Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1

T. Accadia*, F. Acernese, F. Antonucci, S. Aoudia, K.G. Arun, P. Astone, G. Ballardin, F. Barone, M. Barsuglia, T.S. Bauer, M.G. Beker, A. Belletoile, S. Bigotta, S. Birindelli, M. Bitossi, M.A. Bizouard, M. Blom, C. Boccara, F. Bondu, L. BonelliR. Bonnand, L. Bosi, S. Braccini, C. Bradaschia, A. Brillet, V. Brisson, R. Budzynski, T. Bulik, H.J. Bulten, D. Buskulic, C. Buy, G. Cagnoli, E. Calloni, E. Campagna, B. Canuel, F. Carbognani, F. Cavalier, R. Cavalieri, G. Cella, E. Cesarini, E. Chassande-Mottin, A. Chincarini, F. Cleva, E. Coccia, C.N. Colacino, J. Colas, A. Colla, M. Colombini, A. Corsi, J.P. Coulon, S. Hild, J.F.J. van den Brand

*Corresponding author for this work

Research output: Contribution to conferencePaperAcademic


Virgo is a kilometer-length interferometer for gravitationnal waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitationnal wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detectorin-loop response and sensitivity within similar to 5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). There constructed h(t) during VSR1 is valid from 10 Hz up to 10kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and 6 mu s above.
Original languageEnglish
Number of pages8
Publication statusPublished - 1 Jan 2010
Externally publishedYes


Dive into the research topics of 'Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1'. Together they form a unique fingerprint.

Cite this