Abstract
Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.
Original language | English |
---|---|
Article number | 4819 |
Number of pages | 15 |
Journal | International Journal of Molecular Sciences |
Volume | 25 |
Issue number | 9 |
DOIs | |
Publication status | Published - 28 Apr 2024 |
Keywords
- CLSM
- JC-1
- MitoTracker Red CMX Rox
- TMRM
- mitochondria
- spinning disk confocal microscope
- Humans
- Mitochondria/metabolism
- Microscopy, Confocal/methods
- Imaging, Three-Dimensional/methods
- Fluorescent Dyes/chemistry
- Membrane Potential, Mitochondrial
- Carbocyanines/chemistry
- Rhodamines/chemistry