The potential of an optical surface tracking system in non-coplanar single isocenter treatments of multiple brain metastases

Ans C. C. Swinnen*, Michel C. Ollers, Chin Loon Ong, Frank Verhaegen

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Web of Science)


To evaluate the accuracy of a commercial optical surface tracking (OST) system and to demonstrate how it can be implemented to monitor patient positioning during non-coplanar single isocenter stereotactic treatments of brain metastases. A 3-camera OST system was used (Catalyst HD (TM), C-RAD) on a TruebeamSTx with a 6DoF couch. The setup accuracy and agreement between the OST system, and CBCT and kV-MV imaging at couch angles 0 degrees and 270 degrees, respectively, were examined. Film measurements at 3 depths in the Rando-Alderson phantom were performed using a single isocenter non-coplanar VMAT plan containing 4 brain lesions. Setup of the phantom was performed with CBCT at couch 0 degrees and subsequently monitored by OST at other couch angles. Setup data for 7 volunteers were collected to evaluate the accuracy and reproducibility of the OST system at couch angles 0 degrees, 45 degrees, 90 degrees, 315 degrees, and 270 degrees. These results were also correlated to the couch rotation offsets obtained by a Winston-Lutz (WL) test. The Rando-Alderson phantom, as well as volunteers, were fixated using open face masks (Orfit). For repeated tests with the Rando-Alderson phantom, deviations between rotational and translational isocenter corrections for CBCT and OST systems are always within 0.2 degrees (pitch, roll, yaw), and 0.1mm and 0.5mm (longitudinal, lateral, vertical) for couch positions 0 degrees and 270 degrees, respectively. Dose deviations between the film and TPS doses in the center of the 4 lesions were -1.2%, -0.1%, -0.0%, and -1.9%. Local gamma evaluation criteria of 2%/2 mm and 3%/1 mm yielded pass rates of 99.2%, 99.2%, 98.6%, 89.9% and 98.8%, 97.5%, 81.7%, 78.1% for the 4 lesions. Regarding the volunteers, the mean translational and rotational isocenter shift values were (0.24 +/- 0.09) mm and (0.15 +/- 0.07) degrees. Largest isocenter shifts were found for couch angles 45 & x2da; and 90 & x2da;, confirmed by WL couch rotation offsets. Patient monitoring during non-coplanar VMAT treatments of brain metastases is feasible with submillimeter accuracy.

Original languageEnglish
Pages (from-to)63-72
Number of pages10
JournalJournal of Applied Clinical Medical Physics
Issue number6
Publication statusPublished - Jun 2020


  • brain metastases
  • non-coplanar
  • open face mask
  • optical surface tracking
  • stereotactic radiosurgery

Cite this