TY - JOUR
T1 - The subcellular compartmentation of fatty acid transporters is regulated differently by insulin and by AICAR
AU - Chabowski, A.
AU - Coort, S.L.M.
AU - Calles-Escandon, J.
AU - Tandon, NN.
AU - Glatz, J.F.
AU - Luiken, J.J.F.P.
AU - Bonen, A.
PY - 2005/1/1
Y1 - 2005/1/1
N2 - Cellular fatty acid uptake is facilitated by a number of fatty acid transporters, FAT/CD36, FABPpm and FATP1. It had been presumed that FABPpm, was confined to the plasma membrane and was not regulated. Here, we demonstrate for the first time that FABPpm and FATP1 are also present in intracellular depots in cardiac myocytes. While we confirmed previous work that insulin and AICAR each induced the translocation of FAT/CD36 from an intracellular depot to the PM, only AI-CAR, but not insulin, induced the translocation of FABPpm. Moreover, neither insulin nor AICAR induced the translocation of FATP1. Importantly, the increased plasmalemmal content of these LCFA transporters was associated with a concomitant increase in the initial rate of palmitate uptake into cardiac myocytes. Specifically, the insulin-stimulated increase in the rate of palmitate uptake (+60%) paralleled the insulin-stimulated increase in plasmalemmal FAT/CD36 (+34%). Similarly, the greater AICAR-stimulated increase in the rate of palmitate uptake (+90%) paralleled the AICAR-induced increase in both plasmalemmal proteins (FAT/CD36 (+40%) + FABPpm (+36%)). Inhibition of palmitate uptake with the specific FAT/CD36 inhibitor SSO indicated that FABPpm interacts with FAT/CD36 at the plasma membrane to facilitate the uptake of palmitate. In conclusion, (1) there appears to be tissue-specific sensitivity to insulin-induced FATP1 translocation, as it has been shown elsewhere that insulin induces FATP1 translocation in 3T3-L1 adipocytes, and (2) clearly, the subcellular distribution of FABPpm, as well as FAT/CD36, is acutely regulated in cardiac myocytes, although FABPpm and FAT/CD36 do not necessarily respond identically to the same stimuli.
AB - Cellular fatty acid uptake is facilitated by a number of fatty acid transporters, FAT/CD36, FABPpm and FATP1. It had been presumed that FABPpm, was confined to the plasma membrane and was not regulated. Here, we demonstrate for the first time that FABPpm and FATP1 are also present in intracellular depots in cardiac myocytes. While we confirmed previous work that insulin and AICAR each induced the translocation of FAT/CD36 from an intracellular depot to the PM, only AI-CAR, but not insulin, induced the translocation of FABPpm. Moreover, neither insulin nor AICAR induced the translocation of FATP1. Importantly, the increased plasmalemmal content of these LCFA transporters was associated with a concomitant increase in the initial rate of palmitate uptake into cardiac myocytes. Specifically, the insulin-stimulated increase in the rate of palmitate uptake (+60%) paralleled the insulin-stimulated increase in plasmalemmal FAT/CD36 (+34%). Similarly, the greater AICAR-stimulated increase in the rate of palmitate uptake (+90%) paralleled the AICAR-induced increase in both plasmalemmal proteins (FAT/CD36 (+40%) + FABPpm (+36%)). Inhibition of palmitate uptake with the specific FAT/CD36 inhibitor SSO indicated that FABPpm interacts with FAT/CD36 at the plasma membrane to facilitate the uptake of palmitate. In conclusion, (1) there appears to be tissue-specific sensitivity to insulin-induced FATP1 translocation, as it has been shown elsewhere that insulin induces FATP1 translocation in 3T3-L1 adipocytes, and (2) clearly, the subcellular distribution of FABPpm, as well as FAT/CD36, is acutely regulated in cardiac myocytes, although FABPpm and FAT/CD36 do not necessarily respond identically to the same stimuli.
U2 - 10.1016/j.febslet.2004.11.118
DO - 10.1016/j.febslet.2004.11.118
M3 - Article
C2 - 15848183
SN - 0014-5793
VL - 579
SP - 2428
EP - 2432
JO - Febs Letters
JF - Febs Letters
ER -