TY - JOUR
T1 - Stress-Induced Changes in Trophic Factor Expression in the Rodent Urinary Bladder
T2 - Possible Links With Angiogenesis
AU - Rijk, Mathijs M de
AU - Wolf-Johnston, Amanda
AU - Kullmann, Aura F
AU - Maringer, Katherine
AU - Sims-Lucas, Sunder
AU - Koeveringe, Gommert A van
AU - Rodríguez, Larissa V
AU - Birder, Lori A
N1 - Funding Information:
• Grant/Funding Support: This work was supported by the National Institutes of Health (R01 DK115476).
Publisher Copyright:
Copyright © 2022 Korean Continence Society.
PY - 2022/12
Y1 - 2022/12
N2 - PURPOSE: Substantive evidence supports a role of chronic stress in the development, maintenance, and even enhancement of functional bladder disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increased urinary frequency and bladder hyperalgesia have been reported in rodents exposed to a chronic stress paradigm. Here, we utilized a water avoidance stress (WAS) model in rodents to investigate the effect of chronic stress on vascular perfusion and angiogenesis.METHODS: Female Wistar-Kyoto rats were exposed to WAS for 10 consecutive days. Bladder neck tissues were analyzed by western immunoblot for vascular endothelial growth factor (VEGF) and nerve growth factor precursor (proNGF). Vascular perfusion was assessed by fluorescent microangiography followed by Hypoxyprobe testing to identify regions of tissue hypoxia.RESULTS: The expression of VEGF and proNGF in the bladder neck mucosa was significantly higher in the WAS rats than in the controls. There was a trend toward increased vascular perfusion, but without a statistically significant difference from the control group. The WAS rats displayed a 1.6-fold increase in perfusion. Additionally, a greater abundance of vessels was observed in the WAS rats, most notably in the microvasculature.CONCLUSION: These findings show that chronic psychological stress induces factors that can lead to increased microvasculature formation, especially around the bladder neck, the region that contains most nociceptive bladder afferents. These findings may indicate a link between angiogenesis and other inflammatory factors that contribute to structural changes and pain in IC/BPS.
AB - PURPOSE: Substantive evidence supports a role of chronic stress in the development, maintenance, and even enhancement of functional bladder disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increased urinary frequency and bladder hyperalgesia have been reported in rodents exposed to a chronic stress paradigm. Here, we utilized a water avoidance stress (WAS) model in rodents to investigate the effect of chronic stress on vascular perfusion and angiogenesis.METHODS: Female Wistar-Kyoto rats were exposed to WAS for 10 consecutive days. Bladder neck tissues were analyzed by western immunoblot for vascular endothelial growth factor (VEGF) and nerve growth factor precursor (proNGF). Vascular perfusion was assessed by fluorescent microangiography followed by Hypoxyprobe testing to identify regions of tissue hypoxia.RESULTS: The expression of VEGF and proNGF in the bladder neck mucosa was significantly higher in the WAS rats than in the controls. There was a trend toward increased vascular perfusion, but without a statistically significant difference from the control group. The WAS rats displayed a 1.6-fold increase in perfusion. Additionally, a greater abundance of vessels was observed in the WAS rats, most notably in the microvasculature.CONCLUSION: These findings show that chronic psychological stress induces factors that can lead to increased microvasculature formation, especially around the bladder neck, the region that contains most nociceptive bladder afferents. These findings may indicate a link between angiogenesis and other inflammatory factors that contribute to structural changes and pain in IC/BPS.
U2 - 10.5213/inj.2244118.059
DO - 10.5213/inj.2244118.059
M3 - Article
C2 - 36599338
SN - 2093-4777
VL - 26
SP - 299
EP - 307
JO - International Neurourology Journal
JF - International Neurourology Journal
IS - 4
ER -