@techreport{66a0b37807884931a9776566ae927fd7,
title = "Tree-based Node Aggregation in Sparse Graphical Models",
abstract = "High-dimensional graphical models are often estimated using regularization that is aimed at reducing the number of edges in a network. In this work, we show how even simpler networks can be produced by aggregating the nodes of the graphical model. We develop a new convex regularized method, called the tree-aggregated graphical lasso or tag-lasso, that estimates graphical models that are both edge-sparse and node-aggregated. The aggregation is performed in a data-driven fashion by leveraging side information in the form of a tree that encodes node similarity and facilitates the interpretation of the resulting aggregated nodes. We provide an efficient implementation of the tag-lasso by using the locally adaptive alternating direction method of multipliers and illustrate our proposal's practical advantages in simulation and in applications in finance and biology.",
keywords = "aggregation, graphic model, high-dimensionality, regularization, sparsity",
author = "Ines Wilms and Jacob Bien",
note = "Data source: Oxford-Man Institute of Quantitative Finance",
year = "2021",
language = "English",
series = "arXiv.org",
number = "arXiv:2101.12503",
publisher = "Cornell University - arXiv",
address = "United States",
type = "WorkingPaper",
institution = "Cornell University - arXiv",
}