Review and gap analysis: molecular pathways leading to fetal alcohol spectrum disorders

Friederike Ehrhart*, Sylvia Roozen, Jef Verbeek, Ger Koek, Gerjo Kok, Henk van Kranen, Chris T Evelo, Leopold M G Curfs

*Corresponding author for this work

Research output: Contribution to journal(Systematic) Review article peer-review

Abstract

Alcohol exposure during pregnancy affects the development of the fetus in various ways and may lead to Fetal Alcohol Spectrum Disorders (FASD). FASD is one of the leading preventable forms of neurodevelopmental disorders. In the light of prevention and early intervention, knowledge on how ethanol exposure induces fetal damage is urgently needed. Besides direct ethanol and acetaldehyde toxicity, alcohol increases oxidative stress, and subsequent general effects (e.g., epigenetic imprinting, gene expression, and metabolite levels). The current review provides an overview of the existing knowledge about specific downstream pathways for FASD that affects e.g., the SHH pathway, cholesterol homeostasis, neurotransmitter signaling, and effects on the cytoskeleton. Available human data vary greatly, while animal studies with controlled ethanol exposition are only to a certain limit transferable to humans. The main deficits in knowledge about FASD are the lack of pathophysiological understanding and dose-response relationships, together with the lack of reliable biomarkers for either FASD detection or estimation of susceptibility. In addition to single outcome experiments, omics data should be generated to overcome this problem. Therefore, for future studies we recommend holistic data driven analysis, which allows integrative analyses over multiple levels of genetic variation, transcriptomics and metabolomics data to investigate the whole image of FASD development and to provide insight in potential drug targets for intervention.

Original languageEnglish
Pages (from-to)10-17
Number of pages8
JournalMolecular Psychiatry
Volume24
Issue number1
DOIs
Publication statusPublished - Jan 2019

Keywords

  • Journal Article
  • URINARY DOLICHOL
  • BIOMARKERS
  • NEURODEVELOPMENTAL DISORDERS
  • IMPACT
  • MARKER
  • FOCUS
  • PREVALENCE
  • EXPOSURE
  • BRAIN
  • CHILDREN

Cite this