	HRFs	before	and	
after	ComBat	harmonization,	respectively),	the	exclusion	of	highly	correlated	HRFs	should	
be	performed	based	on	the	effects	of	the	removal	of	these	HRFs	on	the	model	performance.

A	 previous	 study	 investigated	 the	 effects	 on	 HRFs	 of	 voxel	 size	 resampling	 using	 linear	
interpolation.	The	authors	resampled	the	scans	of	a	phantom	to	a	single	voxel	size,	which	
was	larger	than	the	largest	voxel	size	in	the	original	scans,	and	reported	that	around	20%	of	
the	HRFs	(N=213)	became	concordant	after	resampling	[22].	Another	study	also	investigated	
the	effects	of	voxel	size	on	HRFs	of	lung	cancer	patients	[21].	The	authors	resampled	all	the	
scans	to	a	single	common	voxel	size	using	linear	interpolation,	and	reported	that	resampling	
does	 not	 eliminate	 all	 the	 variations	 in	 feature	 values	 even	 when	 the	 only	 variation	 in	
scan	acquisition	and	reconstruction	parameters	was	the	voxel	size,	but	 is	 favorable	to	no	
resampling.	Another	group	 investigated	the	effects	of	variation	 in	several	acquisition	and	
reconstruction	parameters	on	a	13-layer	phantom	using	a	different	approach,	and	reported	
that	 resampling	 the	 scans	 to	 isotropic	 voxels	 increased	 the	 percentage	 of	 concordant	
HRFs	from	59.5%	to	89.3%	[43].	 In	this	study,	we	found	a	similar	conclusion:	the	number	
of	previously	non-concordant	HRFs	 that	became	concordant	 following	 resampling	 to	 the	
lowest	resolution	ranged	between	1.1%	and	22%	depending	on	the	 IM,	and	not	all	HRFs	
benefit	from	image	resampling.	

In	contrast	to	previous	studies,	we	investigated	more	IMs	and	harmonization	techniques,	
and	 propose	 a	 guideline	 on	 how	 to	 carefully	 approach	 HRFs	 reproducibility	 studies.	
Furthermore,	we	found	that	linear	interpolation	is	not	a	good	candidate	for	the	purpose	of	
improving	the	reproducibility	of	HRFs,	when	compared	to	other	available	IMs;	and	that	the	
performance	of	an	IM	is	dependent	on	the	original	IPR	values	and	the	chosen	NUIR,	as	well	
as	the	imaging	vendor.	

When	pairwise	comparisons	were	considered,	the	performance	of	ComBat	harmonization	
was	found	to	be	inferior	to	that	of	well-performing	IMs,	regardless	of	the	NUIR.	Moreover,	
the	combination	of	ComBat	and	the	well-performing	IMs	did	not	yield	significantly	better	
results	compared	to	solely	using	the	IM.	Furthermore,	the	performance	of	ComBat	varied	
depending	on	the	batches	used.	Nevertheless,	when	the	number	of	concordant	HRFs	across	
all	pairs	was	considered,	ComBat	harmonization	was	of	added	value	in	almost	all	scenarios.	
Therefore,	ComBat	application	on	HRFs	should	follow	a	reproducibility	study	(phantom	or	
tissue	studies)	to	assess	the	impact	of	ComBat	on	the	reproducibility	of	HRFs	in	those	settings,	
and	use	only	the	harmonizable	HRFs	for	further	radiomics	analyses	[15],	as	described	in	the	
workflow	(Figure	1).	The	application	of	ComBat	without	assessing	HRFs’	reproducibility	as	
described	may	result	in	the	inclusion	of	a	high	percentage	of	unreproducible	HRFs,	or	even	
the	 loss	of	some	of	 the	HRFs	that	were	originally	 reproducible,	 rendering	the	analysis	of	
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these	HRFs	meaningless.	This	finding	regarding	ComBat	harmonization	 is	not	 in	 line	with	
previous	 reports,	 which	 reported	 that	 ComBat	 successfully	 removes	 the	 batch	 effects	
for	all	HRFs	[28,44].	This	could	be	attributed	to	the	differences	 in	the	radiomics	software	
and/or	 the	 evaluation	 metrics	 used.	 In	 contrast	 to	 previous	 studies,	 and	 as	 the	 aim	 of	
harmonization	is	to	improve	reproducibility	but	necessarily	the	performance	of	generated	
radiomic	models,	we	opted	for	the	CCC.	The	CCC	provides	an	accurate	description	of	the	
reproducibility	of	HRFs,	which	 is	not	reflected	 in	neither	the	distribution	of	HRFs	nor	the	
performance	of	 radiomics	models	 [45].	 If	 radiomic	models	 are	 to	 be	used	 clinically,	 it	 is	
expected	 to	 be	 applied	 to	 one	 patient	 per	 time.	 Therefore,	 the	 importance	 has	 been	
given	in	this	study	to	the	individual	feature	values,	and	not	their	distributions.	HRFs	with	
different	values	and	order	 rank	can	share	similar	distributions,	 in	which	case	 the	 feature	
cannot	be	considered	reproducible.	 In	addition,	different	modeling	 techniques	may	yield	
significantly	different	results	on	the	same	dataset.	Hence,	the	difference	in	the	performance	
of	a	radiomic	signature	before	and	after	harmonization	does	not	necessarily	inform	about	
the	performance	of	 the	harmonization	method.	Our	proposed	 framework	addresses	 this	
issue,	and	guides	the	selection	of	reproducible	and	harmonizable	HRFs	before	developing	a	
radiomic	signature,	which	helps	the	translation	and	generalization	of	results,	and	ultimately	
the	inclusion	of	radiomic	signatures	in	clinical	practice.

Of	 note,	 not	 all	 HRFs	 benefit	 from	 resampling	 all	 scans	 to	 a	 NUIR,	 or	 using	 ComBat	
harmonization.	Some	HRFs	lost	their	concordance	following	resampling,	depending	on	the	
IM	employed	and	the	chosen	NUIR.	The	combination	of	IMs	and	NUIRs	affected	the	HRFs	
differently	on	different	scanner	models.	Some	HRFs	were	not	found	to	be	concordant	on	one	
of	the	scanner	models	before	or	after	resampling	to	any	of	the	available	NUIRs	using	any	of	
the	IMs,	but	were	found	to	be	concordant	on	the	other	scanner	model.	Other	HRFs	were	
found	to	be	concordant	across	different	scanner	models	and	IPRs.	These	findings	indicate	
the	need	for	performing	reproducibility	studies	depending	on	the	data	under	study,	and	the	
fact	that	at	this	level,	we	are	unable	to	provide	a	list	of	HRFs	that	can	be	used	regardless	
of	 the	 acquisition	 and	 reconstruction	parameters	 and	 scanner	models	 used.	However,	 it	
lays	down	the	bases	for	identifying	reproducible	HRFs	before	performing	data	analysis.	In	
real	life	scenarios,	the	variations	between	the	imaging	parameters	in	retrospective	cohorts	
(especially	multicentric)	are	usually	not	only	 limited	 to	 the	 IPR.	Aside	 from	the	 scanner/
scanning	 parameters	 combination	 variations,	 some	 of	 the	 effects	 will	 be	 attributed	 to	
patient	 populations.	 Furthermore,	 while	 phantom	 studies	 reflect	 on	 the	 reproducibility	
of	 HRFs	 extracted	 from	 anthropomorphic	 phantoms,	 HRFs	 extracted	 from	 human	 tissue	
are	expected	to	have	a	wider	range	of	variations,	due	to	the	inclusion	of	biologic	factors.	
This	 knowledge,	 combined	with	our	 findings,	 necessitate	 the	 critical	 investigation	of	 the	
reproducibility	of	HRFs	across	the	different	scanning	parameters/scanners	before	performing	
any	statistical	analysis,	and	future	investigations	into	the	effects	of	differences	in	acquisition	
and	reconstruction	parameters	on	the	reproducibility	of	HRFs	extracted	from	human	tissues,	
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if	feasible.	Directly	performing	radiomics	analysis	on	data	acquired	heterogeneously	leads	to	
spurious	results,	and	lacks	meaningful	interpretation.	Henceforth,	we	reiterate	the	need	for	
using	our	proposed	robust	radiomics	analysis	framework	for	addressing	differences	in	IPR.	
Furthermore,	the	workflow	can	be	generalized	to	evaluate	other	harmonization	methods.

Conclusions

The	reproducibility	of	a	given	HRF,	and	its	harmonizabilty	with	ComBat	are	not	constants,	
but	 depended	 on	 the	 degree	 of	 variation	 in	 a	 single	 reconstruction	 parameter	 (the	 in-
plane	resolution)	of	the	scans	being	analyzed.	This	 implies	that	additional	changes	in	the	
acquisition	and	reconstruction	parameters	could	further	reduce	the	number	of	reproducible	
and	harmonizable	HRFs.	When	scans	acquired	with	different	IPR	values	are	to	be	analyzed,	
resampling	 the	scans	 to	a	unified	 resolution	can	significantly	 improve	 the	 reproducibility	
of	HRFs.	 Interpolation	methods	 (CWS,	HWS,	BWS,	WWS	and	B-spline)	were	 found	 to	be	
superior	 to	 ComBat	 harmonization	 alone	 in	 addressing	 the	 variations	 in	HRFs	 attributed	
to	 differences	 in	 IPR,	 and	 the	 combination	 of	 an	 IM	with	 ComBat	 following	NUIR	 could	
increase	 the	 number	 of	 reproducible	 HRFs	 in	 some	 scenarios.	 The	 application	 of	 our	
proposed	 framework	 aids	 the	 selection	 of	 data-	 and	 outcome-specific	 interpolation	 and	
harmonization	methods,	and	is	expected	to	improve	the	translation	and	generalizability	of	
radiomics	analyses.
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Abstract

Medical	 imaging	 plays	 a	 key	 role	 in	 evaluating	 and	 monitoring	 lung	 diseases	 such	 as	
chronic	obstructive	pulmonary	disease	(COPD)	and	lung	cancer.	The	application	of	artificial	
intelligence	 (AI)	 in	medical	 imaging	has	 transformed	medical	 images	 into	mineable	data,	
by	 extracting	 and	 correlating	 quantitative	 imaging	 features	with	 patients’	 outcomes	 and	
tumor	phenotype	–	a	process	termed	radiomics.	While	this	process	has	already	been	widely	
researched	in	lung	oncology,	the	evaluation	of	COPD	in	this	fashion	remains	in	its	infancy.	
Here	we	outline	the	main	applications	of	radiomics	 in	 lung	cancer	and	briefly	review	the	
workflow	from	image	acquisition	to	the	evaluation	of	model	performance.	Finally,	we	discuss	
the	current	assessments	of	COPD	and	the	potential	application	of	radiomics	in	COPD.		
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Introduction

Chronic	obstructive	pulmonary	disease	(COPD)	is	one	of	the	most	prevalent	lung	diseases,	
with	an	estimated	328	million	people	worldwide	being	affected,	and	 in	two	decades	 it	 is	
expected	to	become	the	leading	cause	of	death	globally	[1].	COPD is characterised by the 
limitation	of	airflow,	which	can	be	measured	using	spirometry.		It	is	not	completely	reversible	
and	is	often	caused	by	exposure	to	noxious	particles	or	gas	(e.g.	cigarette	smoking)	which	
creates	an	 inflammatory	 response	 in	 the	 lung. [2,	3].	COPD	 is	a	multicomponent	disease	
comprising	of	a	combination	of	bronchiolitis,	emphysema	and	extrapulmonary	effects	[4].	
While	spirometry	can	measure	airflow	limitation,	the	contributions	of	large	and	small	airway	
involvement	and	the	extent	and	contribution	of	parenchyma	destruction	cannot	be	assessed	
[5].	Imaging	by	means	of	computed	tomography	(CT)	has	an	increasing	role	in	evaluation	of	
COPD	since	CT-features	can	suggest	the	presence	and	severity	of	COPD.	These	features	can	
be	assessed	visually	[6]	,	but	research	is	in	advanced	stages	to		automate	the	quantification	
of	emphysema	extent	and	distribution	[7-10],	airway	wall	thickness	[11],	and	small	airways	
disease	[12].

Lung	cancer	is	the	other	predominant	lung	disease,	being	one	of	the	world’s	most	prevalent	
cancers [13-16].	Globally,	lung	cancer	is	the	most	commonly	diagnosed	cancer	(around	11%	
of	all	cancers	in	both	sexes),	and	the	world’s	leading	cause	of	cancer	related	mortality	(around	
18%	of	 total	 cancer	 related	mortality)	 [17].	 Lung	 cancers	 can	be	divided	 into	 two	broad	
groups,	small	cell	lung	cancer	(SCLC)	and	non-small	cell	lung	cancer	(NSCLC)	[18].	NSCLC	can	
be	further	divided	into	subgroups	according	to	histopathology	into	squamous	cell	carcinoma	
(SCC)	 and	 adenocarcinoma	 (ADC)	 [19].	 	 COPD	has	been	 shown	 to	be	 a	major	 additional	
risk	 factor	 for	 the	development	of	 lung	cancer,	 specifically	 squamous	cell	 carcinoma	 [20,	
21].	Discovering	the	link	between	COPD	and	lung	cancer	has	drawn	significant	attention	in	
recent years [22].	It	has	been	shown	that	COPD	and	lung	cancer	share	similar	pathological	
processes [23],	while	smoking	cigarettes	is	one	important	common	factor	that	causes	both	
COPD	and	lung	cancer	[20],	and	patients	with	COPD	and	NSCLC	have	poor	survival	outcomes	
compared	to	NSCLC	patients	without	COPD	[24].	The	link	of	pathophysiologic	mechanisms	
between	COPD	and	lung	cancer	is	still	not	well	understood	(Fig.	1)[25].	
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Figure 1.	Different	distributions	of	HU	values	extracted	from	the	ROI	(purple	outline)	for	a)	normal	tissue,	b)	COPD	
tissue,	and	c)	lung	tumor.

The	 treatment	 of	 patients	 suffering	 from	 either	 disease	 would	 be	 greatly	 improved	 by	
personalised	 approaches,	where	 patients	 are	 treated	 based	 on	 their	 and	 their	 diseases’	
individual	 characteristics	 rather	 than	 sub-population	 statistics	 gained	 from	 clinical	 trials.	
Which	 role	 artificial	 intelligence	 will	 play	 on	 the	 path	 to	 this	 paradigm	 shift	 towards	
individualised	 treatment	 selection	 is	 being	 extensively	 investigated	 [26].	 For	 example,	
biopsies	are	used	in	clinical	practice	to	phenotype	the	tumor,	but	the	heterogeneous	nature	
of	cancer	cells	 limits	 the	biopsy’s	capacity	 to	 fully	capture	 its	condition	 [27,	28].	Medical	
imaging,	 on	 the	 other	 hand,	 has	 the	 potential	 to	 noninvasively	 asses	 the	 phenotypic	
differences	 of	 tumors	 in	 	 three	 dimensions	 [29]	 and	 has	 recently	 experienced	 great	
advances	in	the	field	of	AI	[30,	31].	In	particular,	radiomics,	or	quantitative	image	analysis	
(QIA)	–	the	high-throughput	extraction	of	quantitative	features	from	medical	 images	and	
their	correlation	with	diagnostic	and	prognostic	outcomes	–	has	been	researched	to	decode	
tumor	 phenotypes	 from	 a	 number	 of	 modalities	 such	 as	 computed	 tomography	 (CT),	
magnetic	 resonance	 imaging	 (MRI),	and	positron	emission	 tomography	 (PET).	Thousands	
of	quantitative	radiomic	features	can	be	extracted	from	each	region	of	 interest	(ROI)	and	
further	analysed	using	machine	learning	tools	to	investigate	correlations	with	biological	and	
clinical	endpoints	[32-37].	Therefore,	the	application	of	radiomics	to	both	COPD	and	lung	
cancer	may	 improve	the	clinical	workflow	in	diagnosing,	managing,	and	following	up	the	
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patients.	 It	 can	 provide	 non-invasive,	 reliable	 and	 cost-effective	 clinical	 decision	 support	
systems,	decreasing	the	need	for	invasive	procedures.

The workflow of radiomics
The	 process	 of	 handcrafted	 radiomics	 consists	 of	 several	 steps	 (Fig	 2):	 (1)	 collection	 of	
medical	 imaging	 (e.g	CT,	MR,	PET/CT)	 for	 the	 target	population;	 (2)	 segmentation	of	 the	
region	of	interest	(ROI)	to	be	investigated;	(3)	extraction	of	radiomic	features	from	the	ROI;	
(4)	 the	 selection	of	 radiomic	 features	 that	 best	 correlate	with	 the	outcome	of	 interest	 ;	
(5)	 building	 the	 radiomics	 signature,	 and	 (6)	 evaluation	 of	 the	 model	 performance	 on	
various	datasets	using	different	metrics	such	as	the	receiver	operating	characteristic	(ROC),	
area	under	the	curve	(AUC),	and	the	precision-recall		curve	(PRC).	The	workflow	has	been	
previously	described	in	detail	[30,	37,	38].

Figure 2.	Graphic	depiction	of	the	radiomics	workflow

Radiomics studies quality 
Despite	the	potential	of	radiomics	to	facilitate	precision	medicine	as	highlighted	in	numerous	
publications,	a	number	of	obstacles	still	limits	the	generalizability	of	radiomics	signatures,	
and	thus	 their	 translation	to	clinical	applications.	The	most	 important	and	widely	known	
limitation	 is	 the	 lack	 of	 reproducibility	 for	 radiomics	 biomarkers	 [39-41].	 Several	 studies	
have	 investigated	 the	 stability	 of	 radiomic	 features	with	 test-retest	 experiments	 [42-44], 
and	 reported	 that	 a	 considered	percentage	of	 features	 is	 not	 reproducible	 in	 test-retest	
settings,	i.e.	using	the	same	acquisition	and	reconstruction	parameters	on	the	same	vendor	
for	acquiring	the	scan.	A	study	by	Zhovannic	et	al	[45]	demonstrated	that	62	of	radiomic	
features	 are	 sensitive	 to	 differences	 in	 acquisition	 and	 reconstruction	 parameters	 using	
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the	same	imaging	vendor.	Other	studies	investigated	the	sensitivity	of	radiomic	features	to	
differences	in	segmentations,	or	what	is	known	as	inter-observer	variability	[46].

As	such,	efforts	must	be	made	to	unify	image	acquisition	and	reconstruction	across	different	
centres	 to	 facilitate	quantitative	 imaging	analysis	 research,	 and	 integrate	 these	methods	
into	clinical	decision	support	systems.	

Several	guidelines	have	been	proposed	to	ensure	that	radiomic	studies	are	methodologically	
sound	 and	 reproducible.	 Clear	 reporting	 in	 radiomics	 research	 is	 required	 to	 minimize	
bias	and	enhance	the	general	application	of	prediction	models.	For	instance,	Transparent	
Reporting	of	a	multivariable	prediction	model	for	Individual	Prognosis	or	Diagnosis	(TRIPOD)	
initiative	has	established	several	recommendations	in	terms	of	reporting	of	the	methodology	
of	 prediction	 models	 [47].	 The	 Radiomics	 Quality	 Score	 (RQS)	 is,	 however,	 established	
specifically	 for	 radiomics	 research	 [38].	RQS	 is	a	checklist	 that	contains	 sixteen	elements	
to	evaluate	the	design	and	reporting	of	a	radiomics	study.	RQS	guidelines	 include	robust	
segmentation,	the	stability	of	test-retest,	description	of	imaging	protocol	used,	and	internal/
external	validation.	Due	to	the	fast	pace	of	advancement	in	this	field,	further	improvement	in	
the	standardization	of	this	score	is	required	to	ensure	a	high	quality	workflow.	Furthermore,	
Image	Biomarker	Standardization	Initiative	(IBSI)	is	a	newly	formed	guidelines	to	address	the	
standardization	of	feature	calculation	and	image	pre-processing	[48].

Role of radiomics in lung cancer

Diagnosis
Several	studies	have	explored	the	use	of	radiomics	in	the	screening	of	lung	cancer.	The	advent	
of	low-dose	(LDCT)	has	altered	the	landscape	of	lung-cancer	screening.	Studies	indicate	that	
LDCT	imaging,	unlike	molecular	markers	in	blood,	sputum,	and	bronchial	brushings	detects	
many	tumors	at	early	stages.	For	instance,	The	National	Lung	Screening	Trial	(NLST)	in	the	
United	States	demonstrated	in	a	large	population	of	53.454	participants	at	a	high	risk	for	
lung	cancer,	a	20%	relative	reduction	in	mortality	when	participants	underwent	three	annual	
screening	 (LDCT)	 scans	 instead	 of	 single-view	posterior-	 anterior	 chest	 radiography	 [49].	
Kumar	et	al.	used	LIDC-IDRI	dataset	in	order	to	differentiate	between	benign	and	malignant	
lesions,	resulting	in	sensitivity	and	specificity	of	79.06%	and	76.11,	respectively	[50].	Other	
publications	already	shown	promising	results	in	the	diagnosis	of	lung	cancer	[51-53].	

Staging
Tumor	node	metastasis	(TNM)	staging	of	lung	cancer	is	also	important	for	cancer	treatment.	
Several	studies	showed	the	added	value	of	radiomic	features	in	lung	cancer	staging.	A	study	
by	Aerts	et	al.	that	included	1,019	patients	to	extract	440	CT	radiomics	per	patient	reported	
that	radiomic	features	were	associated	with	the	overall	stage	(TNM)	of	lung	cancer	[54].		A	
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study	by	Wu	et	al.	that	used	radiomic	characteristics	extracted	from	PET/CT	to	predict	the	
early	stage	of	distant	metastasis	(DM)	in	101	early-stage	NSCLC	patients		showed	that	PET	
radiomic	features	correlated	with	DM,	and	have	added	value	in	M	staging	[55].	Coroller	et	
al.	applied	radiomics	on	182	lung	adenocarcinoma	in	order	to	predict	(DM)	showing	that	
radiomics	performed	well	on	M	staging	[35].	

Genetics and histopathology
Besides	 diagnosing	 and	 staging	 lung	 cancer,	 the	 use	 of	 radiomics	 has	 been	 extended	 to	
predict	gene	mutation	or	different	pathology	types	of	lung	cancer.	A	study	by	Zhange	et	al.	
that	 included	298	patients	found	a	correlation	between	EGFR	mutation	and	CT	radiomics	
features [56].	Liu	et	al.	achieved	the	same	results	[57,	58].	Rios	et	al.	developed	a	radiomic	
models	that	classifies	mutations	in	patients	with	lung	adenocarcinoma.	The	research	found	
that	radiomic	signature	based	on	CT	images	can	predict	EGFR	status	effectively	[59].	Wu	et	
al.	used	two	NSCLC	cohorts	from	Netherlands	to	predict	the	histologic	types	of	lung	cancer	
(ADC,	SCC)	[52].		

Response to therapy 
The	 use	 of	 radiomics	 signatures	 could	 be	 used	 to	 predict	 the	 response	 of	 patients	 to	
particular	therapy.	In	a	study	by	Aerts	et	al.	it	was	reported	that	radiomics	features	obtained	
from	CT	images	before	treatment	were	able	to	predict	the	mutation	status	of	EGFR	in	NSCLC	
and	 correlate	with	 gefitinib	 response	 [60].	 Coroller	 et	 al.	 showed	 that	 radiomic	 features	
based-CT	 images	acquired	prior	 to	 treatment	 could	predict	 the	pathological	 response	 to	
chemoradiation	in	NSCLC	patients	[61].		Mathhonen	et	al.	predicted	the	recurrence	of	lung	
cancer	following	receiving	Stereotactic	Ablative	Radiation	Therapy	(SART)		using	radiomics	
[62,	63].	Another	study	that	utilized	delta-radiomics,	a	method	of	analysing	the	difference	
of	radiomic	features	obtained	from	longitudinal	scans,	in	Stage	III	NSCLC	patients	to	predict	
the	 outcome	 during	 radiation	 therapy,	 reported	 that	 the	 change	 in	 radiomic	 features	
values	might	be	linked	to	the	tumor	response	due	to	exposure	to	radiation	[64].	Hao	et	al.	
used	 radiomic	 characteristics	of	peritumoral	tissue	derived	 from	PET	 images	 to	 study	 its	
correlation	with	distant	failure	in	NSCLC	and	cervical	cancer	(CC)	[65].	The	results	showed	
a	 relationship	 between	 tumor	 boundaries	 and	 distant	 failure,	 suggesting	 that	 such	 an	
approach	might	 be	 useful	 in	 predicting	 early	 response	 to	 radiotherapy	 in	NSCLC	 and	CC	
patients.	In	a	recent	study	by	Khorramin	et	al.	CT-based	radiomic	features	were	extracted	
from	peri-	and	intratumoral	lung	adenocarcinoma	tissue	and	shown	to	have	the	potential	to	
predict	the	response	to	chemotherapy,	and	correlated	with	both	time	to	progression	(TTP)	
and	overall	survival	for	patient	with	NSCLC	[66]
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Prognosis
	 Several	studies	investigated	the	prognosis	of	lung	cancer	using	a	radiomics	approach.	
Coroller	et	al.	found	a	prognostic	relation	between	radiomics	features	and	distant	metastasis	
(DM)	and	survival	in	patients	with	lung	cancer	[67].	Aerts	et	al.	found	an	association	between	
the	prognosis	of	lung	cancer	and	radiomics	features	[54].	Balagurunathan	et	al.	showed	a	
correlation	between	the	prognosis	of	 lung	cancer	and	radiomic	 features	 [42].	Song	et	al.	
showed	a	connection	between	 features	extracted	 from	CT	 images	and	overall	 survival	 in	
NSCLC	patients	[68].

Potential translation of radiomics in COPD  
The	heterogeneous	nature	of	COPD	makes	diagnosis	challenging.	However,	 it	 is	crucial	to	
unravel	this	variety	of	presentations	to	achieve	an	accurate	diagnosis	in	early	stages	and	help	
improve	patients’	outcomes	[5].	Different	COPD	assessments	are	used	in	clinical	practice,	
including	pulmonary	function	test	(PFTs)	and	quantitative	CT	(QCT).	Pulmonary	function	test	
(PFTs)	 are	 essential	 to	 diagnose	 and	 classify	 COPD.	A	 commonly	 used	PTF	 is	 spirometry,	
which	is	used	to	measure	the		forced	expiratory	volume	in	1	second	(FEV1)	and	the	forced	
vital	capacity	 (FVC)	as	 the	primary	parameters	 [69].	However,	spirometry	alone	does	not	
provide	any	 locational	 information	regarding	emphysema	[69].	Quantitative	CT	(QCT)	 is	a	
promising	 approach	 that	 is	 able	 to	 quantify	 emphysema,	 airways	 abnormalities,	 and	 air	
trapping [5].	 QCT	 has	 already	 demonstrated	 the	 capacity	 to	 evaluate	 the	 existence	 and	
degree	of	emphysema	[70-76].	For	example,	CT	densitometry	parameters	such	as	relative	
low-attenuation	 area	 [77-82]	 and	 percentile	 of	 the	 frequency	 –	 attenuation	 distribution	
[9,	83-85]	are	usually	used	to	assess	the	degree	of	emphysema.	Airways	abnormalities	are	
commonly	measured	by	the	calculation	of	the	square	root	at	an	internal	perimeter	of	10mm	
(Pi10)	using	linear	regression	[86-89].	It	is	considered	the	gold	standard	tool	and	has	already	
demonstrated	 significant	 correlation	with	 the	histological	measurement	of	 small	 airways	
[90].	Air	trapping	appears	as	decreased	attenuation	on	expiratory	CT	images	[91],	making	it	
the	best	way	to	evaluate	air	trapping	in	COPD	[88].	The	measurements	of	gas	trapping	using	
CT	are	highly	correlated	with	PTF	in	COPD	patients	[92]

Despite	the	ability	of	QCT	to	quantify	COPD,	the	interpretation	of	QCT	is	still	time-consuming,	
qualitative,	requires	experts,	and	is	prone	to	variability	in	the	diagnosis	between	experts.	
CT	 image	metric	 (radiomics)	 approach	 could	 potentially	 quantify	 COPD	 and	 uncover	 the	
disease’s	hidden	mechanism	and	the	link	between	lung	cancer	and	COPD	in	more	nuance	
and	more	powerful	phenotypic	classification.	A	radiomics	signature	would	be	easier	to	apply	
as	a	clinical	decision	support	system	(cDSS),	and	less	time	consuming	compare	to	currently	
used	 QCT.	 Therefore,	 several	 potential	 applications	 for	 radiomic	 features	 in	 COPD	 are	
suggested.	Texture	analysis	for	example	has	shown	its	effectiveness	in	assessing	the	degree	
of	emphysema.	A	study	by	Ginsburg	et	al.	demonstrated	the	effectiveness	of	texture-based	
approach	in	classifying	between	the	lungs	of	never-smokers,	smokers	without	emphysema,	
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and	smokers	with	emphysema,	indicating	that	an	early	stage	of	smoking-related	lung	injury	
could	potentially	be	identified	before	emphysema	develops	[93].	Another	study	by	Castadi	
et	al.	used	a	local	histogram-based	technique	to	quantify	distinct	emphysema	pattern	using	
CT	scans	from	9,313	smoker	subjects	in	the	COPODGene	study	[94].	The	results	of	the	study	
suggests	that	information	extracted	from	CT	pattern	of	emphysema	were	more	predictive	
than	threshold-based	emphysema	measurements	such	as	“low	attenuation	area	less	than	
-950”	(LAA-950).		As	described	above,	the	applications	of	radiomics	in	the	screening	of	lung	
cancer	 showed	 interesting	 results.	Automated	 screening	of	 routine	chest	CT	 to	diagnose	
COPD	 is	 therefore	one	possible	 use,	with	 the	 ability	 to	detect	 suspected	 sarcopenia	not	
only	in	the	lung	but	also	in	the	muscle	tissue.	Detection	and	differentiation	between	COPD	
stages	 and	 phenotypes,	 especially	 in	 early	 stages,	 will	 allow	 for	 the	 early	 and	 suitable	
treatment	for	the	patient.	In	a	study	by	Lafata	et	al.,	the	authors	reported	on	the	potential	
of	radiomic	features	extracted	from	CT	images	to	quantify	the	changes	in	lung	function	and	
associated	with	spirometry	test	[95].	The	same	approach	using	radiomics	could	be	extended	
to	investigate	its	relationship	with	other	gold	standard	COPD	markers	such	as	waking	exams,	
FEV/FVC	ratio	(Tiffeneau	index)	or	to	the	frequency	of	exacerbations	associated	with	COPD	
patients,	enabling	an	accurate	diagnose	of	COPD	severity.	In	addition,	the	use	of	radiomics	
could	 improve	 the	 performance	 of	 the	 existing	 multifactorial	 models	 (nomograms)	 by	
adding	radiomics	features	to	existing	clinical	factors	(age,	sex,	number	of	pack-years,	current	
smoking,	performance	score,	wheezing)	as	already	shown	 in	a	previous	publication	 [96].	
Delta-radiomics	has	already	demonstrated	its	ability	to	predict	response	to	therapy	in	lung	
cancer.	Therefore,	such	a	technique	could	be	used	to	identify	quantitatively	the	evolution	
of	 the	 disease	 and	 the	 effect	 of	 (new)	 treatment.	 Additionally,	 delta-radiomics	 could	 be	
applied	to	assess	 the	difference	between	 inspiration	and	expiration	scans	and	to	explore	
hidden	 information	 that	 could	 help	 in	 evaluating	 the	 extent	 and	 severity	 of	 pulmonary	
emphysema,	air	trapping,	and	airway	abnormalities.	The	use	of	radiomics	potentially	could	
be	used	to	predict	whether	patient	will	respond	to	certain	interventions,	such	as	endoscopic	
lung	volume	reduction	(ELVR),	and	inhalation	steroids.	

Conclusion

The	field	of	radiomics	 is	rapidly	growing	and	has	already	shown	its	potential	 in	assessing	
lung	 cancers	 in	 terms	 of	 detection,	 treatment	 response,	 and	 prognosis.	 Different	 QCT	
measurements	have	been	used	 to	quantify	COPD	abnormalities	 such	as	emphysema,	air	
trapping,	 and	 airway	 remodelling.	 Applying	 radiomics	 in	 COPD	has	 not	 been	 extensively	
investigated	 yet.	We	 show	 examples	 of	 the	 potential	 use	 of	 radiomics	 in	 the	 diagnosis,	
treatment	and	the	follow-up	of	COPD	and	future	directions	for	further	research.
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A Handcrafted Radiomics-Based Model 
for the Diagnosis of Usual Interstitial 

Pneumonia in Patients with 
Idiopathic Pulmonary Fibrosis

Chapter 8



Abstract

The	most	common	idiopathic	interstitial	lung	disease	(ILD)	is	idiopathic	pulmonary	fibrosis	
(IPF).	 It	 can	be	 identified	by	 the	presence	of	usual	 interstitial	 pneumonia	 (UIP)	 via	high-
resolution	computed	tomography	(HRCT)	or	with	the	use	of	a	lung	biopsy.	We	hypothesized	
that	a	CT-based	approach	using	handcrafted	radiomics	might	be	able	to	identify	IPF	patients	
with	a	 radiological	or	histological	UIP	pattern	 from	those	with	an	 ILD	or	normal	 lungs.	A	
total	of	328	patients	 from	one	center	and	two	databases	participated	 in	 this	study.	Each	
participant	 had	 their	 lungs	 automatically	 contoured	 and	 sectorized.	 The	 best	 radiomic	
features	were	selected	for	the	random	forest	classifier	and	performance	was	assessed	using	
the	area	under	the	receiver	operator	characteristics	curve	(AUC).	A	significant	difference	in	
the	volume	of	the	trachea	was	seen	between	a	normal	state,	IPF,	and	non-IPF	ILD.	Between	
normal	and	fibrotic	lungs,	the	AUC	of	the	classification	model	was	1.0	in	validation.	When	
classifying	between	IPF	with	a	typical	HRCT	UIP	pattern	and	non-IPF	ILD	the	AUC	was	0.96	in	
validation.	When	classifying	between	IPF	with	UIP	(radiological	or	biopsy-proved)	and	non-
IPF	ILD,	an	AUC	of	0.66	was	achieved	in	the	testing	dataset.	Classification	between	normal,	
IPF/UIP,	and	other	ILDs	using	radiomics	could	help	discriminate	between	different	types	of	
ILDs	via	HRCT,	which	are	hardly	 recognizable	with	visual	 assessments.	Radiomic	 features	
could	become	a	valuable	tool	for	computer-aided	decision-making	in	imaging,	and	reduce	
the	need	for	unnecessary	biopsies.

Keywords: handcrafted	 radiomics;	 interstitial	 lung	diseases;	usual	 interstitial	pneumonia;	
machine	learning
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Introduction

Idiopathic	pulmonary	fibrosis	(IPF)	is	the	most	common	progressive	form	of	interstitial	lung	
disease	(ILD)	with	an	unknown	etiology,	usually	impacting	older	adults	[1,2].	In	2011,	four	
societies—the	American	Thoracic	Society,	the	European	Respiratory	Society,	the	Japanese	
Respiratory	Society,	and	the	Latin	American	Thoracic	Association—came	together	to	issue	
an	evidence-based	statement,	which	provided	recommendations	for	both	the	diagnosis	and	
management	of	 IPF	 [3].	According	 to	 these	recommendations,	high-resolution	computed	
tomography	(HRCT)	can	play	a	crucial	role	in	the	diagnosis	of	fibrotic	lung	diseases	and	has	
a	significant	impact	on	medical	decision-making.

Diagnosing	 IPF	 comes	 about	 using	 a	 multidisciplinary	 discussion	 (MDD)	 of	 the	 clinical,	
radiological,	and,	if	available,	pathological	data	showing	a	usual	interstitial	pneumonia	(UIP)	
pattern	which	is	the	most	common	histopathological	form	of	diffuse	lung	fibrosis	[3,4].	The	
diagnostic	 radiological	 characteristic	of	UIP	necessitates	honeycombing	with	 a	 basal	 and	
subpleural	predominance.	 The	upper	 lobes	are	 less	 affected,	 and	 traction	bronchiectasis	
may	 be	 present	 [5].	 An	 IPF	 diagnosis	 requires	 a	multidisciplinary	 discussion	 (MDD)	 and	
the	exclusion	of	known	causes	of	ILD,	in	addition	to	the	presence	of	a	UIP-specific	pattern	
on	 thin-section	CT,	or	a	 specific	combination	of	HRCT	patterns	and	histopathological	UIP	
patterns	 in	patients	subjected	to	 lung	tissue	sampling	 [3].	 It	 is	also	worth	noting	that,	 in	
2018,	 the	 Fleischner	 Society	 expanded	on	 these	 recommendations	 for	 diagnosing	 IPF	 to	
include	the	appearance	of	probable	UIP	in	HRCTs,	if	the	clinical	context	was	consistent	with	
an	IPF	[6].

Surgical	 lung	biopsy	(SLB),	which	is	recommended	when	no	UIP	pattern	is	present	on	the	
HRCT	[3,7],	is	an	invasive	procedure	that	requires	pleural	drainage	and	is	associated	with	a	
mortality	rate	ranging	from	2.0%	to	3.6%	[8–13].	Moreover,	in	a	recent	study	that	included	
a	cohort	of	patients	with	pathologically-proven	UIP	patterns,	radiologists	only	identified	a	
UIP	pattern	on	thin-section	CT	with	a	sensitivity	of	34%	[14],	according	to	the	recent	ATS-
ERS	guidelines	 [15].	 Furthermore,	 the	 radiological	assessment	of	fibrotic	 lung	diseases	 is	
still	 challenging	 and	often	 varies	 between	 experts	 [16–19].	 Consequently,	 an	 automated	
approach	that	assists	radiologists	(especially	less	experienced	ones)	could	be	very	useful	in	
avoiding	unnecessary	biopsies	in	a	context	of	a	multidisciplinary	discussion.	

The	interest	in	radiomics,	pioneered	in	2012,	has	increased	in	recent	years	[20].	The	field	
of	handcrafted	radiomics,	briefly	stated,	extracting	a	large	number	of	mineable	quantitative	
data	from	medical	images	using	predetermined	formulas,	has	developed	rapidly	in	recent	
times	[20].	The	term	radiomics	(handcrafted	radiomics	and	deep	learning)	refers	to	the	high-
throughput	extraction	of	numeric	features	from	medical	imaging	modalities,	providing	high-
dimensional	data	 that	could	be	used	to	 identify	patterns	 relating	to	 the	pathophysiology	
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of	a	disease.	These	data	could	then	be	merged	with	the	characteristics	of	each	patient	to	
aid	clinical	decision-making	 [20,21].	Different	 studies	have	shown	that	 radiomics	has	 the	
potential	to	complement	clinical	decision	support	systems,	for	example,	for	cancer	diagnosis	
and	prognosis	[20,22–24].	These	studies	have	shown	some	potential	to	function	as	imaging	
biomarkers	 and	 to	 predict	 clinical	 outcomes	 and	 drug	 responses	 [20,25–27].	While	 the	
potential	of	radiomics	has	mainly	been	investigated	in	oncology,	 it	can	also	be	applied	to	
many	 other	 diseases,	 including	 ILDs	 and	 chronic	 obstructive	 pulmonary	 disease	 (COPD)	
[28–30].

We	 hypothesize	 that	 radiomic	 features	 are	 able	 to	 decode	 biological	 information	 from	
specified	 regions	 of	 interest	within	 the	 lung	 that	 can	 be	 used	 to	 diagnose	 IPF	with	 UIP	
pattern.	 The	 aims	 of	 this	 study	 are	 two-fold:	 (1)	 to	 evaluate	 the	 use	 of	 radiomics,	 to	
differentiate	between	normal	lung	tissue	and	ILDs;	(2)	to	evaluate	the	use	of	radiomics	to	
distinguish	IPF	with	a	typical	or	less	typical	(biopsy-proven)	UIP	pattern	related	to	IPF	from	
HRCT	patterns	 related	 to	non-IPF	 ILDs.	We	also	 conjecture,	based	on	 the	 literature	 [31],	
that	tracheal	enlargement	and	tracheal	shape	would	significantly	complement	handcrafted	
radiomic	features	that	would	help	in	the	classification	of	different	types	of	ILDs.

Materials and Methods

Study Population
The	study	protocol	was	registered	on	clinicaltrials.gov	(identifier:	NCT04430491),	approved	
by	the	ethics	committee	of	the	Erasme	University	hospital	(ref:	P2017/411).	The	electronic	
medical	records	at	Erasme	University	hospital	(center	i)	were	searched	between	2011	and	
2018	for	patients	diagnosed	with	ILD.	The	inclusion	criteria	were:	(i)	the	availability	of	HRCT	
with	 slices	of	 less	 than	1.5	mm;	 (ii)	 the	availability	of	 a	high-confidence	diagnosis	 (MDD	
diagnosis	of	IPF	with	a	typical	UIP	pattern;	MDD	diagnosis	of	IPF	with	a	biopsy-proven	UIP	
pattern;	 or	MDD	diagnosis	 of	 non-IPF	 ILD,	 validated	by	 a	 lung	 biopsy	 showing	 a	 pattern	
other	than	UIP).	The	exclusion	criteria	were	(i)	the	use	of	contrast	enhancements	in	HRCT;	
(ii)	images	containing	metal	or	motion	artifacts;	and	(iii)	images	reconstructed	with	a	slice	
thickness	larger	than	1.5	mm	(Figure	1).	At	least	1	chest	physician,	1	pathologist,	1	thoracic	
radiologist,	1	specialist	in	internal	medicine	or	rheumatology	participated	in	the	MDD.	For	
external	validation	(database	A),	we	used	the	group	of	patients	diagnosed	with	interstitial	
lung	diseases	from	the	publicly	available	Lung	Tissue	Research	Consortium	(LTRC,	https://
ltrcpublic.com/	 (accessed	on	19	September	2018)).	 Images	 from	patients	with	ostensibly	
healthy	 lungs	 (database	B)	were	collected	 from	the	publicly	available	Radiomics	 Imaging	
Archive	 (RIA,	 https://www.radiomicsimagingarchive.eu/	 (accessed	 on	 24	 October	 2021))	
(G4).	Information	was	also	gathered	from	patients,	such	as	the	demographic	(age,	gender)	
and	 clinical	 data	 (body	 mass	 index—BMI),	 as	 well	 as	 the	 measurements	 of	 pulmonary	
function	tests	(PFT)	(forced	expiratory	volume	in	1s	(FEV1),	forced	vital	capacity	(FVC),	and	
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diffusion	capacity	of	carbon	monoxide	(DLCO).	The	so-called	gender,	age,	and	pulmonary	
function	(GAP)	score	and	staging	system	that	was	developed	by	Ley	et	al.	in	2012	[32]	was	
calculated	for	each	patient	and	the	value	was	recorded.

Figure 1. A	flowchart	diagram	shows	the	patient	selection	process.	(G1)	patients	with	final	MDD	diagnosis	of	IPF	
with	typical	UIP	pattern	in	HRCT	and	no	lung	biopsy;	(G2)	patients	with	a	final	MDD	diagnosis	of	 IPF	confirmed	
by	Surgical	Lung	Biopsy	(SLB)	(less	typical	HRCT	pattern);	(G3)	patients	with	ILDs	other	than	IPF	with	lung	biopsy	
confirming	a	non-UIP	pattern;	(G4)	patients	with	apparently	healthy	lungs.

High-Resolution CT (HRCT) Scanning
For	center	i,	the	HRCTs	were	acquired	on	a	64-	or	128-detector	row	CT	system	(Somatom,	
Definition,	Siemens	Healthineers,	Erlangen,	Germany).	For	database	A,	HRCT	images	were	
acquired	using	4	different	CT	vendors	(Siemens,	Erlangen,	Germany),	(GE,	Waukesha,	USA),	
(Philips,	Amsterdam,	the	Netherlands),	and	(Toshiba,	Tochigi-ken,	Japan).	For	database	B,	
all	scans	were	acquired	from	the	same	scanner	(GE	Medical	Systems,	Waukesha,	USA).	The	
slice	thickness	of	all	scans	varied	between	0.5	and	1.5	mm.

Segmentation
The	process	of	delineating	a	region	of	interest	(ROI)	that	will	be	utilized	to	extract	handcrafted	
radiomic	features	is	known	as	segmentation.	A	workflow	for	radiomics	from	segmentation	
to	data	analysis	is	depicted	in	Figure	2.	Segmentation	of	the	lungs	and	sectors,	as	well	as	the	
tracheobronchial	tree,	were	performed	automatically	using	an	automated	workflow	created	
with	MIM	software	(MIM	Software	Inc.,	Cleveland,	OH,	USA).	Sectorized	lung	segmentation	
was	 performed	 to	 account	 for	 the	 differences	 in	 the	 spatial	 distribution	 of	 the	 lesions	
between	UIP	and	non-UIP	patterns.	Each	sector	was	defined	as	a	(ROI).	As	shown	in	the	left	
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part	of	Figure	2,	sectors	1	and	2	represent	the	upper	section	of	the	lung,	sector	3	represents	
the	middle	section,	and	sector	4	represents	the	basal	section.

Figure 2. Radiomics	 Pipeline	 for	 lung	 fibrosis	 classification	 from	 CT	 images.	 First,	 the	 region	 of	 interest	 (ROI)	
was	delineated.	Second,	handcrafted	radiomic	 features	were	extracted	from	both	ROIs.	Third,	 feature	selection	
methods	were	applied	to	select	the	most	informative	set	of	features.	Fourth,	the	selected	set	of	features	were	train	
the	Random	Forest	classifier	to	arrive	at	a	prediction.

Radiomic Features Extraction
To	minimize	the	effects	of	the	variations	in	image	voxel	size,	all	HRCT	images	were	resampled	
into	1	×	1	×	1	mm3	voxel	size,	using	linear	interpolation	to	address	the	disparate	reconstruction	
settings	found	in	the	datasets	[33].	1	×	1	×	1	mm3	was	the	maximum	voxel	size	available	in	
the	dataset	[34].	Radiomic	features,	except	for	the	trachea	volume,	were	extracted	from	the	
ROIs	of	the	lung	and	sectors	within	the	HRCT	images,	using	the	RadiomiX	Discovery	Toolbox	
(version,	 October	 2019;	 https://www.radiomics.bio	 (accessed	 on	 23	 June	 2020)),	 which	
calculates	radiomics	 features	 in	compliance	with	the	 Imaging	Biomarkers	Standardization	
Initiative	 (IBSI)	 [35].	 Voxel	 intensities	 were	 aggregated	 into	 bins	 of	 25	 Hounsfield	 Units	
(HUs)—for	 nonfiltered	 features,	 excluding	 first-order	 statistics	 features—to	 reduce	 noise	
and	 interscanner	 variability	 [36].	 The	 extracted	 features	 describe	 the	 fractal	 dimension,	
intensity	histogram,	first-order	statistics,	texture,	and	shape.	Mathematical	definitions	and	
descriptions	of	the	features	mentioned	can	be	found	in	other	studies	[21].

Data Splitting
For	the	first	aim,	i.e.,	normal	vs.	ILDs	(G4	vs.	G1,2,3),	the	data	from	center	(i)	and	database	
B	was	combined	and	split	into	training	and	validation	datasets,	with	a	ratio	of	0.8:0.2.	For	
the	second	aim,	i.e.,	IPF/UIP	vs.	non-IPF	ILDs	(G1	and	2	vs.	G3),	datasets	from	center	(i)	were	
randomly	divided	into	training	and	validation	dataset,	using	a	ratio	of	0.8:0.2,	and	data	from	
database	A	was	used	as	an	external	validation	dataset.

Feature Selection and Modeling
To	 avoid	 any	 information	 leaking,	 all	 of	 the	 feature	 selection	 and	 model	 training	 was	
conducted	in	the	training	dataset	alone.	In	order	to	reduce	feature	dimensionality,	several	
steps	were	applied.	Firstly,	features	with	(near)	zero	variance	(i.e., features that have the 
same	value	in	≥95%	of	the	data	points)	were	excluded.	Next,	feature	pairs	with	Spearman	
correlation	 (r	 ≥	 0.90)	were	 considered	 to	 be	highly	 correlated,	 and	 the	 feature	with	 the	
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highest	 average	 correlation	 with	 all	 other	 features	 was	 removed.	 Then,	 the	 remaining	
features	were	fed	into	the	Boruta	dimension-reduction	and	feature-elimination	algorithm,	
with	the	maximal	number	of	important	sources,	runs	set	to	1000.	The	Boruta	algorithm	is	
a	wrapper	method	based	on	random	forest	classification	[37].	Afterward,	a	random	forest	
model	was	trained	with	the	remaining	features	and	the	top-10	features	with	the	highest	
mean	decrease	in	Gini	were	retained	for	the	final	random	forest	model.	Five	models	were	
trained:	1	model	was	trained	to	classify	between	normal	and	ILDs,	while	the	rest	were	used	
to	classify	between	 IPF	with	different	UIP	pattern	appearances	 (i.e.,	UIP	on	HRCT	or	UIP	
not	on	HRCT	but	confirmed	with	a	lung	biopsy)	and	non-IPF	ILDs	with	no	UIP	pattern	and	
confirmed	by	a	lung	biopsy.

Statistical Analysis
All	statistical	analyses	were	performed	using	R	on	RStudio	(version	4.0.2;	https://www.R-
project.org/	 (accessed	 on	 10	 January	 2022)).	 Comparisons	 between	 datasets	 were	
summarized	using	a	Wilcoxon	rank-sum	test	for	the	continuous	variables	and	an	X2 Fisher	
exact	 test	 for	 categorical	 variables.	 A	 Spearman	 correlation	 was	 used	 to	 evaluate	 the	
correlation	between	radiomic	features.

To	 assess	 the	 model’s	 level	 of	 performance,	 the	 area	 under	 the	 curve	 (AUC)	 from	 the	
receiver	 operating	 characteristic	 (ROC)	 analysis	was	 used	 and	 a	 95%	 confidence	 interval	
(CI)	was	reported.	To	estimate	the	goodness-of-fit	of	the	models,	the	Hosmer–Lemeshow	
test	was	used,	and	calibration	plots	were	generated	to	visualize	the	consistency	of	models.	
This	study	was	assessed	using	a	Radiomics	Quality	Score	[21]	that	consists	of	16	items	with	
different	scores	that	sum	up	to	36	points	and	was	designed	specifically	for	radiomic	studies.

Results

Patients Characteristics
A	 total	 of	 328	 patients	 were	 included	 in	 the	 study	 after	 the	 application	 of	 the	 exclusion	
criteria	(Figure	1).	A	group	of	122	patients	from	the	center	(i)	was	included.	These	patients	
were	divided	into	three	groups:	(G1)	patients	with	a	final	diagnosis	of	IPF	and	with	typical	UIP	
pattern	in	HRCT	(n	=	39);	(G2)	patients	with	non-typical	UIP	pattern	and	a	final	MDD	diagnosis	
of	IPF	confirmed	by	SLB	(n	=	41);	(G3)	patients	non-IPF	ILD	diagnosis	confirmed	by	SLB	(n	=	
42).	From	database	(A),	a	total	of	109	patients	were	included	and	divided	into	two	groups:	(1)	
IPF	with	UIP	pattern	patients	(n	=	53)	and	(2)	non-IPF	ILD	with	no	UIP	pattern	(n	=	56).	From	
database	(B)	(G4),	97	healthy	patients	were	included.	A	comparison	between	patients	with	a	
final	diagnosis	of	IPF\UIP,	non-IPF	ILD,	and	healthy	patients	was	performed	and	summarized	
in	Table	1.	As	expected,	there	was	a	higher	percentage	of	males	among	IPF	patients	(79%	vs.	
51%,	p	<	0.001),	whereas	no	significant	differences	were	noticed	regarding	age	(p	=	0.06),	and	
lung	function	tests	(FEV1,	p	=	0.8;	FVC,	p	=	0.18;	DLCO,	p	=	0.23;	BMI,	p	=	0.34).	
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Table 1. Demographic	and	clinical	characteristics	of	patients	with	IPF,	non-IPF	ILD,	and	healthy	groups.	 
IQR:	interquartile	range;	SD:	standard	deviation.

Variable IPF\UIP (HRCT & Biopsy) Non-IPF ILD (Biopsy) Normal p-Value

Age	(median	(IQR)
Sex	=	M	(%)
FEV1	(mean	(SD))
FVC	(mean	(SD))
DLCO	(mean	(SD))
BMI	(mean	(SD))

65	(60,	71)
104	(78.8)

71.08	(18.34)
67.39	(19.53)
38.92	(11.62)
28.06	(4.42)

63	(57,	72)
51	(51.5)

71.77	(21.94)
71.07	(22.17)
36.73	(16.12)
28.69	(5.59)

62	(56,	67)
56	(57.7)

-
-
-
-

0.06
<0.001
0.8
0.18
0.23
0.34

Feature Extraction and Feature Selection
Original	features	were	extracted	(n	=	170)	for	the	whole	and	sectorized	lung.	Shape	features	
and	 features	 with	 little	 or	 zero	 variance	 were	 excluded	 (n	 =	 33).	 A	 list	 of	 the	 selected	
features	after	removing	the	highly	correlated	features,	applying	the	Boruta	algorithm,	and	
Gini	decrease	can	be	found	in	Appendix	A,	Table	A1.	Feature	selection	methods	yielded	ten	
radiomics	features	as	inputs	for	the	group	comparisons.

Performance of the Models
The	 volume	of	 the	 trachea	was	 observed	 to	 differ	 significantly	 (p	 <	 0.001)	 between	 the	
control,	IPF/UIP,	and	ILDs	other	than	IPF	patients	(49.23	±1	2.96,	73.40	±	22.01,	and	61.67	±	
18.81	cm3,	respectively,	mean	±	SD),	and	also	between	IPF/	UIP	and	ILD	(non-IPF)	(p	<	0.001)	
(Figure	3).	 In	addition,	no	association	was	detected	between	tracheal	volume	and	either	
lung	function	(FVC%	predicted,	r	=	−0.03,	p	=	0.59),	or	the	GAP	index	(r	=	0.17,	p	=	0.01).	
Following	the	feature	selection,	 the	volume	of	 the	trachea	was	selected	as	an	 important	
feature	for	all	models,	except	for	the	classification	between	normal	and	ILDs.

Figure 3. The	difference	in	the	volume	of	the	trachea	between	IPF,	non-IPF	ILD,	and	normal,	
p	<	0.001.
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When	classifying	between	a	normal	lung	(G4,	database	B)	and	a	lung	with	ILDs	(G1	+	G2	+	
G3)	from	center	(i),	an	AUC	of	1.0	(CI:	1.0–0.1)	was	achieved	in	validation	(M1)	(Figure	4).	
For	the	classification	between	G1	and	G3	(center	i),	significant	results	were	obtained	using	
whole	lungs	with	an	AUC	of	0.96	(95%	CI:	0.90–1.0)	in	validation	(M2).	For	the	classification	
between	G2	and	G3	(center	i),	significant	results	were	achieved	using	sector	1	(upper	zone	
of	the	lung)	with	an	AUC	of	0.87	(95%	CI:	0.74–1.0)	in	validation	(M3).

When	combining	G1	and	G2	to	distinguish	the	results	from	G3	(center	(i)),	an	AUC	of	0.82	
(95%	CI:	0.68–0.95,	M4)	and	0.66	(95%	CI:	0.59–0.73,	M4.1)	in	validation	and	test	dataset	
(database	A)	were	achieved	using	whole	lungs	respectively.	When	40%	of	the	test	dataset	
(from	database	A)	is	introduced	to	the	training	dataset,	and	retaining	the	remaining	60%	as	
testing,	an	AUC	of	0.77	(95%	CI:	0.69–0.85)	was	achieved	(M5).

											(a) 											(b)

Figure 4. The	graph	shows	the	area	under	the	receiver	operating	characteristic	(AUC)	curve	of	different	models	in	
the	validation	(a)\test	(b)	dataset.	(M1)	normal	lungs	vs.	ILD;	(M2)	IPF\UIP	on	HRCT	(G1)	vs.	non-IPF	ILD	(biopsy-
proven)	(G3);	(M3)	IPF\UIP	pattern	proven	by	biopsy	(G2)	vs.	non-IPF	ILD	(biopsy-proven)	(G3);	(M4)	IPF	with	UIP	
(G1	+	G2)	vs.	non-IPF	ILD	(biopsy-proven)	(G3);	M4.1)	IPF	with	UIP	(G1	+	G2)	vs.	non-IPF	ILD	(G3)	vs.	non-IPF	ILD	
(biopsy-proven)(G3)	in	testing;	(M5)	IPF	with	UIP	(G1	+	G2)	vs.	non-IPF	ILD	(biopsy-proven)	(G3)	mixed	with	40%	of	
the	testing	dataset.

The	 detailed	 sensitivity	 and	 specificity	 of	 the	 models	 for	 validation/testing	 dataset	 are	
summarized	in	Table	2.	To	gauge	the	presence	of	overfitting	when	retraining	all	the	models	
with	randomized	outcomes,	no	single	feature	was	chosen	as	significant	when	the	Boruta	
algorithm	was	applied	and	the	workflow	had	to	be	halted.



164 Chapter 8

Table 2. Detailed	predictive	and	diagnostic	values	among	various	models	studied,	using	the	validation/testing	
dataset.

Model (M) AUC
(95% CI)

Accuracy
%

Sensitivity
%

Specificity
%

M1
M2
M3
M4
M4.1
M5

1.0	(1.0–1.0)
0.96	(0.90–1.0)
0.87	(0.74–1.0)
0.82	(0.68–0.95)
0.66	(0.59–0.73)
0.77	(0.69–0.85

99
91
72
70
65
69

98
88
65
66
60
64

98
94
90
79
69
75

Among	all	models,	M1,	M2,	and	M4	showed	proper	calibration	with	p	=	0.68,	0.32,	and	0.07,	respectively	 
(Figure	5).	The	radiomics	quality	score	of	this	study	was	64%	(23	of	36).

Figure 5. Calibration	plots	of	radiomics	models	on	the	validation/testing	dataset.	(A)	Normal	vs.	ILD	(M1);	(B)	IPF\
UIP	vs.	non-IPF	ILD	(M2);	(C)	IPF	with	UIP	(G1	+	G2)	vs.	non-IPF	ILD	(biopsy-proven)	(M4).

Discussion

In	 this	 study,	we	developed	a	quantitative	 signature	 (radiomics)	 extracted	 from	HRCT	 to	
classify	fibrotic	lung	disease.	A	random	forest	classifier	was	used	to	differentiate	between	
(1)	normal	lungs	and	interstitial	lung	diseases	(ILDs);	(2)	idiopathic	pulmonary	fibrosis	(IPF)	
(with	typical	or	less	typical	usual	interstitial	pneumonia	(UIP)	radiological	presentation),	and	
non-IPF	ILDs	(other	than	IPF	as	proven	by	the	absence	of	UIP	in	a	surgical	biopsy).	Briefly	
stated,	we	were	able	to	demonstrate	that	radiomic	features	derived	from	HRCT	images	can	
be	used	to	distinguish	between	a	normal	state	and	ILDs,	as	well	as	between	IPF	with	a	UIP	
pattern	and	 ILDs	with	no	UIP	pattern	verified	by	surgical	biopsy.	The	 inclusion	of	biopsy-
proven	non-IPF	ILDs	patients	strengthens	the	study,	as	well	as	making	it	unique	(Appendix	
A,	Table	A2).

Differentiating	between	normal	and	ILD	lung	tissues	might	seem	a	trivial	task.	However,	it	
is	a	time-consuming	process	since	the	clinician	has	to	go	through	all	the	scans.	Developing	
an	 automated	 approach	 that	 differentiates	 between	 normal	 and	 abnormal	 lungs	 would	
decrease	the	amount	of	time	a	clinician	needs	to	assess	images	on	a	daily	basis.	A	previous	
study	presented	a	novel	texture	analysis	method	that	incorporates	texture	matching	with	
histogram	features	analysis	[38].	This	study	reported	that	their	method	achieved	a	sensitivity	
of	92.96%	and	a	specificity	of	93.78%	in	differentiating	between	normal	and	abnormal	lungs.	
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The	study	made	use	of	a	part	of	 the	handcrafted	radiomic	 features	used	 in	our	analysis.	
Using	all-handcrafted	radiomic	features,	we	achieved	a	sensitivity	of	98%	and	a	specificity	
of	98%	to	identify	an	ILD.

Many	 ILDs	 have	 characteristics	 and	 changes	 in	 the	 lungs	 similar	 to	 those	 of	 IPF/UIP	 on	
HRCT,	making	 the	 diagnosis	 very	 difficult—even	 for	 experienced	 radiologists	 [39].	 Visual	
assessments	of	ILDs	while	using	HRCT	can	be	very	subjective	due	to	the	high	variability	in	the	
knowledge	of	inter-readers	[16–18].	Therefore,	providing	automated	diagnostic	assistance	
in	this	setting	would	be	highly	beneficial,	especially	for	less	experienced	radiologists.	Texture	
image	analysis	is	not	new	in	fibrotic	lung	diseases	and	has	been	researched	to	automatically	
analyze	ILDs	on	CT	images	[38,40–46].	However,	most	of	the	existing	studies	have	focused	
on	prognostic	questions	rather	than	providing	diagnostic	support.	Maldonado	et	al.	showed	
that	short-term	reticular	changes	evaluated	by	CALIPER	(Computer-Aided	Lung	Informatics	
for	 Pathology	 Evaluation	 and	 Rating)	 correlated	with	 physiological	 parameters	 and	were	
predictive	of	survival	in	IPF	patients	[41].	Humphries	et	al.	concluded	that	the	use	of	Data-
driven	Texture	Analysis	(DTA)	for	IPF	patients	correlates	with	both	pulmonary	function	tests	
and	visual	assessment	on	CT	images	at	baseline	[45].	However,	a	more	thorough	classification	
of	phenotypes	can	be	provided	by	applying	radiomic	data	stratification.	Walsh	et	al.	used	
a	deep	learning	approach	for	automated	classification	of	fibrotic	lung	disease,	according	to	
the	2011	ATS/ERS/JRS/ALAT	idiopathic	pulmonary	fibrosis	diagnostic	guidelines	on	a	dataset	
of	1157	HRCT	scans.	The	algorithm	performance	was	compared	to	that	of	91	radiologists	and	
showed	an	accuracy	of	73.3%,	compared	to	the	median	accuracy	of	the	radiologists,	70.7%	
[47].	To	the	best	of	our	knowledge,	no	study	has	investigated	the	potential	of	handcrafted	
radiomics	for	differentiation	between	IPF/UIP	and	other	ILDs.

By	 assessing	 the	 potential	 of	 handcrafted	 radiomics	 to	 differentiate	 between	 IPF	 with	
typical	UIP	presentation	on	HRCT	and	ILDs	other	than	IPF,	we	discovered	another	benefit	of	
automation	similar	to	that	achieved	by	differentiating	between	normal	and	abnormal	lung	
tissue.	 It	 could	 serve	mainly	as	a	decision-aiding	 tool	 that	would	 increase	 the	diagnostic	
accuracy	of	the	disease,	reduce	the	need	for	invasive	lung	biopsies,	and	decrease	the	time	
needed	to	conduct	routine	scans.

IPF	is	also	associated	with	wide	parenchymal	and	airway	conditions,	such	as	those	found	
in	 the	 trachea	wall,	which	 leads	 to	pathological	 changes	 [48].	Ratwani	et	al.	 studied	 the	
correlation	between	the	change	of	tracheobronchial	tree	size	and	the	disease	severity	of	IPF	
[31].	Our	study	found	a	significant	difference	in	the	volume	of	trachea	between	normal,	IPF/
UIP	and,	ILDs	patients.	Furthermore,	it	was	found	that	the	volume	of	the	trachea	was	higher	
for	 IPF	 subjects	 compared	 to	 normal	 and	 ILDs	 other	 than	 IPF	 (Figure	 3).	 No	 correlation	
was	seen	between	the	volume	of	the	trachea	and	%FVC	predicted.	This	conclusion	may	be	
consistent	with	the	findings	of	Ratwani	et	al.	[31],	who	found	that	there	was	no	association	
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between	%FVC	predicted	and	growing	tracheobronchial	tree	size,	 indicating	that	tracheal	
expansion	is	not	only	due	to	fibrosis	and	that	other	variables	may	be	at	play.	Such	findings	
suggest	that	the	increase	of	the	volume	of	the	trachea	might	be	a	good	new	handcrafted	
radiomic	feature	to	serve	as	a	promising	tool	in	the	diagnosis	of	IPF.

The	decrease	in	model	performance	in	the	test	dataset	might	be	explained	by	the	presence	of	
variation	in	acquisition	and	reconstruction	parameters.	When	the	random	forest	algorithm	
learned	part	of	 the	test	dataset	 in	the	training	dataset	 (M4.1),	 the	model	AUC	 increased	
from	0.66	to	0.77.	Such	findings	indicate	the	need	for	addressing	the	challenges	associated	
with	differences	in	imaging	parameters.

This	 study	 has	 some	 limitations.	 Firstly,	 we	 did	 have	 the	 additional	 categories	 of	 UIP	
patterns	(definite,	probable,	indeterminate,	or	alternative)	in	the	training	dataset	but	not	
in	the	test	dataset.	Therefore,	we	only	used	the	test	dataset	when	we	combined	G1	and	
G2.	Secondly,	 the	healthy	CT	scans	 (G4)	were	obtained	only	 from	one	center	 (center	 iii).	
Thirdly,	the	CT	acquisition	parameters	of	HRCT	varied	between	and	within	the	centers,	and	
radiomic	features	are	known	to	be	influenced	by	different	CT	acquisition	and	reconstruction	
parameters	[34,49,50].	Furthermore,	we	could	not	assess	the	reproducibility	of	features	due	
to	the	lack	of	anthropomorphic	phantom	or	test-retest	scans	acquired	with	settings	similar	
to	 the	 scans	 used	 in	 this	 study.	 Henceforth,	 future	 studies	must	 employ	 reproducibility	
studies	to	ensure	the	generalizability	of	the	developed	models.	The	application	of	radiomics	
to	 IPF	may	be	broadened	to	 include	treatment	decision	aids.	Further	research	should	be	
undertaken	to	investigate	the	progression	of	IPF/UIP	at	baseline	and	follow	up	to	evaluate	
the	effectiveness	of	the	antifibrotic	treatment.	In	addition,	a	combination	of	deep	learning	
and	handcrafted	 radiomics	with	 the	addition	of	blood	or	genetic	biomarkers	would	be	a	
powerful	tool	in	the	classification	of	ILDs.

Conclusions

At	 present,	 there	 is	minimal	 radiomics	 research	 on	 ILDs.	 Our	 findings	 are,	 nonetheless,	
promising	and	underline	the	strong	potential	of	HRCT-based	radiomics	for	the	identification	
of	 ILDs.	The	classification	between	 IPF/UIP	and	other	 ILDs	using	radiomics	might	capture	
features	indicating	different	types	of	ILDs	in	HRCT,	which	are	hardly	recognizable	via	visual	
assessment.	The	radiomic	features	extracted	from	HRCT,	along	with	clinical	features,	might	
aid in the	assessment	of	ILDs	and	be	used	as	a	valuable	tool	for	computer-aided	decision-
making	in	imaging.
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Appendix A

Table A1. Features	name	for	each	model.

Model Features	Name

M1 GLSZM_SZNN,	GLDZM_LISDE,	GLSZM_HISAE,	GLSZM_HILAE,	GLCM_diffVar,	GLRLM_GLV,	GLCM_
infoCorr2,	GLSZM_LILAE,	IH_medianD,	GLDZM_LILDE

M2 NGLDM_LGSDE,	GLDZM_DZN,	GLDZM_LISDE,	Trachea_Volume,	NGLDM_HGLDE,	GLRLM_GLV,	
GLCM_clusShade,	IH_qcod,	GLDZM_HILDE,	GLCM_contrast

M3 GLCM_infoCorr2,	Fractal_sd,	Trachea_Volume,	GLCM_maxCorr,	GLDZM_SDE,	GLRLM_GLV,	IH_
energy,	GLDZM_LISDE,	NGLDM_DV,	Stats_kurtosis

M4
M4.1

Trachea_Volume,	GLDZM_DZN,	NGLDM_LGSDE,	GLCM_infoCorr2,	GLDZM_SDE,	GLCM_sumVar,	
NGTDM_strength,	NGLDM_HGLDE,	GLDZM_LISDE,	GLCM_maxCorr

M5 Trachea_Volume,	GLRLM_GLV,	GLCM_diffVar,	GLSZM_HILAE,	NGLDM_LGSDE,	GLSZM_SAE,	IH_qcod,	
GLSZM_ZE,	GLSZM_IV,	Stats_kurtosis

Table A2. List	of	ILDs	included	in	the	study.

ILD Names

Hypersensitivity	pneumonitis	(HP)
Nonspecific	interstitial	pneumonia	(NSIP)
Connective	tissue	disease-associated	interstitial	lung	disease	(other	than	systemic	sclerosis	(SSc-ILD))	(CTD-ILD)
Lymphoid	interstitial	pneumonia	(LIP)
Unclassifiable	ILD
Idiopathic	pulmonary	fibrosis	(IPF)
Pleuro-parenchymal	fibroelastosis
Desquamative	interstitial	pneumonia	(DIP)
Eosinophilic	pneumonia
systemic	sclerosis	SSc-ILD
Respiratory	bronchiolitis	(RB-ILD)
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Handcrafted Radiomics and Deep Learning

Chapter 9



Abstract

Purpose:	To	develop	handcrafted	radiomics	(HCR)	and	deep	learning	(DL)	based	automated	
diagnostic	tools	that	can	differentiate	between	idiopathic	pulmonary	fibrosis	(IPF)	and	non-
IPF	interstitial	lung	diseases	(ILDs)	in	patients	using	high-resolution	computed	tomography	
(HRCT)	scans.

Material and Methods:	 In	this	retrospective	study,	474	HRCT	scans	were	included	(mean	
age,	64.10	years	±	9.57	[SD]).	Five-fold	cross-validation	was	performed	on	365	HRCT	scans.	
Furthermore,	an	external	dataset	comprising	109	patients	was	used	as	a	test	set.	An	HCR	
model,	a	DL	model,	and	an	ensemble	of	HCR	and	DL	model	were	developed.	A	virtual	in-silico 
trial	was	conducted	with	two	radiologists	and	one	pulmonologist	on	the	same	external	test	
set	 for	performance	comparison.	The	performance	was	compared	using	DeLong	method	
and	McNemar	test.	Shapley	Additive	exPlanations	 (SHAP)	plots	and	Grad-CAM	heatmaps	
were	used	for	the	post-hoc	interpretability	of	HCR	and	DL	models,	respectively.

Results:	In	five-fold	cross-validation,	the	HCR	model,	DL	model,	and	the	ensemble	of	HCR	and	
DL	models	achieved	accuracies	of	76.2±6.8%,	77.9±4.6%,	and	85.2±2.7%,	respectively.	For	
the	diagnosis	of	IPF	and	non-IPF	ILDs	on	the	external	test	set,	the	HCR,	DL,	and	the	ensemble	
of	HCR	and	DL	models	achieved	accuracies	of	76.1%,	77.9%,	and	85.3%,	respectively.	The	
ensemble	model	outperformed	 the	diagnostic	performance	of	 clinicians	who	achieved	a	
mean	accuracy	of	66.3±6.7%	(p	<	0.05)	during	the	in-silico	trial.	The	area	under	the	receiver	
operating	characteristic	curve	(AUC)	for	the	ensemble	model	on	the	test	set	was	0.917	which	
was	 significantly	higher	 than	 the	HCR	model	 (0.817,	p	 =	0.02)	and	 the	DL	model	 (0.823,	 
p =	0.005).	The	agreement	between	HCR	and	DL	models	was	61.4%,	and	the	accuracy	and	
specificity	for	the	predictions	when	both	the	models	agree	were	93%	and	97%,	respectively.	
SHAP	analysis	showed	the	texture	features	as	the	most	important	features	for	IPF	diagnosis	
and	Grad-CAM	showed	that	the	model	focused	on	the	clinically	relevant	part	of	the	image.	

Conclusion: DL	and	HCR	models	can	complement	each	other	and	serve	as	useful	clinical	aids	
for	the	diagnosis	of	IPF	and	non-IPF	ILDs.

Keywords:	 Artificial	 Intelligence,	 Radiomics,	 Computed	 Tomography,	 Interpretability,	
Idiopathic	Pulmonary	Fibrosis,	Interstitial	Lung	Disease.
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Introduction

Interstitial	lung	disorders	(ILDs)	are	a	diverse	group	of	ailments	with	an	estimated	200	distinct	
entities	and	are	linked	with	high	morbidity	and	death	(1).	Many	different	parenchymal	lung	
disorders	have	similar	clinical	signs	and	patterns	of	 lung	 injury.	Several	disorders,	 including	
idiopathic	 pulmonary	 fibrosis	 (IPF),	 have	 unknown	 etiology	 and	 are	 labeled	 idiopathic	 or	
cryptogenic,	while	the	rest	are	linked	to	other	diseases,	particularly	connective	tissue	diseases,	
or	to	environmental	exposures	(2–6).	One	of	the	most	common	types	of	ILDs	is	IPF,	a	progressive	
illness	marked	by	decreased	lung	function	(7).	IPF	has	an	estimated	incidence	rate	between	
2.8	and	18	cases	per	100,000	per	year	in	Europe	and	North	America	(8).	The	median	survival	
rate	of	patients	with	IPF	is	between	two	to	four	years	from	diagnosis	(9).	A	prompt	diagnosis	
and	management	are	crucial	for	slowing	down	the	progression	of	these	lung	disorders.

Medical	 imaging	 is	 becoming	 increasingly	 crucial	 for	 disease	 diagnosis,	 prognosis,	 and	
treatment	 planning	 in	 precision	 medicine	 (10).	 Computed	 tomography	 (CT)	 provides	
visual	data	that	may	be	used	to	enhance	decision-making	(4,11).	However,	qualitative	CT	
evaluation	remains	challenging	and	frequently	varies	amongst	experts	(12).	The	diagnosis	
of	 idiopathic	pulmonary	fibrosis	using	high-resolution	computed	 tomography	 (HRCT)	 is	a	
difficult	task	and	high	inter-observer	variability	is	associated	with	it	even	with	experienced	
radiologists	(13).	Consequently,	there	is	a	need	for	an	automated	clinical	tool	that	can	aid	
clinicians	for	accurate	and	timely	diagnosis.	

Artificial	intelligence	is	becoming	increasingly	popular	due	to	the	increasing	amount	of	imaging	
data	and	available	computational	resources	(14).	The	use	of	quantitative	imaging	techniques	
in	medical	imaging	has	grown	at	an	exponential	rate	(15).	Handcrafted	radiomics	(HCR)	is	a	
quantitative	approach	that	measures	and	extracts	high-dimensional	 imaging	characteristics	
to	aid	clinical	decision-making	(15,16).	Deep	learning	(DL)	methods	 learn	different	features	
and	representations	from	the	image	data	without	the	need	for	explicit	feature	engineering	
(17).	 Convolutional	 neural	 networks	 (CNNs)	 have	 shown	 remarkable	 results	 on	 numerous	
diagnostic	tasks	using	medical	image	data	including	the	diagnosis	of	fibrotic	lung	disease	(18).

Despite	promising	results	demonstrated	by	HCR	and	DL	models	for	various	medical	imaging	
tasks,	the	clinical	utility	of	such	models	is	limited	due	to	their	lack	of	interpretability	(19).	
Shapley	 Additive	 exPlanations	 (SHAP)	 (20)	 and	 Gradient-weighted	 class	 activation	maps	
(Grad-CAM)	 (21)	are	post-hoc	 interpretability	methods	 that	are	useful	 for	understanding	
the	decision-making	process	of	HCR	and	DL	models	respectively.	

In	this	paper,	we	propose	a	machine	learning-based	HCR	pipeline	and	a	DL	pipeline	for	the	
automated	diagnosis	of	IPF,	non-IPF	ILDs	patients.	 	We	also	perform	an	in-silico	trial	with	
experienced	 radiologists	 to	 compare	 the	 performance	 of	 HCR	 and	DL	 on	 a	 test	 dataset.	
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Furthermore,	we	use	post-hoc	 interpretability	methods	to	aid	 the	 incorporation	of	 these	
automated	diagnostic	tools	in	the	clinical	workflow.

Material and methods 

Patients
A	total	of	652	HRCT	scans	were	obtained	from	Site	1	(University	Liege	hospital)	and	205	HRCT	
scans	were	obtained	from	database	A	(The	Lung	tissue	research	consortium	database	(LTCR)).	
The	inclusion	criteria	were:	the	availability	of	non-contrast	enhanced	HRCT	and	the	availability	
of	HRCT	with	slices	thickness	of	less	than	1.5	mm.	The	exclusion	criteria	were:	the	use	of	contrast	
enhancement,	 images	containing	metal	or	motion	artifacts,	and	images	reconstructed	with	
a	slice	thickness	larger	than	1.5	mm.	All	diagnoses	were	confirmed	by	the	Multidisciplinary	
discussion	 (MDD)	 that	 included	a	histopathologist,	pulmonologist,	 thoracic	 radiologist,	and	
rheumatologist.	 Lung	 biopsy	 is	 only	 required	 in	 case	 of	 ILD	 inconsistent	with	 IPF.	 Figure	 1	
shows	the	patient	selection	process.	Demographic	data,	clinical	data,	and	measurements	of	
pulmonary	function	tests	(PFT)	were	acquired	for	each	patient.	Demographic	and	clinical	data	
include	age,	gender,	body	mass	index	(BMI),	forced	edxpiratory	volume	in	1s	(FEV1),	forced	
vital	capacity	(FVC),	and	diffusion	capacity	of	the	lungs	for	carbon	monoxide	(DLCO).

Figure 1:	 The	 flowchart	 diagram	 shows	 the	 patient	 selection	 process.	 IPF	 =	 Idiopathic	 pulmonary	 fibrosis,	 
ILDsnon-IPF	=	non-IPF	Interstitial	lung	diseases.
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Imaging acquisition and segmentation 
The	HRCT	scans	at	site	1	were	acquired	at	the	same	hospital	using	two	different	vendors	
(Siemens	and	GE).	The	scans	acquired	from	database	A	were	acquired	using	four	different	CT	
vendors	(Siemens,	GE,	Philips,	and	Toshiba).	The	slice	thickness	of	the	scans	varied	between	
0.5	mm	and	1.5	mm.	A	further	detailed	description	of	the	CT	acquisition	parameters	can	
be	found	in	Supplementary	(Table	E1).	Whole	lung	segmentation	was	performed	using	an	
automated	workflow	created	in	MIM	software	(MIM	Software	Inc.,	Cleveland,	OH).	

 Data Split
Five-fold	cross-validation	was	performed	on	data	from	Site	1	consisting	of	365	HRCT	scans	
containing	279	non-IPF	ILDs,	and	86	IPF	patients.	External	data	from	database	A,	comprising	
53	IPF	patients	and	56	non-IPF	ILDs	patients	was	used	to	benchmark	the	performance	of	the	
proposed	AI	tools	along	with	the	in-silico	trial.

Handcrafted Radiomics (HCR)
Handcrafted radiomics feature extraction
To	minimize	the	effect	of	the	variations	in	image	voxel	size,	all	CT	images	were	resampled	to	a	
1	×	1	×	1	mm3.	Radiomics	features	were	extracted	from	the	HRCT	images	using	the	RadiomiX	
Discovery	 Toolbox	 (https://www.radiomics.bio)	 which	 calculates	 HCR	 features	 compliant	
with	 the	 Imaging	 Biomarkers	 Standardization	 Initiative	 (IBSI)	 (22).	 Voxel	 intensities	were	
aggregated	 into	25	bins	of	Hounsfield	Units	to	reduce	noise	and	 inter-scanner	variability.	
The	extracted	features	describe	fractal	dimension,	intensity	histogram,	first-order	statistics,	
texture,	 and	 shape.	 A	 workflow	 for	 handcrafted	 radiomics	 from	 segmentation	 to	 data	
analysis	is	illustrated	in	Figure	2.

Figure 2:	Radiomics	Pipeline	for	Lung	disease	classification	from	CT	images.	The	same	12	radiomics	features	from	
both	lungs	after	feature	selection	are	concatenated	and	fed	to	the	Random	Forest	classifier.	Post-hoc	SHAP	analysis	
is	performed	for	interpretability.
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Features selection and modeling
Features	with	near-zero	variance	(i.e.	features	that	have	the	same	value	in	≥	95	%	of	the	data	
points)	were	excluded.	Then,	a	correlation	matrix	was	created	between	all	HCR	features	and	
populated	using	Spearman’s	correlation	coefficient	(r).	Feature	pairs	with	|r|	≥	0.90	were	
considered	to	be	highly	correlated,	and	the	feature	with	the	highest	average	correlation	with	
all	other	features	was	removed.	Furthermore,	a	Recursive	feature	elimination	(RFE)	using	a	
random	forest	classifier	was	performed	on	the	subset	of	features	that	were	selected	after	
applying	Spearman’s	correlation	coefficient.	RFE	was	applied	with	cross-validation	in	order	
to	determine	 the	accuracy	of	 the	 classification	and	 the	 top	12	 features	with	 the	highest	
accuracy	were	selected	for	the	final	model.	The	same	12	features	were	extracted	for	each	
lung	and	concatenated	to	give	a	final	feature	vector	consisting	of	24	HCR	features.		A	list	of	
the	names	of	the	features	along	with	their	abbreviations	that	were	used	in	the	model	can	
be	found	in	Supplementary	(Table	E2).	A	random	forest	classifier	was	used	to	construct	the	
HCR	model	to	predict	the	probability	of	IPF	in	patients	using	HRCTs.	Random	forest	classifier	
has	proven	to	be	effective	for	lungs	CT-based	radiomics	problems	in	recent	research	findings	
(23-25).	The	random	forest	classifier	was	trained	with	class	weights	of	1	for	non-IPF	ILDs	and	
3	for	IPF	patients	to	compensate	for	the	class	imbalance.	Five-fold	cross-validation	was	used	
for	hyper-parameter	tuning.	

Post-hoc Interpretability 
SHapley	Additive	exPlanations	(SHAP)	analysis	is	based	on	co-operative	game	theory	(20).	
SHAP	 analysis	 is	 a	 post-hoc	 interpretability	 method	 that	 quantifies	 the	 impact	 of	 each	
feature	on	the	model	prediction	in	terms	of	SHAP	value.	SHAP	summary	plots	provide	global	
explanations	by	highlighting	the	effect	of	features	on	the	prediction	in	terms	of	SHAP	value	
and	help	in	recognizing	the	trends.	These	plots	show	whether	a	high	or	low	feature	value	
affects	 the	model	 output	 positively	 or	 negatively.	 SHAP	 dependence	 plots	 highlight	 the	
relationship	 between	 the	model	 output	 in	 terms	 of	 SHAP	 values	 and	 the	 corresponding	
feature	values.	These	dependence	plots	can	be	useful	for	quantifying	the	trend	of	model	
output	with	respect	to	the	feature	values	as	well	as	understanding	the	interaction	effects	
between	a	pair	of	features.	

Deep learning (DL)
All	 the	 scans	 were	 resampled	 to	 an	 isotropic	 resolution	 of	 1	 x	 1	 x	 1	 mm3.	 Min-max	
normalization	was	applied	to	the	area	within	the	lung	mask.	Two	patches	containing	one	
lung	 each	 of	 size	 240	  240 	 240	 voxels	 were	 extracted	 using	 the	 lungs	masks.	 Both	
lungs	 were	 randomly	 flipped	 for	 augmentation	 and	 concatenated	 along	 the	 z-axis.	 The	
image	was	then	downsampled	by	taking	every	sixth	slice	along	the	z-axis.	The	start	index	
was	randomly	chosen	in	the	range	of	1	to	6.	This	resulted	in	additional	augmentation	and	
reduction	of	the	input	image	size.	A	Densenet-121	(26,27)	classifier	with	3D	convolutional	
layers	was	used	with	weighted	binary	cross-entropy	loss	(non-IPF	ILDs:	1,	 IPF:	3)	 in	order	
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to	minimize	the	effects	of	data	imbalance.	Adam	optimizer	with	a	learning	rate	of	1	e-5 and 
ReduceLROnPlateau	scheduler	was	employed.	The	batch	size	was	set	at	16	and	the	network	
was	trained	for	50	epochs.	Figure	3	shows	the	different	steps	 involved	 in	training	the	DL	
model	for	lung	disease	classification	in	CT	images.

Figure 3:	Figure	shows	different	steps	in	the	deep	learning	pipeline	for	the	prediction	of	lung	diseases	in	CT	scans.		

During	prediction,	six	input	images	from	the	test	image	were	extracted	by	setting	the	start	
slice	index	in	the	range	from	1	to	6	and	taking	every	sixth	consecutive	slice.	These	six	test	
samples	are	fed	to	the	trained	3D	Densenet-121	model.	The	final	prediction	is	the	average	of	
the	prediction	of	these	six	test	samples.	Heatmaps	highlight	the	regions	of	the	input	image	
that	the	model	considers	important	for	prediction.	We	utilized	Grad-CAM	(21)	heatmaps	for	
the	post-hoc	interpretability	of	the	Densenet-121	model.	

Ensemble Model
The	ensemble	methods	utilize	multiple	machine	learning	methods	in	an	effort	to	achieve	
better	predictive	performance	as	compared	to	the	performance	obtained	by	the	constituent	
machine	 learning	methods	alone.	We	constructed	an	ensemble	model	 from	HCR	and	DL	
models	by	taking	an	average	of	the	probabilities	predicted	by	the	two	models.

In-silico Clinical Trial
An	application	that	allows	the	construction	of	a	reference	performance	point	by	gathering	
medical	 imaging	 expert	 comments	 based	on	 the	 visual	 assessment	 of	HRCT	 images	was	
created.	The	application	allows	displaying	the	CT	images	one	at	a	time	with	the	option	of	
different	planes	(Axial,	Coronal,	or	Sagittal),	and	the	application	also	allows	scrolling	through	
the	CT	 scan	 slices.	 The	 graphical	 user	 interface	 (GUI)	 of	 the	 application	 can	be	 found	 in	
Supplementary	(Figure	E1).	The	radiologist	can	select	one	of	the	two	classes	(IPF	or	ILDs	other	
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than	IPF).	The	diagnostic	performance	of	two	radiologists	(6	and	23	years	of	experience)	and	
one	pulmonologist	(12	years	of	experience)	was	recorded	for	the	same	test	dataset	(n=109)	
to	perform	a	comparison	with	the	machine	learning-based	HCR,	DL,	and	ensemble	models.	

 Statistical analysis
Statistical	 analysis	 was	 performed	 in	 Python	 (version:	 3.6).	Wilcoxon	 rank-sum	 test	 was	
used	 for	 the	 continuous	 variables	 to	 test	 the	group	differences	and	Fisher	exact	 test	 for	
categorical	variables.	To	assess	the	model’s	performance,	the	areas	under	the	curves	(AUCs)	
for	 receiver	operating	characteristic	 (ROC)	curves	were	compared	using	 the	DeLong	 test.	
The	thresholds	for	each	model	were	set	at	the	highest	Youden’s	index	in	the	training	set.	The	
performance	was	evaluated	using	accuracy,	sensitivity,	specificity,	positive	predictive	value	
(PPV),	and	negative	predictive	value	(NPV).	For	five-fold	cross-validation,	we	also	report	the	
standard	deviation	(SD).	The	performance	of	the	models	on	the	test	set	was	compared	with	
the	performance	of	 clinicians	using	McNemar	 test.	 This	 study	 followed	 the	 Standard	 for	
Reporting	Diagnostic	accuracy	studies	(STRAD)	(28)	and	was	assessed	using	the	Radiomics	
Quality	Score	(RQS)	(29).	The	detailed	description	about	RQS	can	be	found	in	supplementary	
table	E3.	

Results

Patients Characteristics
A	 total	 of	 474	 patients,	 335	 of	whom	were	 diagnosed	with	 non-IPF	 ILDs,	 and	 139	with	
IPF,	were	 included	after	 the	application	of	exclusion	criteria	 (Figure	1).	The	demographic	
characteristics	of	the	included	patients	can	be	found	in	Table	1.

Table 1.	Demographic	and	clinical	information	of	the	study	participants.

Variables Site 1 Database A P-value (p)

n 365 109 -

Age (mean(SD)) 64.10	(9.57) 63.61	(14.17) 0.8

Sex = M (%) 213	(87 74	(67.9) 0.09

FEV1 (mean (SD)) 80.42	(21.47) 69.60	(20.67) <	0.001

FVC (mean(SD)) 80.52	(21.25) 67.35	(21.37) <	0.001

DLCO (mean(SD)) 51.32	(24.99) 29.84	(5.36) <	0.001

BMI (mean(SD)) 25.48	(6.45) 29.55	(5.21) <	0.001

Body	mass	index	(BMI),	forced	expiratory	volume	(FEV),	Forced	vital	capacity	(FVC),	and	diffusion	capacity	of	
the	lungs	for	carbon	monoxide	(DLCO)	are	shown	in	the	table	for	different	patients	along	with	their	mean	and	
standard	deviation	(SD).	

Handcrafted Radiomics
The	HCR	model	achieved	an	AUC	of	0.85	(95%	CI:	0.771	–	0.924)	in	the	validation	set	in	five-
fold	cross-validation	(Figure	4	(a)).	The	threshold	of	0.51	was	fixed	based	on	Youden’s	index	
in	the	training	set.	An	accuracy,	sensitivity,	and	specificity	of	0.762±0.068,	0.816±0.094,	and	
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0.745±0.065	were	obtained	in	five-fold	cross-validation,	respectively.	In	the	external	test	set,	
the	HCR	model	achieved	an	AUC,	accuracy,	sensitivity,	and	specificity	of	0.817,	0.761,	0.698,	
and	0.821,	respectively.	Tables	2	and	3	show	the	performance	metrics	for	the	HCR	model	
during	five-fold	cross-validation	and	external	validation,	respectively.	Figure	4	(b)	shows	the	
test	performance	for	the	HCR	model	on	the	external	dataset.	The	Radiomics	Quality	Score	
(RQS)	achieved	for	this	study	is	52.78	%	(19	of	36).

Table 2.	Precision	and	recall	metrics	for	five-fold	cross-validation	using	handcrafted	radiomics	(HCR),	deep	
learning	(DL),	and	an	ensemble	of	HCR	and	DL	models.

Model Accuracy Sensitivity Specificity Positive 
Predictive 

Value (PPV)

Negative 
Predictive 

Value (NPV)

Handcrafted Radiomics (HCR) 0.762	±	0.068 0.816	±	0.094 0.745	±	0.065 0.506	±	0.084 0.923	±	0.040

Deep Learning (DL) 0.779	±	0.046 0.711	±	0.10 0.800	±	0.075 0.541	±	0.074 0.901	±	0.025

Ensemble (HCR + DL) 0.852 ± 0.027 0.827 ± 0.005 0.860 ± 0.035 0.65 ± 0.063 0.94 ± 0.003

Table 3.	Comparison	of	diagnostic	performance	on	the	external	test	dataset	for	HCR,	DL,	an	ensemble	of	HCR	and	
DL, and in-silico	trial	with	clinicians.

Model Accuracy Sensitivity Specificity Positive 
Predictive 

Value (PPV)

Negative 
Predictive 

Value (NPV)

Handcrafted Radiomics (HCR) 0.761 0.698 0.821 0.787 	0.741

Deep Learning (DL) 0.779 0.792 0.768 0.763 0.796

Ensemble (HCR + DL) 0.853 0.886 0.821 0.825 0.885

In-silico trial with clinicians 0.66	±	0.067 0.572	±	0.186 0.750	±	0.0525	 0.680	±	0.042 0.669	±	0.100

Figure 4:	Receiver	operating	characteristics	(ROC)	curves	for	five-fold	cross-validation	(a)	and	external	test	dataset	
(b)	 for	 the	 classification	 of	 IPF	 and	 non-IPF	 ILDs	 using	 handcrafted	 radiomics	 (HCR),	 deep	 learning	 (DL),	 and	
ensemble	(HCR	+	DL)	models.
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The	global	SHAP	summary	plots	in	Figure	5	(a)	demonstrate	that	the	same	features	extracted	
from	each	lung	separately	affect	the	model’s	prediction	for	IPF	diagnosis	in	a	similar	way.	
A	high	feature	value	with	a	positive	SHAP	value	forces	the	model’s	probability	to	be	higher.	
The	 IH_qcod	 feature	values	extracted	 from	 lung1	and	 lung2	demonstrate	a	 similar	 trend	
that	a	high	feature	value	results	in	a	positive	SHAP	value.	However,	there	are	some	outliers	
in	the	trend	that	can	seen	be	in	features	such	as	GLCM_correl1_lung	and	GLDZM_INN_lung.	
Similarly,	the	GLDZM_INN	feature	values	extracted	from	lung1	and	lung2	show	a	negative	
trend	 that	a	high	 feature	value	 results	 in	a	negative	SHAP	value.	 Figure	5	 (b,c,d,e)	 show	
the	dependence	plots	of	GLCM_clusTend,	GLCM_correl1,	GLDZM_HISDE,	and	GLDZM_DZN	
features,	respectively.	In	Figure	5	(c),	when	the	feature	value	of	GLDZM_HISDE	is	low,	high	
feature	values	of	GLCM_clusTend	result	in	a	lower	SHAP	value.	A	similar	effect	can	be	seen	
in	Figure	5	(d)	between	features	GLDZM_DZN	and	NGLDM_DE.	

Deep learning
The	DL	model	achieved	an	AUC	of	0.85	(95%	CI:	0.806	–	0.904)	in	the	validation	set	in	five-
fold	cross-validation	(Figure	4	(a)).	The	threshold	of	0.45	was	fixed	based	on	Youden’s	index	
in	the	training	set.	An	accuracy,	sensitivity,	and	specificity	of	0.779±0.046,	0.711±0.10,	and	
0.800±0.075	was	achieved	during	five-fold	cross-validation,	respectively.	In	the	external	test	
set,	 the	DL	model	achieved	an	AUC,	accuracy,	 sensitivity,	and	 specificity	of	0.823,	0.853,	
0.886,	and	0.821,	respectively.	Tables	2	and	3	show	the	performance	metrics	for	the	HCR	
model	 during	 five-fold	 cross-validation	 and	 external	 validation,	 respectively.	 Figure	 4	 (b)	
shows	the	test	performance	for	the	DL	model	on	the	external	dataset.

Figure	6	shows	Grad-CAM	overlayed	on	CT	image	slices	obtained	from	HRCT	scans	from	IPF	
and	non-IPF	ILDs	patients.	The	overlayed	heatmap	shows	the	regions	of	the	input	image	that	
the	model	considers	important	for	prediction.	The	Grad-CAM	focuses	on	the	tissue	pattern	
in	the	patient	with	IPF.	However,	no	information	is	provided	on	how	these	areas	contribute	
to	the	final	model	prediction.

Figure 6:	GradCAM	heatmaps	for	post-hoc	interpretability	of	IPF	and	non-IPF	ILDs	HRCT	scans	to	understand	the	
predictions	made	by	the	Densenet-121.	
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Ensemble 
The	ensemble	model	achieved	an	AUC	of	0.93	(95%	CI:	0.899	–	0.955)	in	the	validation	set	
during	five-fold	 cross-validation	 (Figure	4	 (a)).	 The	 threshold	of	 0.49	was	fixed	based	on	
Youden’s	index	in	the	training	set.	An	accuracy,	sensitivity,	and	specificity	of	0.852±0.027,	
0.827±0.005,	and	0.860±0.035	was	obtained	during	five-fold	cross-validation,	respectively.	
In	the	external	test	set,	the	DL	model	achieved	an	AUC,	accuracy,	sensitivity,	and	specificity	
of	0.917,	0.853,	0.886,	and	0.821,	respectively.	Tables	2	and	3	show	the	performance	metrics	
for	 the	HCR	model	 during	 five-fold	 cross-validation	 and	 external	 validation,	 respectively.	
The	agreement	between	the	predictions	of	HCR	and	DL	models	is	61.4%.	The	accuracy	and	
specificity	for	the	predictions	when	both	the	models	agree	were	93%	and	97%,	respectively.	
There	was	a	statistically	 significant	difference	between	 the	ROC	curves	 for	 the	ensemble	
model	and	HCR	model	(p	=	0.02),	and	the	ensemble	model	and	the	DL	model	(p =	0.005).

 In-silico Clinical Trials
Two	radiologists	and	one	pulmonologist	achieved	accuracies	of	58.7%,	65.1%,	and	75.2%	
with	a	mean	of	66.3±6.7%	for	 the	diagnosis	of	 IPF	and	non-IPF	 ILDs	on	the	external	 test	
dataset.	 There	 was	 a	 statistically	 significant	 difference	 between	 performance	 of	 the	
ensemble	model,	and	that	of	radiologists	and	pulmonologists	(P	<	0.05).

Discussion

In	this	study,	we	investigated	the	potential	of	HCR	and	DL	to	differentiate	between	different	
lung	 disorders	 i.e.	 IPF	 and	 non-IPF	 ILDs	 patients	 on	HRCT	 scans.	We	 also	 used	 post-hoc	
interpretability	 methods	 to	 explain	 the	 predictions	 of	 HCR	 and	 DL	 models.	 Moreover,	
we	compare	 the	performance	of	 the	proposed	models	 to	 the	diagnostic	performance	of	
radiologists	using	an in-silico	 trial	on	an	external	test	set.	Our	results	show	that	HCR	and	
DL	have	 a	 great	 potential	 to	be	used	 as	 an	 aid	 for	 clinical	 decision-making,	which	 could	
minimize	the	time	needed	by	radiologists,	and	increase	diagnostic	accuracy.	The	superior	
performance	of	an	ensemble	of	DL	and	HCR	models	also	demonstrates	that	these	approaches	
can	complement	each	other	for	lung	disease	diagnosis.

HCR	 and	DL	models	 achieved	 an	 accuracy	 of	 76.2±6.8%	and	 77.9±	 4.6%	during	 five-fold	
cross-validation,	 respectively.	 In	 the	external	 test	 set,	HCR	and	DL	models	demonstrated	
a	similar	accuracy	of	76.1%	and	77.9%,	respectively.	 	There	was	no	statistically	significant	
difference	between	the	ROC	curves	for	HCR	and	DL	models.	The	ensemble	of	HCR	and	DL	
models	demonstrated	the	best	accuracy	of	85.2±2.7%	and	85.3%	for	five-fold	cross-validation	
and	external	test	set,	respectively.	There	was	a	statistically	significant	difference	between	
the	ROC	 curves	 for	 the	ensemble	model	 and	HCR	model	 (p	 =	 0.023),	 and	 the	ensemble	
model	and	DL	model	(p	=	0.005).	The	HCR	and	DL	models	show	an	agreement	of	61.4%	for	
the	predictions	on	the	external	test	set.	A	sensitivity	and	specificity	of	93%	and	97%	were	
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obtained	when	both	the	models	agreed	on	the	prediction.	Hence,	HCR	and	DL	models	add	
complementary	value	to	each	other	resulting	in	a	boost	in	performance.	

We	compared	the	performance	of	the	developed	models	against	the	performance	of	the	
radiologists	using	a	virtual	clinical	trial	setting.	The	performance	of	HCR	(76.1%),	DL	(77.9%),	
and	ensemble	(85.3	%)	models	were	better	than	the	performance	of	two	radiologists	and	
one	pulmonologist	(66	 	7%)	in	discriminating	IPF	from	non-IPF	ILDs	on	the	external	test	
set.	There	was	a	statistically	significant	difference	(p	<	0.05)	between	the	predictions	of	the	
ensemble	model,	and	the	two	radiologists	and	one	pulmonologist.	There	was	a	significant	
difference	(p	<	0.001)	in	the	BMI,	FEV,	FVC,	and	DLCO	values	between	site	1	and	database	
A.	The	models	demonstrated	similar	performance	on	the	external	database	A	despite	the	
variability,	showing	that	the	trained	models	are	robust	and	generalize	well.

The	clinical	translation	of	HCR	and	DL	is	limited	due	to	the	“black-box”	nature	of	the	underlying	
complex	classifiers.	It	is	difficult	for	clinicians	to	understand	the	underlying	mechanisms	that	
govern	the	decision-making	process	of	these	complex	classifiers.	SHAP	post-hoc	explanations	
discover	 the	 patterns	 of	 the	 complex	 classifiers	 and	 increase	 transparency.	 SHAP	 global	
summary	plots	showed	that	Gray-level	Co-occurrence	Matrix	Cluster	Tendency	and	Intensity	
Histogram	quartile	coefficient	of	dispersion	are	the	most	important	features	for	IPF	diagnosis.	
These	plots	also	showed	that	the	same	features	extracted	from	different	lungs	demonstrate	
a	similar	trend	in	SHAP	impact	value.	SHAP	dependence	plots	demonstrated	the	effect	of	
a	single	feature	value	and	the	interaction	between	a	pair	of	features	on	the	model	output.	
Grad-CAM	heatmaps	highlight	the	area	that	the	DL	model	considers	important	for	the	final	
prediction.	These	heatmaps	can	reinforce	the	trust	in	the	model	predictions	if	the	model	is	
focusing	on	the	area	relevant	to	the	clinical	task.	However,	Grad-CAM	heatmaps	do	not	offer	
any	explanation	of	how	the	highlighted	area	contributes	to	the	final	prediction.	Although	
DL	demonstrates	good	performance,	it	is	more	opaque	in	nature	due	to	its	complexity	that	
might	hinder	its	clinical	adoption.	

Some	studies	previously	investigated	the	potential	of	HCR	and	DL	algorithms	to	classify	lung	
disorders.	Walsh	el	al.	(18)	employed	a	DL	algorithm	on	a	dataset	of	1157	HRCT	images	for	
the	diagnosis	of	fibrotic	lung	disease.	The	algorithm	performance	was	compared	to	that	of	
91	radiologists	and	revealed	an	accuracy	of	73.3	%,	compared	to	the	radiologist’s	median	
accuracy	of	70.7	%.	When	compared	to	Walsh	et	al.	(18),	our	study	demonstrated	greater	
accuracy	using	HCR	(76.1%),	DL	(77.9%),	and	an	ensemble	of	HCR	and	DL	(85.3%).	Christe	et	
al.	(30)	conducted	another	study	in	which	they	employed	a	computer-aided	diagnostic	(CAD)	
system	(INTACT	system)	 to	diagnose	 IPF	cases	based	on	HRCT	 images	and	compared	 the	
performance	of	the	CAD	system	to	the	performance	of	radiologists.	Their	findings	showed	
that	the	two	radiologists	and	the	CAD	system	obtained	an	accuracy	of	60	%,	54	%,	and	56	
%	 respectively.	Mean	RQS	score	of	20.4%,	26.1%,	and	27.4%	were	obtained	after	 recent	
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analyses	of	papers	reporting	radiomics	studies	(31–33).	This	shows	that	RQS	is	a	stringent	
and	demanding	criterion	(34-36)	that	aims	to	encourage	the	best	scientific	practice.	An	RQS	
of	52.78%	shows	that	this	study	tries	to	adhere	to	the	best	scientific	practices	and	reporting	
guidelines.	

This	 study	 has	 some	 limitations.	 The	 datasets	 utilized	 for	 this	 study	 contain	HRCT	 scans	
acquired	with	different	CT	acquisition	and	reconstruction	settings	that	can	 influence	HCR	
feature	 values	 (37).	 Hence,	 phantom	 studies	 to	 evaluate	 the	 reproducibility	 of	 the	 HCR	
features	 or	 harmonization	 investigations	 need	 to	 be	 carried	 out	 to	make	 a	more	 robust	
HCR	pipeline	(38).	Grad-CAMs	only	highlight	the	region	of	the	input	image	that	the	model	
considers	important	for	the	decision-making	process.	There	is	a	need	to	utilize	interpretability	
methods	that	give	an	insight	into	how	the	relevant	region	contributes	to	the	decision-making	
process	(19).	The	high	performance	of	an	ensemble	of	HCR	and	DL	model	shows	that	these	
two	approaches	add	complementary	values.	It	may	be	useful	to	employ	an	interpretability	
method	such	as	concept	attribution	that	will	investigate	the	HCR	features	that	the	DL	model	
considers	important	for	classification	(39).	A	prospective	virtual in-silico	trial	in	a	real-world	
environment	where	 the	predictions	of	DL/HCR	model	 and	post-hoc	 interpretability	 plots	
are	made	available	 to	 the	doctors	during	diagnosis	 should	be	carried	out	 to	confirm	the	
clinical	utility	of	 the	proposed	methods.	The	quality	of	 lung	 segmentation	can	affect	 the	
performance	of	the	models.	Therefore,	it	is	important	to	ensure	the	quality	of	the	automatic	
segmentation	in	the	presence	of	variability	such	as	noise	and	artifacts

At	 the	moment,	 there	 is	 little	 research	 on	 the	 diagnosis	 of	 ILDs	 using	 HCR	 and	DL.	 The	
reported	 results	 are	 encouraging	 and	 highlight	 the	 significant	 potential	 of	 HCR	 and	 DL	
methods	for	the	diagnosis	of	IPF.	In	the	future,	HCR	and	DL	approaches	may	be	expanded	to	
include	treatment	decisions.	More	studies	should	be	conducted	to	explore	the	development	
of	IPF	at	baseline	and	follow-up,	as	well	as	to	assess	the	efficacy	of	anti-fibrotic	treatment.

Conclusion 

In	 this	 study,	 we	 developed	 handcrafted	 radiomics	 and	 deep	 learning	 models	 for	 the	
classification	of	IPF	and	non-IPF	ILDs	using	HRCTs.	In	addition,	we	compared	the	performance	
of	both	models	to	radiologists	on	an	external	test	dataset.	HCR,	DL,	and	ensemble	models	
demonstrated	 better	 accuracy	 than	 radiologists	 in	 a	 virtual	 in-silico	 clinical	 trial	 setting.	
An	ensemble	of	HCR	and	DL	models	demonstrated	the	best	performance	highlighting	the	
complementary	value	of	the	two	quantitative	approaches	for	lung	disease	diagnosis.	SHAP	
and	GRAD-CAM	post-hoc	interpretability	methods	are	useful	for	explaining	the	predictions	
made	by	radiomics	and	DL	models	respectively.	These	automated	diagnostic	tools	can	serve	
as	a	useful	clinical	aid	for	diagnosing	different	lung	diseases.
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The	 application	 of	 artificial	 intelligence	 (AI)	 in	 diagnostic	medical	 imaging	 is	 increasingly	
a	 topic	 of	 many	 different	 research	 projects.	 A	 great	 deal	 of	 the	 research	makes	 use	 of	
handcrafted	 radiomics	 or	 deep	 learning	 algorithms	 to	 complete	 various	 tasks	 in	 a	 range	
of	different	medical	 imaging	modalities	(1,2)	(Figure	1).	AI	has	demonstrated	outstanding	
levels	of	accuracy	and	sensitivity	in	the	identification	of	imaging	abnormalities,	and	it	has	
the	potential	 to	 improve	tissue-based	detection	and	characterization	(3–5).	To	guarantee	
successful	 and	 safe	 inclusion	 of	 AI-assisted	 diagnostic	 imaging	 in	 clinical	 practices,	 the	
medical	 community	 must	 anticipate	 possible	 unknowns	 underlying	 these	 technologies	
already	at	the	start	of	the		AI-assisted	diagnostic	imaging	revolution.	A	careful	assessment	
of	AI’s	possible	risks	in	the	context	of	its	unique	abilities	is	critical	when	establishing	its	place	
in	clinical	medicine.	Though	it	should	be	pointed	out	that	straddling	the	line	between	better	
detection	and	overdiagnosis	will	be	difficult.	When	establishing	this	assessment,	the	regular	
use	of	out-of-sample	external	validation	and	well-defined	cohorts	 to	 improve	the	quality	
and	interpretability	of	AI	studies	will	be	of	critical	importance	(6).
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Figure 1.	Number	of	publications	on	PubMed	search;	a)	radiomics;	b)	deep	learning.
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This	thesis	provided	two	AI	methods:	a)	handcrafted	radiomics	and	b)	deep	learning	(DL).	
As	described	 in	this	thesis,	 the	overall	goals	of	the	study	for	handcrafted	radiomics	were	
(i)	 to	acquire	better	 insights	 into	 their	 reproducibility	 (Figure	2)	and	 (ii)	 to	evaluate	 their	
potential	in	the	categorization	of	various	types	of	lung	disorders.	The	primary	goal	for	DL	is	
to	examine	its	capacity	to	classify	various	types	of	lung	diseases.	This	chapter	provides	an	
in-depth	discussion	of	the	work	completed	in	this	thesis	as	well	as	future	perspectives.
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Figure 2. Number	of	publications	on	the	reproducibility	of	handcrafted	radiomics	in	the	period	between	2012	and	
2021,	based	on	PubMed	research.	

Reproducibility of handcrafted radiomics (HRFs)

In chapter 3,	we	investigated	the	robustness	of	HRFs	on	a	dataset	consisting	of	13	phantom	
CT	scans.	The	scans	were	obtained	from	different	vendors,	with	different	CT	parameters.	
After	 the	 extraction	 of	 HRFs	 from	 the	 13	 scans,	 we	 assessed	 their	 reproducibility	 using	
the	 concordance	 correlation	 coefficient	 (CCC).	 The	 study’s	 findings	 indicated	 that	 only	
a	small	percentage	of	HRFs	were	robust	 to	differences	 in	 the	 imaging	settings	examined.	
The	majority	of	the	HRFs	were	reliant	on	imaging	parameter	changes.	Furthermore,	when	
applying	ComBat	harmonization	to	phantom	scans,	the	findings	demonstrated	that	ComBat’s	
capacity	 to	harmonize	HRFs	depends	on	 variations	 in	 imaging	parameters.	However,	 the	
performance	of	ComBat	harmonization	may	 suffer	as	 a	 result	of	 treating	each	 scan	as	 a	
unique	batch	effect,	despite	the	fact	that	variations	between	pair	batches	are	not	similar.

The	reproducibility	of	hepatocellular	carcinoma	(HCC)	HRFs,	generated	from	various	phases	
of	 contrast-enhanced	CT	 images	 (CECT),	was	evaluated	 in	chapter 4.	 For	 this	 study,	HCC	
patients’	arterial	and	venous	CT	scans	were	made	accessible.	To	ensure	that	the	same	region	
of	interest	(ROI)	was	placed	in	the	right	position	in	both	phases,	the	segmentation	of	ROIs	
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was	performed	on	one	phase	and	then	replicated	in	the	other.	The	finding	of	the	presented	
study	showed	that,	when	no	image	settings	were	changed,	a	subset	of	HRFs	were	shown	to	
be	reproducible	in	both	phases.	In	addition,	the	use	of	the	ComBat	harmonization	approach	
resulted	in	an	increase	in	reproducible	HRFs	by	1%	across	phases.	This	study	also	found	that	
a	number	of	HRFs	may	be	utilized	interchangeably	across	arterial	and	venous	phase	CT	scans	
and	that	combining	these	scans	might	enhance	the	information	gathered	from	HCC	lesions.	
However,	we	speculate	 that	 the	subgroup	of	 reproducible	HRFs	 identified	 in	our	study	 is	
confined	to	the	HCC	lesions	derived	from	scans	collected	in	a	manner	similar	to	our	dataset.	
Furthermore,	 the	 reproducibility	 of	 the	 discovered	 HRFs	must	 be	 tested	 using	 different	
acquisition	and	reconstruction	conditions,	which	was	not	achievable	due	to	a	lack	of	data.

In chapter 5, we	 investigated	 the	use	of	Reconstruction	Kernel	Normalization	 (RKN)	and	
ComBat	harmonization	to	improve	the	reproducibility	of	HRFs	across	scans	acquired	with	
different	reconstruction	kernels.	A	sample	of	28	phantom	scans	collected	on	five	distinct	
scanner	types	was	evaluated.	HRFs	were	derived	from	the	original	scans,	and	scans	were	
harmonized	using	 the	RKN	approach.	ComBat	harmonization	was	applied	on	both	 set	of	
HRFs.	Concordance	correlation	coefficient	(CCC)	was	used	to	assess	the	reproducibility	of	
HRFs.	McNemar’s	test	was	used	to	determine	the	difference	in	the	number	of	reproducible	
HRFs	in	each	scenario.	The	results	of	the	study	showed	that	the	majority	of	HRFs	were	found	
to	be	sensitive	 to	variations	 in	 the	 reconstruction	kernels,	and	only	 six	HRFs	were	 found	
to	be	robust	with	respect	to	variations	in	reconstruction	kernels.	Furthermore,	combining	
RKN	 and	 ComBat	 harmonization	 led	 in	 considerable	 increases	 in	 reproducible	 HRFs	 as	
compared	to	HRFs	derived	 from	original	 images.	For	 future	radiomic	studies,	we	suggest	
the	systematic	use	of	pre-	and	post-	processing	approaches	in	images	collected	with	similar	
image	acquisition	and	reconstruction	parameters,	except	for	the	reconstruction	kernels.

In chapter 6,	we	 used	 a	 phantom	dataset	 (n	 =	 14)	 collected	 on	 two	 scanner	 types,	 the	
Discovery	 STE	and	 the	 LightSpeed	Pro	32,	 to	examine	 the	 impact	of	 changes	 in	 in-plane	
spatial	 resolution	 (IPR)	 on	 HRFs.	 All	 other	 imaging	 parameters	 were	 kept	 constant.	 Ten	
ROIs	were	performed	for	each	scan,	and	HRFs	were	extracted	from	each	ROI.	CCC	was	used	
to	evaluate	HRF	reproducibility	across	pairs	of	phantom	CT	images.	Moreover,	we	looked	
at	how	 ten	 various	 image	 resampling	 techniques	 (IR),	 as	well	 as	ComBat	harmonization,	
affected	 the	 HRFs.	 According	 to	 the	 findings	 of	 this	 study,	 certain	 HRFs	 are	 immune	 to	
changes	 in	pixel	spacing;	however,	the	reproducibility	of	the	remaining	HRFs	depends	on	
the	degree	of	variation	in	pixel	spacing.	Furthermore,	compared	to	the	other	IR	techniques,	
scans	 resampled	using	 cosine	windowed	 sinc	 interpolation	exhibited	 the	 largest	number	
of	concordant	HRFs	among	the	types	of	IR.	The	impacts	of	IR	and	ComBat	harmonization	
on	the	reproducibility	of	HRFs,	on	the	other	hand,	were	shown	to	rely	significantly	on	the	
variances	in	the	scans	being	evaluated.
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HRFs in lung disorders

In chapter 2,	 the	 current	 state	 of	 play	 of	 handcrafted	 radiomics	 and	 deep	 learning	was	
evaluated	with	the	use	of	a	literature	review.	In	this	review,	we	provided	a	broad	overview	
and	update	on	 the	 rapidly	 expanding	field	of	 quantitative	 imaging	 research,	 focusing	on	
the	two	arms	“handcrafted	radiomics	and	deep	learning.”	The	chapter	describes	some	of	
its	 limitations	and	provides	examples	of	emerging	clinical	 implementation,	which	are	the	
stepping	stones	toward	precision	medicine.

In chapter 7,	 we	 provided	 an	 overview	 of	 available	 literature	 concerning	 the	 use	 of	
handcrafted	 radiomics	 in	 lung	 cancer	 –	 in	 terms	 of	 detection,	 treatment	 response,	 and	
prognosis.	While	the	research	on	applying	handcrafted	radiomics	in	lung	cancer	has	been	
increasing	in	recent	times,	the	application	of	handcrafted	radiomics	on	chronic	obstructive	
pulmonary	disease	is	still	limited.	The	use	of	quantitative	CT	(QCT)	has	been	shown	to	be	able	
to	quantify	emphysema,	airway	abnormalities,	and	air	trapping.	However,	the	interpretation	
of	QCT	is	still	time-consuming,	requires	experts,	and	is	prone	to	variability	in	the	diagnosis	
between	experts.	The	use	of	CT	image	metrics	(radiomics)	could	be	able	to	quantify	COPD	
and	identify	the	disease’s	underlying	mechanism,	as	well	as	the	relationship	between	lung	
cancer	 and	 COPD,	 in	 a	 more	 nuanced	 and	 stronger	 form	 of	 phenotypic	 categorization.	
Potentially,	 handcrafted	 radiomics	might	 be	 useful	 in	 detecting	 and	 classifying	 between	
COPD	stages	and	phenotypes,	allowing	for	the	early	treatment	for	the	patient.

In chapter 8, we	investigated	the	application	of	handcrafted	radiomics	on	interstitial	lung	
disease	(ILDs).	The	data	used	in	this	study	was	collected	from	one	center	and	two	databases.	
Four	groups	were	included	in	the	study,	namely:	a)	IPF	with	UIP	pattern	presentation	on	HRCT,	
b)	IPF	with	UIP	presentation	confirmed	by	surgical	lung	biopsy,	b)	non-IPF	ILDs	with	surgical	
lung	biopsy	confirming	the	absence	of	a	UIP	pattern,	and	c)	healthy	lung	subjects.	Two	lung	
segmentations	were	performed,	one	with	whole	lungs	and	the	other	with	sectorized	lungs.	
Briefly	 stated,	 we	 were	 able	 to	 demonstrate	 that	 radiomic	 features	 derived	 from	 HRCT	
images	can	be	used	 to	distinguish	between	a	normal	 state	and	 ILDs,	as	well	as	between	
IPF	with	a	UIP	pattern	and	ILDs	with	no	UIP	pattern	verified	by	surgical	biopsy.	In	addition,	
our	investigation	revealed	a	substantial	variation	in	tracheal	volume	between	normal,	IPF/
UIP,	and	non-IPF	ILDs	patients.	The	volume	of	the	trachea	was	shown	to	be	greater	in	IPF	
participants	 compared	 to	normal	 and	non-IPF	 ILDs.	 In	 addition,	 the	performance	on	 the	
external	dataset	was	decreased.	This	decline	in	the	performance	might	be	explained	by	the	
fact	that	the	computation	of	HRFs	is	highly	dependent	on	the	variation	in	acquisition	and	
reconstruction	parameters.	For	this	reason,	the	need	to	assess	the	reproducibility	of	HRFs	is	
of	great	importance.	Nevertheless,	it	is	not	currently	possible	to	perform	a	reproducibility	
study	 due	 to	 the	 lack	 of	 anthropomorphic	 phantom	 or	 test-retest	 scans	 acquired	 with	
settings	similar	to	the	scans	used	in	this	study.	
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In chapter 9, a	 similar	 analysis	 to	 that	 found	 in	 chapter	 8	was	 performed	on	 classifying	
different	 parenchymal	 lung	 diseases.	 Data	 was	 collected	 from	 one	 center	 and	 one	
databases.	Whole	lung	segmentation	was	performed	for	each	scan	and	HRFs	were	extracted	
from	each	 lung.	The	models	were	trained	on	center	1,	and	validated	on	database	A.	The	
finding	of	the	study	showed	the	ability	HRFs	have	in	terms	of	the	classification	of	different	
types	of	lung	disorders,	namely	IPF,	and	non-	IPF	ILDs	lung.	The	model’s	performance	in	the	
external	validation	dataset	was	better	than	that	seen	in	chapter	8,	with	the	same	external	
validation	dataset.	The	reason	for	this	 is	might	be	that,	 in	chapter	8,	the	training	dataset	
was	 homogenous;	 however,	 in	 chapter	 9,	 the	 training	 dataset	 was	 heterogeneous,	 and	
the	machine	learning	algorithm	most	likely	learned	some	of	the	differences	in	the	training	
dataset	that	may	already	be	present	in	the	validation	dataset.		

DL in lung disorders

In	addition	to	the	application	of	HRFs,	chapter 9 outlines	the	development	of	a	DL	algorithm	
that	might	be	used	to	identify	various	lung	disorders.	The	identical	training	and	validation	
data	split	utilized	in	chapter	9	for	HRF	models	was	employed	for	DL	algorithms.	Two	patches	
with	one	 lung	–	each	with	a	 	size	of	 	voxles	–	were	extracted	using	the	
lung	mask.	 To	 reduce	 the	 impacts	 of	 data	 imbalance,	 a	 Densenet-121	 classifier	with	 3D	
convolutional	 layers	 and	 weighted	 binary	 cross	 entropy	 loss	 was	 utilized.	 It	 was	 found	
that	DL	findings	were	similar	 to	HRFs	findings.	However,	due	 to	 its	 complexity,	DL	 is	 less	
transparent	in	nature,	which	may	impede	its	clinical	adaptation.

Ensemble learning  

Ensemble	learning	combines	many	different	machine	learning	algorithms	to	obtain	higher	
prediction	performance	than	any	single	learning	method	alone	(7).	In	chapter 9,	an	ensemble	
model	of	HRFs	and	DL	was	developed	by	taking	the	average	of	both	models’	performance	in	
external	validation,	resulting	in	a	greater	level	of	accuracy	when	identifying	IPF	and	non-IPF	
ILDs	than	either	approach	alone.	HRFs	and	DL	models	both	provide	complimentary	value	to	
one	another,	resulting	in	improved	overall	performance.

Interpretability of HRFs and DL

One	significant	 limitation	of	both	handcrafted	radiomics	and	DL	 is	the	absence	of	clinical	
routine	interpretability	(8).	 In	chapter 9,	a	post-hoc	interpretability	approach,	based	on	a	
SHAP	analysis,	was	used	to	interpret	HRF	models,	allowing	us	to	visualize	the	influence	of	
feature	values	on	the	model	output	of	each	class	 in	terms	of	SHAP	values.	We	evaluated	
the	most	important	HRFs	related	to	each	class	using	SHAP	analysis	(	IPF	and	non-IPF	ILDs).	
For	 DL,	 Gradient-weighted	 Class	 Activation	 Mapping	 (Grad-CAM)	 was	 used	 to	 interpret	
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the	performance	of	DL	models.	Both	SHAP	analysis	for	HRF	models	and	Grad-CAM	for	DL	
models	provided	an	insight	into	the	reasoning	process	behind	these	models.	However,	Grad-
CAM	does	not	offer	an	explanation	as	to	how	the	highlighted	area	contributes	to	the	final	
prediction.	A	well-defined	mathematical	method	 is	used	 to	 calculate	HRFs,	which	makes	
them	more	understandable.	On	the	other	hand,	with	deep	learning,	the	process	from	input	
images	to	prediction	is	less	transparent	,	which	may	be	detrimental	in	understanding	good	
or	bad	model	performance.

In-silico clinical trial

ISCT	–	also	known	as	virtual	clinical	trials	or	virtual	imaging	trials	–	is	increasingly	playing	
a	role	 in	ascertaining	and	qualifying	the	effectiveness	of	medical	 imaging	technologies	or	
AI	algorithms,	as	evidenced	in	a	few	recent	FDA	approvals	based	on	ISCT	(9).	We	therefore	
embarked	on	an	ISCT	to	evaluate	the	performance	of	both	handcrafted	radiomics	and	DL	
tools,	 compared	 to	 the	 evaluation	of	medical	 doctors	 in	 chapter 9.	 The	 decision	 of	 two	
radiologists	 and	 one	 pulmonologist	 on	 the	 diagnosis	 was	 collected	 in	 the	 test	 dataset	
(n=109)	for	the	same	number	of	cases,	in	order	to	equate	their	results	with	the	performance	
of	the	models.	The	findings	showed	that	both	HRFs,	DL,	and	ensemble	models	had	higher	
levels	of	accuracy	than	the	doctors’	mean	accuracy	in	classifying	IPF	and	non-IPF	ILDs.	Such	
findings	point	to	the	necessity	for	image-based	categorization	approaches	to	be	combined	
with	clinician	input	in	order	to	obtain	the	most	accurate	diagnosis.

Future perspective

This	thesis	has	made	significant	achievements	in	exploring	the	reproducibility	of	handcrafted	
radiomics	and	unraveling	the	challenges	impeding	the	full	potential	of	the	field	from	being	
utilized.	 Such	 challenges	 include	 the	 reproducibility	 and	 repeatability	 of	 image-based	
features,	 the	 interpretability	 of	 signatures,	 and	 the	 need	 for	 big(ger)	 data.	 In	 fact,	 the	
majority	 of	 the	work	 in	 this	 thesis	was	 devoted	 to	 comprehending	 and	 overcoming	 the	
limitations	of	HRFs.

Several	concerns	must	be	resolved	before	HRFs	may	be	used	in	real	clinical	practices.	Future	
studies	on	the	reproducibility	of	HRFs	across	multiple	imaging	settings	should	cover	a	broader	
range	of	 imaging	parameters.	A	bigger	dataset	with	more	 variations	might	 also	 increase	
our	knowledge	of	the	cumulative	impact	of	the	variances	found	in	imaging	parameters	on	
HRF	reproducibility,	and	therefore	our	capacity	 to	 improve	and	establish	robust	radiomic	
signatures,	eventually	leading	to	more	personalized	medicine	and	better	patient	outcomes	
(chapter 3-6).	 In	 addition,	 due	 to	 the	 fact	 that	 variations	 in	 imaging	 parameters	 can	
significantly	alter	the	majority	of	HRFs,	it	is	important	to	develop	a	method	(or	methods)	of	
harmonization	that	takes	imaging	parameter	differences	into	account.	One	newly	proposed	
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method	involves	employing	deep	networks	such	as	convolutional	neural	networks	(CNN)	or	
generative	adversarial	networks	(GAN)	to	synthesize	pictures	with	increasingly	comparable	
features,	aiming	at	multicenter	harmonization	(10).	 It	 is	also	necessary	to	examine	HRFs’	
repeatability	as	well	as	their	vulnerability	to	inter-reader	variability.	

The work described in chapters 8 and 9	 in	 this	 thesis	 only	 takes	 into	 account	 a	 single	
time-point.	 The	method	of	delta-radiomics	has	previously	 shown	 the	 capacity	 to	predict	
treatment	 responses	 in	 lung	cancer	 (11).	As	a	 result,	 such	a	 technique	might	be	used	 to	
quantify	 the	 progression	 of	 the	 disease	 and	 the	 impact	 of	 (new)	 treatments.	 Regarding	
IPF	patients,	it	would	be	very	important	for	future	research	to	include	delta-radiomics,	in	
order	to	investigate	the	efficacy	of	treatment	in	different	time-points	(12).	In	addition,	delta-
radiomics	might	be	used	to	examine	the	difference	between	inspiration	and	expiration	scans	
and	to	uncover	hidden	information	that	could	aid	 in	determining	the	extent	and	severity	
of	 pulmonary	 emphysema.	 Furthermore,	 future	 research	 will	 focus	 on	 determining	 the	
prognostic	or	predictive	significance	of	 these	 features,	as	well	as	developing	appropriate	
modeling	tools	that	allow	for	meaningful	inclusion	in	longitudinal	data.

In chapter 9,	deep	learning	models	were	built	on	images	that	have	already	been	segmented.	
Future	work	will	involve	using	deep	learning	to	segment	lungs	with	different	types	of	lung	
disorders.	Furthermore,	deep	learning	may	automatically	uncover	visual	features	that	are	
suitable	 for	a	 certain	purpose	 through	an	optimization	process	–	 including	 features	with	
varying	levels	of	complexity	–	without	the	need	for	human	intervention	(13,14).	Although	
deep	learning	is	a	promising	advancement,	one	significant	difficulty	is	the	need	for	enormous	
amounts	of	data.	Nonetheless,	the	additional	benefit	of	HRFs	to	deep	learning	should	not	be	
neglected,	as	it	may	be	more	practical	and	effective	than	significantly	increasing	the	number	
of	samples	used	to	train	a	deep	learning	model	(15,16).	Furthermore,	the	process	from	input	
images	to	prediction	is	less	transparent	with	DL,	which	may	be	detrimental	to	understanding	
model	performance.	In	the	future,	HRFs	may	be	used	to	explain	the	ambiguity	of	DL	models	
in	an	attempt	to	make	them	more	understandable	(Figure	3).
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Figure 3. Overview	of	the	process	of	both	HCR	and	DL	and	the	ensemble	of	both	methods.		

Conclusion

This	thesis	was	divided	into	two	parts:	(i)	investigating	the	reproducibility	of	HRFs	(chapters 
3-6),	 and	 (ii)	 evaluating	 specific	 applications	 of	 HRFs	 and	 DL	 (chapters 8-9).	 Numerous	
studies	 focus	on	the	 impact	of	various	acquisition	and	reconstruction	parameters	on	the	
reproducibility	of	HRFs	 (17–19).	The	application	of	HRFs	 in	differentiating	between	types	
of	lung	disorders	in	this	thesis	is	promising,	showing	their	potential	to	be	applied	in	clinical	
practices.	However,	future	work	on	investigating	the	reproducibility	of	those	models	is	crucial	
and	should	not	be	ignored.	The	DL	algorithm	demonstrated	its	capacity	to	execute	several	
tasks	in	medical	image	analysis,	indicating	its	potential	for	supporting	clinical	decisions.	Both	
handcrafted	radiomics	and	DL	have	the	potential	to	greatly	contribute	to	clinical	decision-
making	 in	 the	 future,	which	 together	will	 enhance	 patient	 outcomes.	 Nevertheless,	 the	
challenge	has	yet	to	be	fully	solved.	
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Impact Paragraph

The	 rise	 of	 artificial	 intelligence	 (AI)	 in	 medicine	 has	 been	 aided	 by	 the	 development	 of	
computer	sciences,	the	prevalence	of	large	quantities	of	data,	and	advancements	in	evidence-
based	clinical	care.	While	prospects	for	AI	and	machine	learning	applications	are	expanding	
across	different	specialties	and	clinical	services,	radiology	has	led	the	way,	with	AI	algorithms	
employed	 for	 various	 tasks	 going	 from	 scanning	 procedures	 and	 disease	 identification,	
prognostication,	predictive	biomarkers	to	referral	systems	and	workflow	optimization.	It	can	
be	argued	that	AI’s	main	objective	is	to	deliver	rapid,	accurate,	and	cost-effective	tools	to	help	
physicians	make	personalized	decisions	in	much	less	time.	The	types	of	AI	used	in	this	thesis	
were:	 handcrafted	 radiomics	 and	 deep	 learning	 used	 separately	 or	 together.	 The	 primary	
goals	for	handcrafted	radiomics	were	to	study	the	influence	of	 imaging	parameter	changes	
on	the	reproducibility	of	handcrafted	radiomic	features	(HRFs)	and	to	investigate	its	potential	
for	 discriminating	between	different	 forms	of	 lung	 disease.	 In	 regard	 to	 deep	 learning,	 its	
potential	applications	for	classifying	different	lung	disorders	were	investigated.	

Scientific impacts

1.	 Most	 of	 the	 studies	 in	 this	 thesis	 are	 published	 or	 under	 review	 in	well-cited	 open	
access	 scientific	 journals	 (e.g.,	 Cancers,	 Respiration,	 BJR,	 Journal	 of	 personalized	
medicine,	Plos	One,	and	Frontiers	 in	Medicine),	which	will	 facilitate	dissemination	 in	
academic	communities.	In	addition,	other	groups	world-wide	will	be	able	to	reuse	the	
methodology	utilized	in	this	thesis.

2.	 The	 experiments	 in	 Chapters	 4	 employed	 patient	 data	 to	 investigate	 the	 effect	 of	
different	 imaging	phases	 (arterial	 and	portal	 venous)	on	 the	 reproducibility	of	HRFs.	
This	knowledge	can	be	reused	for	future	studies	where	HRFs	can	be	interchangeably	
used	between	arterial	and	portal	venous	phases,	and	 these	can	be	used	to	 increase	
data	points	in	retrospective	imaging	studies.	

3.	 Chapters	3,5,	and	6	are	phantom	investigations	that	aimed	to	improve	knowledge	of	
how	changes	in	imaging	parameters	impact	HRF	reproducibility	and	how	harmonization	
approaches,	 such	 as	 image	 resampling,	 Reconstruction	 Kernel	 Normalization	 (RKN),	
and	ComBat	harmonization,	work	in	different	contexts.	Until	now	most	of	the	groups,	
including	ours,	were	using	Combat	harmonization	alone	we	hope	that	this	paper	will	
convince	group	to	use	both	approaches	and	that	will	lead	to	better	results.

4.	 Chapters	2	and	7	cover	the	existing	state	of	research,	challenges,	and	future	prospects	of	
radiomic	research	and	deep	learning	in	various	diseases.	This	knowledge	dissemination	
may	serve	as	a	basis	for	future	research	and	to	write	grants	trying	to	fill	knowledge	gaps.
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5.	 Chapter	 8	 examines	 the	 potential	 use	 of	 HRFs	 to	 differentiate	 between	 various	
interstitial	lung	diseases	(ILDs),	as	well	as	the	use	of	trachea	volume	as	a	novel	HRF	to	
categorize	ILDs.	Trachea	volume	is	a	new	feature	very	explainable	that	should	be	used	
more	systematically	in	the	future	chronic	lung	diseases.

6.	 In	chapter	9,	the	potential	application	of	HRFs	and	deep	learning	in	classifying	different	
lung	disorders,	 including	 idiopathic	pulmonary	fibrosis	 (IPF),	 interstitial	 lung	diseases	
(ILD)	other	than	IPF	subjects.	This	signature	could	be	taken	over	by	companies	working	
of	 AI-based	 diagnostic	 clinical	 grade	 software.	 This	 could	 be	 particularly	 useful	 in	
understaffed	 department	 or	 areas	 in	 the	world	without	 radiologists	 to	make	 a	 first	
screening	of	the	patients	needed	immediate	attention.

7.	 The	combined	model	 (ensemble	 learning),	comprising	both	HRFs	and	deep	 learning,	
achieved	the	highest	accuracy	and	precision	for	five-fold	cross-validation	and	external	
test	 sets.	 Consequently,	 HRFs	 and	 deep	 learning	 models	 complement	 each	 other,	
resulting	in	improved	performance.		We	hope	that	this	combined	approach	will	become	
the	new	standard:	using	several	AI	algorithm.	The	Department	of	Precision	Medicine	
intend	to	revisit	some	of	their	published	papers	with	this	new	approach.

Social impacts

1.	 Radiomics	has	the	ability	to	speed	up	clinical	work,	reduce	the	workload	of	clinicians,	
and	making	healthcare	more	cost-effective.

2.	 Diagnostic	radiomics	signatures	could	be	used	in	understaffed	radiology	department	or	
in	remote	areas	of	the	world	without	radiologists.

3.	 Diagnostic	radiomics	signatures	could	be	used	to	support	training	of	young	radiologists.	

4.	 The	standardization	of	handcrafted	radiomic	features	will	aid	in	the	generalization	of	
radiomic	signatures	across	institutions.

5.	 The	development	of	generalizable	and	robust	 radiomic	signatures	will	 facilitate	 their	
inclusion	into	clinical	decision-support	systems.

6.	 Radiomics	 offers	 the	 potential	 to	 enhance	 patient	 care	 by	 directing	 personalized	
management	 rather	 than	 a	 one-size-fits-all	 approach.	 This	 can	 lead	 to	 less	 invasive	
methods,	such	as	reducing	the	need	for	surgical	autopsies.
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7.	 Personalized	 clinical	 decisions	 are	 able	 to	 maximize	 public	 medical	 resources	 while	
lowering	patient	expenditures.

8.	 Accurate	 classification	 of	 interstitial	 lung	 diseases	 can	 reduce	 the	mortality	 rate	 by	
allowing	an	earlier	diagnosis	for	example	in	small	center	with	limited	experience	with	
this	rather	rare	diseases	and	aid	in	finding	the	right	treatments.	

Target groups

This	dissertation	seeks	to	extend	and	enhance	our	understanding	of	handcrafted	radiomics	
and	deep	learning	applied	to	medical	imaging	and	potential	applications.	The	main	potential	
target groups are: 

1.	 The	 scientists	 who	 are	 conducting	 handcrafted	 radiomics	 experiments	 in	 order	 to	
increase	 the	 awareness	 of	 the	 limitations	 associated	 with	 the	 field.	 Moreover,	 we	
anticipated	 that	 the	 results	 of	 our	 work	 would	 be	 useful	 as	 a	 reference	 for	 future	
researchers	using	handcrafted	radiomics	and/or	deep	learning.	

2.	 The	radiologists	who	is	specializing	in	the	thoracic	imaging.	The	diagnosis	of	idiopathic	
pulmonary	 fibrosis	 using	 HRCT	 is	 a	 difficult	 task	 with	 considerable	 inter-observer	
variability	even	among	experienced	radiologists.	Therefore,	such	methods	might	help	
the	radiologist	to	achieve	an	accurate	diagnosis.	

3.	 The	companies	selling	AI	to	deliver	technological	solutions	and	services	for	healthcare	
organizations	and	practitioners,	diagnostic,	and	research	centers.	

4.	 The	medical	insurance	can	benefit	from	the	use	of	AI	and	machine	learning.	It	has	the	
potential	to	detect	at-risk	individuals	while	also	reducing	growing	healthcare	expenses.	
In	 addition,	 the	 crucial	 aspect	 of	 a	 successful	 AI	 and	machine	 learning	 system	 is	 its	
ability	to	develop	efficient	reasoning	and	intuitively	read	and	understand	trends.		

5.	 Better	treatment	personalization	will	have	the	greatest	impact	on	patients	since	they	
will	be	provided	the	best	possible	treatment	to	maintain	a	high	quality	of	life,	as	well	as	
facilitating	consistent	and	rapid	stratification	of	patients	in	drug	trials.		

6.	 The	 medical	 communities	 in	 poorer	 countries	 where	 thoracic	 imaging	 expertise	 is	
unavailable.

Impact	Paragraph
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Summary

Medical	 imaging	 has	 the	 capacity	 to	 non	 invasively	 analyse	 the	 phenotypic	 differences	
of	 tumors	 in	 three	 dimensions,	 and	 lately	 it	 has	 seen	 significant	 improvements	 due	 to	
advancements	in	the	field	of	artificial	intelligence.	For	example,	radiomics,	or	quantitative	
image	 analysis	 –	 the	 high-throughput	 extraction	 of	 quantitative	 features	 from	 medical	
images	and	their	correlation	with	diagnostic	and	prognostic	outcomes	–	has	been	studied	in	
particular	to	decode	tumor	phenotypes	from	a	variety	of	modalities,	including	CT,	magnetic	
resonance	 imaging,	 and	 positron	 emission	 tomography	 (PET).	 Thousands	 of	 quantitative	
radiomic	characteristics	may	be	retrieved	from	each	area	of	 interest	 (ROI)	and	examined	
further	 using	 machine	 learning	 algorithms	 to	 look	 for	 connections	 with	 biological	 and	
clinical	end	objectives.	

In	 this	 thesis,	 our	 objectives	 are;	 1)	 to	 evaluate	 the	 reproducibility	 of	 radiomic	 features	
extracted	from	the	same	scanner,	or	from	different	scanners	with	different	CT	acquisition	
parameters	 ;	 2)	 to	 explore	 how	 the	 power	 of	 AI	 can	 be	 harnessed	 for	 the	 classification	
between	 different	 ILDs,	 potentially	 overcoming	 some	 of	 the	 current	 difficulties	 in	 the	
decision-making	surrounding	lung	diseases.	The	thesis	is	divided	into	four	parts:

Part	1:	General	introduction	and	outline	of	the	thesis.
Part	2:	Challenges	in	handcrafted	radiomics.
Part	3:	Application	of	handcrafted	radiomics	and	deep	learning	on	lung	disease.
Part	4:	General	discussion	and	future	perspective	of	the	thesis.

In part 1, chapter 2	 provides	 a	 literature	 review	 to	 assess	 the	 present	 state	 of	 play	 in	
handcrafted	radiomics	and	deep	learning.	We	presented	a	thorough	overview	and	update	on	
the	rapidly	increasing	field	of	quantitative	imaging	research	in	this	review,	with	an	emphasis	
on	the	two	arms	“handcrafted	radiomics	and	deep	learning.”	The	chapter	discusses	some	
of	its	shortcomings	as	well	as	instances	of	developing	clinical	implementations	that	serve	as	
stepping	stones	toward	precision	medicine.		

In	part	2,	several	studies	have	been	conducted	to	investigate	the	potential	of	handcrafted	
radiomics	 (HRFs).	 Nonetheless,	 a	 number	 of	 barriers	 to	 clinical	 integration	 of	 radiomics	
signatures	 have	 been	 discovered.	 Numerous	 research	 studies	 have	 been	 published	 on	
the	 sensitivity	 of	 HRFs	 to	 inter-reader	 variability,	 test-retest,	 and	 variations	 in	 imagining	
parameters.	 In	 this	 thesis	 (chapters 3-6),	we	 showed	 that	HRFs	 are	 sensitive	 to	 imagine	
variations	using	phantom	and	patient	reproducibility	studies.	In	addition,	we	examined	the	
use	 of	 different	 harmonization	methods	 on	 reducing	 the	 effect	 of	 different	 variations	 in	
imagining	parameters.
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In chapters 3-6, we	assess	the	reproducibility	of	HRFs	to	the	variations	in	CT	parameters	and	
the	role	of	harmonization	methods	to	address	those	variations.	Chapter 3	investigated	the	
robustness	of	HRFs	on	a	dataset	consisting	of	13	phantom	CT	scans.	The	scans	were	obtained	
from	different	vendors,	with	different	CT	parameters.	The	 study’s	findings	 indicated	 that	
only	a	small	percentage	of	handcrafted	(HRFs)	radiomics	were	robust	to	differences	in	the	
imaging	settings	examined.	We	also	found	that	the	performance	of	ComBat	harmonization	
depends	on	the	variations	in	imaging	parameters.

Chapter 4	 assess	 the	 reproducibility	 of	 hepatocellular	 carcinoma	 (HCC)	 HRFs,	 generated	
from	various	phases	of	contrast-enhanced	CT	images	(CECT).	For	this	study,	HCC	patients’	
arterial	 and	 venous	 CT	 scans	were	made	 accessible.	 The	 finding	 of	 the	 presented	 study	
showed	that,	when	no	image	settings	were	changed,	a	subset	of	HRFs	were	shown	to	be	
reproducible	in	both	phases.	Moreover,	the	application	of	ComBat	harmonization	increased	
the	number	of	reproducible	features	by	1%	across	phases.	

In chapter 5, we	 investigated	 the	use	of	Reconstruction	Kernel	Normalization	 (RKN)	and	
ComBat	harmonization	to	improve	the	reproducibility	of	HRFs	across	scans	acquired	with	
different	 reconstruction	 kernels.	 A	 total	 of	 28	 phantom	 scans	 collected	 on	 five	 distinct	
scanners	types	were	assessed.	The	HRFs	were	extracted	from	the	original	scans	and	scans	
that	were	harmonized	using	the	RKN	method.	Moreover,	ComBat	harmonization	method	
was	applied	on	both	set	of	HRFs.	The	finding	of	this	study	showed	that	the	majority	of	HRFs	
were	found	to	be	sensitive	to	the	variations	in	the	reconstruction	kernels.	Furthermore,	the	
use	of	both	RKN	and	ComBat	harmonization	methods	significantly	increased	the	number	of	
reproducible	HRFs	compared	to	HRFs	extracted	from	original	scans.

 In chapter 6, we	also	investigated	the	impact	of	changes	in	the	in-plane	spatial	resolution	
(IPR)	on	the	reproducibility	of	HRFs	extracted	from	phantom	scans	(n=14)	while	all	other	
imaging	parameters	were	the	same.	We	also	examine	the	impact	of	ComBat	harmonization	
on	HRFs.	The	finding	of	this	study	revealed	that	the	reproducibly	of	HRFs	depends	on	the	
degree	of	the	variations	in	pixel	spacing.			

Part	3	in	this	thesis	is	related	to	the	application	of	radiomics	and	deep	learning	in	different	
lung	disorders.	 In chapter 7,	we	presented	a	 summary	of	 the	existing	 researches	on	 the	
use	of	handcrafted	radiomics	in	lung	cancer	diagnosis,	treatment	response,	and	prognosis.	
In	addition,	applying	HRFs	in	chronic	obstructive	pulmonary	disease	(COPD)	has	not	been	
extensively	investigated	yet.	We	show	examples	of	the	potential	use	of	HRFs	in	the	diagnosis,	
treatment,	and	follow-up	of	COPD	and	future	direction.	

In chapter 8,	the	approach	of	HRFs	was	studied	in	order	to	predict	different	interstitial	lung	
diseases	(ILDs).	The	data	for	this	study	came	from	one	center	and	two	databases.	The	study	
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comprised	four	groups:	1)	IPF	with	UIP	pattern	on	HRCT,	2)	IPF	with	UIP	pattern	confirmed	
by	surgical	 lung	biopsy,	3)	non-IPF	 ILDs	with	surgical	 lung	biopsy	confirming	 the	absence	
of	a	UIP	pattern,	and	4)	healthy	lung	patients.	To	summarize,	we	were	able	to	show	that	
radiomic	 characteristics	 generated	 from	 HRCT	 images	 may	 be	 utilized	 to	 differentiate	
between	a	normal	state	and	ILDs,	as	well	as	between	IPF	with	a	UIP	pattern	and	ILDs	with	
no	UIP	pattern	as	confirmed	by	surgical	biopsy.	Furthermore,	our	study	found	a	significant	
difference	in	tracheal	volume	between	individuals	with	normal,	IPF/UIP,	and	non-IPF	ILDs.	
The	trachea	volume	was	shown	to	be	 larger	 in	 IPF	participants	compared	to	normal	and	
non-IPF	ILDs.	

In chapter 9,	the	use	of	both	HRFs	and	DL	was	explored	in	this	thesis	to	differentiate	between	
different	 lung	disorders	–	namely,	 IPF,	and	non-IPF	 ILDs	 subjects.	 In	addition,	 in	order	 to	
interpret	 the	performance	of	HRFs	and	DL,	 interpretability	methods	were	used.	We	also	
made	use	of	ensemble	learning	methods	to	improve	the	performance	of	both	HRFs	and	DL.	
In	silico	clinical	trials	were	also	used	to	compare	the	performance	of	medical	experts	with	
AI.	Our	results	showcased	the	utility	of	HRFs	and	DL	algorithms	as	a	tool	to	support	clinical	
decisions.

Finally,	 in	part	4	 (chapter	10)	we	extensively	discussed	 the	 results	of	 this	 thesis	 and	 the	
future	perspective	of	both	HRFs	and	deep	learning.		

Overall,	 this	 thesis	 verified	 a	number	of	 hypotheses	 concerning	 the	uses	 of	 handcrafted	
radiomics	 and	 deep	 learning	 in	 medical	 image	 analysis.	 For	 handcrafted	 radiomics,	
we	 assessed	 the	 robustness	 of	 handcrafted	 radiomics	 analyses,	 which	 will	 aid	 in	 the	
development	 of	 generalizable	 radiomics	 signatures,	 and	 provided	 unique	 quantitative	
methods	to	measure	the	reproducibility	of	HRFs	among	scans	obtained	differently.	For	deep	
learning,	we	evaluated	and	demonstrated	the	potential	of	automated	algorithms	to	improve	
clinical	decision	making.	More	specifically,	a	deep	learning	algorithm	was	developed	that	
performed	very	well	and	has	the	potential	to	be	used	in	clinical	settings.

Summary
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 نبذه مختصرة عن الرسالة
ي الإشعاعي لديه  ي صورة ثلاثية  النمطية الاختلافاتعلى تحليل  القدرةالتصوير الطب 

ي بدورها شهدت  الأبعاد،للأورام ف  والب 
ي مجال الذكاء الا  تقدما 

. من الأمثلة على ذلك: علم الأشعة المهتم بتحليل البيانات الكمية ملحوظا بفضل التطور ف  صطناعي
الممكن استخراجها من صور الأشعه وما يمكن رؤيته أو تشخيصه من  الهائلةللصورة, الذي يربط بي   الخصائص الكمية 

ات غي  طبيعية طارئة على العضو المراد تصويره. بل تجاوز الأمر ذلك إلى أن هذا العل  الكميةم استطاع تحليل البيانات تغي 
من قبل الطبيب. اهتم هذا المجال ة للصوره ومن ثم توقع نوع المرض الذي سيصاب به المريض قبل أن يرى بالعي   المجرد

تحديدا بدراسة وتحليل أنماط أورام عديدة باستخدام صور الأشعه المقطعية والمغناطيسية والأشعة  الأشعةمن علم 
ونية،البوزيالمقطعيه  اج آلاف الخصائص  الصورةبعد تحديد جزء  ي  لهذا الجزء تحديدا  النمطيةالمراد تحليله, يمكن اسي 

ات  . والاكلينيكية البيولوجيةباستخدام خوارزميات تعلم الآلة وربطها مع التغي   

  

ي التشخيص المبكر للأورام.  الاستفادةقامت العديد من الدراسات بقياس مدى إمكانية تطبيق علم )الريديومكس( و 
منه ف 

ي تحول دون التطبيقات  ي  الإكلينيكيةهذه الدراسات بينت أن هناك عدد من العوائق الب 
لهذا العلم.  هذه العوائق تتمثل ف 

ي عوامل التصوير الريديومكسحساسية ال )
( مع وجود بعض العوامل  كاختلاف نوع القراء ، وإعادة الاختبار ، والاختلافات ف 

. ا . على دراسات قائمة على مرض  وأخرى قائمة على دمى تحاكي البشر )فانتومز( مبنيةبيانات وباستخدام لإشعاعي  

ي التصوير الريديومكس( أن ال )السادسإلى  الثالثأثبتت فصول هذه الأطروحة )من الفصل  
( يتأثر بمجرد تغي  العوامل ف 

.  بالإضافة إلى ذلك، قامت هذه  ي علم تعلم  الأطروحةالإشعاعي
والذكاء  الآلةباختبار استخدام طرق الإنسجام و الاندماج ف 

ي عوامل التصوير الإ 
. الاصطناعي للتقليل من تأثي  هذه الاختلاف ف  شعاعي  

 

( الريديومكسل )لما وصل إليه التعلم العميق بالنسبة  مفصلة منهجية مراجعةإضافة إلى ما سبق، قدمت هذه الأطروحة 
ي هذه الأطروحة حول مجال  خاصة. كذلك تم تقديم دراسة حتملةالموتطبيقاتها 

من أجل التنبؤ ( الريديومكسال )ف 
من عدمها. قامت هذه الأطروحة بتقديم فصل آخر يهتم بدراسة استخدام حجم  الرئةبإحتمالية الإصابة بأمراض أنسجة 

ب مقابل المرض  المصابي   ( ف الرئوي مجهول السببالتليبال )القصبة الهوائية كعامل تنبؤ للتفريق بي   المرض  المصابي   
. و الأشخاص السليمي   ( أمراض الرئة الخلالية)  

 

ي  بالإفادةكما قامت هذه الأطروحة كذلك 
بات فهم النتائج من أجل التثبت مما توصلنا إليه من إثمن الطرق المعتمدة ف 

ي الريديومكستحسي   أداء ال )( والتعلم العميق. ومن أجل الريديومكسنتائج باستخدام ال )
ظهار نتائج إ( والتعلم العميق ف 

ا, قامت هذه  الجمع(.  خاصيةو أيسمى بالتعلم )انسيمل  فاده مما تم كذلك الإ . أفضل بعمل ما يسمى  الأطروحةوأخي 
اضية لمقارنة أداء الأطباء أصحاب الخي  بالتجارب الشيرية الا ي قراءة صور أشعةة في 

الرئة مع أداء خوارزميات الذكاء  ف 
ي أثبتت بأن كلا من ) الاصطناعي  ي اتخاذ الريديومكسوالب 

( والتعلم العميق يمكن استخدامهما كأداة مساعدة للأطباء ف 
 تشخيصاتهم وقراراتهم الخاصة بالمريض. 

 

ي تحليل بشكل عام, هذه الرسالة أكدت عددا من الفرضيات المتعلقة باستخدام ما يسمى بالريديومك
س والتعلم العميق ف 

ي تحسي   ما توصلنا إليه من استخدام للخوارزميات الآلية 
صور الأشعة. أثبتنا كذلك متانة هذا العلم وأنه يمكن الاستمرار ف 

ي وقت وجي   وبمستوى عال من 
ي تحليل وتشخيص صور الأشعه ف 

والتعلم العميق لتكون أداة أساسية يستفيد منها الأطباء ف 
اء أطباء الدقة لا  ي يقوم بها خي  . الأشعةتقل عن تلك الب   
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 وعرف ان  شكر

 
 سبحانك اللهم خير معلم... علمت بالقلم القرون الأولى

 سبيلا القويم النهج وهديته...  ظلماته من العقل هذا  أخرجت
 

   كما   لله الحمد  
 على والفضل الثناء رب    لك. سلطانه وعظيم وجهه لجلال ينبغ 

 النور تر  لم رب    فلولاك الرسالة، هذه بإتمام  توفيقك
 

   شخصير   أعظم إلى
   ف 

، أم   حياب   سبحانه الله بعد  الشكر  يستحق من أنتم وأب  
   أسباب أهم من كان   ودعاءكم المتواصل فدعمكم وتعالى،

 بحجم لكما  شكرا . توفيق 
 الكون
 

، ورفيقة زوجت    إلى    إياي لمرافقتك القلب من شكرا  درب  
 ودعمك الغربة، بلد  ف 

 الدراسة سنوات طيلة المتواصل
 

   وشمعة فؤادي نبض إلى
   صعبة بأيام مريت   كم  ،(روجير  ) بنت    حياب 

 وكم دراست    ف 
. الله من نعمة أنت. وتعب هم كل  عت    تزيل كانت  رؤيتك لكن ، الهم من عانيت  

 الصلاح لك الله أسال
 

   إلى
،  إخواب   

   داعم أكي   أنتم وأخواب 
ة ف     مسير

 وقوفكم على جميعا  لكم شكرا . حياب 
   مغ  

 ومساندب 
 

، وطت    إلى  دراست    طيلة المتواصل الدعم على الشكر  وافر  لك الغالى 
  

 دعمكم على السماء بحجم شكرا  التطبيقية، الطبية العلوم كلية  عميد  إلى
 

، رئيس إلى  لى   قدمتها  مساعدة كل  على قلت    أعماق من شكرا  قسم 
 والسؤال الدعم على شكرا  ، وحبيب صديق كل  إلى 

 
 قلت    أعماق من شكرا  شكرا  شكرا 
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