Treatment planning and 4D robust evaluation strategy for proton therapy of lung tumors with large motion amplitude

V.T. Taasti*, D. Hattu, F. Vaassen, R. Canters, M. Velders, J. Mannens, J. van Loon, I. Rinaldi, M. Unipan, W. van Elmpt

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Purpose Intensity-modulated proton therapy (IMPT) for lung tumors with a large tumor movement is challenging due to loss of robustness in the target coverage. Often an upper cut-off at 5-mm tumor movement is used for proton patient selection. In this study, we propose (1) a robust and easily implementable treatment planning strategy for lung tumors with a movement larger than 5 mm, and (2) a four-dimensional computed tomography (4DCT) robust evaluation strategy for evaluating the dose distribution on the breathing phases. Materials and methods We created a treatment planning strategy based on the internal target volume (ITV) concept (aim 1). The ITV was created as a union of the clinical target volumes (CTVs) on the eight 4DCT phases. The ITV expanded by 2 mm was the target during robust optimization on the average CT (avgCT). The clinical plan acceptability was judged based on a robust evaluation, computing the voxel-wise min and max (VWmin/max) doses over 28 error scenarios (range and setup errors) on the avgCT. The plans were created in RayStation (RaySearch Laboratories, Stockholm, Sweden) using a Monte Carlo dose engine, commissioned for our Mevion S250i Hyperscan system (Mevion Medical Systems, Littleton, MA, USA). We developed a new 4D robust evaluation approach (4DRobAvg; aim 2). The 28 scenario doses were computed on each individual 4DCT phase. For each scenario, the dose distributions on the individual phases were deformed to the reference phase and combined to a weighted sum, resulting in 28 weighted sum scenario dose distributions. From these 28 scenario doses, VWmin/max doses were computed. This new 4D robust evaluation was compared to two simpler 4D evaluation strategies: re-computing the nominal plan on each individual 4DCT phase (4DNom) and computing the robust VWmin/max doses on each individual phase (4DRobInd). The treatment planning and dose evaluation strategies were evaluated for 16 lung cancer patients with tumor movement of 4-26 mm. Results The ratio of the ITV and CTV volumes increased linearly with the tumor amplitude, with an average ratio of 1.4. Despite large ITV volumes, a clinically acceptable plan fulfilling all target and organ at risk (OAR) constraints was feasible for all patients. The 4DNom and 4DRobInd evaluation strategies were found to under- or overestimate the dosimetric effect of the tumor movement, respectively. 4DRobInd showed target underdosage for five patients, not observed in the robust evaluation on the avgCT or in 4DRobAvg. The accuracy of dose deformation used in 4DRobAvg was quantified and found acceptable, with differences for the dose-volume parameters below 1 Gy in most cases. Conclusion The proposed ITV-based planning strategy on the avgCT was found to be a clinically feasible approach with adequate tumor coverage and no OAR overdosage even for large tumor movement. The new proposed 4D robust evaluation, 4DRobAvg, was shown to give an easily interpretable understanding of the effect of respiratory motion dose distribution, and to give an accurate estimate of the dose delivered in the different breathing phases.
Original languageEnglish
Pages (from-to)4425-4437
Number of pages13
JournalMedical Physics
Volume48
Issue number8
Early online date17 Jul 2021
DOIs
Publication statusPublished - 2021

Keywords

  • large tumor amplitude
  • lung tumors
  • Proton treatment planning
  • robust evaluation
  • 4DCT evaluation
  • BREATH-HOLD RADIOTHERAPY
  • CLINICAL IMPLEMENTATION
  • RADIATION-THERAPY
  • INTERPLAY
  • IMPACT
  • UNCERTAINTIES
  • OPTIMIZATION
  • FEASIBILITY
  • DELIVERY
  • PATIENT

Cite this