Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse

Lucas M. Fleuren*, Michele Tonutti, Daan P. de Bruin, Robbert C. A. Lalisang, Tariq A. Dam, Diederik Gommers, Olaf L. Cremer, Rob J. Bosman, Sebastiaan J. J. Vonk, Mattia Fornasa, Tomas Machado, Nardo J. M. van der Meer, Sander Rigter, Evert-Jan Wils, Tim Frenzel, Dave A. Dongelmans, Remko de Jong, Marco Peters, Marlijn J. A. Kamps, Dharmanand RamnarainRalph Nowitzky, Fleur G. C. A. Nooteboom, Wouter de Ruijter, Louise C. Urlings-Strop, Ellen G. M. Smit, D. Jannet Mehagnoul-Schipper, Tom Dormans, Cornelis P. C. de Jager, Stefaan H. A. Hendriks, Evelien Oostdijk, Auke C. Reidinga, Barbara Festen-Spanjer, Gert Brunnekreef, Alexander D. Cornet, Walter van den Tempel, Age D. Boelens, Peter Koetsier, Judith Lens, Sefanja Achterberg, Harald J. Faber, A. Karakus, Menno Beukema, Robert Entjes, Paul de Jong, Taco Houwert, Hidde Hovenkamp, Roberto Noorduijn Londono, Davide Quintarelli, Martijn G. Scholtemeijer, Aletta A. de Beer, Dutch ICU Data Sharing Against Covid-19 Collaborators, Frits van Osch, Marcel Aries

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Fingerprint

Dive into the research topics of 'Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse'. Together they form a unique fingerprint.

Keyphrases

INIS

Medicine and Dentistry