TY - JOUR
T1 - The development of an automated ward independent delirium risk prediction model
AU - de Wit, Hugo
AU - Winkens, Bjorn
AU - Mestres Gonzalvo, Carlota
AU - Hurkens, Kim P. G. M.
AU - Mulder, Wubbo J.
AU - Janknegt, Rob
AU - Verhey, Frans R.
AU - van der Kuy, Paul-Hugo M.
AU - Schols, Jos M. G. A.
PY - 2016/8
Y1 - 2016/8
N2 - Background A delirium is common in hospital settings resulting in increased mortality and costs. Prevention of a delirium is clearly preferred over treatment. A delirium risk prediction model can be helpful to identify patients at risk of a delirium, allowing the start of preventive treatment. Current risk prediction models rely on manual calculation of the individual patient risk. Objective The aim of this study was to develop an automated ward independent delirium riskprediction model. To show that such a model can be constructed exclusively from electronically available risk factors and thereby implemented into a clinical decision support system (CDSS) to optimally support the physician to initiate preventive treatment. Setting A Dutch teaching hospital. Methods A retrospective cohort study in which patients, 60 years or older, were selected when admitted to the hospital, with no delirium diagnosis when presenting, or during the first day of admission. We used logistic regression analysis to develop a delirium predictive model out of the electronically available predictive variables. Main outcome measure A delirium risk prediction model. Results A delirium risk prediction model was developed using predictive variables that were significant in the univariable regression analyses. The area under the receiver operating characteristics curve of the "medication model" model was 0.76 after internal validation. Conclusions CDSSs can be used to automatically predict the risk of a delirium in individual hospitalised patients' by exclusively using electronically available predictive variables. To increase the use and improve the quality of predictive models, clinical risk factors should be documented ready for automated use.
AB - Background A delirium is common in hospital settings resulting in increased mortality and costs. Prevention of a delirium is clearly preferred over treatment. A delirium risk prediction model can be helpful to identify patients at risk of a delirium, allowing the start of preventive treatment. Current risk prediction models rely on manual calculation of the individual patient risk. Objective The aim of this study was to develop an automated ward independent delirium riskprediction model. To show that such a model can be constructed exclusively from electronically available risk factors and thereby implemented into a clinical decision support system (CDSS) to optimally support the physician to initiate preventive treatment. Setting A Dutch teaching hospital. Methods A retrospective cohort study in which patients, 60 years or older, were selected when admitted to the hospital, with no delirium diagnosis when presenting, or during the first day of admission. We used logistic regression analysis to develop a delirium predictive model out of the electronically available predictive variables. Main outcome measure A delirium risk prediction model. Results A delirium risk prediction model was developed using predictive variables that were significant in the univariable regression analyses. The area under the receiver operating characteristics curve of the "medication model" model was 0.76 after internal validation. Conclusions CDSSs can be used to automatically predict the risk of a delirium in individual hospitalised patients' by exclusively using electronically available predictive variables. To increase the use and improve the quality of predictive models, clinical risk factors should be documented ready for automated use.
KW - Automation
KW - Decision support systems
KW - Decision support techniques
KW - Delirium
KW - Hospital
KW - Predicting
U2 - 10.1007/s11096-016-0312-7
DO - 10.1007/s11096-016-0312-7
M3 - Article
C2 - 27177868
SN - 2210-7703
VL - 38
SP - 915
EP - 923
JO - International Journal of Clinical Pharmacy
JF - International Journal of Clinical Pharmacy
IS - 4
ER -