Tachycardia-induced silencing of subcellular Ca2+ signaling in atrial myocytes

Maura Greiser*, Benoit-Gilles Kerfant, George S. B. Williams, Niels Voigt, Erik Harks, Katharine M. Dibb, Anne Giese, Janos Meszaros, Sander Verheule, Ursula Ravens, Maurits A. Allessie, James S. Gammie, Jolanda van der Velden, W. Jonathan Lederer, Dobromir Dobrev, Ulrich Schotten

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Atrial fibrillation (AF) is characterized by sustained high atrial activation rates and arrhythmogenic cellular Ca2+ signaling instability; however, it is not clear how a high atrial rate and Ca2+ instability may be related. Here, we characterized subcellular Ca2+ signaling after 5 days of high atrial rates in a rabbit model. While some changes were similar to those in persistent AF, we identified a distinct pattern of stabilized subcellular Ca2+ signaling. Ca2+ sparks, arrhythmogenic Ca2+ waves, sarcoplasmic reticulum (SR) Ca2+ leak, and SR Ca2+ content were largely unaltered. Based on computational analysis, these findings were consistent with a higher Ca2+ leak due to PICA-dependent phosphorylation of SR Ca2+ channels (RyR2s), fewer RyR2s, and smaller RyR2 clusters in the SR. We determined that less Ca2+ release per [Ca2+](i) transient, increased Ca2+ buffering strength, shortened action potentials, and reduced L-type Ca2+ current contribute to a stunning reduction of intracellular Na+ concentration following rapid atrial pacing. In both patients with AF and in our rabbit model, this silencing led to failed propagation of the [Ca2+](i) signal to the myocyte center. We conclude that sustained high atrial rates alone silence Ca2+ signaling and do not produce Ca2+ signaling instability, consistent with an adaptive molecular and cellular response to atrial tachycardia.
Original languageEnglish
Pages (from-to)4759-4772
JournalJournal of Clinical Investigation
Volume124
Issue number11
DOIs
Publication statusPublished - Nov 2014

Fingerprint

Dive into the research topics of 'Tachycardia-induced silencing of subcellular Ca2+ signaling in atrial myocytes'. Together they form a unique fingerprint.

Cite this