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2 Chapter 1. General Introduction

The human neocortex has evolved to be a sophisticated information pro-
cessor with roughly 89 billion neurons (Gazzaniga, Ivry, & Mangun, 2018). As-
tonishingly, about 20 percent of the entire cortical area is specifically devoted
to vision (Maunsell & Newsome, 1987; Wandell et al., 2009). Yet, humans (and
all other organisms for that matter) merely register a very small fraction of vi-
sual information available at any given time. Nonetheless, a representation of
space can be obtained through several sensory modalities. It is the visual sense,
that ultimately is central to the human representation of space (Marr, 1982) and
what allowed early day homo sapiens to navigate terrain and avoid predators.
In recent days, our survival depends on the ability to participate in society. This
often translates to maintaining employment, and in many occupations, com-
munication is vital and dependent on information conveyed via written text or
digital screens. Visual information even appears to frame the way we think.
Our memories and even much of our language refer to vision, when used to
describe mental concepts with metaphors (Gazzaniga et al., 2018). Therefore,
it is not surprising that losing the ability of sight or the ability to communicate
can have a devastating effect on people’s lives.

Globally, an estimated 42 million people are blind. The most common
causes are cataract, glaucoma, age-related macular degeneration, corneal opac-
ity, diabetic retinopathy, and trachoma (Flaxman et al., 2017). Blindness can oc-
cur when any part of the visual pathway is damaged or injured. In vision, eye
movements regulate where we look, the size of the pupil adjusts to filter the
light, and the cornea and lens serve to focus the light, which is then transmitted
into electrical signals, much like a camera does. This analogy has inspired re-
searchers to find ways to restore basic visual abilities in the blind by artificially
bypassing parts of the visual pathway. This thesis focusses particularly on how
the human brain processes visual information and how this knowledge might
lead to technological advancements that, in the future, could be used to enhance
or restore brain functioning.
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1.1 The brain as an image processor

Hundreds of million years ago early organisms evolved photoreceptors that
were capable of detecting light, and enabled image-forming eyes and visual sys-
tems to emerge (Lamb et al., 2007). In primates, the optical structures of the eye
—the cornea, pupil, and lens—filter and focus the light that eventually reaches
photoreceptor cells in the retina. Photoreceptors are specialized receptor cells
whose pigment molecules absorb photons of specific wavelengths and trans-
form the information conveyed by light energy into neural signals. Due to the
distribution of the different types of photoreceptors in the retina, visual acuity
(i.e., the ability to discriminate two stimuli separated in space at high contrast
relative to the background) falls off rapidly as a function of eccentricity (i.e.,
the distance from the center of sight in degrees of visual angle). Consequently,
reduced acuity outside the central retina means that the direction of gaze has
to frequently be moved to different positions in visual space —by moving our
eyes— in order to perceive the visual world clearly (Kniestedt & Stamper, 2003).

Photoreceptors in the retina are only the first step in a complex neural im-
age processing network. Retinal signals are transmitted via a bundle of axons
(the optic nerve) through the optic chiasm -where many nerve fibers decussate
(cross from left to right)- to bilateral thalamic relay stations called the lateral
geniculate nuclei (LGN). On each side of the brain, information is carried from
the LGN to the primary visual cortex via the optic radiations (see figure 1.1.1).
Interestingly, the information flow throughout the visual processing network
retains the spatial relations of the matrix of photoreceptors. Areas of the brain
receiving retinal input are therefore labeled as topographically organized struc-
tures. Because the geometric structure of the retina reflects the geometric struc-
ture of the external visual world as a two-dimensional planar projection, these
brain regions are known to contain retinotopic “visual field maps”. A retino-
topic area, is a region of the brain that contains a representation of all or most
of the contralateral visual hemifield in each hemisphere (Tootell, Hadjikhani, et
al., 1998; Wandell et al., 2005).
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The primary visual cortex, also known as striate cortex or area V1, is the
first area in the cortex to receive visual inputs from the thalamus via axons
that terminate in cortical layer IV. This dense input layer (also called stria of
Gennari) makes V1 detectable in myelin-stained cross sections of the occipital
lobe. The stria of Gennari runs parallel to the surface of the cerebral cortex on
the banks of the calcarine sulcus (CS) and lead to the cytoarchitectonic name
striate (which means ‘striped’) cortex. Primary visual cortex has six layers and
begins the cortical encoding of visual features like luminance, spatial frequency,
orientation, and motion. Neurons in layers I and V of the striate cortex project
to extrastriate visual cortical areas (the human homologues of areas V2, V3, V4
located adjacent to V1). Studies recording single cell responses in the retina
and LGN have shown that these regions respond best to small patches of light,
while cells in V1 are sensitive to patterns of visual stimulation, such as edges.
Higher up the visual system, in areas like V4 and occipitotemporal-cortex, the
optimal stimulus becomes way more complex, in the form of shapes or even
faces (Purves et al., 2008).

1.1.1 Retinotopic organization

The brain is partly shaped by topographic maps to extract higher order repre-
sentations of the external world. Hubel and Wiesel (1959, 1968) were the first
to discover receptive fields (RF) in striate cortex by presenting bars of light to
cats and monkeys while recording responses of single cortical cells. Single neu-
rons fired when presented with a bar of light, but only if that bar is shown
in a specific region of space. This specific region is called the neuron’s recep-
tive field (RF). As an interrelated network, the neurons in retinotopically orga-
nized regions form an orderly mapping between an external dimension and the
neuronal representation of that dimension. Over the years, neurons in visual
cortex were also shown to be specifically tuned to different shapes, orientation,
movement directions and ocularity of presented stimuli (Spillmann, 2014). With
the onset of functional magnetic resonance imaging (fMRI), (population) re-
ceptive fields could also be quantified non-invasively in humans (Sereno et al.,
1995) (see Visual responses measured by functional magnetic resonance imag-
ing (fMRI)).

Two other important features of topographic organization in striate and ex-
trastriate cortex are cortical magnification and receptive field size (Figure 1.1.2).
Cortical magnification is the phenomenon in which the central visual field is
processed by more neurons compared to peripheral parts. The cortical magni-
fication factor (CMF) is measured as the distance along the cortex between two
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points representing visual field positions apart by one visual degree (Daniel
and Whitteridge, 1961). Hubel and Wiesel (1974) famously reported (in pri-
mates) a relationship between RF size and CMF in V1, where RF size decreases
with increasing CMF. Our perception of visual space in the fovea is enriched
with visual detail and might therefore require more complex neural process-
ing. There is a consensus that more cortical (or subcortical) space is required for
more complex neural processing, at least in sensory systems. Corresponding to
CMF, receptive fields generally become larger with eccentricity, but RF size also
increases along the visual system; from small receptive fields for cells in LGN,
to receptive fields that may encompass an entire hemifield in the temporal lobe.
Retinotopic maps of visual cortex are frequently visualized on inflated or flat-
tened cortical maps, as a large portion of the cortical surface is buried within
folds of the brain. At the border between adjacent early visual areas, the local
cortical representation (polar angle) of the visual field is inverted at the hori-
zontal and vertical meridians. This inversion is often called the “visual field
sign” and signals the start of the mirror image (turning point of polar angle) of
the visual field on the cortical surface (Sereno et al., 1994).
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Figure 1.1.2: principles of retinotopic organization in striate and extrastriate cortex.
A) Cortical magnification: the fovea is greatly overrepresented on the cortical surface.
In addition, the image projected on the cortex corresponds to the contralateral visual
field and is upside down. B) On the left, the cortical map is expressed in polar coordi-
nates (polar angle and eccentricity). V1, V2, and V3 are colored white, light gray, and
dark gray, respectively. On the right, the V1 border and polar angle lines are plotted
on a flattened 2D surface. In addition, the Calcarine Sulcus (CaS), the Parietal-occipital
Sulcus (PoS), the Lingual sulcus (LiS), the Inferior Occipital Sulcus (IOS), the Collat-
eral Sulcus (CoS), the posterior Collateral Sulcus (ptCoS), the Inferior Temporal Sulcus
(ITS), and the Occipital Pole (OP) are shown. C) Tiling of receptive field size increases
along the visual hierarchy. Images A to C were adopted from Wandell et al. (2007),
Benson et al (2014) and Freeman and Simoncelli (2011), respectively.
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Figure 1.1.3: association areas beyond V1. The ventral “what” pathway terminates
in the inferior temporal cortex and contains domain-specific modules with neuronal
populations that respond selectively to category-specific stimuli. The dorsal “where”
pathway terminates in the posterior parietal cortex.

Moving beyond early levels of the visual hierarchy, two types of visual in-
formation are integrated for the control of action, namely, “what” can be the
subject of action and “where” the specific object among multiple ones is located
in a specific place at a given time. Leslie Ungerleider and Mortimer Mishkin
(1982) hypothesized that the brain contains two pathways which extract these
fundamentally different types of information. In this simplified view, the ven-
tral stream is specialized for object perception and recognition (i.e., what am I
looking at?), while the dorsal stream is specialized for spatial perception (i.e.,
where is this object?), see figure 1.1.3. More recent evidence indicates that the
separation of the two pathways is not limited to vision, but also extends to the
auditory system (Lomber & Malhotra, 2008). It is hypothesized that there are
“domain-specific modules” in human visual cortex which code specifically for
objects such as faces, places, and body parts. Importantly, these modules per-
form computations specific to these classes of stimuli. A more detailed descrip-
tion of the functional organization of object representations in visual cortex and
their robustness across individuals is described in chapter 2.
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1.2 The brain as an image generator

And in the castle there were three,
That one of them was blind and might not see

But it was with the eyes of his mind,
With which all men see after they have become blind

— Chaucer
1387

The aforementioned extract dates back to Chaucer’s Man of Law’s Tale
(Canterbury Tales) and is the first appearance of “the mind’s eye” in English
texts. Mental imagery (also known as ‘seeing with the mind’s eye’) is the amaz-
ing ability that allows us to experience (or rather re-experience) objects, fears
and pleasures, even travel through time and space, and test different virtual
worlds and ideas. A modern definition of mental imagery refers to mental rep-
resentations and the accompanying experience of sensory information without
a direct external stimulus. Such representations are generated from memories
and lead one to re-experience a version of the original images or some new
combination of stimuli (Pearson, Naselaris, & Holmes, 2015).

Historically, there has been a long-standing debate about the nature and
mechanisms of how the brain generates visual mental images. More recent cog-
nitive scientists and philosophers argue either for an analog (pictorial), propo-
sitional (descriptive), or hybrid theory of imagery. On the analog side of the
debate, mental representations are regarded as picture-like and retain the in-
trinsic spatial representational properties of seen images. In contrast, on the
propositional side, relevant mental representations are deemed to be more like
linguistic descriptions of visual scenes without inherently spatial properties of
their own. However, some argue that based on recent evidence from cognitive
neuroscience, the debate has been settled in favor of the analog theory of im-
agery (Joel Pearson, 2019). Thomas et al. (2020) provides an extensive review of
mental imagery debates.
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In contrast to the quote from Chaucer’s Canterbury Tales, not all blind (or
sighted) individuals experience mental images. One of the hallmarks of vi-
sual imagery is the large number of subjective reports and the wide range in
vividness of individual’s imagery. People who report to be entirely unable to
voluntarily generate visual images in their mind are called aphantasics. Vi-
sual imagery is commonly assessed with the vividness of the visual imagery
questionnaire (VVIQ), which measures the subjective vividness of an individ-
ual’s visual imagery, with questions inquiring about the vividness of images
of objects, persons and scenes that have to be rated on a Likert scale. Alterna-
tive (less subjective measures) include mental rotation (e.g., manikin and Shep-
ard–Metzler) and binocular rivalry tasks. More recently, a study on congeni-
tal aphantasics (Zeman et al., 2015) found that aphantasics were able to solve
mental rotation tasks. This suggests that they are able to create mental images
needed to solve these tasks, while likely lacking the metacognition, or inability
to introspect on their mental imagery. Since a mental rotation task could per-
haps be performed merely using spatial (or kinaesthetic) imagery rather than
‘low-level’ visual object imagery, a new experiment using binocular rivalry was
conducted on volunteers with aphantasia (Keogh & Pearson, 2018). Binocular
rivalry is a phenomenon of visual perception in which perception alternates
between two images presented to each eye. Participants are cued to imagine
one of the two images (perceptual priming) and report on which image they
perceived. In general, observers are biased to perceive the imagined (primed)
image. Interestingly, this perceptual priming effect did not work for aphanta-
sics as it would for a control group. The authors argued that binocular rivalry
directly measures sensory priming for the mental image, and bypasses the need
for any self-reports on vividness of mental imagery. On the other hand, binocu-
lar rivalry might not be the best diagnostic of imagery ability on the individual
level, as some individuals with aphantasia showed better-than-chance priming
(unlike the group-average).
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Recent neuroscientific research suggests a strong link between image pro-
cessing and image generation in the brain. Voluntary mental imagery might be
based on flow of information which resembles the flow of visual perception,
but in reverse. In this framework, imagery would be formed by a combination
of information retrieved from stored memory. Two recent studies found evi-
dence for this hypothesis; by showing the reversal of effective connectivity from
frontal to early visual areas common to both perception and imagery (Dentico
et al., 2014), and that increases in top-down connectivity to early visual cortex
were associated with the experienced vividness during imagery (Dijkstra et al.,
2017). A schematic representation of this hypothesis illustrated in figure 1.2.1.

Figure 1.2.1: brain signals shared between imagery and perception. There might be a
greater overlap in high-level areas (dark blue) than in lower-level areas (light blue) for
voluntary imagery and perception. Image adopted from (Joel Pearson, 2019).

Especially the role of primary visual cortex in relation to imagery has been
the subject of many neuroimaging studies in the last two decades. Due to dif-
ferences in imagery tasks, content (simple vs. complex images), and differences
in imagery vividness, some research groups found V1 BOLD (blood oxygena-
tion level-dependent; see next section for an introduction to magnetic resonance
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imaging) activations during imagery (Formisano et al., 2002; Ishai et al., 2000;
Knauff et al., 2000; Sack et al., 2002; Trojano et al., 2000; Wheeler et al., 2000),
while others did not (Bihan et al., 1993; Dijkstra et al., 2017; O’Craven & Kan-
wisher, 2000; Reddy et al., 2010). In fMRI research, neuroscientists predict how
features of bottom-up processing of visual input are represented in neural activ-
ity (encoding). However, it has been a dream of many neuroscientists to extract
the contents of the mind’s eye (i.e., mind reading). This decoding problem refers
to predicting the stimulus that is being viewed when a particular brain state is
being observed inside the MRI scanner (see figure 1.2.2). With new advances
in predictive data analysis techniques on conjunction with fMRI, there is now
clear evidence that the content of mental imagery can be decoded and recon-
structed from relatively low BOLD amplitude responses in early visual areas,
including V1, V2 and V3 (see chapter 3 for details).

Figure 1.2.2: encoding and decoding neural activity – adopted from (Gazzaniga, M.
S., Ivry, R. B., & Mangun, 2018).
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1.3 Visual responses measured by functional magnetic res-
onance imaging (fMRI)

Magnetic resonance imaging (MRI) is based on the understanding of the nuclear
magnetic resonance (NMR) exhibited by atomic nuclei within liquid and solid
substances. The most commonly studied nuclei are hydrogen as they are not
only highly abundant but also highly NMR-sensitive. Due to their odd num-
ber of protons, hydrogen atoms exhibit an intrinsic magnetic spin (Kuperman,
2000). A powerful external magnetic field can be used to align the spins that are
otherwise randomly oriented within the water of the tissue being examined.
Next, radio frequency pulses are sent to disturb the equilibrium of these spins,
which causes a measurable voltage to be induced in a receiver radiofrequency
coil. The frequency information contained in the signal from each location in the
imaged plane is then converted (using a Fourier transformation) to correspond-
ing intensity levels, which are displayed as shades of gray in an MR-image.
Built on the same basic principles of atomic physics, functional magnetic res-
onance imaging (fMRI) indirectly measures brain activity of the person inside
the MRI-machine. Active parts of the brain require more oxygen for glucose to
be metabolized during the neural processing of information. This leads to in-
creased blood flow to supply these brain regions with oxygenated blood. Cru-
cially, deoxygenated hemoglobin (in the blood surrounding the active neurons)
is weakly magnetic because of the exposed iron in the hemoglobin molecule.
As oxygenated and deoxygenated blood behave differently in a magnetic field,
it is the contrast between these two that gives rise to the blood oxygen level-
dependent (BOLD) contrast (Hashemi et al., 2012). Having explained the ba-
sics of fMRI, we return to the retinotopic organization of human visual cortex,
which has been subject to many studies by vision scientists who have devel-
oped sophisticated fMRI techniques (Wandell & Winawer, 2015).

Typically, retinotopic maps are obtained by presenting stimuli with checker-
board patterns which are slowly shifted around and away from the center of
view (see figure 1.3.1A). The neural representation of the checkerboards in the
visual field can be measured by tracking neural firing responses at correspond-
ing locations that change over time in synchrony with the presented stimulus.
fMRI measures the changes in blood oxygenation level dependent (BOLD) sig-
nal that occur after neurons have fired and are resupplied with oxygen. Note
that the BOLD signal is influenced by multiple factors, yet it is generally seen
as a reliable proxy to neural activity. Furthermore, the spatial resolution and
signal-to-noise ratio (SNR) of fMRI images depend on the magnetic field strength
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of the MRI machine (Logothetis, 2008; Winawer et al., 2013). Each voxel (a three-
dimensional, volumetric, pixel) in an fMRI image contains the aggregated sig-
nal of thousands of neurons. Therefore, when inferences are made regarding
spatial visual responses using fMRI, we talk about population receptive field
(pRF) mapping, as each voxel’s visuospatial preference represents the average
preference of the neural population within that voxel (Dumoulin & Wandell,
2008).

Population receptive field estimation will reappear in the method sections
of all chapters described in this thesis; however, it is important to note that
receptive fields can be estimated from BOLD responses in several ways. In
2008, Dumoulin and Wandell (2008) introduced a forward modeling approach
to fit the location and size of symmetrical 2D Gaussian pRFs. In this method,
traversing bar stimuli are usually used rather than wedges and rings to map out
visual space. The forward model minimized the difference between recorded
and predicted responses. The responses are multiplied by the stimulus time-
course profile and convolved with a hemodynamic response function (HRF)
to model neurovascular coupling (Figure 1.3.1B). Since the development of the
pRF method, it was shown that suppressive surrounds of pRFs in early visual
cortex can also be well captured by a Difference-of-Gaussians (DoG) pRF profile
(Zuiderbaan et al., 2012) and that mapping of more anterior extrastriate visual
areas benefits from non-linear spatial summation across receptive fields (Brit-
ten & Heuer, 1999; Kay et al., 2013; Oleksiak et al., 2011). Both refinements have
provided better fits than the originally proposed linear model and incorporate
additional factors of visual organization. Finally, pRFs of any shape can alterna-
tively be estimated using model-free pRF mapping methods (Bhat et al., 2021;
Lee et al., 2013; Tangermann et al., 2012).
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Figure 1.3.1: population receptive field mapping. A) Ring and wedge stimuli con-
tract/expand and transverse in phase-encoded paradigms (left). The time-courses of
three example voxels show BOLD modulation in phase with the preferred location of
the stimulus in the visual field (right). B) A parameterized candidate model of the un-
derlying neuronal population and the stimulus is computed. For each voxel a Gaussian
model of the underlying neuronal population is computed with location parameters x,
y as the center of the receptive field and as Gaussian spread. C) Visual field signs are
indicated in the polar angle map by the white dotted lines (right). Figures were adapted
from (Brewer. & Barton, 2012)
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1.4 Artificial images in the absence of visual input through
brain-computer-interfacing

In chapters 3 and 4 we lay the groundwork for two highly relevant brain-computer-
interface (BCI) systems. BCIs monitor brain activity and translate specific sig-
nal features that reflect a person’s intent into commands that operate a device.
Nowadays, BCIs are being deployed for treatment of many patients suffering
from cognitive or physical impairments and offer the promise of greatly im-
proving personal autonomy and mobility (Belkacem et al., 2020; Pichiorri &
Mattia, 2020). Chapter 3 describes the current gaps in knowledge required for
the development of vision-restoring cortical prostheses in human early visual
cortex, and how virtual simulations of electrode implantation can bring corti-
cal prostheses a step closer to becoming an effective clinical therapy for the late
blind.

Blind persons can potentially benefit greatly from biology-based technol-
ogy if the malfunctioning parts of the visual system can somehow be replaced.
Blindness causes enormous disruptions in physical (McLean et al., 2014; Crews,
2016) and emotional wellbeing (Stelmack, 2001; Hassell et al., 2006) and an alter-
native treatment is desired for those who struggle to adapt to a live without the
visual sense. Since it was discovered that electrical stimulation of the eye could
produce spots of light, or phosphenes, in one’s visual field (Leroy, 1755; Volta,
Alexander, 1832), many have attempted to simulate vision using electrical stim-
ulation of various nodes in the visual pathway with so-called “electrode-based
visual prostheses”. A traditional visual prosthesis and its components is dis-
played in figure 1.4.1. The location of the target region along the visual pathway
is dictated by the underlying pathophysiology and in most cases involves either
the retina, optic nerve, LGN or visual cortex. The advantages and limitations
of the different types of prosthetic implants have recently been reviewed by
(Farnum & Pelled, 2020). Chapter 3 introduces the current challenges specific
to (sub) cortical prosthetic implants and a solution to part of these challenges
by simulating distributions of phosphene configurations for specific electrode
designs.
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Chapter 2

A probabilistic functional
parcellation of human
occipito-temporal cortex
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Human visual cortex contains many retinotopic and category-specific re-
gions. These brain regions have been the focus of a large body of functional
MRI research, significantly expanding our understanding of visual processing.
As studying these regions requires accurate localization of their cortical loca-
tion, researchers perform functional localizer scans to identify these regions in
each individual. However, it not always possible to conduct these localizer
scans. Here, we developed and validated a functional region of interest at-
las of early visual and category-selective regions in human ventral and lateral
occipito-temporal cortex. Results show that for the majority of fROIs, cortex-
based alignment results in lower between-subject variability compared to non-
linear volumetric alignment. Furthermore, we demonstrate that (1) the atlas
accurately predicts the location of an independent dataset of ventral tempo-
ral cortex ROIs and other atlases of place-selectivity, motion-selectivity, and
retinotopy. Next, (2) we show that the majority of voxel within our atlas are
responding mostly to the labelled category in a left-out subject cross-validation,
demonstrating the utility of this atlas. The functional atlas is publicly available
(download.brainvoyager.com/data/visfAtlas.zip) and can help identify the
location of these regions in healthy subjects as well as populations (e.g. blind
people, infants) in which functional localizers cannot be run.

download.brainvoyager.com/data/visfAtlas.zip
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2.1 Introduction

Human visual cortex extends from the occipital lobe to the posterior parietal
and temporal lobes, containing more than two dozen visual areas. Early and
intermediate visual areas are typically defined by their representation of the
visual field, where each visual area contains a topographic (retinotopic; Engel
et al., 1994; Sereno et al., 1995) representation of the entire visual field across
both hemispheres (referred to as a visual field map, Arcaro et al., 2009; Wandell
et al., 2005; Wandell and Winawer, 2011; Wang et al., 2014). Higher visual areas
are typically defined by their function and stimulus selectivity rather than the
representation of the visual field. This includes preference to visual attributes
such as motion (M I Sereno et al., 1995), shape (Grill-Spector et al., 1998; Malach
et al., 1995), or color (Lafer-Sousa et al., 2016), as well as preference for certain
visual stimuli over others. A well-documented characteristic of higher-level
regions in ventral and lateral occipito-temporal cortex are regions that respond
preferentially to ecologically-relevant stimuli such as faces (Kanwisher et al.,
1997), places (Aguirre et al., 1998; Epstein & Kanwisher, 1998), bodies (Downing
et al., 2001; Peelen & Downing, 2005), and words (Cohen et al., 2000) compared
to other stimuli. These regions are referred to as category-selective regions.

To elucidate neural mechanisms of visual processing and perception, a cen-
tral goal in neuroscience is to understand the function and computation in each
of these regions. Indeed, tens of thousands of papers have investigated visual
processing in specific visual areas, from visual field maps to category-selective
regions. For example, according to google scholar, more than 7575 studies cite
the study that discovered the fusiform face area (Kanwisher et al., 1997). The
first step in this scientific endeavor is the identification of each visual region in
each brain. The standard approach is to perform an independent scan, such as
retinotopic mapping (S A Engel et al., 1997) or a functional localizer scan, in
each individual to identify the relevant region of interest (ROI, Kanwisher et al.
1997; Saxe et al. 2006). Then, the main experiment of interest is performed, and
the data are analyzed within the ROI identified using the independent scans.
The ROI approach is advantageous for four reasons: (1) it allows hypothesis
driven comparisons of signals within independently-defined regions of interest
across many different conditions, (2) it increases statistical sensitivity in multi-
subject analyses (Nieto-Castañón & Fedorenko, 2012), (3) it reduces the number
of multiple comparisons present in whole-brain analyses (Saxe et al., 2006), and
(4) it identifies ROIs in each participant’s native brain space.
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Nevertheless, there are also several limitations to the independent local-
izer approach. First, it is not always possible to obtain an independent local-
izer scan. This is especially the case in patient populations, for example in
the congenitally blind (Bedny et al., 2011; Mahon et al., 2009; Striem-Amit,
Cohen, et al., 2012; van den Hurk et al., 2017) or individuals with visual ag-
nosia/prosopagnosia (Barton, 2008; Gilaie-Dotan et al., 2009; Schiltz & Rossion,
2006; Sorger et al., 2007; Steeves et al., 2006; Susilo et al., 2015). Second, perform-
ing a localizer scan before each experiment is costly in terms of scanning time,
as well as mental effort and attention resources of the participant. The latter can
result in fatigue during the main experiment of interest, leading to lower qual-
ity data. Third, as localizer scans are typically conducted in a subject-specific
manner, and researchers vary in the manner they define the ROIs (e.g. whether
smoothing was employed, if they use anatomical constraints, what threshold-
ing methods were employed), it is hard to assess variability between partici-
pants and across studies.

To overcome these limitations, progress in the field of cognitive neuro-
science has led to the development of cortical atlases, which allow localization
of visual areas in new subjects by leveraging ROI data from an independent set
of typical participants (Frost and Goebel 2012; ventral-temporal cortex category
selectivity: Julian et al. 2012; Engell and McCarthy 2013; Zhen et al. 2017a;
Weiner et al. 2018; visual field maps: Benson et al. 2012; Wang et al. 2014;
motion-selective hMT: Huang et al. 2019; multimodal parcellation: Glasser et
al. 2016; cytoarchitectonic parcellation of ventral visual cortex: Rosenke et al.
2018). In addition to providing independent means to identify ROIs, this ap-
proach enables quantification of between-subject variability. Further, the pro-
cess of atlas creation also enables measuring the prevalence and robustness of
each ROI across participants. Presently, atlases for the human visual system in-
clude atlases of visual field maps (Benson et al., 2012, 2014; Benson & Winawer,
2018; L Wang et al., 2014), and atlases of cytoarchitectonically-defined areas
(Amunts et al., 2000; Caspers et al., 2013; Kujovic et al., 2013; Lorenz et al., 2015;
Rosenke et al., 2017b; Rottschy et al., 2007). However, presently, there is no atlas
of the full extent of visual category-selective regions in occipito-temporal cor-
tex, or atlases that include both visual regions that are defined retinotopically
as well as from stimulus selectivity.
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To fill this gap in knowledge, in the present study we: (a) develop a func-
tional atlas of category-selective visual cortex, (b) quantify inter-subject vari-
ability of category-selective regions in visual cortex, and (c) validate our ap-
proach by using the same procedure to define retinotopic regions and hMT+,
which also allows us to compare our definitions to existing atlases. To gener-
ate the visual functional atlas (visfAtlas), 19 participants (10 female) underwent
the following functional scans: (i) a localizer experiment to identify word, body,
face, body, and place-selective regions in lateral occiptio-temporal (LOTC) and
ventral temporal cortex (VTC), (ii) a visual field mapping experiment to delin-
eate early visual cortex (V1-V3), and (ii) a motion localizer to identify hMT+. We
identified each ROI in each participant’s brain. We then used a leave-one -out
cross-validation (LOOCV) approach and two anatomical alignment methods:
(i) nonlinear volume-based alignment (NVA) and (ii) cortex-based alignment
(CBA), to evaluate the accuracy of the atlas in predicting ROIs in new partic-
ipants. The resulting visfAtlas is available with this paper in BrainVoyager
(www.brainvoyager.com) and FreeSurfer (www.surfer.nmr.mgh.harvard.edu)
file formats for cortical surface analyses, as well as in nifti format for volumetric
analysis (download.brainvoyager.com/data/visfAtlas.zip).

download.brainvoyager.com/data/visfAtlas.zip
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2.2 Materials and Methods

2.2.1 Participants

To obtain functional data, a total number of 20 participants (average age 30
± 6.61) were recruited at Maastricht University but one subject’s functional
MRI (fMRI) scans were excluded from further analysis due to self-reported
lack of attention on the stimuli and intermittent sleep. Two participants were
left-handed, and the sample consisted of 10 women and 9 men. All partici-
pants were healthy with no history of neurological disease and had normal or
corrected-to-normal vision. Written consent was obtained from each subject
prior to scanning. All procedures were conducted with approval from the local
Ethical Committee of the Faculty of Psychology and Neuroscience.

2.2.2 Data acquisition

Participants underwent one scanning session of 1 hour at a 3T Siemens Prisma
Fit (Erlangen, Germany). First, a whole brain, high resolution T1-weighted scan
(MPRAGE) was acquired (repetition time/echo time = 2250/2.21 ms, flip angle
= 9 , field of view = 256 x 256 mm, number of slices = 192, 1 mm isovoxel reso-
lution). Following that, six functional runs were acquired using a T2*-weighted
sequence with the following parameters: repetition time/echo time = 2000/30
ms, flip angle = 77 , field of view = 200 x 200 mm, number of slices = 35, slice
thickness = 2 mm, in-plane resolution = 2 × 2 mm. fMRI included (i) three
scans of the functional localizer (fLoc; Stigliani et al. 2015) (ii) two scan of an
hMT+ localizer, and (iii) one scan of retinotopic mapping. Maximal diameter of
the visual stimuli ranged from 30-36 in the fMRI experiments. Details for each
localizer can be found in the section below.

2.2.3 Visual localizers

Category-selective regions in ventral temporal cortex and lateral occipito-
temporal cortex

In order to identify category-selective regions that respond preferentially to
characters (pseudowords, numbers), bodies (whole bodies, limbs), places (houses,
corridors) , faces (child, adult) and objects (cars, instruments), we used stimuli
included in the fLoc functional localizer package (Stigliani et al., 2015). Eight
stimuli of one of the five categories were presented in each miniblock design,
each miniblock holding a duration of 4 seconds. To assure participant’s atten-
tion, they were asked to perform an Oddball task, indicating with a button press
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when they saw a scrambled image instead of one of the categories. Each run
consisted of 150 volumes, and each subject underwent three runs.

hMT+

To localize the motion-selective area in middle temporal cortex (hMT+, Du-
moulin et al., 2000; Zeki et al., 1991), we used stimuli as in Emmerling et al.
(2016) and Zimmermann et al. (2011), which were based on Huk et al. (2002).
During the first 5 volumes participants were presented with a fixation dot in
the center of the screen. In the following blocks, moving and stationary dot
patterns alternated while the participants fixated on the fixation dot at the cen-
ter of the screen. Moving dot blocks were 18 seconds long, while stationary
blocks had a duration of 10 seconds. The active screen filled with dots was cir-
cular. In total, each run consisted of 12 blocks of moving dots and 12 blocks of
stationary dots. Black dots on a gray background traveled towards and away
from the fixation point (speed=1 pixel per frame, dot size=12 pixels, number
of dots=70). In different blocks, dots were presented either in the center of the
screen, in the left visual hemifield, or in the right visual hemifield. Stationary
blocks were in the same three locations. The order of blocks was fixed (center
moving, center static, left moving, left static, right moving, right static). Each
subject underwent two hMT+ localizer runs.

Early visual cortex

We ran one visual retinotopic mapping run that consisted of 304 volumes (TR
= 2s). In the first 8 volumes a fixation dot was presented, followed by a high-
contrast moving bar stimulus (1.33° wide) revealing a flickering checkerboard
pattern (10 Hz). The checkerboard pattern varied in orientation and position for
288 volumes, concluding the run with 8 volumes of fixation dot presentation.
The fixation was presented during the entire run and changed color at random
time intervals. To keep participants’ motivation and attention they were asked
to count these color changes. The bar stimulus moved across the visual field in
12 discrete steps and remained at each position for 1 TR. The 12 different stim-
ulus positions were randomized within each bar orientation. Each combination
of orientation (4) and direction (2) represented one cycle. These eight different
cycles were repeated three times in random order throughout the run (Senden
et al., 2014).
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2.2.4 Preprocessing

If not stated otherwise, data were preprocessed and analyzed using BrainVoy-
ager 20.6 (Brain Innovation, Maastricht, The Netherlands). Anatomical data
were inhomogeneity corrected and transformed to Talairach space (TAL, Ta-
lairach and Tournoux, 1988) by identifying the anterior commissure (AC) and
posterior commissure (PC) and fitting the data to TAL space. Functional data
were slice scan time corrected, motion corrected with intra-run alignment to the
first functional run to account for movement between runs, and high-pass fil-
tered (3 cycles). Next, the preprocessed functional data were co-registered to
the inhomogeneity corrected anatomical image. Using the anatomical transfor-
mation files, all functional runs were normalized to TAL space. Based on the
normalized anatomical data, we segmented the grey-white matter boundary
for each brain and created a cortical surface. Next, the volumetric functional
data were sampled on the cortical surface incorporating data from -1 to +3 mm
along the vertex normals. Ultimately, we computed two general linear models
(GLM), one for the three localizer runs for category-selective regions in ventral
temporal cortex, and one for the hMT+ localization.

2.2.5 Regions of interest

All ROIs where manually defined in individual subjects on their cortical surface
reconstruction in BrainVoyager. For volumetric alignment and atlas generation,
surface regions were transformed to volumetric regions by expanding them (-1
to +2 mm) along the vertex normals of the white-gray matter boundary. The
final atlas includes all regions that could be defined in more than 50% of the
subjects (N10, see Table 2.1 for number of subjects per atlas ROI).

2.2.6 Retinotopic areas in occipital cortex

Visual field maps were determined for each subject based on an isotropic Gaus-
sian population receptive Field (pRF) model (Dumoulin & Wandell, 2008; Senden
et al., 2014). The obtained pRF maps estimating the location and size of a voxel
pRF were used to calculate eccentricity and polar angle maps. The polar an-
gle maps were projected onto inflated cortical surface reconstructions and used
to define six topographic regions in occipital cortex (V1d, V2d, V3d and V1v,
V2v, V3v, where d = dorsal and v = ventral) by identifying the reversals in po-
lar angle representation at the lower vertical meridian (LVM), upper vertical
meridian (UVM) or horizontal meridian (HM; DeYoe et al., 1996; Engel et al.,
1997; Sereno et al., 1995). We did not define visual areas beyond V3d and V3v
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as visual field maps using the single run retinotopic mapping paradigm were
noisy beyond V3.

2.2.7 Ventral and lateral category-selective areas

Each category (e.g. faces) was contrasted against the mean of all other cate-
gories to identify vertices that displayed a preference for the given category.
Then we followed a two-step approach to define ROIs: First, for all categories
we selected a statistical threshold of t = 3 for a whole brain map. Based on
the thresholded activation map we identified ROIs in anatomically plausible
locations (see details for each region below). Furthermore, in the case of an acti-
vation cluster transitioning into an adjacent one of the same visual category, we
divided those clusters into separate ROIs by following the spatial gradient of t-
values and separating the two areas at the lowest t-value. Based on insufficient
activation pattern found for the ‘objects’ category, we dismissed that category
from further analysis.

Face-selective regions (faces > all others) were identified in the mid lateral
fusiform gyrus (mFus) and posterior lateral fusiform gyrus (pFus), which cor-
respond to the fusiform face area (Kanwisher et al., 1997), as well as on the
inferior occipital gyrus (IOG). Body-selective regions (bodies > all others) were
observed in ventral temporal cortex on the occipital temporal sulcus (OTS), also
known as fusiform body area (FBA, Peelen et al., 2009; Schwarzlose, 2005) and
in lateral occipital cortex. There, we identified three different regions (Weiner &
Grill-Spector, 2011) together forming the extrastriate body area (Downing et al.,
2001), one anterior of hMT+ on the middle temporal gyrus (MTG), one posterior
of hMT+ on the lateral occipital sulcus (LOS), and one ventral to hMT+, on the
inferior temporal gyrus (ITG). Place-selective regions (places > all others) were
observed in ventral temporal cortex on the collateral sulcus (CoS), correspond-
ing to the parahippocampal place area (PPA, Epstein and Kanwisher, 1998), and
on the transverse occipital sulcus (TOS, Hasson et al., 2003). Character-selective
regions (characters > all others) were identified in the posterior occipital tem-
poral sulcus (pOTS) and a left-lateralized region in the mid occipital temporal
sulcus (mOTS). Furthermore, we identified one character-selective regions in
the inferior occipital sulcus (IOS). In the following, we will refer to each ROI
by its anatomical nomenclature, as described in Stigliani et al. (2015). For ref-
erence, Table 2.1 provides an overview about each ROI’s anatomical as well as
functional name.
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Table 2.1: nomenclature for functional regions-of-interest (fROIs) and number of
subjects per fROI. Each category-selective functional activation cluster can be de-
scribed by functional category or anatomical location. In this article we describe
category-selective ROIs using the anatomical nomenclature and provide this table as
a reference. Functional abbreviations are as followed: FFA: fusiform-face area, FBA:
fusiform-body area, EBA: extrastriate body area, VWFA: visual word form area, PPA:
parahippocampal place area, hMT: human middle-temporal (cortex). Number of iden-
tified ROIs per hemisphere (N LH/N RH): Due to individual-subject variability and
using a strict statistical threshold (t>3, vertex level), not every fROI was identified in all
participants in both hemispheres. fROIs that were defined in more than half the par-
ticipants (N10) were included in the atlas. Areas that were not included are indicated
in gray subject counts. The last column, N, indicates the number of subjects in which
a given fROI could be identified in at least one hemisphere. Abbreviations: LH: left
hemisphere, RH: right hemisphere.

ROI Functional nomenclature N (LH) N (RH) N

mFus - faces FFA-2 13 15 18
pFus - faces FFA-1 17 15 19
IOG - faces - 15 15 18
OTS - bodies FBA 14 13 17
ITG - bodies EBA 17 17 19
MTG - bodies EBA 16 15 18
LOS - bodies EBA 15 16 19
pOTS -characters VWFA-1 16 5 17
IOS - characters - 11 1 11
TOS - places - 9 12 13
CoS - places PPA 18 19 19
hMT - motion hMT 18 16 19
V1d - 19 19 19
V2d - 19 19 19
V3d - 14 17 17
V1v - 19 19 19
V2v - 19 19 19
V3v - 19 19 19
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hMT+

Motion selective regions were identified by contrasting left, right and central vi-
sual field motion conditions vs. the equivalent stationary conditions and using
a thresholded statistical map with a minimum t-value of 3. Two subjects only
showed functional activation for the contrasts at a t-value of 2.5 in one hemi-
sphere, which we allowed for these subjects. hMT+ was consistently located in
the posterior inferior-temporal sulcus (pITS).

Visual functional atlas (visfAtlas) generation

After ROIs were defined for each subject in each subject’s space, we utilized
two normalization techniques to bring the data into a common space: (1) non-
linear volumetric alignment (NVA) for volume and (2) cortex-based alignment
(CBA) for surface space. Furthermore, as it is common that not every ROI can
be identified in each of the subjects, we decided that an ROI had to be present
in more than 50% of the subjects (N > 10) to be considered for a group atlas.
The ROIs which were ultimately used for the group atlases and in how many
subjects they were defined can be found in Table 2.1.

Nonlinear-volumetric alignment (NVA)

First, surface regions that were defined on each subject’s cortical surface were
mapped to volumetric regions by expanding them (-1 to +2 mm) along each
vertex normal of the white-gray matter boundary. Second, the volumetric re-
gions were transformed back to native ACPC space. Next, the individual brains
were registered to the MNI152 group average brain using the Advanced Nor-
malization Tools (ANTS; https://sourceforge.net/projects/advants/). Fi-
nally, the resulting nonlinear transformation matrices were used to warp the
functionally-defined regions of interest (fROIs) into the same orientation and
reference frame. The specific code for the affine volume registration and non-
linear transformation can be found here: download.brainvoyager.com/data/

visfAtlas.zip. The resulting NVA-aligned regions were further processed in
NifTi format using MATLAB 2014b and 2019a (www.mathworks.com), see de-
tails below.

Cortex-based alignment (CBA)

To generate a surface group average brain of the subjects, we used cortex-based
alignment (CBA) to generate a dynamic average (subsequently called BVav-
erage, publicly available at download.brainvoyager.com/data/visfAtlas.zip

https://sourceforge.net/projects/advants/
download.brainvoyager.com/data/visfAtlas.zip
download.brainvoyager.com/data/visfAtlas.zip
download.brainvoyager.com/data/visfAtlas.zip
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and usable as surface template for future studies). CBA was performed for
both hemispheres separately after inflation to a sphere with overlaid curvature
information at various levels of resolution (Frost & Goebel, 2012; R Goebel et
al., 2006). First, during a rigid alignment, the spheres of each subject’s hemi-
sphere was rotated along three dimensions to best match the curvature pattern
of a randomly chosen target hemisphere. The lower the variability between
the two folding curvature patterns, the better the fit after rigid sphere rotation.
Following the rigid alignment for all subjects, a non-rigid CBA was performed.
Curvature patterns of each subject were used in four different levels of anatom-
ical detail. Starting from low anatomical detail, each subject’s hemisphere was
aligned to a group average out of all subjects. During this process, the group
average was dynamically updated to most accurately average all hemispheres.
This sequence was repeated for all levels of curvature detail, until the group
average was updated based on the highest level of anatomical detail per sub-
ject. During the alignment, we (1) derived a group average for each hemisphere
(BVaverage), as well as (2) a transformation indicating for each vertex on a
single-subject cortical surface where it maps to on the group average. These
transformation files were then used to map each individual subject’s fROIs to
the BVaverage.

Probabilistic maps for occipitotemporal cortex in volume and surface space

We generated probabilistic maps of all regions after NVA as well as CBA, where
each of the following was done in both group spaces: after individual subject
fROIs were projected to the MNI152 and BVaverage, respectively, each group
fROI was defined. For each voxel/vertex of a group fROI, the number of sub-
jects sharing that voxel/vertex in the fROI was divided by the total number of
subjects of the fROI (voxelprobability = number o f subjects sharing voxel / vertex

total number o f subjects in f ROI ). Thus,
a value of 0 at a vertex in the group fROI indicates a vertex did not belong to
that fROI in any subject, a value of .5 means that it belonged to the fROI in half
the subjects, a value of 1 indicates that it belonged to that functional region in
the entire study population (Fig. 5.4.1).

Cross-validated predictability estimation and atlas generation

One interesting feature of those fROIs is the possibility to serve as a prior to
estimate the localization of corresponding ROIs in a new subject’s brain, elim-
inating the need for a dedicated localizer run in the new subject. To allow
for a probabilistic estimate to find this region in a new subject, we performed
an exhaustive leave-1-subject-out cross-validation analysis after the volumetric
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(NVA) as well as surface (CBA) alignment to establish how well our atlas can
predict fROIs in new subjects. For each fold of the LOOCV, we generated a
group probabilistic fROI (G) and a left-out subject’s individual fROI (I). We esti-
mated the predictability of the group probabilistic fROI by calculating the Dice
coefficient (DSC), a measure of similarity of two samples:

dsc = 2|I∩G|
|I|+|G|

(2.1)

A Dice coefficient of zero indicates no predictability and a Dice coefficient
of 1 indicates perfect predictability. As we did in previous work (Rosenke et
al., 2017b), we applied different threshold levels to the group probabilistic fROI
(G) to predict the location of the left-out-subject (Fig. 2.3.2). That means we cre-
ated a liberal group probabilistic fROI including each vertex that was present in
at least 1 subject. Then we sequentially increased the threshold up to the most
conservative threshold where all subjects had to share a voxel/vertex for it to be
included in the group map. For statistical assessment, we compared Dice coef-
ficients across the two alignment methods using a repeated measures analysis
of variance (ANOVA) with individual regions as different entries, alignment
method (CBA vs. NVA) as within-subject factor, and hemisphere as between-
subject factor. We ran this comparison on two different thresholds: once on
unthresholded group maps, and once on a threshold that produced - across re-
gions and methods - the highest predictability. To determine this threshold, we
averaged Dice coefficient values across alignment methods, hemispheres, and
ROIs, resulting in one Dice coefficient per threshold level (as previously done
in Rosenke et al. 2018). Comparison across thresholds revealed that a thresh-
old of 0.2 produced the highest predictability. Additionally, we ran paired per-
mutation tests within each region on Dice coefficient results at threshold 0.2 to
establish whether the specific region showed a significant Dice coefficient for ei-
ther alignment (NVA or CBA). Finally, we calculated the mean ROI surface area
(in mm2) for each hemisphere and ROI (Fig. 2.3.3) and used a paired t-statistic
to assess whether there was a systematic hemispheric difference in size across
ROIs.
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Generating a visual functional atlas (visfAtlas) by assigning each voxel and
vertex to a unique fROI

The processes described below provide a non-overlapping tiling of the func-
tionally defined regions in occipito-temporal cortex in surface as well as volume
space (Fig. 2.3.5).

Cortex-based alignment: The probability maps determine the probability that
each vertex belongs to a given fROI. However, it is possible that a point on the
brain may belong to more than one probabilistic fROI. This overlap is more
likely to occur along boundaries of neighboring functional regions. In order
to assign a unique functional label to each vertex in the atlas, we generated a
maximum-probability map (MPM) of each area, once in volume space (NVA)
and once in surface space (CBA). Using the probabilistic fROIs, we determined
which vertices were shared by more than one probabilistic fROI and assigned
these vertices to a single fROI based on the area which showed the highest prob-
ability at that vertex (Eickhoff et al., 2005). In cases where two areas held the
same probability value for one vertex, we averaged the probabilistic values of
neighbors of that vertex for each of the fROIs. The degree of neighbors aver-
aged was increased until the vertex had a higher probability value in one of
the areas. Lastly, after all vertices were assigned in each of the MPM areas, we
searched for individual vertices that were not connected to other vertices of the
same ROI. We used a decision threshold where a minimum of at least one 3rd
degree neighbor for each vertex had to be in the same group ROI for that ver-
tex to be part of the group ROI. In cases where single vertices where detected,
they were assigned to the ROI with the second-highest probabilistic value and
same-ROI vertices in the immediate neighborhood.

Nonlinear volume alignment: The creation of a maximum probability map in
volume space was identical to that for CBA as described above, except for the
neighborhood search. The neighborhood search was implemented differently
as the 3D nature of the volume atlas would lead to inevitable differences in the
MPM creation when compared to the surface atlas. Neighborhood search was
only performed for 1 immediately adjacent voxel in all three dimensions.

A visual functional atlas available in volume and surface space

The unique tiling of functionally defined visual regions provides a functional
atlas (visfAtlas) which we make available (1) in volume space, and (2) in sur-
face space. In addition, we make this atlas available in multiple file formats.
Volume: we publish the volumetric visfAtlas in MNI space in BrainVoyager
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file format (VOI file) and NifTi format, which can be read by a variety of soft-
ware packages. Surface: we publish the visfAtlas in file formats compatible
with Brain Voyager as well as FreeSurfer. Note, however, that the surface at-
lases are generated slightly differently for each software. For BrainVoyager,
we generated a publicly available dynamic group average brain (BVaverage,
Fig. 2.3.5C) that will be available with the distributed atlas, details are de-
scribed above. Since FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) is
commonly used with the fsaverage brain, an average surface of 39 individu-
als, we converted the individually defined fROIs from each subject to corti-
cal surface space in FreeSurfer after running each subject through the recon-all
pipeline. Then, we used the FreeSurfer CBA algorithm to bring each subject’s
fROIs to the fsaverage space. Further processing was done as described above
and the same for both software packages. All files can be downloaded here:
download.brainvoyager.com/data/visfAtlas.zip.

Evaluating whether fROI size and reproducibility are related to inter-subject
consistency

There are several factors that can influence consistency across subjects. First,
region of interest size has been shown to influence across-subject consistency
measures using the Dice coefficient (Rosenke et al., 2017b). Therefore, we de-
termined if there is a correlation between the cross-validated Dice coefficient
and average fROI surface area. Second, we established whether categories dif-
fer in reproducibility of cortical responses within a subject. We reasoned that
across-subject variability cannot be expected to be lower than within-subject
variability over time (reproducibility), hence it can be used as a proxy for noise
ceiling. To measure reproducibility, we first defined two regions of interest, ven-
tral temporal cortex (VTC) and lateral occipito-temporal cortex (LOTC). VTC
was manually defined by tracing well known anatomical: the occipitotemporal
sulcus (OTS), posterior transverse collateral sulcus (ptCoS), parahippocampal
gyrus (PHG) and the anterior tip of the mid-fusiform sulcus (MFS). LOTC was
defined as previously described in Weiner and Grill-Spector (2013). Posteriorly,
the LOTC ROI was defined at the convergence of the intraparietal sulcus (IPS)
and the descending limb of the superior temporal sulcus (STS). The superior
boundary was defined at the dorsal lip of the STS, and inferior boundary at the
occipitotemporal sulcus (OTS). We then computed general linear models for all
three individual fLoc localizer runs we acquired and computed t-statistic con-
trast maps identical to those used for our ROI definitions (e.g. faces vs all other
categories, see ROI definition section for details), resulting in 3 contrast maps

https://surfer.nmr.mgh.harvard.edu/
download.brainvoyager.com/data/visfAtlas.zip
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for each subject for each of the 4 categories: characters, bodies, faces, and places.
Consequently, we computed the Dice coefficient between each pair of runs for
each subject, hemisphere, and ROI, separately (run 1 and 2, 1 and 3, and 2 and
3 within VTC and LOTC). We then took the average across those three splits as
the Dice coefficient for that subject. Ultimately, we performed this analysis with
a liberal statistical threshold of t > 0 (any vertex holding a positive t-value is in-
cluded) and once with a threshold of t = 2.2 (p<0.01) for vertices to be included
in the contrast map (Fig. 2.3.4). Together, these measures result in a lower and
upper bound estimation of our Dice coefficient noise ceiling.

Validation of the visfAtlas with an independent dataset of category-selectivity
in ventral temporal cortex and with an increasing number of subjects

Common consideration in building atlases are (i) the number of subjects that are
used to build the atlas and (ii) how well it can predict new datasets. To address
whether our sample size is sufficient to achieve generalizability to new data,
we tested how well the visfAtlas predicts fROIs of 12 new subjects. These data
were acquired using a similar localizer in a different scanning facility, identified
by independent experiments, and have been published previously (Stigliani et
al., 2015; Weiner et al., 2017). We compared their fROI definitions of mFus-faces,
pFus-faces, OTS-bodies, pOTS-characters and CoS-places to our visfAtlas defi-
nitions in the following ways: (1) we visualized our visfAtlas MPMs in relation
to their probability maps of each of the fROIs (Fig. 2.3.6), and (2) we calculated
how well our visfAtlas predicted each of their individual subjects’ fROIs using
the Dice coefficient.

Lastly, to address how the number of subjects affects the accuracy of our
visfAtlas, we calculated the Dice coefficient for different iterations of the vis-
fAtlas in which we incrementally increased the number of subjects from 2 to 19;
specifics are in the Supplemental Materials.

Functional responses of atlas fROIs in left out data

When using a probabilistic atlas, it is of great interest not only to know how
likely one would find a new subject’s fROI in the same location, but also what
signals would be picked up for that subject within an atlas-fROI. For example,
are voxel in face-selective atlas fROIs responding mostly to faces? To test the
generalizability of our atlas, we performed a leave-subject-out maximum re-
sponsivity analysis. The analysis calculates the percentage of voxel responding
highest to each condition within a given fROI, where the fROI is defined on
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all subject’s data except the one dataset used for the responsivity computation.
This was repeated for all possible leave-subject-out combinations. First, for each
subject individually we created a maximum probability map (MPM) based on
the other N-1 subjects (leaving the target subject out). Then, for each individual
voxel within each fROI in this MPM, we estimated the average response ampli-
tude to each category across trials using the optimized Least Squares – Separate
(LS-S) trial estimation approach as described by Mumford et al. (2012). Then,
we created a ‘winner map’ for each fROI per subject, in which the condition
index that yielded the strongest response was assigned to each voxel within the
fROI. Per condition, we counted the number of winning voxels within the ROI,
which we expressed as a percentage of the total number of voxels in the fROI.
This procedure was repeated for each subject (Fig. 2.3.7).

Comparison of our visfAtlas to existing publicly available atlases and rele-
vant fROIs

How does the visfAtlas compare to published atlases? While there is no com-
plete occipitotemporal atlas of visual areas yet, atlases of retinotopic areas have
been published by Wang et al. (2014) and Benson et al. (2012, 2014). To com-
pare our atlas to the Benson atlas where there is no separation between ventral
and dorsal quarterfields, we merged our dorsal and ventral V1-V3. Addition-
ally, there is a published probabilistic atlas of CoS-places (Weiner et al. 2018),
and motion selective hMT+ (Huang et al. 2019). We compared our surface
visfAtlas to the existing surface maps by assessing their correspondence in the
FreeSurfer fsaverage space. For each published atlas we (i) qualitatively as-
sessed the spatial correspondence by visualizing the atlas definitions on a com-
mon brain space of the FreeSurfer average brain (Fig. 2.3.8) and (ii) quantita-
tively assessed the correspondence by calculating the Dice coefficient between
each of our individual subject’s fROIs and the respective other atlas as we do
not have access to the individual subject data in the Wang, Benson or Huang
atlases.
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2.3 Results

Using data from 19 healthy participants we aimed at generating a probabilistic
atlas of occipito-temporal and ventral temporal cortex. Individually defined
regions were normalized to group space using either (1) cortex-based alignment
(CBA) or (2) nonlinear volumetric alignment (NVA).

2.3.1 Superior spatial overlap after cortex-based alignment for retino-
topic and category selective regions

In order to determine whether nonlinear volumetric (NVA) or cortex-based
alignment (CBA) result in higher accuracy and predictibility of our atlas, we
aimed at comparing both alignment techniques across all functional regions
of interest (fROIs). Figure 2.3.1 displays three example regions, one early vi-
sual retinotopic region in occipital cortex (V1d), as well as two higher-order
category-selective regions in ventral temporal cortex (CoS-bodies and mFus-
faces). Qualitatively, a higher degree of consistency across subjects is observ-
able when group maps were normalized using CBA as compared to NVA. Both
V1d and Cos-places display a high consistency in the group map center as in-
dicated by yellow colored vertices, while centers are more variable after NVA
alignment, most evident in V1d. For mFus-faces, both group maps display a
greater degree of variability across subjects than the other two regions.
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Figure 2.3.1: example probabilistic group maps in the left hemisphere after two brain
alignments. (A) Three example regions-of-interest (ROIs) are displayed where the most
left column, v1d, shows an early visual cortex map and the middle and right columns
display two higher-order visual category-selective regions in ventral temporal cortex,
Cos-places and mFus-faces. Probability values range from 0 to 1 where 0 indicates no
subject at a given vertex and 1 that all subjects in the probabilistic maps shared the
given vertex. mFus-faces reveals less consistency as shown by a lower percentage of
yellow-colored vertices. Bottom inset displays zoomed in location of the main figure.
(B) Same ROIs as in A but after nonlinear volumetric alignment (NVA). Bottom inset
for CoS-places and mFus-faces indicates the location of the axial slice in the volume.
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To quantify which group alignment resulted in higher consistency and there-
with predictability, we used the Dice coefficent (DSC) and a leave-one-out cross-
validation (LOOCV) procedure to determine the predictability of finding the
same region in a new subject. Moreover, we calculated the Dice coefficient us-
ing different thresholds for the probabilistic group map, ranging from a liberal
unthreshold (one subject at a given voxel/vertex is enough to assign it to the
group map) map to a conservative threshold where all N-1 subjects had to share
a voxel/vertex to be assigned to the group map (Fig. 2.3.2). For retinotopically
defined regions, DSC’s varied between 0.35 and 0.59 for peak probability after
CBA, and between 0.30 and 0.42 after NVA. Especially regions with a lower
predictability overall tended to show higher predictability after NVA for more
conservative group thresholds (e.g. Fig. 2B, mFus-faces, TOS-bodies). For CBA,
peak predictibility (DSC) for each region ranged from 0.1 to 0.60, while it ranged
from 0.1 to 0.42 for NVA, with character-selective regions showing the lowest
consistency for both alignments, closely followed by mFus- and IOG-faces.

Quantitatively, CBA displayed an overall greater predictability across re-
gions and thresholds (except for V3d LH, see Fig. 2.3.2A), which was con-
firmed by a significant difference in alignment for both unthresholded (F(1,34) =

20.12, p < .001) and thresholded (0.2; (F(1,34) = 174.84, p < .001) probability
maps, see Methods for details on threshold selection. Additionally, there was
no significant main effect for hemisphere (unthresholded: p = .90; thresholded:
p = .56) and no interaction between alignment and hemisphere (unthresholded:
(F(1,34) = .85, p = .36), thresholded: (F(1,34) = 0.35, p = .56). We followed up
with a paired permutation test (across alignments) for the unthresholded DSC
within each fROI. As there was no main effect for hemisphere (see above) and
no significant difference in region size across hemispheres (t(17) = -0.48, p = .64,
Fig. 2.3.3), permutation tests were performed on Dice coefficients using an un-
thresholded group map prediction and averaged across hemispheres. Results
show that CBA alignment has a higher predictability than NVA for all regions
(p < .05), except for unthresholded: pOTS-characters (p = 1), IOS-characters (p
= .81), v3d (p = .05), IOG-faces (p = .05) and thresholded: V3d (p = .05), mFus
(p = .70), IOG (p = .55), pOTS (p = 1), IOS (p = 1), OTS (p = .14).
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As shown in the previous section and displayed in Figure 2.3.2, different
category-selective regions in VTC and LOTC show different levels of Dice co-
efficients. One factor that may contribute to this variability is the region’s size,
which also varies across fROIs (Fig. 2.3.3). To test if this relationship is signif-
icant, we measured the correlatation between the Dice coefficient and surface
area of the fROIs. Results indicate a significant correaltion (left hemisphere: r
= 0.83, p < 0.01; right hemisphere: r = 0.85, p < 0.01), suggesting that larger
regions have higher Dice coefficients. We also examined if differences in Dice
coefficient are related to differences in noise ceiling across ROIs. As a measure
of noise ceiling, we calculated the within-subject Dice coefficient across the 3
runs of the fLoc. We reasoned that if there are between-ROIs differences in the
noise ceiling estimated from within-subject Dice coefficients, they would also
translate to the between-subject Dice coeffient. When using a lenient t-map
threshold, results (Fig. 2.3.4) indicate that within-subject Dice coefficient for a
lenient t-map threshold (t>0) range from 0.4 – 0.77 across categories. We find a
higher Dice coefficient for bodies and faces in left VTC, and a higher Dice co-
efficient for places in the right VTC. In LOTC, the highest within-subject Dice
coefficient is for place-seletivity in the left LOTC, and body-selecitivty in the
right LOTC. Given that within- and between-subjects Dice coefficients are in
the same range and vary similarly across fROIs, we believe that the precision of
the visfAtlas will allow to identify fROIs in individual participants.
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Figure 2.3.2: leave-one-out cross-validation predictability analysis using the Dice
coefficient (DSC) for retinotopic regions (A) and category-selective regions (B). x-
axis: threshold of the probability map generated using N-1 subjects, y-axis: DSC. A
DSC value of 1 indicates perfect overlap between the N-1 group map and the left-out
subject, 0 indicates no overlap. Blue lines: DSC after CBA, red lines: DSC after NVA.
Dark colors/top rows correspond to left hemisphere data, light colors/bottom rows to
right hemisphere data. Red: face-selective ROIs, green: body-selective ROIs, yellow:
character-selective ROIs, gray: motion-selective ROI, error bars: standard error (SE)
across the N-fold cross-validation.
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faces bodies placescharacters motion retinotopy

Figure 2.3.3: fROI size across occipito-temporal cortex. Average ROI size in surface
space separately for the left hemisphere (LH, light gray) and right hemisphere (RH,
dark gray). Error bars: standard error across subjects. Regions of X-axis are organized
by category.

Figure 2.3.4: reproducibility of category-selectivity responses. For the two cortical ex-
panses that contain the category-selecitve regions of the visfAtlas, VTC and LOTC, the
reproducibility of category responses was computed across the t-contrast maps of sin-
gle runs for each respective category (see Materials and Methods for details). Dark gray
bars represent the Dice coefficient results based on t-contrast maps that were thresh-
olded with t > 2.2, which equals p < 0.01, while light gray bars were based on t-contrast
maps that were thresholded at t > 0. Errorbars represent standard errors across sub-
jects.
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2.3.2 A functional atlas of occipito-temporal cortex in volume and
surface space

By systematically varying the group map threshold for predicting a left-out sub-
ject’s fROI, we established that a group map threshold of 0.2 allows for greatest
predictability across regions. Using the 0.2 threshold, we generated a functional
atlas of occipito-temporal cortex by generating a maximum probability map
(MPM, see Methods for details). Figure 2.3.5 displays the resulting unique tiling
of category-selective regions in stereotaxic space for surface (Fig. 2.3.5A) and
volume (Fig. 2.3.5B) space. The visfAtlas is publicly available in both surface as
well as volume space to allow usage in a variety of analyses and in file formats
for BrainVoyager and FreeSurfer for surface space as well as in volume space
using the NifTi format. In addition, we publish a BrainVoyager average brain
(BVaverage, Fig. 2.3.5C; download.brainvoyager.com/data/visfAtlas.zip).

download.brainvoyager.com/data/visfAtlas.zip
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Figure 2.3.5: maximum-probability map (MPM) of occipito-temporal cortex func-
tional regions-of-interest (fROIs). (A) visfAtlas in surface space after cortex-based
alignment. Each color displays a unique fROI group map thresholded at 0.2 of all sub-
jects in which the given fROI could be identified. (B) Volume atlas using the same color
coding as in surface space. Inset between coronal and axial view displays the slice
location for coronal and axial slices, respectively. LH: left hemisphere, RH: right hemi-
sphere. (C) A new group average brain (BVaverage) published in BrainVoyager, based
on 20 adults. This average brain can be used for future studies as a common reference
brain.
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2.3.3 Atlas validation using an independent dataset and an increas-
ing number of subjects

How well does the visfAtlas localize regions in new subjects scanned at a dif-
ferent scanner and facility? To answer this question, we compared the ventral
visfAtlas ROIs with a dataset acquired at Stanford University (Stigliani et al.,
2015; Weiner et al., 2017) using different subjects and a functional localizer ex-
periment similar to ours. Figure 2.3.6 shows unthresholded probabilistic maps
of Weiner’s MPMs (across 12 participants) and our respective visfAtlas MPMs.
Qualitatively, the location of their probabilistic maps, especially peak probabil-
ities, correspond to our respective visfAtlas ROIs. To quantify the similarity, we
tested how well our data predict the fROIs of these 12 independent subjects by
calculating the Dice coefficient between our MPM fROIs and each of the inde-
pendent subjects’ fROIs (Fig. 2.3.6B). The mean Dice coefficients (+/- SE) for
left and right hemispheres, respectively, are in a similar range as the Dice co-
efficient of the leave-one-out-cross-validation results of our data (compare Fig.
2.3.2 threshold 0.2 with Fig. 2.3.6B).

Additionally, we explored how the number of subjects used for generating
our atlas affects its accuracy(Supplemental Fig. 5.4.1). Results indicate that in
general, having more participants generates better accuracy in the LOOCV, but
the number of requireed subjects varies across ROIs. Overall, across all ROIs,
the highest Dice coefficient plateaus between 12 and 14 subjects, suggesting that
our atlas based on an average of 16 subjects per ROI (see Table 2.1 for details) is
sufficient.
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Figure 2.3.6: correspondence between the visfAtlas and 5 ventral temporal cortex
probabilistic maps from independent data. (A) We compared visfAtlas MPM fROIs
(white outlines) in VTC with probabilistic maps (colored regions) of 6 functional re-
gions from an independent dataset that used a similar localizer, which has been pub-
lished previously (Stigliani et al. 2015; Weiner et al. 2017). Top: left hemisphere; Bot-
tom: right hemisphere. (B) Average Dice coefficient between fROIs of the individual
subjects from Stigliani and Weiner and colleagues and the MPMs of our visfAtlas fROIs.
Errorbars: standard errors across subjects. LH: left hemisphere; RH: right hemisphere.

2.3.4 Generalizability of functional atlas: functional responsivity in
left out data

One of the advantages of a probabilistic atlas is the ability to locate a region
of interest with a degree of certainty (as established using the Dice coefficient
analysis) in a new subject without the need to run a localizer itself. In order
to quantify the atlas’ generalizability, the category responsivity of the category
selective areas in new participants is a crucial metric. Therefore, we performed
a leave-subject-out responsivity analysis in volume space to assess category- re-
sponsivity. For each fROI, we established the percentage of voxel that showed
the strongest response to each available category (Fig. 2.3.7, see Methods for
details of responsivity estimation). For all category selective regions, we con-
firmed that the category it is selective for indeed yields the highest percent-
age of maximum voxel responsivity across subjects. Face-selective fROIs (Fig.
2.3.7, top left) contain 52-72% (lowest to highest fROI) face-selective voxel re-
sponses (red). The second-highest maximum responsivity is body-selective
(green) with 10-43% on average across subjects, followed by character-selective
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Figure 2.3.7: proportion of voxels that show maximum responsivity in left out sub-
jects are largely their own category. Using our volumetric atlas data we generated a
cross-validated estimate of voxel maximum responsivity in a left out subject. N-1 times,
we generated a volumetric maximum probability map and calculated the proportion of
voxel that were maximally responsive for the ROI’s category, e.g. face response voxel
in mFus-faces. This gives an estimate for the expected specificity of the atlas. For each
major category - faces, bodies, places, characters – proportions of category responsivity
are displayed with each region’s preferred category as the bottom bar of each stacked
bar graph. Error bars: Proportion own category selectivity across all left-out subjects.

regions (gray) with 2-25%. Body-selective regions (Fig. 2.3.7, top right) con-
tain the highest proportion of body as maximum voxel responsivity for lat-
eral body-selective regions (80-94%), with lowest proportions for ventral OTS-
bodies in left and right hemisphere (46-55%). The second-largest number of
voxel-maximum- responsivity is faces (1- 40%). Place-selective fROIs (Fig. 2.3.7,
bottom left) show a large proportion of voxels with their preferred place re-
sponses (purple, 77-82%), followed by up to 21% body-maximum voxel respon-
sivity. Character-selective ROIs (Fig 2.3.5., bottom right) on the other hand con-
tain 41 - 52% character-response voxel, followed by up to 38% body-response
voxels.

2.3.5 Similarities between previously published atlas areas and our
visfAtlas

In order to establish the correspondence of our probabilistic functional atlas
to other atlases, we made quantitative comparisons to existing atlases of one
or multiple regions localized with comparable stimuli. As retinotopic atlases
are frequently used to define early visual cortices in new subjects, we wanted
to compare our retinotopic areas V1-V3 dorsal and ventral to a group atlas of
retinotopic visual areas aligned to the fsaverage brain by Wang et al. (2014).
To assess the correspondence between the two atlases we computed the Dice
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coefficient (see Methods for details) between the existing group atlas and each
of our visfAtlas subjects (Fig. 2.3.8) separately. Qualitatively, V1d and V1v
from both atlases show a high degree of overlap and correspondence decreases
when moving to the dorsal and ventral V2 and V3 (Fig. 2.3.8A). However, for
each of the probabilistic maps of our visfAtlas regions, the peak probability lo-
cation falls within the MPM published by Wang et al. (2014). This observation
is confirmed by high Dice coefficients for V1d and V1v in the left and right
hemisphere (average Dice coefficient 0.4 – 0.5, see Fig. 2.3.8E), and lower Dice
coefficients in V2 and V3 (average Dice coefficient 0.15 – 0.4, Fig. 2.3.8E). Next,
we also compared our visfAtlas retinotopic regions to an anatomical prediction
of V1-V3 by Benson et al. (2012), which shows a similar pattern of correspon-
dence with a greater overlap in V1 (0.4 – 0.42) and a decrease in V2 and V3 (0.2
– 0.29).

Similiar to the retinotopic regions, we compared a category-selective re-
gion - the CoS-places fROI - to a published probabilistic version by Weiner et al.
(2018) which used a very similar localizer for their study. Both atlases display
a high correspondence, with a slightly higher Dice coefficient in the left hemi-
sphere than in the right hemisphere (Fig. 2.3.8E). On lateral occipito-temporal
cortex we compared a recently published motion selective group area of hMT+
that has been defined using data from 509 adults (Huang et al., 2019).As Huang’s
et al (2019) group fROI was not bounded by body-selective regions but ours was
defined by maximum probability map (MPM) that takes into account the neigh-
boring face and body-part areas, the visfAtlas is smaller than Huang’s definition
Nonetheless, also here, the locus of our hMT+ probabilistic map is within the
hMT+ atlas published by Huang et al (2019).
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Figure 2.3.8: comparison of the visfAtlas to other probabilistic atlases. In A-D each
red-yellow map is the probabilistic map of unthresholded individual regions of the
visfAtlas ROI and the outline is the fROI of the relevant atlas; all images are show in
the fsaverage brain. (A) Comparison of V1-V3 dorsal and ventral of the retinotopic
atlas published by Wang et al. (2014) and our respective visfAtlas regions. Regions
are presented on a medial-occipital view of the fsaverage group brain. (B) Compari-
son of V1-V3 dorsal and ventral to the anatomically estimated V1-V3 (Benson et al.,
2012). (C) Comparison of motion-selective hMT+ published by Huang et al. (2019) to
visfAtlas hMT+ probabilistic map. (D) Comparison of CoS-places published by Weiner
et al. (2018) to the visfAtlas CoS-places map. (E) Dice coefficient between the visfAtlas
fROI and the same fROI defined by other atlases. Errorbars: Standard error across 19
visfAtlas subjects. LH: left hemisphere; RH: right hemisphere.



2.4. Discussion 49

2.4 Discussion

In the present study, we generated a cross-validated functional atlas of occipito-
temporal visual cortex, including early-visual cortex retinotopic regions as well
as category-selective regions. Additionally, we evaluated how accurately this
atlas predicts category-selectivity in left-out subjects. We found that cortex-
based alignment (CBA) outperforms nonlinear volumetric alignment (NVA) for
most ROIs. Importantly, using CBA our probabilistic category-selective ROIs
accurately identify 40% - 94% of category-selective voxels in left-out subjects
(Fig. 2.3.7). We make this functional atlas (visfatlas) of occipito-temporal cor-
tex available on cortical surfaces of the fsaverage (FreeSurfer) and BVaverage
(BrainVoyager), and volume formats in MNI space compatible with the major-
ity of software tools.

In the following we will discuss the implications of our results for theories
of anatomical and functional coupling in visual cortex, how our atlas relates
to other atlases in the field, whether it can be validated by independent data,
and how future research can expand on our atlas with new methodological ap-
proaches.

2.4.1 Cortex-based alignment improves the consistency of group fROIs:
implications

Spatial consistency in both retinotopic and category-selective regions was on
average higher after CBA as compared to NVA (Fig. 2.3.2). The higher perfor-
mance of CBA is in agreement with previous studies that reported that CBA
results in atlases with higher accuracy than volumetric atlases (Coalson et al.,
2018; Frost & Goebel, 2012), and specifically of retinotopic visual areas (Wang
et al., 2014, Benson 2012) and cytoarchitectonic regions (Rosenke et al., 2017a,
2017b). Since CBA specifically aligns macroanatomical landmarks, the higher
accuracy of CBA suggests a coupling between macroanatomical landmarks and
functional regions. These results are consistent with prior research showing
striking functional-macroanatomical coupling in visual cortex including: (i) V1
with the calcarine sulcus (O. P. Hinds et al., 2008), (ii) V3A and the transverse
occipital sulcus (Nasr et al., 2011; Tootell et al., 1997), (iii) hV4 and the posterior
transverse collateral sulcus (Witthoft et al., 2014), (iv) motion-selective hMT+
and the posterior inferior temporal sulcus (Dumoulin et al., 2000; Weiner &
Grill-Spector, 2011), (v) mFus-faces and the mid-fusiform sulcus (Grill-Spector
& Weiner, 2014) and (vi) CoS-places and the intersection of the anterior lingual
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sulcus with the collateral sulcus (Weiner et al., 2018). One interesting obser-
vation regarding the Dice coefficient results (Fig. 2.3.2) is that in some fROIs,
NVA produces a higher Dice coefficient than CBA for high threshold values
(e.g., pOTS-characters LH, mFus-faces RH). We hypothesize that since NVA is
operating in 3D volume space and CBA in cortical surface space, shifts around
crowns of gyri or fundi of sulci may produce a large impact on CBA than NVA.
This hypothesis can be tested in future research.

Historically, the prevailing view (Glasser & Van Essen, 2011; Haxby et
al., 2011; Orban et al., 2014; Osher et al., 2015) was that higher-level func-
tional visual regions have greater variability across participants as well as rela-
tive to macroanatomical landmarks compared to early visual areas such as V2
and V3. However, as we summarize in the prior paragraph, improvements
in measurements and analysis methods argue against this prevailing view. In
fact, our leave-one-out cross-validation procedure shows that five high-level vi-
sual regions (pFus-faces, LOS-bodies, ITG-bodies, CoS-places, motion-selective
hMT+) have similar correspondence across subjects comparable to early visual
cortex. However, some functional regions (mFus-faces, pOTS-characters, MTG-
bodies, Fig. 2.3.2, see also Frost and Goebel, 2012), show more variability across
participants. This diversity suggests that other factors may affect our ability to
predict high-level visual regions. First, the shape and size of the ROI may im-
pact across-subject alignment. Indeed, we found that larger and more convex
ROIs tend to align better across participants than smaller ROIs, reflected in the
finding of a positive correlation between the Dice coefficient and the size of the
fROI. Second, the degree of macroanatomical variability differs across anatom-
ical landmarks. In other words, stable macroanatomical landmarks may be bet-
ter predictors of functional ROIs than variable ones. For example, the anterior
tip of the mid-fusiform sulcus (MFS) is a more stable anatomical landmark than
its posterior tip, as the length of the MFS substantially varies across people.
Consequently, the anterior tip of the MFS better predicts face-selective mFus-
faces than the posterior tip predicts pFus-faces (Weiner et al., 2014). Third, the
quality of cortex-based alignment may vary across cortical locations (see Frost
and Goebel 2012, 2013). Thus, more fragmented and less salient macroanatomi-
cal landmarks, such as the partially fragmented occipito-temporal sulcus (OTS),
may align less well across participants with CBA. This in turn impacts the regis-
tration of functional ROIs that are associated with these landmarks. Fourth, the
reliability of functional ROIs across sessions within an individual, which indi-
cates a noise ceiling, may vary across ROIs. To evaluate the latter, we performed
a reproducibility analysis for our category-selective regions by analyzing all
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three localizer runs independently (Fig. 2.3.4). This analysis highlights that
running the same experiment multiple times within the same subject will not re-
sult in the exact same cortical activation pattern. Here, reproducibility estimates
(Dice coefficients) ranged between 0.4 and 0.75 in VTC as well as LOTC, simi-
lar to Dice coefficient estimates by other studies (Bugatus et al., 2017; Weiner et
al., 2016; Weiner & Grill-Spector, 2010). Notably, the reproducibility analysis to-
gether with the analysis of an independent dataset indicate that reproducibility
and variability of our Dice coefficient are within the range expected by previous
studies (Weiner et al., 2018). However, one has to note that our reproducibil-
ity estimation is conservative since we used the three runs that comprised our
category-selectivity localizer individually, which means that each split had less
trials and a lower signal-to-noise ratio (SNR) than the analysis used to establish
between-subject variability (3 runs per subject each). Future work should run
the same experiment for an additional full 3 runs to establish a noise ceiling that
is not impacted by SNR and trial number differences.

Future research can also improve the inter-subject alignment by improv-
ing CBA methods. For example, CBA may be improved by weighting mi-
croanatomical landmarks by their consistency and saliency. Other directions for
improving the predictions of the model may include incorporating additional
features, such as spatial relationships between ROIs, or adding some functional
data (Frost & Goebel, 2013) to improve predictions. For example, adding one
retinotopic run improves predicting early visual areas relative to macroanatom-
ical landmarks alone (Benson & Winawer, 2018).

2.4.2 Category-preferred responses within visfAtlas regions and rea-
sons for variability across areas

As the main purpose of a functional atlas is to allow generalization to new in-
dividuals, confirmation and validation of the functional responses of the pre-
dicted regions is crucial. We used a leave-one-out-cross-validation approach
to quantify the generalizability of our maximum probability map and demon-
strate that voxels within the predicted ROI are displaying maximum responsiv-
ity to the preferred category of that ROI (Fig. 2.3.7). The highest proportion of
own category-responsive voxels was in lateral body-selective regions and the
lowest own category response was in character-selective regions. One possible
explanation for this variability is the proximity of ROIs to regions selective for
other categories. For example, in ventral temporal cortex, the body-selective re-
gion on the OTS is small and located between two larger face-selective regions,
but in lateral occipito-temporal cortex, body-selective ROIs are larger and some
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of them distant from the face-selective regions on the IOG. Close proximity be-
tween ROIs selective for different categories increases the likelihood of overlap-
ping atlas boundaries, which may reduce the predictions of category-selectivity
in a new subject.

Another reason for variability across areas could be that areas are differ-
entially affected by the number of subjects they require to reach a stable pre-
diction. To test this, for each ROI we calculated Dice coefficients with N=2 to
max N for that ROI and evaluated how the overlap changed with increasing
number of subjects (Supplemental Fig. ??). Interestingly, our analysis suggests
that not all ROIs benefit from an increasing number of subjects equally. More
specifically, only 5 of the 18 ROIs displayed such an increase, and those suggest
to plateau between 12 and 16 subjects. For other ROIs, the number of subjects
did not impact the Dice coefficient. Generally, the assumption is that as the
number of subjects increases, the level of noise decreases and one gets closer to
the true between-subject variability. One interesting note is that using the data
of our visfAtlas, none of the ROIs displayed a positive trend in Dice coefficient
that continues past the number of subjects included in our atlas. Follow up
work should evaluate whether this is local plateau or the global maximum Dice
coefficient for each region.

Additionally, our approach can be extended to generate atlases of addi-
tional high-level visual regions that have other selectivities by including stim-
uli and contrasts for: (i) dynamic vs. still biological stimuli to identify regions
selective for biological motion in the superior temporal sulcus (Beauchamp et
al., 2003; Grossman & Blake, 2002; Pitcher et al., 2011; Puce et al., 1996), (ii)
objects vs. scrambled objects to identify object-selective regions of the lateral
occipital complex (LOC; Malach et al. 1995; Grill-Spector et al. 1998; Vinberg
and Grill-Spector 2008), and (iii) colored vs. black and white stimuli to iden-
tify color-selective regions in medial ventral temporal cortex (Beauchamp et
al., 1999; Lafer-Sousa et al., 2016). Furthermore, future studies may explore
the possibility to generate more sophisticated atlases, which contain not only a
unique tiling of cortical regions, but also allow for multiple functional clusters
to occupy overlapping areas and indicate probabilities for multiple categories
at each voxel, perhaps building a hybrid of probabilistic maps of single regions
and a maximum probability map.
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2.4.3 Consistent definitions of visual areas across different atlases

In generating our visfAtlas is was important for us to include early visual ar-
eas and hMT+ in addition to category-selective regions for two reasons: (1) it
allowed us to benchmark and test our approach to atlases of retinotopic areas
(e.g. Wang et al. 2014) and (2) it allowed us to generate a more comprehensive
atlas of the visual system that includes the most studied visual regions span-
ning early and higher-level visual regions. Finding that our approach generates
similar ROIs to other atlases (e.g., V1-V3 in the Wang et al. (2014) atlas, Benson
et al. (2012) atlas) and hMT+ (Huang et al., 2019) is important as it illustrates
that these ROIs are robust to experimental design, stimuli type, and number of
subjects that were used for generating atlases, all of which varied across stud-
ies. For example, we defined hMT+ by contrasting responses to expanding and
contracting low contrast concentric rings to stationary ones in 19 subjects but
Huang et al. (2019) defined hMT+ by contrasting responses to dots moving in
several directions vs. stationary dots in 509 subjects. Despite these differences,
where hMT+ is predicted to be, largely corresponds across both studies (Fig.
2.3.8C), even as the predicted spatial extend of hMT+ is substantially smaller in
our atlas as compared to Huang’s. For retinotopic regions, we found the best
correspondence between our data and Wang et al. (2014) for V1d and V1v, espe-
cially in the left hemisphere (Fig. 2.3.8A). Right hemisphere V1 of our visfAtlas
extends more dorsally compared to Wang’s atlas, consequently shifting right
hemisphere V2d and V3d further compared to Wang et al. (2014). For both, the
comparison to Benson et al. (2012) and Wang et al. (2014), we observe a reduc-
tion in overlap that corresponds to a reduction in Dice coefficient when quanti-
fying V1 vs. V2 and V3 (see Fig. 2.3.2 for details), indicating that these may be
individual differences across subjects that are independent of anatomical cou-
pling, but still display less individual variability than previously assumed (see
Discussion section).

2.4.4 Cortex-based alignment improves the consistency of group fROIs:
implications).

Ultimately, the visfAtlas showed close correspondence to the comparison at-
lases, highlighting the robustness of our approach and the utility of functional
atlases for future neuroimaging studies.
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2.4.5 Conclusion and future uses

To this date, no probabilistic atlas has been published which contains such an
extensive set of functional regions in occipito-temporal cortex. The present
study shows that most of the category-selective regions can be predicted in new
subjects.

This functional atlas of occipito-temporal cortex is available in both sur-
face and volume space and can be used in commonly used data formats such
as BrainVoyager and FreeSurfer. We hope that this atlas may prove especially
useful for (1) predicting a region of interest when no localizer data is available,
saving scanning time and expenses, (2) comparisons across modalities and (3)
patient populations, such as patients who have a brain lesion (Barton, 2008;
de Heering & Rossion, 2015; Gilaie-Dotan et al., 2009; Schiltz & Rossion, 2006;
Sorger et al., 2007; Steeves et al., 2006) or are blind (Bedny et al., 2011; Mahon et
al., 2009; Striem-Amit, Dakwar, et al., 2012; van den Hurk et al., 2017).
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3.1 Introduction

Millions of people around the world suffer from blindness and are faced with
the associated challenges such as those involved in navigation -the detection
and avoidance of obstacles and looking for items- on a daily basis. The idea
of using a visual prosthesis to restore a rudimentary form of vision for the late
blind has been posed for many years (Brindley & Lewin, 1968; W. H. Dobelle et
al., 1974; Schmidt et al., 1996), yet recently gained a lot of momentum (see recent
reviews by (Farnum & Pelled, 2020; Nowik et al., 2020; Roelfsema, 2020)). In
essence, a part of the visual pathway is replaced by a brain-computer-interface
(or visual prosthetic implant) that typically translates a camera feed into elec-
trical signals which are conveyed to the brain via electrodes. The passage of
current via electrodes placed on or inside the brain activates neurons and elicits
dot-like visual sensations (known as phosphenes). These visual sensations are
evoked even in the absence of visual stimuli and, importantly, do so in the same
degree for sighted and blind subjects (Brindley 1972; Brindley and Lewin 1968a;
Dobelle and Mladejovsky 1974; Dobelle et al. 1974; Lee et al. 2000; Maynard
2001; Schmidt et al. 1996). The brain’s visual system is retinotopically orga-
nized, which means that the neurons respond selectively to a limited region of
the visual field (their receptive field). These regions are predictably organized
to represent the visual world. Therefore, a consistent pattern of phosphenes
can be evoked by stimulating several electrodes simultaneously (X. Chen et al.,
2020; Wm H. Dobelle et al., 1976). Phosphene patterns created in real-time from
a camera feed can help late blind individuals recover some of the visual func-
tions or abilities that were lost or severely impaired after becoming blind. While
theoretically sound, there are several practical challenges that need to be solved
before visual prostheses can reach their full clinical potential.

One important issue researchers have to deal with, is the trade-off between
implant functionality and invasiveness. In the 70s, Dobelle et al. (1974) were the
first to connect a camera system to a set of surface electrodes on the medial side
of the occipital lobe. Amazingly, they showed that a blind volunteer could read
phosphene ‘braille’ at a much faster rate compared to tactile braille (Dobelle et
al. 1976). The surface electrodes (subdural) used by Dobelle, however, could not
yield the number of phosphenes, nor the contiguous distribution required for
more advanced functional phosphene vision like navigation or face recognition
(Ruyter van Steveninck et al., in prep). Compared to state-of-the-art electrodes,
Dobelle’s were large and far away from target neurons, resulting in activation
of extensive volumes of brain tissue and therefore producing a limited spatial
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phosphene resolution. In addition, the limitations of Dobelle’s setup are inher-
ent in later reports of system failures, infections and seizures (Naumann, 2012).
If visual prostheses are to benefit blind patients in everyday life activities, the
acquired functionality should outweigh the possible hazards of such an inva-
sive device. Intracortical electrodes offer several advantages compared to sur-
face electrodes. For one, the current required for phosphene generation is two
orders of magnitude lower because the stimulation electrodes are much closer
to the target neurons (Schmidt et al., 1996). Higher currents can lead to safety is-
sues (e.g., seizures) and generate larger phosphenes, therefore requiring larger
interspacing when attempting to create phosphene patterns by simultaneously
stimulating multiple nearby electrodes. In addition to a higher spatial resolu-
tion along the cortical surface, intracortical electrodes can also reach neurons in
areas that are contained within folded sulci, practically unreachable by surface
electrodes. In spite of this, the amount of tissue disturbed (invasiveness) might
become an issue when targeting higher eccentricities within V1, located deep
inside the calcarine fissure (Wandell et al., 2007).

The next challenge is related to resolution and complexity of phosphene
patterns required for functional phosphene vision, which will determine the
number and distribution of electrodes necessary for a functional prosthesis.
With an increasing number of electrodes, the phosphene patterns can become
increasingly complex. Recent developments in image processing techniques,
allow the most relevant features of a scene to be intelligently converted into op-
timal phosphene patterns so that useful visual information is efficiently com-
municated. In theory, this allows crucial every-day life activities such as accu-
rate emotion expression recognition (Bollen et al. 2019), navigation (Wang et
al. 2008; Perez-Yus et al. 2017; Vergnieux et al. 2017), object recognition (Lu
et al. 2014; Macé et al. 2015; Xia et al. 2015; Li et al. 2018; Sanchez-Garcia et
al. 2018) and even motion detection (Perez-Yus et al. 2017; Chen et al. 2020) to
be reestablished after vision has been lost. For example, an end-to-end convo-
lutional neural network (CNN) was recently developed to optimize prosthetic
vision in a navigation task (Ruyter van Steveninck et al., in prep). Furthermore,
Lozano et al. (2020) developed and implemented Neurolight, a coherent frame-
work for a deep learning-based neural interface for cortical visual prostheses,
able to integrate state-of-the-art deep learning visual processing algorithms and
computational neural models of artificial retinas.

Despite these developments, most current phosphene simulator studies as-
sumed high density, uniformly spaced, full field phosphene maps (Avraham
et al., 2021; Bollen et al., 2019; S. C. Chen et al., 2009; Sanchez-Garcia et al.,
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2020; Steveninck et al., 2020; J. Wang et al., 2021). The density and location in
which individual phosphenes can be evoked in visual space by a prosthesis is
described by a so called “phosphene map” (PM), see figure 3.2.1D. The per-
ceptual features of a single phosphene are related to the stimulation parame-
ters, the design of the electrode and the characteristics of the underlying tissue.
State-of-the-art prostheses, however, only cover a small portion of the visual
field (Niketeghad and Pouratian 2019; Fernandez Jover et al. in preparation).
Prospective users of a visual prosthesis likely require different spatial configu-
rations of visual percepts (i.e. phosphene maps) for specific daily life activities.
For example, a dense foveal coverage would be crucial during reading, or for
recognizing an object in front of you, while peripheral vision is important for
context awareness during navigation. Importantly, these idealized phosphene
configurations are unlikely to match reality. Recently, Fernandez Jover et al.
(in preparation) introduced a 96-channel cortical prosthesis (Utah-array) in a
human subject, proving a safe and reliable interface for a period of 6 months.
However, the 88 phosphenes evoked only covered up to 4 visual degrees eccen-
tricity of the lower left part of the visual field. This phosphene pattern is still
fundamentally different from typically simulated phosphene vision. In order
to study the functional properties of phosphene vision in a realistic configura-
tion, a simulation of stimulation-evoked phosphene sizes and locations based
on individual anatomy is required to obtain phosphene configurations closer to
idealized maps used in functional phosphene simulation studies.

Finally, scientists and neurosurgeons face practical limitations in surgical
electrode placement, phosphene fusion due to insufficiently local stimulation
(current spread), and unwanted axonal stimulation creating activation in distal
sites. An ideal phosphene coverage throughout the visual field would likely
require many stimulation sites in a brain structure that encodes the entire vi-
sual field. Candidate structures are the retina, lateral geniculate nucleus (LGN)
and cortical areas V1 to higher order regions like hMT. Targeting multiple sites
across distant areas will not always be feasible due to surgical limitations. Reti-
nal electrostimulation, while less invasive compared to a (sub) cortical implant,
has a narrow stimulating current range between retinal neuron excitation and
inhibition which may lead to inferior performances of visual prostheses due
to interference between stimulating electrode sites (Barriga-Rivera et al., 2017).
LGN is a small thalamic structure deep in the brain and would require long
electrode shanks with a high number of extremely densely placed electrodes at
the tip. In addition, a study suggested that when two electrodes are too closely
spaced in area V1, evoked phosphenes will likely merge (Schiller et al., 2011).
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Similarly, the spatial resolution of a phosphene pattern evoked with LGN stim-
ulation might be limited while the amount of affected tissue is large. An inter-
esting candidate for a visual prosthesis is primary visual cortex (V1), the first
cortical region in the visual processing stream. Importantly, the functional or-
ganization of basic visual features such as columnar orientation selectivity and
color selectivity, is well established. When targeting a specific region of the vi-
sual field, V1 allows more lenient hardware constraints in terms of electrode
spacing, since it has the largest cortical surface area. In contrast to higher vi-
sual areas, future technical advancements might allow for stimulation of single
orientation or color columns, leading to percepts beyond simple white dots of
light. In addition, providing artificial stimulation in a lower part of the visual
hierarchy might allow higher level areas to continue to perform complex vi-
sual processes, such as movement (Salzman et al., 1990), and face perception
(Mundel et al., 2003).

As a foundation for a visual prosthesis in humans, Chen et al. (2020)
proved the feasibility of a 1024 channel count cortical prosthesis in non-human
primates, contributing to the design of a human implant. Compared to other
primates, human cortex has a lot more gyrification and great individual differ-
ences in surface area between visual cortices (Benson et al., 2021). The func-
tional organization of early visual cortex, however, has shown to be predictable
across individuals as long as the anatomy is known (Rosenke et al. 2021, Ben-
son et al. 2018, Wang et al., 2015). The ability to derive function from anatomy
is especially important in the blind, as conventional (visual) localizers based
on visual input cannot be used. The functional organization of an individual’s
brain, together with the electrode design and placement, will ultimately deter-
mine the phosphene patterns a visual prosthesis can evoke and the extent of
visual function recovery it can establish. Therefore, it is crucial to find suitable
insertion angles and implant locations to assure maximal functional benefits
while minimizing surgical risks. This comprises a difficult challenge without
prior knowledge of individual (functional) anatomy.

Here, we present a pipeline for the exploration and optimization of elec-
trode placement that uses the individual brain anatomy to predict stimulation-
evoked phosphene sizes and locations. Within predetermined practical con-
straints, our pipeline automatically finds the electrode configuration that op-
timally matches a pre-set ‘ideal’ phosphene distribution. Because the pipeline
uses the individual brain anatomy as a starting point, it can be applied in blind
subjects for whom anatomical brain scans are available. The optimal location
and insertion angles of the electrodes for a visual cortical prosthesis are based



62 Chapter 3. Bayesian optimization of a visual cortical prosthesis

on a Bayesian optimization that efficiently minimizes a cost function which con-
siders the electrode yield in grey matter, visual field coverage of the phosphene
distribution, and the relative entropy between the desired phosphene distribu-
tion and the predicted phosphene map. In the implementation we present here,
model parameters were optimized for a thousand-electrode array implanted in
primary visual cortex, but the procedure can easily be used with other elec-
trode designs or extended to other brain areas as well. We test our method on
362 human hemispheres using anatomical and retinotopy data from the Hu-
man Connectome Project 7 Tesla retinotopy dataset (Benson et al., 2018). The
software and example data will be made publicly available via github soon.
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3.2 Methods

3.2.1 Preprocessing of the Human Connectome Project 7T retinotopy
dataset

T1-weighted (T1w) and T2-weighted (T2w) structural scans at 0.7-mm isotropic
resolution were processed using the FreeSurfer image analysis suite (version
7.2; http://surfer.nmr.harvard.edu). Subject brains were inflated and aligned
to FreeSurfer’s anatomical fsaverage atlas. The inferences made in this work are
based on the retinotopic data described by Benson et al., (2018). In brief, MRI
data was acquired using a Siemens 7T Magnetom actively shielded scanner and
a 32-channel receiver coil array with a single channel transmit coil (Nova Med-
ical, Wilmington, MA) at a 1.6mm isotropic resolution and 1s TR (multiband
acceleration 5, in-plane acceleration 2, 85 slices). The population receptive field
(pRF) maps describe the location and the size of the receptive field for each 1mm
isotropic voxel (see Benson et al. (2018) for descriptions of pRF models used).
pRF surface maps based on empirical data in Freesurfer fsaverage space were
warped to individual space using Freesurfer’s mri_surf2surf function. Bayesian
inference of the retinotopic maps was performed using Neuropythy’s regis-
ter_retinotopy command (https://github.com/noahbenson/neuropythy). This
procedure harmonizes the anatomical inference of the pRFs, the Benson 2014 at-
las (Benson et al., 2014) and experimental data (Benssson et al. 2018) comprised
of retinotopic responses to visual stimuli up to 8 degrees eccentricity. Note that
the Benson 2014 atlas predicts maps up to 90 degrees eccentricity, however only
the inner 20 degrees of eccentricity in V1, V2, and V3 have been validated.

3.2.2 Pipeline for optimization of electrode placement

We set out to minimize the difference between a desired phosphene distribution
and the predicted phosphene map inferred after electrode placement by calcu-
lating the loss with a Bayesian search algorithm. An example of the electrode
design (and its simplification) used for the simulations is displayed in figure
3.2.1A. The main input variables of the optimization function were angles al-
pha (pitch) and beta (yaw), which define the trajectory of the virtually inserted
implant. The insertion trajectory was determined by finding the intersection be-
tween the insertion point on the cortical sheet and the centroid of the calcarine
sulcus (CS) at the angles alpha and beta. The centroid, or geometric center,
was calculated using the medians along the three dimensions of the CS vol-
ume. Importantly, the CS is a reliable estimate of the location and total volume
of the human primary visual cortex (Gillesen & Zilles, 1996). To test whether

http://surfer.nmr.harvard.edu
https://github.com/noahbenson/neuropythy
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this statement holds for the HCP dataset, the CS volume was determined by
Freesurfer’s cortical parcellation (Desikan-Killiany Atlas) and compared to the
volume of V1 (comprised of voxels in the cortical ribbon parcellated by the pRF
model), see figure 3.3.1. The range of insertion angles were restricted so that the
insertion trajectory cannot intersect with the other hemisphere and excludes
unfeasible surgical approaches (e.g. anterior - posterior direction).

For many combinations of angles which are antiparallel to the cortical sheet,
a portion of the electrode grid would be placed outside of cortex. In these cases,
the configuration was flagged as invalid, and a cost penalty was assigned in
the optimization procedure. An extra parameter (shank offset) was added to
the optimization function to enable the distance to vary between the insertion
point and the first contact point. To vary cortical depth, the final parameter
shank length was included to the search for optimal electrode coverage, den-
sity and yield. We constrained electrodes to not exceed a cortical depth of 8cm,
as the average width and length of HCP brains are about 17cm and 13cm (Yang
et al., 2020). Furthermore, the search can be biased towards a specific region of
interest. Here, we chose to add a cost penalty when contact points were located
outside of primary visual cortex. By targeting V1, a denser phosphene map
should be feasible as neurons in V1 have a smaller receptive field size com-
pared to higher visual areas (Benson et al., 2021). Moreover, the interactions
between phosphenes created by simultaneously stimulating in different visual
areas are not yet sufficiently understood.
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Figure 3.2.1: Overview of electrode optimization pipeline. A) example electrode-grid
configuration (left) and corresponding simplification of conact points (right). B) The
red grid only serves as a reference and is centered on the center of the left calcarine sul-
cus (black triangles). The implant position (yellow grid) is calculated based on alpha
and beta (relative to the reference grid). For a new set of parameters, the resulting con-
figuration can be either valid (left) or invalid (center) when contact points are located
outside of the brain. In the ‘valid’ example, the first contact point is located 10mm
from the point where the shank penetrates the cortex. C) Each contact point poten-
tially evokes a phosphene in the polar angle plot (left). The individual phosphenes are
modeled as 2-D Gaussians on a n-by-m phosphene map. Color codes for eccentricity. D)
Sorensen dice coefficient is computed by comparing the binarized version (not shown)
of the phosphene map with one of the binarized target phosphene maps. Relative en-
tropy is calculated between the probability distributions of the simulated phosphene
map (left) and the target phosphene map (right). E) The Bayesian search algorithm de-
termines the next set of parameters and the process is repeated until the optimal set of
parameters is found for a specific target phosphene configuration.



66 Chapter 3. Bayesian optimization of a visual cortical prosthesis

For each set of parameters, the electrode-grid is repositioned to match the
trajectory set by the insertion angles. The resulting phosphene map can be cre-
ated based on the coordinates of the electrodes and the matching voxels of the
retinotopic map. Each individual electrode intersecting a voxel in the retino-
topic map yields a phosphene on a 1000-by-1000-pixel image-grid. The spread
of stimulation current is assumed to be relative to voxel size (1mm3). Depend-
ing on electrode spacing it may happen that two electrodes obtain the same
pRF properties when they are located in the same voxel. In our simulations,
we assume that tissue around each contact point will largely remain intact and
phosphenes are modeled as 2-D Gaussian circular spots of light with standard
deviation ranging from 0.2 up to 3 visual degrees, depending on receptive field
size (Tehovnik et al., 2005; Lin Wang et al., 2008). Finally, the process is repeated
for a new set of parameters up to 100 times (separately for each hemisphere),
or when the total loss reached a certain threshold (early stopping). The entire
procedure is guided by the images in figure 3.2.1 and the flowchart diagram in
figure 3.2.2.

3.2.3 Target phosphene maps

The choice of target visual field coverage is a configurable component of our
pipeline. It might be the case that specific visual tasks require targeting of spe-
cific subregions of the visual hemifield. We tested our pipeline on four distinct
target visual field coverages by specifying phosphene maps composed of large
partial 2-D Gaussians: 1) inner target: dense representation starting from the
fovea, covering 0-45° eccentricity. 2) outer target: somewhat dense representa-
tion in the periphery, covering 45-90° eccentricity. 3) upper target: dense repre-
sentation around the fovea, covering 0-90° eccentricity and 0-45° polar angle of
the upper visual field. 4) lower target: dense representation around the fovea,
covering 0-90° eccentricity and 135-180 ° polar angle of the lower visual field
(see figure 3.2.1D and figure 3.3.8 for reference).

3.2.4 Bayesian optimization

Bayesian optimization has become an attractive method to optimize expensive
to evaluate black box, derivative-free and possibly noisy functions (Shahriari
et al. 2016). The algorithm is executed in an iterative fashion and evaluates a
probabilistic model for which a cheap probability function f based on the pos-
terior distribution is optimized before sampling the next point. The function
objective is considered as a random function (a stochastic process) on which a
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prior is placed. In our case, the prior is defined by a Gaussian process captur-
ing our beliefs about the function behavior. Function evaluations are treated
as data and used to update the prior to form the posterior distribution over
the objective function. The convergence of the optimization algorithm was ac-
celerated by setting an initial sampling point for which it was known that the
resulting grid would hit some portion of V1. We chose to position the center of
the electrode grid at the centroid of the calcarine sulcus with initial parameters
0° alpha, 0° beta and 20mm shank length and 25mm shank offset. However, the
model can also be run without prior knowledge of the objective function.

Initial parameters

Fit Gaussian 
process 

surrogate model

Optimize 
acquisition 

function

Random init?

Return parameters

Evaluate expensive 
objective function

Build electrode grid

Determine insertion trajectory

Insert grid and extract pRFs

Create Phosphene Map (PM)

Compare PM with target PM

Grid in GM 
and 

inside V1?

n random
initialization 

points 

Update 
parameters

YesNo

Add cost penalty

Yes

No

𝑥𝑡+1 = arg𝑚𝑎𝑥𝑓(𝑥) 

Figure 3.2.2: flowchart diagram Bayesian optimization pipeline. This diagram pro-
vides a detailed overview of the electrode placement pipeline. Rectangular boxes indi-
cate processing steps and diamond shapes indicate model decisions.
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3.2.5 Loss functions

Three loss functions (and their linearly weighted combinations) were proposed
to minimize the difference between a desired phosphene map and the phosphene
map derived from pRF parameters corresponding to 1000 electrode locations
in the brain. For combinations of loss, their values were first normalized and
then linearly combined. We chose to weigh the contribution of loss functions
equally, however depending on the desired outcome, weights can either be set
by the electrode designer, or optimized as an additional hyperparameter. Next,
we will explain the loss functions used and their meaning in the context of the
optimization goals.

3.2.6 Sørensen–Dice coefficient (dice)

The dice coefficient can be seen as a measure of overlap between two sets. It was
computed on two discretized sets of data X and Y, where X is the binarized tar-
get phosphene map and Y is the binarized version of the predicted phosphene
map. Each map’s pixels are set to 1 if they contain phosphene activation and
0 if they do not. |X| and |Y| represent the number of elements in each set.
The Sørensen index equals twice the number of elements common to both sets
divided by the sum of the number of elements in each set. Dice is included to
obtain phosphene maps that are localized in the desired visual region.

DC = 2|X∩Y|
|X|+|Y|

(3.1)

3.2.7 Yield

The ratio between the total number of electrode contact points and voxels within
grey matter in which a contact point is placed and for which retinotopic data is
available.

Y = number of hits
number of contact points

(3.2)
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The meaning of the yield loss its straightforward: we will reward solutions
where the maximum number of electrodes can evoke a phosphene, thus allow-
ing the implant to achieve a high phosphene count. Contact points outside of
the targeted region were penalized.

3.2.8 Kullback–Leibler divergence (KL or relative entropy)

KL describes the difference between two probability distributions over the same
variable x. The Kullback–Leibler divergence, (also called relative entropy), is a
measure of how one probability distribution is different from a second, refer-
ence probability distribution. The KL loss term will reward parameter sets for
which the virtually implanted electrodes yield a phosphene map with the de-
sired density distributions, and penalize density distributions that diverge from
our target map. This is important, since phosphene density is likely to be a key
element for pattern recognition.

DKL(P ∨ Q) = ∑x∈X P(x) log
(

P(x)
Q(x)

)
(3.3)

3.2.9 Equality metric (EM)

The relative importance of loss functions can be set by weighing them accord-
ingly. However, often the relationship between loss functions and their influ-
ence on the optimization process is difficult to understand. For a better under-
standing of the relative contribution of each loss function to the total cost, a
measure of equality can be computed which summarizes the distance of each
loss function’s contribution to its fair share. EM is the mean standard deviation
from the equal contribution, and can be calculated as follows:

EM =
√

∑(X−a)2

n

(3.4)

Where X is the relative contribution (percentage) of all loss functions to the
sum of loss, n is the total number of loss functions, and a is the equal contribu-
tion (1 / n / 100) to the sum of loss. Loss functions contribute equally to total
loss when EM is zero.
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3.2.10 pRF polar density estimation

A non-parametric kernel-density estimation (KDE) was performed on the group
average PMs to estimate probability density functions (PDFs). The group av-
erage PMs were created by summing simulated phosphenes of the optimized
electrode locations in all subjects. PMs were created separately for each re-
gion of interest (GM, V1, V2, V3) before KDE was computed using SciPy 1.0
(Virtanen et al., 2020). For visualization purposes, a less convoluted overview
of phosphene density is achieved by coloring the pRF locations of their cor-
responding phosphenes in the polar plots in figure 3.3.7, based on the PDF.
Density was scaled by the number of samples to allow for a fair comparison
between regions of interest.

3.2.11 Group average electrode configuration

Up to this point, we assumed that individual differences in anatomy necessitate
an individual approach, i.e. determine the best electrode configuration for each
person individually. However, perhaps an electrode configuration based on the
average brain would suffice. To test this hypothesis, we applied the electrode
optimization pipeline to the fsaverage brain and the group average retinotopy.
Phosphene maps obtained with the ‘average’ parameter estimates and ‘individ-
ual’ parameter estimates were compared to establish the potential benefit of the
individual optimization approach (see figure 3.3.9).
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3.3 Results

Optimal electrode placement was determined in both hemispheres of 181 sub-
jects from the HCP 7T dataset to obtain stimulation-evoked phosphene sizes
and locations based on individual brain structure and match the desired phosphene
distributions as closely as possible. First, we justify why the CS is a reliable
landmark (and thus a good starting point) for optimizing electrode placement
in V1 (Fig. 3.2.1). Next, the results of the optimization pipeline are illustrated
using data from an example subject (Fig. 3.3.2 and 3.3.3). Then, an overview
of the optimal parameters across subjects and their corresponding phosphene
locations is presented (Fig. 3.3.4 to 3.3.7). Finally, we assess phosphene distribu-
tions when the electrode configuration is optimized in each individual versus a
more general approach where the electrode configuration is based on the opti-
mal solution for the group average brain (fsaverage), see figures 3.3.8 and 3.3.9.

3.3.1 Calcarine sulcus volume is a reliable estimate for primary visual
cortex volume

The centroid of the CS was chosen as the reference and start location (where
alpha and beta angles are zero) for the Bayesian search. We tested whether the
size of the CS correlates with the size of V1 and found that Pearson correlation
in 181 individuals was nearly perfect for the left hemisphere (r = 0.95) and very
high for the right hemisphere (r = 0.87).

Figure 3.3.1: volume comparison between CS and V1 for the left (left) and right
(right) hemisphere.
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3.3.2 Bayesian optimization for an example subject

Here, the optimization pipeline is further illustrated using an example subject.
Figure 3.3.2A demonstrates the influence of each search-space dimension on
the objective function. In figure 3.3.2B, the order in which the hyperparameter
space was sampled (indicated by color) is shown when optimizing electrode
placement in the left hemisphere for a PM with a high phosphene density in the
foveal region. The process was repeated for 100 iterations.

A) B)

Figure 3.3.2: the Bayesian optimization process in an example subject. A) The influ-
ence of each search-space dimension on the objective function. The diagonal shows the
effect of a single dimension on the objective function, while the plots below the diag-
onal show the effect on the objective function when varying two dimensions. The red
stars indicate the best observed minimum. B) Each point’s color indicates the order in
which samples were evaluated (blue to yellow), and a red star shows the location of
the best-found parameters. On the diagonal the frequency distributions of samples for
each search-space dimension are shown. The optimal loss for this particular subject
was 0.412 for dice, 0.334 for yield and 0.005 for KL. This corresponds to 58,8% overlap
between best and target PM (dice), and 66,7% of the electrodes being located inside the
cortical ribbon (yield).
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3.3.3 Optimization results per combination of loss function

The optimization process was repeated for all possible combinations of loss
functions. In figure 3.3.4A an overview of model loss per combination of loss
function on the group level is displayed. Individual PMs for each combina-
tion of loss were compared with the target PMs. Optimization performance is
assumed to be high when loss is low for dice, yield and KL, and when a low
score on one metric does not go at the cost of another (indicated by the equality
metric (EM) on top of each bar). KL was relatively well optimized in the inner
target compared to the other target PMs. Average loss was smaller for the inner
target across loss functions [stats], compared to the outer target. Overall, the
combination of dice, yield and KL resulted in the lowest loss scores.
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A)

B)

Figure 3.3.4: phosphene map loss comparison. A) Loss between optimized PMs and
target PMs per combination of loss functions were averaged across subjects. On top of
each bar the equality metric indicates the relative contribution of loss functions to the
total loss. B) Average loss for combinations dice-yield and dice-yield-KL. When only
optimizing for dice and yield, KL is sacrificed at the cost of yield (for lower, outer and
upper target PM).
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3.3.4 Cost and parameter distributions across subjects when equally
weighting loss functions

A summary of the best selected (optimal) models per subject is plotted in figure
3.3.5 and 3.3.6. The histograms show the distributions for loss (A) and the best
parameters (B) across subjects. Group-average coverage for the 181 subjects
(dice) of the target regions was 57.4% (± 1.4% SE). On average 48.5% (± 0.1 SE) of
the electrode locations were located inside grey matter (yield). Relative entropy
was on average 0.17 (± 0.1 SE) and varied greatly between target regions.

Mean alpha was 3.91, 7.25, -8.51 and 16.57 for the inner, outer, upper and
lower targets respectively in the left hemisphere and -8.88, 7.71, -14.34 and 12.13
in the right hemisphere. Similarly, mean beta was -4.62, -7.10, -8.32, -8.58 in LH
and 8.48, 3.72, 4.05, 5.56 in RH. Mean shank offset was 27.62, 18.73, 28.97, 30.70
in LH and 33.31, 19.03, 33.85, 25.33 in RH. Finally, mean shank length was 16.75,
22.71, 18.55, 12.98 in LH, and 13.80, 19.86, 14.61, 16.43 in RH. Based on the orga-
nization of the visual cortex, we would expect a sign inversion for alpha angles
when optimizing either for the lower or upper visual field. Similarly, beta an-
gles are expected to be reversed for left and right hemisphere. These reversals
can be seen in figure 3.3.3B. Moreover, phosphene coverage in higher eccentric-
ities within V1 should require higher cortical depth, which can be seen when
comparing the offset from GM-CSF between the inner and outer PM targets.
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3.3.5 pRF density distributions

An alternative way to illustrate between-subject variability is to evaluate group
average probability density functions of phosphenes across the visual field. In
figure 3.3.7, the PDFs are shown per target phosphene map across the regions
of interest. For the inner and outer target most phosphenes were located in the
upper quadrant of the visual field, perhaps due to the initial position of the
Bayesian search. Phosphenes obtained for the upper and lower target maps
were mostly located in the expected visual quadrants, however relatively many
phosphenes were positioned in V2 and V3. This indicates that for these tar-
get regions, frequently no solution could be found where all 1000 electrodes are
contained by the V1 label. Note that variability of the individual distributions is
not well reflected in the group-average. Importantly, the individual PMs (exam-
ple shown in figure 3.3.3) were highly variable and non-uniformly distributed,
even for similar overlap, number of phosphenes and relative entropy.
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3.3.6 Group average estimation versus individual configuration esti-
mation

A less computationally expensive way to design an electrode grid would be to
take the ideal electrode configuration for the average brain and virtually im-
plant this electrode grid in all individuals. In figure 3.3.9 the loss between PMs
resulting from this group average approach and the results from the individual-
ized approach are compared. There was no difference in simulated phosphene
yield, however phosphene coverage (dice) and relative entropy (KL) was sig-
nificantly better for the approach where the electrode configuration parameters
were optimized for each individual.

Figure 3.3.9: loss comparison between fsaverage-based and individually optimized
electrode configurations. Each half of the violin plots shows the loss of dice (top
graph), yield (center graph) and KL (bottom graph) for all individuals per right (RH)
or left (LH) hemisphere. Each dot on top of the violins represents the loss for a single
individual. Configurations based on individually optimized parameters result in sig-
nificantly higher phosphene coverage (dice) and more accurate density distributions
(KL).
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3.4 Discussion

A visual prosthesis that interfaces directly with the brain may one day become
a conventional clinical treatment for blindness when other treatments are not
available. However, until that time comes, several (technical) challenges need
to be overcome. Firstly, a prosthetic implant involves an invasive surgical proce-
dure and therefore the potential benefits of having a prosthesis should outweigh
the possible risks of getting one. Secondly, how can visual information be opti-
mally transferred in phosphene patterns? Prostheses equipped with more elec-
trodes allow for more complex phosphene patterns while modern image pro-
cessing and deep learning techniques can convert camera feeds into efficient
functional phosphene vision. However, these techniques are currently devel-
oped under the assumption of biologically unrealistic phosphene map configu-
rations. Lastly, anatomical structures vary between individuals, which makes it
even more difficult for scientists and clinicians to design the optimal electrode
configuration for a cortical implant.

The approach we present here can partly solve these issues by simulating
stimulation-evoked phosphene sizes and locations based on individual anatomy
and optimize electrode configuration and placement to obtain phosphene pat-
terns closer to idealized layouts. We found that the simulated phosphene distri-
bution matches a desired map of phosphenes more closely when optimized for
a specific individual’s anatomical and functional retinotopic organization, com-
pared to group-averaged data. When the electrodes are optimally placed in the
desired cortical area, a prosthesis is more likely to yield functional phosphene
vision for the blind patient. Furthermore, our simulation and optimization
pipeline can provide realistic phosphene map predictions for any given set of
electrode configuration constraints. The range of electrode configuration pa-
rameters can be chosen depending on surgical limitations or physical electrode
constraints. As a result, phosphene simulator studies can make use of the more
realistic phosphene maps to study behavioral performance on specific tasks in-
volving phosphene vision. The knowledge from these studies will in turn lead
to better assumptions of what type of phosphene map a prosthesis should ide-
ally try to establish.

In particular, we provide an extensive overview of optimal realistically con-
strained electrode insertion trajectories, end-positions and their corresponding
PMs based on a 1000-channel electrode grid in a large sample of sighted individ-
uals. These findings could be used as a reference for designing safer and more
efficient visual prostheses. On the individual level, we found that phosphene
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maps rarely have evenly spaced distributions like in the fsaverage brain (see
figure 3.3.3B and figure 3.3.8). The fsaverage phosphene distributions are likely
more evenly spaced because the pRF data is smoothed due to averaging. The
obtained loss distributions in figure 7A show that between-subject variability is
high and average coverage of the target regions is 57%. A full target coverage
can likely be achieved more closely by inserting multiple (smaller) electrode
grids. However, new challenges arise as intersection of insertion angles of mul-
tiple grids may be problematic. Our approach serves as a proof of principle
and can be extended with more sophisticated multi-grid trajectory planning
that would take these constraints into account. Furthermore, about half of the
electrodes in our simulations were located inside grey matter with most of the
remaining electrodes likely located in white matter. Here, we assumed that
white matter stimulation could not be used, but further research is required to
understand and simulate phosphenes evoked by white matter stimulation.

The main goal of our work here is not to define the best loss function -this
can easily be customized by the implant designer- but to provide a flexible im-
plant optimization framework. Nonetheless, we implemented and described
specific combination sets of loss functions and describe model performance on
generating optimal phosphene maps. We found that PMs varied greatly de-
pending on the chosen loss terms. For example, when only optimizing for
phosphene coverage and number of phosphenes, relative entropy is sacrificed
at the cost of the number of phosphenes (Fig. 3.3.4B). In general, optimization
results were more successful for the foveal (inner) target region, compared to
the more peripheral (outer) target region. This makes sense, considering it takes
a longer shank to reach locations along the calcarine with higher eccentricities,
which increases the electrode spacing along the shank. In the same context, a
relatively large area is dedicated to lower eccentricities because of cortical mag-
nification. An alternative to cover more of the periphery is to target V2 or V3
sites with additional electrodes, since spatial representation is preserved and
repeated multiple times across the visual cortex (Wandell et al., 2007). This
alternative should be approached with care, as phosphene vision could be com-
plicated by the increase in RF size in these regions compared to V1, and simulta-
neous stimulation across multiple areas potentially leads to conflicting signals.

Some limitations should be considered when using our optimization ap-
proach. The results presented here are based on evenly spaced electrode grids
and show that corresponding phosphene maps are often non-uniform. Con-
tiguous phosphene configurations would require custom-built electrode con-
figurations. These custom configurations, however, can also be evaluated or
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positioned with minimal changes to the framework. The accuracy of the sim-
ulations furthermore depends on the quality and the spatial resolution of the
population receptive field mapping. A possible improvement could be to ac-
quire pRF data at a higher resolution, or resample the pRF maps to a submil-
limeter resolution for more fine-grained PMs and to allow for more accurate
submillimeter electrode spacing. In blind persons it is highly recommended to
obtain the individual anatomy using an MRI scan whenever possible. Retino-
topy can then be estimated based on anatomy and group-average (probabilis-
tic) pRF maps. Our results showed that ‘individual’ parameter estimates are
preferred, yet an average-based approach might be sufficient. Finally, the simu-
lations do currently not take intracranial vasculature into account. The implant
insertion trajectory can be determined not only based on the location of the de-
sired cortical area, but also set to avoid larger arteries and veins. Hence, surgical
risks can further be reduced and emphasizing the need for structural scans of
individual patients.

In conclusion, the challenging task of electrode geometry design and sur-
gical planning for prosthetic implantation can be aided using our simulation of
optimization pipeline, which assists researchers, clinicians and neurosurgeons
in finding suitable insertion angles and implant locations to assure maximal
functional benefits while minimizing surgical risks. The software will be made
publicly available via github soon.
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Chapter 4

Reconstructing imagined letters
from early visual cortex reveals
tight topographic correspondence
between visual mental imagery
and perception
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Visual mental imagery is the quasi-perceptual experience of “seeing in the
mind’s eye”. While a tight correspondence between imagery and perception in
terms of subjective experience is well established, their correspondence in terms
of neural representations remains insufficiently understood. In the present study,
we exploit the high spatial resolution of functional magnetic resonance imaging
(fMRI) at 7T, the retinotopic organization of early visual cortex, and machine-
learning techniques to investigate whether visual imagery of letter shapes pre-
serves the topographic organization of perceived shapes. Sub-millimeter reso-
lution fMRI images were obtained from early visual cortex in six subjects per-
forming visual imagery of four different letter shapes. Predictions of imagery
voxel activation patterns based on a population receptive field-encoding model
and physical letter stimuli provided first evidence in favor of detailed topo-
graphic organization. Subsequent visual field reconstructions of imagery data
based on the inversion of the encoding model further showed that visual im-
agery preserves the geometric profile of letter shapes. These results open new
avenues for decoding, as we show that a denoising autoencoder can be used to
pretrain a classifier purely based on perceptual data before fine-tuning it on im-
agery data. Finally, we show that the autoencoder can project imagery-related
voxel activations onto their perceptual counterpart allowing for visually recog-
nizable reconstructions even at the single-trial level. The latter may eventually
be utilized for the development of content-based BCI letter-speller systems.
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4.1 Introduction

Visual mental imagery refers to the fascinating phenomenon of quasi-perceptual
experiences in the absence of external stimulation (Thomas 1999). The capacity
to imagine has important cognitive implications and has been linked to work-
ing memory, problem solving, and creativity (Albers et al. 2013; Kozhevnikov et
al. 2013). Yet, the nature of mental representations underlying imagery remains
controversial. It has been argued that visual imagery is pictorial, with an intrin-
sic spatial organization resembling that of physical images (Kosslyn et al. 1997,
2006). Others have claimed that imagery resembles linguistic descriptions, lack-
ing any inherent spatial properties (Pylyshyn 1973, 2003; Brogaard and Gatzia
2017). This debate has become increasingly informed by neuroimaging. For
instance, several functional magnetic resonance imaging (fMRI) studies have
indicated that imagery activates cortical networks that are also activated dur-
ing corresponding perceptual tasks (Kosslyn et al. 1997; Goebel et al. 1998;
Ishai et al. 2000; O’Craven and Kanwisher 2000; Ganis et al. 2004; Mechelli
et al. 2004), lending credence to the notion that imagery resembles perception.
Applying multi-voxel pattern analyses (MVPA), furthermore, enabled the de-
coding of feature-specific imagery content related to orientations (Harrison and
Tong 2009; Albers et al. 2013), motion (Emmerling et al. 2016), objects (Reddy
et al. 2010; Cichy et al. 2012; Lee et al. 2012), shapes (Stokes et al. 2009, 2011),
and scenes (Johnson and Johnson 2014).

The MVPA approach has recently been criticized on the grounds that it
does not rely on an explicit encoding model of low-level visual features, leav-
ing open the possibility that classification may have resulted from confounding
factors such as attention (Naselaris et al. 2015). To overcome this limitation, the
authors developed an encoding model based on Gabor wavelets which they
fit to voxel activations measured in response to perception of artworks. Sub-
sequently, they used the estimated encoding model to identify an imagined
artwork from a set of candidates by comparing voxel activations empirically
observed in response to imagery with those predicted from encoding each can-
didate (Naselaris et al. 2015).
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While this study constitutes a major methodological advancement and largely
defuses the aforementioned confounds, a complex encoding model allows only
for limited inferences regarding the similarity of perception and imagery with
respect to any particular feature. It is, for instance, conceivable that the largest
contributor to image identification stemmed from an unspecific top–down mod-
ulation of salient regions in the imaged artwork with crude retinotopic organi-
zation. That is, activations in response to mental imagery might have been co-
localized to highly salient regions of the image (without otherwise resembling
it) and this might have been sufficient for image identification.

Indeed, results from studies reconstructing the visual field from fMRI data
leveraging the retinotopic organization of early visual cortex give the impres-
sion that the retinotopic organization of mental imagery is rather diffuse. For
instance, while seminal work has been conducted detailing the ability to ob-
tain straightforwardly recognizable reconstructions of perceived physical stim-
uli (Thirion et al. 2006; Miyawaki et al. 2008; Schoenmakers et al. 2013); similar
successes have not been repeated for imagery. Retinotopy-based reconstruc-
tions of imagined shapes have so far merely been co-localized with the region
of the visual field, where they were imagined but bore no visual resemblance to
their geometry (Thirion et al. 2006).

However, unless imagery of an object preserves the object’s geometry, it un-
likely it would preserve any of its more fine-grained features. It is thus pivotal
to empirically establish precise topographic correspondence between imagery
and perception. Utilizing the high spatial resolution offered by 7T fMRI and
the straightforwardly invertible population receptive field model (Dumoulin
and Wandell 2008), we provide new evidence that imagery-based reconstruc-
tions of letter shapes are recognizable and preserve their physical geometry.
This supports the notion of tight topographic correspondence in early visual
cortex. Such correspondence opens new avenues for decoding. Specifically, we
show that using a denoising autoencoder, it is possible to pretrain a classifier, in-
tended to decode imagery content, purely based on easily obtainable perceptual
data. Only fine-tuning of the classifier requires (a small amount of) additional
imagery data. Finally, we show that an autoencoder can project imagery-related
voxel activations onto their perceptual counterpart allowing for recognizable
reconstructions even at a single-trial level. The latter could open new frontiers
for brain–computer interfaces (BCIs).
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4.2 Materials and methods

4.2.1 Participants

Six participants (2 female, age range=(21–49), mean age=30.7) with normal or
corrected-to-normal visual acuity took part in this study. All participants were
experienced in undergoing high-field fMRI experiments, gave written informed
consent, and were paid for participation. All procedures were conducted with
approval from the local Ethical Committee of the Faculty of Psychology and
Neuroscience at Maastricht University.

4.2.2 Stimuli and tasks

Each participant completed three training sessions to practice the controlled
imagery of visual letters prior to a single scanning session which comprised
four experimental (imagery) runs of 11 min and one control (perception) run of
9 min as well as one pRF mapping run of 16 min.

Training session and task

Training sessions lasted ca. 45 min and were scheduled 1 week prior to scan-
ning. Before the first training session, participants filled in the Vividness of
Visual Imagery Questionnaire (VVIQ; Marks, 1973) and the Object–Spatial Im-
agery and Verbal Questionnaire (Blazhenkova and Kozhevnikov 2009). These
questionnaires measure the subjective clearness and vividness of imagined ob-
jects and cognitive styles during mental imagery, respectively. In each training
trial, participants saw one of four white letters (‘H’, ‘T’, ‘S’, or ‘C’) enclosed
in a white square guide box (8° by 8° visual angle) on grey background and a
red fixation dot in the center of the screen (see Fig. 4.2.1). With the onset of
the visual stimulation, participants heard a pattern of three low tones (note C5)
and one high tone (note G5) that lasted 1000 ms. This tone pattern was associ-
ated with the visually presented letter with specific patterns randomly assigned
for each participant. After 3000 ms, the letter started to fade out until it com-
pletely disappeared at 5000 ms after trial onset. The fixation dot then turned
orange and participants were instructed to maintain a vivid image of the pre-
sented letter. After an 18 s imagery period, the fixation dot turned white and
probing started. With an inter-probe-interval of 1500 ms (jittered by±200 ms),
three white probe dots appeared within the guide box. These dots were located
within the letter shape or outside of the letter shape (however, always within
the guide box). Participants were instructed to indicate by button press whether
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a probe was located inside or outside the imagined letter shape (Podgorny and
Shepard 1978). Depending on the response, the fixation dot turned red (incor-
rect) or green (correct) before turning white again as soon as the next probe was
shown. The positions of the probe dots were randomly chosen, such that they
had a minimum distance of 0.16° and a maximum distance of 0.32° of visual an-
gle from the edges of the letter (and the guide box), both for inside and outside
probes. This ensured similar task difficulty across trials. A resting phase of 3000
ms or 6000 ms followed the three probes. At the beginning of a training run, all
four letters were presented for 3000 ms each, alongside the associated tone pat-
tern (reference phase). During one training run, each participant completed 16
pseudo-randomly presented trials. In each training session, participants com-
pleted two training runs during which reference letters were presented in each
trial (described above) and two training runs without visual presentation (i.e.,
the tone pattern was the only cue for a letter). Participants were instructed to
maintain central fixation throughout the entire run. After the training session,
participants verbally reported the imagery strategies they used.

Imagery runs

Imagery runs were similar to the training task with changes to the probing
phase and the timing of the trial phase. After the reference phase in the be-
ginning of each run, there was no visual stimulation other than the fixation dot
and the guide box. Imagery phases started when participants heard the tone
pattern and the fixation dot turned orange. Imagery phases lasted 6 s. Partici-
pants were instructed to imagine the letter associated with the tone pattern as
vividly and accurately as possible. The guide box aided the participant by act-
ing as a reference for the physical dimensions of the letter. The resting phases
that followed each imagery phase lasted 9 s or 12 s. There was no probing phase
in normal trials. In each experimental run, there were 32 normal trials and two
additional catch trials which entailed a probing phase of four probes. There
was no visual feedback for the responses in the probing phase (the fixation dot
remained white). Data from the catch trials were not included in the analyses.
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Reference Phase

Imagery [18s]Letter [5s] Probing [4.5s]

(+ Resting [3s or 6s])

Trial Phase

Fade [2s]

Figure 4.2.1: training task. In the reference phase (top), four letters H, T, ‘S’ ‘C’ were
paired with a tone pattern. In the trial phase (bottom), the tone pattern was played and
the letter shown for 5s (fading out after 3s) followed by an imagery period of 18s, a
probing period of 4.5s, and a resting period of 3s or 6s.
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Perception run

To measure brain activation patterns in visual areas during the perception of
the letters used in the imagery runs, we recorded one perception run during the
scanning session. The four letters were visually presented using the same trial
timing parameters as in the experimental runs. There were neither reference nor
probing phases. Letters were presented for the duration of the imagery phase (6
s) and their shape was filled with a flickering checkerboard pattern (10 Hz). No
tone patterns were played during the perception run. The recorded responses
were also used to train a denoising autoencoder (see below).

pRF mapping

A bar aperture (1.33° wide) revealing a flickering checkerboard pattern (10 Hz)
was presented in four orientations. For each orientation, the bar covered the
entire screen in 12 discrete steps (each step lasting 3 s). Within each orientation,
the sequence of steps (and hence of the locations) was randomized (cf. Senden
et al. 2014). Each orientation was presented six times.

Stimulus presentation

The bar stimulus used for pRF mapping was created using the open source
stimulus presentation tool BrainStim (http://svengijsen.github.io/BrainStim/).
Visual and auditory stimulation in the imagery and perception runs were con-
trolled with PsychoPy (version 1.83.03; Peirce 2007). Visual stimuli were pro-
jected on a frosted screen at the top end of the scanner table by means of an LCD
projector (Panasonic, No PT- EZ57OEL; Newark, NJ, USA). Auditory stimula-
tion was presented using MR-compatible insert earphones (Sensimetrics, Model
S14; Malden, MA, USA). Responses to the probes were recorded with MR-
compatible button boxes (Current Designs, 8-button response device, HHSC-
2×4-C; Philadelphia, USA).

Magnetic resonance imaging

We recorded anatomical and functional images with a Siemens Magnetom 7
T scanner (Siemens; Erlangen, Germany) and a 32-channel head-coil (Nova
Medical Inc.; Wilmington, MA, USA). Prior to functional scans, we used a T1-
weighted magnetization prepared rapid acquisition gradient echo (Marques et
al. 2010) sequence [240 sagittal slices, matrix=320 320, voxel size=0.7 by 0.7
by 0.7 mm3, first inversion time TI1=900 ms, second inversion time TI2=2750
ms, echo time (TE)=2.46 ms, repetition time (TR)=5000 ms, first nominal flip
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angle=5°, and second nominal flip angle=3°] to acquire anatomical data. For
all functional runs, we acquired high-resolution gradient echo (T2* weighted)
echo-planar imaging (Moeller et al. 2010) data (TE=26 ms, TR=3000 ms, general-
ized auto-calibrating partially parallel acquisitions (GRAPPA) factor=3, multi-
band factor=2, nominal flip angle=55°, number of slices=82, matrix=186 by 186,
and voxel size=0.8 by 0.8 by 0.8 mm3). The field-of-view covered occipital,
parietal, and temporal areas. In addition, before the first functional scan, we
recorded five functional volumes with opposed phase encoding directions to
correct for EPI distortions that occur at higher field strengths (Andersson et al.
2003).

Processing of (f)MRI data

We analyzed anatomical and functional images using BrainVoyager 20 (version
20.0; Brain Innovation; Maastricht, The Netherlands) and custom code in MAT-
LAB (version 2017a; The Mathworks Inc.; Natick, MA, USA). We interpolated
anatomical images to a nominal resolution of 0.8 mm isotropic to match the res-
olution of functional images. In the anatomical images, the grey/white matter
boundary was detected and segmented using the advanced automatic segmen-
tation tools of BrainVoyager 20 which are optimized for high-field MRI data. A
region-growing approach analyzed local intensity histograms, corrected topo-
logical errors of the segmented grey/white matter border, and finally recon-
structed meshes of the cortical surfaces (Kriegeskorte and Goebel 2001; Goebel
et al. 2006). The functional images were corrected for motion artefacts using
the 3D rigid body motion correction algorithm implemented in BrainVoyager
20 and all functional runs were aligned to the first volume of the first func-
tional run. We corrected EPI distortions using the COPE (“Correction based on
Opposite Phase Encoding”) plugin of BrainVoyager that implements a method
similar to that described in Andersson, Skare, and Ashburner (Andersson et al.
2003) and the ‘topup’ tool implemented in FSL (Smith et al. 2004). The pairs of
reversed phase encoding images recorded in the beginning of the scanning ses-
sion were used to estimate the susceptibility-induced off-resonance field and
correct the distortions in the remaining functional runs. After this correction,
functional data were high-pass filtered using a general linear model (GLM)
Fourier basis set of three cycles sine/cosine, respectively. This filtering included
a linear trend removal. Finally, functional runs were co-registered and aligned
to the anatomical scan using an affine transformation (9 parameters) and z-
normalized to eliminate signal offsets and inter-run variance.
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pRF mapping and region-of-interest definition

For each subject, we fit location and size parameters of an isotropic Gaussian
population receptive field model (Dumoulin and Wandell 2008) by perform-
ing a grid search. In terms of pRF location, the visual field was split into a
circular grid of 100 by 100 points, whose density decays exponentially with
eccentricity. Receptive field size exhibits a linear relationship with eccentric-
ity with the exact slope depending on the visual area (Freeman and Simoncelli
2011). For this reason, we explored slopes in the range from 0.1 to 1 (step=0.1),
as this effectively allows for exploration of a greater range of receptive field
sizes (10 for each unique eccentricity value). We used the pRF mapping tool
from the publicly available Computational Neuroimaging Toolbox (https://
github.com/MSenden/CNI_toolbox). Polar angle maps resulting from pRF fit-
ting were projected onto inflated cortical surface reconstructions and used to de-
fine regions-of-interest (ROIs) for bilateral visual areas V1, V2, and V3. The re-
sulting surface patches from the left and right hemisphere were projected back
into volume space (from 1 mm to +3 mm from the segmented grey/white mat-
ter boundary). Volume ROIs were then defined for V1, V2, V3, and a combined
ROI (V1V2V3).

Voxel patterns

All our analyses and reconstructions are based on letter-specific spatial activa-
tion profiles of voxel co-activations; i.e., voxel patterns. Voxel patterns within
each ROI were obtained for both perceptual and imagery runs. First, for each
run, single-trial letter-specific voxel patterns were obtained by averaging BOLD
activations in the range from +2 until +3 volumes following trial onset and z-
normalizing the result. This lead to a total of eight (one per trial) perceptual and
32 (four runs with 8 trials each) imagery voxel patterns per letter. We, further-
more, computed perceptual and imagery average voxel patterns per letter by
averaging over all single-trial patterns (and runs in case of imagery) of a letter
and z-normalizing the result. Imagery average voxel patterns were used in an
encoding analysis and for assessment of reconstruction quality, while percep-
tual average patterns were used for training a denoising autoencoder (Vincent
et al. 2008).

Encoding analysis

To test the hypothesis that spatial activation profiles of visual mental imagery
are geometry-preserving, we tested whether voxel activations predicted from

https://github.com/MSenden/CNI_toolbox
https://github.com/MSenden/CNI_toolbox
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the encoding model (one isotropic Gaussian per voxel) and a physical (binary)
stimulus corresponding to the imagined letter provides a significantly better fit
with measured voxel activations than predictions from the remaining binary
letter stimuli. Specifically, for each participant and ROI, we predicted voxel
activations for each of the four letters based on pRF estimates and physical letter
stimuli.

Autoencoder

We trained an autoencoder with a single hidden layer k = ⌊0.1 · Nvoxels ⌋ to re-
produce average perceptual voxel patterns from noise-corrupted versions per
subject and ROI. Since the values of voxel patterns follow a Gaussian distribu-
tion with a mean of zero and unit standard deviation, we opted for zero-mean
additive Gaussian noise with a standard deviation σ = 12 for input corruption.
Note that the exact value of σ is not important as long as it sufficiently corrupts
the data. We achieved similar results with values in the range [8,14]. The hid-
den layer consisted of units with rectified linear activation functions. Output
units activated linearly. Encoding weights (from input to hidden layer) and de-
coding weights (from hidden to output layer) were shared. Taken together, the
input, hidden, and output layers were, respectively, given by:

yc = y + ϵ, with ϵ ∼ N(0, σ)

h = ϕ (Weyc + be) , with ϕ(x) =
1

1 + e−x

yr = Wdh + bd, with Wd = WT
e

(4.1)

In Eq.4.1, y is a voxel pattern (of length v), yc its noise corruption, and yr its
restoration. We (k-by-v matrix) and Wd (v-by-k matrix) are the tied encoding
and decoding weights, respectively. Finally, be (k-by-1 vector) and bd (v-by-1
vector) are the biases of the hidden and output layers, respectively. We used
mean squared distances to measure loss between the input and its restoration
and implemented the autoencoder in the TensorFlow library (Abadi et al. 2016)
for Python (version 2.7, Python Software Foundation, https://www.python.
org/). The autoencoder was trained using the Adam optimizer (Kingma and Ba
2014) with a learning rate of 1 × 10−5 and a batch size of 100 for 2000 iterations.
In addition to the four average perceptual voxel patterns, we also included an
equal amount of noise-corrupted mean luminance images to additionally force
reconstructions to zero if the input contained no actual signal. No imagery data
were used for training the autoencoder.

https://www.python.org/
https://www.python.org/
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Reconstruction

For each subject and ROI, we reconstructed the visual field from average per-
ceptual and imagery voxel patterns. We obtained weights mapping the cortex
to the visual field by inverting the mapping from visual field to cortex given
by the population receptive fields. Since WpRF, a v-by-p matrix (with v being
the number of voxels and p the number of pixels) mapping a 150-by-150 pixel
visual field to the cortex (i.e., p=22500 pixels; after vectorizing the visual field)
is not invertible, we minimize the error function:

E =
(
y − WpRFx

)T (
y − WpRFx

)
+ D∥x∥2

2

(4.2)

with respect to the input image x (a vector of length p). The vector y is of
length v and reflects a measured voxel pattern. Finally, D is a diagonal matrix of
the outdegree of each pixel in the visual field which provides pixel-specific scal-
ing of the L2 regularization term ∥x∥2

2 and accounts for cortical magnification.
Minimizing Eq.4.2 leads to the expression:

x =
(

WT
pRFWpRF + D

)−1
WT

pRFy
(4.3)

with which we can reconstruct the visual field from voxel patterns. To min-
imize computational cost, we compute the projection matrix

WVF =
(

WT
pRFWpRF + D

)−1
WT

pRF once per ROI and subject rather than per-
forming costly matrix inversion for every reconstruction. Note that both raw
voxel patterns (y) as well as restored voxels patterns (yr) obtained from passing
y through the autoencoder, can be used for image reconstruction. In the former
case, x = WVFy. In the latter case, x = WVFyr = WVF [Wdϕ (Wey + be) + bd].

For each letter, we assessed the quality of its reconstruction by calculating
the correlation between the reconstruction and the corresponding binary let-
ter stimulus. This constitutes a first-level correlation metric. However, since
the four letters bear different visual similarities with each other (e.g., ‘S’ and
‘C’ might resemble each other more closely than either resemble ‘H’), we also
defined a second-level correlation metric. Specifically, we obtained one vector
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of all pairwise correlations between physical letter stimuli and a second vector
of pairwise correlations between corresponding reconstructions and correlated
these two vectors.

Classification

We replaced the output layer of the pretrained autoencoder with a four-unit
(one for each letter) softmax classifier. Weights from the hidden to the classifi-
cation layer as well as the biases of output units were then trained to classify
single-trial imagery voxel patterns using cross entropy as a measure of loss.
Note that pretrained weights from input to hidden layer (We in Eq.4.1) as well
as pretrained hidden unit biases (be in Eq.4.1) remained fixed throughout train-
ing of the classifier. These weights and biases were thus dependent purely on
perceptual data. This procedure is equivalent to performing multinomial logis-
tic regression on previously established hidden layer representations. Imagery
runs were split into training and testing data sets in a leave-one-run-out pro-
cedure, such that the classifier was repeatedly trained on a total of 96 voxel
patterns (8 trials per 4 letters for each of three runs) and tested on the remain-
ing 32 voxel patterns. We again trained the network using the Adam optimizer.
However, in this case, the learning rate was 1 × 10−4, the batch size equal to 96,
and training lasted merely 250 iterations.

Statistical analysis

Statistical analyses were performed using MATLAB (version 2017a; The Math-
works Inc.; Natick, MA, USA). We used a significance level of α = 0.05 (adjusted
for multiple comparisons where appropriate) for all statistical analyses. Behav-
ioral results were analyzed using repeated-measures ANOVA with task (visible
or invisible runs) and time as within-subject factors.

For the encoding analysis, we performed a mixed-model regression for the
average voxel activations of each imagined letter within each ROI with physi-
cal letter as fixed and participant as random factors, respectively. This was fol-
lowed by a contrast analysis. For each imagined letter, the contrast was always
between the corresponding physical stimulus and all remaining physical stim-
uli. For example, when considering voxel activations for the imagined letter
‘H’, a weight of 3 was placed on activations predicted from the physical letter
‘H’ and a weight of 1 was placed on activations predicted from each of the re-
maining three letters. Since we repeated the analysis for each imagined letter
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(4) and single region ROI (3), we performed a total of 12 tests and considered
results significant at a corrected cutoff of αc = 0.05/12 = 0.0042.

To evaluate which factors contribute most to first-level reconstruction qual-
ity, we performed mixed-model regression with the VVIQ and the OSIVQ spa-
tial and OSIVQ object scores, ROI (using dummy coding, V1 = re f erence), letter
(dummy coding, ‘H′ = re f erence), and number of selected voxels (grouped by
ROI). To assess second-level reconstruction quality, we use the same approach
omitting letter as a predictor.

To assess the significance of classification results, we evaluated average
classification accuracy across the four runs against a Null distribution obtained
from 1000 permutations of a leave-one-run-out procedure with randomly scram-
bled labels. We performed this analysis separately for each subject and ROI
and consider accuracy results significant if they exceed the 95th percentile of
the Null distribution. To statistically evaluate which factors contribute most to
classification accuracy, we performed mixed-model regression with the VVIQ
and the OSIVQ spatial and OSIVQ object scores, ROI (using dummy coding,
V1 = re f erence), letter (dummy coding, ‘H′ = re f erence), and number of se-
lected voxels (again grouped by ROI).
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4.3 Results

4.3.1 Behavioral results

VVIQ and OSIVQ scores for each participant are shown in Fig. 4.3.1. The av-
erage score over participants for VVIQ was 4.07 (95% CI [3.71, 4.43]). For the
object, spatial, and verbal sub-scales of OSIVQ, average scores were 2.88 (95%
CI [2.48, 3.27]), 3.08 (95% CI [2.75, 3.41]), and 3.81 (95% CI [3.33, 4.29]), respec-
tively. Participants reported that they tried to maintain the afterimage of the
fading stimulus as a strategy to enforce vivid and accurate letter imagery. Fur-
thermore, participants determined through button presses whether a probe was
located inside or outside the letter shape, while the letter was either visible or
imagined. A repeated-measures ANOVA with task (visible or invisible runs)
and time as within-subject factors revealed a statistically significant effect of
time on probing accuracy

(
F(2,10) = 19.84, p < 0.001

)
and no significant differ-

ence for task
(

F(1,5) = 1.10, p = 0.341
)

(Table 4.1).

Figure 4.3.1: vividness of visual imagery. Vividness of Visual Imagery Questionnaire
(VVIQ) and Object-Spatial Imagery and Verbal Questionnaire (OSIVQ) scores (with the
subscales for “object”, “spatial”, and “verbal” imagery styles) are shown for all partic-
ipants.



102 Chapter 4. Mental imagery reconstruction

4.3.2 Encoding

For each imagined letter (H, T, S, C) in each single-area ROI (V1, V2, V3), we
investigated whether spatial voxel activation profiles can be predicted from a
Prf-encoding model and the corresponding physical stimulus. That is, for each
imagined letter–ROI combination, we ran a mixed-model regression with ob-
served imagery voxel activations (averaged over trials and runs) as outcome
variable, predicted voxel activations for each physical letter stimulus as pre-
dictors and participants as grouping variable. Since we were specifically in-
terested in testing our hypothesis that the retinotopic organization of imagery
voxel activations is sufficiently geometrically specific to distinguish among dif-
ferent imagined letters, we performed contrast analyses between the physical
letter corresponding to the imagery and all the remaining letters (see “Meth-
ods” for details). Contrasts were significant after applying Bonferroni correc-
tion (α = 0.0042) for each of the twelve letter-ROI combinations. In other words,
predictions based on a specific physical letter gave a better account of voxel ac-
tivations observed for the imagery of that specific letter than those based on
every other physical letter, as can be appreciated from Table 4.2. Figure 4.3.2
visualizes these results in the form of boxplots of first-level beta values (i.e.,
distribution over participants per physical letter) in each letter-ROI combina-
tion.

Table 4.1: contrast analysis comparing the physical letter corresponding to the imagery
with all remaining letters. Each of the twelve letter-ROI combinations was significant
after applying Bonferroni correction (αc = 0.0042).

T1 T2 T3

Visible 60.42 (95% CI [48.2, 72.64]) 75.39 (95% CI [66.70, 84.08]) 77.73 (95% CI [69.36, 86.10])
Invisible 62.02 (95% CI [44.57.36, 79.45]) 73.18 (95% CI [65.98, 80.38]) 81.57(95% CI [75.47, 87.67])

Table 4.2: contrast analysis comparing the physical letter corresponding to the imagery
with all remaining letters. Each of the twelve letter-ROI combinations was significant
after applying Bonferroni correction (αc = 0.0042).

H T S C

V1 t(2) = 32.11, p = 0.0004 t(2) = 48.00, p = 0.0002 t(2) = 14.10, p = 0.0025 t(2) = 29.84, p = 0.0006
V2 t(2) = 25.21, p = 0.0008 t(2) = 67.63, p = 0.0001 t(2) = 19.64, p = 0.0013 t(2) = 47.48, p = 0.0002
V3 t(2) = 47.90, p = 0.0006 t(2) = 27.60, p = 0.0007 t(2) = 11.48, p = 0.0038 t(2) = 32.83, p = 0.0005
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Figure 4.3.2: first-level beta distributions. Distribution of first-level beta values (across
participants) for voxel patterns predicted from each physical letter (x-axis) for all com-
binations of ROI (rows) and imagined letters (columns).
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4.3.3 Reconstruction

Raw imagery data

We reconstructed the visual field from average imagery voxel patterns in re-
sponse to each letter (see Figs. 4.3.3, 4.3.4). Mean correlations between recon-
structed imagery and physical letters are presented in Table 4.3 (for comparison,
Table 4.4 shows correlations between reconstructed perception and physical let-
ters). As can be appreciated from these results as well as the figures, first-level
reconstruction quality varies across ROIs as well as across subjects. Differences
between subjects might be due to differences in their ability to imagine shapes
accurately and vividly as measured by the VVIQ and OSIVQ questionnaires.
Differences between ROIs might be due to differences with respect to their
retinotopy (most likely receptive field sizes) or due to different numbers of vox-
els included for analysis of each ROI. Only the former would be a true ROI
effect. We investigate which factors account for observed correlations (trans-
formed to Fisher z-scores for analyses) by performing a mixed-model regres-
sion with questionnaire scores, ROI (using dummy coding, V1=reference), letter
(dummy coding, ‘H’=reference), and number of selected voxels as predictors. A
number of voxels were grouped by ROI. Furthermore, the regression model in-
cluded the VVIQ and the OSIVQ spatial and object scores. However, the VVIQ
score was not included since it correlated highly with the OSIVQ verbal score
(leading to collinearity). To further prevent collinearity, we also only included
single-area ROIs in this analysis and not the combined ROI. A number of vox-
els [t(62) = 2.59, p = 0.012] and the OSIVQ object score [t(62) = 2.64, p = 0.010]
were significant quantitative predictors. Furthermore, letter was a significant
categorical predictor. Specifically, letter ‘T’ [t(62) = 5.58, p0.001] presented with
significantly improved correlation values over the reference letter ‘H’, whereas
letters ‘S’ [t(62) = 3.88, p = 0.0003] and ‘C’ [t(62) = 2.25, p = 0.028] presented
with significantly decreased correlation values with respect to the reference.
Neither the OSIVQ verbal score [t(62) = 0.0278, p = 0.978] nor the ROI were
significant predictors of reconstruction quality.
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Figure 4.3.3: reconstructed visual field images (participants 1-3). Reconstructed aver-
age visual field images are visualized for each ROI of participants one, two, and three.
Reconstructions of the remaining three subjects are shown in figure 4.3.4. Perceptual as
well as imagery voxel patterns were obtained from raw BOLD time-series.
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Figure 4.3.4: reconstructed visual field images (participants 4-6). Reconstructed aver-
age visual field images are visualized for each ROI of participants four, five, and six.
Reconstructions of the remaining three subjects are shown in figure 4.3.3. Perceptual as
well as imagery voxel patterns were obtained from raw BOLD time-series.
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Table 4.3: first order correlations between reconstructed imagined letters and physical
stimuli (averages over participants).

H T S C

V1 0.24 (95% CI [0.09, 0.40]) 0.49 (95% CI [0.38, 0.58]) 0.08 (95% CI [0.03 0.19]) 0.14 (95% CI [0.07, 0.21])
V2 0.21 (95% CI [0.13, 0.30]) 0.46 (95% CI [0.36, 0.55]) 0.10 (95% CI [0.04, 0.17]) 0.12 (95% CI [0.07, 0.18])
V3 0.20 (95% CI [0.10, 0.30]) 0.28 (95% CI [0.14, 0.46]) 0.04 (95% CI [0.03, 0.12]) 0.15 (95% CI [0.01, 0.29])
V1V2V3 0.27 (95% CI [0.16, 0.37]) 0.51 (95% CI [0.45, 0.56]) 0.12 (95% CI [0.02, 0.21]) 0.14 (95% CI [0.08, 0.20])

Table 4.4: first order correlations between reconstructed perceived letters and physical
stimuli (averages over participants).

H T S C

V1 0.40 (95% CI [0.35, 0.44]) 0.65 (95% CI [0.60, 0.69]) 0.27 (95% CI [0.15, 0.38]) 0.32 (95% CI [0.22, 0.40])
V2 0.37 (95% CI [0.31, 0.42]) 0.58 (95% CI [0.50, 0.64]) 0.19 (95% CI [0.09, 0.29]) 0.31 (95% CI [0.23, 0.38])
V3 0.25 (95% CI [0.19, 0.31]) 0.41 (95% CI [0.30, 0.51]) 0.06 (95% CI [-0.06, 0.18]) 0.27 (95% CI [0.25, 0.30])
V1V2V3 0.41 (95% CI [0.36, 0.46]) 0.63 (95% CI [0.56, 0.68]) 0.22 (95% CI [0.12, 0.32]) 0.31 (95% CI [0.24, 0.38])

Next, we examined the second-level correlation metric of reconstruction
quality. Correlations between physical and reconstruction pairwise first-level
correlation vectors were 0.60 (95% CI [0.28, 0.80], p=0.103) for V1, 0.65 (95% CI
[0.34, 0.83], p=0.082) for V2, 0.48 (95% CI [0.15, 0.71], p=0.167) for V3, and 0.64
(95% CI [0.34, 0.83], p=0.084) for V1V2V3, respectively. Finally, we performed a
mixed regression to assess which factors account for the observed correlations
(again transformed to Fisher z-scores). We included OSIVQ verbal, spatial, and
object scores, ROI (dummy coding, V1=reference), and number of selected vox-
els (grouped by ROI) as predictors. The OSIVQ object score [t(11) = 3.26, p =

0.0076] and number of voxels [t(11) = 3.94, p = 0.0023] significantly predicted
second-level correlations, while the spatial [t(11) = 0.71, p = 0.492] and verbal
scores [t(11) = 0.81, p = 0.436] did not. Furthermore, there was significant effect
of ROI, since neither V2 [t(11) = 1.56, p = 0.148] nor V3 [t(11) = 0.40, p = 0.697]
significantly differed from V1.

Processed imagery data

Our results confirm that visual mental imagery preserves perceptual topographic
organization. This can be leveraged to obtain improved reconstructions of men-
tal imagery. Specifically, an autoencoder trained to retrieve perceptual voxel
patterns from their noise-corrupted version can be utilized to enhance imagery
data. Figure 4.3.5 shows how the autoencoder affects first-level reconstruction
quality on a single-trial basis for V1. As shown in the figure, reconstruction
quality was best for ‘T’, followed by ‘H’, ‘C’, and ‘S’. A subject effect is also
clearly apparent with participants three and five generally displaying the best
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results. Finally, imagery reconstruction quality was generally inferior to percep-
tion prior to using the autoencoder. However, using the autoencoder pushed
imagery reconstruction quality towards perception levels. Indeed, the autoen-
coder maps imagery voxel patterns onto the corresponding perception voxel
patterns it has learned previously. This explains two important observations.
First, for some trials, using the autoencoder decreased resemblance to the phys-
ical letter. This is especially apparent for participants four and six, whose recon-
structions were generally not particularly good. Such decrements in reconstruc-
tion quality result from imagery voxel patterns in response to one letter falling
within the attraction domain of another letter (resembling the activation pat-
tern of that letter slightly more) and hence get mapped onto the wrong pattern.
Second, even the few imagery trials, whose reconstructions match the physical
letter better than the perceptual data were mapped onto the perceptual pattern.
A notable example is two trials for the letter ‘S’ by participant two. This implies
that reconstruction quality of the perceptual data used to train the autoencoder
constitutes an upper limit for imagery when using the autoencoder.

As a general effect, the autoencoder maps imagery voxel patterns onto their
perceptual counterpart for most individual trials. Hence, reconstructions of av-
erage imagery voxel patterns as well as of individual trials more strongly resem-
ble the corresponding physical letter. Figure 4.3.6 shows reconstructions from
average imagery voxel patterns after feeding the data through the autoencoder.
Figures 4.3.7 and 4.3.8 show reconstructions of individual trials in a single run
of participants three and five, respectively.

Obviously, these participants are not representative of the population at
large but provide an indication of what is possible for people with a strong
ability to imagine visual shapes. Table 4.4 shows the mean correlation values
across trials of participant three and five when the data of these participants
were fed through the autoencoder and without using the autoencoder.

Table 4.5: effect of the autoencoder on mean correlation values across trials for two
participants

H T S C

P03 autoencoder 0.39 (95% CI [0.32, 0.45]) 0.55 (95% CI [0.46, 0.62]) 0.10 (95% CI [0.04, 0.16]) 0.09 (95% CI [0.06, 0.12])
raw 0.19 (95% CI [0.15, 0.21]) 0.33 (95% CI [0.28, 0.38]) -0.02 (95% CI [-0.06, 0.02]) 0.02 (95% CI [-0.02, 0.06])

P05 autoencoder 0.28 (95% CI [0.20, 0.35]) 0.53 (95% CI [0.43, 0.61]) 0.08 (95% CI [0.00, 0.17]) 0.21 (95% CI [0.12, 0.31])
raw 0.12 (95% CI [0.08, 0.15]) 0.32 (95% CI [0.25, 0.37]) 0.02 (95% CI [-0.01, 0.06]) 0.07 (95% CI [0.03, 0.10])
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Figure 4.3.5: effect of autoencoder on trial-specific reconstruction quality. The radius
of the circles represents reconstruction quality (correlations) with r=1 at the center, r =
0.5 at the inner ring (dash-dot) and r = 0 at the outer ring (solid). Each angle repre-
sents an imagery trial with 32 trials per letter and participant. Participants are color
coded. Solid colored lines reflect reconstruction quality based on average perceptual
voxel patterns of one participant. This constitutes a baseline against which to compare
imagery reconstruction quality. Colored dots reflect imagery reconstruction quality for
each individual trial of a participant. Finally, arrows reflect the displacement of each of
these dots after feeding imagery data through the autoencoder. That is, the tip of the
head reflects the new position of the dot after applying the autoencoder. Most points
were projected onto the perception-level correlation value and hence approached the
center. However, some moved further away from the center.
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Figure 4.3.6: reconstructed imagery. Reconstructed average visual field images of men-
tal imagery are visualized for each ROI of each participant. Imagery voxel patterns
were obtained from cleaned BOLD time-series after feeding raw data through the au-
toencoder.
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Figure 4.3.7: reconstructed visual field images from denoised single trials in a single
run of participant 3. Each run comprised of 8 trials (columns) per letter (rows). Rec-
ognizable reconstructions can be obtained for a number of (though not all) individual
trials.

Figure 4.3.8: reconstructed visual field images from denoised single trials in a single
run of participant 5. Each run comprised of 8 trials (columns) per letter (rows). Rec-
ognizable reconstructions can be obtained for a number of (though not all) individual
trials.
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4.3.4 Classification

Having established support for the hypothesis that activity in early visual cor-
tex in response to imagery exhibits a similar topographical profile as perception,
we proceeded to test whether it is possible to pretrain latent representations for
an imagery classifier using purely perceptual data. The classifier consists of
three layers with the output layer being a softmax classifier stacked onto the
hidden layer of an autoencoder pretrained to denoise perceptual voxel patterns
(see “Methods” for details). We trained the classifier on imagery data using a
leave-one-run-out procedure; that is, we trained the classifier on three of the
four imagery runs and tested classification accuracy on the left-out run. Figure
4.3.9 shows average classification accuracies per subject and ROI (including the
combined ROI ‘V1V2V3’). For five of the six participants, average classification
accuracies exceeded theoretical chance levels (25% correct) as well as the 95th
percentile of 1000 permutation runs (randomly scrambled labels) in all ROIs.
For participant six, theoretical chance levels as well as the 95th percentile were
(barely) exceeded for V2 only.

We performed a mixed-model regression with the OSIVQ object, spatial
and verbal scores, ROI (using dummy coding, V1=reference), and number of
selected voxels (again grouped by ROI) as predictors to assess which factors ac-
count for the observed accuracies. Number of voxels [t(11) = 4.80, p = 0.0006],
the object sub-score of OSIVQ [t(11) = 4.83, p < 0.0005], and the spatial sub-
score of OSIVQ [t(11) = 3.45, p = 0.006] were significant predictors of accuracy,
whereas the verbal sub-score of OSIVQ [t(11) = 0.656, p = 0.525] was not. Fur-
thermore, neither V2 [t(11) = 1.72, p = 0.113]norV3[t(11) = 1.85, p = 0.092]
differed significantly from reference (V1).
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Figure 4.3.9: classification accuracies. Average classification accuracies across four
leave-one-out runs of imagery data are given for four ROIs in each participant. Classi-
fication was performed for letter-specific voxel patterns averaged in the range from +2
until +3 volumes after trial onset. The black dashed line indicates accuracies expected
by chance; grey lines demarcate the 95th percentile of permutation classification accu-
racies.
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4.4 Discussion

The aim of the present study was to investigate whether visual imagery exhibits
sufficient topographic organization to preserve the geometry of internally visu-
alized objects. To that end, we trained participants to maintain a vivid mental
image of four letter shapes. Subsequently, we obtained sub-millimeter resolu-
tion 7T fMRI measurements from early visual cortex, while participants viewed
or imagined the same letter shapes. Finally, we conducted a series of encod-
ing, reconstruction, and decoding analyses to establish the degree of similarity
between imagined and perceived shapes. Our results reveal that an object’s
geometry is preserved during visual mental imagery.

Over training sessions, all participants reached a high probing accuracy for
both imagery and perception trials, showing that they could reliably indicate
the location of the invisible letter shape in visual space. The ability to imag-
ine the borders of the letter in the absence of visual stimulation suggests that
participants were able to generate a precise internal representation of the in-
structed letter. While providing explicit instructions to participants prohibited
them from engaging in a more ecologically valid form of imagery, it is unlikely
to fundamentally alter the neural processes underlying imagery. Instead, it al-
lowed us to have a reasonable degree of confidence in the ground truth of imag-
ined shapes. Next, we showed that patterns of voxel activations predicted by
a pRF-encoding model and a physical (binary) letter stimulus can account for
observed activation patterns in response to mental imagery of the letter corre-
sponding to the physical stimulus. Given that pRF mapping has been shown
to accurately predict fMRI responses to visual stimuli (Wandell and Winawer
2015), our results suggest that intrinsic geometric organization of visual experi-
ences is also maintained during visual mental imagery. Our encoding analysis
is somewhat reminiscent of that employed by Naselaris et al. (Naselaris et al.
2015) who used a more computational complex encoding model to identify an
imagined artwork from a set of candidates. Given that our encoding model is
limited to retinotopy, our approach is more restricted in its applications than
that detailed in (Naselaris et al. 2015). However, a more restricted approach has
the advantage of affording tighter experimental control providing a stronger
basis for drawing conclusions. By focusing on a single feature (retinotopic or-
ganization), using stimuli differing solely with respect to their geometric prop-
erties, and directly comparing the predictions based on each stimulus regarding
the activation profiles in early visual cortex, allowed us to draw specific conclu-
sions regarding the topographic organization of mental imagery.
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With respect to reconstructions, we found significant overlap between re-
constructed imagery and the physical stimulus in terms of object geometry.
While we anticipated this given findings that visual mental imagery exhibits
retinotopic organization in early visual cortex (Slotnick et al. 2005; Albers et
al. 2013; Pearson et al. 2015), these results were, nonetheless, exciting, be-
cause the previous reconstructions of mental imagery based on retinotopy did
not preserve object geometry (Thirion et al. 2006). Indeed, to the best of our
knowledge, we present the first visually recognizable reconstructions of men-
tal imagery, even at the single-trial level. Our first-level correlation metric of
reconstruction quality revealed that reconstruction quality of letter ‘S’ was sig-
nificantly reduced, while that of letter ‘T’ was significantly improved with re-
spect to that of letter ‘H’. This fits with the notion that stimuli exhibiting finer
(coarser) spatial layouts would be harder (easier) to reconstruct. Furthermore,
the OSIVQ object score was a significant predictor of first-level reconstruction
quality, whereas the OSIVQ verbal score was not. This indicates that partic-
ipants relying on an object-based imagery strategy were generally more suc-
cessful at imagery of the letter shapes than participants relying on verbal strate-
gies. Our findings are further in line with recent observations that neural over-
lap between imagery and perception in the visual system depends on experi-
enced imagery vividness (Dijkstra et al. 2017). Interestingly, while inspection of
Figs. 4.3.3 and 4.3.4 would suggest that reconstruction quality is ROI-specific,
ROIs do not constitute a significant predictor of first-level reconstruction qual-
ity. Rather, the number of voxels included for any given ROI determined the
quality. However, this does not imply that uncritically adding more voxels will
definitely lead to higher classification accuracies. We included only those vox-
els for which pRF mapping yielded a high fit. It is likely that reconstructions
benefit from a large number of voxels, whose pRF can be estimated to a high
degree of precision (i.e., which show a strong spatially selective visual response,
especially with high-resolution 7T fMRI) rather than a large number of voxels
per se. The OSIVQ object score and number of voxels were also significant pre-
dictors of second-level reconstruction quality for reasons similar to those just
mentioned.

Both our encoding and reconstruction results show that it is possible to ex-
tract similar information from perceived and imagined shapes. This possibility
has previously been suggested to be strongly indicative of the pictorial nature
of vividly experienced mental images (Brogaard and Gatzia 2017). In conjunc-
tion with the observation that the object but not the verbal score of the OSIVQ
significantly predicts reconstruction quality, these results support the view that
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mental imagery is represented pictorially, at least within early visual cortex.
At later stages of (visual) processing, mental imagery may become increasingly
symbolic. As such, we do not wish to imply that our results settle the imagery
debate, as they do not rule out the existence of (additional) symbolic represen-
tations.

We further show that the tight topographic correspondence between im-
agery and perception in early visual cortex allows for improved reconstruction
and opens new avenues for classification. Specifically, our results indicate that
training a denoising autoencoder on perceptual data creates an attractor land-
scape with one attractor per perceived letter. Importantly, the resemblance of
imagery activation profiles in early visual cortex is sufficiently similar to its
perceptual pendant to ensure that activation patterns of a large proportion of
imagery trials fall within the attraction domain of the correct letter. The autoen-
coder then projects these imagery activation patterns onto the corresponding
perceptual activation patterns. Though this is not the case for every trial with
some being projected onto the wrong perceptual activation pattern pointing to
intra-individual fluctuations regarding successful imagery (Dijkstra et al. 2017).
Nevertheless, these projections allow for perception-level reconstruction qual-
ity even for individual imagery trials for those participants with good imagery
ability. It may be an interesting avenue for future research to study the attrac-
tor landscape formed through training the autoencoder and investigate under
which conditions imagery trials fall inside or outside the attraction domain of
each letter. Our current observations regarding the autoencoder imply that per-
ception provides an upper limit on the achievable reconstruction quality. That
is, any improvements of perceptual reconstructions, for instance, obtaining a
more accurate encoding model by correcting for eye movements during pRF
mapping (Hummer et al. 2016) should improve imagery reconstructions as
well.

Furthermore, the autoencoder can be utilized to pretrain a classifier purely
based on perceptual data before fine-tuning it on imagery data. We showed the
feasibility of this approach using it for classifying imagined letters with a high
degree of accuracy from at least one region of interest (between 50 and 70p cor-
rect) in five out of six participants. Statistical analyses revealed that both the
OSIVQ object and OSIVQ spatial scores are significant predictors of classifica-
tion accuracy. The finding that the OSIVQ spatial score constitutes a significant
predictor here indicates that for classification, a cruder retinotopic organization
of mental imagery might already be sufficient. Indeed, classification may rather
benefit from an increased signal-to-noise ratio (SNR) which could be achieved
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by lowering the spatial resolution. Here, we opted for high spatial resolution
to obtain precise receptive field estimates (additionally trading temporal resolu-
tion for SNR). In any case, successful classification may not be sufficient to draw
conclusions regarding the precise geometry of imagined objects. As before, the
number of voxels also constitutes a significant predictor of classification accu-
racy.

The autoencoder enables leveraging perceptual data to improve reconstruc-
tions of imagined letters and pretrain classifiers. This may eventually be uti-
lized for the development of content-based BCI letter-speller systems. So far,
fMRI-based BCI communication systems have mostly focused on coding schemes
arbitrarily mapping brain activity in response to diverse mental imagery tasks
(e.g., mental spatial navigation, mental calculation, mental drawing, or inner
speech), and hence originating from distinct neural substrates, onto letters of
the alphabet (Birbaumer et al. 1999; Sorger et al. 2012). As such, current BCI
speller systems do not offer a meaningful connection between the intended let-
ter and the specific content of mental imagery. This is demanding for users, as
it requires them to memorize the mapping in addition to performing imagery
tasks unrelated to intended letters and words. Our results constitute a proof-of-
concept that it may be possible to achieve a more natural, content-based, BCI
speller system immediately decoding internally visualized letters from their as-
sociated brain activity.

In conclusion, our letter encoding, reconstruction, and classification results
indicate that the topographic organization of mental imagery closely resembles
that of perception. This lends support to the idea that mental imagery is quasi-
perceptual not only in terms of its subjective experience but also in terms of
its neural representation and constitutes an important first step towards the
development of content-based letter-speller systems.
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This thesis started with depictions of how the brain processes visual infor-
mation and how this information travels via electrical signals to brain regions
in a topographically organized way. In addition, the cerebral cortex can be sub-
divided into parcellations that show functional specialization to specific visual
categories. This subdivision is important as accurate parcellation provides a
map of where we are in the brain, enabling efficient comparison of results across
studies and communication among investigators. It also allows more accurate
predictions of functional organization in the case when no functional mapping
can be performed, such as retinotopy in blind individuals. Next to processing
sensory information, our brains also have the ability to generate visual percepts
without any sensory input. We showed that mental imagery shares a tight topo-
graphic correspondence with visual perception by decoding imaginary shapes
using machine learning and fMRI-based decoding techniques. Now, we discuss
the implications of our findings and how the methods described in this thesis
can be used to generate artificial images designed to enhance or restore brain
functioning.
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5.1 visfAtlas

Extensive physiological evidence exists for the specialization of visual process-
ing by delineated brain regions. These regions often provide a map of external
space, yet the maps represent different types of information. Neurons within
a region not only code for the location of an object in visual space, but also
provide information about the object’s attributes. Each visual area provides a
limited analysis, and this information is integrated across dimensions to form
recognizable percepts (Ochsner et al. 2013). Hypotheses about the role(s) or
functionality of a specific region-of-interest (ROI), or interactions between ROIs,
in relation to human behavior are at the center of a substantial body of neu-
roimaging research (Poldrack 2007; Etzel et al. 2009; Hutchison et al. 2014; Tong
et al. 2016), since an ROI-based approach has several advantages: 1) it allows
hypothesis-driven comparisons of signals within independently defined ROIs
across many different conditions, 2) it increases statistical sensitivity in mul-
tisubject analyses, 3) it reduces the number of multiple comparisons present
in whole-brain analyses, and 4) it identifies ROIs in each participant’s native
brain space. Often ROIs are defined functionally using localizers to more ac-
curately target functionally distinct regions that are difficult to delineate using
anatomical markers alone. Localizers also allow successive scans to depend on
a parcellation that was defined based on independent data. However, in some
cases (e.g., in certain clinical populations) it is impossible to delineate regions-
of-interest without the use of a brain atlas.

In chapter 2 we showed that a probabilistic atlas including category-selective
regions can be a reliable source to filter or select ROIs common to most fMRI
subjects, and we validated the utility of the visfAtlas in the following ways:

1. We assessed prediction accuracy of category-specific, motion selective and
retinotopic locations in a new subject using a leave-one-out cross-validation
procedure. While there was substantial variability in prediction accuracy
between ROIs, category-selective voxels in some probabilistic category-
selective ROIs could be identified with up to 94% accuracy in left-out sub-
jects. In addition, spatial consistency in both retinotopic and category-
selective regions was generally higher after cortex-based alignment as
compared to nonlinear volumetric alignment.

2. For category-specific regions we performed a leave-one-subject-out re-
sponsivity analysis in volume space and found that voxels assigned to
a ROI indeed showed a maximum voxel responsivity to the correct cate-
gory.
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3. Comparing the visfAtlas with an independent dataset acquired with sim-
ilar localizers, on different subjects and at another facility revealed similar
inter-subject spatial consistency of category-specific fROIs.

4. We found that the ROIs in visfAtlas are similarly quantifiable in compar-
ison to previously published atlases regardless of differences in experi-
mental design, stimuli type, and sample size.

5. We reported how inter-subject consistency can be affected by fROI size
and intra-session reproducibility.

Overall, most of the category-selective regions can be reliably predicted in
new subjects. Inter-subject variability might be dependent on the coupling be-
tween macroanatomical landmarks and functional regions, as indicated by dif-
ferences in cortex-based versus nonlinear volume alignment. Especially pFus-
faces, LOS-bodies, ITG-bodies, CoS-places, and motion-selective hMT+ showed
striking functional-marcoanatomical coupling when opting for cortex-based align-
ment. visfAtlas is the first probabilistic atlas to contain such an extensive set of
functional regions in occipitotemporal cortex and is now available to the neu-
roimaging community.
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5.2 Bayesian optimization of phosphene locations for a
cortical prosthesis

Adaption to a life without visual cues can be incredibly difficult for the late
blind. Visual cortical prostheses are now a viable therapeutic consideration for
restoring a rudimentary form of vision, especially when parts of the retina, op-
tic nerve or LGN are damaged (Gabel, 2016; Farnum & Pelled, 2020). However,
current prosthetic designs are still far away from producing optimal phosphene
vision. Several scientific and technical challenges need to be addressed, such as
inter-individual variability in functional neuroanatomy, the trade-off between
implant functionality and invasiveness, and the complex neurosurgical proce-
dure inherent to a cortical implant that includes the positioning of intracortical
electrodes. In chapter 3 we presented an extensive exploration and optimiza-
tion procedure of electrode placements that uses the individual brain anatomy
to predict stimulation-evoked phosphene sizes and locations. In a large sam-
ple of 362 human hemispheres our pipeline automatically found the electrode
configuration and implant insertion trajectory that optimally matches a pre-
set ‘ideal’ phosphene distribution within predetermined practical constraints.
The optimal location and insertion angles of the electrodes for a visual cortical
prosthesis are based on Bayesian optimization that efficiently minimizes a cost
function which considers the electrode yield in grey matter, visual field cover-
age of the phosphene distribution, and the relative entropy between the desired
phosphene distribution and the predicted phosphene map.

Our results show realistic phosphene map predictions for a thousand-electrode
array implanted in primary visual cortex. Central receptive fields located near
the surface of the occipital lobe could be comfortably accessed, while regions
corresponding to peripheral fields were difficult to target. On the individual
level, phosphene maps showed unevenly spaced distributions, likely due to
the uniform distribution of the simulated electrode array. This poses a problem
for functional phosphene vision, as next-generation pattern-recognition and
deep-learning algorithms can possibly only partly compensate for non-uniform
phosphene grids. The development of custom electrode layouts with electrode
positions following brain curvature might produce more evenly spaced phosphene
distributions. In a follow-up study, the pipeline can be applied to optimize vir-
tual implantation of any custom electrode design. On the group-level, phosphene
map distributions showed high between-subject variability and an average cov-
erage of the target regions of 57%. Admittingly, the size of each visual field
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target map was rather large for a 1000 electrode channel array of which the in-
terspacing position was restricted. On the other hand, the limitations in terms
of visual field coverage using a single electrode grid have become clear. The
optimized phosphene map distributions suggest that distant parts of the visual
field might be more efficiently reached by a cortical prosthesis using a mod-
ular approach involving multiple electrode grids. Importantly, our publicly
available pipeline can in the future be extended to solve the problem of mul-
tiple insertion trajectories and positioning of multiple grids. By exploring the
functional-anatomical search-space in which a cortical prosthetic implant can
be placed, we provide a better understanding of inter-individual variability in
functional neuroanatomy in early visual cortex. In addition, four distinct exam-
ples of task-dependent phosphene configurations were probed to get a better
idea of the upper and lower limits of possible functional phosphene distribu-
tions, using more realistic constraints of electrode parameters. Crucially, our
cortical implant simulations can help to minimize surgical risks, and it can be
applied in blind subjects for whom anatomical brain scans are available, since
the pipeline uses individual brain anatomy as a starting point.
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5.3 Reading letter shapes from the mind’s eye

The futuristic concept of mind reading has been featured in science fiction and
fantasy tales. For instance, the popular Netflix show “Black Mirror” envisioned
an AI-driven world where people’s memories could be retrieved by insurance
companies using a brain-computer-interface chip. Life events (such as an acci-
dent or car crash) could be replayed like a movie from the user’s perspective.
In reality, brain-computer interfaces (BCIs) are not nearly that successful at de-
coding memories, yet. The machines used in functional magnetic resonance
imaging (fMRI) are much larger than the aforementioned brain chip, yet cur-
rently constitute one of the best tools for decoding brain activity in vivo. The
workings of the brain remain an immensely complex puzzle and it will continue
to be a great challenge to decode neural content, until we have gathered suffi-
cient pieces. However, with the increasing number of neuroscientific empirical
findings and recent improvements of machine learning algorithms, researchers
are finding new ways to decode mental imagery from fMRI data.

Initial perceptual decoding successes built on multi-voxel pattern analy-
sis revealed categorical representations of faces and objects (Haxby et al. 2001;
Carlson et al. 2003; Kamitani & Tong 2005). Later on, fMRI brain responses to
stimuli that were visually very similar could also be decoded (Kay et al. 2008).
Nowadays, more sophisticated models such as principal-component-analysis
(PCA) (Cowen et al. 2014) and deep generative neural networks trained on
large fMRI datasets, even allow for reconstruction of unseen individual faces
(Axelrod et al. 2015; van Rullen & Reddy 2019). Importantly, perceptual en-
coding of these concepts might share the same neural substrates as those re-
quired for generation of mental images (Dijkstra et al., 2019). Since neural ac-
tivity in sensory cortex that was first engaged when an item was initially per-
ceived seems to be re-instantiated during mental imagery (Petrides, 1994; Koss-
lyn et al., 2001; Curtis and D’Esposito, 2003; Ruchkin et al., 2003; Pasternak and
Greenlee, 2005; Ranganath and D’Esposito, 2005), several groups have tried to
decode visual mental imagery as well (Thirion et al. 2006; Miyawaki et al. 2008;
Schoenmakers et al. 2013). Indeed, Horikawa et al. (2013) were able to de-
code dreams, to some extent, by monitoring patterns of brain activity during
sleep and comparing these to neural responses during awake perception. They
suggested that visual imagery during sleep shares the same neural substrate as
waking responses to visual stimuli. In addition, Naselaris et al. (2015) identi-
fied imagined artworks from a set of candidates using an encoding model based
on Gabor wavelets which they fit to voxel activations measured in response to
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perception of said artworks. Even though these two examples represent im-
portant technological advancements, they rely on complex encoding models in
which the nature of the neural underpinnings is obscured. More intuitive en-
coding models are required to provide insight into the mechanisms with which
the brain operates.

In chapter 4 we investigated whether internally visualized letter shapes
can be reconstructed from the mind’s eye by an inverse retinotopy model. Our
decoding process inverts the established relationship between visual field and
cortex such that activation of voxels can be projected back into the visual field.
Importantly, the approach relies on the assumption that geometric properties of
visual stimuli are preserved in their mental representations. In addition, the en-
coding model differs from previous attempts to decode mental imagery in three
ways. Firstly, our method is more restricted in its applications, as the encoding
is limited to retinotopic organization. Consequently, we have a stronger basis
for drawing conclusions due to tighter experimental control and the fact that
stimuli differ solely with respect to their geometric properties. It should only
be possible to selectively predict activation response patterns to each imagined
stimulus if fine-grained geometric properties are present in the data. Hence,
confounding factors such as attention for classification are not likely to occur.
Secondly, whereas multivariate pattern classification (e.g. Horikawa et al. 2013)
demonstrates reliable distinctions among brain states, the inverse retinotopy
approach offers a more direct characterization of how brain states are organized
for a specific picture or internally generated image. Finally, the mental image
reconstructions presented in chapter 3 are far closer to the ground-truth (i.e.
visual stimuli) than those previously reported (Thirion et al. 2006; Naselaris
2015).

While the decoding of visual responses to images or videos is often re-
ferred to as ‘mind reading’, retrieving mental images that have already been
processed by the brain and stored in memory is even more impressive, as the
richness of the visual representation of reactivated images is diminished (Klein
et al. 2000; Cui et al. 2007; Amedi et al 2005; Reddy et al. 2010; Dijkstra et al.
2017). According to the reverse hierarchy theory (Dentico et al. 2014; Dijkstra
et al. 2017; Pearson 2019), mental imagery is a voluntary top-down process.
Mental images are generated by combining content stored in our memory that
our senses have previously been exposed to, and resulting signals are propa-
gated along feedback pathways in the reverse direction along regions in the
visual hierarchy. Consequently, one would expect imagery representations to
become increasingly similar to their perceptual counterparts moving from V3
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to V1. The preservation of geometric features in our imagery decoding results
are in line with the reverse hierarchy theory, however we did not find differ-
ences in decoding accuracy or reconstruction quality between areas V1 to V3.
However, we did not account for differences in signal-to-noise ratio (SNR) or
ROI size. Accounting for these possible confounds would be worth pursuing.
Indeed, Breedlove et al. (2020) modeled the hierarchy of processing levels us-
ing a deep generative network and found that activity in low-level visual areas
encode variation in mental images with less precision than seen images. In
addition, their fMRI results showed that the decrease in imagery prediction ac-
curacy from high to low level areas matched the corresponding attenuation of
SNR.

Finally, the relatively low SNR during imagery in striate cortex, and there-
fore noisy voxel pattern reconstructions, could partly be overcome in our ex-
periment by reducing the amount of noise. We created an attractor landscape
with one attractor per perceived letter by training a denoising autoencoder on
perceptual data. Since imagery activation profiles in early visual cortex closely
resemble those of perceptual activation profiles, the majority of imagery trials
were projected to the attraction domain of the correct letter, effectively allow-
ing perception-level reconstruction quality. Interestingly, this process proved
viable even on the single trial level in subjects with good imagery ability. The
autoencoder enables leveraging perceptual data to improve reconstructions of
imagined letters and pretrain classifiers. Our work constitutes an important
first step towards the development of content-based letter-speller systems.
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5.4 Future direction and recommendations

The chapters presented in this thesis individually help to understand how the
brain processes visual information. However, together they can also serve as
groundwork for brain computer interfacing. A probabilistic functional atlas
like the one presented in chapter 2 can be used for BCIs in the following ways;

1. regions described by the probabilistic atlas are conceivable target candi-
dates for a vision-restoring BCI in blind individuals (chapter 3). All that is
required to obtain an estimation of the most probable location of a certain
region in a new subject, is to project the atlas onto the new brain (in this
case the brain of a blind person), by aligning the anatomy of the individ-
ual with the group average (BVaverage) space. The precision of the atlas
prediction will depend on the proximity of the new subject’s anatomy to
the average brain and the inter-individual variability of the functional re-
gion. As mentioned before, V1 is the first visual processing unit in the
cerebral cortex and therefore an interesting target for a visual cortical im-
plant. In addition, functional atlas predictions of V1 have been shown
to be relatively accurate (Benson et al., 2014; O. Hinds et al., 2009; O. P.
Hinds et al., 2008; Rosenke et al., 2021). However, the interhemispheric
fissure presents an anatomical barrier and consequently long intracortical
electrodes are required for stimulating V1 electrically (Trobe, 2001). Fu-
ture research could explore candidacy of higher visual areas, especially
those more easily accessible from the outer surface of the brain. Category-
or motion-selective regions determined in chapter 2 might facilitate con-
scious perception of (artificial) motion and objects.

2. the definition of regions in early visual cortex are usually defined manu-
ally, which would be costly in a real-time setting. Building on the letter
decoding techniques described in chapter 4, the atlas can be utilized to
mask voxels selected in a real-time imagery decoding paradigm, such as a
letter-speller BCI. Specifically, ROI size decreases and receptive field size
increases from V1 to V3. Knowing which voxels correspond to a certain
area a priori, could boost BCI accuracy and save computational resources
by reducing the number of voxels (with overlapping receptive fields) on
which the decoding process must be performed.
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Impact

Modern neuroscientific research is advancing toward a more profound com-
prehension of the anatomo-functional coupling underlying brain processing.
In line with these developments, we used ultra-high field fMRI, a cutting-edge
biomedical imaging tool, to non-invasively study human cognitive function-
ing with great detail in-vivo. The work presented in this thesis interfaces with
three important aspects of human vision, namely visual perception (chapter 2),
restoring vision loss (chapter 3), and visual mental imagery (chapter 4).

Chapter 2 describes a probabilistic map of the visual brain called visfAtlas;
detailing the functional location and variability of category-specific regions in
occipito-temporal cortex. While the traditional localizationist concept of “one
region–one function” is shifting to a more dynamic vision of the central nervous
system as a complex network (Borner et al. 2007, Reijneveld et al. 2007), func-
tional brain atlases remain crucial to assess connections between parcels and to
extract network properties. visfAtlas adds a unique parcellation to the exist-
ing pool of functional brain atlases and, in addition, supports reproducibility
of empirical studies by adding to the standardization of the selection of vox-
els (i.e. region-of-interest) related to certain cognitive functions. Furthermore,
functional brain atlases potentially reduce the number of resources required for
empirical research (i.e., obviate the need for functional localizers), as scanning
time is a costly parameter of experimental setups.

Chapter 3 presents a novel methodology using Bayesian optimization to
explore high-channel cortical implant locations for functional phosphene vision
in a large retinotopy fMRI dataset. This software tool addresses some of the sci-
entific and technical challenges that need to be overcome before a visual pros-
thesis -that interfaces directly with the brain- may one day become a conven-
tional clinical treatment for blindness. Cortical visual prostheses are especially
relevant when treatments like retinal prostheses, stem cell transplants, and gene
therapy are not available. This work can benefit clinicians and engineers with
new insights into neurosurgical restrictions and manufacturing requirements
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for a high-channel-count, biocompatible, chronically implantable neuronal in-
terface for the visual cortex. Importantly, vision loss is paired with devastating
reductions in quality of life, autonomy and economic losses to society due to
reduced workforce participation. The next generation of visual cortical pros-
theses could generate artificial assistive vision that is useful in everyday life,
using video footage from a camera that is worn by the patient.

In Chapter 4 we revealed a tight topographic correspondence between vi-
sual mental imagery and perception, by exploiting the high spatial resolution of
fMRI at 7 Tesla, uncovering the retinotopic organization of early visual cortex
and combining it with machine-learning techniques to retrieve imagined letter
shapes from the mind’s eye. Next to providing new insights into the neural
underpinnings of mental imagery, our work can act as a foundation for experi-
mental applications in a clinical setting. Our letter imagery encoding scheme
offers a direct and natural way for decoding letters without a need for vol-
untary muscle control or eye-sight. Therefore, our results might constitute an
important first step for the development of a letter-speller BCI that can ben-
efit those with paralysis of voluntary muscles, such as people suffering from
locked-in syndrome. In addition, visual imagery ability is retained (or excep-
tionally vivid; Hahamy et al. 2021) in blind individuals and allows for a novel
way to investigate functional reorganization associated with vision loss.

Next to tangible scientific impact in the form of publications, a part of the
work has been done in collaboration with NESTOR (Neuronal Stimulation for
Recovery of Function), a research project that brought together world-leading
academic and industry partners that contribute unique, essential knowledge
and expertise. Together, NESTOR collaborators exchanged valuable formation
aimed to restore everyday-life abilities after vision was lost, and aided the de-
velopment of a clinically approved cortical visual prosthesis for the late blind.







135

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., . . . Brain,
G. (2016). TensorFlow: A System for Large-Scale Machine Learning Ten-
sorFlow: A system for large-scale machine learning. 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI ’16), 265–284.
https://doi.org/10.1038/nn.3331

Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). An Area within Human
Ventral Cortex Sensitive to “Building” Stimuli. Neuron, 21(2), 373–383. https
://doi.org/10.1016/S0896-6273(00)80546-2

Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C., & de Lange, F. P. (2013). Shared
Representations for Working Memory and Mental Imagery in Early Visual
Cortex. Current Biology, 23(15), 1427–1431. https://doi.org/10.1016/J.
CUB.2013.05.065

Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., & Zilles, K. (2000).
Brodmann’s areas 17 and 18 brought into stereotaxic pace - where and how
variable? . NeuroImage, 11, 66–84.

Andersson, J. L. R., Skare, S., & Ashburner, J. (2003). How to correct susceptibil-
ity distortions in spin-echo echo-planar images: application to diffusion ten-
sor imaging. NeuroImage, 20(2), 870–888. https://doi.org/10.1016/S1053-
8119(03)00336-7

Arcaro, M. J., McMains, S. A., Singer, B. D., & Kastner, S. (2009). Retinotopic
organization of human ventral visual cortex. J Neurosci, 29(34), 10638–10652.
https://doi.org/29/34/10638 [pii]\r10.1523/JNEUROSCI.2807-09.2009

Avraham, D., Jung, J., Yitzhaky, Y., & Peli, E. (2021). Retinal prosthetic vision
simulation: temporal aspects. Journal of Neural Engineering. https://doi.org/
10.1088/1741-2552/AC1B6C



136 Bibliography

Barriga-Rivera, A., Guo, T., Yang, C.-Y., Abed, A. Al, Dokos, S., Lovell, N. H.,
Morley, J. W., & Suaning, G. J. (2017). High-amplitude electrical stimulation
can reduce elicited neuronal activity in visual prosthesis. Scientific Reports
2017 7:1, 7(1), 1–13. https://doi.org/10.1038/srep42682

Barton, J. J. S. (2008). Structure and function in acquired prosopagnosia: lessons
from a series of 10 patients with brain damage. Journal of Neuropsychology,
2(Pt 1), 197. https://doi.org/10.1348/174866407X214172

Beauchamp, M. S., Haxby, J. V, Jennings, J. E., & Deyoe, E. A. (1999). An fMRI
Version of the Farnsworth – Munsell 100-Hue Test Reveals Multiple Color-
selective Areas in Human Ventral Occipitotemporal Cortex. Cereb Cortex,
9(May), 257–263.

Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2003). fMRI Responses
to Video and Point-Light Displays of Moving Humans and Manipulable
Objects. Journal of Cognitive Neuroscience, 15(7), 991–1001. https://doi.org/
10.1162/089892903770007380

Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E., & Saxe, R. (2011).
Language processing in the occipital cortex of congenitally blind adults.
Proceedings of the National Academy of Sciences of the United States of America,
108(11), 4429–4434. https://doi.org/10.1073/pnas.1014818108

Belkacem, A. N., Jamil, N., Palmer, J. A., Ouhbi, S., & Chen, C. (2020). Brain
Computer Interfaces for Improving the Quality of Life of Older Adults and
Elderly Patients. Frontiers in Neuroscience, 0, 692. https://doi.org/10.3389/
FNINS.2020.00692

Benson, N. C., Butt, O. H., Brainard, D. H., & Aguirre, G. K. (2014). Correction
of Distortion in Flattened Representations of the Cortical Surface Allows
Prediction of V1-V3 Functional Organization from Anatomy. PLOS Compu-
tational Biology, 10(3), e1003538. https://doi.org/
10.1371/JOURNAL.PCBI.1003538

Benson, N. C., Butt, O. H., Datta, R., Radoeva, P. D., Brainard, D. H., & Aguirre,
G. K. (2012). The retinotopic organization of striate cortex is well predicted
by surface topology. Current Biology, 22(21), 2081–2085. https://doi.org/
10.1016/j.cub.2012.09.014

Benson, N. C., Jamison, K. W., Arcaro, M. J., Vu, A. T., Glasser, M. F., Coal-
son, T. S., Essen, D. C. Van, Yacoub, E., Ugurbil, K., Winawer, J., & Kay, K.



137

(2018). The Human Connectome Project 7 Tesla retinotopy dataset: Descrip-
tion and population receptive field analysis. Journal of Vision, 18(13), 23–23.
https://doi.org/10.1167/18.13.23

Benson, N. C., & Winawer, J. (2018). Bayesian analysis of retinotopic maps.
ELife, 7, 1–29.

Benson, N. C., Yoon, J. M. D., Forenzo, D., Engel, S. A., Kay, K. N., & Winawer, J.
(2021). Variability of the Surface Area of the V1, V2, and V3 Maps in a Large
Sample of Human Observers. BioRxiv, 2020.12.30.424856. https://doi.org/
10.1101/2020.12.30.424856

Bhat, S., Lührs, M., Goebel, R., & Senden, M. (2021). Extremely Fast pRF Map-
ping for Real-Time Applications. BioRxiv, 2021.03.24.436795. https://doi.org/
10.1101/2021.03.24.436795

Bihan, D. Le, Turner, R., Zeffiro, T. A., Cuénod, C. A., Jezzard, P., & Bonnerot,
V. (1993). Activation of human primary visual cortex during visual recall:
a magnetic resonance imaging study. Proceedings of the National Academy of
Sciences, 90(24), 11802–11805. https://doi.org/10.1073/PNAS.90.24.11802

Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler,
A., Perelmouter, J., Taub, E., & Flor, H. (1999). A spelling device for the
paralysed. Nature, 398(6725), 297–298. https://doi.org/10.1038/18581

Blazhenkova, O., & Kozhevnikov, M. (2009). The new object-spatial-verbal cog-
nitive style model: Theory and measurement. Applied Cognitive Psychology,
23(5), 638–663. https://doi.org/10.1002/acp.1473

Bollen, C. J. M., Guclu, U., Van Wezel, R. J. A., Van Gerven, M. A. J., & Guclu-
turk, Y. (2019). Simulating neuroprosthetic vision for emotion recognition.
2019 8th International Conference on Affective Computing and Intelligent Inter-
action Workshops and Demos, ACIIW 2019, 85–87. https://doi.org/10.1109/
ACIIW.2019.8925229

Breedlove, J. L., St-Yves, G., Olman, C. A., & Naselaris, T. (2020). Generative
Feedback Explains Distinct Brain Activity Codes for Seen and Mental Im-
ages. Current Biology, 30(12), 2211-2224.e6. https://doi.org/10.1016/J.CUB
.2020.04.014

Brewer., A., & Barton, B. (2012). Visual Field Map Organization in Human
Visual Cortex. In Visual Cortex - Current Status and Perspectives. InTech.
https://doi.org/10.5772/51914



138 Bibliography

Brindley, G. S., & Lewin, W. S. (1968). The sensations produced by electri-
cal stimulation of the visual cortex. The Journal of Physiology, 196(2), 479.
https://doi.org/10.1113/JPHYSIOL.1968.SP008519

Britten, K. H., & Heuer, H. W. (1999). Spatial Summation in the Receptive Fields
of MT Neurons. Journal of Neuroscience, 19(12), 5074–5084. https://doi.org
/10.1523/JNEUROSCI.19-12-05074.1999

Brogaard, B., & Gatzia, D. E. (2017). Unconscious Imagination and the Mental
Imagery Debate. Frontiers in Psychology, 8, 799. https://doi.org/10.3389/fpsyg
.2017.00799

Bugatus, L., Weiner, K. S., & Grill-Spector, K. (2017). Task alters category repre-
sentations in prefrontal but not high-level visual cortex. NeuroImage, 155(April),
437–449. https://doi.org/10.1016/j.neuroimage.2017.03.062

Caspers, J., Zilles, K., Eickhoff, S. B., Schleicher, A., Mohlberg, H., & Amunts,
K. (2013). Cytoarchitectonical analysis and probabilistic mapping of two
extrastriate areas of the human posterior fusiform gyrus. Brain Struct Funct,
218(2), 511–526. https://doi.org/10.1007/s00429-012-0411-8

Chen, S. C., Suaning, G. J., Morley, J. W., & Lovell, N. H. (2009). Simulating
prosthetic vision: I. Visual models of phosphenes. Vision Research, 49(12),
1493–1506. https://doi.org/10.1016/J.VISRES.2009.02.003

Chen, X., Wang, F., Fernandez, E., & Roelfsema, P. R. (2020). Shape perception
via a high-channel-count neuroprosthesis in monkey visual cortex. Science,
370(6521), 1191–1196. https://doi.org/10.1126/SCIENCE.ABD7435

Cichy, R. M., Heinzle, J., & Haynes, J.-D. (2012). Imagery and Perception Share
Cortical Representations of Content and Location. Cerebral Cortex, 22(2),
372–380. https://doi.org/10.1093/cercor/bhr106

Coalson, T. S., Van Essen, D. C., & Glasser, M. F. (2018). The impact of tradi-
tional neuroimaging methods on the spatial localization of cortical areas.
Proceedings of the National Academy of Sciences of the United States of America,
115(27), E6356–E6365. https://doi.org/10.1073/pnas.1801582115

Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff,
M., & Michel, F. (2000). The visual word form area: Spatial and temporal
characterization of an initial stage of reading in normal subjects and poste-
rior split-brain patients. Brain, 123, 291–307.



139

de Heering, A., & Rossion, B. (2015). Rapid categorization of natural face im-
ages in the infant right hemisphere. ELife, 4, 1–14. https://doi.org/10.7554/
elife.06564

Dentico, D., Cheung, B. L., Chang, J. Y., Guokas, J., Boly, M., Tononi, G., & Van
Veen, B. (2014). Reversal of cortical information flow during visual imagery
as compared to visual perception. NeuroImage, 100, 237–243. https://doi.org
/10.1016/J.NEUROIMAGE.2014.05.081

DeWitt, D. A. (2013). Visual Perception: More Than Meets the Eye | Answers in Gen-
esis. https://answersingenesis.org/human-body/eyes/visual-perception-
more-than-meets-the-eye/

DeYoe, E. a, Carman, G. J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller,
D., & Neitz, J. (1996). Mapping striate and extrastriate visual areas in human
cerebral cortex. Proceedings of the National Academy of Sciences of the United
States of America, 93(6), 2382–2386. https://doi.org/10.1073/pnas.93.6.2382

Dijkstra, N., Bosch, S. E., & van Gerven, M. A. J. (2017). Vividness of Visual
Imagery Depends on the Neural Overlap with Perception in Visual Areas.
The Journal of Neuroscience, 37(5), 1367–1373. https://doi.org/10.1523/
JNEUROSCI.3022-16.2016

Dobelle, W. H., Mladejovsky, M. G., & Girvin, J. P. (1974). Artificial vision for
the blind: Electrical stimulation of visual cortex offers hope for a functional
prosthesis. Science, 183(4123), 440–444. https://doi.org/10.1126/science
.183.4123.440

Dobelle, Wm H., Mladejovsky, M. G., Evans, J. R., Roberts, T. S., & Girvin, J.
P. (1976). Braille reading by a blind volunteer by visual cortex stimulation.
Nature, 259(5539), 111–112. https://doi.org/10.1038/259111a0

Downing, P. E., Downing, P. E., Jiang, Y., Jiang, Y., Shuman, M., Shuman, M.,
Kanwisher, N., & Kanwisher, N. (2001). A cortical area selective for visual
processing of the human body. Science (New York, N.Y.), 293(5539), 2470–
2473. https://doi.org/10.1126/science.1063414

Dumoulin, S. O., Bittar, R. G., Kabani, N. J., Baker, C. L., Le Goualher, G., Bruce
Pike, G., & Evans, a C. (2000). A new anatomical landmark for reliable iden-
tification of human area V5/MT: a quantitative analysis of sulcal patterning.
Cerebral Cortex, 10(5), 454–463. https://doi.org/10.1093/cercor/10.5.454



140 Bibliography

Dumoulin, S. O., & Wandell, B. A. (2008). Population receptive field estimates in
human visual cortex. NeuroImage, 39(2), 647–660. https://doi.org/10.1016/
j.neuroimage.2007.09.034

Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts,
K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cy-
toarchitectonic maps and functional imaging data. NeuroImage, 25(4), 1325–
1335. https://doi.org/10.1016/j.neuroimage.2004.12.034

Emmerling, T. C., Zimmermann, J., Sorger, B., Frost, M. A., & Goebel, R. (2016).
Decoding the direction of imagined visual motion using 7T ultra-high field
fMRI. NeuroImage, 125, 61–73. https://doi.org/10.1016/j.neuroimage.2015.10
.022

Engel, S A, Glover, G. H., & Wandell, B. A. (1997). Retinotopic organization
in human visual cortex and the spatial precision of functional MRI. Cereb
Cortex, 7(2), 181–192.

Engel, Stephen A., Rumelhart, D. E., Wandell, B. A., Lee, A. T., Glover, G. H.,
Chichilnisky, E.-J., & Shadlen, M. N. (1994). fMRI of human visual cortex.
In Nature (Vol. 369, Issue 6481, p. 525). https://doi.org/10.1038/369525a0

Engell, A. D., & McCarthy, G. (2013). Probabilistic atlases for face and biological
motion perception: An analysis of their reliability and overlap. NeuroImage,
74, 140–151. https://doi.org/10.1016/j.neuroimage.2013.02.025

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual
environment. Nature, 392(6676), 598–601. https://doi.org/10.1038/33402

Farnum, A., & Pelled, G. (2020). New Vision for Visual Prostheses. Frontiers in
Neuroscience, 0, 36. https://doi.org/10.3389/FNINS.2020.00036

Flaxman, S. R., Bourne, R. R. A., Resnikoff, S., Ackland, P., Braithwaite, T., Ci-
cinelli, M. V., Das, A., Jonas, J. B., Keeffe, J., Kempen, J., Leasher, J., Limburg,
H., Naidoo, K., Pesudovs, K., Silvester, A., Stevens, G. A., Tahhan, N., Wong,
T., Taylor, H., . . . Zheng, Y. (2017). Global causes of blindness and distance
vision impairment 1990–2020: a systematic review and meta-analysis. The
Lancet Global Health, 5(12), e1221–e1234. https://doi.org/10.1016/S2214-
109X(17)30393-5

Formisano, E., Linden, D. E. J., Di Salle, F., Trojano, L., Esposito, F., Sack, A.
T., Grossi, D., Zanella, F. E., & Goebel, R. (2002). Tracking the mind’s im-
age in the brain I: Time-resolved fMRI during visuospatial mental imagery.
Neuron, 35(1), 185–194. https://doi.org/10.1016/S0896-6273(02)00747-X



141

Freeman, J., & Simoncelli, E. P. (2011). Metamers of the ventral stream. Nature
Neuroscience, 14(9), 1195–1201. https://doi.org/10.1038/nn.2889

Frost, M. A., & Goebel, R. (2012). Measuring structural-functional correspon-
dence: spatial variability of specialised brain regions after macro-anatomical
alignment. NeuroImage, 59(2), 1369–1381. https://doi.org
/10.1016/j.neuroimage.2011.08.035

Frost, M. A., & Goebel, R. (2013). Functionally informed cortex based align-
ment: an integrated approach for whole-cortex macro-anatomical and ROI-
based functional alignment. NeuroImage, 83, 1002–1010. https://doi.org/10.1016/
j.neuroimage.2013.07.056

Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying
visual mental imagery and visual perception: an fMRI study. Cognitive Brain
Research, 20(2), 226–241. https://doi.org/10.1016/j.cogbrainres.2004.02.012

Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2018). Cognitive Neuroscience; The
biology of the mind (5th ed.).

Gilaie-Dotan, S., Perry, A., Bonneh, Y., Malach, R., & Bentin, S. (2009). See-
ing with profoundly deactivated mid-level visual areas: Non-hierarchical
functioning in the human visual cortex. Cerebral Cortex, 19(7), 1687–1703.
https://doi.org/10.1093/cercor/bhn205

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., &
Yacoub, E. (2016). A multi-modal parcellation of human cerebral cortex. Na-
ture Publishing Group, 536(7615), 171–178. https://doi.org/10.1038/nature18933

Glasser, M. F., & Van Essen, D. C. (2011). Mapping Human Cortical Areas In
Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI.
The Journal of Neuroscience, 31(32), 11597 LP – 11616. https://doi.org/
10.1523/JNEUROSCI.2180-11.2011

Goebel, R, Esposito, F., & Formisano, E. (2006). Analysis of functional image
analysis contest (FIAC) data with brainvoyager QX: From single-subject to
cortically aligned group general linear model analysis and self-organizing
group independent component analysis. Hum Brain Mapp, 27(5), 392–401.
https://doi.org/10.1002/hbm.20249

Goebel, R, Khorram-Sefat, D., & Muckli, L. (1998). The constructive nature of
vision: direct evidence from functional magnetic resonance imaging studies
of apparent motion and motion imagery. European Journal Of.



142 Bibliography

Goebel, Rainer, Esposito, F., & Formisano, E. (2006). Analysis of functional
image analysis contest (FIAC) data with brainvoyager QX: From single-
subject to cortically aligned group general linear model analysis and self-
organizing group independent component analysis. Human Brain Mapping,
27(5), 392–401. https://doi.org/10.1002/HBM.20249

Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y., & Malach, R. (1998). Cue-
invariant activation in object-related areas of the human occipital lobe. Neu-
ron, 21(1), 191–202. https://doi.org/10.1016/S0896-6273(00)80526-7

Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ven-
tral temporal cortex and its role in categorization. Nature Reviews Neuro-
science, 15(8), 536–548. https://doi.org/10.1038/nrn3747

Grossman, E. D., & Blake, R. (2002). Brain areas active during visual perception
of biological motion. Neuron, 35(6), 1167–1175. https://doi.org/10.1016/S0896-
6273(02)00897-8

Haak, K. V., Cornelissen, F. W., & Morland, A. B. (2012). Population receptive
field dynamics in human visual cortex. PLoS ONE, 7(5). https://doi.org/
10.1371/journal.pone.0037686

Harrison, S., & Tong, F. (2009). Decoding reveals the contents of visual working
memory in early visual areas. Nature.

Hashemi, R. H., Bradley, W. G., & Lisanti, C. J. (2012). MRI: The Basics - Ray
Hashman Hashemi, William G. Bradley, Christopher J. Lisanti - Google Books.

Hasson, U., Harel, M., Levy, I., & Malach, R. (2003). Large-scale mirror-symmetry
organization of human occipito-temporal object areas. Neuron, 37(6), 1027–
1041. https://doi.org/10.1016/S0896-6273(03)00144-2

Haxby, J. V, Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B.
R., Gobbini, M. I., Hanke, M., & Ramadge, P. J. (2011). A common, high-
dimensional model of the representational space in human ventral temporal
cortex. Neuron, 72(2), 404–416. https://doi.org/10.1016/j.neuron.2011.08.026

Hinds, O. P., Rajendran, N., Polimeni, J. R., Augustinack, J. C., Wiggins, G.,
Wald, L. L., Diana Rosas, H., Potthast, A., Schwartz, E. L., & Fischl, B. (2008).
Accurate prediction of V1 location from cortical folds in a surface coordinate
system. NeuroImage, 39(4), 1585–1599. https://doi.org/10.1016/
j.neuroimage.2007.10.033



143

Hinds, O., Polimeni, J. R., Rajendran, N., Balasubramanian, M., Amunts, K.,
Zilles, K., Schwartz, E. L., Fischl, B., & Triantafyllou, C. (2009). Locating
the functional and anatomical boundaries of human primary visual cortex.
NeuroImage, 46(4), 915–922. https://doi.org/10.1016/J.NEUROIMAGE.2009.03.036

Huang, T., Chen, X., Jiang, J., Zhen, Z., & Liu, J. (2019). A probabilistic atlas of
the human motion complex built from large-scale functional localizer data.
Human Brain Mapping, 40(12), hbm.24610. https://doi.org/10.1002/hbm.24610

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the
cat’s striate cortex. The Journal of Physiology, 148(3), 574–591. https://doi.org
/10.1113/JPHYSIOL.1959.SP006308

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional archi-
tecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243.
https://doi.org/
10.1113/JPHYSIOL.1968.SP008455

Huk, A. C., Dougherty, R. F., & Heeger, D. J. (2002). Retinotopy and functional
subdivision of human areas MT and MST. The Journal of Neuroscience[202F?]:
The Official Journal of the Society for Neuroscience, 22(16), 7195–7205. https:
//doi.org/20026661

Hummer, A., Ritter, M., Tik, M., Ledolter, A. A., Woletz, M., Holder, G. E., Du-
moulin, Schmidt-Erfurth, U., & Windischberger, C. (2016). Eyetracker-based
gaze correction for robust mapping of population receptive fields. NeuroIm-
age, 142, 211–224. https://doi.org/10.1016/J.NEUROIMAGE.2016.07.003

Ishai, A., Ungerleider, L., & Haxby, J. (2000). Distributed neural systems for the
generation of visual images. Neuron.

Johnson, M. R., & Johnson, M. K. (2014). Decoding individual natural scene
representations during perception and imagery. Frontiers in Human Neuro-
science, 8, 59. https://doi.org/10.3389/fnhum.2014.00059

Julian, J. B., Fedorenko, E., Webster, J., & Kanwisher, N. (2012). An algorithmic
method for functionally defining regions of interest in the ventral visual
pathway. NeuroImage, 60(4), 2357–2364. https://doi.org/10.1016/
j.neuroimage.2012.02.055

Kanwisher, N. G., McDermott, J., & Chun, M. M. (1997). The Fusiform Face
Area: A Module in Human Extrastriate Cortex Specialized for Face Percep-
tion. The Journal of Neuroscience, 17(11), 4302–4311.



144 Bibliography

Kay, K. N., Winawer, J., Mezer, A., & Wandell, B. A. (2013). Compressive spatial
summation in human visual cortex. Https://Doi.Org/10.1152/Jn.00105.2013,
110(2), 481–494. https://doi.org/10.1152/JN.00105.2013

Keogh, R., & Pearson, J. (2018). The blind mind: No sensory visual imagery in
aphantasia. Cortex, 105, 53–60. https://doi.org/10.1016/J.CORTEX.2017.10.012

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization.
http://arxiv.org/abs/1412.6980

Knauff, M., Kassubek, J., Mulack, T., & Greenlee, M. W. (2000). Cortical activa-
tion evoked by visual mental imagery as measured by fMRI. NeuroReport,
11(18), 3957–3962. https://doi.org/10.1097/00001756-200012180-00011

Kniestedt, C., & Stamper, R. L. (2003). Visual acuity and its measurement. Oph-
thalmology Clinics of North America, 16(2), 155–170. https://doi.org/10.1016/S0896-
1549(03)00013-0

Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The case for mental imagery.

Kosslyn, S., Thompson, W., & Alpert, N. (1997). Neural systems shared by vi-
sual imagery and visual perception: A positron emission tomography study.
Neuroimage.

Kozhevnikov, M., Kozhevnikov, M., Yu, C. J., & Blazhenkova, O. (2013). Cre-
ativity, visualization abilities, and visual cognitive style. British Journal of
Educational Psychology, 83(2), 196–209. https://doi.org/10.1111/bjep.12013

Kriegeskorte, N., & Goebel, R. (2001). An efficient algorithm for topologically
correct segmentation of the cortical sheet in anatomical MR volumes. Neu-
roImage, 14(2), 329–346.

Kujovic, M., Zilles, K., Malikovic, A., Schleicher, A., Mohlberg, H., Rottschy,
C., Eickhoff, S. B., & Amunts, K. (2013). Cytoarchitectonic mapping of
the human dorsal extrastriate cortex. Brain Struct Funct, 218(1), 157–172.
https://doi.org/10.1007/s00429-012-0390-9

Kuperman, V. (2000). Magnetic resonance imaging: physical principles and applica-
tions.

Lafer-Sousa, R., Conway, B. R., & Kanwisher, N. G. (2016). Color-Biased Re-
gions of the Ventral Visual Pathway Lie between Face- and Place-Selective
Regions in Humans, as in Macaques. The Journal of Neuroscience[202F?]: The
Official Journal of the Society for Neuroscience, 36(5), 1682–1697. https://doi.org
/10.1523/JNEUROSCI.3164-15.2016



145

Lamb, T. D., Collin, S. P., & Pugh, E. N. (2007). Evolution of the vertebrate eye:
Opsins, photoreceptors, retina and eye cup. In Nature Reviews Neuroscience
(Vol. 8, Issue 12, pp. 960–976). Nature Publishing Group. https://doi.org
/10.1038/nrn2283

Lee, Sangkyun, Papanikolaou, A., Logothetis, N. K., Smirnakis, S. M., & Keliris,
G. A. (2013). A new method for estimating population receptive field topog-
raphy in visual cortex. NeuroImage, 81, 144–157. https://doi.org/10.1016/
J.NEUROIMAGE.2013.05.026

Lee, SH, Kravitz, D., & Baker, C. (2012). Disentangling visual imagery and per-
ception of real-world objects. Neuroimage.

Leroy, C. (1755). Mémoire où l’on rend compte de quelques tentatives que
l’on a faites pour guérir plusieurs maladies par l’Électricité. In Histoire de
l’Académie Royale des Sciences (pp. 60–98). https://ci.nii.ac.jp/naid/10018834739/

Li, W. H. (2013). Wearable computer vision systems for a cortical visual pros-
thesis. Proceedings of the IEEE International Conference on Computer Vision,
428–435. https://doi.org/10.1109/ICCVW.2013.63

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Na-
ture 2008 453:7197, 453(7197), 869–878. https://doi.org/10.1038/nature06976

Lorenz, S., Weiner, K. S., Caspers, J., Mohlberg, H., Schleicher, A., Bludau, S.,
Eickhoff, S. B., Grill-Spector, K., Zilles, K., & Amunts, K. (2015). Two New
Cytoarchitectonic Areas on the Human Mid-Fusiform Gyrus. Cereb Cortex,
1–13. https://doi.org/10.1093/cercor/bhv225

Mahon, B. Z., Anzellotti, S., Schwarzbach, J., Zampini, M., & Caramazza, A.
(2009). Category-Specific Organization in the Human Brain Does Not Re-
quire Visual Experience. Neuron, 63(3), 397–405. https://doi.org/10.1016/
j.neuron.2009.07.012

Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. a,
Ledden, P. J., Brady, T. J., Rosen, B. R., & Tootell, R. B. (1995). Object-related
activity revealed by functional magnetic resonance imaging in human oc-
cipital cortex. Proceedings of the National Academy of Sciences of the United
States of America, 92(18), 8135–8139. https://doi.org/10.1073/pnas.92.18.8135

Marques, J. P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P.-
F., & Gruetter, R. (2010). MP2RAGE, a self bias-field corrected sequence for
improved segmentation and T 1-mapping at high field. Neuroimage, 49(2),
1271–1281.



146 Bibliography

Mechelli, A., Price, C. J., Friston, K. J., & Ishai, A. (2004). Where bottom-up
meets top-down: neuronal interactions during perception and imagery. Cere-
bral Cortex. http://cercor.oxfordjournals.org/content/14/11/1256.short

Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M., & Morito, Y. (2008). Vi-
sual image reconstruction from human brain activity using a combination
of multiscale local image decoders. Neuron.

Moeller, S., Yacoub, E., & Olman, C. A. (2010). Multiband multislice GE-EPI at
7 tesla, with 16-fold acceleration using partial parallel imaging with appli-
cation to high spatial and temporal whole-brain fMRI. Magnetic.

Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolv-
ing BOLD activation in event-related designs for multivoxel pattern classifi-
cation analyses. NeuroImage, 59(3), 2636–2643. https://doi.org/10.1111/j.1751-
9004.2009.00170.x.Experience

Naselaris, T., Olman, C. A., Stansbury, D. E., Ugurbil, K., & Gallant, J. L. (2015).
A voxel-wise encoding model for early visual areas decodes mental images
of remembered scenes. NeuroImage, 105, 215–228. https://doi.org/10.1016/
j.neuroimage.2014.10.018

Nasr, S., Liu, N., Devaney, K. J., Yue, X., Rajimehr, R., Ungerleider, L. G., &
Tootell, R. B. H. (2011). Scene-selective cortical regions in human and non-
human primates. Journal of Neuroscience, 31(39), 13771–13785. https://doi.org/
10.1523/JNEUROSCI.2792-11.2011

Naumann, J. (2012). Search for Paradise: A Patient’s Account of the Artificial Vision
Experiment.

Nieto-Castañón, A., & Fedorenko, E. (2012). Subject-specific functional localiz-
ers increase sensitivity and functional resolution of multi-subject analyses.
NeuroImage, 63(3), 1646–1669. https://doi.org/10.1016/j.neuroimage.
2012.06.065

Niketeghad, S., & Pouratian, N. (2019). Brain Machine Interfaces for Vision
Restoration: The Current State of Cortical Visual Prosthetics. Neurotherapeu-
tics, 16(1), 134. https://doi.org/10.1007/S13311-018-0660-1
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Methodological approach

To evaluate the effect of number of subjects on the Dice coefficient for a given
fROI, we calculated the Dice coefficient with an iterative number of subjects
comprising the predicting group maps for each fROI in the visfAtlas. Details
for the number of subjects that each fROI was defined in can be found in Table
1 of the main article. For each fROI and hemisphere, respectively, we started
with N = 2 subjects where 1 subject was used to predict the other subject. Then
we randomly, without replacement, drew N = 3 subjects and used two to pre-
dict the third subject. The prediction was quantitively evaluated with the Dice
coefficient. For any predicting number of subjects and each fROI, we used the
same threshold that was best across all alignment methods (see main article,
Methods and Materials), which was 0.2. Within each iteration of a given num-
ber of subjects, we cross-validated the dice coefficient for each left-out subject
so that there were three different cross-validation iterations for N = 3, since each
subject was left out once. The number of subjects was increased until the total
N for the respective hemisphere ROI was reached (see x-axis of Suppl. Fig. 1).
Next, we repeated this procedure for each N 1000 times (where the same sub-
jects could not be drawn within the same sample, but could for any of the 1000
times) and computed the standard deviation across those iterations. We chose
to draw samples 1000 times to control for the fact that there are more possible
combinations of lower N than higher N.



169

Figure 5.4.1: Effect of number of subjects in a group map on the Dice coefficient for
predicting left-out subjects’ fROIs. For each iterative number of subjects comprising
an atlas we tested how well it predicts a left-out data using the Dice coefficient metric.
x-axis: number of subjects predicting a left-out subject; y-axis: resulting Dice coeffi-
cients. Errorbars: standard deviation across 1000 sample computations.
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Propositions of the PhD-thesis

The brain as image processor and generator
towards function-restoring brain-computer-interfaces

Rick van Hoof

1. Human visual perception needs to be studied in-vivo before we can un-
derstand human vision.

2. Ultra-high field fMRI is an invalueable neuroimaging tool for analyzing
human cognitive functions in-vivo at the meso- and macroscopic level.

3. Functional parcellation of cortical brain regions can assist in understand-
ing more complex brain dynamics.

4. Neural responses to specific categories of visual stimuli can be reliably
mapped to a flattened model of the cerebral cortex.

5. Retinotopic organization of the visual cortex can partly be derived from
anatomical structures, and can therefore also be estimated in blind indi-
viduals.

6. Virtual simulations of a visual cortical prosthesis using estimated retino-
topic maps can improve visual field coverage of a cortical implant.

7. Studying the process of generating imagined percepts can aid the under-
standing of visual processing, and vice versa.

8. Visual perception and mental imagery share common circuitry.

9. To understand the mind, we should attempt to grasp the underlying mech-
anisms.

10. Scientists have the responsibility to evaluate both the risks and potential
gains involved with restorative brain-computer-interfaces.

11. The academic publishing system is built on capitalism and is in need of
reform.
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