Simulation of pseudo-CT images based on deformable image registration of ultrasound images: A proof of concept for transabdominal ultrasound imaging of the prostate during radiotherapy

Skadi van der Meer, Saskia M. Camps, Wouter J. C. van Elmpt, Mark Podesta, Pedro Gomes Sanches, Ben G. L. Vanneste, Davide Fontanarosa, Frank Verhaegen*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Purpose: Imaging of patient anatomy during treatment is a necessity for position verification and for adaptive radiotherapy based on daily dose recalculation. Ultrasound (US) image guided radiotherapy systems are currently available to collect US images at the simulation stage (USsim), coregistered with the simulation computed tomography (CT), and during all treatment fractions. The authors hypothesize that a deformation field derived from US-based deformable image registration can be used to create a daily pseudo-CT (CTps) image that is more representative of the patients' geometry during treatment than the CT acquired at simulation stage (CTsim). Methods: The three prostate patients, considered to evaluate this hypothesis, had coregistered CT and US scans on various days. In particular, two patients had two US-CT datasets each and the third one had five US-CT datasets. Deformation fields were computed between pairs of US images of the same patient and then applied to the corresponding USsim scan to yield a new deformed CTps scan. The original treatment plans were used to recalculate dose distributions in the simulation, deformed and ground truth CT (CTgt) images to compare dice similarity coefficients, maximum absolute distance, and mean absolute distance on CT delineations and gamma index (gamma) evaluations on both the Hounsfield units (HUs) and the dose. Results: In the majority, deformation did improve the results for all three evaluation methods. The change in gamma failure for dose (gamma(Dose), 3%, 3 mm) ranged from an improvement of 11.2% in the prostate volume to a deterioration of 1.3% in the prostate and bladder. The change in gamma failure for the CT images (gamma(CT), 50 HU, 3 mm) ranged from an improvement of 20.5% in the anus and rectum to a deterioration of 3.2% in the prostate. Conclusions: This new technique may generate CTps images that are more representative of the actual patient anatomy than the CTsim scan.
Original languageEnglish
Pages (from-to)1913-1920
JournalMedical Physics
Volume43
Issue number4
DOIs
Publication statusPublished - Apr 2016

Keywords

  • ultrasound imaging
  • image guided radiotherapy
  • deformable image registration
  • adaptive radiotherapy
  • prostate cancer

Cite this