Scientific Lenses to Support Multiple Views over Linked Chemistry Data

C. Batchelor, C.A. Brenninkmeijer, C. Chichester, M. Davies, D. Digles, I. Dunlop, C. Evelo, A. Gaulton, C. Goble, A.G. Gray, P. Groth, L. Harland, K. Karapetyan, A. Loizou, J. Overington, S. Pettifer, J. Steele, R Stevens, V. Tkachenko, A. WaagmeesterA. Williams, E. Willighagen

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

9522 Downloads (Pure)


When are two entries about a small molecule in different datasets the same? if they have the same drug name, chemical structure, or some other criteria? the choice depends upon the application to which the data will be put. However, existing linked data approaches provide a single global view over the data with no way of varying the notion of equivalence to be this paper, we present an approach to enable applications to choose the equivalence criteria to apply between datasets. Thus, supporting multiple dynamic views over the linked data. For chemical data, we show that multiple sets of links can be automatically generated according to different equivalence criteria and published with semantic descriptions capturing their context and interpretation. This approach has been applied within a large scale public-private data integration platform for drug discovery. To cater for different use cases, the platform allows the application of different lenses which vary the equivalence rules to be applied based on the context and interpretation of the links.
Original languageEnglish
Title of host publicationThe Semantic Web - ISWC 2014
EditorsP. Mika, T. Tudorache, A. Bernstein, C. Welty, C. Knoblock, D. Vrandečić, P. Groth, N. Noy, K. Janowicz, C. Goble
Place of PublicationItaly
Publication statusPublished - 1 Jan 2014

Publication series

SeriesLecture Notes in Computer Science

Cite this