Understanding the Correlation between Tomographic and Biomechanical Severity of Keratoconic Corneas

Rohit Shetty, Rudy M. M. A. Nuijts, Purnima Srivatsa, Chaitra Jayadev, Natasha Pahuja, Mukunda C. Akkali, Abhijit Sinha Roy*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

8 Citations (Web of Science)


Purpose. To evaluate correlation between tomographic gradation of keratoconus (KC) and its corresponding air-puff induced biomechanical response. Methods. Corneal tomography and biomechanics were measured with Scheimpflug imaging in 44 normal and 92 KC corneas. Deformation waveform was also analyzed with Fourier series. A custom KC severity scale was used from 1 to 3 with 3 as the most severe grade. Tomographic and biomechanical variables were assessed among the grades. Sensitivity and specificity of the variables were assessed using receiver operating characteristics (ROC). Results. Curvature variables were significantly different between normal and disease (P <0.05) and among grades (P <0.05). Biomechanical variables were significantly different between normal and disease (P <0.05) but similar among grades 1 and 2 (P > 0.05). All variables had an area under the ROC curve greater than 0.5. The root mean square of the Fourier cosine coefficients had the best ROC (0.92, cut-off: 0.027, sensitivity: 83%, specificity: 88.6%). Spearman correlation coefficient was significant between most variables (P <0.05). However, tomographic segregation of keratoconus did not result in concomitant biomechanical segregation of the grades. Conclusions. There was lack of significant biomechanical difference between mild disease grades, despite progressive corneal thinning. Mathematical models that estimate corneal modulus from air-puff deformation may be more useful.
Original languageEnglish
Article number294197
Number of pages9
JournalBioMed Research International
Publication statusPublished - 2015

Cite this